WO2024033933A1 - Système de surveillance de voies autonome - Google Patents

Système de surveillance de voies autonome Download PDF

Info

Publication number
WO2024033933A1
WO2024033933A1 PCT/IN2023/050326 IN2023050326W WO2024033933A1 WO 2024033933 A1 WO2024033933 A1 WO 2024033933A1 IN 2023050326 W IN2023050326 W IN 2023050326W WO 2024033933 A1 WO2024033933 A1 WO 2024033933A1
Authority
WO
WIPO (PCT)
Prior art keywords
chassis
track
linear actuators
wheel assembly
tracks
Prior art date
Application number
PCT/IN2023/050326
Other languages
English (en)
Inventor
Ganesh Pandit Suryawanshi
Original Assignee
Ganesh Pandit Suryawanshi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ganesh Pandit Suryawanshi filed Critical Ganesh Pandit Suryawanshi
Publication of WO2024033933A1 publication Critical patent/WO2024033933A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/045Rail wear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D15/00Other railway vehicles, e.g. scaffold cars; Adaptations of vehicles for use on railways
    • B61D15/08Railway inspection trolleys
    • B61D15/12Railway inspection trolleys power propelled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/047Track or rail movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/048Road bed changes, e.g. road bed erosion

Definitions

  • the present invention relates to a field track monitoring system and more, particularly, the present invention relates to autonomous track monitoring system, especially for railway track monitoring.
  • the Indian railway network today has a track length of 113,617 km (70,598 miles), over a route of 63,974 km (39,752 miles) and 7,083 stations.
  • India has fourth largest railway network in the world exceeded only by those of the United States, Russia and China.
  • the US 10029708 patent discloses a railroad scout vehicle system which includes a scout vehicle and a processing unit.
  • the scout vehicle may include at least two wheels configured to engage a set of railroad tracks, a motor mechanically coupled to at least one of the wheels, a speed controller, an electromagnetic sensor aimed at the set of railroad tracks, a positioning receiver, a local speed sensing device and a transceiver.
  • the speed controller may be coupled to the motor and configured to control the speed of the scout vehicle in order to maintain an appropriate distance between the scout vehicle and a train traveling behind.
  • the processing unit may be configured to transmit the track status information via the transceiver, receive train speed and position signals from the train via the transceiver.
  • the device for railway track monitoring of the above US Patent sends signal to locopilot who is driving the train on the same track if there is any defect in the track so that the locopilot can stop the train and thus avoids accident.
  • the device mentioned in the prior art patent has to be removed from the track if the train is running on the same track on which the track monitoring device is and if there is no damage/defect in the track. This is the major drawback of the device of prior art which halts the regular running of the train if the tracks are normal and thus renders the device for monitoring the tracks not useful.
  • An object of the present invention is to avoid to manual search of the defects for track maintenance. Another object of the present invention is to avoid trains halts while the track monitoring is in process.
  • Another object of the present invention is to reduce cost of inspection for maintenance significantly.
  • Yet another object of the present invention is to collect data of frequently failed rail track location with type of failures.
  • the present invention provides an autonomous track monitoring system (100) for inspection of railway tracks (50) and the like.
  • the autonomous track monitoring system (100) comprises a chassis (10) having a front side (A), a rear side (B), a first side (C) and a second side (D) and a sensor assembly configured on the chassis (10).
  • the sensor assembly comprises at least one image capturing unit (14) configured centrally on the front portion (A) and the rear portion (B) of the chassis (10), at least two depth sensors (16) configured on either side of the front portion (A), and the rear portion (B) of the chassis (10), a vibration sensor operatively coupled to the horizontal linear actuator (22) and the vertical linear actuator (28) and a foldable image capturing unit (18) configured on the wheel assembly on either side for inspection of external side of the track;
  • the system further comprises at least one horizontal linear actuators (22) configured within the first side and the second side of the chassis (10), and a wheel assembly (20) attached to each horizontal linear actuators (20).
  • the wheel assembly (20) is capable of being retracted and expanded through horizontal linear actuators (22) and the wheel assembly (20) is configured to sit on the track when in expanded position.
  • the system furthermore comprises at least four vertical linear actuators (28) configured below the chassis (10) for lifting and lowering the chassis (10), a communication means configured on the chassis;, a microcontroller for controlling the sensor assembly and a power source for powering the microcontroller, and the sensor assembly.
  • Figure 1 represents an isometric view of autonomous track monitoring system, in accordance with the present invention
  • Figure 2 represents a side view of the autonomous track monitoring system of figure 1;
  • Figure 3 represents an isometric view of the autonomous track monitoring system after gaining maximum height
  • Figure 4 represents a side view of the autonomous track monitoring system when is lifted at its maximum height, its maximum height with fully stretched foldable arm position, its maximum height with fully stretched foldable arm position and when resting on the rails using its wheels with the fully stretched foldable arm;
  • FIG. 5 shows a flowchart of working of the autonomous track monitoring system, in accordance with the present invention.
  • an autonomous track monitoring system (100) (hereinafter 'the system (100)') in accordance with the present invention.
  • the system (100) of the present invention provides unmanned robotic vehicle, which can run on the railway tracks and inspect the tracks for any irregularities, hindrances, cracks, stone density, deviation, angle of banking of tracks, encroachments and the likes.
  • the track (50) referred herein is railway track (50).
  • the system (100) comprises a chassis (10), a sensor assembly configured on the chassis (10), at least two linear actuators (22), at least two wheel assembly (20), at least four vertical linear actuators (28), a microcontroller (34), a communication means, and a power source (32) for powering the microcontroller (34), and the sensor assembly.
  • FIG 1 shows the chassis (10).
  • the chassis (10) may be configured in a rectangular shape or hexagonal shape and includes a front side (A), a rear side (B), a first side (C) and a second side (D).
  • the chassis (10) is covered by a cover (12) so as to form cabin like structure.
  • the chassis (10) includes at least one head lights (12a) configured on front side (A) and rear side (B).
  • the chassis (10) is developed in such a way that it can take the load of self-retracting system and other electronic instruments needed for inspection.
  • the chassis (10) is made of aluminum, steel and the like.
  • the sensor assembly is configured on the chassis (10).
  • the sensor assembly comprises at least one image capturing unit (14) configured centrally on the front portion (A) and the rear portion (B) of the chassis (10) so that system (100) can work in both direction i.e. forward and reverse direction.
  • the least one image capturing unit (14) is camera.
  • the sensor assembly further comprises at least two depth sensors (16) configured on either side of the front portion (A), or the rear portion (B) of the chassis.
  • the images captured by the camera (14) and the depth sensors (16) gives most factual results to the microcontroller (34) when used in combination.
  • the depth sensors (16) act like complimentary to the camera (14).
  • the sensor assembly furthermore comprises a foldable image capturing unit (18), for example, a camera configured on a wheel assembly (20) on either side for inspection of external side of the track.
  • a foldable image capturing unit (18) for example, a camera configured on a wheel assembly (20) on either side for inspection of external side of the track.
  • the folding of the mounting unit of the foldable camera (18) is done to reduce stroke length of both horizontal and vertical linear actuator, which eventually reduces overall size of robot which helps robot to hide in between tracks (50) while train passes over it.
  • the folding of the folding camera (18) is done by two rotary actuators (26) mounted on wheel assembly (20).
  • Each horizontal linear actuator of the two horizontal linear actuators (22) is configured within the first side (C) and the second side (D) of the chassis (10).
  • the wheel assembly (20) is attached to each horizontal linear actuator (22).
  • the wheel assembly (20) is capable of being retracted and expanded through the horizontal linear actuators (22).
  • the linear actuators (22) are operated by electro-mechanical switches (22a).
  • the microcontroller (34) gives signal to open or close to individual electro-mechanical switches (22a) of respective linear actuators (22), then these switches operate the linear actuator (22). These electro mechanical switches are part of the main PCB.
  • each wheel assembly (20) has two wheels (24) powered by two rotary actuators (26).
  • the rotary actuator (26) is a two way rotary actuator so that the system (100) can inspect tracks (50) in both reverse and forward direction. These rotary actuators control the speed and direction of the robot on the track (50).
  • the microcontroller (34) gives signal for forward movement or reverse movement to individual electro-mechanical switches of respective rotary actuators (26), and then these electro-mechanical switches operate the rotary actuators (26). These electro mechanical switches are part of main PCB.
  • the wheel assembly (20) has collar from inside to keep wheels on the track (50) just like railway wheels. Specifically, the wheel assembly (20) is configured to sit on the track (50) when in expanded position by means of horizontal linear actuator (22).
  • the horizontal linear actuator (22) provides self-retracting mechanism to retract the system (100) from the track (50). Specifically, the system (100) hides itself under the rail height at the center of rails, so that the train can pass over it without needing to be taken out.
  • the four vertical linear actuators (28) are configured below the chassis (10) lifting and lowering the chassis (10) as and when required.
  • the system (100) includes a vibration sensor (not shown) configured on the chassis (10) and coupled operatively to the horizontal linear actuator (22) and the four vertical linear actuators (28).
  • the vibration sensor senses the vibration in the rail track (50) caused due to upcoming train.
  • the vibration sensor actuates the vertical linear actuator (28) to lift the entire chassis (10) so that the wheel assembly (20) is above the track (50) and then the horizontal linear actuator (22) retracts so that the wheel assembly (20) is at the center of the chassis.
  • the vertical linear actuator (28) then again unlifts the entire chassis (10) so that train can pass over the system (100).
  • the system (100) get lifted itself by vertical linear actuators (28) and the wheel assembly (20) is pushed away from the centre of the chassis (10) to get the wheels on the track.
  • the communication means is configured on the chassis (10).
  • the communication means is at least one foldable antenna (30) configured over the chassis (10) for seamless communication using internet or similar communication means.
  • the communication means send the collected data from the sensors and cameras to the master computer on a cloud server.
  • the master computer processes the data and gives the results in terms of type of failure and its magnitude with the exact location of the track (50)
  • the microcontroller (34) controls the sensor assembly and a power source such as battery (32) for powering the microcontroller (34), the sensor assembly and other electronics of the system (100).
  • a power source such as battery (32) for powering the microcontroller (34), the sensor assembly and other electronics of the system (100).
  • FIG. 5 shows a flowchart of working of the autonomous track monitoring system (100) in accordance with the present invention.
  • the system (100) is placed in rest position in between the tracks (50) supported by the vertical linear actuators (28) on the track block (52).
  • the system (100) is lifted by the vertical linear actuators (28) supported on the track blocks (52). Then the system (100) extends the wheels assembly (20) using the horizontal linear actuators (22) over the track (50) wherein the system (100) is supported by vertical linear actuators (28) on the track blocks (52).
  • the system (100) then unfold its communication antenna (30) and the external camera (18), wherein the system (100) is still supported by vertical linear actuators (28) on the track blocks (52).
  • system (100) is supported by vertical linear actuators (28) on the track blocks (52) and also supported on the tracks (50) through the wheels assembly (20) as the wheels assembly (20) is expanded by means of horizontal linear actuator (22). Now, the system (100) is ready to move on the track (16).
  • the system (100) can sense upcoming the train on the track (50) and can retract itself to the center of track (50), so that trains don’t need to stop and passes over the system (100).
  • the system (100) of the present invention is capable of performing following operations
  • the system (100) detects any fracture or any crack in the track (50).
  • the system (100) detects any kink or misalignment or dip in track (50).
  • the system (100) detects foreign elements on or off the tracks (50) which may affect transportation.
  • the system (100) detects any missing parts like fishplates, fish bolts and elastic rail clip or other missing parts in track (50).
  • the system (100) detects position of elastic rail clips.
  • the system (100) detects abnormalities at rail crossings.
  • the system (100) detects overflow of water, stagnation of water near track.
  • the system (100) detects condition of height gauges near crossings. 9. The system (100) immediately reports unsafe track condition to respective authority.
  • the system (100) raises an e alarm and stop the train or permit the train movement at reduced speed as per situations requirement.
  • the system (100) has ability to detect health of power transmission wire of electric train.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

L'invention divulgue un système de surveillance de voies autonome (100). Le système (100) selon la présente invention fournit un véhicule robotisé sans pilote, qui peut circuler sur les voies ferrées et inspecter les voies en ce qui concerne des conditions quelconques parmi des irrégularités, des gênes, des fissures, une densité de pierres, un écart, un angle de dévers de voies, des empiètements, et analogues. Le système (100) comprend un châssis (10), un ensemble capteur conçu sur le châssis (10), au moins deux actionneurs linéaires (22), au moins deux ensembles roues (20), au moins quatre actionneurs linéaires verticaux (28), un microcontrôleur, un moyen de communication et une source d'alimentation servant à alimenter le microcontrôleur et l'ensemble capteur. Le système (100) peut détecter l'arrivée du train sur la voie (50) et peut se retirer au centre de la voie (50), de sorte que les trains n'ont pas besoin de s'arrêter et qu'ils passent au-dessus du système (100).
PCT/IN2023/050326 2022-08-10 2023-04-03 Système de surveillance de voies autonome WO2024033933A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN202221045601 2022-08-10
IN202221045601 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024033933A1 true WO2024033933A1 (fr) 2024-02-15

Family

ID=89851124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2023/050326 WO2024033933A1 (fr) 2022-08-10 2023-04-03 Système de surveillance de voies autonome

Country Status (1)

Country Link
WO (1) WO2024033933A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160002865A1 (en) * 2014-07-07 2016-01-07 Rail Pod Incorporated Automated track inspection system
US20190161095A1 (en) * 2017-11-29 2019-05-30 Sperry Rail Holdings, Inc. System and method for inspecting a rail

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160002865A1 (en) * 2014-07-07 2016-01-07 Rail Pod Incorporated Automated track inspection system
US20190161095A1 (en) * 2017-11-29 2019-05-30 Sperry Rail Holdings, Inc. System and method for inspecting a rail

Similar Documents

Publication Publication Date Title
CN111016932B (zh) 节能型空轨系统的轨道巡检车和检测方法
CN107458420B (zh) 机车车辆车顶的整备机器人、作业装置及系统
CN111005272B (zh) 一种基于悬挂式磁悬浮轨道交通系统的轨道维护设备
CN207657835U (zh) 一种适用于空轨轨道的自动走行检测装置
CN107200038B (zh) 一种车辆检修装置及检修方法
EP3333043B1 (fr) Procédé et système d'inspection de rail
CN206125056U (zh) 一种中低速磁悬浮f轨探伤机器人
CN107901947A (zh) 一种适用于空轨轨道的自动走行检测装置
RU2618660C1 (ru) Система интервального регулирования движения поездов на базе радиоканала
KR102088409B1 (ko) 입환 자동 제어 시스템 및 그 제어 방법
WO2014027977A1 (fr) Procédé de détection de fractures et de fissures de rail
WO2018040581A1 (fr) Robot d'opération auxiliaire pour train à lévitation magnétique à moyenne et basse vitesse
CN110687125A (zh) 一种智能化桥梁检查系统及检查方法
CN110667726A (zh) 一种应用于地铁车辆列检库内四足行走巡检机器人
US11673590B2 (en) Inspection system for amusement rides having tracks
JP3448088B2 (ja) 支障物検知システム
WO2017219655A1 (fr) Système de véhicules ferroviaires
CN105857341A (zh) 一种智能铁路轨道巡检机器人
CN103109020A (zh) 用于进行轨道施工的设备
CN109853378A (zh) 一种便捷式桥梁用检查小车、救援及桥梁检测方法
WO2024033933A1 (fr) Système de surveillance de voies autonome
JP7416973B2 (ja) 鉄道環境オブジェクトの潜在的な欠陥を識別するためのシステム及び方法
CN201016002Y (zh) 利用结构光识别铁路车辆配件运用状态检测装置
KR102080051B1 (ko) 자율운행체를 이용한 도시철도 안전운행 시스템
EP2481851A1 (fr) Plateforme pour une utilisation dans un système de mise en place et/ou suppression d'une charge utile sur des rails de chemin de fer et procédé de mise en place et/ou suppression correspondant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852128

Country of ref document: EP

Kind code of ref document: A1