WO2023119371A1 - Data processing method , measurement system, and program - Google Patents

Data processing method , measurement system, and program Download PDF

Info

Publication number
WO2023119371A1
WO2023119371A1 PCT/JP2021/047054 JP2021047054W WO2023119371A1 WO 2023119371 A1 WO2023119371 A1 WO 2023119371A1 JP 2021047054 W JP2021047054 W JP 2021047054W WO 2023119371 A1 WO2023119371 A1 WO 2023119371A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
equation
point
waves
data processing
Prior art date
Application number
PCT/JP2021/047054
Other languages
French (fr)
Japanese (ja)
Inventor
康成 森
Original Assignee
株式会社三井E&Sマシナリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井E&Sマシナリー filed Critical 株式会社三井E&Sマシナリー
Priority to PCT/JP2021/047054 priority Critical patent/WO2023119371A1/en
Priority to JP2022571838A priority patent/JP7300077B1/en
Publication of WO2023119371A1 publication Critical patent/WO2023119371A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/02Investigating the presence of flaws

Definitions

  • the present invention relates to a data processing method, a measurement system, and a program for processing, using a computer, measurement data of waves whose values are determined by the frequencies of waves such as electromagnetic waves generated in space and the spatial coordinates of the space.
  • a radar device that non-destructively inspects the inside of non-metallic structures such as concrete and wood.
  • a conventional radar device has an array antenna in which a plurality of antennas are arranged on a plane.
  • An array antenna has, for example, a structure in which antennas such as planar antennas are arranged in one direction, and a transmitting array antenna and a receiving array antenna are arranged close to each other. Further, in order to accurately measure the inside of a structure, the radar device measures the object to be measured at wideband frequencies while changing the frequency of electromagnetic waves at set frequency intervals.
  • Patent Document 1 Japanese Patent Laid-Open No. 2015-095840. No. 1, hereinafter referred to as “Patent Document 1”.
  • the array direction of the planar antennas of the transmitting array antenna is parallel to the arraying direction of the planar antennas of the receiving array antenna.
  • the position of the receiving array antenna in the array direction of the planar antennas is between two positions of the adjacent planar antennas of the transmitting array antenna.
  • Patent Document 2 Japanese Patent No. 6557747, hereinafter referred to as “Patent Document 2”.
  • Synthetic aperture processing is used to visualize the interior of the structure from the measured data.
  • Synthetic aperture processing is broadly classified into addition methods such as the diffraction stacking method and methods using Fourier transform such as the FK migration method.
  • Synthetic aperture processing using Fourier transform is realistic for achieving a practical computation time.
  • synthetic aperture processing using Fourier transform measurements on a plane with equal intervals are required.
  • Patent Document 1 In a radar apparatus having an array antenna in which planar antennas are arranged in one direction, as disclosed in Patent Document 1, it is sometimes difficult to bring each array antenna close to a structure having a curved surface shape. Further, in the scattering tomography method as disclosed in Patent Document 2, the computation for visualizing the information inside the object is complicated, and the computation time is long.
  • the measured value s a (x ', y', k) is double Fourier transformed from equation (1) to obtain S a (k x , ky , k), Defining an operator shown in equation (2) with eigenvalues (x', y ') for S a (k x , k y , k), Perform triple inverse Fourier transform from equation (3) to obtain the reflectance f (x, y, z), Data processing method.
  • k is the wave number of said wave propagating;
  • k x , k y , k z are the wave vectors of round-trip spherical waves of the wave propagating between the transmitting/receiving point p(x', y', z') and the reflecting point (x, y, z); component, is.
  • a third aspect of the present invention is A program for analyzing scattered waves of waves radiated to an object, A procedure for obtaining S a (k x , k y , k) by double Fourier transforming the measured value S a ( x ' , y ' , k) from equation (1); Defining the operator shown in equation (2) with eigenvalues (x', y ') for S a (k x , k y , k); A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (3); is a program that causes a computer to execute however, k is the wave number of said wave propagating; k x , k y , k z are the components of the round-trip spherical wave vector of said wave propagating between the transmitting/receiving point p(x', y', z') and the reflecting point (x, y, z
  • a fourth aspect of the present invention is A data processing method for analyzing scattered waves of waves radiated to an object, radiating the waves to the object from a plurality of transmission points p 1 (x', y' 1 , z' 1 ) arranged on the y-axis;
  • the scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is received at a plurality of reception points p 2 (x', y ' 2 , z' 2 ) as measured value s a (x', y' 1 , y' 2 , k),
  • Let the plurality of transmission points p 1 (x', y' 1 , z' 1 ) and the plurality of reception points p 2 (x', y' 2 , z' 2 ) arranged on the y-axis be x' Move on the surface of the single-valued function z' g(x') with respect to The
  • k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z).
  • the components of the wave vector of the spherical wave, k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • a fifth aspect of the present invention is A measurement system for analyzing scattered waves of waves radiated to an object, a transmitting/receiving unit, a transmitter that radiates the waves to the object from a plurality of transmission points p 1 (x', y' 1 , z' 1 ) arranged on the y-axis;
  • the scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is received at a plurality of reception points p 2 (x', y ' 2 , z' 2 ) as measured value s a (x', y' 1 , y' 2 , k); has Let the plurality of transmission points p 1 (x', y' 1 , z' 1 ) and the plurality of reception points p 2 (x', y' 2 , z' 2 ) arranged on the y-axis be x' a transmitting/receiving
  • the components of the wave vector of the spherical wave, k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • a seventh aspect of the present invention is A data processing method for analyzing scattered waves of waves radiated to an object, radiating the waves to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged two-dimensionally on the xy plane;
  • the scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is received at a plurality of receiving points p 2 (x ' 2 , y' 2 , z' 2 ) as measurements s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) and
  • the measured value s ( x'1 , x'2 , y'1, y'2 , z'1 , z'2 , k) is quadruple Fourier transformed by Equation (1) to obtain S( k'x
  • the components of the wave vector of the spherical wave, k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • k x k' x1 + k' x2
  • u k' x1 - k' x2
  • k y k' y1 + k' y2
  • v k' y1 - k' y2
  • An eighth aspect of the present invention is A measurement system for analyzing scattered waves of waves radiated to an object, a transmitting/receiving unit, a transmitting unit that radiates the waves to the object from a plurality of transmitting points p 1 (x' 1 , y' 1 , z' 1 ) arranged two-dimensionally on the xy plane;
  • the scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is received at a plurality of receiving points p 2 (x ' 2 , y' 2 , z' 2 ) as measured values s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k);
  • a transceiver having A processing device, The measured value s ( x'1 , x'2 , y'1, y'2 , z'1 ,
  • the components of the wave vector of the spherical wave, k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • a ninth aspect of the present invention is A program for analyzing scattered waves of waves radiated to an object, Measured values s( x'1 , x'2 , y'1 , y'2 , z'1 , z'2 , k) are quadruple Fourier transformed by formula (1) to obtain S( k'x1 , k' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);
  • a tenth aspect of the present invention is A data processing method for analyzing scattered waves of waves radiated to an object, radiating the waves to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged on the y-axis;
  • the scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is received at a plurality of reception points p 2 (x′ 2 , y' 2 , z' 2 ) as measurements s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) and
  • the measured value s ( x'1 , x'2 , y'1, y'2 , z'1 , z'2 , k) is triple Fourier transformed by Equation (1) to obtain S( k'x1 , k
  • k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z).
  • the components of the wave vector of the spherical wave, k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • k x k' x1 + k' x2
  • u k' x1 - k' x2
  • k y k' y1 + k' y2
  • v k' y1 - k' y2
  • An eleventh aspect of the present invention is A measurement system for analyzing scattered waves of waves radiated to an object, a transmitting/receiving unit, a transmitter that radiates the waves to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged on the y-axis;
  • the scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is received at a plurality of reception points p 2 (x′ 2 , y'2 , z'2 ) as measured values s(x'1, x'2 , y'1 , y'2 , z'1 , z'2 , k);
  • a transceiver having A processing device,
  • the components of the wave vector of the spherical wave, k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • a twelfth aspect of the present invention is A program for analyzing scattered waves of waves radiated to an object,
  • the measured value s ( x'1 , x'2 , y'1 , y'2 , z'1 , z'2 , k) is triple Fourier transformed from Equation (1) to obtain S( k'x1 , k' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);
  • k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmit
  • the components of the wave vector of the spherical wave, k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • the scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is expressed as (x' 2 , y' 2 ) in a plane parallel to the yz plane
  • Measured values at a plurality of receiving points p 2 ( x' 2 , y' 2 , z' 2 ) arranged on the curve of the second single-valued function z' 2 g 2 (x' 2 , y' 2 ) received as s
  • k is the wave number of said wave propagating;
  • k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z).
  • the components of the wave vector of the spherical wave, k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • k x k' x1 + k' x2
  • u k' x1 - k' x2
  • k y k' y1 + k' y2
  • v k' y1 - k' y2
  • the scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is expressed as (x' 2 , y' 2 ) in a plane parallel to the yz plane
  • Measured values at a plurality of receiving points p 2 (x' 2 , y' 2 , z ' 2 ) arranged on the curve of the second single-valued function z' 2 g 2 (
  • the components of the wave vector of the spherical wave, k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • a fifteenth aspect of the present invention is A program for analyzing scattered waves of waves radiated to an object,
  • the measured value s a (x' 1 , x' 2 , y' 1 , y' 2 , k) is quadruple Fourier transformed from the equation (1) to obtain S a (k' x1 , k' x2 , k' y1 , a procedure for obtaining k' y2 , k); Equation (2) with eigenvalues ( x'1 , y'1 , x'2 , y'2 ) for Sa( k'x1 , k'x2 , k'y1, k'y2 , k ) and equation A procedure for defining the operator indicated by (3);
  • a procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (4); is a program that causes a computer to execute however, k is the wave
  • the scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is expressed as (x' 2 , y' 2 ) in a plane parallel to the yz plane
  • Measured values at a plurality of receiving points p 2 (x' 2 , y' 2 , z ' 2 ) arranged on the curve of the second single-valued function z' 2 g 2 (x' 2 , y' 2 ) received as s
  • k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z).
  • the components of the wave vector of the spherical wave, k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • the scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is expressed as (x' 2 , y' 2 ) in a plane parallel to the yz plane
  • Measured values at a plurality of receiving points p 2 ( x' 2 , y' 2 , z' 2 ) arranged on the curve of the second single-valued function z' 2 g 2 (
  • the components of the wave vector of the spherical wave, k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • FIG. 4 A diagram showing the configuration of the array antenna shown in FIG. FIG. 4 is a diagram for explaining the positional relationship between the array antenna of the first embodiment and the object to be measured;
  • Flowchart showing the data processing method of the first embodiment A diagram for explaining the positional relationship between the array antenna of the second embodiment and an object to be measured.
  • Flowchart showing the data processing method of the second embodiment (a) is a measurement layout diagram for horizontal surface measurement, (b) is a measurement layout diagram for curved surface measurement 1, and (c) is a measurement layout diagram for curved surface measurement 2.
  • a point target simulated by the data processing method of the first embodiment using a measurement layout for horizontal surface measurement.
  • point target (a) is a point target simulated by the data processing method of the first embodiment using the measurement layout of curved surface measurement 1
  • point target (b) is the measurement layout of curved surface measurement 1 simulated by the data processing method of the second embodiment.
  • point target (a) is a point target simulated by the data processing method of the first embodiment based on the measurement layout of the curved surface measurement 2
  • (b) is simulated by the data processing method of the second embodiment based on the measurement layout of the curved surface measurement 2.
  • point target A diagram for explaining the positional relationship between the array antenna of the third embodiment and an object to be measured. Flowchart showing the data processing method of the third embodiment FIG.
  • FIG. 11 is a diagram for explaining the positional relationship between the array antenna of the fourth embodiment and the object to be measured; Flowchart showing the data processing method of the fourth embodiment FIG. 11 is a diagram for explaining the positional relationship between the array antenna of the fifth embodiment and the object to be measured; Flowchart showing the data processing method of the fifth embodiment A diagram for explaining the positional relationship between the array antenna of the sixth embodiment and an object to be measured.
  • Flowchart showing a data processing method of the sixth embodiment (a) is a measurement layout diagram for horizontal surface measurement, (b) is a measurement layout diagram for curved surface measurement 1, and (c) is a measurement layout diagram for curved surface measurement 2.
  • a point target simulated by the data processing method of the fifth embodiment using a measurement layout for horizontal surface measurement.
  • point target (a) is a point target simulated by the data processing method of the fifth embodiment using the measurement layout of curved surface measurement 1
  • point target (b) is the measurement layout of curved surface measurement 1 simulated by the data processing method of the sixth embodiment.
  • point target (a) is a point target simulated by the data processing method of the fifth embodiment based on the measurement layout of the curved surface measurement 2
  • (b) is simulated by the data processing method of the sixth embodiment based on the measurement layout of the curved surface measurement 2.
  • point target A diagram for explaining the positional relationship between the array antenna of the seventh embodiment and an object to be measured. Flowchart showing the data processing method of the seventh embodiment
  • FIG. 1 shows the configuration of a radar device according to this embodiment.
  • FIG. 2 shows the configuration of the array antenna shown in FIG.
  • FIG. 3 is a diagram for explaining the positional relationship between the array antenna of this embodiment and the object to be measured.
  • waves that radiate electromagnetic waves into space are described, but waves that propagate in space, such as X-rays and ultrasonic waves, may be used instead of electromagnetic waves.
  • the measurement system 1 of this embodiment has a transmitting/receiving section and a processing device.
  • the processing device may be provided integrally with the transmitting/receiving unit, or may be provided at a separate location connected to the transmitting/receiving unit via a network.
  • a processing device is provided integrally with a transmission/reception unit will be described.
  • the radar device 60 of the present embodiment shown in FIG. 1 uses a transmitting array antenna and a receiving array antenna (transmitting/receiving unit) to radiate electromagnetic waves from the transmitting antenna while sweeping the frequency of the electromagnetic waves. Then, the radar device 60 receives the reflected wave of the object to be measured by the receiving antenna and obtains the measurement data s(x', y', z', k).
  • the measurement data s(x', y', z', k) is data whose variables are the x-coordinate component, the y-coordinate component, the z-coordinate component, and the frequency of the electromagnetic wave.
  • the radar device 60 has a measurement unit 61 , a data processing unit (processing device) 66 and an image display unit 68 .
  • the measurement unit 61 has a transmission array antenna 50 , a reception array antenna 52 , high frequency switches 58 and 59 , a high frequency circuit 62 and a system control circuit 64 .
  • the radar device 60 radiates electromagnetic waves of 10 MHz or more, for example 10 to 20 GHz, but the frequency of the electromagnetic waves is not particularly limited.
  • the transmitting array antenna 50 has a plurality of transmitting antennas 10a arranged in one direction. Each transmitting antenna 10a radiates electromagnetic waves toward the object to be measured.
  • the reception array antenna 52 has a plurality of reception antennas 10b arranged along the arrangement direction of the transmission antennas 10a. Each receiving antenna 10b receives electromagnetic waves reflected from the object to be measured.
  • the transmitting antenna 10a of the transmitting array antenna 50 and the receiving antenna 10b of the receiving array antenna 52 are arranged on one plane.
  • a transmitting array antenna 50 and a receiving array antenna 52 are arranged so that the object to be measured faces this plane.
  • the data processing unit 66 processes a plurality of measurement data obtained by transmission toward the measurement object by the plurality of transmission antennas 10a and reception by the plurality of reception antennas 10b, and calculates image data regarding the measurement object.
  • the transmitting antenna 10a and the receiving antenna 10b of this embodiment are planar antennas in which an antenna pattern is formed planarly on a substrate, but are not limited to planar antennas.
  • the transmitting array antenna 50 and the receiving array antenna 52 move parallel to the surface of the object to be measured. That is, the transmitting array antenna 50 and the receiving array antenna 52 perform measurement while scanning along the surface of the object to be measured.
  • the system control circuit 64 controls the operation of the high frequency circuit 62 when the transmitting array antenna 50 and the receiving array antenna 52 move. Specifically, the system control circuit 64 radiates electromagnetic waves while switching the transmitting antenna 10a by the high-frequency switch 58 for each unit length of the moving distance of the transmitting array antenna 50 and the receiving array antenna 52. It controls the operation of the high frequency circuit 62 .
  • the radar device 60 has an encoder 69 .
  • the encoder 69 generates a pulse signal every fixed moving distance.
  • Encoder 69 senses the movement of transmitting array antenna 50 and receiving array antenna 52 .
  • the high-frequency switch 59 sequentially switches the plurality of receiving antennas 10b to allow each receiving antenna 10b to receive the electromagnetic wave.
  • the frequency of the electromagnetic waves radiated from the transmitting array antenna 50 is swept at predetermined frequency intervals, for example, in the range of 10 to 20 GHz, and the electromagnetic waves are radiated. Therefore, the measurement data obtained from the high-frequency circuit 62 is data whose value is determined by the position transmitted by the transmitting antenna 10a, the position received by the receiving antenna 10b, the frequency, and the position of the target.
  • the high-frequency switch 59 operates so that the reflected wave of the electromagnetic wave when the electromagnetic wave radiated from the transmitting antenna 10a is reflected by the object to be measured is received by the receiving antenna 10b closest to the transmitting antenna 10a that radiated the electromagnetic wave. is controlled.
  • the receiving microwave amplifier may be set to change the gain for each pair of transmitting transmitting antenna 10a and receiving receiving antenna 10b.
  • the high-frequency circuit 62 has a variable gain amplification function that switches the gain according to the selection of the pair of the transmitting antenna 10a and the receiving antenna 10b. As a result, it is possible to increase the inspectable depth of defects, etc. in the object to be measured.
  • the arrangement direction of the transmitting antenna 10a and the receiving antenna 10b is parallel, and as shown in FIG. 2, the arrangement direction is the y direction.
  • the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 is assumed to be the x direction.
  • the direction in which the object to be measured is the z-direction.
  • the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 may be the y direction. That is, it may move (scan) in the same direction as the arrangement direction of the transmitting antenna 10a and the receiving antenna 10b.
  • the transmitting array antenna 50 may have only one transmitting antenna 10a, and the receiving array antenna 52 may have a plurality of receiving antennas 10b.
  • the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 may be the y direction. That is, it may move (scan) in the same direction as the arrangement direction of the receiving antennas 10b.
  • the data processing unit 66 processes the measurement data s (x', y', z', k) obtained by transmission and reception of electromagnetic waves by the transmission array antenna 50 and the reception array antenna 52, and analyzes the inside of the object to be measured. Create image data to represent.
  • the data processing unit 66 is configured by, for example, a computer, and starts by calling a program stored in the storage section 66a. Thereby, the function of the data processing unit 66 can be exhibited. That is, the data processing unit 66 is composed of software modules.
  • the image display unit 68 uses the created image data to display an image of the interior of the object to be measured.
  • FIG. 2 schematically shows a transmitting array antenna 50 and a receiving array antenna 52.
  • the positions of the transmitting antenna 10a and the receiving antenna 10b are shifted by ⁇ L in the x direction. Do the one at the middle circled point. This circled point is called a transmission/reception point.
  • ⁇ y 0 in some cases.
  • the positional relationship between the object to be measured, the transmitting array antenna 50, and the receiving array antenna 52 can be expressed as shown in FIG.
  • f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured.
  • Let s(x', y', z', k) be the measurement data at the transmission/reception point p(x', y', z').
  • ⁇ 0 be the propagation wavelength of an electromagnetic wave in vacuum.
  • Let ⁇ r be the dielectric constant of the medium.
  • Let k be the wave number of the propagating electromagnetic wave.
  • the measurement data s(x', y', z', k) at the transmission/reception point p(x', y', z') can be expressed by the following equation. however, is.
  • equation (1-1) electromagnetic waves are represented by spherical waves, and distance attenuation is omitted. This distance attenuation is omitted because it has little effect on subsequent processing.
  • the exponent part of the integrand function in the second-level equation in equation (1-1) is expressed in Fourier transform notation as follows. This is equivalent to decomposing the reciprocating spherical wave of equation (1-1) into three-dimensional plane waves.
  • (k x , k y , k z ) is the wavenumber of the round-trip spherical wave propagating between the transmitting/receiving point p(x', y', z') and the reflecting point (x, y, z) are the components of the vector. however, meet.
  • the reflectance f(x, y, z) is derived from the measurement data s(x', y', z', k) based on equation (1-3).
  • formula (1-3) is rearranged as follows.
  • the data processing unit 66 obtains the reflectance f (x, y, z) based on the measurement data s (x', y', z', k).
  • FIG. 4 is a flow chart showing the data processing method of this embodiment.
  • the measurement unit 61 acquires measurement data s (x', y', 0, k) (step S1-1).
  • the data processing unit 66 performs Hilbert transform on the measurement data s (x', y', 0, k) (step S1-2). As a result, the imaginary component of the frequency data at each transmission/reception point is obtained.
  • the data processing unit 66 performs a double Fourier transform of (x', y') on the measurement data s (x', y', 0, k) (step S1-3). This yields S(k x , k y , 0, k) as shown in equation (1-6).
  • the data processing unit 66 performs variable substitution on S(k x , k y , 0, k) (step S1-4). Specifically, the function (k x , k y , k) is converted to the function (k x , k y , k z ) using equation (1-4). This gives S(k x , k y , k z ).
  • the data processing unit 66 performs a triple inverse Fourier transform on (k x , ky , k z ) for S(k x , ky , k z ) (step S1-5). .
  • the storage unit 66a stores a program for executing the data processing method of this embodiment.
  • the program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
  • the transmitting array antenna 50 and the receiving array antenna 52 of the first embodiment are arranged in one direction (the y direction in FIG. 3). Arrays are different.
  • the transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged in a curved line.
  • Equation (1-5) of the first embodiment relates to an arbitrary transmitting/receiving point p(x', y', z'). Therefore, starting from substituting equation (2-1) into equation (1-5), the following equation is obtained.
  • equation (2-2) Since the left side of equation (2-2) is a function of (x', y', k), it can be rewritten as the following equation.
  • Equation (2-6) has the eigenvalues of (x ' , y') in the (k x , k y , k z ) space for S a (k x , k y , k).
  • the data processing unit 66 obtains the reflectance f (x, y, z) based on the measurement data s (x', y', z', k).
  • FIG. 6 is a flow chart showing the data processing method of this embodiment.
  • the measurement unit 61 acquires measurement data s (x', y', z', k) (step S2-1).
  • the data processing unit 66 organizes the measurement data s(x', y', z', k) (step S2-2). Thereby, measurement data s a (x', y', k) are obtained.
  • the data processing unit 66 performs Hilbert transform on the measurement data s a (x', y', k) (step S2-3). As a result, the imaginary component of the frequency data at each transmission/reception point is obtained.
  • the data processing unit 66 performs a double Fourier transform of (x', y') on the measurement data s a (x', y', k) (step S2-4). This yields S a (k x , k y , k) as shown in equation (2-4).
  • the data processing unit 66 obtains the operator represented by the formula (2-6) from the measurement data s a (x', y', k) and S a (k x , k y , k) (Step S2-5).
  • Data processing unit 66 then performs variable substitution on the following equation (step S2-6). This yields S a (k x , ky , k).
  • the data processing unit 66 performs a triple inverse Fourier transform with respect to (k x , ky , k z ) on S a (k x , ky , k) (step S2-7). This gives the reflectance f(x, y, z) as shown in equation (2-7).
  • the storage unit 66a stores a program for executing the data processing method of this embodiment.
  • the program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
  • Simulation result The results of computer simulation of the data processing method of the first embodiment and the data processing method of the second embodiment will be described below. Simulation conditions are as follows.
  • ⁇ Frequency band used f min to f max DC to 20 GHz ⁇ Center frequency fc (wavelength ⁇ c): 10 GHz (30 mm) ⁇ Measurement interval ⁇ x in the scanning direction: 4 mm ⁇ Number of measurement points in the scanning direction: 256 ⁇ Measurement width x max in scanning direction: 1024 mm (4 mm x 256) ⁇ Measurement interval ⁇ y in the direction of the array antenna (same transmitting and receiving points): 3.75 mm ⁇ Number of measurement points in the direction of the array antenna: 128 ⁇ Measurement width y max in the array antenna direction: 480 mm (3.75 mm ⁇ 128) ⁇ Maximum depth zmax : 476mm ⁇ Relative permittivity of medium ⁇ r : 1 ⁇ Point target coordinates (unit: mm): (512, 240, 50), (512, 240, 100), (512, 240, 200), (
  • FIG. 7(a) shows a measurement layout diagram for horizontal plane measurement.
  • FIG. 7(b) shows a measurement layout diagram of curved surface measurement 1.
  • FIG. 7(c) shows a measurement layout diagram of curved surface measurement 2.
  • FIG. 8 shows point targets simulated by the data processing method of the first embodiment using a measurement layout for horizontal surface measurement.
  • FIG. 9A shows a point target simulated by the data processing method of the first embodiment using the measurement layout of curved surface measurement 1.
  • FIG. FIG. 9B shows point targets simulated by the data processing method of the second embodiment using the measurement layout of curved surface measurement 1 .
  • FIG. 10A shows a point target simulated by the data processing method of the first embodiment using the measurement layout of curved surface measurement 2.
  • FIG. 10B shows point targets simulated by the data processing method of the second embodiment using the measurement layout of curved surface measurement 2 .
  • FIG. 9(a) a simulation was performed for four point targets according to formula (1-8) of the data processing method of the first embodiment.
  • the results are shown in FIG. 9(a).
  • FIG. 9(a) a three-dimensional image in which four point targets are spread in the same direction as the measurement layout of curved surface measurement 1 shown in FIG. 7(b) can be confirmed. From the result of FIG. 9A, it can be seen that the formula (1-8) cannot obtain a good three-dimensional image for the measurement layout of the curved surface measurement 1.
  • FIG. 7B a simulation was performed for four point targets according to formula (2-7) of the data processing method of the second embodiment.
  • FIG. 9(b) The results are shown in FIG. 9(b).
  • FIG. 9B a three-dimensional image in which four point targets converge can be confirmed. From the result of FIG. 9(b), it can be seen that a good three-dimensional image can be obtained from the measurement layout of the curved surface measurement 1 by the formula (2-7).
  • FIG. 10(a) a simulation was performed for four point targets using equation (1-8) of the data processing method of the first embodiment.
  • the results are shown in FIG. 10(a).
  • FIG. 10(a) a three-dimensional image in which four point targets are spread in the same direction as the measurement layout of the curved surface measurement 2 shown in FIG. 7(c) can be confirmed. From the result of FIG. 10(a), it can be seen that the formula (1-8) cannot obtain a good three-dimensional image for the measurement layout of the curved surface measurement 2.
  • FIG. 7(c) a simulation was performed for four point targets using equation (2-7) of the data processing method of the second embodiment.
  • FIG. 10(b) The results are shown in FIG. 10(b).
  • FIG. 10B a three-dimensional image in which four point targets converge can be confirmed. From the result of FIG. 10(b), it can be seen that a good three-dimensional image can be obtained from the measurement layout of the curved surface measurement 2 by the formula (2-7).
  • the transmitting array antenna 50 and the receiving array antenna 52 of the first embodiment are arranged in one direction (the y direction in FIG. 3). Arrays are different.
  • the transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged in a plane. Also, in the first embodiment, the coordinates of the transmission point and the reception point are both p(x', y', z'), but in the present embodiment, the coordinates of the transmission point and the reception point are different. In this embodiment, as shown in FIG.
  • a transmission point p 1 (x' 1 , y' 1 , z' 1 ) and a reception point p 2 (x' 2 , y' 2 , z' 2 ) are xy Arranged in a plane.
  • f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured.
  • ⁇ 0 be the propagation wavelength of an electromagnetic wave in vacuum.
  • ⁇ r be the dielectric constant of the medium.
  • k be the wave number of the propagating electromagnetic wave.
  • the measurement data s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) can be represented by the following formula. however, is.
  • (k' x1 , k' y1 , k' z1 ) are the components of the spherical wave vector of the wave propagating from the transmission point to the reflection point.
  • (k' x2 , k' y2 , k' z2 ) are the components of the wave vector of the spherical wave of the wave propagating from the reflecting point to the receiving point. however, meet.
  • equation (3-5) The left side of equation (3-5) is rewritten and arranged as in equation (3-6) below. Then, equation (3-5) is expressed by equation (3-7).
  • equation (3-17) (k' z1 , k' z2 , k) are replaced by (k' x1 , k' x2 , k' y1 , k' y2 , k z ) or (k x , u, k y , v, k z ).
  • equation (3-17) can be expressed as follows.
  • the data processing unit 66 calculates the reflectance f ( x , y, z).
  • FIG. 12 is a flow chart showing the data processing method of this embodiment.
  • the measurement unit 61 acquires measurement data s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) (step S3-1).
  • the data processing unit 66 performs Hilbert transform on the measurement data s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) (step S3- 2).
  • the imaginary component of the frequency data at each measurement point is obtained.
  • step S3-3 the data processing unit 66 performs ( x ' 1 , x' 2 , y' 1 , y' 2 ) is subjected to quadruple Fourier transform (step S3-3). This yields S(k' x1 , k' x2 , k' y1 , k' y2 , 0, 0, k) as shown in equation (3-6).
  • step S3-4 the data processing unit 66 performs variable substitution on S(k' x1 , k' x2 , k' y1 , k' y2 , 0, 0, k) (step S3-4).
  • the storage unit 66a stores a program for executing the data processing method of this embodiment.
  • the program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
  • the transmitting array antenna 50 and the receiving array antenna 52 of the third embodiment are arranged in a plane, the arrangement of the transmitting array antenna 50 and the receiving array antenna 52 is different in this embodiment.
  • the transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged in a curved surface.
  • the function g 1 (x' 1 , y' 1 ) may be any univalent function on (x' 1 , y' 1 ).
  • the function g 2 (x' 2 , y' 2 ) may be any univalent function on (x' 2 , y' 2 ).
  • Equation (3-3) of the third embodiment is an arbitrary transmission point p 1 (x' 1 , y' 1 , z' 1 ) and reception point p 2 (x' 2 , y' 2 , z' 2 ) is an expression for Therefore, substituting equation (4-1) into equation (3-3) yields the following equation. Since the right side of equation (4-2) is a function related to (x' 1 , x' 2 , y' 1 , y' 2 , k), it is organized and represented by equation (4-3) below.
  • the function after the quadruple Fourier transform of s a is S a (k' x1 , k' x2 , k' y1 , k' y2 , k').
  • the formula (4-3) is represented by the following formula.
  • Equation ( 4-6 ) and (4-7) are ( k' x1 , k has eigenvalues of (x ' 1 , x' 2 , y' 1 , y' 2 ) in the ' x2 , k' y1 , k' y2 , k' ) space.
  • the data processing unit 66 calculates the reflectance f ( x , y, z).
  • FIG. 14 is a flow chart showing the data processing method of this embodiment.
  • the measurement unit 61 acquires measurement data s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) (step S4-1).
  • the data processing unit 66 organizes the measurement data s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) (step S4-2).
  • measurement data s a (x' 1 , x' 2 , y' 1 , y' 2 , k) are obtained.
  • the data processing unit 66 performs Hilbert transform on the measurement data s a (x' 1 , x' 2 , y' 1 , y' 2 , k) (step S4-3).
  • the imaginary component of the frequency data at each measurement point is obtained.
  • step S4-4 the data processing unit 66 performs (x' 1 , x ' 2 , y' 1 , y ' 2 ) is subjected to quadruple Fourier transform (step S4-4). This yields S a (k' x1 , k' x2 , k' y1 , k' y2 , k') as shown in equation (4-4).
  • the data processing unit 66 processes the measurement data s a (x′ 1 , x′ 2 , y′ 1 , y′ 2 , k) and S a (k′ x1 , k′ x2 , k′ y1 , k′).
  • y2 , k' the operators represented by equations (4-6) and (4-7) are obtained (step S4-5).
  • step S4-6 the data processing unit 66 performs variable substitution on the following formula (step S4-6). This gives S a (k x , k y , k z ).
  • the data processing unit 66 performs a triple inverse Fourier transform on (k x , ky , k z ) for S a (k x , ky , k z ) (step S4-7 ). This gives the reflectance f(x, y, z) as shown in equation (4-8).
  • the storage unit 66a stores a program for executing the data processing method of this embodiment.
  • the program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
  • the transmitting array antenna 50 and the receiving array antenna 52 are arranged in a plane, but this embodiment differs in the arrangement of the transmitting array antenna 50 and the receiving array antenna 52 .
  • the transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged linearly.
  • the transmitting antenna 10a and the receiving antenna 10b are arranged in the y direction as shown in FIG. Let the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 be the x direction.
  • the direction in which the object to be measured is located is defined as the z direction.
  • the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 may be the y direction.
  • the positional relationship between the object to be measured, the transmitting array antenna 50, and the receiving array antenna 52 can be expressed as shown in FIG.
  • the coordinates of the transmission point are p 1 (x' 1 , y' 1 , z' 1 )
  • the coordinates of the reception point are p 2 (x' 2 , y' 2 , z' 2 ).
  • f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured.
  • s(x' 1 , x ' 2 , y' 1 , y' 2 , z ' 1 , z' 2 , k) be the measurement data at p 2 (x' 2 , y' 2 , z' 2 ).
  • ⁇ 0 be the propagation wavelength of an electromagnetic wave in vacuum.
  • ⁇ r be the dielectric constant of the medium.
  • k be the wave number of the propagating electromagnetic wave.
  • the measurement data s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) can be represented by the following formula. however is.
  • electromagnetic waves are represented by spherical waves, and distance attenuation is omitted. This distance attenuation is omitted because it has little effect on subsequent processing.
  • the exponent part of the integrand function in the second stage of the equation (5-1) is expressed in Fourier transform notation as follows. This is equivalent to decomposing the spherical wave of equation (5-1) into three-dimensional plane waves.
  • (k' x1 , k' y1 , k' z1 ) are the components of the spherical wave vector of the wave propagating from the transmission point to the reflection point.
  • (k' x2 , k' y2 , k' z2 ) are the components of the wave vector of the spherical wave of the wave propagating from the reflecting point to the receiving point. however, meet.
  • equation (5-3) is represented by the following equation.
  • equations (5-6) and (5-8) By substituting equations (5-6) and (5-8) into equation (5-5) and performing variable substitution, the following equation is obtained.
  • equation (5-10) is represented by the following formula.
  • variable substitutions are defined for (k' y1 , k' y2 ) and (k' z1 , k' z2 ).
  • equations (5-1), (5-15), and (5-17) By substituting equations (5-17), and (5-17) into equation (5-13) and performing variable substitution, the following equation is obtained.
  • Equation (5-18) the integral with respect to v on the right side of the second line of Equation (5-18) is omitted because it is a constant.
  • Equation (5-18) Performing a triple inverse Fourier transform on both sides of equation (5-18) with respect to (k x , k y , k z ) yields the reflectance f(x, y, z) as follows.
  • equation (5-19) is expressed as follows.
  • Equation (5-20) To solve equation (5-20), we need to represent k by (k' y1 , k' y2 , k z ) or (k y , v, k z ). Solve the four simultaneous equations of equations (5-4), (5-6), (5-15), and the following equation (5-21) obtained from the assumption.
  • k is represented by the following formula.
  • the data processing unit 66 calculates the reflectance f ( x , y, z).
  • FIG. 16 is a flow chart showing the data processing method of this embodiment.
  • the measurement unit 61 acquires measurement data s (x', y' 1 , y' 2 , 0, 0, k) (step S5-1).
  • the data processing unit 66 performs Hilbert transform on the measurement data s (x', y' 1 , y' 2 , 0, 0, k) (step S5-2). As a result, the imaginary component of the frequency data at each measurement point is obtained.
  • the data processing unit 66 performs a triple Fourier transform on (x', y' 1 , y' 2 ) for the measurement data s(x', y' 1 , y' 2 , 0, 0, k). Conversion is performed (step S5-3). This yields S(k x , k' y1 , k' y2 , 0, 0, k) as shown in equation (5-11). Next, the data processing unit 66 performs variable substitution on S(k x , k' y1 , k' y2 , 0, 0, k) (step S5-4).
  • Equation (5-14) and (5-15) the function (k x , k′ y1 , k′ y2 , k) is converted to (k x , k y , v, k) be a function of This yields S(k x , ky , v, 0, 0, k).
  • Data processing unit 66 then performs a triple inverse Fourier transform on (k x , k y , k z ) on S(k x , k y , v, 0, 0, k) ( step S5-5). This gives the reflectance f(x, y, z) as shown in equation (5-20).
  • the transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged linearly. Specifically, the transmitting array antenna 50 and the receiving array antenna 52 are arranged in one direction (the y direction in FIG. 17). Also, the transmitting array antenna 50 and the receiving array antenna 52 are moved (scanned) along the curved surface.
  • the positional relationship between the object to be measured, the transmitting array antenna 50, and the receiving array antenna 52 can be expressed as shown in FIG.
  • the coordinates of the transmission point are p 1 (x' 1 , y' 1 , z' 1 )
  • the coordinates of the reception point are p 2 (x' 2 , y' 2 , z' 2 ).
  • f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured.
  • the measurement data at the receiving point p 2 (x' 2 , y' 2 , z' 2 ) be s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) do.
  • ⁇ 0 be the propagation wavelength of an electromagnetic wave in vacuum.
  • ⁇ r be the dielectric constant of the medium.
  • k be the wave number of the propagating electromagnetic wave.
  • a function expressed by the following equation representing a semi-cylindrical measurement curved surface with a radius of R0 will be described. It should be noted that the function g(x') may be any univalent function regarding x'.
  • Equation (5-5) of the fifth embodiment is an arbitrary transmission point p 1 (x' 1 , y' 1 , z' 1 ) and reception point p 2 (x' 2 , y' 2 , z' 2 ) is an expression for Therefore, starting from substituting equation (6-1) into equation (5-5), the following equation is obtained.
  • Equation (6-2) Since the right side of equation (6-2) is a function related to (x', y' 1 , y' 2 , k), it can be expressed by the following equation when organized. If the function after the triple Fourier transform of s a (x′, y′ 1 , y′ 2 , k) is S a (k x , k′ y1 , k′ y2 , k), the following equation is obtained .
  • equations (6-1) to (6-4) into equation (5-19) yields the following equation. Since the formula (5-21) holds true in this embodiment as well, the formula (5-22) can be used as it is in the present embodiment.
  • Equation (6-6) The operator of equation (6-6) is given by, for S a (k x , k' y1 , k' y2 , k), x' in (k x , k' y1 , k' y2 , k) space have eigenvalues.
  • the data processing unit 66 calculates the reflectance f (x, y, z) based on the measurement data s (x', y' 1 , y' 2 , z' 1 , z' 2 , k) Ask for
  • FIG. 18 is a flow chart showing the data processing method of this embodiment.
  • the measurement unit 61 acquires measurement data s (x', y' 1 , y' 2 , z' 1 , z' 2 , k) (step S6-1).
  • the data processing unit 66 organizes the measurement data s(x', y' 1 , y' 2 , z' 1 , z' 2 , k) (step S6-2). Thereby, measurement data s a (x', y' 1 , y' 2 , k) is obtained.
  • the data processing unit 66 performs Hilbert transform on the measurement data s a (x', y' 1 , y' 2 , k) (step S6-3). As a result, the imaginary component of the frequency data at each measurement point is obtained.
  • the data processing unit 66 performs a triple Fourier transform of (x', y' 1 , y' 2 ) on the measurement data s a (x', y' 1 , y' 2 , k). (Step S6-4). This yields S a (k' x , k' y1 , k' y2 , k') as shown in equation (6-4).
  • data processing unit 66 obtains the operator represented by equation (6-6) (step S6-5).
  • step S6-6 the data processing unit 66 performs variable substitution on the following formula (step S6-6). This gives S a (k x , k y , k z ).
  • the data processing unit 66 performs a triple inverse Fourier transform on (k x , ky , k z ) for S a (k x , ky , k z ) (step S6-7 ). This gives the reflectance f(x, y, z) as shown in equation (6-7).
  • the storage unit 66a stores a program for executing the data processing method of this embodiment.
  • the program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
  • Simulation result The results of computer simulation of the data processing method of the fifth embodiment and the data processing method of the sixth embodiment will be described below. Simulation conditions are as follows.
  • ⁇ Frequency band used f min to f max DC to 4.5 GHz ⁇ Center frequency fc (wavelength ⁇ c): 2.25 GHz (133 mm) ⁇ Measurement interval ⁇ x in the scanning direction: 10 mm ⁇ Number of measurement points in the scanning direction: 128 ⁇ Measurement width x max in the scanning direction: 1280 mm (10 mm x 128) ⁇ Measurement interval ⁇ y in the direction of the array antenna (same transmitting and receiving points): 38.5 mm ⁇ Number of measurement points in the direction of the transmitting array antenna: 16 ⁇ Number of measurement points in the direction of the receiving array antenna: 16 ⁇ Measurement width y max in the array antenna direction: 616 mm (38.5 mm x 16) ⁇ Maximum depth zmax : 958 mm ⁇ Relative permittivity of medium ⁇ r : 5 ⁇ Point target coordinates (unit: mm): (640,
  • FIG. 19(a) shows a measurement layout diagram for horizontal plane measurement.
  • FIG. 19(b) shows a measurement layout diagram of curved surface measurement 1.
  • FIG. 19(c) shows a measurement layout diagram of curved surface measurement 2.
  • FIG. 20 shows point targets simulated by the data processing method of the fifth embodiment using a measurement layout for horizontal plane measurement.
  • FIG. 21( a ) shows point targets simulated by the data processing method of the fifth embodiment using the measurement layout of curved surface measurement 1 .
  • FIG. 21(b) shows a point target simulated by the data processing method of the sixth embodiment using the measurement layout of curved surface measurement 1.
  • FIG. FIG. 22A shows a point target simulated by the data processing method of the fifth embodiment using the measurement layout of curved surface measurement 2.
  • FIG. 22B shows point targets simulated by the data processing method of the sixth embodiment using the measurement layout of curved surface measurement 2 .
  • FIG. 21(a) a simulation was performed for four point targets using the formula (5-20) of the data processing method of the fifth embodiment.
  • the results are shown in FIG. 21(a).
  • FIG. 21(a) a three-dimensional image in which four point targets are spread in the same direction as the measurement layout of curved surface measurement 1 shown in FIG. 19(b) can be confirmed. From the result of FIG. 21(a), it can be seen that the formula (5-20) cannot obtain a good three-dimensional image for the measurement layout of the curved surface measurement 1.
  • FIG. 21(b) The results are shown in FIG. 21(b).
  • FIG. 21(b) a three-dimensional image in which four point targets converge can be confirmed. From the result of FIG. 21(b), it can be seen that a good three-dimensional image can be obtained from the measurement layout of the curved surface measurement 1 by the formula (6-7).
  • FIG. 22(a) a simulation was performed for four point targets according to formula (5-20) of the data processing method of the fifth embodiment.
  • the results are shown in FIG. 22(a).
  • FIG. 22(a) a three-dimensional image in which four point targets are spread in the same direction as the measurement layout of curved surface measurement 2 shown in FIG. 19(c) can be confirmed. From the result of FIG. 22(a), it can be seen that the expression (5-20) cannot obtain a good three-dimensional image for the measurement layout of the curved surface measurement 2.
  • a simulation was performed for four point targets according to formula (6-7) of the data processing method of the sixth embodiment.
  • FIG. 22(b) The results are shown in FIG. 22(b).
  • FIG. 22(b) a three-dimensional image in which four point targets converge can be confirmed. From the result of FIG. 22(b), it can be seen that a good three-dimensional image can be obtained from the measurement layout of curved surface measurement 2 according to equation (6-7).
  • the data processing method, measurement system, and program of the seventh embodiment will be described in detail below.
  • the transmitting array antenna 50 and the receiving array antenna 52 of the sixth embodiment are arranged in one direction (the y direction in FIG. 17). Arrays are different.
  • the transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged in a curved line. Also, the transmitting array antenna 50 and the receiving array antenna 52 are moved (scanned) along the curved surface.
  • the positional relationship between the object to be measured, the transmitting array antenna 50, and the receiving array antenna 52 can be expressed as shown in FIG.
  • the coordinates of the transmission point are p 1 (x' 1 , y' 1 , z' 1 )
  • the coordinates of the reception point are p 2 (x' 2 , y' 2 , z' 2 ).
  • f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured.
  • the measurement data at the receiving point p 2 (x' 2 , y' 2 , z' 2 ) be s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) do.
  • ⁇ 0 be the propagation wavelength of an electromagnetic wave in vacuum.
  • ⁇ r be the dielectric constant of the medium.
  • k be the wave number of the propagating electromagnetic wave.
  • a function expressed by the following equation representing a semi-cylindrical measurement curved surface with a radius of R0 will be described.
  • the function g 1 (x', y' 1 ) may be any univalent function on (x', y' 1 ).
  • the function g 2 (x', y' 2 ) may be any univalent function on (x', y' 2 ).
  • Equation (5-5) of the fifth embodiment is an arbitrary transmission point p 1 (x' 1 , y' 1 , z' 1 ) and reception point p 2 (x' 2 , y' 2 , z' 2 ) is an expression for Therefore, starting from substituting equation (7-1) into equation (5-5), the following equation is obtained.
  • Equation (7-2) Since the right side of equation (7-2) is a function related to (x', y' 1 , y' 2 , k), it can be expressed by the following equation when rearranged. If the function after the triple Fourier transform of s a (x′, y′ 1 , y′ 2 , k) is S a (k x , k′ y1 , k′ y2 , k), the following equation is obtained .
  • Equation (5-22) can be used approximately in this embodiment as well.
  • the data processing unit 66 calculates the reflectance f (x, y, z) based on the measurement data s (x', y' 1 , y' 2 , z' 1 , z' 2 , k) Ask for
  • FIG. 24 is a flow chart showing the data processing method of this embodiment.
  • the measurement unit 61 acquires measurement data s (x', y' 1 , y' 2 , z' 1 , z' 2 , k) (step S7-1).
  • the data processing unit 66 organizes the measurement data s(x', y' 1 , y' 2 , z' 1 , z' 2 , k) (step S7-2). Thereby, measurement data s a (x', y' 1 , y' 2 , k) is obtained.
  • the data processing unit 66 performs Hilbert transform on the measurement data s a (x', y' 1 , y' 2 , k) (step S7-3). As a result, the imaginary component of the frequency data at each measurement point is obtained.
  • the data processing unit 66 performs a triple Fourier transform of (x', y' 1 , y' 2 ) on the measurement data s a (x', y' 1 , y' 2 , k). (Step S7-4). This yields S a (k' x , k' y1 , k' y2 , k') as shown in equation (7-4).
  • the data processing unit 66 obtains operators represented by equations (7-6) and (7-7) (step S7-5).
  • step S7-6 the data processing unit 66 performs variable substitution on the following formula (step S7-6). This yields S a (k x , k y , k z ).
  • the data processing unit 66 performs a triple inverse Fourier transform on (k x , ky , k z ) for S a (k x , ky , k z ) (step S7-7 ). This gives the reflectance f(x, y, z) as shown in equation (7-7).
  • the storage unit 66a stores a program for executing the data processing method of this embodiment.
  • the program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.

Abstract

The present invention provides a data processing method that, in synthetic aperture processing using a Fourier transform, is simple and has excellent calculation speed, even with respect to a structure that has a curved surface shape. Provided is a data processing method for analyzing scattered waves of waves emitted toward an object, wherein: waves are emitted toward an object from a plurality of transmission points p1(x'1, y'1, z'1) arranged on the curve of a first single-valued function z'1=g1(x'1, y'1) relating to (x'1, y'1) in a plane parallel to the yz plane; scattered waves reflected with a reflectivity f (x, y, z) at a reflection point (x, y, z) on the object are received as measurement values sa(x'1, x'2, y'1, y'2, k) at a plurality of reception points p2(x'2, y'2, z'2) arranged on the curve of a second single-valued function z'2=g2(x'2, y'2) relating to (x'2, y'2) in a plane parallel to the yz plane; a quadruple Fourier transform is applied to the measurement values sa(x'1, x'2, y'1, y'2, k) to find Sa(k'x1, k'x2, and k'y1, k'y2, k); an operator having an eigenvalue (x'1, y'1, x'2, y'2) with respect to Sa(k'x1, k'x2, k'y1, k'y2, k) is defined; and a triple inverse Fourier transform is applied to find reflectivity f (x, y, z).

Description

データ処理方法、計測システム、及び、プログラムDATA PROCESSING METHOD, MEASUREMENT SYSTEM AND PROGRAM
 本発明は、空間に生成する電磁波等の波動の周波数と空間の空間座標とによって値が定まる波動の計測データを、コンピュータを用いて処理するデータ処理方法、計測システム、及び、プログラムに関する。 The present invention relates to a data processing method, a measurement system, and a program for processing, using a computer, measurement data of waves whose values are determined by the frequencies of waves such as electromagnetic waves generated in space and the spatial coordinates of the space.
 従来、コンクリートや木材等の非金属の構造物の内部を非破壊で検査するレーダ装置が知られている。従来のレーダ装置は、平面上に複数のアンテナが配置されたアレイアンテナを有する。アレイアンテナは、例えば、平面アンテナ等のアンテナが一方向に並んだ構成を有し、送信用アレイアンテナと受信用アレイアンテナが近接して配置される。また、レーダ装置は、構造物の内部を精度よく計測するために、電磁波の周波数を設定された周波数間隔で変更しながら、広帯域の周波数で測定対象物を計測する。  Conventionally, there is known a radar device that non-destructively inspects the inside of non-metallic structures such as concrete and wood. A conventional radar device has an array antenna in which a plurality of antennas are arranged on a plane. An array antenna has, for example, a structure in which antennas such as planar antennas are arranged in one direction, and a transmitting array antenna and a receiving array antenna are arranged close to each other. Further, in order to accurately measure the inside of a structure, the radar device measures the object to be measured at wideband frequencies while changing the frequency of electromagnetic waves at set frequency intervals.
 アレイアンテナを有するレーダ装置に関して、例えば、複数の平面アンテナで構成された送信用アレイアンテナと受信用アレイアンテナが共通の誘電体基板に形成されたレーダ装置が知られている(特開2015-095840号公報、以下、「特許文献1」)。従来のレーダ装置では、送信用アレイアンテナの平面アンテナの配列方向は、受信用アレイアンテナの平面アンテナの配列方向と平行である。受信用アレイアンテナの平面アンテナの配列方向における位置は、送信用アレイアンテナの隣接する平面アンテナの2つの位置の中間にある。 Regarding a radar device having an array antenna, for example, there is known a radar device in which a transmitting array antenna and a receiving array antenna each including a plurality of planar antennas are formed on a common dielectric substrate (Japanese Patent Laid-Open No. 2015-095840. No. 1, hereinafter referred to as “Patent Document 1”). In the conventional radar apparatus, the array direction of the planar antennas of the transmitting array antenna is parallel to the arraying direction of the planar antennas of the receiving array antenna. The position of the receiving array antenna in the array direction of the planar antennas is between two positions of the adjacent planar antennas of the transmitting array antenna.
 また、逆問題の解析を汎用的かつ高速に行い、物体内部の情報を簡便に映像化することができる散乱トモグラフィ方法が知られている(特許第6557747号公報、以下、「特許文献2」)。 In addition, there is known a scattering tomography method that can perform analysis of inverse problems at high speed for general purposes and can easily visualize information inside an object (Japanese Patent No. 6557747, hereinafter referred to as “Patent Document 2”). ).
 計測したデータから構造物の内部を映像化するために、合成開口処理が利用される。合成開口処理には、大きく、ディフラクションスタッキング法などの足し込み法と、F-Kマイグレーション法などのフーリエ変換を利用するものがある。
 実用的な演算時間を実現するためには、フーリエ変換を利用した合成開口処理が現実的である。ここで、フーリエ変換を利用した合成開口処理では、等間隔な平面上での計測が必要となる。
Synthetic aperture processing is used to visualize the interior of the structure from the measured data. Synthetic aperture processing is broadly classified into addition methods such as the diffraction stacking method and methods using Fourier transform such as the FK migration method.
Synthetic aperture processing using Fourier transform is realistic for achieving a practical computation time. Here, in synthetic aperture processing using Fourier transform, measurements on a plane with equal intervals are required.
 しかし、トンネルの表面のような曲面上で計測する場合には、平面上での計測は難しく、平面近似を行い演算する必要がある。曲面の曲率が大きくなるほど、平面近似による誤差が大きくなり、処理後の3次元映像がぼやけてしまう問題が生じる。 However, when measuring on a curved surface such as the surface of a tunnel, it is difficult to measure on a flat surface, and it is necessary to perform flat approximation and perform calculations. As the curvature of the curved surface increases, the error due to plane approximation increases, resulting in a problem that the 3D image after processing is blurred.
 特許文献1に示されるような、平面アンテナが一方向に並んだアレイアンテナを有するレーダ装置では、曲面形状を有する構造物に対して、各アレイアンテナを近接させることが難しい場合がある。
 また、特許文献2に示されるような散乱トモグラフィ方法では、物体内部の情報を映像化するための演算が複雑となり、演算時間が長くなる。
In a radar apparatus having an array antenna in which planar antennas are arranged in one direction, as disclosed in Patent Document 1, it is sometimes difficult to bring each array antenna close to a structure having a curved surface shape.
Further, in the scattering tomography method as disclosed in Patent Document 2, the computation for visualizing the information inside the object is complicated, and the computation time is long.
 本発明は、フーリエ変換を利用した合成開口処理において、曲面形状を有する構造物に対しても、シンプルで演算速度に優れたデータ処理方法、計測システム、及び、プログラムを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a data processing method, a measurement system, and a program which are simple and excellent in calculation speed even for a structure having a curved surface shape in synthetic aperture processing using Fourier transform. .
 本発明の第1の観点は、
 物体に放射した波動の散乱波を解析するデータ処理方法であって、
 yz平面に平行な面内における(x’, y’)に関する1価関数z’=g(x’, y’)の曲線上に配列された複数の送受信点p(x’, y’, z’)から、前記物体に前記波動を放射し、
 前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、前記波動を放射した前記送受信点p(x’, y’, z’)で計測値sa(x’, y’, k)として受信し、
 前記計測値sa(x’, y’, k)を式(1)より2重フーリエ変換してSa(kx, ky, k)を求め、
Figure JPOXMLDOC01-appb-I000025

 Sa(kx, ky, k)に対して固有値(x’, y’)を有する式(2)で示される演算子を定義し、
Figure JPOXMLDOC01-appb-I000026

 式(3)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める、
Figure JPOXMLDOC01-appb-I000027

 データ処理方法である。
但し、
kは、伝播する前記波動の波数、
kx, ky, kzは、前記送受信点p(x’, y’, z’)と前記反射点(x, y, z)の間で伝播する前記波動の往復球面波の波数ベクトルの成分、
である。
A first aspect of the present invention is
A data processing method for analyzing scattered waves of waves radiated to an object,
A plurality of transmitting/receiving points p(x', y', z arranged on the curve of the univalent function z'=g(x', y') with respect to (x', y') in the plane parallel to the yz plane '), radiating said wave to said object,
The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is transferred to the transmitting/receiving point p(x', y', z' that radiated the wave. ) as the measured value s a (x', y', k),
The measured value s a (x ', y ', k) is double Fourier transformed from equation (1) to obtain S a (k x , ky , k),
Figure JPOXMLDOC01-appb-I000025

Defining an operator shown in equation (2) with eigenvalues (x', y ') for S a (k x , k y , k),
Figure JPOXMLDOC01-appb-I000026

Perform triple inverse Fourier transform from equation (3) to obtain the reflectance f (x, y, z),
Figure JPOXMLDOC01-appb-I000027

Data processing method.
however,
k is the wave number of said wave propagating;
k x , k y , k z are the wave vectors of round-trip spherical waves of the wave propagating between the transmitting/receiving point p(x', y', z') and the reflecting point (x, y, z); component,
is.
 本発明の第2の観点は、
 物体に放射した波動の散乱波を解析する計測システムであって、
 yz平面に平行な面内における(x’, y’)に関する1価関数z’=g(x’, y’)の曲線上に配列された複数の送受信点p(x’, y’, z’)を有する送受信部であって、前記物体に前記波動を放射し、前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、前記波動を放射した前記送受信点p(x’, y’, z’)で計測値sa(x’, y’, k)として受信する送受信部と、
 処理装置であって、
  前記計測値sa(x’, y’, k)を式(1)より2重フーリエ変換してSa(kx, ky, k)を求める手順と、
Figure JPOXMLDOC01-appb-I000028

  Sa(kx, ky, k)に対して固有値(x’, y’)を有する式(2)で示される演算子を定義する手順と、
Figure JPOXMLDOC01-appb-I000029

  式(3)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、
Figure JPOXMLDOC01-appb-I000030

 を実行する処理装置と、
 を有する、計測システムである。
kは、伝播する前記波動の波数、
kx, ky, kzは、前記送受信点p(x’, y’, z’)と前記反射点(x, y, z)の間で伝播する前記波動の往復球面波の波数ベクトルの成分、
である。
A second aspect of the present invention is
A measurement system for analyzing scattered waves of waves radiated to an object,
A plurality of transmitting/receiving points p(x', y', z arranged on the curve of the univalent function z'=g(x', y') with respect to (x', y') in the plane parallel to the yz plane '), which radiates the wave to the object and reflects the scattered wave reflected at a reflection point (x, y, z) on the object with a reflectance f(x, y, z) , a transmitting/receiving unit that receives as a measured value s a (x', y', k) at the transmitting/receiving point p(x', y', z') that radiated the wave;
A processing device,
A procedure for obtaining S a (k x , k y , k) by double Fourier transforming the measured value S a (x ' , y ' , k) from equation (1);
Figure JPOXMLDOC01-appb-I000028

Defining the operator shown in equation (2) with eigenvalues (x', y ') for S a (k x , k y , k);
Figure JPOXMLDOC01-appb-I000029

A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (3);
Figure JPOXMLDOC01-appb-I000030

a processor for performing
A measurement system having
k is the wave number of said wave propagating;
k x , k y , k z are the wave vectors of round-trip spherical waves of the wave propagating between the transmitting/receiving point p(x', y', z') and the reflecting point (x, y, z); component,
is.
 本発明の第3の観点は、
 物体に放射した波動の散乱波を解析するプログラムであって、
 計測値sa(x’, y’, k)を式(1)より2重フーリエ変換してSa(kx, ky, k)を求める手順と、
Figure JPOXMLDOC01-appb-I000031

 Sa(kx, ky, k)に対して固有値(x’, y’)を有する式(2)で示される演算子を定義する手順と、
Figure JPOXMLDOC01-appb-I000032

 式(3)より3重逆フーリエ変換して、反射率f(x, y, z)を求める手順と、
Figure JPOXMLDOC01-appb-I000033

 をコンピュータに実行させるプログラムである。
但し、
kは、伝播する前記波動の波数、
kx, ky, kzは、送受信点p(x’, y’, z’)と反射点(x, y, z)の間で伝播する前記波動の往復球面波の波数ベクトルの成分、
である。
A third aspect of the present invention is
A program for analyzing scattered waves of waves radiated to an object,
A procedure for obtaining S a (k x , k y , k) by double Fourier transforming the measured value S a ( x ' , y ' , k) from equation (1);
Figure JPOXMLDOC01-appb-I000031

Defining the operator shown in equation (2) with eigenvalues (x', y ') for S a (k x , k y , k);
Figure JPOXMLDOC01-appb-I000032

A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (3);
Figure JPOXMLDOC01-appb-I000033

is a program that causes a computer to execute
however,
k is the wave number of said wave propagating;
k x , k y , k z are the components of the round-trip spherical wave vector of said wave propagating between the transmitting/receiving point p(x', y', z') and the reflecting point (x, y, z);
is.
 本発明の第4の観点は、
 物体に放射した波動の散乱波を解析するデータ処理方法であって、
 y軸上に配列された複数の送信点p1(x’, y’1, z’1)から、前記物体に前記波動を放射し、
 前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、y軸上に配列された複数の受信点p2(x’, y’2, z’2)で計測値sa(x’, y’1, y’2, k)として受信し、
 y軸上に配列された前記複数の送信点p1(x’, y’1, z’1)及び前記複数の受信点p2(x’, y’2, z’2)を、x’に関する1価関数z’=g(x’)の曲面上を移動させ、
 前記計測値sa(x’, y’1, y’2, k)を式(1)より3重フーリエ変換してSa(k’x, k’y1, k’y2, k)を求め、
Figure JPOXMLDOC01-appb-I000034

 Sa(k’x1, k’x2, k’y1, k’y2, k)に対して固有値x’を有する式(2)で示される演算子を定義し、
Figure JPOXMLDOC01-appb-I000035

 式(3)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める、
Figure JPOXMLDOC01-appb-I000036

 データ処理方法である。
但し、
x’ = x’1 = x’2
z’ = z’1= z’2
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
A fourth aspect of the present invention is
A data processing method for analyzing scattered waves of waves radiated to an object,
radiating the waves to the object from a plurality of transmission points p 1 (x', y' 1 , z' 1 ) arranged on the y-axis;
The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is received at a plurality of reception points p 2 (x', y ' 2 , z' 2 ) as measured value s a (x', y' 1 , y' 2 , k),
Let the plurality of transmission points p 1 (x', y' 1 , z' 1 ) and the plurality of reception points p 2 (x', y' 2 , z' 2 ) arranged on the y-axis be x' Move on the surface of the single-valued function z'=g(x') with respect to
The measured value s a (x', y' 1 , y' 2 , k) is subjected to a triple Fourier transform from equation (1) to obtain S a (k' x , k' y1 , k' y2 , k) ,
Figure JPOXMLDOC01-appb-I000034

define an operator shown in equation (2) with eigenvalues x' for S a (k' x1 , k' x2 , k' y1 , k' y2 , k),
Figure JPOXMLDOC01-appb-I000035

Perform triple inverse Fourier transform from equation (3) to obtain the reflectance f (x, y, z),
Figure JPOXMLDOC01-appb-I000036

Data processing method.
however,
x' = x' 1 = x' 2
z' = z' 1 = z' 2
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第5の観点は、
 物体に放射した波動の散乱波を解析する計測システムであって、
 送受信部であって、
  y軸上に配列された複数の送信点p1(x’, y’1, z’1)から、前記物体に前記波動を放射する送信部と、
  前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、y軸上に配列された複数の受信点p2(x’, y’2, z’2)で計測値sa(x’, y’1, y’2, k)として受信する受信部と、
 を有し、
 y軸上に配列された前記複数の送信点p1(x’, y’1, z’1)及び前記複数の受信点p2(x’, y’2, z’2)を、x’に関する1価関数z’=g(x’)の曲面上を移動させる送受信部と、
 処理装置であって、
  前記計測値sa(x’, y’1, y’2, k)を式(1)より3重フーリエ変換してSa(k’x, k’y1, k’y2, k)を求める手順と、
Figure JPOXMLDOC01-appb-I000037

 Sa(k’x1, k’x2, k’y1, k’y2, k)に対して固有値x’を有する式(2)で示される演算子を定義する手順と、
Figure JPOXMLDOC01-appb-I000038

 式(3)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、
Figure JPOXMLDOC01-appb-I000039

 を実行する処理装置と、
 を有する、計測システムである。
但し、
x’ = x’1 = x’2
z’ = z’1= z’2
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
A fifth aspect of the present invention is
A measurement system for analyzing scattered waves of waves radiated to an object,
a transmitting/receiving unit,
a transmitter that radiates the waves to the object from a plurality of transmission points p 1 (x', y' 1 , z' 1 ) arranged on the y-axis;
The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is received at a plurality of reception points p 2 (x', y ' 2 , z' 2 ) as measured value s a (x', y' 1 , y' 2 , k);
has
Let the plurality of transmission points p 1 (x', y' 1 , z' 1 ) and the plurality of reception points p 2 (x', y' 2 , z' 2 ) arranged on the y-axis be x' a transmitting/receiving unit that moves on a curved surface of a single-valued function z'=g(x') for
A processing device,
The measured value s a (x', y' 1 , y' 2 , k) is subjected to a triple Fourier transform from equation (1) to obtain S a (k' x , k' y1 , k' y2 , k) a procedure;
Figure JPOXMLDOC01-appb-I000037

Defining the operator shown in equation (2) with eigenvalues x' for S a (k' x1 , k' x2 , k' y1 , k' y2 , k);
Figure JPOXMLDOC01-appb-I000038

A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (3);
Figure JPOXMLDOC01-appb-I000039

a processor for performing
A measurement system having
however,
x' = x' 1 = x' 2
z' = z' 1 = z' 2
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第6の観点は、
 物体に放射した波動の散乱波を解析するプログラムであって、
 計測値sa(x’, y’1, y’2, k)を式(1)より3重フーリエ変換してSa(k’x, k’y1, k’y2, k)を求める手順と、
Figure JPOXMLDOC01-appb-I000040

 Sa(k’x1, k’x2, k’y1, k’y2, k)に対して固有値x’を有する式(2)で示される演算子を定義する手順と、
Figure JPOXMLDOC01-appb-I000041

 式(3)より3重逆フーリエ変換して、反射率f(x, y, z)を求める手順と、
Figure JPOXMLDOC01-appb-I000042

 をコンピュータに実行させるプログラムである。
但し、
x’ = x’1 = x’2
z’ = z’1= z’2
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、送信点p1(x’1, y’1, z’1)から反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
A sixth aspect of the present invention is
A program for analyzing scattered waves of waves radiated to an object,
A procedure for obtaining S a (k' x , k' y1 , k' y2 , k) by performing a triple Fourier transform on the measured value s a ( x ', y' 1 , y' 2 , k) from the formula (1) and,
Figure JPOXMLDOC01-appb-I000040

Defining the operator shown in equation (2) with eigenvalues x' for S a (k' x1 , k' x2 , k' y1 , k' y2 , k);
Figure JPOXMLDOC01-appb-I000041

A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (3);
Figure JPOXMLDOC01-appb-I000042

is a program that causes a computer to execute
however,
x' = x' 1 = x' 2
z' = z' 1 = z' 2
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are the spherical waves of said wave propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z) the components of the wave vector of ,
k' x2 , k' y2 , k' z2 are the spherical surfaces of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ) the components of the wavenumber vector of the wave,
k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第7の観点は、
 物体に放射した波動の散乱波を解析するデータ処理方法であって、
 xy平面上に2次元に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射し、
 前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、xy平面上に2次元に配列された複数の受信点p2(x’2, y’2, z’2)で計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)として受信し、
 前記計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より4重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求め、
Figure JPOXMLDOC01-appb-I000043

 式(2)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める、
Figure JPOXMLDOC01-appb-I000044

 データ処理方法である。
但し、
z’1= z’2 = 0
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
A seventh aspect of the present invention is
A data processing method for analyzing scattered waves of waves radiated to an object,
radiating the waves to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged two-dimensionally on the xy plane;
The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is received at a plurality of receiving points p 2 (x ' 2 , y' 2 , z' 2 ) as measurements s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) and
The measured value s ( x'1 , x'2 , y'1, y'2 , z'1 , z'2 , k) is quadruple Fourier transformed by Equation (1) to obtain S( k'x1 , k ' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k),
Figure JPOXMLDOC01-appb-I000043

Perform triple inverse Fourier transform from equation (2) to obtain the reflectance f (x, y, z),
Figure JPOXMLDOC01-appb-I000044

Data processing method.
however,
z'1 = z'2 = 0
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第8の観点は、
 物体に放射した波動の散乱波を解析する計測システムであって、
 送受信部であって、
  xy平面上に2次元に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射する送信部と、
  前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、xy平面上に2次元に配列された複数の受信点p2(x’2, y’2, z’2)で計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)として受信する受信部と、
 を有する送受信部と、
 処理装置であって、
  前記計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より4重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求める手順と、
Figure JPOXMLDOC01-appb-I000045

 式(2)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、
Figure JPOXMLDOC01-appb-I000046

 を実行する処理装置と、
 を有する、計測システムである。
但し、
z’1= z’2 = 0
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
An eighth aspect of the present invention is
A measurement system for analyzing scattered waves of waves radiated to an object,
a transmitting/receiving unit,
a transmitting unit that radiates the waves to the object from a plurality of transmitting points p 1 (x' 1 , y' 1 , z' 1 ) arranged two-dimensionally on the xy plane;
The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is received at a plurality of receiving points p 2 (x ' 2 , y' 2 , z' 2 ) as measured values s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k);
a transceiver having
A processing device,
The measured value s ( x'1 , x'2 , y'1, y'2 , z'1 , z'2 , k) is quadruple Fourier transformed by Equation (1) to obtain S( k'x1 , k ' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);
Figure JPOXMLDOC01-appb-I000045

A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (2);
Figure JPOXMLDOC01-appb-I000046

a processor for performing
A measurement system having
however,
z'1 = z'2 = 0
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第9の観点は、
 物体に放射した波動の散乱波を解析するプログラムであって、
 計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より4重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求める手順と、
Figure JPOXMLDOC01-appb-I000047

 式(2)より3重逆フーリエ変換して、反射率f(x, y, z)を求める手順と、
Figure JPOXMLDOC01-appb-I000048

 をコンピュータに実行させるプログラムである。
但し、
z’1= z’2 = 0
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、送信点p1(x’1, y’1, z’1)から反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
A ninth aspect of the present invention is
A program for analyzing scattered waves of waves radiated to an object,
Measured values s( x'1 , x'2 , y'1 , y'2 , z'1 , z'2 , k) are quadruple Fourier transformed by formula (1) to obtain S( k'x1 , k' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);
Figure JPOXMLDOC01-appb-I000047

A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (2);
Figure JPOXMLDOC01-appb-I000048

is a program that causes a computer to execute
however,
z'1 = z'2 = 0
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are the spherical waves of said wave propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z) the components of the wave vector of ,
k' x2 , k' y2 , k' z2 are the spherical surfaces of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ) the components of the wavenumber vector of the wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第10の観点は、
 物体に放射した波動の散乱波を解析するデータ処理方法であって、
 y軸上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射し、
 前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、y軸上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)として受信し、
 前記計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より3重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求め、
Figure JPOXMLDOC01-appb-I000049

 式(2)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める、
Figure JPOXMLDOC01-appb-I000050

 データ処理方法である。
但し、
x’ = x’1 = x’2
z’1= z’2 = 0
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
A tenth aspect of the present invention is
A data processing method for analyzing scattered waves of waves radiated to an object,
radiating the waves to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged on the y-axis;
The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is received at a plurality of reception points p 2 (x′ 2 , y' 2 , z' 2 ) as measurements s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) and
The measured value s ( x'1 , x'2 , y'1, y'2 , z'1 , z'2 , k) is triple Fourier transformed by Equation (1) to obtain S( k'x1 , k ' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k),
Figure JPOXMLDOC01-appb-I000049

Perform triple inverse Fourier transform from equation (2) to obtain the reflectance f (x, y, z),
Figure JPOXMLDOC01-appb-I000050

Data processing method.
however,
x' = x' 1 = x' 2
z'1 = z'2 = 0
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第11の観点は、
 物体に放射した波動の散乱波を解析する計測システムであって、
 送受信部であって、
  y軸上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射する送信部と、
  前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、y軸上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)として受信する受信部と、
 を有する送受信部と、
 処理装置であって、
  前記計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より3重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求める手順と、
Figure JPOXMLDOC01-appb-I000051

 式(2)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、
Figure JPOXMLDOC01-appb-I000052

 を実行する処理装置と、
 を有する、計測システムである。
但し、
x’ = x’1 = x’2
z’1= z’2 = 0
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
An eleventh aspect of the present invention is
A measurement system for analyzing scattered waves of waves radiated to an object,
a transmitting/receiving unit,
a transmitter that radiates the waves to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged on the y-axis;
The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is received at a plurality of reception points p 2 (x′ 2 , y'2 , z'2 ) as measured values s(x'1, x'2 , y'1 , y'2 , z'1 , z'2 , k);
a transceiver having
A processing device,
The measured value s ( x'1 , x'2 , y'1, y'2 , z'1 , z'2 , k) is triple Fourier transformed by Equation (1) to obtain S( k'x1 , k ' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);
Figure JPOXMLDOC01-appb-I000051

A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (2);
Figure JPOXMLDOC01-appb-I000052

a processor for performing
A measurement system having
however,
x' = x' 1 = x' 2
z'1 = z'2 = 0
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第12の観点は、
 物体に放射した波動の散乱波を解析するプログラムであって、
 計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より3重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求める手順と、
Figure JPOXMLDOC01-appb-I000053

 式(2)より3重逆フーリエ変換して、反射率f(x, y, z)を求める手順と、
Figure JPOXMLDOC01-appb-I000054

 をコンピュータに実行させるプログラムである。
但し、
x’ = x’1 = x’2
z’1= z’2 = 0
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
A twelfth aspect of the present invention is
A program for analyzing scattered waves of waves radiated to an object,
The measured value s ( x'1 , x'2 , y'1 , y'2 , z'1 , z'2 , k) is triple Fourier transformed from Equation (1) to obtain S( k'x1 , k' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);
Figure JPOXMLDOC01-appb-I000053

A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (2);
Figure JPOXMLDOC01-appb-I000054

is a program that causes a computer to execute
however,
x' = x' 1 = x' 2
z'1 = z'2 = 0
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第13の観点は、
 物体に放射した波動の散乱波を解析するデータ処理方法であって、
 yz平面に平行な面内における(x’1, y’1)に関する第1の1価関数z’1=g1(x’1, y’1)の曲線上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射し、
 前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、yz平面に平行な面内における(x’2, y’2)に関する第2の1価関数z’2=g2(x’2, y’2)の曲線上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値sa(x’1, x’2, y’1, y’2, k)として受信し、
 前記計測値sa(x’1, x’2, y’1, y’2, k)を式(1)より4重フーリエ変換してSa(k’x1, k’x2, k’y1, k’y2, k)を求め、
Figure JPOXMLDOC01-appb-I000055

 Sa(k’x1, k’x2, k’y1, k’y2, k)に対して固有値(x’1, y’1, x’2, y’2)を有する式(2)及び式(3)で示される演算子を定義し、
Figure JPOXMLDOC01-appb-I000056

 式(4)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める、
Figure JPOXMLDOC01-appb-I000057

 データ処理方法である。
但し、
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
A thirteenth aspect of the present invention is
A data processing method for analyzing scattered waves of waves radiated to an object,
A plurality of transmitting points arranged on the curve of the first univalent function z' 1 =g 1 (x' 1 , y' 1 ) with respect to (x' 1 , y' 1 ) in a plane parallel to the yz plane radiating said wave to said object from p 1 (x' 1 , y' 1 , z' 1 );
The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is expressed as (x' 2 , y' 2 ) in a plane parallel to the yz plane Measured values at a plurality of receiving points p 2 ( x' 2 , y' 2 , z' 2 ) arranged on the curve of the second single-valued function z' 2 =g 2 (x' 2 , y' 2 ) received as s a (x' 1 , x' 2 , y' 1 , y' 2 , k) and
The measured values s a (x' 1 , x' 2 , y' 1 , y' 2 , k) are quadruple Fourier transformed by Equation (1) to S a (k' x1 , k' x2 , k' y1 , k' y2 , k),
Figure JPOXMLDOC01-appb-I000055

Equation (2) with eigenvalues ( x'1 , y'1 , x'2 , y'2 ) for Sa( k'x1 , k'x2 , k'y1 , k'y2, k ) and equation Define the operator indicated by (3),
Figure JPOXMLDOC01-appb-I000056

Perform triple inverse Fourier transform from equation (4) to obtain the reflectance f (x, y, z),
Figure JPOXMLDOC01-appb-I000057

Data processing method.
however,
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第14の観点は、
 物体に放射した波動の散乱波を解析する計測システムであって、
 送受信部であって、
  yz平面に平行な面内における(x’1, y’1)に関する第1の1価関数z’1=g1(x’1, y’1)の曲線上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射する送信部と、
  前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、yz平面に平行な面内における(x’2, y’2)に関する第2の1価関数z’2=g2(x’2, y’2)の曲線上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値sa(x’1, x’2, y’1, y’2, k)として受信する受信部と、
 を有する送受信部と、
 処理装置であって、
  前記計測値sa(x’1, x’2, y’1, y’2, k)を式(1)より4重フーリエ変換してSa(k’x1, k’x2, k’y1, k’y2, k)を求める手順と、
Figure JPOXMLDOC01-appb-I000058

 Sa(k’x1, k’x2, k’y1, k’y2, k)に対して固有値(x’1, y’1, x’2, y’2)を有する式(2)及び式(3)で示される演算子を定義する手順と、
Figure JPOXMLDOC01-appb-I000059

 式(4)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、
Figure JPOXMLDOC01-appb-I000060

 を実行する処理装置と、
 を有する、計測システムである。
但し、
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
A fourteenth aspect of the present invention is
A measurement system for analyzing scattered waves of waves radiated to an object,
a transmitting/receiving unit,
A plurality of transmitting points arranged on the curve of the first univalent function z' 1 =g 1 (x' 1 , y' 1 ) with respect to (x' 1 , y' 1 ) in a plane parallel to the yz plane a transmitter that radiates the wave to the object from p 1 (x' 1 , y' 1 , z' 1 );
The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is expressed as (x' 2 , y' 2 ) in a plane parallel to the yz plane Measured values at a plurality of receiving points p 2 (x' 2 , y' 2 , z ' 2 ) arranged on the curve of the second single-valued function z' 2 =g 2 (x' 2 , y' 2 ) a receiver for receiving as s a (x' 1 , x' 2 , y' 1 , y' 2 , k);
a transceiver having
A processing device,
The measured values s a (x' 1 , x' 2 , y' 1 , y' 2 , k) are quadruple Fourier transformed by Equation (1) to S a (k' x1 , k' x2 , k' y1 , k' y2 , k);
Figure JPOXMLDOC01-appb-I000058

Equation (2) with eigenvalues ( x'1 , y'1 , x'2 , y'2 ) for Sa( k'x1 , k'x2 , k'y1, k'y2 , k ) and equation A procedure for defining the operator indicated by (3);
Figure JPOXMLDOC01-appb-I000059

A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (4);
Figure JPOXMLDOC01-appb-I000060

a processor for performing
A measurement system having
however,
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第15の観点は、
 物体に放射した波動の散乱波を解析するプログラムであって、
 計測値sa(x’1, x’2, y’1, y’2, k)を式(1)より4重フーリエ変換してSa(k’x1, k’x2, k’y1, k’y2, k)を求める手順と、
Figure JPOXMLDOC01-appb-I000061

 Sa(k’x1, k’x2, k’y1, k’y2, k)に対して固有値(x’1, y’1, x’2, y’2)を有する式(2)及び式(3)で示される演算子を定義する手順と、
Figure JPOXMLDOC01-appb-I000062

 式(4)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、
Figure JPOXMLDOC01-appb-I000063

 をコンピュータに実行させるプログラムである。
但し、
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、送信点p1(x’1, y’1, z’1)から反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
A fifteenth aspect of the present invention is
A program for analyzing scattered waves of waves radiated to an object,
The measured value s a (x' 1 , x' 2 , y' 1 , y' 2 , k) is quadruple Fourier transformed from the equation (1) to obtain S a (k' x1 , k' x2 , k' y1 , a procedure for obtaining k' y2 , k);
Figure JPOXMLDOC01-appb-I000061

Equation (2) with eigenvalues ( x'1 , y'1 , x'2 , y'2 ) for Sa( k'x1 , k'x2 , k'y1, k'y2 , k ) and equation A procedure for defining the operator indicated by (3);
Figure JPOXMLDOC01-appb-I000062

A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (4);
Figure JPOXMLDOC01-appb-I000063

is a program that causes a computer to execute
however,
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are the spherical waves of said wave propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z) the components of the wave vector of ,
k' x2 , k' y2 , k' z2 are the spherical surfaces of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ) the components of the wavenumber vector of the wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第16の観点は、
 物体に放射した波動の散乱波を解析するデータ処理方法であって、
 yz平面に平行な面内における(x’1, y’1)に関する第1の1価関数z’1=g1(x’1, y’1)の曲線上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射し、
 前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、yz平面に平行な面内における(x’2, y’2)に関する第2の1価関数z’2=g2(x’2, y’2)の曲線上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値sa(x’, y’1, y’2, k)として受信し、
 前記計測値sa(x’, y’1, y’2, k)を式(1)より3重フーリエ変換してSa(k’x, k’y1, k’y2, k)を求め、
Figure JPOXMLDOC01-appb-I000064

 Sa(k’x, k’y1, k’y2, k)に対して固有値(x’, y’1, y’2)を有する式(2)及び式(3)で示される演算子を定義し、
Figure JPOXMLDOC01-appb-I000065

 式(4)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める、
Figure JPOXMLDOC01-appb-I000066

 データ処理方法である。
但し、
x’ = x’1 = x’2
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
A sixteenth aspect of the present invention is
A data processing method for analyzing scattered waves of waves radiated to an object,
A plurality of transmitting points arranged on the curve of the first univalent function z' 1 =g 1 (x' 1 , y' 1 ) with respect to (x' 1 , y' 1 ) in a plane parallel to the yz plane radiating said wave to said object from p 1 (x' 1 , y' 1 , z' 1 );
The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is expressed as (x' 2 , y' 2 ) in a plane parallel to the yz plane Measured values at a plurality of receiving points p 2 (x' 2 , y' 2 , z ' 2 ) arranged on the curve of the second single-valued function z' 2 =g 2 (x' 2 , y' 2 ) received as s a (x', y' 1 , y' 2 , k),
The measured value s a (x', y' 1 , y' 2 , k) is subjected to a triple Fourier transform from equation (1) to obtain S a (k' x , k' y1 , k' y2 , k) ,
Figure JPOXMLDOC01-appb-I000064

Let the operators shown in equations (2) and (3) with eigenvalues (x', y' 1 , y' 2 ) for S a ( k ' x , k' y1 , k' y2 , k ) be define and
Figure JPOXMLDOC01-appb-I000065

Perform triple inverse Fourier transform from equation (4) to obtain the reflectance f (x, y, z),
Figure JPOXMLDOC01-appb-I000066

Data processing method.
however,
x' = x' 1 = x' 2
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第17の観点は、
 物体に放射した波動の散乱波を解析する計測システムであって、
 送受信部であって、
  yz平面に平行な面内における(x’1, y’1)に関する第1の1価関数z’1=g1(x’1, y’1)の曲線上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射する送信部と、
  前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、yz平面に平行な面内における(x’2, y’2)に関する第2の1価関数z’2=g2(x’2, y’2)の曲線上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値sa(x’, y’1, y’2, k)として受信する受信部と、
 を有する送受信部と、
 処理装置であって、
  前記計測値sa(x’, y’1, y’2, k)を式(1)より3重フーリエ変換してSa(k’x, k’y1, k’y2, k)を求める手順と、
Figure JPOXMLDOC01-appb-I000067

 Sa(k’x, k’y1, k’y2, k)に対して固有値(x’, y’1, y’2)を有する式(2)及び式(3)で示される演算子を定義する手順と、
Figure JPOXMLDOC01-appb-I000068

 式(4)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、
Figure JPOXMLDOC01-appb-I000069

 を実行する処理装置と、
 を有する、計測システムである。
但し、
x’ = x’1 = x’2
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
A seventeenth aspect of the present invention is
A measurement system for analyzing scattered waves of waves radiated to an object,
a transmitting/receiving unit,
A plurality of transmitting points arranged on the curve of the first univalent function z' 1 =g 1 (x' 1 , y' 1 ) with respect to (x' 1 , y' 1 ) in a plane parallel to the yz plane a transmitter that radiates the wave to the object from p 1 (x' 1 , y' 1 , z' 1 );
The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is expressed as (x' 2 , y' 2 ) in a plane parallel to the yz plane Measured values at a plurality of receiving points p 2 ( x' 2 , y' 2 , z' 2 ) arranged on the curve of the second single-valued function z' 2 =g 2 (x' 2 , y' 2 ) a receiver for receiving as s a (x', y' 1 , y' 2 , k);
a transceiver having
A processing device,
The measured value s a (x', y' 1 , y' 2 , k) is subjected to a triple Fourier transform from equation (1) to obtain S a (k' x , k' y1 , k' y2 , k) a procedure;
Figure JPOXMLDOC01-appb-I000067

Let the operators shown in equations (2) and (3) with eigenvalues (x', y' 1 , y' 2 ) for S a ( k ' x , k' y1 , k' y2 , k ) be a procedure that defines
Figure JPOXMLDOC01-appb-I000068

A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (4);
Figure JPOXMLDOC01-appb-I000069

a processor for performing
A measurement system having
however,
x' = x' 1 = x' 2
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明の第18の観点は、
 物体に放射した波動の散乱波を解析するプログラムであって、
 計測値sa(x’, y’1, y’2, k)を式(1)より3重フーリエ変換してSa(k’x, k’y1, k’y2, k)を求める手順と、
Figure JPOXMLDOC01-appb-I000070

 Sa(k’x, k’y1, k’y2, k)に対して固有値(x’, y’1, y’2)を有する式(2)及び式(3)で示される演算子を定義する手順と、
Figure JPOXMLDOC01-appb-I000071

 式(4)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、
Figure JPOXMLDOC01-appb-I000072

 をコンピュータに実行させるプログラムである。
但し、
x’ = x’1 = x’2
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、送信点p1(x’1, y’1, z’1)から反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
An eighteenth aspect of the present invention is
A program for analyzing scattered waves of waves radiated to an object,
Procedure for obtaining S a (k' x, k' y1 , k' y2 , k) by performing a triple Fourier transform on the measured value s a ( x ', y' 1 , y' 2 , k) from the formula (1) and,
Figure JPOXMLDOC01-appb-I000070

Let the operators shown in equations (2) and (3) with eigenvalues (x', y ' 1 , y' 2 ) for S a ( k ' x , k' y1 , k' y2 , k) be a procedure that defines
Figure JPOXMLDOC01-appb-I000071

A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (4);
Figure JPOXMLDOC01-appb-I000072

is a program that causes a computer to execute
however,
x' = x' 1 = x' 2
k is the wave number of said wave propagating;
k' x1 , k' y1 , k' z1 are the spherical waves of said wave propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z) the components of the wave vector of ,
k' x2 , k' y2 , k' z2 are the spherical surfaces of the waves propagating from the reflecting point (x, y, z) to the receiving point p 2 (x' 2 , y' 2 , z' 2 ) the components of the wavenumber vector of the wave,
k y = k' y1 + k' y2 , v = k' y1 - k' y2
is.
 本発明のデータ処理方法、計測システム、及び、プログラムによれば、フーリエ変換を利用した合成開口処理において、曲面形状を有する構造物に対しても、シンプルで演算時間を短くすることができる。 According to the data processing method, measurement system, and program of the present invention, in synthetic aperture processing using Fourier transform, it is possible to simplify and shorten the calculation time even for a structure having a curved surface shape.
第1実施形態のレーダ装置の構成を示す図The figure which shows the structure of the radar apparatus of 1st Embodiment. 図1に示すアレイアンテナの構成を示す図A diagram showing the configuration of the array antenna shown in FIG. 第1実施形態のアレイアンテナと測定対象物との位置関係を説明する図FIG. 4 is a diagram for explaining the positional relationship between the array antenna of the first embodiment and the object to be measured; 第1実施形態のデータ処理方法を示すフローチャートFlowchart showing the data processing method of the first embodiment 第2実施形態のアレイアンテナと測定対象物との位置関係を説明する図A diagram for explaining the positional relationship between the array antenna of the second embodiment and an object to be measured. 第2実施形態のデータ処理方法を示すフローチャートFlowchart showing the data processing method of the second embodiment (a)は、水平面計測の計測レイアウト図、(b)は、曲面計測1の計測レイアウト図、(c)は、曲面計測2の計測レイアウト図(a) is a measurement layout diagram for horizontal surface measurement, (b) is a measurement layout diagram for curved surface measurement 1, and (c) is a measurement layout diagram for curved surface measurement 2. 水平面計測の計測レイアウトにより、第1実施形態のデータ処理方法でシミュレーションした点ターゲットA point target simulated by the data processing method of the first embodiment using a measurement layout for horizontal surface measurement. (a)は、曲面計測1の計測レイアウトにより、第1実施形態のデータ処理方法でシミュレーションした点ターゲット、(b)は、曲面計測1の計測レイアウトにより、第2実施形態のデータ処理方法でシミュレーションした点ターゲット(a) is a point target simulated by the data processing method of the first embodiment using the measurement layout of curved surface measurement 1, and (b) is the measurement layout of curved surface measurement 1 simulated by the data processing method of the second embodiment. point target (a)は、曲面計測2の計測レイアウトにより、第1実施形態のデータ処理方法でシミュレーションした点ターゲット、(b)は、曲面計測2の計測レイアウトにより、第2実施形態のデータ処理方法でシミュレーションした点ターゲット(a) is a point target simulated by the data processing method of the first embodiment based on the measurement layout of the curved surface measurement 2, and (b) is simulated by the data processing method of the second embodiment based on the measurement layout of the curved surface measurement 2. point target 第3実施形態のアレイアンテナと測定対象物との位置関係を説明する図A diagram for explaining the positional relationship between the array antenna of the third embodiment and an object to be measured. 第3実施形態のデータ処理方法を示すフローチャートFlowchart showing the data processing method of the third embodiment 第4実施形態のアレイアンテナと測定対象物との位置関係を説明する図FIG. 11 is a diagram for explaining the positional relationship between the array antenna of the fourth embodiment and the object to be measured; 第4実施形態のデータ処理方法を示すフローチャートFlowchart showing the data processing method of the fourth embodiment 第5実施形態のアレイアンテナと測定対象物との位置関係を説明する図FIG. 11 is a diagram for explaining the positional relationship between the array antenna of the fifth embodiment and the object to be measured; 第5実施形態のデータ処理方法を示すフローチャートFlowchart showing the data processing method of the fifth embodiment 第6実施形態のアレイアンテナと測定対象物との位置関係を説明する図A diagram for explaining the positional relationship between the array antenna of the sixth embodiment and an object to be measured. 第6実施形態のデータ処理方法を示すフローチャートFlowchart showing a data processing method of the sixth embodiment (a)は、水平面計測の計測レイアウト図、(b)は、曲面計測1の計測レイアウト図、(c)は、曲面計測2の計測レイアウト図(a) is a measurement layout diagram for horizontal surface measurement, (b) is a measurement layout diagram for curved surface measurement 1, and (c) is a measurement layout diagram for curved surface measurement 2. 水平面計測の計測レイアウトにより、第5実施形態のデータ処理方法でシミュレーションした点ターゲットA point target simulated by the data processing method of the fifth embodiment using a measurement layout for horizontal surface measurement. (a)は、曲面計測1の計測レイアウトにより、第5実施形態のデータ処理方法でシミュレーションした点ターゲット、(b)は、曲面計測1の計測レイアウトにより、第6実施形態のデータ処理方法でシミュレーションした点ターゲット(a) is a point target simulated by the data processing method of the fifth embodiment using the measurement layout of curved surface measurement 1, and (b) is the measurement layout of curved surface measurement 1 simulated by the data processing method of the sixth embodiment. point target (a)は、曲面計測2の計測レイアウトにより、第5実施形態のデータ処理方法でシミュレーションした点ターゲット、(b)は、曲面計測2の計測レイアウトにより、第6実施形態のデータ処理方法でシミュレーションした点ターゲット(a) is a point target simulated by the data processing method of the fifth embodiment based on the measurement layout of the curved surface measurement 2, and (b) is simulated by the data processing method of the sixth embodiment based on the measurement layout of the curved surface measurement 2. point target 第7実施形態のアレイアンテナと測定対象物との位置関係を説明する図A diagram for explaining the positional relationship between the array antenna of the seventh embodiment and an object to be measured. 第7実施形態のデータ処理方法を示すフローチャートFlowchart showing the data processing method of the seventh embodiment
<第1実施形態>
 以下、第1実施形態のデータ処理方法、計測システム、及び、プログラムについて、詳細に説明する。図1は、本実施形態のレーダ装置の構成を示す。図2は、図1に示すアレイアンテナの構成を示す。図3は、本実施形態のアレイアンテナと測定対象物との位置関係を説明する図である。本実施形態では、電磁波を空間に放射する波動として説明するが、電磁波の代わりにX線や超音波等の空間中に伝播する波動を用いてもよい。
<First Embodiment>
Hereinafter, the data processing method, measurement system, and program of the first embodiment will be described in detail. FIG. 1 shows the configuration of a radar device according to this embodiment. FIG. 2 shows the configuration of the array antenna shown in FIG. FIG. 3 is a diagram for explaining the positional relationship between the array antenna of this embodiment and the object to be measured. In this embodiment, waves that radiate electromagnetic waves into space are described, but waves that propagate in space, such as X-rays and ultrasonic waves, may be used instead of electromagnetic waves.
 本実施形態の計測システム1は、送受信部と、処理装置と、を有する。処理装置は、送受信部と一体に設けられてもよいし、送受信部とネットワークで接続された別の場所に設けられてもよい。以下の実施形態では、処理装置が送受信部と一体に設けられる例を説明する。 The measurement system 1 of this embodiment has a transmitting/receiving section and a processing device. The processing device may be provided integrally with the transmitting/receiving unit, or may be provided at a separate location connected to the transmitting/receiving unit via a network. In the following embodiments, an example in which a processing device is provided integrally with a transmission/reception unit will be described.
 図1に示す本実施形態のレーダ装置60は、送信用アレイアンテナ及び受信用アレイアンテナ(送受信部)を用いて、電磁波の周波数を掃引しながら、電磁波を送信アンテナから放射する。そして、レーダ装置60は、測定対象物の反射波を受信アンテナで受信して、計測データs(x’,y’,z’,k)を得る。計測データs(x’,y’,z’,k)は、x座標成分、y座標成分、及びz座標成分と電磁波の周波数とを変数とするデータである。 The radar device 60 of the present embodiment shown in FIG. 1 uses a transmitting array antenna and a receiving array antenna (transmitting/receiving unit) to radiate electromagnetic waves from the transmitting antenna while sweeping the frequency of the electromagnetic waves. Then, the radar device 60 receives the reflected wave of the object to be measured by the receiving antenna and obtains the measurement data s(x', y', z', k). The measurement data s(x', y', z', k) is data whose variables are the x-coordinate component, the y-coordinate component, the z-coordinate component, and the frequency of the electromagnetic wave.
 レーダ装置60は、計測ユニット61と、データ処理ユニット(処理装置)66と、画像表示ユニット68とを有する。計測ユニット61は、送信用アレイアンテナ50と、受信用アレイアンテナ52と、高周波スイッチ58,59と、高周波回路62と、システム制御回路64とを有する。レーダ装置60は、10MHz以上、例えば10~20GHzの電磁波を放射するが、電磁波の周波数は、特に制限されない。 The radar device 60 has a measurement unit 61 , a data processing unit (processing device) 66 and an image display unit 68 . The measurement unit 61 has a transmission array antenna 50 , a reception array antenna 52 , high frequency switches 58 and 59 , a high frequency circuit 62 and a system control circuit 64 . The radar device 60 radiates electromagnetic waves of 10 MHz or more, for example 10 to 20 GHz, but the frequency of the electromagnetic waves is not particularly limited.
 図2に示されるように、送信用アレイアンテナ50は、一方向に配列された複数の送信アンテナ10aを有する。各送信アンテナ10aは、測定対象物に向けて電磁波を放射する。受信用アレイアンテナ52は、送信アンテナ10aの配列方向に沿って配列された複数の受信アンテナ10bを有する。各受信アンテナ10bは、測定対象物から反射した電磁波を受信する。
 送信用アレイアンテナ50の送信アンテナ10aと、受信用アレイアンテナ52の受信アンテナ10bは、一平面上に配置される。この平面に測定対象物が対向するように、送信用アレイアンテナ50と受信用アレイアンテナ52が配置される。
As shown in FIG. 2, the transmitting array antenna 50 has a plurality of transmitting antennas 10a arranged in one direction. Each transmitting antenna 10a radiates electromagnetic waves toward the object to be measured. The reception array antenna 52 has a plurality of reception antennas 10b arranged along the arrangement direction of the transmission antennas 10a. Each receiving antenna 10b receives electromagnetic waves reflected from the object to be measured.
The transmitting antenna 10a of the transmitting array antenna 50 and the receiving antenna 10b of the receiving array antenna 52 are arranged on one plane. A transmitting array antenna 50 and a receiving array antenna 52 are arranged so that the object to be measured faces this plane.
 データ処理ユニット66は、複数の送信アンテナ10aによる測定対象物に向けた送信と、複数の受信アンテナ10bによる受信とによって得られる複数の計測データを処理し、測定対象物に関する画像データを算出する。本実施形態の送信アンテナ10a及び受信アンテナ10bは、基板に平面的にアンテナパターンが形成された平面アンテナであるが、平面アンテナに制限されない。 The data processing unit 66 processes a plurality of measurement data obtained by transmission toward the measurement object by the plurality of transmission antennas 10a and reception by the plurality of reception antennas 10b, and calculates image data regarding the measurement object. The transmitting antenna 10a and the receiving antenna 10b of this embodiment are planar antennas in which an antenna pattern is formed planarly on a substrate, but are not limited to planar antennas.
 送信用アレイアンテナ50と受信用アレイアンテナ52は、測定対象物の面に平行に移動する。すなわち、送信用アレイアンテナ50と受信用アレイアンテナ52は、測定対象物の表面に沿って走査しながら計測する。送信用アレイアンテナ50と受信用アレイアンテナ52が移動するとき、システム制御回路64は、高周波回路62の動作を制御する。具体的には、送信用アレイアンテナ50と受信用アレイアンテナ52の移動距離の単位長さ毎に、送信アンテナ10aを高周波スイッチ58により切り替えつつ、電磁波を放射するように、システム制御回路64は、高周波回路62の動作を制御する。 The transmitting array antenna 50 and the receiving array antenna 52 move parallel to the surface of the object to be measured. That is, the transmitting array antenna 50 and the receiving array antenna 52 perform measurement while scanning along the surface of the object to be measured. The system control circuit 64 controls the operation of the high frequency circuit 62 when the transmitting array antenna 50 and the receiving array antenna 52 move. Specifically, the system control circuit 64 radiates electromagnetic waves while switching the transmitting antenna 10a by the high-frequency switch 58 for each unit length of the moving distance of the transmitting array antenna 50 and the receiving array antenna 52. It controls the operation of the high frequency circuit 62 .
 レーダ装置60は、エンコーダ69を有する。エンコーダ69は、一定の移動距離ごとにパルス信号を発生する。エンコーダ69は、送信用アレイアンテナ50及び受信用アレイアンテナ52の移動を感知する。
 このとき、個々の送信アンテナ10aから電磁波の放射が行われる度に、高周波スイッチ59は、複数の受信アンテナ10bを順次切り替えて、各受信アンテナ10bに受信させる。
The radar device 60 has an encoder 69 . The encoder 69 generates a pulse signal every fixed moving distance. Encoder 69 senses the movement of transmitting array antenna 50 and receiving array antenna 52 .
At this time, each time an electromagnetic wave is radiated from each transmitting antenna 10a, the high-frequency switch 59 sequentially switches the plurality of receiving antennas 10b to allow each receiving antenna 10b to receive the electromagnetic wave.
 なお、送信用アレイアンテナ50から放射される電磁波の周波数を、一定の時間に、例えば10~20GHzの範囲で、設定された周波数間隔で掃引して、電磁波が放射される。したがって、高周波回路62から得られる計測データは送信アンテナ10aの送信した位置と、受信アンテナ10bの受信した位置と、周波数と、ターゲットの位置とによって値が定まるデータである。
 このとき、送信アンテナ10aから放射された電磁波が測定対象物で反射したときの電磁波の反射波を、電磁波を放射した送信アンテナ10aに最も近い受信アンテナ10bで受信するように、高周波スイッチ59の動作が制御される。受信用マイクロ波増幅器(RFアンプ)は、送信する送信アンテナ10aと受信する受信アンテナ10bの対毎にゲインを変化させるように設定される場合がある。このとき、高周波回路62は、送信アンテナ10aと受信アンテナ10bの対の選択に応じてゲインを切り替える可変ゲイン増幅機能を有する。これにより、測定対象物中の欠陥等の検査可能な深度を大きくできる。
The frequency of the electromagnetic waves radiated from the transmitting array antenna 50 is swept at predetermined frequency intervals, for example, in the range of 10 to 20 GHz, and the electromagnetic waves are radiated. Therefore, the measurement data obtained from the high-frequency circuit 62 is data whose value is determined by the position transmitted by the transmitting antenna 10a, the position received by the receiving antenna 10b, the frequency, and the position of the target.
At this time, the high-frequency switch 59 operates so that the reflected wave of the electromagnetic wave when the electromagnetic wave radiated from the transmitting antenna 10a is reflected by the object to be measured is received by the receiving antenna 10b closest to the transmitting antenna 10a that radiated the electromagnetic wave. is controlled. The receiving microwave amplifier (RF amplifier) may be set to change the gain for each pair of transmitting transmitting antenna 10a and receiving receiving antenna 10b. At this time, the high-frequency circuit 62 has a variable gain amplification function that switches the gain according to the selection of the pair of the transmitting antenna 10a and the receiving antenna 10b. As a result, it is possible to increase the inspectable depth of defects, etc. in the object to be measured.
 本実施形態では、送信アンテナ10aと受信アンテナ10bの配列方向は平行であり、図2に示すように、配列方向をy方向とする。一方、送信用アレイアンテナ50と受信用アレイアンテナ52の移動方向(走査方向)を、x方向とする。送信用アレイアンテナ50と受信用アレイアンテナ52からみて、測定対象物のある方向(電磁波の送信方向)をz方向とする。 In this embodiment, the arrangement direction of the transmitting antenna 10a and the receiving antenna 10b is parallel, and as shown in FIG. 2, the arrangement direction is the y direction. On the other hand, the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 is assumed to be the x direction. When viewed from the transmitting array antenna 50 and the receiving array antenna 52, the direction in which the object to be measured (the transmitting direction of electromagnetic waves) is the z-direction.
 なお、送信用アレイアンテナ50と受信用アレイアンテナ52の移動方向(走査方向)をy方向としてもよい。すなわち、送信アンテナ10aと受信アンテナ10bの配列方向と同じ方向に、移動(走査)してもよい。
 また、送信用アレイアンテナ50が1つの送信アンテナ10aのみを有し、受信用アレイアンテナ52が複数の受信アンテナ10bを有してもよい。この場合も、送信用アレイアンテナ50と受信用アレイアンテナ52の移動方向(走査方向)をy方向としてもよい。すなわち、受信アンテナ10bの配列方向と同じ方向に、移動(走査)してもよい。
Note that the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 may be the y direction. That is, it may move (scan) in the same direction as the arrangement direction of the transmitting antenna 10a and the receiving antenna 10b.
Alternatively, the transmitting array antenna 50 may have only one transmitting antenna 10a, and the receiving array antenna 52 may have a plurality of receiving antennas 10b. Also in this case, the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 may be the y direction. That is, it may move (scan) in the same direction as the arrangement direction of the receiving antennas 10b.
 データ処理ユニット66は、送信用アレイアンテナ50及び受信用アレイアンテナ52による電磁波の送受信によって得られる計測データs(x’,y’,z’,k)を処理して、測定対象物の内部を表す画像データを作成する。データ処理ユニット66は、例えばコンピュータにより構成され、記憶部66aに記憶されているプログラムを呼び出して起動する。これにより、データ処理ユニット66の機能を発揮できる。すなわち、データ処理ユニット66は、ソフトウェアモジュールで構成される。画像表示ユニット68は、作成された画像データを用いて、測定対象物の内部の画像を表示する。 The data processing unit 66 processes the measurement data s (x', y', z', k) obtained by transmission and reception of electromagnetic waves by the transmission array antenna 50 and the reception array antenna 52, and analyzes the inside of the object to be measured. Create image data to represent. The data processing unit 66 is configured by, for example, a computer, and starts by calling a program stored in the storage section 66a. Thereby, the function of the data processing unit 66 can be exhibited. That is, the data processing unit 66 is composed of software modules. The image display unit 68 uses the created image data to display an image of the interior of the object to be measured.
 図2は、送信用アレイアンテナ50と受信用アレイアンテナ52を模式的に示す。送信アンテナ10aと受信アンテナ10bは、x方向の位置がΔLだけずれているが、以降の説明では、送信アンテナ10aと受信アンテナ10bのx方向の位置は、送信アンテナ10aと受信アンテナ10bの間の中間の丸印の点にあるものする。この丸印の点を、送受信点と呼ぶ。
 なお、送信アンテナ10aと受信アンテナ10bのy方向のずれが無い場合もある。すなわち、Δy=0となる場合もある。また、送信アンテナ10aと受信アンテナ10bが共有される場合もある。すなわち、Δy=0、ΔL=0となる場合もある。
FIG. 2 schematically shows a transmitting array antenna 50 and a receiving array antenna 52. As shown in FIG. The positions of the transmitting antenna 10a and the receiving antenna 10b are shifted by ΔL in the x direction. Do the one at the middle circled point. This circled point is called a transmission/reception point.
In some cases, there is no deviation in the y direction between the transmitting antenna 10a and the receiving antenna 10b. That is, Δy=0 in some cases. In some cases, the transmitting antenna 10a and the receiving antenna 10b are shared. That is, Δy=0 and ΔL=0 in some cases.
 したがって、測定対象物と送信用アレイアンテナ50と受信用アレイアンテナ52との位置関係は、図3に示すように表すことができる。
 ここで、送受信点の座標をp(x’,y’,z’)とする。測定対象物の反射点(x,y,z)における反射率をf(x,y,z)とする。送受信点p(x’,y’,z’)における計測データをs(x’,y’,z’,k)とする。真空中の電磁波の伝播波長をλとする。媒質の比誘電率をεとする。伝播する電磁波の波数をkとする。
Therefore, the positional relationship between the object to be measured, the transmitting array antenna 50, and the receiving array antenna 52 can be expressed as shown in FIG.
Let p(x', y', z') be the coordinates of the transmission/reception point. Let f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured. Let s(x', y', z', k) be the measurement data at the transmission/reception point p(x', y', z'). Let λ 0 be the propagation wavelength of an electromagnetic wave in vacuum. Let ε r be the dielectric constant of the medium. Let k be the wave number of the propagating electromagnetic wave.
 このとき、送受信点p(x’,y’,z’)における計測データs(x’,y’,z’,k)は、以下の式で表せる。
Figure JPOXMLDOC01-appb-I000073

 但し、
Figure JPOXMLDOC01-appb-I000074

である。
At this time, the measurement data s(x', y', z', k) at the transmission/reception point p(x', y', z') can be expressed by the following equation.
Figure JPOXMLDOC01-appb-I000073

however,
Figure JPOXMLDOC01-appb-I000074

is.
 式(1-1)では、電磁波を球面波で表しており、距離減衰は省略されている。この距離減衰は、以降の処理を行う上で影響が小さいため、省略されている。式(1-1)中の二段目の式の被積分関数の指数部をフーリエ変換の表記で表すと、以下の式となる。これは、式(1-1)の往復球面波を3次元の平面波に分解することに等しい。
Figure JPOXMLDOC01-appb-I000075

 ここで、(k,k,k)は、送受信点p(x’,y’,z’)と反射点(x,y,z)の間で伝播する波動の往復球面波の波数ベクトルの成分である。但し、
Figure JPOXMLDOC01-appb-I000076

 を満たす。
In equation (1-1), electromagnetic waves are represented by spherical waves, and distance attenuation is omitted. This distance attenuation is omitted because it has little effect on subsequent processing. The exponent part of the integrand function in the second-level equation in equation (1-1) is expressed in Fourier transform notation as follows. This is equivalent to decomposing the reciprocating spherical wave of equation (1-1) into three-dimensional plane waves.
Figure JPOXMLDOC01-appb-I000075

where (k x , k y , k z ) is the wavenumber of the round-trip spherical wave propagating between the transmitting/receiving point p(x', y', z') and the reflecting point (x, y, z) are the components of the vector. however,
Figure JPOXMLDOC01-appb-I000076

meet.
 以下、式(1-3)に基づいて、計測データs(x’,y’,z’,k)から反射率f(x,y,z)を導出する。まず、式(1-3)を以下のように整理する。
Figure JPOXMLDOC01-appb-I000077
Below, the reflectance f(x, y, z) is derived from the measurement data s(x', y', z', k) based on equation (1-3). First, formula (1-3) is rearranged as follows.
Figure JPOXMLDOC01-appb-I000077
 ここで、{ }の内側の積分は、(x,y,z)に関する3重フーリエ変換である。また、[ ]の内側の積分は、(k,k)に関する2重逆フーリエ変換である。そこで、式(1-5)の両辺を(x’,y’)に関して2重フーリエ変換を行う。関数f(x,y,z)の3重フーリエ変換後の関数をF(k,k,k)とする。計測データs(x’,y’,z’,k)の2重フーリエ変換後の関数をS(k,k,z’,k)とする。このとき、式(1-5)は、以下の式で表される。
Figure JPOXMLDOC01-appb-I000078
where the integral inside { } is the triple Fourier transform with respect to (x, y, z). Also, the integral inside [ ] is the double inverse Fourier transform with respect to (k x , ky ). Therefore, both sides of equation (1-5) are subjected to double Fourier transform with respect to (x', y'). Let F(k x , ky , k z ) be the function after the triple Fourier transform of the function f( x , y , z ). Let S(k x , k y , z', k) be a function after the double Fourier transform of the measurement data s ( x ', y ' , z', k). At this time, the formula (1-5) is represented by the following formula.
Figure JPOXMLDOC01-appb-I000078
 式(1-6)の2行目の式の両辺を(k,k,k)について3重逆フーリエ変換すると、反射率f(x,y,z)が以下のように得られる。
Figure JPOXMLDOC01-appb-I000079
If both sides of the second line of equation (1-6) are subjected to a triple inverse Fourier transform with respect to (k x , k y , k z ), the reflectance f(x, y, z) is obtained as follows. .
Figure JPOXMLDOC01-appb-I000079
 ここで、本実施形態では、図3に示すように、送受信点p(x’,y’,z’)をxy平面に配置し、z’=0となるため、式(1-7)は以下のように表せる。
Figure JPOXMLDOC01-appb-I000080

Figure JPOXMLDOC01-appb-I000081
Here, in the present embodiment, as shown in FIG. 3, the transmitting/receiving points p(x', y', z') are placed on the xy plane, and z'=0, so equation (1-7) is It can be expressed as follows.
Figure JPOXMLDOC01-appb-I000080

Figure JPOXMLDOC01-appb-I000081
 以上のように、データ処理ユニット66は、計測データs(x’,y’,z’,k)に基づいて、反射率f(x,y,z)を求める。 As described above, the data processing unit 66 obtains the reflectance f (x, y, z) based on the measurement data s (x', y', z', k).
 以下、図4を参照して、本実施形態のデータ処理方法、及び、プログラムについて説明する。図4は、本実施形態のデータ処理方法を示すフローチャートである。
 まず、計測ユニット61が計測データs(x’,y’,0,k)を取得する(ステップS1-1)。そして、データ処理ユニット66は、計測データs(x’,y’,0,k)に対して、ヒルベルト変換を行う(ステップS1-2)。これにより、各送受信点における周波数データの虚数成分が得られる。
The data processing method and program of this embodiment will be described below with reference to FIG. FIG. 4 is a flow chart showing the data processing method of this embodiment.
First, the measurement unit 61 acquires measurement data s (x', y', 0, k) (step S1-1). Then, the data processing unit 66 performs Hilbert transform on the measurement data s (x', y', 0, k) (step S1-2). As a result, the imaginary component of the frequency data at each transmission/reception point is obtained.
 次に、データ処理ユニット66は、計測データs(x’,y’,0,k)に対して、(x’,y’)に関する2重フーリエ変換を行う(ステップS1-3)。これにより、式(1-6)に示されるように、S(k,k,0,k)が得られる。
 次に、データ処理ユニット66は、S(k,k,0,k)に対して、変数置換を行う(ステップS1-4)。具体的には、式(1-4)を用いて、(k,k,k)の関数を(k,k,k)の関数にする。これにより、S(k,k,k)が得られる。
 次に、データ処理ユニット66は、S(k,k,k)に対して、(k,k,k)に対して3重逆フーリエ変換を行う(ステップS1-5)。これにより、式(1-8)に示されるように、反射率f(x,y,z)が得られる。
Next, the data processing unit 66 performs a double Fourier transform of (x', y') on the measurement data s (x', y', 0, k) (step S1-3). This yields S(k x , k y , 0, k) as shown in equation (1-6).
Next, the data processing unit 66 performs variable substitution on S(k x , k y , 0, k) (step S1-4). Specifically, the function (k x , k y , k) is converted to the function (k x , k y , k z ) using equation (1-4). This gives S(k x , k y , k z ).
Next, the data processing unit 66 performs a triple inverse Fourier transform on (k x , ky , k z ) for S(k x , ky , k z ) (step S1-5). . This gives the reflectance f(x, y, z) as shown in equation (1-8).
 記憶部66aは、本実施形態のデータ処理方法を実行するためのプログラムを記憶する。記憶部66aに記憶されたプログラムは、データ処理ユニット66に、本実施形態のデータ処理方法を実行させる。 The storage unit 66a stores a program for executing the data processing method of this embodiment. The program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
<第2実施形態>
 以下、第2実施形態のデータ処理方法、計測システム、及び、プログラムについて、詳細に説明する。第1実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、一方向(図3ではy方向)に配列されるが、本実施形態は、送信用アレイアンテナ50及び受信用アレイアンテナ52の配列が異なる。本実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、曲線状に配置される。具体的には、送受信点p(x’,y’,z’)は、yz平面に平行な面内における(x’,y’)に関する1価関数z’=g(x’,y’)の曲線上に配列される。
<Second embodiment>
The data processing method, measurement system, and program of the second embodiment will be described in detail below. The transmitting array antenna 50 and the receiving array antenna 52 of the first embodiment are arranged in one direction (the y direction in FIG. 3). Arrays are different. The transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged in a curved line. Specifically, the transmission/reception point p(x', y', z') is a univalent function z'=g(x', y') on (x', y') in a plane parallel to the yz plane. are arranged on the curve of
 本実施形態では、図5に示すように、半径Rの半円筒計測曲面を表す以下の式で表される関数で説明する。
Figure JPOXMLDOC01-appb-I000082

 なお、関数g(x’,y’)は、(x’,y’)に関する任意の1価関数でよい。
In the present embodiment, as shown in FIG. 5, a function expressed by the following equation representing a semi-cylindrical measurement curved surface with a radius of R0 will be described.
Figure JPOXMLDOC01-appb-I000082

It should be noted that the function g(x', y') may be any univalent function on (x', y').
 第1実施形態の式(1-5)は、任意の送受信点p(x’,y’,z’)に関する式である。
Figure JPOXMLDOC01-appb-I000083

 そのため、以下、式(1-5)に式(2-1)を代入するところから始めると、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000084
Equation (1-5) of the first embodiment relates to an arbitrary transmitting/receiving point p(x', y', z').
Figure JPOXMLDOC01-appb-I000083

Therefore, starting from substituting equation (2-1) into equation (1-5), the following equation is obtained.
Figure JPOXMLDOC01-appb-I000084
 式(2-2)の左辺は(x’,y’,k)の関数となるため、以下の式のように書き換えられる。
Figure JPOXMLDOC01-appb-I000085
Since the left side of equation (2-2) is a function of (x', y', k), it can be rewritten as the following equation.
Figure JPOXMLDOC01-appb-I000085
 ここで、{ }の内側の積分は、(x,y,z)に関する3重フーリエ変換である。また、[ ]の内側の積分は、(k,k)に関する2重逆フーリエ変換である。そこで、式(2-3)の両辺を(x’,y’)に関して2重フーリエ変換を行う。関数f(x,y,z)の3重フーリエ変換後の関数をF(k,k,k)とする。計測データs(x’,y’,k)の2重フーリエ変換後の関数をS(k,k,k)とする。このとき、式(2-3)は、以下の式で表される。
Figure JPOXMLDOC01-appb-I000086
where the integral inside { } is the triple Fourier transform with respect to (x, y, z). Also, the integral inside [ ] is the double inverse Fourier transform with respect to (k x , ky ). Therefore, both sides of equation (2-3) are subjected to double Fourier transform with respect to (x', y'). Let F(k x , ky , k z ) be the function after the triple Fourier transform of the function f( x , y , z ). Let S a (k x , k y , k) be a function after the double Fourier transform of the measurement data s a (x , y′ , k). At this time, the formula (2-3) is represented by the following formula.
Figure JPOXMLDOC01-appb-I000086
 式(2-4)の2行目の式の両辺を(k,k,k)について3重逆フーリエ変換すると、反射率f(x,y,z)が以下のように得られる。
Figure JPOXMLDOC01-appb-I000087
If both sides of the second line of equation (2-4) are triple inverse Fourier transformed with respect to (k x , k y , k z ), the reflectance f (x, y, z) is obtained as follows .
Figure JPOXMLDOC01-appb-I000087
 ここで、(x’,y’)に関して、以下の演算子を定義する。
Figure JPOXMLDOC01-appb-I000088

 式(2-6)の演算子は、S(k,k,k)に対して、(k,k,k)空間における(x’,y’)の固有値を有する。
Here, the following operators are defined for (x', y').
Figure JPOXMLDOC01-appb-I000088

The operator of equation (2-6) has the eigenvalues of (x ' , y') in the (k x , k y , k z ) space for S a (k x , k y , k).
 式(2-6)を式(2-5)に代入することにより、反射率f(x,y,z)が以下のように得られる。
Figure JPOXMLDOC01-appb-I000089

Figure JPOXMLDOC01-appb-I000090
By substituting equation (2-6) into equation (2-5), reflectance f(x, y, z) is obtained as follows.
Figure JPOXMLDOC01-appb-I000089

Figure JPOXMLDOC01-appb-I000090
 以上のように、データ処理ユニット66は、計測データs(x’,y’,z’,k)に基づいて、反射率f(x,y,z)を求める。 As described above, the data processing unit 66 obtains the reflectance f (x, y, z) based on the measurement data s (x', y', z', k).
 以下、図6を参照して、本実施形態のデータ処理方法、及び、プログラムについて説明する。図6は、本実施形態のデータ処理方法を示すフローチャートである。
 まず、計測ユニット61が計測データs(x’,y’,z’,k)を取得する(ステップS2-1)。そして、データ処理ユニット66は、計測データs(x’,y’,z’,k)を整理する(ステップS2-2)。これにより、計測データs(x’,y’,k)が得られる。
 そして、データ処理ユニット66は、計測データs(x’,y’,k)に対して、ヒルベルト変換を行う(ステップS2-3)。これにより、各送受信点における周波数データの虚数成分が得られる。
A data processing method and a program according to the present embodiment will be described below with reference to FIG. FIG. 6 is a flow chart showing the data processing method of this embodiment.
First, the measurement unit 61 acquires measurement data s (x', y', z', k) (step S2-1). Then, the data processing unit 66 organizes the measurement data s(x', y', z', k) (step S2-2). Thereby, measurement data s a (x', y', k) are obtained.
Then, the data processing unit 66 performs Hilbert transform on the measurement data s a (x', y', k) (step S2-3). As a result, the imaginary component of the frequency data at each transmission/reception point is obtained.
 次に、データ処理ユニット66は、計測データs(x’,y’,k)に対して、(x’,y’)に関する2重フーリエ変換を行う(ステップS2-4)。これにより、式(2-4)に示されるように、S(k,k,k)が得られる。
 次に、データ処理ユニット66は、計測データs(x’,y’,k)とS(k,k,k)から、式(2-6)で表される演算子を得る(ステップS2-5)。
Next, the data processing unit 66 performs a double Fourier transform of (x', y') on the measurement data s a (x', y', k) (step S2-4). This yields S a (k x , k y , k) as shown in equation (2-4).
Next, the data processing unit 66 obtains the operator represented by the formula (2-6) from the measurement data s a (x', y', k) and S a (k x , k y , k) (Step S2-5).
 次に、データ処理ユニット66は、以下の式に対して、変数置換を行う(ステップS2-6)。
Figure JPOXMLDOC01-appb-I000091

 これにより、S(k,k,k)が得られる。
Data processing unit 66 then performs variable substitution on the following equation (step S2-6).
Figure JPOXMLDOC01-appb-I000091

This yields S a (k x , ky , k).
 次に、データ処理ユニット66は、S(k,k,k)に対して、(k,k,k)に関する3重逆フーリエ変換を行う(ステップS2-7)。これにより、式(2-7)に示されるように、反射率f(x,y,z)が得られる。 Next, the data processing unit 66 performs a triple inverse Fourier transform with respect to (k x , ky , k z ) on S a (k x , ky , k) (step S2-7). This gives the reflectance f(x, y, z) as shown in equation (2-7).
 記憶部66aは、本実施形態のデータ処理方法を実行するためのプログラムを記憶する。記憶部66aに記憶されたプログラムは、データ処理ユニット66に、本実施形態のデータ処理方法を実行させる。 The storage unit 66a stores a program for executing the data processing method of this embodiment. The program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
(シミュレーション結果)
 以下、第1実施形態のデータ処理方法と、第2実施形態のデータ処理方法をコンピュータシミュレーションした結果について説明する。シミュレーション条件は、以下の通りである。
(simulation result)
The results of computer simulation of the data processing method of the first embodiment and the data processing method of the second embodiment will be described below. Simulation conditions are as follows.
・使用周波数帯域fmin~fmax:DC~20GHz
・中心周波数fc(波長λc):10GHz(30mm)
・走査方向の計測間隔Δx:4mm
・走査方向の計測ポイント数:256
・走査方向の計測幅xmax:1024mm(4mm×256)
・アレイアンテナ方向の計測間隔Δy(送受点同一):3.75mm
・アレイアンテナ方向の計測ポイント数:128
・アレイアンテナ方向の計測幅ymax:480mm(3.75mm×128)
・最大深さzmax:476mm
・媒質の比誘電率ε:1
・点ターゲット座標(単位:mm):(512, 240, 50), (512, 240, 100) , (512, 240, 200) , (512, 240, 400)
・水平面計測:z’=0
・曲面計測1(単位:m):
Figure JPOXMLDOC01-appb-I000092

・曲面計測2(単位:m):
Figure JPOXMLDOC01-appb-I000093
・Frequency band used f min to f max : DC to 20 GHz
・Center frequency fc (wavelength λc): 10 GHz (30 mm)
・Measurement interval Δx in the scanning direction: 4 mm
・Number of measurement points in the scanning direction: 256
・Measurement width x max in scanning direction: 1024 mm (4 mm x 256)
・Measurement interval Δy in the direction of the array antenna (same transmitting and receiving points): 3.75 mm
・Number of measurement points in the direction of the array antenna: 128
・Measurement width y max in the array antenna direction: 480 mm (3.75 mm × 128)
・Maximum depth zmax : 476mm
・Relative permittivity of medium ε r : 1
・Point target coordinates (unit: mm): (512, 240, 50), (512, 240, 100), (512, 240, 200), (512, 240, 400)
・Horizontal plane measurement: z'=0
・Curved surface measurement 1 (unit: m):
Figure JPOXMLDOC01-appb-I000092

・Curved surface measurement 2 (unit: m):
Figure JPOXMLDOC01-appb-I000093
 図7(a)は、水平面計測の計測レイアウト図を示す。図7(b)は、曲面計測1の計測レイアウト図を示す。図7(c)は、曲面計測2の計測レイアウト図を示す。図8は、水平面計測の計測レイアウトにより、第1実施形態のデータ処理方法でシミュレーションした点ターゲットを示す。図9(a)は、曲面計測1の計測レイアウトにより、第1実施形態のデータ処理方法でシミュレーションした点ターゲットを示す。図9(b)は、曲面計測1の計測レイアウトにより、第2実施形態のデータ処理方法でシミュレーションした点ターゲットを示す。図10(a)は、曲面計測2の計測レイアウトにより、第1実施形態のデータ処理方法でシミュレーションした点ターゲットを示す。図10(b)は、曲面計測2の計測レイアウトにより、第2実施形態のデータ処理方法でシミュレーションした点ターゲットを示す。 FIG. 7(a) shows a measurement layout diagram for horizontal plane measurement. FIG. 7(b) shows a measurement layout diagram of curved surface measurement 1. As shown in FIG. FIG. 7(c) shows a measurement layout diagram of curved surface measurement 2. As shown in FIG. FIG. 8 shows point targets simulated by the data processing method of the first embodiment using a measurement layout for horizontal surface measurement. FIG. 9A shows a point target simulated by the data processing method of the first embodiment using the measurement layout of curved surface measurement 1. FIG. FIG. 9B shows point targets simulated by the data processing method of the second embodiment using the measurement layout of curved surface measurement 1 . FIG. 10A shows a point target simulated by the data processing method of the first embodiment using the measurement layout of curved surface measurement 2. FIG. FIG. 10B shows point targets simulated by the data processing method of the second embodiment using the measurement layout of curved surface measurement 2 .
 図7(a)に示す水平面計測の計測レイアウトを用いて、4点の点ターゲットを第1実施形態のデータ処理方法の式(1-8)でシミュレーションを行った。その結果を図8に示す。図8では、4点の点ターゲットが収束した3次元画像が確認できる。図8の結果から、式(1-8)により、水平面計測の計測レイアウトから良好な3次元画像が得られることが分かる。 Using the measurement layout for horizontal plane measurement shown in FIG. 7(a), a simulation was performed for four point targets using formula (1-8) of the data processing method of the first embodiment. The results are shown in FIG. In FIG. 8, a three-dimensional image in which four point targets converge can be confirmed. From the results of FIG. 8, it can be seen that a good three-dimensional image can be obtained from the measurement layout for horizontal plane measurement using equation (1-8).
 次に、図7(b)に示す曲面計測1の計測レイアウトを用いて、4点の点ターゲットを第1実施形態のデータ処理方法の式(1-8)でシミュレーションを行った。その結果を、図9(a)に示す。図9(a)では、4点の点ターゲットが図7(b)に示される曲面計測1の計測レイアウトと同じ方向に広がった3次元画像が確認できる。図9(a)の結果から、式(1-8)では、曲面計測1の計測レイアウトに対して良好な3次元画像が得られないことが分かる。
 次に、図7(b)に示す曲面計測1の計測レイアウトを用いて、4点の点ターゲットを第2実施形態のデータ処理方法の式(2-7)でシミュレーションを行った。その結果を、図9(b)に示す。図9(b)では、4点の点ターゲットが収束した3次元画像が確認できる。図9(b)の結果から、式(2-7)により、曲面計測1の計測レイアウトから良好な3次元画像が得られることが分かる。
Next, using the measurement layout of curved surface measurement 1 shown in FIG. 7B, a simulation was performed for four point targets according to formula (1-8) of the data processing method of the first embodiment. The results are shown in FIG. 9(a). In FIG. 9(a), a three-dimensional image in which four point targets are spread in the same direction as the measurement layout of curved surface measurement 1 shown in FIG. 7(b) can be confirmed. From the result of FIG. 9A, it can be seen that the formula (1-8) cannot obtain a good three-dimensional image for the measurement layout of the curved surface measurement 1. FIG.
Next, using the measurement layout of curved surface measurement 1 shown in FIG. 7B, a simulation was performed for four point targets according to formula (2-7) of the data processing method of the second embodiment. The results are shown in FIG. 9(b). In FIG. 9B, a three-dimensional image in which four point targets converge can be confirmed. From the result of FIG. 9(b), it can be seen that a good three-dimensional image can be obtained from the measurement layout of the curved surface measurement 1 by the formula (2-7).
 次に、図7(c)に示す曲面計測2の計測レイアウトを用いて、4点の点ターゲットを第1実施形態のデータ処理方法の式(1-8)でシミュレーションを行った。その結果を、図10(a)に示す。図10(a)では、4点の点ターゲットが図7(c)に示される曲面計測2の計測レイアウトと同じ方向に広がった3次元画像が確認できる。図10(a)の結果から、式(1-8)では、曲面計測2の計測レイアウトに対して良好な3次元画像が得られないことが分かる。
 次に、図7(c)に示す曲面計測2の計測レイアウトを用いて、4点の点ターゲットを第2実施形態のデータ処理方法の式(2-7)でシミュレーションを行った。その結果を、図10(b)に示す。図10(b)では、4点の点ターゲットが収束した3次元画像が確認できる。図10(b)の結果から、式(2-7)により、曲面計測2の計測レイアウトから良好な3次元画像が得られることが分かる。
Next, using the measurement layout of curved surface measurement 2 shown in FIG. 7(c), a simulation was performed for four point targets using equation (1-8) of the data processing method of the first embodiment. The results are shown in FIG. 10(a). In FIG. 10(a), a three-dimensional image in which four point targets are spread in the same direction as the measurement layout of the curved surface measurement 2 shown in FIG. 7(c) can be confirmed. From the result of FIG. 10(a), it can be seen that the formula (1-8) cannot obtain a good three-dimensional image for the measurement layout of the curved surface measurement 2. FIG.
Next, using the measurement layout of curved surface measurement 2 shown in FIG. 7(c), a simulation was performed for four point targets using equation (2-7) of the data processing method of the second embodiment. The results are shown in FIG. 10(b). In FIG. 10B, a three-dimensional image in which four point targets converge can be confirmed. From the result of FIG. 10(b), it can be seen that a good three-dimensional image can be obtained from the measurement layout of the curved surface measurement 2 by the formula (2-7).
 図9(a)と図9(b)の結果、及び、図10(a)と図10(b)の結果から、式(2-6)で定義される演算子を式(2-7)の指数部に入れたことにより、曲面計測1の計測レイアウトに対応した反射率f(x,y,z)が得られることが確認された。 From the results of FIGS. 9A and 9B and the results of FIGS. It was confirmed that the reflectance f(x, y, z) corresponding to the measurement layout of the curved surface measurement 1 was obtained by inserting into the exponent part of .
<第3実施形態>
 以下、第3実施形態のデータ処理方法、計測システム、及び、プログラムについて、詳細に説明する。第1実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、一方向(図3ではy方向)に配列されるが、本実施形態は、送信用アレイアンテナ50及び受信用アレイアンテナ52の配列が異なる。本実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、平面状に配置される。
 また、第1実施形態では、送信点と受信点の座標をいずれもp(x’,y’,z’)としたが、本実施形態では、送信点と受信点の座標が異なる。本実施形態では、図11に示すように、送信点p(x’,y’,z’)、受信点p(x’,y’,z’)が、xy平面に配列される。
<Third Embodiment>
The data processing method, measurement system, and program of the third embodiment will be described in detail below. The transmitting array antenna 50 and the receiving array antenna 52 of the first embodiment are arranged in one direction (the y direction in FIG. 3). Arrays are different. The transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged in a plane.
Also, in the first embodiment, the coordinates of the transmission point and the reception point are both p(x', y', z'), but in the present embodiment, the coordinates of the transmission point and the reception point are different. In this embodiment, as shown in FIG. 11, a transmission point p 1 (x' 1 , y' 1 , z' 1 ) and a reception point p 2 (x' 2 , y' 2 , z' 2 ) are xy Arranged in a plane.
 ここで、測定対象物の反射点(x,y,z)における反射率をf(x,y,z)とする。送信点p(x’,y’,z’)及び受信点p(x’,y’,z’)における計測データをs(x’,x’,y’,y’,z’,z’,k)とする。真空中の電磁波の伝播波長をλとする。媒質の比誘電率をεとする。伝播する電磁波の波数をkとする。 Let f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured. Let s ( x ' 1 , x ' 2 , y ' 1 , y' 2 , z' 1 , z' 2 , k). Let λ 0 be the propagation wavelength of an electromagnetic wave in vacuum. Let ε r be the dielectric constant of the medium. Let k be the wave number of the propagating electromagnetic wave.
 このとき、計測データs(x’,x’,y’,y’,z’,z’,k)は、以下の式で表せる。
Figure JPOXMLDOC01-appb-I000094

 但し、
Figure JPOXMLDOC01-appb-I000095

である。
At this time, the measurement data s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) can be represented by the following formula.
Figure JPOXMLDOC01-appb-I000094

however,
Figure JPOXMLDOC01-appb-I000095

is.
 式(3-1)では、電磁波を球面波で表しており、距離減衰は省略されている。この距離減衰は、以降の処理を行う上で影響が小さいため、省略されている。式(3-1)中の被積分関数の指数部をフーリエ変換の表記で表すと、以下の式となる。これは、式(3-1)の球面波を3次元の平面波に分解することに等しい。 In formula (3-1), electromagnetic waves are represented by spherical waves, and distance attenuation is omitted. This distance attenuation is omitted because it has little effect on subsequent processing. When the exponent part of the integrand in the formula (3-1) is expressed in Fourier transform notation, the following formula is obtained. This is equivalent to decomposing the spherical wave of equation (3-1) into three-dimensional plane waves.
Figure JPOXMLDOC01-appb-I000096

 ここで、(k’x1,k’y1,k’z1)は、送信点から反射点までの間で伝搬する波動の球面波の波数ベクトルの成分である。また、(k’x2,k’y2,k’z2)は、反射点から受信点までの間で伝搬する波動の球面波の波数ベクトルの成分である。但し、
Figure JPOXMLDOC01-appb-I000097

 を満たす。
Figure JPOXMLDOC01-appb-I000096

Here, (k' x1 , k' y1 , k' z1 ) are the components of the spherical wave vector of the wave propagating from the transmission point to the reflection point. Also, (k' x2 , k' y2 , k' z2 ) are the components of the wave vector of the spherical wave of the wave propagating from the reflecting point to the receiving point. however,
Figure JPOXMLDOC01-appb-I000097

meet.
 以下、式(3-3)に基づいて、s(x’,x’,y’,y’,z’,z’,k)から反射率f(x,y,z)を導出する。まず、式(3-3)の両辺を(x’,x’,y’,y’)に関して4重フーリエ変換を行う。
Figure JPOXMLDOC01-appb-I000098
Below , based on the formula (3-3) , reflectance f ( x, y, z ). First, both sides of equation (3-3) are subjected to quadruple Fourier transform with respect to (x' 1 , x' 2 , y' 1 , y' 2 ).
Figure JPOXMLDOC01-appb-I000098
 式(3-5)の左辺を以下の式(3-6)のように書き換えて整理する。
Figure JPOXMLDOC01-appb-I000099

 すると、式(3-5)は、式(3-7)で表される。
Figure JPOXMLDOC01-appb-I000100
The left side of equation (3-5) is rewritten and arranged as in equation (3-6) below.
Figure JPOXMLDOC01-appb-I000099

Then, equation (3-5) is expressed by equation (3-7).
Figure JPOXMLDOC01-appb-I000100
 式(3-7)の両辺に以下の積分を行う。
Figure JPOXMLDOC01-appb-I000101
Both sides of equation (3-7) are integrated as follows.
Figure JPOXMLDOC01-appb-I000101
 ここで、以下の変数置換を行う。
Figure JPOXMLDOC01-appb-I000102

Figure JPOXMLDOC01-appb-I000103

Figure JPOXMLDOC01-appb-I000104
Here, the following variable substitution is performed.
Figure JPOXMLDOC01-appb-I000102

Figure JPOXMLDOC01-appb-I000103

Figure JPOXMLDOC01-appb-I000104
 ここで、式(3-9)、式(3-10)から、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000105

Figure JPOXMLDOC01-appb-I000106
Here, the following equations are obtained from equations (3-9) and (3-10).
Figure JPOXMLDOC01-appb-I000105

Figure JPOXMLDOC01-appb-I000106
 この変数置換でのヤコビアンの絶対値|J|は式(3-12)、式(3-13)より以下の式でそれぞれ与えられる。
Figure JPOXMLDOC01-appb-I000107

Figure JPOXMLDOC01-appb-I000108
The absolute value |J| of the Jacobian in this variable substitution is given by the following formulas from formulas (3-12) and (3-13).
Figure JPOXMLDOC01-appb-I000107

Figure JPOXMLDOC01-appb-I000108
 式(3-9)、式(3-10)、式(3-14)、式(3-15)を式(3-8)に代入して変数置換を行うと、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000109
By substituting equation (3-9), equation (3-10), equation (3-14), and equation (3-15) into equation (3-8) and performing variable substitution, the following equation is obtained .
Figure JPOXMLDOC01-appb-I000109
 ここで、式(3-16)の2行目右辺の(u,v)に関する積分は定数となるため、省略した。式(3-16)の両辺に(k,k,k)について3重逆フーリエ変換を行うと、反射率f(x,y,z)が以下のように得られる。
Figure JPOXMLDOC01-appb-I000110
Here, since the integral regarding (u, v) on the right side of the second line of equation (3-16) is a constant, it is omitted. Performing a triple inverse Fourier transform on both sides of equation (3-16) with respect to (k x , k y , k z ) yields the reflectance f(x, y, z) as follows.
Figure JPOXMLDOC01-appb-I000110
 式(3-17)を解くために、(k’z1,k’z2,k)を(k’x1,k’x2,k’y1,k’y2,k)又は(k,u,k,v,k)で表す必要がある。
 式(3-4)、式(3-11)を用いて整理し、また、送信点と受信点がいずれも原点を通るxy平面上に位置する場合、z’=z’=0となるため、式(3-17)は以下のように表せる。
Figure JPOXMLDOC01-appb-I000111

Figure JPOXMLDOC01-appb-I000112
To solve equation (3-17), (k' z1 , k' z2 , k) are replaced by (k' x1 , k' x2 , k' y1 , k' y2 , k z ) or (k x , u, k y , v, k z ).
Arranged using equations (3-4) and (3-11), and when both the transmission point and the reception point are located on the xy plane passing through the origin, z′ 1 =z′ 2 =0 Therefore, equation (3-17) can be expressed as follows.
Figure JPOXMLDOC01-appb-I000111

Figure JPOXMLDOC01-appb-I000112
 以上のように、データ処理ユニット66は、計測データs(x’,x’,y’,y’,z’,z’,k)に基づいて、反射率f(x,y,z)を求める。 As described above, the data processing unit 66 calculates the reflectance f ( x , y, z).
 以下、図12を参照して、本実施形態のデータ処理方法、及び、プログラムについて説明する。図12は、本実施形態のデータ処理方法を示すフローチャートである。
 まず、計測ユニット61が計測データs(x’,x’,y’,y’,z’,z’,k)を取得する(ステップS3-1)。そして、データ処理ユニット66は、計測データs(x’,x’,y’,y’,z’,z’,k)に対して、ヒルベルト変換を行う(ステップS3-2)。これにより、各計測点における周波数データの虚数成分が得られる。
A data processing method and a program according to this embodiment will be described below with reference to FIG. FIG. 12 is a flow chart showing the data processing method of this embodiment.
First, the measurement unit 61 acquires measurement data s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) (step S3-1). Then, the data processing unit 66 performs Hilbert transform on the measurement data s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) (step S3- 2). As a result, the imaginary component of the frequency data at each measurement point is obtained.
 次に、データ処理ユニット66は、計測データs(x’,x’,y’,y’,z’,z’,k)に対して、(x’,x’,y’,y’)に関する4重フーリエ変換を行う(ステップS3-3)。これにより、式(3-6)に示されるように、S(k’x1,k’x2,k’y1,k’y2,0,0,k)が得られる。
 次に、データ処理ユニット66は、S(k’x1,k’x2,k’y1,k’y2,0,0,k)に対して、変数置換を行う(ステップS3-4)。具体的には、式(3-9)、式(3-10)、式(3-14)、式(3-15)を用いて、(k’x1,k’x2,k’y1,k’y2,k)の関数を(k,k,k)の関数にする。これにより、S(k,k,k)が得られる。
 次に、データ処理ユニット66は、S(k,k,k)に対して、(k,k,k)に対して3重逆フーリエ変換を行う(ステップS3-5)。これにより、式(3-18)に示されるように、反射率f(x,y,z)が得られる。
Next, the data processing unit 66 performs ( x ' 1 , x' 2 , y' 1 , y' 2 ) is subjected to quadruple Fourier transform (step S3-3). This yields S(k' x1 , k' x2 , k' y1 , k' y2 , 0, 0, k) as shown in equation (3-6).
Next, the data processing unit 66 performs variable substitution on S(k' x1 , k' x2 , k' y1 , k' y2 , 0, 0, k) (step S3-4). Specifically, using equations (3-9), (3-10), (3-14), and (3-15), (k′ x1 , k′ x2 , k′ y1 , k ' Let the function of y2 , k) be a function of (k x , k y , k z ). This gives S(k x , k y , k z ).
Next, the data processing unit 66 performs a triple inverse Fourier transform on (k x , ky , k z ) for S(k x , ky , k z ) (step S3-5). . This gives the reflectance f(x, y, z) as shown in equation (3-18).
 記憶部66aは、本実施形態のデータ処理方法を実行するためのプログラムを記憶する。記憶部66aに記憶されたプログラムは、データ処理ユニット66に、本実施形態のデータ処理方法を実行させる。 The storage unit 66a stores a program for executing the data processing method of this embodiment. The program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
<第4実施形態>
 以下、第4実施形態のデータ処理方法、計測システム、及び、プログラムについて、詳細に説明する。第3実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、平面状に配列されるが、本実施形態は、送信用アレイアンテナ50及び受信用アレイアンテナ52の配列が異なる。本実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、曲面状に配置される。具体的には、送信点p(x’,y’,z’)は、(x’,y’)に関する1価関数z’=g(x’,y’)の曲線上に配列される。受信点p(x’,y’,z’)は、(x’,y’)に関する1価関数z’=g(x’,y’)の曲線上に配列される。
<Fourth Embodiment>
The data processing method, measurement system, and program of the fourth embodiment will be described in detail below. Although the transmitting array antenna 50 and the receiving array antenna 52 of the third embodiment are arranged in a plane, the arrangement of the transmitting array antenna 50 and the receiving array antenna 52 is different in this embodiment. The transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged in a curved surface. Specifically, the transmission point p 1 (x′ 1 , y′ 1 , z′ 1 ) is a univalent function z′ 1 =g 1 (x′ 1 , y′) on (x′ 1 , y 1 ) 1 ) are arranged on the curve. The receiving point p 2 (x' 2 , y' 2 , z' 2 ) is on the curve of the univalent function z' 2 =g 2 (x' 2 , y' 2 ) with respect to (x' 2 , y' 2 ) are arranged in
 本実施形態では、図13に示すように、半径Rの半円筒計測曲面を表す以下の式で表される関数で説明する。
Figure JPOXMLDOC01-appb-I000113

 なお、関数g(x’,y’)は、(x’,y’)に関する任意の1価関数でよい。また、関数g(x’,y’)は、(x’,y’)に関する任意の1価関数でよい。
In the present embodiment, as shown in FIG. 13, a function expressed by the following equation representing a semi-cylindrical measurement curved surface with a radius of R0 will be described.
Figure JPOXMLDOC01-appb-I000113

It should be noted that the function g 1 (x' 1 , y' 1 ) may be any univalent function on (x' 1 , y' 1 ). Also, the function g 2 (x' 2 , y' 2 ) may be any univalent function on (x' 2 , y' 2 ).
 第3実施形態の式(3-3)は、任意の送信点p(x’,y’,z’)、受信点p(x’,y’,z’)に関する式である。そのため、式(3-3)に式(4-1)を代入すると、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000114

 式(4-2)の右辺は、(x’,x’,y’,y’,k)に関する関数であるため、整理して以下の式(4-3)で表す。
Figure JPOXMLDOC01-appb-I000115
Equation (3-3) of the third embodiment is an arbitrary transmission point p 1 (x' 1 , y' 1 , z' 1 ) and reception point p 2 (x' 2 , y' 2 , z' 2 ) is an expression for Therefore, substituting equation (4-1) into equation (3-3) yields the following equation.
Figure JPOXMLDOC01-appb-I000114

Since the right side of equation (4-2) is a function related to (x' 1 , x' 2 , y' 1 , y' 2 , k), it is organized and represented by equation (4-3) below.
Figure JPOXMLDOC01-appb-I000115
 ここで、s(x’,x’,y’,y’,k)の4重フーリエ変換後の関数をS(k’x1,k’x2,k’y1,k’y2,k’)とする。このとき、式(4-3)は以下の式で表される。
Figure JPOXMLDOC01-appb-I000116
Here, the function after the quadruple Fourier transform of s a (x' 1 , x' 2 , y' 1 , y' 2 , k) is S a (k' x1 , k' x2 , k' y1 , k' y2 , k'). At this time, the formula (4-3) is represented by the following formula.
Figure JPOXMLDOC01-appb-I000116
 ここで、式(4-1)~式(4-4)を式(3-17)に代入すると、反射率f(x,y,z)が以下のように得られる。
Figure JPOXMLDOC01-appb-I000117
Here, by substituting equations (4-1) to (4-4) into equation (3-17), reflectance f(x, y, z) is obtained as follows.
Figure JPOXMLDOC01-appb-I000117
 ここで、(x’,y’)、(x’,y’)に関して、以下の演算子を定義する。
Figure JPOXMLDOC01-appb-I000118

Figure JPOXMLDOC01-appb-I000119
Here, the following operators are defined for (x' 1 , y' 1 ) and (x' 2 , y' 2 ).
Figure JPOXMLDOC01-appb-I000118

Figure JPOXMLDOC01-appb-I000119
 式(4-6)、式(4-7)の演算子は、S(k’x1,k’x2,k’y1,k’y2,k’)に対して、(k’x1,k’x2,k’y1,k’y2,k’)空間における(x’,x’,y’,y’)の固有値を有する。 The operators of equations ( 4-6 ) and (4-7) are ( k' x1 , k has eigenvalues of (x ' 1 , x' 2 , y' 1 , y' 2 ) in the ' x2 , k' y1 , k' y2 , k' ) space.
 式(4-6)、式(4-7)を式(4-5)に代入することにより、反射率f(x,y,z)が以下のように得られる。
Figure JPOXMLDOC01-appb-I000120
By substituting equations (4-6) and (4-7) into equation (4-5), reflectance f(x, y, z) is obtained as follows.
Figure JPOXMLDOC01-appb-I000120
 以上のように、データ処理ユニット66は、計測データs(x’,x’,y’,y’,z’,z’,k)に基づいて、反射率f(x,y,z)を求める。 As described above , the data processing unit 66 calculates the reflectance f ( x , y, z).
 以下、図14を参照して、本実施形態のデータ処理方法、及び、プログラムについて説明する。図14は、本実施形態のデータ処理方法を示すフローチャートである。
 まず、計測ユニット61が計測データs(x’,x’,y’,y’,z’,z’,k)を取得する(ステップS4-1)。そして、データ処理ユニット66は、計測データs(x’,x’,y’,y’,z’,z’,k)を整理する(ステップS4-2)。これにより、計測データs(x’,x’,y’,y’,k)が得られる。
 そして、データ処理ユニット66は、計測データs(x’,x’,y’,y’,k)に対して、ヒルベルト変換を行う(ステップS4-3)。これにより、各計測点における周波数データの虚数成分が得られる。
A data processing method and a program according to this embodiment will be described below with reference to FIG. FIG. 14 is a flow chart showing the data processing method of this embodiment.
First, the measurement unit 61 acquires measurement data s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) (step S4-1). The data processing unit 66 organizes the measurement data s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) (step S4-2). Thereby, measurement data s a (x' 1 , x' 2 , y' 1 , y' 2 , k) are obtained.
Then, the data processing unit 66 performs Hilbert transform on the measurement data s a (x' 1 , x' 2 , y' 1 , y' 2 , k) (step S4-3). As a result, the imaginary component of the frequency data at each measurement point is obtained.
 次に、データ処理ユニット66は、計測データs(x’,x’,y’,y’,k)に対して、(x’,x’,y’,y’)に関する4重フーリエ変換を行う(ステップS4-4)。これにより、式(4-4)に示されるように、S(k’x1,k’x2,k’y1,k’y2,k’)が得られる。
 次に、データ処理ユニット66は、計測データs(x’,x’,y’,y’,k)とS(k’x1,k’x2,k’y1,k’y2,k’)から、式(4-6)、式(4-7)で表される演算子を得る(ステップS4-5)。
Next, the data processing unit 66 performs (x' 1 , x ' 2 , y' 1 , y ' 2 ) is subjected to quadruple Fourier transform (step S4-4). This yields S a (k' x1 , k' x2 , k' y1 , k' y2 , k') as shown in equation (4-4).
Next, the data processing unit 66 processes the measurement data s a (x′ 1 , x′ 2 , y′ 1 , y′ 2 , k) and S a (k′ x1 , k′ x2 , k′ y1 , k′). y2 , k'), the operators represented by equations (4-6) and (4-7) are obtained (step S4-5).
 次に、データ処理ユニット66は、以下の式に対して、変数置換を行う(ステップS4-6)。
Figure JPOXMLDOC01-appb-I000121

 これにより、S(k,k,k)が得られる。
Next, the data processing unit 66 performs variable substitution on the following formula (step S4-6).
Figure JPOXMLDOC01-appb-I000121

This gives S a (k x , k y , k z ).
 次に、データ処理ユニット66は、S(k,k,k)に対して、(k,k,k)に対して3重逆フーリエ変換を行う(ステップS4-7)。これにより、式(4-8)に示されるように、反射率f(x,y,z)が得られる。 Next, the data processing unit 66 performs a triple inverse Fourier transform on (k x , ky , k z ) for S a (k x , ky , k z ) (step S4-7 ). This gives the reflectance f(x, y, z) as shown in equation (4-8).
 記憶部66aは、本実施形態のデータ処理方法を実行するためのプログラムを記憶する。記憶部66aに記憶されたプログラムは、データ処理ユニット66に、本実施形態のデータ処理方法を実行させる。 The storage unit 66a stores a program for executing the data processing method of this embodiment. The program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
<第5実施形態>
 以下、第5実施形態のデータ処理方法、計測システム、及び、プログラムについて、詳細に説明する。第3実施形態では、送信用アレイアンテナ50及び受信用アレイアンテナ52は、平面状に配置されるが、本実施形態は、送信用アレイアンテナ50及び受信用アレイアンテナ52の配列が異なる。本実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、直線状に配置される。
 具体的には、本実施形態では、送信アンテナ10a及び受信アンテナ10bは、図15に示すように、y方向に配列される。送信用アレイアンテナ50及び受信用アレイアンテナ52の移動方向(走査方向)を、x方向とする。送信用アレイアンテナ50と受信用アレイアンテナ52からみて、測定対象物のある方向(電磁波の送信方向)をz方向とする。
 なお、送信用アレイアンテナ50及び受信用アレイアンテナ52の移動方向(走査方向)をy方向としてもよい。
<Fifth Embodiment>
The data processing method, measurement system, and program of the fifth embodiment will be described in detail below. In the third embodiment, the transmitting array antenna 50 and the receiving array antenna 52 are arranged in a plane, but this embodiment differs in the arrangement of the transmitting array antenna 50 and the receiving array antenna 52 . The transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged linearly.
Specifically, in this embodiment, the transmitting antenna 10a and the receiving antenna 10b are arranged in the y direction as shown in FIG. Let the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 be the x direction. When viewed from the transmitting array antenna 50 and the receiving array antenna 52, the direction in which the object to be measured is located (direction in which electromagnetic waves are transmitted) is defined as the z direction.
Note that the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 may be the y direction.
 したがって、測定対象物と送信用アレイアンテナ50と受信用アレイアンテナ52との位置関係は、図15に示すように表すことができる。
 ここで、送信点の座標をp(x’,y’,z’)、受信点の座標をp(x’,y’,z’)とする。測定対象物の反射点(x,y,z)における反射率をf(x,y,z)とする。p(x’,y’,z’)における計測データをs(x’,x’,y’,y’,z’,z’,k)とする。真空中の電磁波の伝播波長をλとする。媒質の比誘電率をεとする。伝播する電磁波の波数をkとする。
Therefore, the positional relationship between the object to be measured, the transmitting array antenna 50, and the receiving array antenna 52 can be expressed as shown in FIG.
Here, the coordinates of the transmission point are p 1 (x' 1 , y' 1 , z' 1 ), and the coordinates of the reception point are p 2 (x' 2 , y' 2 , z' 2 ). Let f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured. Let s(x' 1 , x ' 2 , y' 1 , y' 2 , z ' 1 , z' 2 , k) be the measurement data at p 2 (x' 2 , y' 2 , z' 2 ). Let λ 0 be the propagation wavelength of an electromagnetic wave in vacuum. Let ε r be the dielectric constant of the medium. Let k be the wave number of the propagating electromagnetic wave.
 このとき、計測データs(x’,x’,y’,y’,z’,z’,k)は、以下の式で表せる。
Figure JPOXMLDOC01-appb-I000122

 但し
Figure JPOXMLDOC01-appb-I000123

である。
At this time, the measurement data s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) can be represented by the following formula.
Figure JPOXMLDOC01-appb-I000122

however
Figure JPOXMLDOC01-appb-I000123

is.
 式(5-1)では、電磁波を球面波で表しており、距離減衰は省略されている。この距離減衰は、以降の処理を行う上で影響が小さいため、省略されている。式(5-1)中の二段目の式の被積分関数の指数部をフーリエ変換の表記で表すと、以下の式となる。これは、式(5-1)の球面波を3次元の平面波に分解することに等しい。 In formula (5-1), electromagnetic waves are represented by spherical waves, and distance attenuation is omitted. This distance attenuation is omitted because it has little effect on subsequent processing. The exponent part of the integrand function in the second stage of the equation (5-1) is expressed in Fourier transform notation as follows. This is equivalent to decomposing the spherical wave of equation (5-1) into three-dimensional plane waves.
Figure JPOXMLDOC01-appb-I000124

 ここで、(k’x1,k’y1,k’z1)は、送信点から反射点までの間で伝搬する波動の球面波の波数ベクトルの成分である。また、(k’x2,k’y2,k’z2)は、反射点から受信点までの間で伝搬する波動の球面波の波数ベクトルの成分である。但し、
Figure JPOXMLDOC01-appb-I000125

 を満たす。
Figure JPOXMLDOC01-appb-I000124

Here, (k' x1 , k' y1 , k' z1 ) are the components of the spherical wave vector of the wave propagating from the transmission point to the reflection point. Also, (k' x2 , k' y2 , k' z2 ) are the components of the wave vector of the spherical wave of the wave propagating from the reflecting point to the receiving point. however,
Figure JPOXMLDOC01-appb-I000125

meet.
 ここで、送信点p(x’,y’,z’)と受信点p(x’,y’,z’)のx座標が等しいことから、x’=x’=x’とすると、式(5-3)は以下の式で表される。
Figure JPOXMLDOC01-appb-I000126
Here , x ' = x _ _ Assuming that ' 1 =x' 2 , equation (5-3) is represented by the following equation.
Figure JPOXMLDOC01-appb-I000126
 ここで、以下の変数置換を行う。
Figure JPOXMLDOC01-appb-I000127

 式(5-6)から以下の式が得られる。
Figure JPOXMLDOC01-appb-I000128
Here, the following variable substitutions are performed.
Figure JPOXMLDOC01-appb-I000127

The following equation is obtained from equation (5-6).
Figure JPOXMLDOC01-appb-I000128
 式(5-7)からヤコビアンの絶対値を計算すると、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000129
Calculating the absolute value of the Jacobian from equation (5-7) yields the following equation.
Figure JPOXMLDOC01-appb-I000129
 式(5-6)、式(5-8)を式(5-5)に代入して変数置換を行うと、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000130
By substituting equations (5-6) and (5-8) into equation (5-5) and performing variable substitution, the following equation is obtained.
Figure JPOXMLDOC01-appb-I000130
 ここで、式(5-9)の2行目のuに関する積分は、定数となるため省略した。式(5-9)の両辺に(x,y,y)について3重逆フーリエ変換を行うと、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000131
Here, the integral regarding u on the second line of equation (5-9) is omitted because it is a constant. The following equation is obtained by subjecting both sides of equation (5-9) to triple inverse Fourier transform for (x, y 1 , y 2 ).
Figure JPOXMLDOC01-appb-I000131
 式(5-10)の左辺を以下の式のように書き換えて整理する。
Figure JPOXMLDOC01-appb-I000132

 すると、式(5-10)は、以下の式で表される。
Figure JPOXMLDOC01-appb-I000133
The left side of equation (5-10) is rewritten and arranged as in the following equation.
Figure JPOXMLDOC01-appb-I000132

Then, formula (5-10) is represented by the following formula.
Figure JPOXMLDOC01-appb-I000133
 式(5-12)の両辺に以下の積分を行うと、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000134
The following equation is obtained by performing the following integration on both sides of the equation (5-12).
Figure JPOXMLDOC01-appb-I000134
 ここで、(k’y1,k’y2)、(k’z1,k’z2)に対して、以下の変数置換を定義する。
Figure JPOXMLDOC01-appb-I000135

Figure JPOXMLDOC01-appb-I000136
Here, the following variable substitutions are defined for (k' y1 , k' y2 ) and (k' z1 , k' z2 ).
Figure JPOXMLDOC01-appb-I000135

Figure JPOXMLDOC01-appb-I000136
 ここで、式(5-14)から、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000137

 この変数置換でのヤコビアンの絶対値は、以下の式で与えられる。
Figure JPOXMLDOC01-appb-I000138
Here, the following equation is obtained from equation (5-14).
Figure JPOXMLDOC01-appb-I000137

The absolute value of the Jacobian for this variable substitution is given by
Figure JPOXMLDOC01-appb-I000138
 式(5-1)、式(5-15)、式(5-17)を式(5-13)に代入して、変数置換を行うと、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000139
By substituting equations (5-1), (5-15), and (5-17) into equation (5-13) and performing variable substitution, the following equation is obtained.
Figure JPOXMLDOC01-appb-I000139
 ここで、式(5-18)の2行目右辺のvに関する積分は、定数となるため省略した。式(5-18)の両辺に(k,k,k)について3重逆フーリエ変換を行うと、反射率f(x,y,z)が以下のように得られる。
Figure JPOXMLDOC01-appb-I000140

 ここで、原点を通るx’-y’平面に計測面を合わせるため、z’=0とすると、式(5-19)は、以下のように表される。
Figure JPOXMLDOC01-appb-I000141
Here, the integral with respect to v on the right side of the second line of Equation (5-18) is omitted because it is a constant. Performing a triple inverse Fourier transform on both sides of equation (5-18) with respect to (k x , k y , k z ) yields the reflectance f(x, y, z) as follows.
Figure JPOXMLDOC01-appb-I000140

Here, assuming that z'=0 in order to align the measurement plane with the x'-y' plane passing through the origin, equation (5-19) is expressed as follows.
Figure JPOXMLDOC01-appb-I000141
 式(5-20)を解くために、kを(k’y1,k’y2,k)又は(k,v,k)で表す必要がある。
 式(5-4)、式(5-6)、式(5-15)、及び、仮定より得られる以下の式(5-21)の4つの式の連立方程式を解く。
Figure JPOXMLDOC01-appb-I000142
To solve equation (5-20), we need to represent k by (k' y1 , k' y2 , k z ) or (k y , v, k z ).
Solve the four simultaneous equations of equations (5-4), (5-6), (5-15), and the following equation (5-21) obtained from the assumption.
Figure JPOXMLDOC01-appb-I000142
 これより、kは以下の式で表される。
Figure JPOXMLDOC01-appb-I000143
From this, k is represented by the following formula.
Figure JPOXMLDOC01-appb-I000143
 以上のように、データ処理ユニット66は、計測データs(x’,x’,y’,y’,z’,z’,k)に基づいて、反射率f(x,y,z)を求める。 As described above , the data processing unit 66 calculates the reflectance f ( x , y, z).
 以下、図16を参照して、本実施形態のデータ処理方法、及び、プログラムについて説明する。図16は、本実施形態のデータ処理方法を示すフローチャートである。
 まず、計測ユニット61が計測データs(x’,y’,y’,0,0,k)を取得する(ステップS5-1)。そして、データ処理ユニット66は、計測データs(x’,y’,y’,0,0,k)に対して、ヒルベルト変換を行う(ステップS5-2)。これにより、各計測点における周波数データの虚数成分が得られる。
A data processing method and a program according to this embodiment will be described below with reference to FIG. FIG. 16 is a flow chart showing the data processing method of this embodiment.
First, the measurement unit 61 acquires measurement data s (x', y' 1 , y' 2 , 0, 0, k) (step S5-1). Then, the data processing unit 66 performs Hilbert transform on the measurement data s (x', y' 1 , y' 2 , 0, 0, k) (step S5-2). As a result, the imaginary component of the frequency data at each measurement point is obtained.
 次に、データ処理ユニット66は、計測データs(x’,y’,y’,0,0,k)に対して、(x’,y’,y’)に関する3重フーリエ変換を行う(ステップS5-3)。これにより、式(5-11)に示されるように、S(k,k’y1,k’y2,0,0,k)が得られる。
 次に、データ処理ユニット66は、S(k,k’y1,k’y2,0,0,k)に対して、変数置換を行う(ステップS5-4)。具体的には、式(5-14)、式(5-15)を用いて、(k,k’y1,k’y2,k)の関数を(k,k,v,k)の関数にする。これにより、S(k,k,v,0,0,k)が得られる。
 次に、データ処理ユニット66は、S(k,k,v,0,0,k)に対して、(k,k,k)に対して3重逆フーリエ変換を行う(ステップS5-5)。これにより、式(5-20)に示されるように、反射率f(x,y,z)が得られる。
Next, the data processing unit 66 performs a triple Fourier transform on (x', y' 1 , y' 2 ) for the measurement data s(x', y' 1 , y' 2 , 0, 0, k). Conversion is performed (step S5-3). This yields S(k x , k' y1 , k' y2 , 0, 0, k) as shown in equation (5-11).
Next, the data processing unit 66 performs variable substitution on S(k x , k' y1 , k' y2 , 0, 0, k) (step S5-4). Specifically, using equations (5-14) and (5-15), the function (k x , k′ y1 , k′ y2 , k) is converted to (k x , k y , v, k) be a function of This yields S(k x , ky , v, 0, 0, k).
Data processing unit 66 then performs a triple inverse Fourier transform on (k x , k y , k z ) on S(k x , k y , v, 0, 0, k) ( step S5-5). This gives the reflectance f(x, y, z) as shown in equation (5-20).
<第6実施形態>
 以下、第6実施形態のデータ処理方法、計測システム、及び、プログラムについて、詳細に説明する。本実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、直線状に配置される。具体的には、送信用アレイアンテナ50及び受信用アレイアンテナ52は、一方向(図17ではy方向)に配列される。また、送信用アレイアンテナ50及び受信用アレイアンテナ52を、曲面に沿って移動(走査)させる。
<Sixth Embodiment>
The data processing method, measurement system, and program of the sixth embodiment will be described in detail below. The transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged linearly. Specifically, the transmitting array antenna 50 and the receiving array antenna 52 are arranged in one direction (the y direction in FIG. 17). Also, the transmitting array antenna 50 and the receiving array antenna 52 are moved (scanned) along the curved surface.
 測定対象物と送信用アレイアンテナ50と受信用アレイアンテナ52との位置関係は、図17に示すように表すことができる。
 ここで、送信点の座標をp(x’,y’,z’)、受信点の座標をp(x’,y’,z’)とする。測定対象物の反射点(x,y,z)における反射率をf(x,y,z)とする。受信点p(x’,y’,z’)における計測データをs(x’,x’,y’,y’,z’,z’,k)とする。真空中の電磁波の伝播波長をλとする。媒質の比誘電率をεとする。伝播する電磁波の波数をkとする。
The positional relationship between the object to be measured, the transmitting array antenna 50, and the receiving array antenna 52 can be expressed as shown in FIG.
Here, the coordinates of the transmission point are p 1 (x' 1 , y' 1 , z' 1 ), and the coordinates of the reception point are p 2 (x' 2 , y' 2 , z' 2 ). Let f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured. Let the measurement data at the receiving point p 2 (x' 2 , y' 2 , z' 2 ) be s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) do. Let λ 0 be the propagation wavelength of an electromagnetic wave in vacuum. Let ε r be the dielectric constant of the medium. Let k be the wave number of the propagating electromagnetic wave.
 また、送信点p(x’,y’,z’)及び受信点p(x’,y’,z’)は、x’=x’=x’に関する1価関数z’=g(x’)の曲線上を走査する。
 本実施形態では、図17に示すように、半径Rの半円筒計測曲面を表す以下の式で表される関数で説明する。
Figure JPOXMLDOC01-appb-I000144

 なお、関数g(x’)は、x’に関する任意の1価関数でよい。
Also, the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ) are related to x'=x' 1 =x' 2 Scan on the curve of the univalent function z'=g(x').
In the present embodiment, as shown in FIG. 17, a function expressed by the following equation representing a semi-cylindrical measurement curved surface with a radius of R0 will be described.
Figure JPOXMLDOC01-appb-I000144

It should be noted that the function g(x') may be any univalent function regarding x'.
 第5実施形態の式(5-5)は、任意の送信点p(x’,y’,z’)及び受信点p(x’,y’,z’)に関する式である。
Figure JPOXMLDOC01-appb-I000145

 そのため、以下、式(5-5)に式(6-1)を代入するところから始めると、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000146
Equation (5-5) of the fifth embodiment is an arbitrary transmission point p 1 (x' 1 , y' 1 , z' 1 ) and reception point p 2 (x' 2 , y' 2 , z' 2 ) is an expression for
Figure JPOXMLDOC01-appb-I000145

Therefore, starting from substituting equation (6-1) into equation (5-5), the following equation is obtained.
Figure JPOXMLDOC01-appb-I000146
 式(6-2)の右辺は、(x’,y’,y’,k)に関する関数であるため、整理すると以下の式で表される。
Figure JPOXMLDOC01-appb-I000147

 s(x’,y’,y’,k)の3重フーリエ変換後の関数をS(k,k’y1,k’y2,k)とすると、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000148
Since the right side of equation (6-2) is a function related to (x', y' 1 , y' 2 , k), it can be expressed by the following equation when organized.
Figure JPOXMLDOC01-appb-I000147

If the function after the triple Fourier transform of s a (x′, y′ 1 , y′ 2 , k) is S a (k x , k′ y1 , k′ y2 , k), the following equation is obtained .
Figure JPOXMLDOC01-appb-I000148
 ここで、式(6-1)~式(6-4)を式(5-19)に代入すると、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000149

 本実施形態でも式(5-21)が成り立つことから、本実施形態においても式(5-22)をそのまま用いることができる。
Substituting equations (6-1) to (6-4) into equation (5-19) yields the following equation.
Figure JPOXMLDOC01-appb-I000149

Since the formula (5-21) holds true in this embodiment as well, the formula (5-22) can be used as it is in the present embodiment.
 ここで、x’に関して、以下の演算子を定義する。
Figure JPOXMLDOC01-appb-I000150

 式(6-6)の演算子は、S(k,k’y1,k’y2,k)に対して、(k,k’y1,k’y2,k)空間におけるx’の固有値を有する。
Here, we define the following operators for x'.
Figure JPOXMLDOC01-appb-I000150

The operator of equation (6-6) is given by, for S a (k x , k' y1 , k' y2 , k), x' in (k x , k' y1 , k' y2 , k) space have eigenvalues.
 式(6-6)を式(6-5)に代入することにより、反射率f(x,y,z)が以下のように得られる。
Figure JPOXMLDOC01-appb-I000151
By substituting equation (6-6) into equation (6-5), the reflectance f(x, y, z) is obtained as follows.
Figure JPOXMLDOC01-appb-I000151
 以上のように、データ処理ユニット66は、計測データs(x’,y’,y’,z’,z’,k)に基づいて、反射率f(x,y,z)を求める。 As described above, the data processing unit 66 calculates the reflectance f (x, y, z) based on the measurement data s (x', y' 1 , y' 2 , z' 1 , z' 2 , k) Ask for
 以下、図18を参照して、本実施形態のデータ処理方法、及び、プログラムについて説明する。図18は、本実施形態のデータ処理方法を示すフローチャートである。
 まず、計測ユニット61が計測データs(x’,y’,y’,z’,z’,k)を取得する(ステップS6-1)。そして、データ処理ユニット66は、計測データs(x’,y’,y’,z’,z’,k)を整理する(ステップS6-2)。これにより、計測データs(x’,y’,y’,k)が得られる。
 そして、データ処理ユニット66は、計測データs(x’,y’,y’,k)に対して、ヒルベルト変換を行う(ステップS6-3)。これにより、各計測点における周波数データの虚数成分が得られる。
A data processing method and a program according to this embodiment will be described below with reference to FIG. FIG. 18 is a flow chart showing the data processing method of this embodiment.
First, the measurement unit 61 acquires measurement data s (x', y' 1 , y' 2 , z' 1 , z' 2 , k) (step S6-1). Then, the data processing unit 66 organizes the measurement data s(x', y' 1 , y' 2 , z' 1 , z' 2 , k) (step S6-2). Thereby, measurement data s a (x', y' 1 , y' 2 , k) is obtained.
Then, the data processing unit 66 performs Hilbert transform on the measurement data s a (x', y' 1 , y' 2 , k) (step S6-3). As a result, the imaginary component of the frequency data at each measurement point is obtained.
 次に、データ処理ユニット66は、計測データs(x’,y’,y’,k)に対して、(x’,y’,y’)に関する3重フーリエ変換を行う(ステップS6-4)。これにより、式(6-4)に示されるように、S(k’,k’y1,k’y2,k’)が得られる。
 次に、データ処理ユニット66は、式(6-6)で表される演算子を得る(ステップS6-5)。
Next, the data processing unit 66 performs a triple Fourier transform of (x', y' 1 , y' 2 ) on the measurement data s a (x', y' 1 , y' 2 , k). (Step S6-4). This yields S a (k' x , k' y1 , k' y2 , k') as shown in equation (6-4).
Next, data processing unit 66 obtains the operator represented by equation (6-6) (step S6-5).
 次に、データ処理ユニット66は、以下の式に対して、変数置換を行う(ステップS6-6)。
Figure JPOXMLDOC01-appb-I000152

 これにより、S(k,k,k)が得られる。
Next, the data processing unit 66 performs variable substitution on the following formula (step S6-6).
Figure JPOXMLDOC01-appb-I000152

This gives S a (k x , k y , k z ).
 次に、データ処理ユニット66は、S(k,k,k)に対して、(k,k,k)に対して3重逆フーリエ変換を行う(ステップS6-7)。これにより、式(6-7)に示されるように、反射率f(x,y,z)が得られる。 Next, the data processing unit 66 performs a triple inverse Fourier transform on (k x , ky , k z ) for S a (k x , ky , k z ) (step S6-7 ). This gives the reflectance f(x, y, z) as shown in equation (6-7).
 記憶部66aは、本実施形態のデータ処理方法を実行するためのプログラムを記憶する。記憶部66aに記憶されたプログラムは、データ処理ユニット66に、本実施形態のデータ処理方法を実行させる。 The storage unit 66a stores a program for executing the data processing method of this embodiment. The program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
(シミュレーション結果)
 以下、第5実施形態のデータ処理方法と、第6実施形態のデータ処理方法をコンピュータシミュレーションした結果について説明する。シミュレーション条件は、以下の通りである。
(simulation result)
The results of computer simulation of the data processing method of the fifth embodiment and the data processing method of the sixth embodiment will be described below. Simulation conditions are as follows.
・使用周波数帯域fmin~fmax:DC~4.5GHz
・中心周波数fc(波長λc):2.25GHz(133mm)
・走査方向の計測間隔Δx:10mm
・走査方向の計測ポイント数:128
・走査方向の計測幅xmax:1280mm(10mm×128)
・アレイアンテナ方向の計測間隔Δy(送受点同一):38.5mm
・送信アレイアンテナ方向の計測ポイント数:16
・受信アレイアンテナ方向の計測ポイント数:16
・アレイアンテナ方向の計測幅ymax:616mm(38.5mm×16)
・最大深さzmax:958mm
・媒質の比誘電率ε:5
・点ターゲット座標(単位:mm):(640, 308, 50), (640, 308, 100) , (640, 308, 200) , (640, 308, 400)
・水平面計測:z’=0
・曲面計測1(単位:m):
Figure JPOXMLDOC01-appb-I000153

・曲面計測2(単位:m):
Figure JPOXMLDOC01-appb-I000154
・Frequency band used f min to f max : DC to 4.5 GHz
・Center frequency fc (wavelength λc): 2.25 GHz (133 mm)
・Measurement interval Δx in the scanning direction: 10 mm
・Number of measurement points in the scanning direction: 128
・Measurement width x max in the scanning direction: 1280 mm (10 mm x 128)
・Measurement interval Δy in the direction of the array antenna (same transmitting and receiving points): 38.5 mm
・Number of measurement points in the direction of the transmitting array antenna: 16
・Number of measurement points in the direction of the receiving array antenna: 16
・Measurement width y max in the array antenna direction: 616 mm (38.5 mm x 16)
・Maximum depth zmax : 958 mm
・Relative permittivity of medium ε r : 5
・Point target coordinates (unit: mm): (640, 308, 50), (640, 308, 100), (640, 308, 200), (640, 308, 400)
・Horizontal plane measurement: z'=0
・Curved surface measurement 1 (unit: m):
Figure JPOXMLDOC01-appb-I000153

・Curved surface measurement 2 (unit: m):
Figure JPOXMLDOC01-appb-I000154
 図19(a)は、水平面計測の計測レイアウト図を示す。図19(b)は、曲面計測1の計測レイアウト図を示す。図19(c)は、曲面計測2の計測レイアウト図を示す。図20は、水平面計測の計測レイアウトにより、第5実施形態のデータ処理方法でシミュレーションした点ターゲットを示す。図21(a)は、曲面計測1の計測レイアウトにより、第5実施形態のデータ処理方法でシミュレーションした点ターゲットを示す。図21(b)は、曲面計測1の計測レイアウトにより、第6実施形態のデータ処理方法でシミュレーションした点ターゲットを示す。図22(a)は、曲面計測2の計測レイアウトにより、第5実施形態のデータ処理方法でシミュレーションした点ターゲットを示す。図22(b)は、曲面計測2の計測レイアウトにより、第6実施形態のデータ処理方法でシミュレーションした点ターゲットを示す。 FIG. 19(a) shows a measurement layout diagram for horizontal plane measurement. FIG. 19(b) shows a measurement layout diagram of curved surface measurement 1. As shown in FIG. FIG. 19(c) shows a measurement layout diagram of curved surface measurement 2. As shown in FIG. FIG. 20 shows point targets simulated by the data processing method of the fifth embodiment using a measurement layout for horizontal plane measurement. FIG. 21( a ) shows point targets simulated by the data processing method of the fifth embodiment using the measurement layout of curved surface measurement 1 . FIG. 21(b) shows a point target simulated by the data processing method of the sixth embodiment using the measurement layout of curved surface measurement 1. FIG. FIG. 22A shows a point target simulated by the data processing method of the fifth embodiment using the measurement layout of curved surface measurement 2. FIG. FIG. 22B shows point targets simulated by the data processing method of the sixth embodiment using the measurement layout of curved surface measurement 2 .
 図19(a)に示す水平面計測の計測レイアウトを用いて、4点の点ターゲットを第5実施形態のデータ処理方法の式(5-20)でシミュレーションを行った。その結果を図20に示す。図20では、4点の点ターゲットが収束した3次元画像が確認できる。図20の結果から、式(5-20)により、水平面計測の計測レイアウトから良好な3次元画像が得られることが分かる。 Using the measurement layout for horizontal plane measurement shown in FIG. 19(a), a simulation was performed for four point targets using the formula (5-20) of the data processing method of the fifth embodiment. The results are shown in FIG. In FIG. 20, a three-dimensional image in which four point targets converge can be confirmed. From the results of FIG. 20, it can be seen that a good three-dimensional image can be obtained from the measurement layout for horizontal plane measurement using equation (5-20).
 次に、図19(b)に示す曲面計測1の計測レイアウトを用いて、4点の点ターゲットを第5実施形態のデータ処理方法の式(5-20)でシミュレーションを行った。その結果を、図21(a)に示す。図21(a)では、4点の点ターゲットが図19(b)に示される曲面計測1の計測レイアウトと同じ方向に広がった3次元画像が確認できる。図21(a)の結果から、式(5-20)では、曲面計測1の計測レイアウトに対して良好な3次元画像が得られないことが分かる。
 次に、図19(b)に示す曲面計測1の計測レイアウトを用いて、4点の点ターゲットを第6実施形態のデータ処理方法の式(6-7)でシミュレーションを行った。その結果を、図21(b)に示す。図21(b)では、4点の点ターゲットが収束した3次元画像が確認できる。図21(b)の結果から、式(6-7)により、曲面計測1の計測レイアウトから良好な3次元画像が得られることが分かる。
Next, using the measurement layout of curved surface measurement 1 shown in FIG. 19B, a simulation was performed for four point targets using the formula (5-20) of the data processing method of the fifth embodiment. The results are shown in FIG. 21(a). In FIG. 21(a), a three-dimensional image in which four point targets are spread in the same direction as the measurement layout of curved surface measurement 1 shown in FIG. 19(b) can be confirmed. From the result of FIG. 21(a), it can be seen that the formula (5-20) cannot obtain a good three-dimensional image for the measurement layout of the curved surface measurement 1. FIG.
Next, using the measurement layout of curved surface measurement 1 shown in FIG. 19B, a simulation was performed for four point targets according to formula (6-7) of the data processing method of the sixth embodiment. The results are shown in FIG. 21(b). In FIG. 21(b), a three-dimensional image in which four point targets converge can be confirmed. From the result of FIG. 21(b), it can be seen that a good three-dimensional image can be obtained from the measurement layout of the curved surface measurement 1 by the formula (6-7).
 次に、図19(c)に示す曲面計測2の計測レイアウトを用いて、4点の点ターゲットを第5実施形態のデータ処理方法の式(5-20)でシミュレーションを行った。その結果を、図22(a)に示す。図22(a)では、4点の点ターゲットが図19(c)に示される曲面計測2の計測レイアウトと同じ方向に広がった3次元画像が確認できる。図22(a)の結果から、式(5-20)では、曲面計測2の計測レイアウトに対して良好な3次元画像が得られないことが分かる。
 次に、図19(c)に示す曲面計測2の計測レイアウトを用いて、4点の点ターゲットを第6実施形態のデータ処理方法の式(6-7)でシミュレーションを行った。その結果を、図22(b)に示す。図22(b)では、4点の点ターゲットが収束した3次元画像が確認できる。図22(b)の結果から、式(6-7)により、曲面計測2の計測レイアウトから良好な3次元画像が得られることが分かる。
Next, using the measurement layout of curved surface measurement 2 shown in FIG. 19(c), a simulation was performed for four point targets according to formula (5-20) of the data processing method of the fifth embodiment. The results are shown in FIG. 22(a). In FIG. 22(a), a three-dimensional image in which four point targets are spread in the same direction as the measurement layout of curved surface measurement 2 shown in FIG. 19(c) can be confirmed. From the result of FIG. 22(a), it can be seen that the expression (5-20) cannot obtain a good three-dimensional image for the measurement layout of the curved surface measurement 2.
Next, using the measurement layout of curved surface measurement 2 shown in FIG. 19(c), a simulation was performed for four point targets according to formula (6-7) of the data processing method of the sixth embodiment. The results are shown in FIG. 22(b). In FIG. 22(b), a three-dimensional image in which four point targets converge can be confirmed. From the result of FIG. 22(b), it can be seen that a good three-dimensional image can be obtained from the measurement layout of curved surface measurement 2 according to equation (6-7).
 図21(a)と図21(b)の結果、及び、図22(a)と図22(b)の結果から、式(6-6)で定義される演算子を式(6-7)の指数部に入れたことにより、曲面計測1の計測レイアウトに対応した反射率f(x,y,z)が得られることが確認された。 From the results of FIGS. 21A and 21B and the results of FIGS. It was confirmed that the reflectance f(x, y, z) corresponding to the measurement layout of the curved surface measurement 1 was obtained by inserting into the exponent part of .
<第7実施形態>
 以下、第7実施形態のデータ処理方法、計測システム、及び、プログラムについて、詳細に説明する。第6実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、一方向(図17ではy方向)に配列されるが、本実施形態は、送信用アレイアンテナ50及び受信用アレイアンテナ52の配列が異なる。本実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、曲線状に配置される。また、送信用アレイアンテナ50及び受信用アレイアンテナ52を、曲面に沿って移動(走査)させる。
<Seventh Embodiment>
The data processing method, measurement system, and program of the seventh embodiment will be described in detail below. The transmitting array antenna 50 and the receiving array antenna 52 of the sixth embodiment are arranged in one direction (the y direction in FIG. 17). Arrays are different. The transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged in a curved line. Also, the transmitting array antenna 50 and the receiving array antenna 52 are moved (scanned) along the curved surface.
 測定対象物と送信用アレイアンテナ50と受信用アレイアンテナ52との位置関係は、図23に示すように表すことができる。
 ここで、送信点の座標をp(x’,y’,z’)、受信点の座標をp(x’,y’,z’)とする。測定対象物の反射点(x,y,z)における反射率をf(x,y,z)とする。受信点p(x’,y’,z’)における計測データをs(x’,x’,y’,y’,z’,z’,k)とする。真空中の電磁波の伝播波長をλとする。媒質の比誘電率をεとする。伝播する電磁波の波数をkとする。
The positional relationship between the object to be measured, the transmitting array antenna 50, and the receiving array antenna 52 can be expressed as shown in FIG.
Here, the coordinates of the transmission point are p 1 (x' 1 , y' 1 , z' 1 ), and the coordinates of the reception point are p 2 (x' 2 , y' 2 , z' 2 ). Let f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured. Let the measurement data at the receiving point p 2 (x' 2 , y' 2 , z' 2 ) be s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) do. Let λ 0 be the propagation wavelength of an electromagnetic wave in vacuum. Let ε r be the dielectric constant of the medium. Let k be the wave number of the propagating electromagnetic wave.
 また、送信点p(x’,y’,z’)及び受信点p(x’,y’,z’)は、x’=x’=x’を満たす。
 本実施形態では、図23に示すように、半径Rの半円筒計測曲面を表す以下の式で表される関数で説明する。
Figure JPOXMLDOC01-appb-I000155

 なお、関数g(x’,y’)は、(x’,y’)に関する任意の1価関数でよい。また、関数g(x’,y’)は、(x’,y’)に関する任意の1価関数でよい。
Also, the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ) are x'=x' 1 =x' 2 Fulfill.
In the present embodiment, as shown in FIG. 23, a function expressed by the following equation representing a semi-cylindrical measurement curved surface with a radius of R0 will be described.
Figure JPOXMLDOC01-appb-I000155

Note that the function g 1 (x', y' 1 ) may be any univalent function on (x', y' 1 ). Also, the function g 2 (x', y' 2 ) may be any univalent function on (x', y' 2 ).
 第5実施形態の式(5-5)は、任意の送信点p(x’,y’,z’)及び受信点p(x’,y’,z’)に関する式である。
Figure JPOXMLDOC01-appb-I000156

 そのため、以下、式(5-5)に式(7-1)を代入するところから始めると、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000157
Equation (5-5) of the fifth embodiment is an arbitrary transmission point p 1 (x' 1 , y' 1 , z' 1 ) and reception point p 2 (x' 2 , y' 2 , z' 2 ) is an expression for
Figure JPOXMLDOC01-appb-I000156

Therefore, starting from substituting equation (7-1) into equation (5-5), the following equation is obtained.
Figure JPOXMLDOC01-appb-I000157
 式(7-2)の右辺は、(x’,y’,y’,k)に関する関数であるため、整理すると以下の式で表される。
Figure JPOXMLDOC01-appb-I000158

 s(x’,y’,y’,k)の3重フーリエ変換後の関数をS(k,k’y1,k’y2,k)とすると、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000159
Since the right side of equation (7-2) is a function related to (x', y' 1 , y' 2 , k), it can be expressed by the following equation when rearranged.
Figure JPOXMLDOC01-appb-I000158

If the function after the triple Fourier transform of s a (x′, y′ 1 , y′ 2 , k) is S a (k x , k′ y1 , k′ y2 , k), the following equation is obtained .
Figure JPOXMLDOC01-appb-I000159
 ここで、式(7-1)~式(7-4)を式(5-19)に代入すると、以下の式が得られる。
Figure JPOXMLDOC01-appb-I000160

 本実施形態においても、近似的に式(5-22)を用いることができる。
Substituting equations (7-1) to (7-4) into equation (5-19) yields the following equation.
Figure JPOXMLDOC01-appb-I000160

Equation (5-22) can be used approximately in this embodiment as well.
 ここで、(x’,y’,y’)に関して、以下の演算子を定義する。
Figure JPOXMLDOC01-appb-I000161

Figure JPOXMLDOC01-appb-I000162

 式(7-6)、式(7-7)の演算子は、S(k,k’y1,k’y2,k)に対して、(k,k’y1,k’y2,k)空間における(x’,y’,y’)の固有値を有する。
Here, the following operators are defined for (x', y' 1 , y' 2 ).
Figure JPOXMLDOC01-appb-I000161

Figure JPOXMLDOC01-appb-I000162

The operators of equations (7-6) and (7-7) are (k x , k' y1 , k' y2 , k' y2 , for S a (k x , k' y1 , k' y2 , k) k) have eigenvalues of (x', y' 1 , y' 2 ) in space.
 式(7-6)、式(7-7)を式(7-5)に代入することにより、反射率f(x,y,z)が以下のように得られる。
Figure JPOXMLDOC01-appb-I000163
By substituting equations (7-6) and (7-7) into equation (7-5), the reflectance f(x, y, z) is obtained as follows.
Figure JPOXMLDOC01-appb-I000163
 以上のように、データ処理ユニット66は、計測データs(x’,y’,y’,z’,z’,k)に基づいて、反射率f(x,y,z)を求める。 As described above, the data processing unit 66 calculates the reflectance f (x, y, z) based on the measurement data s (x', y' 1 , y' 2 , z' 1 , z' 2 , k) Ask for
 以下、図24を参照して、本実施形態のデータ処理方法、及び、プログラムについて説明する。図24は、本実施形態のデータ処理方法を示すフローチャートである。
 まず、計測ユニット61が計測データs(x’,y’,y’,z’,z’,k)を取得する(ステップS7-1)。そして、データ処理ユニット66は、計測データs(x’,y’,y’,z’,z’,k)を整理する(ステップS7-2)。これにより、計測データs(x’,y’,y’,k)が得られる。
 そして、データ処理ユニット66は、計測データs(x’,y’,y’,k)に対して、ヒルベルト変換を行う(ステップS7-3)。これにより、各計測点における周波数データの虚数成分が得られる。
A data processing method and a program according to this embodiment will be described below with reference to FIG. FIG. 24 is a flow chart showing the data processing method of this embodiment.
First, the measurement unit 61 acquires measurement data s (x', y' 1 , y' 2 , z' 1 , z' 2 , k) (step S7-1). Then, the data processing unit 66 organizes the measurement data s(x', y' 1 , y' 2 , z' 1 , z' 2 , k) (step S7-2). Thereby, measurement data s a (x', y' 1 , y' 2 , k) is obtained.
Then, the data processing unit 66 performs Hilbert transform on the measurement data s a (x', y' 1 , y' 2 , k) (step S7-3). As a result, the imaginary component of the frequency data at each measurement point is obtained.
 次に、データ処理ユニット66は、計測データs(x’,y’,y’,k)に対して、(x’,y’,y’)に関する3重フーリエ変換を行う(ステップS7-4)。これにより、式(7-4)に示されるように、S(k’,k’y1,k’y2,k’)が得られる。
 次に、データ処理ユニット66は、式(7-6)、式(7-7)で表される演算子を得る(ステップS7-5)。
Next, the data processing unit 66 performs a triple Fourier transform of (x', y' 1 , y' 2 ) on the measurement data s a (x', y' 1 , y' 2 , k). (Step S7-4). This yields S a (k' x , k' y1 , k' y2 , k') as shown in equation (7-4).
Next, the data processing unit 66 obtains operators represented by equations (7-6) and (7-7) (step S7-5).
 次に、データ処理ユニット66は、以下の式に対して、変数置換を行う(ステップS7-6)。
Figure JPOXMLDOC01-appb-I000164

 これにより、S(k,k,k)が得られる。
Next, the data processing unit 66 performs variable substitution on the following formula (step S7-6).
Figure JPOXMLDOC01-appb-I000164

This yields S a (k x , k y , k z ).
 次に、データ処理ユニット66は、S(k,k,k)に対して、(k,k,k)に対して3重逆フーリエ変換を行う(ステップS7-7)。これにより、式(7-7)に示されるように、反射率f(x,y,z)が得られる。 Next, the data processing unit 66 performs a triple inverse Fourier transform on (k x , ky , k z ) for S a (k x , ky , k z ) (step S7-7 ). This gives the reflectance f(x, y, z) as shown in equation (7-7).
 記憶部66aは、本実施形態のデータ処理方法を実行するためのプログラムを記憶する。記憶部66aに記憶されたプログラムは、データ処理ユニット66に、本実施形態のデータ処理方法を実行させる。 The storage unit 66a stores a program for executing the data processing method of this embodiment. The program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
10a 送信アンテナ
10b 受信アンテナ
50 送信用アレイアンテナ
52 受信用アレイアンテナ
60 レーダ装置
61 計測ユニット
64 システム制御回路
66 データ処理ユニット
68 画像表示ユニット
58、59 高周波スイッチ
62 高周波回路
69 エンコーダ
 
10a transmitting antenna 10b receiving antenna 50 transmitting array antenna 52 receiving array antenna 60 radar device 61 measurement unit 64 system control circuit 66 data processing unit 68 image display units 58, 59 high frequency switch 62 high frequency circuit 69 encoder

Claims (14)

  1.  物体に放射した波動の散乱波を解析するデータ処理方法であって、
     yz平面に平行な面内における(x’1, y’1)に関する第1の1価関数z’1=g1(x’1, y’1)の曲線上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射し、
     前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、yz平面に平行な面内における(x’2, y’2)に関する第2の1価関数z’2=g2(x’2, y’2)の曲線上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値sa(x’1, x’2, y’1, y’2, k)として受信し、
     前記計測値sa(x’1, x’2, y’1, y’2, k)を式(1)より4重フーリエ変換してSa(k’x1, k’x2, k’y1, k’y2, k)を求め、
    Figure JPOXMLDOC01-appb-I000001

     Sa(k’x1, k’x2, k’y1, k’y2, k)に対して固有値(x’1, y’1, x’2, y’2)を有する式(2)及び式(3)で示される演算子を定義し、
    Figure JPOXMLDOC01-appb-I000002

     式(4)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める、
    Figure JPOXMLDOC01-appb-I000003

     データ処理方法。
    但し、
    kは、伝播する前記波動の波数、
    k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
    である。
    A data processing method for analyzing scattered waves of waves radiated to an object,
    A plurality of transmitting points arranged on the curve of the first univalent function z' 1 =g 1 (x' 1 , y' 1 ) with respect to (x' 1 , y' 1 ) in a plane parallel to the yz plane radiating said wave to said object from p 1 (x' 1 , y' 1 , z' 1 );
    The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is expressed as (x' 2 , y' 2 ) in a plane parallel to the yz plane Measured values at a plurality of receiving points p 2 (x' 2 , y' 2 , z ' 2 ) arranged on the curve of the second single-valued function z' 2 =g 2 (x' 2 , y' 2 ) received as s a (x' 1 , x' 2 , y' 1 , y' 2 , k) and
    The measured values s a (x' 1 , x' 2 , y' 1 , y' 2 , k) are quadruple Fourier transformed by Equation (1) to S a (k' x1 , k' x2 , k' y1 , k' y2 , k),
    Figure JPOXMLDOC01-appb-I000001

    Equation (2) with eigenvalues ( x'1 , y'1 , x'2 , y'2 ) for Sa( k'x1 , k'x2 , k'y1, k'y2 , k ) and equation Define the operator indicated by (3),
    Figure JPOXMLDOC01-appb-I000002

    Perform triple inverse Fourier transform from equation (4) to obtain the reflectance f (x, y, z),
    Figure JPOXMLDOC01-appb-I000003

    Data processing method.
    however,
    k is the wave number of said wave propagating;
    k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
    k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
    k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
    is.
  2.  前記波動の波数と波数ベクトルの成分は、式(5)を満たす、
     請求項1に記載のデータ処理方法。
    Figure JPOXMLDOC01-appb-I000004
    The wavenumber and wavevector components of the wave satisfy equation (5),
    The data processing method according to claim 1.
    Figure JPOXMLDOC01-appb-I000004
  3.  物体に放射した波動の散乱波を解析する計測システムであって、
     送受信部であって、
      yz平面に平行な面内における(x’1, y’1)に関する第1の1価関数z’1=g1(x’1, y’1)の曲線上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射する送信部と、
      前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、yz平面に平行な面内における(x’2, y’2)に関する第2の1価関数z’2=g2(x’2, y’2)の曲線上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値sa(x’1, x’2, y’1, y’2, k)として受信する受信部と、
     を有する送受信部と、
     処理装置であって、
      前記計測値sa(x’1, x’2, y’1, y’2, k)を式(1)より4重フーリエ変換してSa(k’x1, k’x2, k’y1, k’y2, k)を求める手順と、
    Figure JPOXMLDOC01-appb-I000005

     Sa(k’x1, k’x2, k’y1, k’y2, k)に対して固有値(x’1, y’1, x’2, y’2)を有する式(2)及び式(3)で示される演算子を定義する手順と、
    Figure JPOXMLDOC01-appb-I000006

     式(4)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、
    Figure JPOXMLDOC01-appb-I000007

     を実行する処理装置と、
     を有する、計測システム。
    但し、
    kは、伝播する前記波動の波数、
    k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
    である。
    A measurement system for analyzing scattered waves of waves radiated to an object,
    a transmitting/receiving unit,
    A plurality of transmitting points arranged on the curve of the first univalent function z' 1 =g 1 (x' 1 , y' 1 ) with respect to (x' 1 , y' 1 ) in a plane parallel to the yz plane a transmitter that radiates the wave to the object from p 1 (x' 1 , y' 1 , z' 1 );
    The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is expressed as (x' 2 , y' 2 ) in a plane parallel to the yz plane Measured values at a plurality of receiving points p 2 ( x' 2 , y' 2 , z' 2 ) arranged on the curve of the second single-valued function z' 2 =g 2 (x' 2 , y' 2 ) a receiver for receiving as s a (x' 1 , x' 2 , y' 1 , y' 2 , k);
    a transceiver having
    A processing device,
    The measured values s a (x' 1 , x' 2 , y' 1 , y' 2 , k) are quadruple Fourier transformed by Equation (1) to S a (k' x1 , k' x2 , k' y1 , k' y2 , k);
    Figure JPOXMLDOC01-appb-I000005

    Equation (2) with eigenvalues ( x'1 , y'1 , x'2 , y'2 ) for Sa( k'x1 , k'x2 , k'y1 , k'y2, k ) and equation A procedure for defining the operator indicated by (3);
    Figure JPOXMLDOC01-appb-I000006

    A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (4);
    Figure JPOXMLDOC01-appb-I000007

    a processor for performing
    A measurement system.
    however,
    k is the wave number of said wave propagating;
    k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
    k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
    k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
    is.
  4.  前記波動の波数と波数ベクトルの成分は、式(5)を満たす、
     請求項3に記載の計測システム。
    Figure JPOXMLDOC01-appb-I000008
    The wavenumber and wavevector components of the wave satisfy equation (5),
    The measurement system according to claim 3.
    Figure JPOXMLDOC01-appb-I000008
  5.  物体に放射した波動の散乱波を解析するプログラムであって、
     計測値sa(x’1, x’2, y’1, y’2, k)を式(1)より4重フーリエ変換してSa(k’x1, k’x2, k’y1, k’y2, k)を求める手順と、
    Figure JPOXMLDOC01-appb-I000009

     Sa(k’x1, k’x2, k’y1, k’y2, k)に対して固有値(x’1, y’1, x’2, y’2)を有する式(2)及び式(3)で示される演算子を定義する手順と、
    Figure JPOXMLDOC01-appb-I000010

     式(4)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、
    Figure JPOXMLDOC01-appb-I000011

     をコンピュータに実行させるプログラム。
    但し、
    kは、伝播する前記波動の波数、
    k’x1, k’y1, k’z1は、送信点p1(x’1, y’1, z’1)から反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    k’x2, k’y2, k’z2は、前記反射点(x, y, z)から受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
    である。
    A program for analyzing scattered waves of waves radiated to an object,
    The measured value s a (x' 1 , x' 2 , y' 1 , y' 2 , k) is quadruple Fourier transformed from the equation (1) to obtain S a (k' x1 , k' x2 , k' y1 , a procedure for obtaining k' y2 , k);
    Figure JPOXMLDOC01-appb-I000009

    Equation (2) with eigenvalues ( x'1 , y'1 , x'2 , y'2 ) for Sa( k'x1 , k'x2 , k'y1, k'y2 , k ) and equation A procedure for defining the operator indicated by (3);
    Figure JPOXMLDOC01-appb-I000010

    A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (4);
    Figure JPOXMLDOC01-appb-I000011

    A program that makes a computer run
    however,
    k is the wave number of said wave propagating;
    k' x1 , k' y1 , k' z1 are the spherical waves of said wave propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z) the components of the wave vector of ,
    k' x2 , k' y2 , k' z2 are the spherical surfaces of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ) the components of the wavenumber vector of the wave,
    k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
    is.
  6.  前記計測値sa(x’1, x’2, y’1, y’2, k)は、yz平面に平行な面内における(x’1, y’1)に関する第1の1価関数z’1=g1(x’1, y’1)の曲線上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に放射された波動が前記物体上の前記反射点(x, y, z)において前記反射率f(x, y, z)で反射した前記散乱波を、yz平面に平行な面内における(x’2, y’2)に関する第2の1価関数z’2=g2(x’2, y’2)の曲線上に配列された複数の受信点p2(x’2, y’2, z’2)で受信した値である、
     請求項5に記載のプログラム。
    The measured value s a (x' 1 , x' 2 , y' 1 , y' 2 , k) is a first univalent function of (x' 1 , y' 1 ) in a plane parallel to the yz plane Waves radiated to the object from a plurality of transmitting points p 1 ( x ' 1 , y' 1 , z' 1 ) arranged on a curve of z' 1 =g 1 (x' 1 , y' 1 ) is the scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) in a plane parallel to the yz plane (x' 2 , y' 2 ) a plurality of receiving points p 2 (x' 2 , y' 2 , z' 2 ) arranged on the curve of the second single-valued function z' 2 =g 2 (x' 2 , y' 2 ) with respect to is the value received in
    6. A program according to claim 5.
  7.  前記波動の波数と波数ベクトルの成分は、式(5)を満たす、
     請求項5又は6に記載のプログラム。
    Figure JPOXMLDOC01-appb-I000012
    The wavenumber and wavevector components of the wave satisfy equation (5),
    7. A program according to claim 5 or 6.
    Figure JPOXMLDOC01-appb-I000012
  8.  物体に放射した波動の散乱波を解析するデータ処理方法であって、
     yz平面に平行な面内における(x’1, y’1)に関する第1の1価関数z’1=g1(x’1, y’1)の曲線上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射し、
     前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、yz平面に平行な面内における(x’2, y’2)に関する第2の1価関数z’2=g2(x’2, y’2)の曲線上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値sa(x’, y’1, y’2, k)として受信し、
     前記計測値sa(x’, y’1, y’2, k)を式(1)より3重フーリエ変換してSa(k’x, k’y1, k’y2, k)を求め、
    Figure JPOXMLDOC01-appb-I000013

     Sa(k’x, k’y1, k’y2, k)に対して固有値(x’, y’1, y’2)を有する式(2)及び式(3)で示される演算子を定義し、
    Figure JPOXMLDOC01-appb-I000014

     式(4)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める、
    Figure JPOXMLDOC01-appb-I000015

     データ処理方法。
    但し、
    x’ = x’1 = x’2
    kは、伝播する前記波動の波数、
    k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    ky = k’y1 + k’y2, v = k’y1 - k’y2
    である。
    A data processing method for analyzing scattered waves of waves radiated to an object,
    A plurality of transmitting points arranged on the curve of the first univalent function z' 1 =g 1 (x' 1 , y' 1 ) with respect to (x' 1 , y' 1 ) in a plane parallel to the yz plane radiating said wave to said object from p 1 (x' 1 , y' 1 , z' 1 );
    The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is expressed as (x' 2 , y' 2 ) in a plane parallel to the yz plane Measured values at a plurality of receiving points p 2 ( x' 2 , y' 2 , z' 2 ) arranged on the curve of the second single-valued function z' 2 =g 2 (x' 2 , y' 2 ) received as s a (x', y' 1 , y' 2 , k),
    The measured value s a (x', y' 1 , y' 2 , k) is subjected to a triple Fourier transform from equation (1) to obtain S a (k' x , k' y1 , k' y2 , k) ,
    Figure JPOXMLDOC01-appb-I000013

    Let the operators shown in equations (2) and (3) with eigenvalues (x', y' 1 , y' 2 ) for S a ( k ' x , k' y1 , k' y2 , k ) be define and
    Figure JPOXMLDOC01-appb-I000014

    Perform triple inverse Fourier transform from equation (4) to obtain the reflectance f (x, y, z),
    Figure JPOXMLDOC01-appb-I000015

    Data processing method.
    however,
    x' = x' 1 = x' 2
    k is the wave number of said wave propagating;
    k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
    k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
    k y = k' y1 + k' y2 , v = k' y1 - k' y2
    is.
  9.  前記波動の波数と波数ベクトルの成分は、式(5)を満たす、
     請求項8に記載のデータ処理方法。
    Figure JPOXMLDOC01-appb-I000016
    The wavenumber and wavevector components of the wave satisfy equation (5),
    The data processing method according to claim 8.
    Figure JPOXMLDOC01-appb-I000016
  10.  物体に放射した波動の散乱波を解析する計測システムであって、
     送受信部であって、
      yz平面に平行な面内における(x’1, y’1)に関する第1の1価関数z’1=g1(x’1, y’1)の曲線上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射する送信部と、
      前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、yz平面に平行な面内における(x’2, y’2)に関する第2の1価関数z’2=g2(x’2, y’2)の曲線上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値sa(x’, y’1, y’2, k)として受信する受信部と、
     を有する送受信部と、
     処理装置であって、
      前記計測値sa(x’, y’1, y’2, k)を式(1)より3重フーリエ変換してSa(k’x, k’y1, k’y2, k)を求める手順と、
    Figure JPOXMLDOC01-appb-I000017

     Sa(k’x, k’y1, k’y2, k)に対して固有値(x’, y’1, y’2)を有する式(2)及び式(3)で示される演算子を定義する手順と、
    Figure JPOXMLDOC01-appb-I000018

     式(4)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、
    Figure JPOXMLDOC01-appb-I000019

     を実行する処理装置と、
     を有する、計測システム。
    但し、
    x’ = x’1 = x’2
    kは、伝播する前記波動の波数、
    k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    ky = k’y1 + k’y2, v = k’y1 - k’y2
    である。
    A measurement system for analyzing scattered waves of waves radiated to an object,
    a transmitting/receiving unit,
    A plurality of transmitting points arranged on the curve of the first univalent function z' 1 =g 1 (x' 1 , y' 1 ) with respect to (x' 1 , y' 1 ) in a plane parallel to the yz plane a transmitter that radiates the wave to the object from p 1 (x' 1 , y' 1 , z' 1 );
    The scattered wave reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z) is expressed as (x' 2 , y' 2 ) in a plane parallel to the yz plane Measured values at a plurality of receiving points p 2 (x' 2 , y ' 2 , z' 2 ) arranged on the curve of the second single-valued function z' 2 =g 2 (x' 2 , y' 2 ) a receiver for receiving as s a (x', y' 1 , y' 2 , k);
    a transceiver having
    A processing device,
    The measured value s a (x', y' 1 , y' 2 , k) is subjected to a triple Fourier transform from equation (1) to obtain S a (k' x , k' y1 , k' y2 , k) a procedure;
    Figure JPOXMLDOC01-appb-I000017

    Let the operators shown in equations (2) and (3) with eigenvalues (x', y ' 1 , y' 2 ) for S a ( k ' x , k' y1 , k' y2 , k) be a procedure to define
    Figure JPOXMLDOC01-appb-I000018

    A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (4);
    Figure JPOXMLDOC01-appb-I000019

    a processor for performing
    A measurement system.
    however,
    x' = x' 1 = x' 2
    k is the wave number of said wave propagating;
    k' x1 , k' y1 , k' z1 are values of the waves propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z). the components of the wave vector of the spherical wave,
    k' x2 , k' y2 , k' z2 are the values of the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). the components of the wave vector of the spherical wave,
    k y = k' y1 + k' y2 , v = k' y1 - k' y2
    is.
  11.  前記波動の波数と波数ベクトルの成分は、式(5)を満たす、
     請求項10に記載の計測システム。
    Figure JPOXMLDOC01-appb-I000020
    The wavenumber and wavevector components of the wave satisfy equation (5),
    The measurement system according to claim 10.
    Figure JPOXMLDOC01-appb-I000020
  12.  物体に放射した波動の散乱波を解析するプログラムであって、
     計測値sa(x’, y’1, y’2, k)を式(1)より3重フーリエ変換してSa(k’x, k’y1, k’y2, k)を求める手順と、
    Figure JPOXMLDOC01-appb-I000021

     Sa(k’x, k’y1, k’y2, k)に対して固有値(x’, y’1, y’2)を有する式(2)及び式(3)で示される演算子を定義する手順と、
    Figure JPOXMLDOC01-appb-I000022

     式(4)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、
    Figure JPOXMLDOC01-appb-I000023

     をコンピュータに実行させるプログラム。
    但し、
    x’ = x’1 = x’2
    kは、伝播する前記波動の波数、
    k’x1, k’y1, k’z1は、送信点p1(x’1, y’1, z’1)から反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    k’x2, k’y2, k’z2は、反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    ky = k’y1 + k’y2, v = k’y1 - k’y2
    である。
    A program for analyzing scattered waves of waves radiated to an object,
    A procedure for obtaining S a (k' x , k' y1 , k' y2 , k) by performing a triple Fourier transform on the measured value s a ( x ', y' 1 , y' 2 , k) from the formula (1) and,
    Figure JPOXMLDOC01-appb-I000021

    Let the operators shown in equations (2) and (3) with eigenvalues (x', y' 1 , y' 2 ) for S a ( k ' x , k' y1 , k' y2 , k ) be a procedure to define
    Figure JPOXMLDOC01-appb-I000022

    A procedure for obtaining the reflectance f (x, y, z) by performing a triple inverse Fourier transform from Equation (4);
    Figure JPOXMLDOC01-appb-I000023

    A program that makes a computer run
    however,
    x' = x' 1 = x' 2
    k is the wave number of said wave propagating;
    k' x1 , k' y1 , k' z1 are the spherical waves of said wave propagating between the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the reflecting point (x, y, z) the components of the wave vector of ,
    k' x2 , k' y2 , k' z2 are the spherical surfaces of the waves propagating from the reflecting point (x, y, z) to the receiving point p 2 (x' 2 , y' 2 , z' 2 ) the components of the wavenumber vector of the wave,
    k y = k' y1 + k' y2 , v = k' y1 - k' y2
    is.
  13.  前記計測値sa(x’, y’1, y’2, k)は、yz平面に平行な面内における(x’1, y’1)に関する第1の1価関数z’1=g1(x’1, y’1)の曲線上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に放射された波動が、前記物体上の前記反射点(x, y, z)において前記反射率f(x, y, z)で反射した前記散乱波を、yz平面に平行な面内における(x’2, y’2)に関する第2の1価関数z’2=g2(x’2, y’2)の曲線上に配列された複数の受信点p2(x’2, y’2, z’2)で受信した値である、
     請求項12に記載のプログラム。
    The measured value s a (x', y' 1 , y' 2 , k) is a first univalent function z ' 1 =g Waves radiated to the object from a plurality of transmission points p 1 (x ' 1 , y' 1 , z' 1 ) arranged on a curve of 1 (x' 1 , y' 1 ) are The scattered wave reflected with the reflectance f(x, y, z) at the reflection point (x, y, z) of (x' 2 , y' 2 ) in a plane parallel to the yz plane Values received at multiple receiving points p 2 (x' 2 , y' 2 , z' 2 ) arranged on the curve of a single-valued function of 2 z' 2 = g 2 ( x' 2 , y' 2 ) is
    13. A program according to claim 12.
  14.  前記波動の波数と波数ベクトルの成分は、式(5)を満たす、
     請求項12又は13に記載のプログラム。
    Figure JPOXMLDOC01-appb-I000024
    The wavenumber and wavevector components of the wave satisfy equation (5),
    14. A program according to claim 12 or 13.
    Figure JPOXMLDOC01-appb-I000024
PCT/JP2021/047054 2021-12-20 2021-12-20 Data processing method , measurement system, and program WO2023119371A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/047054 WO2023119371A1 (en) 2021-12-20 2021-12-20 Data processing method , measurement system, and program
JP2022571838A JP7300077B1 (en) 2021-12-20 2021-12-20 DATA PROCESSING METHOD, MEASUREMENT SYSTEM AND PROGRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047054 WO2023119371A1 (en) 2021-12-20 2021-12-20 Data processing method , measurement system, and program

Publications (1)

Publication Number Publication Date
WO2023119371A1 true WO2023119371A1 (en) 2023-06-29

Family

ID=86900520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047054 WO2023119371A1 (en) 2021-12-20 2021-12-20 Data processing method , measurement system, and program

Country Status (2)

Country Link
JP (1) JP7300077B1 (en)
WO (1) WO2023119371A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188391A (en) * 1989-09-04 1991-08-16 Ricoh Co Ltd Recognizing system of three-dimensional object
WO2017149582A1 (en) * 2016-02-29 2017-09-08 三井造船株式会社 Data processing method and measurement device
JP2018138880A (en) * 2017-02-24 2018-09-06 株式会社三井E&Sホールディングス Data processing method and measuring device
WO2021020387A1 (en) * 2019-08-01 2021-02-04 株式会社 Integral Geometry Science Scattering tomography device and scattering tomography method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188391A (en) * 1989-09-04 1991-08-16 Ricoh Co Ltd Recognizing system of three-dimensional object
WO2017149582A1 (en) * 2016-02-29 2017-09-08 三井造船株式会社 Data processing method and measurement device
JP2018138880A (en) * 2017-02-24 2018-09-06 株式会社三井E&Sホールディングス Data processing method and measuring device
WO2021020387A1 (en) * 2019-08-01 2021-02-04 株式会社 Integral Geometry Science Scattering tomography device and scattering tomography method

Also Published As

Publication number Publication date
JP7300077B1 (en) 2023-06-29
JPWO2023119371A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
JP7001069B2 (en) Knowledge generator for inference, knowledge generation method for inference, and program
JP7464293B2 (en) Scattering tomography device and scattering tomography method
US11480535B2 (en) System, device and methods for measuring substances′ dielectric properties using microwave sensors
US10746765B2 (en) Data processing method and the measurement device
CN108828592B (en) Azimuth imaging method based on MIMO rectangular planar array
WO2018025421A1 (en) Object detection apparatus and object detection method
JP6838658B2 (en) Object detection device, object detection method, and program
CN111198303A (en) Method for predicting electromagnetic environment distribution characteristics of ship-based radiation sources in formation
Ren et al. A 3-D uniform diffraction tomographic algorithm for near-field microwave imaging through stratified media
CN109884627A (en) The short range millimeter wave rapid three dimensional imaging process of any linear array configuration
WO2017149582A1 (en) Data processing method and measurement device
WO2023119371A1 (en) Data processing method , measurement system, and program
WO2023119370A1 (en) Data processing method, measuring system, and program
WO2023119369A1 (en) Data processing method, measurement system, and program
JP6849100B2 (en) Object detection device, object detection method and program
Fallahpour et al. A Wiener filter-based synthetic aperture radar algorithm for microwave imaging of targets in layered media
JP7230286B1 (en) DATA PROCESSING METHOD, MEASUREMENT SYSTEM AND PROGRAM
US10371813B2 (en) Systems and methods for using time of flight measurements for imaging target objects
WO2024034000A1 (en) Data processing method, measurement system, and program
CN107765230B (en) Application method of chain relation in near-field-to-far-field conversion of near-field measurement system
Lu et al. A decomposition method for computing radiowave propagation loss using three-dimensional parabolic equation
JP4201067B2 (en) Radio wave propagation analysis method and apparatus, and storage medium
CN114047389B (en) Frequency diversity and computational imaging method and system
Chen et al. The Combined Method of Ray Tracing and Diffraction and Its Application to Ultra-wideband Pulse Propagation
Altuntaş Analysis of the effect of element radiation pattern in the performance of mimo arrays used in imaging applications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022571838

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968809

Country of ref document: EP

Kind code of ref document: A1