WO2024032797A1 - 信号质量的测量方法、终端设备、网络设备以及存储介质 - Google Patents

信号质量的测量方法、终端设备、网络设备以及存储介质 Download PDF

Info

Publication number
WO2024032797A1
WO2024032797A1 PCT/CN2023/112729 CN2023112729W WO2024032797A1 WO 2024032797 A1 WO2024032797 A1 WO 2024032797A1 CN 2023112729 W CN2023112729 W CN 2023112729W WO 2024032797 A1 WO2024032797 A1 WO 2024032797A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
measurement object
mac
pdcch
signaling
Prior art date
Application number
PCT/CN2023/112729
Other languages
English (en)
French (fr)
Inventor
周化雨
潘振岗
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2024032797A1 publication Critical patent/WO2024032797A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of communication technology, and in particular to a signal quality measurement method, terminal equipment, network equipment and storage media.
  • the cell (Cell) corresponding to a certain frequency band (such as 4GHz, 6GHz, etc.) does not need to carry data, nor does it need to Send common signals and/or common channels, which can be turned on or off as needed.
  • cells that can be turned on or off on demand can be called non-anchor cells or conversion target cells or target cells.
  • the anchor cell before a non-anchor cell is turned on (that is, a terminal device switches from an anchor cell to a non-anchor cell), the anchor cell needs to determine a non-anchor cell suitable for serving the terminal device based on the location information of the terminal device. That is, the anchor cell can notify the non-anchor cell to send a measurement reference signal to the terminal device, and notify the terminal device to measure the signal quality of the non-anchor cell, so that the anchor cell can determine the signal quality suitable for serving the terminal device based on the measurement results of the terminal device.
  • Non-anchor cells when the anchor cell notifies the terminal device to perform signal quality measurement on the non-anchor cell so that the non-anchor cell can achieve energy saving and timely opening is an issue that needs to be solved urgently.
  • This application provides a signal quality measurement method, terminal equipment, network equipment and storage media, which solves the problem of when to notify the terminal equipment to measure the signal quality of non-anchor cells, so that the non-anchor cells can achieve energy saving and timely opening.
  • this application provides a signal quality measurement method, including:
  • the measurement object includes a measurement reference signal
  • the measurement reference signal is a measurement reference signal on the target cell.
  • the measurement reference signal includes a synchronization signal block.
  • the PDCCH or the MAC-CE signaling contains the identification ID of the measurement object.
  • the PDCCH or the MAC-CE signaling contains the index or number of the measurement object.
  • the PDCCH or the MAC-CE signaling contains the first information that the measurement object is in the candidate measurement object list, and the first information includes ID, index and number. Any kind.
  • the PDCCH or the MAC-CE signaling contains one or more PCIs in the physical cell identity PCI list of the measurement object.
  • the PDCCH or the MAC-CE signaling contains an index or number of the PCI, and the index or number of the PCI corresponds to one or more PCIs in the PCI list.
  • the PDCCH or the MAC-CE signaling contains the synchronization measurement timing configuration SMTC of the measurement object.
  • the PDCCH or the MAC-CE signaling contains an index or number of the SMTC, and the index or number of the SMTC corresponds to one or more SMTCs.
  • determining whether the measurement object is valid according to PDCCH or MAC-CE signaling includes:
  • the PDCCH or the MAC-CE signaling it is determined whether the measurement object is valid after the first period of time.
  • the first duration is a preset duration.
  • the first duration is a configured duration.
  • this application provides a signal quality measurement method, including:
  • the radio resource control RRC signaling after the first period of time, it is determined that the measurement object is effective.
  • the measurement object includes a measurement reference signal
  • the measurement reference signal is a measurement reference signal on the target cell.
  • the measurement reference signal includes a synchronization signal block.
  • the first duration is a preset duration.
  • the first duration is a configured duration.
  • this application provides a signal quality measurement method, including:
  • the PDCCH or the MAC-CE signaling contains an identification ID of the measurement object.
  • the PDCCH or the MAC-CE signaling contains an index or number of the measurement object.
  • the PDCCH or the MAC-CE signaling contains first information that the measurement object is in the candidate measurement object list, and the first information includes any one of ID, index and number. kind.
  • the PDCCH or the MAC-CE signaling contains one or more PCIs in the physical cell identity PCI list of the measurement object.
  • the PDCCH or the MAC-CE signaling contains an index or number of the PCI, and the index or number of the PCI corresponds to one or more PCIs in the PCI list.
  • the PDCCH or the MAC-CE signaling contains the synchronization measurement timing configuration SMTC of the measurement object.
  • the PDCCH or the MAC-CE signaling further includes an index or number of the SMTC, and the index or number of the SMTC corresponds to one or more SMTCs.
  • this application provides a signal quality measurement method, including:
  • Radio resource control RRC signaling is sent, and after the first period of time, it is determined that the measurement object is effective.
  • the RRC signaling includes measurement objects
  • the measurement object includes a measurement reference signal, and the measurement reference signal is a measurement reference signal on the target cell.
  • the measurement reference signal includes a synchronization signal block.
  • the first duration is a preset duration.
  • the first duration is a configured duration.
  • this application provides a signal quality measurement device, including:
  • the determination module is used to determine whether the measurement object is valid based on the physical downlink control channel PDCCH or the medium access control unit MAC-CE signaling.
  • the measurement object includes a measurement reference signal
  • the measurement reference signal is a measurement reference signal on the target cell.
  • the measurement reference signal includes a synchronization signal block.
  • the PDCCH or the MAC-CE signaling contains the identification ID of the measurement object.
  • the PDCCH or the MAC-CE signaling contains the index or number of the measurement object.
  • the PDCCH or the MAC-CE signaling contains the first information that the measurement object is in the candidate measurement object list, and the first information includes ID, index and number. Any kind.
  • the PDCCH or the MAC-CE signaling contains one or more PCIs in the physical cell identity PCI list of the measurement object.
  • the PDCCH or the MAC-CE signaling also includes an index or number of the PCI, and the index or number of the PCI corresponds to one or more items in the PCI list. PCI.
  • the PDCCH or the MAC-CE signaling contains the synchronization measurement timing configuration SMTC of the measurement object.
  • the determining module is also used to:
  • the PDCCH or the MAC-CE signaling it is determined whether the measurement object is valid after the first period of time.
  • the first duration is a preset duration.
  • the first duration is a configured duration.
  • this application provides a signal quality measurement device, including:
  • the determining module is configured to determine that the measurement object is effective after a first period of time according to the radio resource control RRC signaling.
  • the measurement object includes a measurement reference signal
  • the measurement reference signal is a measurement reference signal on the target cell.
  • the measurement reference signal includes a synchronization signal block.
  • the first duration is a preset duration.
  • the first duration is a configured duration.
  • this application provides a signal quality measurement device, including:
  • the sending module is used to send physical downlink control channel PDCCH or medium access control unit MAC-CE signaling to indicate whether the measurement object is valid.
  • the PDCCH or the MAC-CE signaling contains test The identification ID of the quantity object.
  • the PDCCH or the MAC-CE signaling contains an index or number of the measurement object.
  • the PDCCH or the MAC-CE signaling contains first information that the measurement object is in the candidate measurement object list, and the first information includes any one of ID, index and number. kind.
  • the PDCCH or the MAC-CE signaling contains one or more PCIs in the physical cell identity PCI list of the measurement object.
  • the PDCCH or the MAC-CE signaling contains an index or number of the PCI, and the index or number of the PCI corresponds to one or more PCIs in the PCI list.
  • the PDCCH or the MAC-CE signaling contains the synchronization measurement timing configuration SMTC of the measurement object.
  • the PDCCH or the MAC-CE signaling further includes an index or number of the SMTC, and the index or number of the SMTC corresponds to one or more SMTCs.
  • this application provides a signal quality measurement device, including:
  • the sending module is used to send radio resource control RRC signaling, and determine that the measurement object takes effect after the first period of time.
  • the RRC signaling includes measurement objects
  • the measurement object includes a measurement reference signal, and the measurement reference signal is a measurement reference signal on the target cell.
  • the measurement reference signal includes a synchronization signal block.
  • the first duration is a preset duration.
  • the first duration is a configured duration.
  • this application provides a terminal device, including: a processor, and a memory communicatively connected to the processor;
  • the memory stores computer execution instructions
  • the processor executes computer execution instructions stored in the memory to implement the method as described in the first aspect.
  • this application provides a terminal device, including: a processor, and a memory communicatively connected to the processor;
  • the memory stores computer execution instructions
  • the processor executes computer execution instructions stored in the memory to implement the method described in the second aspect.
  • this application provides a network device, including: a processor, and a memory communicatively connected to the processor;
  • the memory stores computer execution instructions
  • the processor executes computer execution instructions stored in the memory to implement the method described in the third aspect.
  • this application provides a network device, including: a processor, and a memory communicatively connected to the processor;
  • the memory stores computer execution instructions
  • the processor executes computer execution instructions stored in the memory to implement the method described in the fourth aspect.
  • the present application provides a computer-readable storage medium in which computer-executable instructions are stored, and when executed by a processor, the computer-executable instructions are used to implement the first to fourth aspects.
  • the present application provides a computer program product, including a computer program that, when executed by a processor, implements the signal quality measurement method described in any one of the first to fourth aspects.
  • the present application provides a chip.
  • a computer program is stored on the chip.
  • the signal quality as described in any one of the first to fourth aspects is achieved. Measurement methods.
  • the chip can also be a chip module.
  • This application provides a signal quality measurement method, terminal equipment, network equipment and storage media.
  • the terminal equipment determines whether the measurement object is valid through the PDCCH or MAC-CE signaling sent by the network equipment, so that the target cell sends a measurement reference signal.
  • the time can be consistent with PDCCH or MAC-CE signaling, and the time to notify the terminal device to measure the target cell can be determined, so that the target cell can achieve energy saving and be opened in time.
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Figure 2 is a schematic flow chart of a signal quality measurement method provided in Embodiment 1 of the present application;
  • FIG. 3 is a schematic flow chart of another signal quality measurement method provided in Embodiment 2 of the present application.
  • Figure 4 is a schematic structural diagram of a signal quality measurement device provided in Embodiment 5 of the present application.
  • Figure 5 is a schematic structural diagram of a signal quality measurement device provided in Embodiment 6 of the present application.
  • Figure 6 is a schematic structural diagram of a signal quality measuring device provided in Embodiment 7 of the present application.
  • Figure 7 is a schematic structural diagram of a signal quality measurement device provided in Embodiment 8 of the present application.
  • Figure 8 is a schematic structural diagram of a terminal device provided in Embodiment 9 of the present application.
  • Figure 9 is a schematic structural diagram of a terminal device provided in Embodiment 10 of the present application.
  • Figure 10 is a schematic structural diagram of a network device provided in Embodiment 11 of the present application.
  • Figure 11 is a schematic structural diagram of a network device provided in Embodiment 12 of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G mobile communication system may include non-standalone networking (Non-Standalone, NSA) and/or standalone networking (Standalone, SA).
  • the technical solution provided by this application can also be applied to Machine Type Communication (MTC), Long Term Evolution-Machine (LTE-M), and Device-to-Device (D2D).
  • MTC Machine Type Communication
  • LTE-M Long Term Evolution-Machine
  • D2D Device-to-Device
  • Network Machine Type Communication
  • M2M Machine to Machine
  • IoT Internet of Things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively called Vehicle to X (V2X, X can represent anything),
  • the V2X may include: Vehicle to Vehicle (V2V) communication, Vehicle to Infrastructure (V2I) communication, Vehicle to Pedestrian (V2P) communication, or Vehicle to Network communication (Vehicle to Network, V2N) communication, etc.
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2P Vehicle to Pedestrian
  • V2N Vehicle to Network communication
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system, the seventh generation mobile communication system, etc. This application does not limit this.
  • the cell corresponding to a certain frequency band (such as 4GHz, 6GHz, etc.) does not need to carry data, nor does it need to send public signals and/or public channels, that is, it can Turn it on or off as needed.
  • the carrier or cell that can be turned on/off on demand can be called a non-anchor carrier (Non-Anchor Carrier) or a non-anchor cell, and the non-anchor cell can be called a conversion target cell or a target cell.
  • a cell that is not closed may be called an anchor carrier (Anchor Carrier) or anchor cell (Anchor Cell), or it may be called a first-type carrier or first-type cell.
  • Anchor Carrier Anchor Carrier
  • Anchor Cell Anchor Cell
  • CA Carrier Aggregation
  • DC Direct Connection
  • the anchor cell is the primary carrier (Primary Carrier) or primary carrier component (Primary Carrier Component) or primary cell (Primary Cell, PCell) or primary secondary cell (Primary Secondary Cell, PSCell), that is, the carrier or cell that mainly carries control signaling .
  • Primary Carrier Primary Carrier
  • Primary Cell Primary Cell, PCell
  • Primary Secondary Cell Primary Secondary Cell, PSCell
  • the target cell is usually a secondary carrier (Secondary Carrier), secondary carrier component (Secondary Carrier Component) or secondary cell (Secondary Cell, SCell), that is, a carrier or cell that mainly carries data.
  • secondary carrier Secondary Carrier
  • Secondary Carrier Component Secondary Carrier Component
  • SCell Secondary Cell
  • the switching of the target cell can be understood as the addition, deletion or modification of the secondary cell.
  • the backhaul network (Backhaul) between the anchor cell and the target cell has higher requirements, but the switch of the target cell is easier to implement (through the addition, deletion or modification of the secondary cell).
  • the anchor cell and the target cell are both primary carriers, primary carrier components, primary cells, or primary and secondary cells, that is, carriers or cells that mainly carry control signaling.
  • the opening of the target cell can be understood as a switch from the anchor cell to the target cell
  • the closing of the target cell can be understood as a switch from the target cell to the anchor cell.
  • the requirements for the backhaul network between the anchor cell and the target cell are low, but the switching implementation complexity of the target cell is high.
  • the anchor cell and target cell are similar to the above situation 2.
  • the opening of the target cell can be understood as the conversion from the anchor cell to the target cell
  • the closing of the target cell can be understood as the conversion from the target cell to the anchor cell.
  • the requirements for the backhaul network between the anchor cell and the target cell are low, but the switching implementation complexity of the target cell is high.
  • the on-demand opening process of the target cell is divided into the following two situations:
  • the target cell can be opened before the terminal device completes random access (Random Access). This allows the terminal equipment to use the resources of the target cell as quickly as possible (making the target cell provide more load balancing), and reduces the signaling overhead when the connection state is switched (Handover, HO).
  • the random access process is generally divided into four steps, corresponding to the four channels or messages of the random access channel.
  • the four messages include: Physical Random Access Channel (PRACH), also known as Message 1 (Msg1), Random Access Response (Random Access Response, RAR), also known as Message 2 (Msg2) , Message 3 (Message 3, Msg3) and Message 4 (Message 4, Msg4).
  • PRACH Physical Random Access Channel
  • RAR Random Access Response
  • Msg2 Random Access Response
  • Msg3 Message 3, Msg3
  • Message 4 Message 4, Msg4
  • the timing for opening the target cell may be before the terminal device initiates random access, that is, before sending PRACH. In this way, the terminal device can initiate random access on the target cell or initiate a random access channel (Random Access CHannel, RACH) process, using the PRACH on the target cell.
  • RACH Random Access CHannel
  • the timing for opening the target cell may also be after the terminal device initiates random access but before completing random access, such as before sending message 3. In this way, the terminal device can transfer to the target cell as quickly as possible after initiating random access on the anchor cell.
  • the target cell can be opened after the terminal device completes random access, that is, after completing initial access or after entering the connected state. This allows the target cell to only serve connected terminal devices, increases the shutdown time of the target cell, and makes the target cell more energy-saving.
  • cell switching can be understood as switching from one cell to another when the terminal device is in the connected state.
  • the original serving cell will no longer continue to provide services for the terminal device.
  • the wireless bearer system will find the most suitable
  • the target cell provides continuous services for terminal equipment and realizes mobility management of seamless wireless network coverage.
  • the terminal device can switch from the anchor cell to the target cell when it is in the connected state.
  • the anchor cell needs to determine the information of the terminal equipment, such as which target cell the terminal equipment is covered by and which target cell is suitable for serving the terminal equipment.
  • the anchor cell determines terminal device information in the following three ways:
  • Method 1 The target cell does not send measurement reference signals.
  • the anchor cell reports based on the measurement information reported by the terminal equipment, such as layer one measurement: such as channel quality indicator (Channel Quality Indicator, CQI), layer one reference signal receiving power (Reference Singal Receiving Power, RSRP), layer one signal-to-noise ratio ( Signal to Interference plus Noise Ratio, SINR) and layer 3 measurement reporting (such as layer 3 RSRP, layer 3 SINR), etc., to obtain the location information of the terminal device, and thereby determine which target cell the terminal device is covered by, or where A target cell is suitable for serving terminal equipment.
  • the target cell can save energy by not sending measurement reference signals, but the anchor cell needs to have the ability to estimate the approximate location of the terminal device. Even so, it is still difficult for the anchor cell to accurately determine which target cell the terminal device is covered by. Within, or which target cell is suitable to serve the terminal equipment.
  • Method 2 The target cell always sends measurement reference signals.
  • the base station can configure the measurement of the target cell to the terminal equipment through high-level signaling, by configuring the measurement reference signal of the target cell in the measurement object (Measurement Object, MO).
  • the anchor cell can determine which target cell the terminal device is within the coverage of, or which target cell is suitable for serving the terminal device, through the measurement report of the terminal device. In this way, the anchor cell can better determine which target cell the terminal device is covered by, or which target cell is suitable for serving the terminal device.
  • the target cell needs to always send measurement reference signals, although this can be reduced by configuring a long measurement window period. The energy consumption of the target cell, but the energy consumption of the target cell is still relatively large.
  • Method 3 The target cell sends measurement reference signals on demand.
  • the anchor cell can notify the target cell to start sending the measurement reference signal, and notify the terminal device that the target cell can be measured.
  • the terminal device measures the target cell and reports the measurement results to the anchor cell. In this way, it can not only reduce the transmission of measurement reference signals to achieve the purpose of energy saving, but also enable the anchor cell to better determine which target cell the terminal device is covered by, or which target cell, through measurement and reporting of the target cell. Suitable for service terminal equipment.
  • advancing the notification time of the anchor cell will cause the target cell to send the measurement reference signal prematurely, which is not conducive to energy saving of the target cell and also increases the measurement burden and energy consumption of the terminal equipment.
  • the notification time delay will cause the target cell to send the measurement reference signal too late, resulting in measurement lag of the terminal equipment, and the target cell may not be turned on in time. Therefore, when the anchor cell notifies the terminal device that the target cell can be measured (or when the target cell starts sending the measurement reference signal, or when the target cell's measurement reference signal takes effect) is an issue that needs to be solved urgently.
  • an embodiment of the present application proposes a signal quality measurement method.
  • the terminal equipment transmits the Physical Downlink Control Channel (PDCCH) through the network equipment.
  • PDCCH Physical Downlink Control Channel
  • MAC-CE medium access control control element
  • Cell conversion can generally be divided into two types: conversion between cells within the base station (that is, the anchor cell and the target cell belong to the same base station) and conversion between cells between different base stations (that is, the anchor cell and the target cell belong to different base stations). situation.
  • the base station can turn on or off the target cell as needed.
  • the base station of the anchor cell can enable the base station of the target cell to turn on or off as needed through inter-base station signaling.
  • the target cell, or the base station of the target cell turns on or off the target cell as needed according to core network commands or signal/load requirements. The following application scenarios are explained based on inter-cell conversion between different base stations.
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of the present application. Please refer to Figure 1 , including: a terminal device 101, a base station 102 of an anchor cell, and a base station 103 of a target cell.
  • the base station 102 of the anchor cell sends a notification to the base station 103 of the target cell and sends PDCCH or MAC-CE signaling to the terminal device 101, so that the base station 103 of the target cell sends the measurement reference signal to the terminal device 101, so that the terminal device 101 can according to
  • the PDCCH or MAC-CE signaling determines whether the measurement object is valid, so that the target cell can achieve energy saving and timely opening.
  • the terminal device 101 may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, or an industrial control (Industrial) device.
  • Wireless terminals in Control vehicle terminal equipment, wireless terminals in Self Driving, Road Side Units (RSU), wireless terminal equipment in Remote Medical, Smart Grids Grid), wireless terminal equipment in Transportation Safety, wireless terminal equipment in Smart City, wireless terminal equipment in Smart Home, wearable terminal equipment, etc.
  • the terminal equipment 101 involved in the embodiment of this application may also be called a terminal, terminal equipment (User Equipment, UE), access terminal equipment, vehicle terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device 101 may also be fixed or mobile.
  • the base station 102 and the base station 103 are devices with wireless transceiver functions. Including but not limited to: evolutionary base stations (Evolutional Node B, eNB or eNodeB) in LTE, base stations (gNodeB or gNB) or transceiver nodes (Transmission and Receiving Points, TRP) in NR, base stations in subsequent evolution systems, wireless Access nodes, wireless relay nodes, wireless backhaul nodes, etc. in the Wireless Fidelity (WiFi) system.
  • the base station can be: macro base station, micro base station, pico base station, small station, relay station, etc.
  • FIG 2 is a schematic flowchart of a signal quality measurement method provided in Embodiment 1 of the present application. The method can be executed by a terminal device. Referring to Figure 2, the method includes the following steps.
  • the terminal device can measure the target cell by receiving PDCCH or MAC-CE signaling sent by the network device.
  • the terminal device dynamically adds the measurement object to the measurement object list (MO List) according to PDCCH or MAC-CE signaling. In this way, the terminal device can perform signal measurement on the target cell to determine whether the measurement object is valid. That is to say, since the transmission of PDCCH or MAC-CE signaling is faster, the time when the target cell sends the measurement reference signal (effective time) can be consistent with the PDCCH or MAC-CE signaling, or the target cell does not send measurements. The time when the reference signal is measured (invalid time) can be consistent with PDCCH or MAC-CE signaling, which can effectively solve the problem: when the anchor cell notifies the terminal device that it can measure the target cell (or when the target cell starts transmitting measurement reference signal).
  • the above measurement object includes a measurement reference signal, and the measurement reference signal is a measurement reference signal on the target cell.
  • the measurement reference signal includes a synchronization information block, which can provide timing functions and can be used independently for signal measurement.
  • the PDCCH or MAC-CE signaling contains the identification (Identity Document, ID) of the measurement object. Since each measurement object in the measurement object list has a corresponding identification, that is to say, the measurement object that is indicated to be valid or invalid has itself been configured in the measurement object list, so it only needs to be indicated through MAC-CE signaling. It only matters whether the object is valid.
  • the PDCCH or MAC-CE signaling contains the index (Index) or number (Number) of the measurement object.
  • the index or number of the measurement object is specifically used for the measurement object of the target cell measurement reference signal. That is to say, the network device only indexes or numbers the measurement object of the target cell measurement reference signal. The index or number of The number is relatively small, so the bit overhead of PDCCH or MAC-CE signaling can be reduced.
  • the PDCCH or MAC-CE signaling contains first information that the measurement object is in the candidate measurement object list, where the first information includes any one of ID, index and number.
  • the measurement object taking effect can be equivalent to adding the measurement object from the candidate measurement object list to the measurement object list, and the measurement object not taking effect can be equivalent to deleting the measurement object from the measurement object list.
  • measurement objects can be dynamically added or deleted from the measurement object list by using the candidate measurement object list, and the ID, index or number value in the candidate measurement object list is relatively small, which can reduce PDCCH or MAC-CE signaling. bit overhead.
  • the PDCCH or MAC-CE signaling contains one or more PCIs in the PCI (Physical Cell Idendity, PCI) list of the measurement object. Since one measurement object may correspond to multiple PCIs (corresponding through a PCI list), one or more PCIs can be specifically indicated through PDCCH or MAC-CE signaling, and the measurement object of the measurement reference signal of the target cell can be accurately indicated. .
  • PCI Physical Cell Idendity
  • the PDCCH or MAC-CE signaling contains the index or number of the PCI, and the index or number of the PCI corresponds to one or more PCIs in the PCI list.
  • the bit overhead of PDCCH or MAC-CE signaling can be reduced through the PCI index or PCI number.
  • the PDCCH or MAC-CE signaling contains the synchronization measurement timing configuration (Synchronization Measurement Timing Configuration, SMTC) of the measurement object. Since one measurement object may correspond to multiple SMTCs (such as SMTC1, SMTC2, etc.), specifically indicating one or more SMTCs through PDCCH or MAC-CE signaling can accurately indicate the measurement object of the measurement reference signal of the target cell.
  • SMTC Synchronation Measurement Timing Configuration
  • the PDCCH or MAC-CE signaling contains an SMTC index or number, and the SMTC index or number corresponds to one or more SMTCs. That is, the SMTC index or SMTC number is indicated through PDCCH or MAC-CE signaling to indicate the SMTC of the measurement object. In this way, since the measurement reference signal of the target cell has fewer measurement objects, the bit overhead of PDCCH or MAC-CE signaling can be reduced through the SMTC index or SMTC number.
  • the terminal device can determine whether the measurement object is valid after the first time gap (Time Gap) according to PDCCH or MAC-CE signaling.
  • the target cell can send the measurement reference signal.
  • the time can be slightly lagged behind the time point of PDCCH or MAC-CE signaling, which can give the terminal device a buffer time to start modifying the measurement object.
  • the first duration is a preset duration, so that the terminal device does not need to configure the duration in PDCCH or MAC-CE signaling, and the default duration of the terminal device is used, which can reduce signaling overhead.
  • the first duration is the configured duration.
  • the network device can obtain more flexibility by configuring the duration in PDCCH or MAC-CE signaling.
  • the anchor cell determines the need to configure buffering based on the capabilities of the terminal device. size of time.
  • the terminal device determines whether the measurement object is valid through the PDCCH or MAC-CE signaling sent by the network device, so that the target cell can send the measurement reference signal at the same time. Consistent with PDCCH or MAC-CE signaling, the time to notify the terminal device to measure the target cell can be determined, so that the target cell can achieve energy saving and be turned on in time.
  • Embodiment 2 Another signal quality measurement method is explained through Embodiment 2, that is, the terminal device implements measurement of the target cell through Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • FIG. 3 is a schematic flowchart of another signal quality measurement method provided in Embodiment 2 of the present application. This method can be executed by a terminal device. Referring to FIG. 2 , the method includes the following steps.
  • the terminal device can measure the target cell by receiving RRC signaling (such as RRC reconfiguration signaling) sent by the network device.
  • RRC signaling such as RRC reconfiguration signaling
  • the terminal device When the terminal device receives the RRC signaling, it dynamically adds the measurement object to the measurement object list, and starts measuring the measurement object after the first period of time, or adds the measurement object to the measurement object list after the first period of time. , so that the terminal device can start measuring the target cell after the first period of time to confirm that the measurement object is effective. It can be understood that when RRC signaling does not take effect, the terminal device does not need to determine that the measurement object does not take effect.
  • the time when the target cell sends the measurement reference signal can be slightly lagging behind the time point of the RRC signaling. This can reduce the target cell sending the measurement reference signal as much as possible to achieve the purpose of energy saving. Effectively solve the problem: when the anchor cell notifies the terminal device that the target cell can be measured (or when the target cell starts sending the measurement reference signal), and can also give the terminal device a buffer time to start modifying the measurement object.
  • this first duration includes the lag duration of the target cell sending the measurement reference signal and The buffering duration of the terminal device.
  • the above measurement object includes a measurement reference signal, and the measurement reference signal is a measurement reference signal on the target cell.
  • the measurement reference signal includes a synchronization information block, which can provide timing functions and can be used independently for signal measurement.
  • the first duration is a preset duration, so that the terminal device does not need to configure the duration in PDCCH or MAC-CE signaling, and the default duration of the terminal device is used, which can reduce signaling overhead.
  • the first duration is the configured duration.
  • the network device configures the duration in PDCCH or MAC-CE signaling to obtain more flexibility.
  • the anchor cell flexibly configures the target cell according to the current network conditions. The time when the measurement reference signal is sent lags behind the arrival time of RRC signaling transmission to achieve a compromise or balance between timely opening of the target cell and reduction of energy consumption.
  • the terminal device determines that the measurement object is effective after the first duration of the RRC signaling sent by the network device, so that the time at which the target cell sends the measurement reference signal can be shorter than the RRC signaling.
  • the arrival time is slightly delayed, which can reduce the target cell sending measurement reference signals as much as possible to achieve the purpose of energy saving.
  • Embodiment 3 a method for measuring signal quality whose execution subject is a network device will be described through Embodiment 3 and Embodiment 4.
  • Embodiment 3 of the present application provides another signal quality measurement method, which can be executed by a network device.
  • the network device indicates whether the measurement object is valid by sending PDCCH or MAC-CE signaling to the terminal device, that is, instructing the terminal device to dynamically add the measurement object to the measurement object list, so that when the terminal device receives the PDCCH or MAC-CE signaling , dynamically add the measurement object to the measurement object list, so that the terminal device can start measuring the target cell.
  • the PDCCH or MAC-CE signaling contains the identification ID of the measurement object.
  • the PDCCH or MAC-CE signaling contains the index or number of the measurement object.
  • the PDCCH or MAC-CE signaling contains first information that the measurement object is in the candidate measurement object list, and the first information includes any one of ID, index and number.
  • the PDCCH or MAC-CE signaling contains one or more PCIs in the physical cell identifier PCI list of the measurement object.
  • the PDCCH or MAC-CE signaling also contains a PCI index or number, and the PCI index or number corresponds to one or more PCIs in the PCI list.
  • the PDCCH or MAC-CE signaling contains the SMTC of the measurement object.
  • the PDCCH or MAC-CE signaling also contains an SMTC index or number, and the SMTC index or number corresponds to one or more SMTCs.
  • the network device instructs the terminal device to determine whether the measurement object is valid through the PDCCH or MAC-CE signaling sent to the terminal device, so that the target cell sends measurement measurements.
  • the time of the reference signal can be consistent with PDCCH or MAC-CE signaling, and the time of notifying the terminal device to measure the target cell can be determined, so that the target cell can achieve energy saving and timely opening.
  • Embodiment 4 of the present application provides another signal quality measurement method, which can be executed by a network device.
  • the network device can send RRC signaling to the terminal device, and then determine that the measurement object is valid after the first period of time, so as to instruct the terminal device to dynamically add the measurement object to the measurement object list when receiving the RRC signaling.
  • the terminal device starts measuring the measurement object after the first period of time, or adds the measurement object to the measurement object list after the first period of time, so that the terminal device can start measuring the target cell after the first period of time. Measure to confirm that the measurement object is valid.
  • the RRC signaling includes a measurement object, the measurement object includes a measurement reference signal, and the measurement reference signal is a measurement reference signal on the target cell.
  • the measurement reference signal includes a synchronization signal block.
  • the first duration is a preset duration.
  • the first duration is the configured duration.
  • the network device sends RRC signaling to the terminal device to determine whether the measurement object is valid after the first time period to instruct the terminal device to determine whether the measurement object is valid after the first time period. , so that the time when the target cell sends the measurement reference signal can be slightly delayed from the time when the RRC signaling arrives, so that the target cell can send less measurement reference signals as much as possible to achieve the purpose of energy saving.
  • FIG. 4 is a schematic structural diagram of a signal quality measuring device provided in Embodiment 5 of the present application.
  • the device 40 may be a chip or a chip module. Referring to Figure 4, the device 40 includes: a determining module 401.
  • the determination module 401 is used to determine whether the measurement object is valid according to the physical downlink control channel PDCCH or the medium access control control element MAC-CE signaling.
  • the measurement object includes a measurement reference signal
  • the measurement reference signal is the measurement reference signal on the target cell.
  • the measurement reference signal includes a synchronization signal block.
  • the PDCCH or MAC-CE signaling contains the identification ID of the measurement object.
  • the PDCCH or MAC-CE signaling contains the index or number of the measurement object.
  • the PDCCH or MAC-CE signaling contains first information that the measurement object is in the candidate measurement object list, and the first information includes any one of ID, index, and number.
  • the PDCCH or MAC-CE signaling contains one or more PCIs in the physical cell identifier PCI list of the measurement object.
  • the PDCCH or MAC-CE signaling contains a PCI index or number, and the PCI index or number corresponds to one or more PCIs in the PCI list.
  • the PDCCH or MAC-CE signaling contains the synchronization measurement timing configuration SMTC of the measurement object.
  • the determining module 401 is also used to:
  • the PDCCH or MAC-CE signaling it is determined whether the measurement object is valid after the first period of time.
  • the first duration is a preset duration.
  • the first duration is a configured duration.
  • the device of this embodiment can be used to perform the steps of a signal quality measurement method in Embodiment 1.
  • the specific implementation methods and technical effects are similar and will not be described again here.
  • FIG. 5 is a schematic structural diagram of a signal quality measuring device provided in Embodiment 6 of the present application.
  • the device 50 may be a chip or a chip module. Referring to Figure 5, the device 50 includes: a determining module 501.
  • the determining module 501 is configured to determine that the measurement object is valid after a first period of time according to the radio resource control RRC signaling.
  • the measurement object includes a measurement reference signal
  • the measurement reference signal is a measurement reference signal on the target cell.
  • the measurement reference signal includes a synchronization signal block.
  • the first duration is a preset duration.
  • the first duration is a configured duration.
  • the device of this embodiment can be used to perform the steps of a signal quality measurement method in Embodiment 2.
  • the specific implementation methods and technical effects are similar and will not be described again here.
  • FIG. 6 is a schematic structural diagram of a signal quality measuring device provided in Embodiment 7 of the present application. Should The device 60 may be a chip or a chip module. Referring to Figure 6, the device 60 includes: a sending module 601.
  • the sending module 601 is used to send physical downlink control channel PDCCH or medium access control control element MAC-CE signaling to indicate whether the measurement object is valid.
  • the PDCCH or MAC-CE signaling contains the identification ID of the measurement object.
  • the PDCCH or MAC-CE signaling contains the index or number of the measurement object.
  • the PDCCH or MAC-CE signaling contains first information that the measurement object is in the candidate measurement object list, and the first information includes any one of ID, index, and number.
  • the PDCCH or MAC-CE signaling contains one or more PCIs in the physical cell identifier PCI list of the measurement object.
  • the PDCCH or MAC-CE signaling contains a PCI index or number, and the PCI index or number corresponds to one or more PCIs in the PCI list.
  • the PDCCH or MAC-CE signaling contains the synchronization measurement timing configuration SMTC of the measurement object.
  • the PDCCH or MAC-CE signaling also includes an SMTC index or number, and the SMTC index or number corresponds to one or more SMTCs.
  • the device of this embodiment can be used to perform the steps of a signal quality measurement method in Embodiment 3.
  • the specific implementation methods and technical effects are similar and will not be described again here.
  • FIG. 7 is a schematic structural diagram of a signal quality measuring device provided in Embodiment 8 of the present application.
  • the device 70 may be a chip or a chip module. Referring to Figure 7, the device 70 includes: a sending module 701.
  • the sending module 701 is configured to send radio resource control RRC signaling, and after a first period of time, determine that the measurement object is valid.
  • RRC signaling includes measurement objects.
  • the measurement object includes a measurement reference signal, and the measurement reference signal is a measurement reference signal on the target cell.
  • the measurement reference signal includes a synchronization signal block.
  • the first duration is a preset duration.
  • the first duration is a configured duration.
  • the device of this embodiment can be used to perform the steps of a signal quality measurement method in Embodiment 4.
  • the specific implementation methods and technical effects are similar and will not be described again here.
  • FIG 8 is a schematic structural diagram of a terminal device provided in Embodiment 9 of the present application.
  • the terminal device 80 may include: at least one processor 801 and a memory 802.
  • Memory 802 is used to store programs.
  • the program may include program code, which includes computer operating instructions.
  • the memory 802 may include high-speed random access memory (Random Access Memory, RAM), and may also include non-volatile memory (Non-Volatile Memory), such as at least one disk memory.
  • RAM Random Access Memory
  • Non-Volatile Memory non-volatile memory
  • the processor 801 is configured to execute computer execution instructions stored in the memory 802 to implement the method described in the foregoing method embodiments.
  • the processor 801 may be a central processing unit (Central Processing Unit, CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits configured to implement embodiments of the present application. .
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the terminal device 80 may also include: a communication interface 803.
  • a communication interface 803. In terms of specific implementation, if the communication interface 803, the memory 802 and the processor 801 are implemented independently, the communication interface 803, the memory 802 and the processor 801 can be connected to each other through a bus and complete mutual communication.
  • the bus can be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc., but it does not mean that there is only one bus or one type of bus.
  • the communication interface 803, the memory 802 and the processor 801 are integrated on one chip, the communication interface 803, the memory 802 and the processor 801 can communicate through the internal interface.
  • the terminal device 80 may be a chip, a module, an IDE, etc.
  • the terminal device of this embodiment can be used to implement the technical solution of a signal quality measurement method in Embodiment 1.
  • the specific implementation method and technical effect are similar and will not be described again here.
  • Figure 9 is a schematic structural diagram of a terminal device provided in Embodiment 10 of the present application.
  • the terminal device 90 may include: at least one processor 901 and a memory 902.
  • Memory 902 is used to store programs.
  • the program may include program code, which includes computer operating instructions.
  • Memory 902 may include high-speed RAM memory, and may also include non-volatile memory, such as at least one disk memory.
  • the processor 901 is configured to execute computer execution instructions stored in the memory 902 to implement the method described in the foregoing method embodiments.
  • the processor 901 may be a CPU, an ASIC, or one or more integrated circuits configured to implement embodiments of the present application.
  • the terminal device 90 may also include: a communication interface 903.
  • a communication interface 903. In terms of specific implementation, if the communication interface 903, the memory 902 and the processor 901 are implemented independently, the communication interface 903, the memory 902 and the processor 901 can be connected to each other through a bus and complete mutual communication.
  • the bus can be an ISA bus, a PCI bus or an EISA bus, etc.
  • the bus can be divided into address bus, data bus, control bus, etc., but it does not mean that there is only one bus or one type of bus.
  • the communication interface 903, the memory 902 and the processor 901 are integrated on one chip, the communication interface 903, the memory 902 and the processor 901 can complete communication through the internal interface.
  • the terminal device 90 may be a chip, a module, an IDE, etc.
  • the terminal device of this embodiment can be used to implement the technical solution of a signal quality measurement method in Embodiment 2.
  • the specific implementation method and technical effect are similar, and will not be described again here.
  • Figure 10 is a schematic structural diagram of a network device provided in Embodiment 11 of the present application.
  • the network device 100 may include: at least one processor 1001 and a memory 1002.
  • Memory 1002 is used to store programs.
  • the program may include program code, which includes computer operating instructions.
  • the memory 1002 may include high-speed RAM memory, and may also include non-volatile memory, such as at least one disk memory.
  • the processor 1001 is configured to execute computer execution instructions stored in the memory 1002 to implement the method described in the foregoing method embodiments.
  • the processor 1001 may be a CPU, an ASIC, or one or more integrated circuits configured to implement embodiments of the present application.
  • the network device 100 may also include: a communication interface 1003.
  • a communication interface 1003. In terms of specific implementation, if the communication interface 1003, the memory 1002 and the processor 1001 are implemented independently, the communication interface 1003, the memory 1002 and the processor 1001 can be connected to each other through a bus and complete mutual communication.
  • the bus can be an ISA bus, a PCI bus or an EISA bus, etc.
  • the bus can be divided into address bus, data bus, control bus, etc., but it does not mean that there is only one bus or one type of bus.
  • the communication interface 1003, the memory 1002 and the processor 1001 are integrated on one chip, the communication interface 1003, the memory 1002 and the processor 1001 can complete communication through the internal interface.
  • the network device 100 may be a chip, a module, an IDE, etc.
  • the network device of this embodiment can be used to implement the technical solution of a signal quality measurement method in Embodiment 3.
  • the specific implementation method and technical effect are similar and will not be described again here.
  • Figure 11 is a schematic structural diagram of a network device provided in Embodiment 12 of the present application.
  • the network device 110 may include: at least one processor 1101 and a memory 1102.
  • Memory 1102 is used to store programs.
  • the program may include program code, which includes computer operating instructions.
  • the memory 1102 may include high-speed RAM memory, and may also include non-volatile memory, such as at least one disk memory.
  • the processor 1101 is configured to execute computer execution instructions stored in the memory 1102 to implement the method described in the foregoing method embodiments.
  • the processor 1101 may be a CPU, an ASIC, or one or more integrated circuits configured to implement embodiments of the present application.
  • the network device 110 may also include: a communication interface 1103.
  • a communication interface 1103. In terms of specific implementation, if the communication interface 1103, the memory 1102 and the processor 1101 are implemented independently, the communication interface 1103, the memory 1102 and the processor 1101 can be connected to each other through a bus and complete mutual communication.
  • the bus can be an ISA bus, a PCI bus or an EISA bus, etc.
  • the bus can be divided into address bus, data bus, control bus, etc., but it does not mean that there is only one bus or one type of bus.
  • the communication interface 1103, the memory 1102 and the processor 1101 are integrated on one chip, the communication interface 1103, the memory 1102 and the processor 1101 can complete communication through the internal interface.
  • the network device 110 may be a chip, a module, an IDE, etc.
  • the network device in this embodiment can be used to implement the technical solution of a signal quality measurement method in Embodiment 4.
  • the specific implementation method and technical effect are similar, and will not be described again here.
  • Embodiment 13 of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), RAM, magnetic disk or optical disk, etc.
  • the computer readable storage medium stores a computer program. When the computer program is executed by a processor, it is used to implement the technical solutions shown in the above method embodiments. Specific implementation methods and technical effects Similar, we won’t go into details here.
  • Embodiment 14 of the present application provides a computer program product, including a computer program.
  • the computer program is executed by a processor, the technical solution shown in the above method embodiment is implemented.
  • the specific implementation method and technical effect are similar and will not be described again here.
  • Embodiment 15 of the present application provides a chip.
  • a computer program is stored on the chip.
  • the computer program is executed by the chip, the method shown in the above method embodiment is implemented.
  • the chip can also be a chip module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供的一种信号质量的测量方法、终端设备、网络设备以及存储介质。该方法包括:终端设备通过网络设备发送的PDCCH或者MAC-CE信令,确定测量对象是否生效,使得目标小区发送测量参考信号的时刻可以跟PDCCH或者MAC-CE信令保持一致,可以确定通知终端设备对目标小区进行测量的时刻,使得目标小区可以实现节能且及时打开。

Description

信号质量的测量方法、终端设备、网络设备以及存储介质
本申请要求于2022年08月12日提交国家知识产权局、申请号为202210970253.6、申请名称为“信号质量的测量方法、终端设备、网络设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信号质量的测量方法、终端设备、网络设备以及存储介质。
背景技术
在第五代(5th Generation,5G)网络中,由于频谱资源较多,在网络负载较低时,某个频带(例如4GHz、6GHz等)对应的小区(Cell)不需要承载数据,也不需要发送公共信号和/或公共信道,即可以按需打开或者关闭。其中,可以按需打开或者关闭的小区可以称为非锚点小区(Non-anchor Cell)或者转换目标小区或者目标小区。
在相关技术中,非锚点小区打开(即终端设备从锚点小区转换为非锚点小区)之前,锚点小区需要根据终端设备的位置信息,确定适合服务该终端设备的非锚点小区。即锚点小区可以通知非锚点小区向终端设备发送测量参考信号,并通知终端设备对非锚点小区的信号质量进行测量,使得锚点小区根据终端设备的测量结果确定适合服务该终端设备的非锚点小区。但是,锚点小区何时通知终端设备对非锚点小区进行信号质量测量,使得非锚点小区实现节能且及时打开是亟待解决的问题。
发明内容
本申请提供一种信号质量的测量方法、终端设备、网络设备以及存储介质,解决了何时通知终端设备对非锚点小区进行信号质量测量,使得非锚点小区实现节能且及时打开的问题。
第一方面,本申请提供一种信号质量的测量方法,包括:
根据物理下行控制信道PDCCH或者介质访问控制控制单元MAC-CE信令,确定测量对象是否生效。
在一种可能的实施方式中,所述测量对象中包括测量参考信号,所述测量参考信号为目标小区上的测量参考信号。
在一种可能的实施方式中,所述测量参考信号包括同步信号块。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述测量对象的标识ID。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述测量对象的索引或者编号。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述测量对象在候选测量对象列表中的第一信息,所述第一信息包括ID、索引和编号中的任意一种。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述测量对象的物理小区标识PCI列表中的一个或多个PCI。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述PCI的索引或者编号,所述PCI的索引或者编号对应所述PCI列表中的一个或多个PCI。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述测量对象的同步测量定时配置SMTC。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述SMTC的索引或者编号,所述SMTC的索引或者编号对应一个或多个SMTC。
在一种可能的实施方式中,所述根据PDCCH或者MAC-CE信令,确定测量对象是否生效,包括:
根据所述PDCCH或者所述MAC-CE信令,在第一时长后,确定所述测量对象是否生效。
在一种可能的实施方式中,所述第一时长为预设的时长。
在一种可能的实施方式中,所述第一时长为配置的时长。
第二方面,本申请提供一种信号质量的测量方法,包括:
根据无线资源控制RRC信令,在第一时长后,确定测量对象生效。
在一种可能的实施方式中,所述测量对象中包括测量参考信号,所述测量参考信号为目标小区上的测量参考信号。
在一种可能的实施方式中,所述测量参考信号包括同步信号块。
在一种可能的实施方式中,所述第一时长为预设的时长。
在一种可能的实施方式中,所述第一时长为配置的时长。
第三方面,本申请提供一种信号质量的测量方法,包括:
发送物理下行控制信道PDCCH或者介质访问控制控制单元MAC-CE信令,指示测量对象是否生效。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含测量对象的标识ID。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含测量对象的索引或者编号。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含测量对象在候选测量对象列表中的第一信息,所述第一信息包括ID、索引和编号中的任意一种。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含测量对象的物理小区标识PCI列表中的一个或多个PCI。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述PCI的索引或者编号,所述PCI的索引或者编号对应所述PCI列表中的一个或多个PCI。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含测量对象的同步测量定时配置SMTC。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中还包含所述SMTC的索引或者编号,所述SMTC的索引或者编号对应一个或多个SMTC。
第四方面,本申请提供一种信号质量的测量方法,包括:
发送无线资源控制RRC信令,在第一时长后,确定测量对象生效。
在一种可能的实施方式中,所述RRC信令中包含测量对象;
所述测量对象中包括测量参考信号,所述测量参考信号为目标小区上的测量参考信号。
在一种可能的实施方式中,所述测量参考信号包括同步信号块。
在一种可能的实施方式中,所述第一时长为预设的时长。
在一种可能的实施方式中,所述第一时长为配置的时长。
第五方面,本申请提供一种信号质量的测量装置,包括:
确定模块,用于根据物理下行控制信道PDCCH或者介质访问控制控制单元MAC-CE信令,确定测量对象是否生效。
在一种可能的实施方式中,所述测量对象中包括测量参考信号,所述测量参考信号为目标小区上的测量参考信号。
在一种可能的实施方式中,所述测量参考信号包括同步信号块。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述测量对象的标识ID。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述测量对象的索引或者编号。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述测量对象在候选测量对象列表中的第一信息,所述第一信息包括ID、索引和编号中的任意一种。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述测量对象的物理小区标识PCI列表中的一个或多个PCI。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中还包含所述PCI的索引或者编号,所述PCI的索引或者所述编号对应所述PCI列表中的一个或多个PCI。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述测量对象的同步测量定时配置SMTC。
在一种可能的实施方式中,所述确定模块还用于:
根据所述PDCCH或者所述MAC-CE信令,在第一时长后,确定所述测量对象是否生效。
在一种可能的实施方式中,所述第一时长为预设的时长。
在一种可能的实施方式中,所述第一时长为配置的时长。
第六方面,本申请提供一种信号质量的测量装置,包括:
确定模块,用于根据无线资源控制RRC信令,在第一时长后,确定所述测量对象生效。
在一种可能的实施方式中,所述测量对象中包括测量参考信号,所述测量参考信号为目标小区上的测量参考信号。
在一种可能的实施方式中,所述测量参考信号包括同步信号块。
在一种可能的实施方式中,所述第一时长为预设的时长。
在一种可能的实施方式中,所述第一时长为配置的时长。
第七方面,本申请提供一种信号质量的测量装置,包括:
发送模块,用于发送物理下行控制信道PDCCH或者介质访问控制控制单元MAC-CE信令,指示测量对象是否生效。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含测 量对象的标识ID。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含测量对象的索引或者编号。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含测量对象在候选测量对象列表中的第一信息,所述第一信息包括ID、索引和编号中的任意一种。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含测量对象的物理小区标识PCI列表中的一个或多个PCI。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含所述PCI的索引或者编号,所述PCI的索引或者编号对应所述PCI列表中的一个或多个PCI。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中包含测量对象的同步测量定时配置SMTC。
在一种可能的实施方式中,所述PDCCH或者所述MAC-CE信令中还包含所述SMTC的索引或者编号,所述SMTC的索引或者编号对应一个或多个SMTC。
第八方面,本申请提供一种信号质量的测量装置,包括:
发送模块,用于发送无线资源控制RRC信令,在第一时长后,确定测量对象生效。
在一种可能的实施方式中,所述RRC信令中包含测量对象;
所述测量对象中包括测量参考信号,所述测量参考信号为目标小区上的测量参考信号。
在一种可能的实施方式中,所述测量参考信号包括同步信号块。
在一种可能的实施方式中,所述第一时长为预设的时长。
在一种可能的实施方式中,所述第一时长为配置的时长。
第九方面,本申请提供一种终端设备,包括:处理器,以及与所述处理器通信连接的存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,以实现如第一方面所述的方法。
第十方面,本申请提供一种终端设备,包括:处理器,以及与所述处理器通信连接的存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,以实现如第二方面所述的方法。
第十一方面,本申请提供一种网络设备,包括:处理器,以及与所述处理器通信连接的存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,以实现如第三方面所述的方法。
第十二方面,本申请提供一种网络设备,包括:处理器,以及与所述处理器通信连接的存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,以实现如第四方面所述的方法。
第十三方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如第一方面至第四方面任一项所述的信号质量的测量方法。
第十四方面,本申请提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现第一方面至第四方面任一项所述的信号质量的测量方法。
第十五方面,本申请提供一种芯片,所述芯片上存储有计算机程序,所述计算机程序被所述芯片执行时,实现如第一方面至第四方面任一项所述的信号质量的测量方法。该芯片还可以为芯片模组。
本申请提供的一种信号质量的测量方法、终端设备、网络设备以及存储介质,终端设备通过网络设备发送的PDCCH或者MAC-CE信令,确定测量对象是否生效,使得目标小区发送测量测量参考信号的时刻可以跟PDCCH或者MAC-CE信令保持一致,可以确定通知终端设备对目标小区进行测量的时刻,使得目标小区可以实现节能且及时打开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为本申请实施例提供的一种应用场景的示意图;
图2为本申请实施例一提供的一种信号质量的测量方法的流程示意图;
图3为本申请实施例二提供的另一种信号质量的测量方法的流程示意图;
图4为本申请实施例五提供的一种信号质量的测量装置的结构示意图;
图5为本申请实施例六提供的一种信号质量的测量装置的结构示意图;
图6为本申请实施例七提供的一种信号质量的测量装置的结构示意图;
图7为本申请实施例八提供的一种信号质量的测量装置的结构示意图;
图8为本申请实施例九提供的一种终端设备的结构示意图;
图9为本申请实施例十提供的一种终端设备的结构示意图;
图10为本申请实施例十一提供的一种网络设备的结构示意图;
图11为本申请实施例十二提供的一种网络设备的结构示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
本申请实施例的技术方案可以适用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、5G移动通信系统或新无线接入技术(New Radio Access Technology,NR)。其中,5G移动通信系统可以包括非独立组网(Non-Standalone,NSA)和/或独立组网(Standalone,SA)。
本申请提供的技术方案还可以适用于机器类通信(Machine Type Communication,MTC)、机器间通信长期演进技术(Long Term Evolution-Machine,LTE-M)、设备到设备(Device-to Device,D2D)网络、机器到机器(Machine to Machine,M2M)网络、物联网(Internet of Things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(Vehicle to X,V2X,X可以代表任何事物), 例如,该V2X可以包括:车辆到车辆(Vehicle to Vehicle,V2V)通信,车辆与基础设施(Vehicle to Infrastructure,V2I)通信、车辆与行人之间的通信(Vehicle to Pedestrian,V2P)或车辆与网络(Vehicle to Network,V2N)通信等。
本申请提供的技术方案还可以适用于未来的通信系统,如第六代移动通信系统、第七代移动通信系统等。本申请对此不作限定。
为了更清楚的说明本申请,下面首先对本申请涉及的相关技术进行介绍。
在5G网络中,由于频谱资源较多,在网络负载较低时,某个频带(例如4GHz、6GHz等)对应的小区不需要承载数据,也不需要发送公共信号和/或公共信道,即可以按需打开或者关闭。其中,可以按需打开/关闭的载波或小区可以称为非锚点载波(Non-Anchor Carrier)或者非锚点小区,非锚点小区可以称为转换目标小区或目标小区。
相对地,不关闭的小区可以称为锚点载波(Anchor Carrier)或锚点小区(Anchor Cell),或者称为第一类载波或第一类小区。
(1)锚点小区和目标小区(非锚点小区)
在载波聚合(Carrier Aggregation,CA)/双连接(Dual Connection,DC)中,锚点小区和目标小区有以下两种情况:
情况一:
锚点小区是主载波(Primary Carrier)或主载波成分(Primary Carrier Component)或主小区(Primary Cell,PCell)或主辅小区(Primary Secondary Cell,PSCell),即主要承载控制信令的载波或小区。
目标小区通常是辅载波(Secondary Carrier)、辅载波成分(Secondary Carrier Component)或者辅小区(Secondary Cell,SCell),即主要承载数据的载波或小区。
在这种情况下,目标小区的开关可以理解为辅小区的添加、删除或修改。锚点小区和目标小区之间的回传网络(Backhaul)的要求较高,但目标小区的开关更容易实现(通过辅小区的添加、删除或修改)。
情况二:
锚点小区和目标小区都是主载波、主载波成分、主小区或者主辅小区,即主要承载控制信令的载波或小区。此时目标小区的打开可以为锚点小区到目标小区的转换(Switch),目标小区的关闭可以理解为目标小区到锚点小区的转换。
在这种情况下,锚点小区和目标小区之间的回传网络的要求较低,但目标小区的开关实现复杂度较高。
在非CA/DC中,锚点小区和目标小区类似于上述情况二,目标小区的打开可以理解为锚点小区到目标小区的转换,目标小区的关闭可以为目标小区到锚点小区的转换。此时,锚点小区和目标小区之间的回传网络的要求较低,但目标小区的开关实现复杂度较高。
(2)目标小区打开
一般来说,目标小区的按需打开流程分为以下两种情形:
情形一:
目标小区打开的时机可以在终端设备完成随机接入(Random Access)之前。这样可以尽快让终端设备使用目标小区的资源(令目标小区提供更多的负载均衡),并且减小连接态进行切换(Handover,HO)时的信令开销。
其中,随机接入过程一般分为四个步骤,分别对应随机接入信道的四个信道或消息。四个消息包括:物理随机接入信道(Physical Random Access Channel,PRACH)也称消息1(Message 1,Msg1)、随机接入响应(Random Access Response,RAR)也称消息2(Message 2,Msg2)、消息3(Message 3,Msg3)和消息4(Message 4,Msg4)。目标小区打开的时机可以是终端设备发起随机接入之前,即发送PRACH前。这样,终端设备可以在目标小区上发起随机接入或发起随机接入信道(Random Access CHannel,RACH)过程,使用目标小区上的PRACH。
目标小区打开的时机也可以是终端设备发起随机接入之后完成随机接入之前,如发送消息3之前。这样,终端设备可以在锚点小区上发起随机接入后,尽快地转移到目标小区上。
情形二:
目标小区打开的时机可以在终端设备完成随机接入之后,即完成初始接入之后或进入连接态之后。这样可以让目标小区仅仅服务于连接态的终端设备,增加目标小区的关闭时间,使得目标小区更加节能。
其中,小区的转换可以理解为当终端设备处于连接态时,从一个小区转换到另一个小区,原来的服务小区不再为终端设备继续提供服务,为了不中断业务,无线承载系统将寻找最合适的目标小区为终端设备提供继续服务,实现无线网络无缝覆盖的移动性管理。
在上述情况二中,终端设备在连接态时,可以从锚点小区转换到目标小区。在转换前,锚点小区需要确定终端设备的信息,例如终端设备在哪一个目标小区覆盖内、哪一个目标小区适合服务终端设备。
通常情况下,锚点小区确定终端设备的信息的方式有以下三种方式:
方式一:目标小区不发送测量参考信号。
锚点小区根据终端设备上报的测量信息,如层一测量上报:如信道质量指示(Channel Quality Indicator,CQI)、层一参考信号接收功率(Reference Singal Receiving Power,RSRP)、层一信噪比(Signal to Interference plus Noise Ratio,SINR)以及层三测量上报(如层三RSRP、层三SINR)等,来获得终端设备的位置信息,并以此确定终端设备在哪一个目标小区覆盖内,或者哪一个目标小区适合服务终端设备。这样,目标小区可以不发送测量参考信号,达到节能的目的,但是需要锚点小区具备推测终端设备大概位置的能力,即便如此,锚点小区仍然难以较准确的确定终端设备在哪一个目标小区覆盖内,或者哪一个目标小区适合服务该终端设备。
方式二:目标小区一直发送测量参考信号。
由于此时终端设备处于连接态,基站可以通过高层信令给终端设备配置目标小区的测量,通过在测量对象(Measurement Object,MO)中配置目标小区的测量参考信号。锚点小区可以通过终端设备的测量上报,来判断终端设备在哪一个目标小区覆盖内,或者哪一个目标小区适合服务终端设备。这样,锚点小区能较好地确定终端设备在哪一个目标小区覆盖内,或者哪一个目标小区适合服务终端设备,但是目标小区需要一直发送测量参考信号,虽然通过配置长的测量窗口周期可以减少目标小区的能耗,但目标小区的能耗还是较大。
方式三:目标小区按需地发送测量参考信号。
锚点小区可以通知目标小区开始发送测量参考信号,并通知终端设备可以对目标小区进行测量,终端设备对目标小区进行测量并将测量结果上报给锚点小区。这样,既能减少测量参考信号的发送来达到节能的目的,又能通过对目标小区的测量上报,令锚点小区能较好地确定终端设备在哪一个目标小区覆盖内,或者哪一个目标小区适合服务终端设备。
在上述方式三中,锚点小区通知的时间提前会导致目标小区需要过早发送测量参考信号,不利于目标小区节能,同时也增加了终端设备的测量负担和能耗。通知的时间延迟会导致目标小区发送测量参考信号过晚,导致终端设备的测量滞后,以及目标小区可能没有及时打开。所以,锚点小区何时通知终端设备可以对目标小区进行测量,(或者何时目标小区开始发送测量参考信号,或者目标小区的测量参考信号何时生效),是亟待解决的问题。
有鉴于此,本申请实施例提出一种信号质量的测量方法,终端设备通过网络设备发送的物理下行控制信道(Physical Downlink Control Channel,PDCCH) 或者介质访问控制控制单元(Medium Access Control Control Element,MAC-CE)信令,确定测量对象是否生效,使得目标小区发送测量测量参考信号的时刻可以跟PDCCH或者MAC-CE信令保持一致,可以确定通知终端设备对目标小区进行测量的时刻,使得目标小区可以实现节能且及时打开。
为了便于理解,下面结合图1,对本申请实施例所适用的应用场景进行说明。
小区的转换一般可以分为:基站内部小区间的转换(即锚点小区和目标小区属于同一个基站)和不同基站间的小区间的转换(即锚点小区和目标小区属于不同的基站)两种情况。
对于基站内部小区间的转换,基站可以按需打开或关闭目标小区,而对于不同基站间的小区间的转换,锚点小区的基站可以通过基站间信令让目标小区的基站按需打开或关闭目标小区,或者,目标小区的基站根据核心网命令或信号/负荷需求,按需打开或关闭目标小区,以下应用场景基于不同基站间的小区间的转换进行说明。
图1为本申请实施例提供的一种应用场景的示意图。请参见图1,包括:终端设备101、锚点小区的基站102和目标小区的基站103。锚点小区的基站102通过向目标小区的基站103发送通知,向终端设备101发送PDCCH或者MAC-CE信令,使得目标小区的基站103向终端设备101发送测量参考信号,使得终端设备101可以根据该PDCCH或者MAC-CE信令,确定测量对象是否生效,以实现目标小区可以实现节能且及时打开。
可以理解,终端设备101、基站102和基站103的数量均可以为多个,图中未示出。终端设备101可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(Industrial Control)中的无线终端、车辆终端设备、无人驾驶(Self Driving)中的无线终端、路侧设备(Road Side Unit,RSU)、远程医疗(Remote Medical)中的无线终端设备、智能电网(Smart Grid)中的无线终端设备、运输安全(Transportation Safety)中的无线终端设备、智慧城市(Smart City)中的无线终端设备、智慧家庭(Smart Home)中的无线终端设备、可穿戴终端设备等。本申请实施例所涉及的终端设备101还可以称为终端、终端设备(User Equipment,UE)、接入终端设备、车辆终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、无线通信设备、UE代理或UE装置等。终端设备101也可以是固定的或者移动的。
基站102和基站103是一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(Evolutional Node B,eNB或eNodeB)、NR中的基站(gNodeB或gNB)或收发节点(Transmission and Receiving Points,TRP)、后续演进系统中的基站、无线保真(Wireless Fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。基站可以是:宏基站、微基站、微微基站、小站、中继站等。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以独立存在,也可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图2为本申请实施例一提供的一种信号质量的测量方法的流程示意图,该方法可以由终端设备执行,参考图2,该方法包括如下步骤。
S201、接收PDCCH或者MAC-CE信令。
终端设备可以通过接收网络设备发送的PDCCH或者MAC-CE信令,以实现对目标小区进行测量。
S202、根据PDCCH或者MAC-CE信令,确定测量对象是否生效。
终端设备根据PDCCH或者MAC-CE信令,将测量对象动态添加到测量对象列表(MO List)中,这样,终端设备即可对目标小区进行信号测量,以确定测量对象是否生效。也就是说,由于PDCCH或MAC-CE信令的传输较快,目标小区发送测量测量参考信号的时刻(生效时刻),可以跟PDCCH或MAC-CE信令保持一致,或者,目标小区不发送测量测量参考信号的时刻(不生效时刻)可以跟PDCCH或MAC-CE信令保持一致,能有效解决问题:锚点小区何时通知终端设备可以对目标小区进行测量(或者说何时目标小区开始发送测量参考信号)。
可选的,上述测量对象中包括测量参考信号,该测量参考信号为目标小区上的测量参考信号。
可选的,测量参考信号包括同步信息块,该同步信息块可以提供定时功能,可独立用于信号测量。
可选的,PDCCH或者MAC-CE信令中包含测量对象的标识(Identity Document,ID)。由于测量对象列表中的每个测量对象都有相应的标识,也就是说,被指示生效或不生效的测量对象本身已经被配置在测量对象列表中,因此只需要通过MAC-CE信令指示这个对象是否生效即可。
可选的,PDCCH或者MAC-CE信令中包含测量对象的索引(Index)或者编号(Number)。需要说明的是,该测量对象的索引或者编号专门用于目标小区测量参考信号的测量对象,也就是说,网络设备只针对目标小区测量参考信号的测量对象进行索引或编号,该索引或编号的数字比较小,因此可以降低PDCCH或MAC-CE信令的比特开销。
可选的,PDCCH或者MAC-CE信令中包含测量对象在候选(Candidate)测量对象列表中的第一信息,其中,第一信息包括ID、索引和编号中的任意一种。需要说明的是,测量对象生效可以等价于将测量对象从候选测量对象列表中添加到测量对象列表,测量对象不生效可以等价于将测量对象从测量对象列表中删除。这样,通过采用候选测量对象列表就能将测量对象动态地从测量对象列表中添加或删除,并且候选测量对象列表中的ID、索引或编号的数值比较小,可以降低PDCCH或MAC-CE信令的比特开销。
可选的,PDCCH或者MAC-CE信令中包含测量对象的PCI(Physical Cell Idendity,PCI)列表中的一个或多个PCI。由于一个测量对象可能对应多个PCI(通过PCI列表的方式进行对应),因此通过PDCCH或MAC-CE信令可以具体指示一个或多个PCI,可以准确地指示目标小区的测量参考信号的测量对象。
可选的,PDCCH或者MAC-CE信令中包含PCI的索引或者编号,PCI的索引或者编号对应PCI列表中的一个或多个PCI。这样,由于目标小区的测量参考信号的测量对象较少,通过PCI索引或PCI编号可以降低PDCCH或MAC-CE信令的比特开销。
可选的,PDCCH或者MAC-CE信令中包含测量对象的同步测量定时配置(Synchronization Measurement Timing Configuration,SMTC)。由于一个测量对象可能对应多个SMTC(如SMTC1、SMTC2等),因此通过PDCCH或MAC-CE信令具体指示一个或多个SMTC,可以准确地指示目标小区的测量参考信号的测量对象。
可选的,PDCCH或者MAC-CE信令中包含SMTC的索引或者编号,SMTC的索引或者编号对应一个或多个SMTC。也就是说,通过PDCCH或MAC-CE信令指示SMTC索引或SMTC编号,以指示测量对象的SMTC。这样,由于目标小区的测量参考信号的测量对象较少,通过SMTC索引或SMTC编号可以降低PDCCH或MAC-CE信令的比特开销。
可选的,终端设备可以根据PDCCH或者MAC-CE信令,在第一时长(Time Gap)后,确定测量对象是否生效,这样,可使得目标小区发送测量参考信号的 时刻可以比PDCCH或MAC-CE信令的时间点稍微滞后,这样可以给终端设备一个缓冲时间来启动对测量对象的修改。
可选的,第一时长为预设的时长,这样终端设备可以不需要在PDCCH或者MAC-CE信令中配置时长,采用终端设备默认的时长,可以减少信令开销。
可选的,第一时长为配置的时长,网络设备这样通过在PDCCH或者MAC-CE信令中配置时长,以获得更多灵活性,例如,锚点小区根据终端设备的能力来判断需要配置缓冲时间的大小。
在本实施例中,由于PDCCH或者MAC-CE信令传输较快,终端设备通过网络设备发送的PDCCH或者MAC-CE信令,确定测量对象是否生效,使得目标小区发送测量测量参考信号的时刻可以跟PDCCH或者MAC-CE信令保持一致,可以确定通知终端设备对目标小区进行测量的时刻,使得目标小区可以实现节能且及时打开。
下面,通过实施例二对另外一种信号质量的测量方法进行说明,即终端设备通过无线资源控制(Radio Resource Control,RRC)信令,实现对目标小区的测量。
图3为本申请实施例二提供的另一种信号质量的测量方法的流程示意图,该方法可以由终端设备执行,参考图2,该方法包括如下步骤。
S301、接收RRC信令。
终端设备可以通过接收网络设备发送的RRC信令(如RRC重配置信令),以实现对目标小区进行测量。
S302、根据RRC信令,在第一时长后,确定测量对象生效。
终端设备接收到RRC信令时,将测量对象动态添加到测量对象列表中,在第一时长后,开始对该测量对象进行测量,或者,在第一时长后将测量对象添加到测量对象列表中,这样终端设备就能在第一时长后才开始对目标小区进行测量,以确定测量对象生效。可以理解,当RRC信令不生效,则终端设备无需确定测量对象不生效。
这样,由于RRC信令的传输比较慢,目标小区发送测量参考信号的时刻可以比RRC信令的时间点稍微滞后,这样可以尽可能地减少目标小区发送测量参考信号,以达到节能的目的,能有效解决问题:锚点小区何时通知终端设备可以对目标小区进行测量(或者说何时目标小区开始发送测量参考信号),而且,还可以给终端设备一个缓冲时间来启动对测量对象的修改。
一般来说,这个第一时长包含了目标小区发送测量参考信号的滞后时长和 终端设备的缓冲时长。
可选的,上述测量对象中包括测量参考信号,该测量参考信号为目标小区上的测量参考信号。
可选的,测量参考信号包括同步信息块,该同步信息块可以提供定时功能,可独立用于信号测量。
可选的,第一时长为预设的时长,这样终端设备可以不需要在PDCCH或者MAC-CE信令中配置时长,采用终端设备默认的时长,可以减少信令开销。
可选的,第一时长为配置的时长,网络设备这样通过在PDCCH或者MAC-CE信令中配置时长,以获得更多灵活性,例如,锚点小区根据当前网络状况来灵活地配置目标小区发送测量参考信号的时刻比RRC信令传输到达时刻滞后的时长,达到目标小区及时打开和减少能耗之间的折中或平衡。
在本实施例中,由于RRC信令传输较慢,终端设备通过网络设备发送的RRC信令,在第一时长后,确定测量对象生效,使得目标小区发送测量参考信号的时刻可以比RRC信令到达的时刻稍微滞后,这样可以尽可能地减少目标小区发送测量参考信号,以达到节能的目的。
下面,通过实施例三和实施例四对执行主体为网络设备的信号质量的测量方法进行说明。
本申请实施例三提供的另一种信号质量的测量方法,该方法可以由网络设备执行。
网络设备通过向终端设备发送PDCCH或者MAC-CE信令,指示测量对象是否生效,即指示终端设备将测量对象动态地添加到测量对象列表中,使得终端设备接收到PDCCH或MAC-CE信令时,将测量对象动态地添加到测量对象列表中,这样终端设备就能开始对目标小区进行测量。
可选的,PDCCH或者MAC-CE信令中包含测量对象的标识ID。
可选的,PDCCH或者MAC-CE信令中包含测量对象的索引或者编号。
可选的,PDCCH或者MAC-CE信令中包含测量对象在候选测量对象列表中的第一信息,第一信息包括ID、索引和编号中的任意一种。
可选的,PDCCH或者MAC-CE信令中包含测量对象的物理小区标识PCI列表中的一个或多个PCI。
可选的,PDCCH或者MAC-CE信令中还包含PCI的索引或者编号,PCI的索引或者编号对应PCI列表中的一个或多个PCI。
可选的,PDCCH或者MAC-CE信令中包含测量对象的SMTC。
可选的,PDCCH或者MAC-CE信令中还包含SMTC的索引或者编号,SMTC的索引或者编号对应一个或多个SMTC。
对于上述PDCCH或者MAC-CE信令中的配置信息的描述,可参考实施例一,这里不再赘述。
在本实施例中,由于PDCCH或者MAC-CE信令传输较快,网络设备通过向终端设备发送的PDCCH或者MAC-CE信令,以指示终端设备确定测量对象是否生效,使得目标小区发送测量测量参考信号的时刻可以跟PDCCH或者MAC-CE信令保持一致,可以确定通知终端设备对目标小区进行测量的时刻,使得目标小区可以实现节能且及时打开。
本申请实施例四提供的另一种信号质量的测量方法,该方法可以由网络设备执行。
网络设备可以向终端设备发送RRC信令,然后在第一时长后,确定测量对象生效,以指示终端设备接收到RRC信令时,将测量对象动态添加到测量对象列表中。使得终端设备在第一时长后,开始对该测量对象进行测量,或者,在第一时长后将测量对象添加到测量对象列表中,这样终端设备就能在第一时长后才开始对目标小区进行测量,以确定测量对象生效。
可选的,RRC信令中包含测量对象,测量对象中包括测量参考信号,测量参考信号为目标小区上的测量参考信号。
可选的,测量参考信号包括同步信号块。
可选的,第一时长为预设的时长。
可选的,第一时长为配置的时长。
对于上述信息的描述,可参考实施例二,这里不再赘述。
在本实施例中,由于RRC信令传输较慢,网络设备向终端设备发送RRC信令,第一时长后,确定测量对象生效时,以指示终端设备在第一时长后,确定测量对象是否生效,使得目标小区发送测量参考信号的时刻可以比RRC信令到达的时刻稍微滞后,这样可以尽可能地减少目标小区发送测量参考信号,以达到节能的目的。
图4为本申请实施例五提供的一种信号质量的测量装置的结构示意图。该装置40可以为芯片或者芯片模组。请参见图4,该装置40包括:确定模块401。
确定模块401,用于根据物理下行控制信道PDCCH或者介质访问控制控制单元MAC-CE信令,确定测量对象是否生效。
在一种可能的实施方式中,测量对象中包括测量参考信号,测量参考信号 为目标小区上的测量参考信号。
在一种可能的实施方式中,测量参考信号包括同步信号块。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中包含测量对象的标识ID。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中包含测量对象的索引或者编号。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中包含测量对象在候选测量对象列表中的第一信息,第一信息包括ID、索引和编号中的任意一种。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中包含测量对象的物理小区标识PCI列表中的一个或多个PCI。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中包含PCI的索引或者编号,PCI的索引或者编号对应PCI列表中的一个或多个PCI。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中包含测量对象的同步测量定时配置SMTC。
在一种可能的实施方式中,确定模块401还用于:
根据PDCCH或者MAC-CE信令,在第一时长后,确定测量对象是否生效。
在一种可能的实施方式中,第一时长为预设的时长。
在一种可能的实施方式中,第一时长为配置的时长。
本实施例的装置,可用于执行实施例一中的一种信号质量的测量方法的步骤,具体实现方式和技术效果类似,这里不再赘述。
图5为本申请实施例六提供的一种信号质量的测量装置的结构示意图。该装置50可以为芯片或者芯片模组。请参见图5,该装置50包括:确定模块501。
确定模块501,用于根据无线资源控制RRC信令,在第一时长后,确定测量对象生效。
在一种可能的实施方式中,测量对象中包括测量参考信号,测量参考信号为目标小区上的测量参考信号。
在一种可能的实施方式中,测量参考信号包括同步信号块。
在一种可能的实施方式中,第一时长为预设的时长。
在一种可能的实施方式中,第一时长为配置的时长。
本实施例的装置,可用于执行实施例二中的一种信号质量的测量方法的步骤,具体实现方式和技术效果类似,这里不再赘述。
图6为本申请实施例七提供的一种信号质量的测量装置的结构示意图。该 装置60可以为芯片或者芯片模组。请参见图6,该装置60包括:发送模块601。
发送模块601,用于发送物理下行控制信道PDCCH或者介质访问控制控制单元MAC-CE信令,指示测量对象是否生效。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中包含测量对象的标识ID。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中包含测量对象的索引或者编号。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中包含测量对象在候选测量对象列表中的第一信息,第一信息包括ID、索引和编号中的任意一种。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中包含测量对象的物理小区标识PCI列表中的一个或多个PCI。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中包含PCI的索引或者编号,PCI的索引或者编号对应PCI列表中的一个或多个PCI。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中包含测量对象的同步测量定时配置SMTC。
在一种可能的实施方式中,PDCCH或者MAC-CE信令中还包含SMTC的索引或者编号,SMTC的索引或者编号对应一个或多个SMTC。
本实施例的装置,可用于执行实施例三中的一种信号质量的测量方法的步骤,具体实现方式和技术效果类似,这里不再赘述。
图7为本申请实施例八提供的一种信号质量的测量装置的结构示意图。该装置70可以为芯片或者芯片模组。请参见图7,该装置70包括:发送模块701。
发送模块701,用于发送无线资源控制RRC信令,在第一时长后,确定测量对象生效。
在一种可能的实施方式中,RRC信令中包含测量对象。
测量对象中包括测量参考信号,测量参考信号为目标小区上的测量参考信号。
在一种可能的实施方式中,测量参考信号包括同步信号块。
在一种可能的实施方式中,第一时长为预设的时长。
在一种可能的实施方式中,第一时长为配置的时长。
本实施例的装置,可用于执行实施例四中的一种信号质量的测量方法的步骤,具体实现方式和技术效果类似,这里不再赘述。
图8为本申请实施例九提供的一种终端设备的结构示意图,如图8所示, 终端设备80可以包括:至少一个处理器801和存储器802。
存储器802,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。
存储器802可能包含高速随机存取存储器(Random Access Memory,RAM),也可能还包括非易失性存储器(Non-Volatile Memory),例如至少一个磁盘存储器。
处理器801用于执行存储器802存储的计算机执行指令,以实现前述方法实施例所描述的方法。其中,处理器801可能是一个中央处理器(Central Processing Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。
可选的,终端设备80还可以包括:通信接口803。在具体实现上,如果通信接口803、存储器802和处理器801独立实现,则通信接口803、存储器802和处理器801可以通过总线相互连接并完成相互间的通信。总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果通信接口803、存储器802和处理器801集成在一块芯片上实现,则通信接口803、存储器802和处理器801可以通过内部接口完成通信。
终端设备80可以为芯片、模组、IDE等。
本实施例的终端设备,可用于执行实施例一中一种信号质量的测量方法的技术方案,具体实现方式和技术效果类似,这里不再赘述。
图9为本申请实施例十提供的一种终端设备的结构示意图,如图9所示,终端设备90可以包括:至少一个处理器901和存储器902。
存储器902,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。
存储器902可能包含高速RAM存储器,也可能还包括非易失性存储器,例如至少一个磁盘存储器。
处理器901用于执行存储器902存储的计算机执行指令,以实现前述方法实施例所描述的方法。其中,处理器901可能是一个CPU,或者是ASIC,或者是被配置成实施本申请实施例的一个或多个集成电路。
可选的,终端设备90还可以包括:通信接口903。在具体实现上,如果通信接口903、存储器902和处理器901独立实现,则通信接口903、存储器902和处理器901可以通过总线相互连接并完成相互间的通信。总线可以是ISA总线、PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果通信接口903、存储器902和处理器901集成在一块芯片上实现,则通信接口903、存储器902和处理器901可以通过内部接口完成通信。
终端设备90可以为芯片、模组、IDE等。
本实施例的终端设备,可用于执行实施例二中一种信号质量的测量方法的技术方案,具体实现方式和技术效果类似,这里不再赘述。
图10为本申请实施例十一提供的一种网络设备的结构示意图,如图10所示,网络设备100可以包括:至少一个处理器1001和存储器1002。
存储器1002,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。
存储器1002可能包含高速RAM存储器,也可能还包括非易失性存储器,例如至少一个磁盘存储器。
处理器1001用于执行存储器1002存储的计算机执行指令,以实现前述方法实施例所描述的方法。其中,处理器1001可能是一个CPU,或者是ASIC,或者是被配置成实施本申请实施例的一个或多个集成电路。
可选的,网络设备100还可以包括:通信接口1003。在具体实现上,如果通信接口1003、存储器1002和处理器1001独立实现,则通信接口1003、存储器1002和处理器1001可以通过总线相互连接并完成相互间的通信。总线可以是ISA总线、PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果通信接口1003、存储器1002和处理器1001集成在一块芯片上实现,则通信接口1003、存储器1002和处理器1001可以通过内部接口完成通信。
网络设备100可以为芯片、模组、IDE等。
本实施例的网络设备,可用于执行实施例三中一种信号质量的测量方法的技术方案,具体实现方式和技术效果类似,这里不再赘述。
图11为本申请实施例十二提供的一种网络设备的结构示意图,如图11所 示,网络设备110可以包括:至少一个处理器1101和存储器1102。
存储器1102,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。
存储器1102可能包含高速RAM存储器,也可能还包括非易失性存储器,例如至少一个磁盘存储器。
处理器1101用于执行存储器1102存储的计算机执行指令,以实现前述方法实施例所描述的方法。其中,处理器1101可能是一个CPU,或者是ASIC,或者是被配置成实施本申请实施例的一个或多个集成电路。
可选的,网络设备110还可以包括:通信接口1103。在具体实现上,如果通信接口1103、存储器1102和处理器1101独立实现,则通信接口1103、存储器1102和处理器1101可以通过总线相互连接并完成相互间的通信。总线可以是ISA总线、PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果通信接口1103、存储器1102和处理器1101集成在一块芯片上实现,则通信接口1103、存储器1102和处理器1101可以通过内部接口完成通信。
网络设备110可以为芯片、模组、IDE等。
本实施例的网络设备,可用于执行实施例四中一种信号质量的测量方法的技术方案,具体实现方式和技术效果类似,这里不再赘述。
本申请实施例十三提供了一种计算机可读存储介质,该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、RAM、磁盘或者光盘等各种可以存储计算机程序的介质,具体的,该计算机可读存储介质中存储有计算机程序,该计算机程序被处理器执行时用于实现上述方法实施例所示的技术方案,具体实现方式和技术效果类似,这里不再赘述。
本申请实施例十四提供一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时,实现上述方法实施例所示的技术方案,具体实现方式和技术效果类似,这里不再赘述。
本申请实施例十五提供一种芯片,芯片上存储有计算机程序,计算机程序被芯片执行时,实现上述方法实施例所示的方法。该芯片还可以为芯片模组。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开 的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (40)

  1. 一种信号质量的测量方法,其特征在于,包括:
    根据物理下行控制信道PDCCH或者介质访问控制控制单元MAC-CE信令,确定测量对象是否生效。
  2. 根据权利要求1所述的方法,其特征在于,所述测量对象中包括测量参考信号,所述测量参考信号为目标小区上的测量参考信号。
  3. 根据权利要求2所述的方法,其特征在于,所述测量参考信号包括同步信号块。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含所述测量对象的标识ID。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含所述测量对象的索引或者编号。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含所述测量对象在候选测量对象列表中的第一信息,所述第一信息包括ID、索引和编号中的任意一种。
  7. 根据权利要求1-3任一项所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含所述测量对象的物理小区标识PCI列表中的一个或多个PCI。
  8. 根据权利要求7所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含所述PCI的索引或者编号,所述PCI的索引或者编号对应所述PCI列表中的一个或多个PCI。
  9. 根据权利要求1-3任一项所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含所述测量对象的同步测量定时配置SMTC。
  10. 根据权利要求9所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含所述SMTC的索引或者编号,所述SMTC的索引或者编号对应一个或多个SMTC。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述根据PDCCH或者MAC-CE信令,确定测量对象是否生效,包括:
    根据所述PDCCH或者所述MAC-CE信令,在第一时长后,确定所述测量对象是否生效。
  12. 根据权利要求11所述的方法,其特征在于,所述第一时长为预设的时 长。
  13. 根据权利要求11所述的方法,其特征在于,所述第一时长为配置的时长。
  14. 一种信号质量的测量方法,其特征在于,包括:
    根据无线资源控制RRC信令,在第一时长后,确定测量对象生效。
  15. 根据权利要求14所述的方法,其特征在于,所述测量对象中包括测量参考信号,所述测量参考信号为目标小区上的测量参考信号。
  16. 根据权利要求15所述的方法,其特征在于,所述测量参考信号包括同步信号块。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述第一时长为预设的时长。
  18. 根据权利要求14-16任一项所述的方法,其特征在于,所述第一时长为配置的时长。
  19. 一种信号质量的测量方法,其特征在于,包括:
    发送物理下行控制信道PDCCH或者介质访问控制控制单元MAC-CE信令,指示测量对象是否生效。
  20. 根据权利要求19所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含测量对象的标识ID。
  21. 根据权利要求19所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含测量对象的索引或者编号。
  22. 根据权利要求19所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含测量对象在候选测量对象列表中的第一信息,所述第一信息包括ID、索引和编号中的任意一种。
  23. 根据权利要求19所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含测量对象的物理小区标识PCI列表中的一个或多个PCI。
  24. 根据权利要求23所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含所述PCI的索引或者编号,所述PCI的索引或者编号对应所述PCI列表中的一个或多个PCI。
  25. 根据权利要求19所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中包含测量对象的同步测量定时配置SMTC。
  26. 根据权利要求25所述的方法,其特征在于,所述PDCCH或者所述MAC-CE信令中还包含所述SMTC的索引或者编号,所述SMTC的索引或者编 号对应一个或多个SMTC。
  27. 一种信号质量的测量方法,其特征在于,包括:
    发送无线资源控制RRC信令,在第一时长后,确定测量对象生效。
  28. 根据权利要求27所述的方法,其特征在于,所述RRC信令中包含测量对象;
    所述测量对象中包括测量参考信号,所述测量参考信号为目标小区上的测量参考信号。
  29. 根据权利要求28所述的方法,其特征在于,所述测量参考信号包括同步信号块。
  30. 根据权利要求27-29任一项所述的方法,其特征在于,所述第一时长为预设的时长。
  31. 根据权利要求27-29任一项所述的方法,其特征在于,所述第一时长为配置的时长。
  32. 一种信号质量的测量装置,其特征在于,包括:
    确定模块,用于根据物理下行控制信道PDCCH或者介质访问控制控制单元MAC-CE信令,确定测量对象是否生效。
  33. 一种信号质量的测量装置,其特征在于,包括:
    确定模块,用于根据无线资源控制RRC信令,在第一时长后,确定所述测量对象生效。
  34. 一种信号质量的测量装置,其特征在于,包括:
    发送模块,用于发送物理下行控制信道PDCCH或者介质访问控制控制单元MAC-CE信令,指示测量对象是否生效。
  35. 一种信号质量的测量装置,其特征在于,包括:
    发送模块,用于发送无线资源控制RRC信令,在第一时长后,确定测量对象生效。
  36. 一种终端设备,其特征在于,包括:处理器,以及与所述处理器通信连接的存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求1-13中任一项所述的方法。
  37. 一种终端设备,其特征在于,包括:处理器,以及与所述处理器通信连接的存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求14-18中任一项所述的方法。
  38. 一种网络设备,其特征在于,包括:处理器,以及与所述处理器通信连接的存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求19-26中任一项所述的方法。
  39. 一种网络设备,其特征在于,包括:处理器,以及与所述处理器通信连接的存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求27-31中任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如权利要求1-31任一项所述的信号质量的测量方法。
PCT/CN2023/112729 2022-08-12 2023-08-11 信号质量的测量方法、终端设备、网络设备以及存储介质 WO2024032797A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210970253.6 2022-08-12
CN202210970253.6A CN117641425A (zh) 2022-08-12 2022-08-12 信号质量的测量方法、终端设备、网络设备以及存储介质

Publications (1)

Publication Number Publication Date
WO2024032797A1 true WO2024032797A1 (zh) 2024-02-15

Family

ID=89851043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112729 WO2024032797A1 (zh) 2022-08-12 2023-08-11 信号质量的测量方法、终端设备、网络设备以及存储介质

Country Status (2)

Country Link
CN (1) CN117641425A (zh)
WO (1) WO2024032797A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103503332A (zh) * 2011-05-04 2014-01-08 Lg电子株式会社 在无线通信系统中发射/接收信道状态信息的方法和装置
US20140295909A1 (en) * 2011-11-07 2014-10-02 Sharp Kabushiki Kaisha Terminal, base station, method, and integrated circuit
CN106375044A (zh) * 2015-07-23 2017-02-01 中兴通讯股份有限公司 非授权载波的信道状态信息测量反馈方法、基站、终端
CN110891301A (zh) * 2018-09-10 2020-03-17 维沃移动通信有限公司 一种信道测量方法、终端设备和网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103503332A (zh) * 2011-05-04 2014-01-08 Lg电子株式会社 在无线通信系统中发射/接收信道状态信息的方法和装置
US20140295909A1 (en) * 2011-11-07 2014-10-02 Sharp Kabushiki Kaisha Terminal, base station, method, and integrated circuit
CN106375044A (zh) * 2015-07-23 2017-02-01 中兴通讯股份有限公司 非授权载波的信道状态信息测量反馈方法、基站、终端
CN110891301A (zh) * 2018-09-10 2020-03-17 维沃移动通信有限公司 一种信道测量方法、终端设备和网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "On inter-gNB exchange of SRS configuration for CLI measurement", 3GPP TSG RAN WG1 #111 ELECTRONIC MEETING R2-2007355, 7 August 2020 (2020-08-07), XP051912119 *

Also Published As

Publication number Publication date
CN117641425A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2021093431A1 (zh) 非连接态ue的数据传输、接收方法及装置、终端、基站
JP7207475B2 (ja) 無線通信システム、無線局、無線端末、及びこれらの通信制御方法
EP3352402B1 (en) Resource selection method for v2x operation of terminal in wireless communication system, and terminal using method
US10420067B2 (en) Method of changing connection state and apparatus therefor
EP3008952B1 (en) Layered mobility
US20140335882A1 (en) Method for configuring dual connectivity
JP2016522630A (ja) 無線電気通信ネットワークにおけるハンドオーバ間のDevice−to−Device(D2D)通信を管理するための無線デバイス、ネットワークノード、および、それらの方法
US10057937B2 (en) Communications via multiple access points
EP3432678B1 (en) Device and method of configuring a secondary node and reporting in dual connectivity
WO2022082639A1 (en) Sidelink (sl) discontinuous reception (drx) for unicast, connection-specific drx
KR20140133463A (ko) 이중 연결성 설정 방법
US10674500B2 (en) Communication method, device, and system
WO2020077577A1 (zh) 数据包传输方法和设备
WO2019062746A1 (zh) 通信方法、装置和系统
WO2017166989A1 (zh) 一种切换过程中的资源分配方法、源基站及目标基站
WO2020221441A1 (en) Method, apparatus, computer program product and computer program
WO2021159862A1 (zh) 一种添加辅小区组的方法、接入网设备和终端设备
WO2022011500A1 (zh) 配置方法和装置
WO2024032797A1 (zh) 信号质量的测量方法、终端设备、网络设备以及存储介质
US20240080790A1 (en) Service access restriction enhancements for 5g new radio (nr)
JP2023534309A (ja) Nrアンライセンス帯域のための測定対象統合
WO2024051584A1 (zh) 配置的方法和装置
WO2023227090A1 (zh) 用于辅小区组的小区更新方法及装置、存储介质
WO2024093721A1 (zh) 通信方法、装置及系统
US20230199718A1 (en) Inter-ue coordination for on-demand sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852017

Country of ref document: EP

Kind code of ref document: A1