WO2024032788A1 - 一种无线充电装置、侦测信号发射方法及车辆 - Google Patents

一种无线充电装置、侦测信号发射方法及车辆 Download PDF

Info

Publication number
WO2024032788A1
WO2024032788A1 PCT/CN2023/112670 CN2023112670W WO2024032788A1 WO 2024032788 A1 WO2024032788 A1 WO 2024032788A1 CN 2023112670 W CN2023112670 W CN 2023112670W WO 2024032788 A1 WO2024032788 A1 WO 2024032788A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless charging
charging device
power
module
transmitting
Prior art date
Application number
PCT/CN2023/112670
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车科技股份有限公司 filed Critical 长春捷翼汽车科技股份有限公司
Publication of WO2024032788A1 publication Critical patent/WO2024032788A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • This article relates to the field of charging technology, and in particular to a wireless charging device, a detection signal transmitting method and a vehicle.
  • wireless charging technology has been widely used as a charging method for portable terminal devices (such as smartphones, wearable devices, etc.), bringing users a convenient charging experience.
  • wireless charging technology has been applied in a variety of situations, such as various indoor spaces, including but not limited to family homes, cinemas, restaurants, hotels, passenger lounges, etc.
  • wireless charging technology is also gradually used in mobile places. , such as various means of transportation, including but not limited to vehicles, ships, aircraft, etc.
  • the inventor discovered that in wireless charging technology, electrical energy is converted into magnetic field energy for energy transfer. Since the current wireless charging solution does not have a magnetic core to bind the magnetic field lines, part of the magnetic field will be exposed to the air and be exposed to the outside world. Radiation, causing strong electromagnetic radiation interference to the surroundings. The external radiation of the wireless charging device may harm the health of the user. For example, in various transportation vehicles, the distance between the wireless charging device and the surrounding people is close, which may cause radiation damage to the surrounding people. In addition, in electromagnetic fields such as airplanes, In radiation-sensitive environments, the external radiation of wireless charging transposition may affect the transmission of radio signals, causing certain safety hazards to aircraft and other aircraft. Therefore, how to reduce the external radiation of the wireless charging device is an urgent problem that needs to be solved.
  • embodiments of the present application provide a wireless charging device and a vehicle equipped with the wireless charging device to reduce external radiation of the wireless charging device.
  • An embodiment of the present application provides a wireless charging device, which includes:
  • a power transmitting module that wirelessly charges the device to be charged through a transmitting coil
  • control module that regulates the output power of the transmitting coil
  • control module causes the transmitting coil to intermittently transmit detection signals in a standby state.
  • Embodiments of the present application also provide a detection signal transmitting method, which is applied to a wireless charging device.
  • the wireless charging device includes: a power transmitting module that wirelessly charges the device to be charged through a transmitting coil; a power module that supplies the power to the device. power supply to the transmitting module; and a control module that regulates the output power of the transmitting coil,
  • the detection signal transmitting method includes:
  • the control module causes the transmitting coil to intermittently transmit detection signals in a standby state.
  • An embodiment of the present application also provides a vehicle, wherein the vehicle has the wireless charging device as described above.
  • An embodiment of the present application also provides a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the computer program, the method as described above is implemented. .
  • Embodiments of the present application also provide a computer-readable storage medium on which computer instructions are stored, wherein when the computer instructions are executed by a processor, the method as described above is implemented.
  • the transmitting coil intermittently transmits detection signals in the standby state, thereby reducing the outward radiation of the wireless charging device.
  • Figure 1 is a schematic diagram of a wireless charging device according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of an intermittently transmitted detection signal according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the control module according to the embodiment of the present application.
  • Figure 4 is a schematic diagram of a power module according to an embodiment of the present application.
  • Figure 5 is an enlarged schematic diagram of part A in Figure 4.
  • FIG. 6 is a schematic diagram of the power transmitting module according to the embodiment of the present application.
  • Figure 7 is a schematic diagram of the input interface module according to the embodiment of the present application.
  • Figure 8 is an exploded schematic diagram of the wireless charging device according to the embodiment of the present application.
  • Figure 9 is a schematic diagram of the detection results of the electromagnetic radiation level of the existing wireless charging device.
  • Figure 10 is a schematic diagram of the detection results of the electromagnetic radiation level of the wireless charging device according to the embodiment of the present application.
  • Figure 11 is a schematic diagram of a detection signal transmitting method according to an embodiment of the present application.
  • Interface module 101.
  • Control module
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be used by these terms. restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprises,” “includes,” “having” and the like refer to the presence of stated features, elements, elements or components but do not exclude the presence or addition of one or more other features, elements, components or components.
  • An embodiment of a first aspect of the present application provides a wireless charging device.
  • Figure 1 shows a schematic diagram of a wireless charging device according to an embodiment of the present application.
  • the wireless charging device 100 includes a power module 102, a power transmitting module 103 and a control module 104.
  • the power transmitting module 103 wirelessly charges the device to be charged through a transmitting coil.
  • the power module 102 supplies power to the power transmitting module 103.
  • the control module 104 (preferably via power module 102) to regulate the output power of the transmit coil.
  • control module 104 causes the transmitting coil to intermittently transmit the detection signal in the standby state.
  • the transmitting coil of the wireless charging device 100 intermittently transmits detection signals, thereby reducing the external emission energy of the wireless charging device, thereby reducing the external radiation of the wireless charging device.
  • the device to be charged can also be called a receiving load, etc. Therefore, in the standby state of the wireless charging device, the external radiation of the wireless charging device is relatively large.
  • the transmitting coil of the wireless charging device 100 intermittently transmits the detection signal, as shown in Figure 2.
  • Figure 2 shows a schematic diagram of the intermittently transmitted detection signal, relative to the continuous Compared with the situation where the detection signal is emitted continuously, the present application can effectively reduce the external radiation of the wireless charging device 100 .
  • intermittent transmission of the detection signal means that after transmitting the detection signal for a period of time, it stops transmitting the detection signal, and then transmits the detection signal again.
  • the transmitting coil can transmit the detection signal S1 in the time period from 0 to t0, and then stop transmitting the detection signal until time t1, that is, no detection signal is transmitted in the time period from t0 to t1. Then the detection signal S2 is transmitted again during the time period from t1 to t2, and no detection signal is transmitted during the time period from t2 to t3, and so on.
  • the control module 104 causes the transmitting coil to transmit a detection signal every t seconds in the standby state, where t is any value in the range of 1 to 3. That is to say, the interval between adjacently transmitted detection signals is any time interval within the range of 1 second to 3 seconds, including 3 seconds.
  • the duration of the time periods t0 to t1 and t2 to t3 are both 3 Second.
  • the application is not limited to this.
  • the interval between adjacent detection signals emitted by the transmitting coil in the standby state can also be other situations, such as greater than 3 seconds or less than 1 second. This application does not limit this. Determined based on actual situation.
  • the length of the detection signal transmitted once there is no limit on the length of the detection signal transmitted once.
  • the length of the time period 0 to t0 and the time period t1 to t2 in Figure 2 is not limited and can be determined according to the actual situation, as long as it is ensured
  • the external radiation level of the wireless charging device in the standby state only needs to comply with relevant standards, such as the relevant provisions of the CISPIR 25-2016 standard.
  • the transmitting coil may periodically transmit the detection signal, that is to say, the detection signal is transmitted periodically, and a transmission cycle includes a time period for transmitting the detection signal. and a period of time during which no detection signal is emitted.
  • the transmitting coil can also transmit detection signals non-periodically in the standby state.
  • the present application does not limit this, and the selection can be made according to actual needs.
  • the wireless charging device may be a vehicle-mounted wireless charging device, but the application is not limited thereto.
  • the wireless charging device may also be installed on ships, airplanes, etc., or may also be installed in various indoor spaces. This application There are no restrictions on this.
  • the device to be charged can be various devices that can be charged by a wireless charging device, such as mobile terminals that support wireless charging functions, wearable devices, etc. This application does not limit this.
  • the control module 104 adjusts the output power of the transmitting coil through the power module 102. That is to say, the control module 104 outputs a control signal to the power module 102 to adjust the output power of the transmitting coil. Therefore, the control module 104 can cause the transmitting coil to intermittently transmit the detection signal.
  • the following is an exemplary description of the circuit structure of the control module.
  • FIG. 3 is a schematic diagram of the control module according to the embodiment of the present application.
  • the control module 104 may include a control module chip, where the PIN47 pin of the control module chip is a control signal (PWM) output by the control module to the power module.
  • the power module adjusts the output signal according to the control signal. Since the power supply The module supplies power to the power transmitting module, whereby the output power of the transmitting coil can be adjusted. For example, in the standby state, the control module 104 can control the transmitting coil looking for the receiving load to intermittently transmit the detection signal.
  • PWM control signal
  • control module chip can also receive power from the auxiliary power supply through the PIN3, PIN5, and PIN6 pins. Therefore, even in the standby state, the control module chip can also be in the working state.
  • the control signal (PWM) is sent to the power module to adjust the power output of the power transmitting module.
  • the PIN35, PIN38, PIN40, and PIN43 pins of the chip respectively output DRVH2, DRVL2, DRVL1, and DRVH1 control signals to respectively control each switch tube (second field effect) in the power transmitting module.
  • tube that is, MOS tube
  • the DC D2DOUT of the input power transmitting module can be converted into an AC output to drive the transmitting coil.
  • the power output module can be configured with one or more transmitting coils, and the PIN25, PIN26, and PIN27 pins of the control module chip are used to output selection signals to the coil switch unit in the power transmitting module.
  • CTL_COIL1, CTL_COIL2, CTL_COIL3 to select the appropriate transmitting coil.
  • intermittent search for receiving loads to reduce external radiation has been described in detail above, but the application is not limited thereto.
  • various processing circuits can also be provided in the circuits of the wireless communication device to improve the electromagnetic performance of the wireless charging device. Compatibility, including suppression of conducted radiation and reduction of electromagnetic interference, is explained in detail below.
  • Figure 4 is a schematic diagram of a power module according to an embodiment of the present application.
  • Figure 5 is an enlarged schematic view of part A in Figure 4.
  • the input terminal of the power module 102 inputs VBUS, and the range of the VBUS may be 9V-16V, but the application is not limited thereto.
  • the power module 102 includes a buck-boost circuit, which includes first field effect transistors Q5, Q6, Q7, Q8 and a first inductor L5.
  • the current is measured by the resistor R23 and the voltage is divided by the resistors R25 and R26 and fed back to the feedback pin (FB) of the chip of the power module 102 to measure the output voltage ( used to protect lower-level circuits)
  • the power module 102 may also include
  • the filter circuit composed of capacitors C40, C41, C42 and C43 stabilizes and filters the output to form the D2DOUT output current, thereby supplying power to the power transmitting module.
  • the PIN3 (PWM) pin of the power module chip can be controlled by the PIN47 pin (PWM) output of the control module chip shown in Figure 3, through the PWM signal. Adjust D2DOUT to adjust the power output of the power transmitting module.
  • the power module 102 further includes an RC absorption circuit connected in parallel with one end of the first inductor L5 and grounded, whereby during charging and discharging, through the The RC absorption circuit can suppress external radiation, including suppressing the voltage surge when the switch is turned off and limiting the discharge current when the switch is turned on. As a result, the external radiation of the wireless charging device can be further reduced.
  • the number of RC absorption circuits is 2, and an RC absorption circuit is provided at both ends of the first inductor L5.
  • the RC absorption circuit composed of R12 and C22 is connected in parallel.
  • One end of the first inductor L5 is connected to the ground, and an RC absorption circuit composed of R13 and C22 is connected in parallel to the other end of the first inductor L5 and connected to the ground.
  • the number of RC absorption circuits can be greater than 2, for example, two RC absorption circuits and one RC absorption circuit are respectively provided at both ends of the first inductor L5, or at both ends of the first inductor L5 Two RC absorption circuits are provided at both ends of the first inductor L5, that is to say, at least one RC absorption circuit is provided at both ends of the first inductor L5.
  • an RC absorption circuit can also be provided only at one end of the first inductor L5. For example, only This application does not limit the RC absorption circuit composed of R12 and C22, or only sets the RC absorption circuit composed of R13 and C22, and can be selected according to actual needs.
  • the power module 102 may also include one or more reverse diodes connected to the gate (G pole) of the first field effect transistor. , used for rapid discharge, thereby improving the space radiation caused by the circuit oscillation generated when the first field effect transistor is turned off, thereby reducing the external radiation of the wireless charging device.
  • the gate of the first field effect transistor Q5 is connected to the reverse fast discharge diode D6, and the gate of the first field effect transistor Q6 is connected to the reverse fast discharge diode D6.
  • Discharge diode D2 the gate of the first field effect transistor Q7 is connected to the reverse fast discharge diode D5
  • the gate of the first field effect transistor Q8 is connected to the reverse fast discharge diode D4.
  • the application is not limited to this.
  • a fast discharge diode is provided on any one or more gates of the first field effect transistor Q5, which is not limited in this application.
  • Figure 6 is a schematic diagram of a power transmitting module according to an embodiment of the present application.
  • the power transmitting module may be a full-bridge resonant power transmitting module.
  • Figure 6 shows a schematic diagram of the full-bridge resonant power transmitting module.
  • the input terminal of the full-bridge resonant power transmitting module is D2DOUT, which is connected to the output terminal D2DOUT of the power module 102 in Figure 4, so that the full-bridge resonant power transmitting module is powered by the power module 102.
  • the power transmitting module includes a plurality of second field effect transistors, and the plurality of second field effect transistors are used to form a full-bridge resonant circuit, such as Q1, Q2, Q3, and Q4 switching transistors.
  • the control terminals of each switch tube are DRVH2, DRVH1, DRVL2, and DRVL1, which are connected to the corresponding pins of the control module.
  • the input DC D2DOUT is converted into an AC output, which is used to drive the power transmitting coil drive circuit. , thereby transmitting energy outward through the transmitting coil.
  • a resistor R1 is connected in series between the D2DOUT input of the power module 102 and the current line of the full-bridge resonant circuit for detecting the wireless output power of the power module. Both ends of the resistor R1 Connect to the corresponding pins (PIN7, PIN8) of the control module respectively to feed back the current at both ends of the resistor R1 to the control module.
  • the power transmitting module 103 also includes multiple resonant capacitors, such as C13, C14, etc.
  • the power transmitting module further includes a ⁇ -type filter circuit disposed between the second field effect transistor and the resonant capacitor, thereby enabling radiation suppression of the resonant alternating current.
  • the power transmitting module includes two ⁇ -type filter circuits, namely ⁇ -type filter circuit B and ⁇ -type filter circuit C.
  • ⁇ -type filter circuit for any ⁇ -type filter circuit, it includes a second inductor and two filter capacitors.
  • the second inductor is connected in series between the second field effect transistor and the resonant capacitor, and the two filter capacitors are respectively disposed at two ends of the second inductor and grounded.
  • the ⁇ -type filter circuit B it includes a second inductor L3 and two filter capacitors C16 and C18.
  • the second inductor L3 is connected in series between the second field effect transistor and the resonant capacitor, and the two filter capacitors C16 and C18 are respectively provided. at both ends of the second inductor L3 and grounded.
  • the ⁇ -type filter circuit C it includes a second inductor L4 and two filter capacitors C17 and C19.
  • the second inductor L4 is connected in series between the second field effect transistor and the resonant capacitor.
  • the two filter capacitors C17 and C19 are respectively arranged on the second Both ends of the second inductor L4 are connected to ground.
  • ⁇ -type filter circuit B ⁇ -type filter circuit B
  • ⁇ -type filter circuit C ⁇ -type filter circuit C
  • the wireless charging device 100 further includes an input interface module 101 disposed between the external power source and the power module 102 .
  • the external power supply may be of various types.
  • the external power supply may be a vehicle-mounted power supply equipment, such as a vehicle-mounted battery or a vehicle-mounted generator.
  • the external power supply may be a vehicle-mounted wireless charging device.
  • the external power supply can also be the power supply equipment of a ship or aircraft, or it can be mains power or a battery. This application does not limit this and can be determined based on actual circumstances.
  • Figure 7 is a schematic diagram of the input interface module according to the embodiment of the present application.
  • the input interface module is connected to an external power supply and outputs VBUS, which is input to the power module to provide power output to the power output module.
  • the input interface module includes a radiation suppression circuit.
  • the radiation suppression circuit includes at least one of the following three: a common mode inductor, a differential mode inductor, and a differential mode capacitor.
  • the radiation suppression circuit may include a common mode inductor LF1, a differential mode inductor L2, and differential mode capacitors C3, C4, C5, C6, C7, and C8. Therefore, a multi-stage LC filter network is formed by common mode inductors, differential mode inductors and differential mode capacitors, which can effectively suppress conducted radiation, such as high-frequency radiation. Therefore, by providing an EMC hardware processing circuit in the input interface module of the wireless charging device, externally conducted interference from the wireless charging device can be suppressed.
  • the radiation suppression circuit may include any one or two of common mode inductors, differential mode inductors and differential mode capacitors. This application does not limit this and may be configured according to actual needs. Make your selection.
  • Figure 8 is an exploded schematic diagram of the wireless charging device according to the embodiment of the present application.
  • the wireless charging device includes a circuit board 801 for placing electronic components and a housing surrounding the circuit board 801 .
  • the housing includes an upper housing 8021 and a lower housing 8022 . Therefore, by providing a housing that completely surrounds the circuit board 801 on the outer periphery of the circuit board 801, electromagnetic radiation from the circuit board can be shielded, thereby further improving the electromagnetic compatibility of the wireless charging device.
  • the circuit board 801 may be a Printed Circuit Board Assembly (PCBA for short), but the present application is not limited thereto.
  • the circuit board 801 may also be other types of circuit boards besides PCBA.
  • the circuit board 801 can be used to arrange various electronic components to form various circuits, including part or all of the input interface module 101, part or all of the power module 102, part or all of the power transmitting module 103, and part or all of the control module 104. all.
  • the power transmitting module 103 may include various electronic components provided on the circuit board 801, including second field effect transistors Q1, Q2, Q3, Q4 and resonant capacitor C13, C14, C15, etc.
  • the power transmitting module 103 may also include a transmitting coil 803 electrically connected to the circuit on the circuit board (as shown in Figure 8).
  • the casing can be a heat dissipation structure of the wireless charging device. That is to say, the casing of the heat dissipation structure of the wireless device can also be used as a shielding structure for shielding the electromagnetic radiation of the circuit board 801, or, in the casing, A heat dissipation structure and a shielding structure are simultaneously formed on the wireless charging device, thereby simplifying the design of the wireless charging device and reducing costs.
  • a separate housing can also be made to shield the electromagnetic radiation of the circuit board 801.
  • the material of the housing 802. can be a metal material with good thermal conductivity.
  • the lower housing 8022 can be made of a metal material, but the application is not limited thereto.
  • the upper housing can be made of a metal material.
  • the body 8021 can be made of plastic material. There is no restriction on the specific shape of the housing 802, as long as the upper housing 8021 and the lower housing 8022 cooperate with each other to surround the circuit board 801 to achieve a good electromagnetic radiation shielding effect.
  • the wireless charging device may also include other components. As shown in FIG. 8 , the wireless charging device may also include a supporting plate 804 disposed between the circuit board 801 and the transmitting coil 803. The supporting plate 804 may be made of metal. Made of materials, the wireless charging device may further include a fixing component 805 for fixing the upper housing 8021, the circuit board 801 and the lower housing 8022.
  • the fixing component 805 is, for example, a screw.
  • the inventor tested the external radiation levels of existing wireless charging devices and the wireless charging device according to the embodiments of the present application.
  • Figure 9 is the detection result of the electromagnetic radiation level of the existing wireless charging device in the range of 0.15M Hz to 2.5G Hz, showing the radiation peak curve and radiation average curve of some frequency segments within this frequency range.
  • Figure 10 is the detection result of the electromagnetic radiation level of the wireless charging device in the range of 0.15M Hz to 2.5G Hz according to the embodiment of the present application, showing the radiation peak curve and radiation average curve of some frequency segments within this frequency range.
  • the peak curve and the average curve of the existing wireless charging device and the wireless charging device according to the embodiment of the present application are respectively below the peak limit and the average limit specified in the class 3 standard level, , but compared with the external radiation level of existing wireless charging devices, the external radiation level of the wireless charging device according to the embodiment of the present application is significantly lower.
  • FIG. 10 only illustrates a detection result of the radiation level when the wireless charging device according to the embodiment of the present application includes radiation absorption circuits of each module.
  • the control module controls the wireless charging device to intermittently transmit the detection signal from the transmitting coil in the standby state.
  • the wireless charging device of the embodiment of the present application can also effectively reduce the external radiation of the wireless charging device.
  • the transmitting coil of the wireless charging device 100 intermittently transmits detection signals, thereby reducing the external emission energy of the wireless charging device, thereby reducing the external radiation of the wireless charging device.
  • the embodiment of the second aspect of the present application provides a detection signal transmitting method, which is applied to a wireless charging device.
  • the wireless charging device includes: a power transmitting module that wirelessly charges the device to be charged through a transmitting coil; a power module that provides power to the device.
  • the transmitting module supplies power; and the control module regulates the output power of the transmitting coil, preferably through the power module. Since the first embodiment of the first aspect provides a detailed description of the wireless charging device, the content is incorporated here and will not be described again.
  • Figure 11 is a schematic diagram of a detection signal transmitting method according to an embodiment of the present application.
  • the detection signal transmitting method includes:
  • Step 1101 The control module causes the transmitting coil to intermittently transmit detection signals in the standby state.
  • the transmitting coil of the wireless charging device 100 intermittently transmits detection signals, thereby reducing the external emission energy of the wireless charging device, thereby reducing the external radiation of the wireless charging device.
  • the control module causes the transmitting coil to transmit a detection signal every t seconds in the standby state, where t is any value in the range of 1 to 3.
  • the application is not limited to this.
  • the interval between adjacent detection signals emitted by the transmitting coil in the standby state can also be other situations, such as greater than 3 seconds or less than 1 second. This application does not limit this. Determined based on actual situation.
  • the duration of the detection signal transmitted once there is no limit to the duration of the detection signal transmitted once, and it can be determined according to the actual situation, as long as it is ensured that the external radiation level of the wireless charging device in the standby state meets relevant standards, such as CISPIR 25-2016 standards.
  • the transmitting coil may periodically transmit the detection signal, that is to say, the detection signal is transmitted periodically, and a transmission cycle includes a time period for transmitting the detection signal. and a period of time during which no detection signal is emitted.
  • the transmitting coil can also transmit detection signals non-periodically in the standby state.
  • the present application does not limit this, and the selection can be made according to actual needs.
  • the control module can adjust the output power of the transmitting coil through the power module. That is to say, the control module outputs a control signal to the power module to adjust the output power of the transmitting coil. Therefore, the control module can make the transmitting coil Intermittently transmits detection signals.
  • control module may include a control module chip, which outputs a control signal to the power module through the pin of the control module chip (such as the PWM signal output by the PIN47 pin of the control module chip in Figure 3), and the power module adjusts the output according to the control signal. signal, since the power module supplies power to the power transmitting module, the output power of the transmitting coil can be adjusted. For example, in the standby state, the control module can control the transmitting coil looking for the receiving load to intermittently transmit the detection signal.
  • a control module chip which outputs a control signal to the power module through the pin of the control module chip (such as the PWM signal output by the PIN47 pin of the control module chip in Figure 3), and the power module adjusts the output according to the control signal. signal, since the power module supplies power to the power transmitting module, the output power of the transmitting coil can be adjusted. For example, in the standby state, the control module can control the transmitting coil looking for the receiving load to intermittently transmit the detection signal.
  • control module chip can also receive power from the auxiliary power supply. Therefore, even in the standby state, the control module chip can still be in the working state and send a control signal (PWM) to the power module to adjust the power.
  • PWM control signal
  • Embodiments of the present application also provide a vehicle having the wireless charging device described in the embodiment of the first aspect. Since the embodiment of the first aspect provides a detailed description of the wireless charging device, its content is incorporated here. , which will not be described in detail here.
  • the transmitting coil of the wireless charging device intermittently transmits detection signals, thereby reducing the external emission energy of the wireless charging device, thereby reducing the external radiation of the wireless charging device. It can also save vehicle power consumption.
  • An embodiment of the present application also provides a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • a computer program stored in the memory and executable on the processor.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program executes the steps of the above method when run by a processor.
  • Embodiments of the present application also provide computer-readable instructions, wherein when the processor executes the instructions, the program therein causes the processor to perform the method described above.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be an indirect coupling or communication connection through some interfaces, devices or units, or may be electrical, mechanical or other forms of connection.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the embodiments of this article.
  • each functional unit in each embodiment of this article can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Integrated units may be stored in a computer-readable storage medium if they are implemented in the form of software functional units and sold or used as independent products. Based on this understanding, the technical solution in this article essentially contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments herein.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无线充电装置(100)、侦测信号发射方法及车辆。无线充电装置(100)包括功率发射模块(103),其通过发射线圈(803)对待充电设备进行无线充电;电源模块(102),其向功率发射模块(103)供电;以及控制模块(104),其调节发射线圈(803)的输出功率,控制模块(104)在待机状态下使发射线圈(803)间歇性发射侦测信号。从而能够降低无线充电装置(100)的对外辐射。

Description

一种无线充电装置、侦测信号发射方法及车辆
本申请要求享有2022年8月12日递交、申请号为202210967482.2、发明名称为“一种无线充电装置、侦测信号发射方法及车辆”的中国专利的优先权,该专利的所有内容在此全部引入。
技术领域
本文涉及充电技术领域,尤其涉及一种无线充电装置、侦测信号发射方法及车辆。
背景技术
近年来,无线充电技术作为便携式终端设备(如智能手机、可穿戴设备等)的充电方式得到了广泛的应用,给用户带来了便利的充电体验。
目前,无线充电技术已经实现了多种场合的应用,如各种室内空间,包括但不限于家庭住宅、电影院、餐厅、酒店、旅客休息室等,此外,无线充电技术也逐渐应用于移动的场所,如各种交通工具,包括但不限于车辆、船舶、飞机等。
但发明人发现,无线充电技术中,电能被转换为磁场能以进行能量传递,由于目前的无线充电解决方案中没有磁芯对磁感线的束缚,会有部分磁场暴露于空气中而对外发生辐射,对周围造成强电磁辐射干扰。无线充电装置的对外辐射可能会损害用户健康,例如,例如在各种交通工具中,无线充电装置和周围人员之间的距离较近,可能会对周围人群产生辐射伤害,此外,在飞机等电磁辐射敏感环境中,无线充电转置的对外辐射可能会影响无线电信号的传输,对飞机等造成一定的安全隐患。因此,如何降低无线充电装置的对外辐射称为亟需解决的问题。
发明内容
为解决上述问题之一或类似的问题,本申请实施例提供了一种无线充电装置以及具有该无线充电装置的车辆,降低无线充电装置的对外辐射。
本申请实施例提供一种无线充电装置,所述无线充电装置包括:
功率发射模块,其通过发射线圈对待充电设备进行无线充电;
电源模块,其向所述功率发射模块供电;以及
控制模块,其调节所述发射线圈的输出功率,
其中,所述控制模块在待机状态下使所述发射线圈间歇性发射侦测信号。
本申请实施例还提供一种侦测信号发射方法,应用于无线充电装置,所述无线充电装置包括:功率发射模块,其通过发射线圈对待充电设备进行无线充电;电源模块,其向所述功率发射模块供电;以及控制模块,其调节所述发射线圈的输出功率,
其中,所述侦测信号发射方法包括:
所述控制模块在待机状态下使所述发射线圈间歇性发射侦测信号。
本申请实施例还提供一种车辆,其中,所述车辆具有如上所述的无线充电装置。
本申请实施例还提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如上所述的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机指令,其中,该计算机指令被处理器执行时实现如上所述的方法
本申请实施例的有益效果之一在于:在待机状态下发射线圈间歇性发射侦测信号,由此,能够降低无线充电装置的向外辐射。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请实施例的无线充电装置的一个示意图;
图2是本申请实施例的间歇性发射的侦测信号的一个示意图;
图3是本申请实施例的控制模块的一个示意图;
图4是本申请实施例的电源模块的一个示意图;
图5是图4中局部A的一个放大示意图;
图6是本申请实施例的功率发射模块的一个示意图;
图7是本申请实施例的输入接口模块的一个示意图;
图8是本申请实施例的无线充电装置的一个爆炸示意图;
图9是现有无线充电装置电磁辐射水平的检测结果示意图;
图10是本申请实施例的无线充电装置的电磁辐射水平的检测结果示意图;
图11是本申请实施例的侦测信号发射方法的一个示意图。
【附图标记说明】
100、无线充电装置;
101、接口模块;
102、电源模块;
103、功率发射模块;
104、控制模块;
801、电路板;
8021、上壳体;
8022、下壳体;
803、发射线圈;
804、支承板;
805、固定部件。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入 所附权利要求的范围内的全部修改、变型以及等同物。下面结合附图对本申请的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
第一方面的实施例
本申请第一方面的实施例提供一种无线充电装置。
图1示出了本申请实施例的无线充电装置的一个示意图。
如图1所示,无线充电装置100包括电源模块102、功率发射模块103和控制模块104,功率发射模块103通过发射线圈对待充电设备进行无线充电,电源模块102向功率发射模块103供电,控制模块104(优选地,通过电源模块102)调节发射线圈的输出功率。
在本申请实施例中,控制模块104在待机状态下使发射线圈间歇性发射侦测信号。
由上述实施例可知,在待机状态下,无线充电装置100的发射线圈间歇性发射侦测信号,由此,能够降低无线充电装置的对外发射能量,从而能够降低无线充电装置的对外辐射。
例如,发明人发现,在现有的无线充电装置中,发射线圈在无线充电装置的待机状态下持续地发射侦测信号以确定是否存在待充电设备,待充电设备也可称为接收负载等,由此,在无线充电装置的待机状态下,无线充电装置的对外辐射较大。
而在本申请中,在待机状态下,无线充电装置100的发射线圈间歇性发射侦测信号,如图2所示,图2示出了间歇性发射的侦测信号的一个示意图,相对于持续性发射侦测信号的情况相比,本申请能够有效降低无线充电装置100的对外辐射。
在本申请实施例中,间歇性发射侦测信号表示在发射侦测信号一段时间后,停止发射侦测信号,之后再次发射侦测信号。
例如,如图2所示,在待机状态,发射线圈可以在0至t0时间段发射侦测信号S1,然后停止发射侦测信号直到t1时刻,即t0至t1时间段均不发射侦测信号,然后在t1至t2时间段再次发射侦测信号S2,在t2至t3时间段不发射侦测信号,依次类推。
在一个或多个实施例中,控制模块104在待机状态下使发射线圈每隔t秒发射侦测信号,所述t为1至3范围内的任意数值。也就是说相邻发射的侦测信号之间的间隔为1秒至3秒范围内的任意时间间隔,包括3秒,例如,图2中t0至t1和t2至t3时间段的时长均为3秒。由此,在有效降低待机状态下的向外辐射的情况下,能够及时地确定是否存在待充电设备,防止对客户体验造成影响。
但本申请不限于此,例如在待机状态下发射线圈发射的相邻的侦测信号之间的间隔时长还可以为其它情况,例如大于3秒或小于1秒,本申请对此不作限制,可根据实际情况而确定。
在本申请实施例中,对于一次性发射的侦测信号的时长不作限制,例如,图2中0至t0时间段和t1至t2时间段的长度不作限制,可根据实际情况而确定,只要确保无线充电装置在待机状态下的对外辐射水平符合相关的标准即可,例如符合CISPIR 25-2016标准中的相关规定。
在一个或多个实施例中,在待机状态下,发射线圈可以周期性地发射侦测信号,也就是说,侦测信号为周期性发射,在一个发射周期中包括发射侦测信号的时间段和不发射侦测信号的时间段,由此,通过简单的方式实现了间歇性发射侦测信号的结构。
但本申请不限于此,发射线圈在待机状态下也可以非周期性地发射侦测信号,本申请对此不作限制,可根据实际需要而进行选择。
在一个或一些实施例中,无线充电装置可以为车载无线充电装置,但本申请不限于此,例如无线充电装置还可设置于船舶、飞机等,或者也可以设置于各种室内空间,本申请对此不作限制。
在本申请实施例中,待充电设备可以为各种可通过无线充电装置进行充电的设备,如支持无线充电功能的移动终端,可穿戴设备等,本申请对此不作限制。
在本申请实施例中,控制模块104通过电源模块102调节发射线圈的输出功率,也就是说,控制模块104向电源模块102输出控制信号,从而调节发射线圈的输出功率, 由此,控制模块104能够使发射线圈间歇性发射侦测信号。以下对于控制模块的电路结构进行示例性说明。
图3是本申请实施例的控制模块的一个示意图。
如图3所示,控制模块104可包括控制模块芯片,其中,控制模块芯片的PIN47管脚为控制模块向电源模块输出的控制信号(PWM),电源模块根据该控制信号调节输出信号,由于电源模块向功率发射模块供电,由此,能够实现发射线圈的输出功率的调节。例如,在待机状态,控制模块104可以控制寻找接收负载的发射线圈间歇性地发射侦测信号。
在本申请实施例中,如图3所示,控制模块芯片还可以通过PIN3、PIN5、PIN6管脚接收辅助电源的供电,由此,即使在待机状态下,控制模块芯片也可以处于工作状态下而向电源模块发送控制信号(PWM),从而调节功率发射模块的功率输出。
如图3所示,在本申请实施例中,芯片的PIN35、PIN38、PIN40、PIN43管脚分别输出DRVH2、DRVL2、DRVL1、DRVH1控制信号,分别控制功率发射模块中各个开关管(第二场效应管,即MOS管),具体请见下面图5中关于功率发射模块的说明,由此,能够将输入功率发射模块的直流D2DOUT转换为交流输出,从而驱动发射线圈。
如图3所示,在本申请实施例中,功率输出模块可配置一个或多个发射线圈,控制模块芯片的PIN25、PIN26、PIN27管脚用于向功率发射模块中的线圈开关单元输出选择信号CTL_COIL1、CTL_COIL2、CTL_COIL3,从而选择合适的发射线圈。
以上对于通过间歇性寻找接收负载以降低对外辐射的实施方式进行了详细说明,但本申请不限于此,例如,还可以在无线通信装置的电路中设置各种处理电路以提高无线充电装置的电磁兼容性,包括抑制传导辐射、降低电磁干扰,以下进行详细说明。
图4是本申请实施例的电源模块的一个示意图。图5是图4中局部A的一个放大示意图。
如图4和图5所示,电源模块102的输入端输入VBUS,该VBUS的范围可以为9V-16V,但本申请不限于此。
如图4和图5所示,电源模块102包括升降压电路,该升降压电路包括第一场效应管Q5、Q6、Q7、Q8和第一电感L5。在通过电源模块102的芯片的处理以及升降压电路处理后,通过电阻R23的测流以及电阻R25和R26分压后反馈到电源模块102的芯片的反馈管脚(FB)对输出测压(用于保护下级电路),此外,电源模块102还可包括由 电容C40、C41、C42和C43构成的滤波电路,通过该滤波电路对输出进行稳定、滤波处理后,形成D2DOUT输出电流,从而向功率发射模块供电。
在本申请实施例中,如图4和图5所示,电源模块芯片的PIN3(PWM)管脚可接受图3所示控制模块芯片的PIN47管脚(PWM)输出的控制,通过PWM信号来调节D2DOUT,从而实现对于功率发射模块的功率输出的调节。
在一个或多个实施例中,如图4和图5所示,电源模块102还包括与第一电感L5的一端并联地连接且接地的RC吸收电路,由此,在充放电时,通过该RC吸收电路能够抑制对外辐射,包括抑制开关断开时的电压浪涌、限制开关接通时的放点电流。由此,能够进一步降低无线充电装置的对外辐射。
在一个或多个实施例中,如图4和图5所示,RC吸收电路的数量为2,第一电感L5的两端分别设置一个RC吸收电路,如R12和C22构成的RC吸收电路并联于第一电感L5的一端并接地,R13和C22构成的RC吸收电路并联于第一电感L5的另一端并接地,由此,能够实现良好的辐射吸收效果。但本申请不限于此,例如,RC吸收电路的数量还可以大于2,如在第一电感L5的两端分别设置2个RC吸收电路和1个RC吸收电路,或者在第一电感L5的两端均设置2个RC吸收电路等,也就是说,在第一电感L5的两端分别设置至少一个RC吸收电路,此外,也可以仅在第一电感L5的一端设置RC吸收电路,如仅设置R12和C22构成的RC吸收电路,或者仅设置R13和C22构成的RC吸收电路,本申请对此不作限制,可根据实际需要而选择。
在一个或多个实施例中,如图4和图5所示,电源模块102还可以包括一个或多个反向二极管,该反向二极管连接于第一场效应管的栅极(G极),用于快速放电,由此,能够改善第一场效应管关断时产生的电路震荡引起的空间辐射,从而降低无线充电装置的对外辐射。
如图4和图5所述,在一个或多个实施例中,第一场效应管Q5的栅极连接有反向快速放电二极管D6,第一场效应管Q6的栅极连接有反向快速放电二极管D2,第一场效应管Q7的栅极连接有反向快速放电二极管D5,第一场效应管Q8的栅极连接有反向快速放电二极管D4,但本申请不限于此,例如,可以在第一场效应管Q5的任意一个或多个的栅极设置快速放电二极管,本申请对此不作限制。
图6是本申请实施例的功率发射模块的一个示意图。
在本申请实施例中,功率发射模块可以为全桥谐振功率发射模块,图6中示出全桥谐振功率发射模块的一个示意图。
如图6所示,全桥谐振功率发射模块的输入端为D2DOUT,该D2DOUT与图4中电源模块102的输出端D2DOUT连接,由此全桥谐振功率发射模块由电源模块102供电。
在本申请实施例中,如图6所示,功率发射模块包括多个第二场效应管,多个第二场效应管用于形成全桥谐振电路,如Q1、Q2、Q3、Q4开关管,各个开关管的控制端分别为DRVH2、DRVH1、DRVL2、DRVL1,分别与控制模块的相应管脚连接,通过控制模块的控制,将输入的直流D2DOUT转换为交流输出,用于驱动功率发射线圈驱动电路,从而通过发射线圈向外传输能量。
在本申请实施例中,如图6所示,在电源模块102的D2DOUT输入到全桥谐振电路电流线路上还串联有一电阻R1,用于检测电源模块的无线输出功率,该电阻R1的两端分别连接到控制模块的相应管脚(PIN7、PIN8管脚),以便于将电阻R1两端的电流反馈给控制模块。
在本申请实施例中,如图6所示,功率发射模块103还包括多个谐振电容,如C13、C14等。
在一个或多个实施例中,功率发射模块还包括设置于第二场效应管和谐振电容之间的π型滤波电路,由此,能够对谐振后的交流电进行辐射抑制。
如图6示,功率发射模块包括两个π型滤波电路,即π型滤波电路B和π型滤波电路C,对于任意一个π型滤波电路,包括一个第二电感和两个滤波电容,该一个第二电感串接于第二场效应管和谐振电容之间,两个滤波电容分别设置于该一个第二电感的两端并接地。
例如,对于π型滤波电路B,包括第二电感L3和两个滤波电容C16、C18,第二电感L3串接于第二场效应管和谐振电容之间,两个滤波电容C16、C18分别设置于第二电感L3的两端并接地。对于π型滤波电路C,包括第二电感L4和两个滤波电容C17、C19,第二电感L4串接于第二场效应管和谐振电容之间,两个滤波电容C17、C19分别设置于第二电感L4的两端并接地。
但本申请不限于此,例如,可以仅设置一个π型滤波电路,如π型滤波电路B或π型滤波电路C,本申请对此不作限制,可根据实际需要而进行设置。
在一个或多个实施例中,如图1所示,无线充电装置100还包括设置于外部电源和电源模块102之间的输入接口模块101。
在本申请实施例中,外部电源可以为多种,例如在无线充电装置100为车载无线充电装置的情况下,外部电源可以为车载供电设备,如车载电池或车载发电机,此外,外 部电源还可以为船舶或飞机的供电设备,或者可以为市电或电池。本申请对此不作限制,可根据实际情况而确定。
图7是本申请实施例的输入接口模块的一个示意图。
在本申请实施例中,如图7所示,输入接口模块连接外部电源并输出VBUS,该VBUS输入电源模块,从而向功率输出模块提供电力输出。
在一个或多个实施例中,输入接口模块包辐射抑制电路,该辐射抑制电路包括如下三者中的至少一者:共模电感、差模电感、差模电容。由此,能够对无线充电装置内部产生的传导辐射加以抑制,改善无线充电装置的电磁兼容性。
例如,如图7所示,辐射抑制电路可以包括共模电感LF1、差模电感L2和差模电容C3、C4、C5、C6、C7和C8。由此,通过共模电感、差模电感和差模电容这三者形成多级LC滤波网络,能够有效抑制传导辐射,例如抑制高频辐射。由此,通过在无线充电装置的输入接口模块设置EMC硬件处理电路,从而能够抑制无线充电装置对外传导干扰。
但本申请不限于此,例如,辐射抑制电路可以包括共模电感、差模电感和差模电容这三者中的任意一者或任意两者,本申请对此不作限制,可根据实际需要而进行选择。
以上对于用于提高无线充电装置的电磁兼容性的各种处理电路进行了说明,但本申请不限于此,还可以对无线充电装置本申请的结构进行改进以提高无线充电装置的电磁兼容性。
图8是本申请实施例的无线充电装置的一个爆炸示意图。
如图8所示,无线充电装置包括用于设置电子元件的电路板801以及包围电路板801的壳体,壳体包括上壳体8021和下壳体8022。由此,通过在电路板801的外周设置全包围电路板801的壳体,能够对电路板的电磁辐射进行屏蔽,由此,能够进一步改善无线充电装置的电磁兼容性。
在本申请实施例中,电路板801可以为装配印刷电路板(Printed Circuit Board Assembly,简称PCBA),但本申请不限于此,电路板801也可以为除了PCBA之外的其它类型的电路板。电路板801可用于设置各种电子元件,从而形成各种电路,包括输入接口模块101的一部分或全部、电源模块102的一部分或全部、功率发射模块103的一部分或全部和控制模块104的一部分或全部。例如,功率发射模块103可包括设置于电路板801的各种电子元件,包括第二场效应管Q1、Q2、Q3、Q4和谐振电容C13、 C14、C15等,此外,功率发射模块103还可包括与电路板上的电路电连接的发射线圈803(如图8所示)。
在本申请实施例中,壳体可以为无线充电装置的散热结构,也就说,可以将无线装置的散热结构的壳体兼作为屏蔽电路板801的电磁辐射的屏蔽结构,或者,在壳体上同时形成散热结构和屏蔽结构,由此,能够简化无线充电装置的设计,降低成本。此外,也可以制作单独的壳体用于屏蔽电路板801的电磁辐射。
在本申请实施例中,对于壳体802的材料不作限制,例如可以为导热性能良好的金属材料,例如,下壳体8022可以由金属材料制成,但本申请不限于此,例如,上壳体8021可以由塑胶材料制成。对于壳体802的具体形状不作限制,只要上壳体8021和下壳体8022相互配合下能够包围电路板801以达到良好的电磁辐射屏蔽效果即可。
在本申请实施例中,无线充电装置还可包括其它部件,如图8所示,无线充电装置还可包括设置于电路板801和发射线圈803之间的支承板804,支承板804可以由金属材料制成,无线充电装置还可包括用于对上壳体8021、电路板801和下壳体8022进行固定的固定部件805,固定部件805为例如螺丝。
此外,发明人对于现有无线充电装置和本申请实施例的无线充电装置的对外辐射水平进行了检测。
图9是现有无线充电装置在0.15M赫兹至2.5G赫兹范围内的电磁辐射水平的检测结果,示出了该频率范围内的部分频率段的辐射峰值曲线和辐射平均值曲线。
图10是本申请实施例的无线充电装置在0.15M赫兹至2.5G赫兹范围内的电磁辐射水平的检测结果,示出了该频率范围内的部分频率段的辐射峰值曲线和辐射平均值曲线。
如图9和图10所示,虽然现有无线充电装置和本申请实施例的无线充电装置的峰值曲线和平均值曲线均分别在class3标准等级中规定的峰值限值和平均值限值之下,但和现有无线充电装置的对外辐射水平相比,本申请实施例的无线充电装置的对外辐射水平显著降低。
例如,在0.15M赫兹至0.3M赫兹频率段内,从图9所示的检测结果可以看出,现有无线充电装置的辐射峰值存在超过class3等级标准中规定的平均值限值的情况,甚至存在达到60dBuV/m的情况,而从图10所示的检测结果可以看出,本申请实施例的无线充电装置的辐射峰值均在class3等级标准中规定的平均值限值之下,最大值未达到45dBuV/m。另外,在0.15M赫兹至0.3M赫兹频率段内,从图9所示的检测结果可以看出,现有无线充电装置的辐射平均值存在超过25dBuV/m的情况,而从图10所示的检测 结果可以看出,本申请实施例的无线充电装置的辐射平均值均在20dBuV/m之下。另外,从图9和图10中可以看出,1M左右赫兹频率段和6M左右赫兹频率段等均存在类似的情况。由此,在整个频率范围内,和现有技术相比,本申请实施例的无线充电装置的对外辐射水平均有显著下降,由此,能够改善无线充电装置的电磁兼容性。
值得注意的是,图10仅示例性示出了本申请实施例的无线充电装置包括各模块的辐射吸收电路的情况下的辐射水平的一个检测结果,对于仅包含部分辐射吸收电路,例如仅通过控制模块在待机状态下使发射线圈间歇性发射侦测信号的无线充电装置,和现有技术相比,本申请实施例的无线充电装置也能够有效降低无线充电装置的对外辐射。
值得注意的是,以上图3至图7仅对本申请实施例的无线充电装置的相关模块的电路进行了示意性说明,但本申请不限于此,各个模块的具体电路还可以参考相关技术;此外还可以增加图3至图7中没有示出的电路或电子元件,或者减少图3至图7中的部分电路或电子元件。图3至图8中未特别指明的部件或元素,可以参考相关技术,本申请并不对此进行限制。
由上述实施例可知,在待机状态下,无线充电装置100的发射线圈间歇性发射侦测信号,由此,能够降低无线充电装置的对外发射能量,从而能够降低无线充电装置的对外辐射。
第二方面的实施例
本申请第二方面的实施例提供一种侦测信号发射方法,应用于无线充电装置,该无线充电装置包括:功率发射模块,其通过发射线圈对待充电设备进行无线充电;电源模块,其向功率发射模块供电;以及控制模块,其优选地,通过电源模块,调节发射线圈的输出功率。由于第一方面的实施例对于该无线充电装置进行了详细的说明,其内容合并于此,在此不再赘述。
图11是本申请实施例的侦测信号发射方法的一个示意图。
如图11所示,在一个或多个实施例中,侦测信号发射方法包括:
步骤1101,控制模块在待机状态下使发射线圈间歇性发射侦测信号。
由上述实施例可知,在待机状态下,无线充电装置100的发射线圈间歇性发射侦测信号,由此,能够降低无线充电装置的对外发射能量,从而能够降低无线充电装置的对外辐射。
在一个或多个实施例中,在步骤1101中,控制模块在待机状态下使发射线圈每隔t秒发射侦测信号,所述t为1至3范围内的任意数值。由此,在有效降低待机状态下的向外辐射的情况下,能够及时地确定是否存在待充电设备,防止对客户体验造成影响。
但本申请不限于此,例如在待机状态下发射线圈发射的相邻的侦测信号之间的间隔时长还可以为其它情况,例如大于3秒或小于1秒,本申请对此不作限制,可根据实际情况而确定。
在本申请实施例中,对于一次性发射的侦测信号的时长不作限制,可根据实际情况而确定,只要确保无线充电装置在待机状态下的对外辐射水平符合相关的标准即可,例如符合CISPIR 25-2016标准中的相关规定。
在一个或多个实施例中,在待机状态下,发射线圈可以周期性地发射侦测信号,也就是说,侦测信号为周期性发射,在一个发射周期中包括发射侦测信号的时间段和不发射侦测信号的时间段,由此,通过简单的方式实现了间歇性发射侦测信号的结构。
但本申请不限于此,发射线圈在待机状态下也可以非周期性地发射侦测信号,本申请对此不作限制,可根据实际需要而进行选择。
在本申请实施例中,控制模块可通过电源模块调节发射线圈的输出功率,也就是说,控制模块向电源模块输出控制信号,从而调节发射线圈的输出功率,由此,控制模块能够使发射线圈间歇性发射侦测信号。
例如,控制模块可包括控制模块芯片,通过控制模块芯片的管脚向电源模块输出控制信号(例如图3中的控制模块芯片的PIN47管脚输出的PWM信号),电源模块根据该控制信号调节输出信号,由于电源模块向功率发射模块供电,由此,能够实现发射线圈的输出功率的调节。例如,在待机状态,控制模块可以控制寻找接收负载的发射线圈间歇性地发射侦测信号。
在本申请实施例中,控制模块芯片还可以接收辅助电源的供电,由此,即使在待机状态下,控制模块芯片也可以处于工作状态下而向电源模块发送控制信号(PWM),从而调节功率发射模块的功率输出。
本申请实施例还提供了一种车辆,该具有上述第一方面的实施例所描述的无线充电装置,由于第一方面的实施例对于该无线充电装置进行了详细的说明,其内容合并于此,在此不再赘述。
通过上述实施例,在待机状态下,无线充电装置的发射线圈间歇性发射侦测信号,由此,能够降低无线充电装置的对外发射能量,从而能够降低无线充电装置的对外辐射。还能够节省车辆的电量消耗。
本申请实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上述方法中的步骤。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述方法的步骤。
本申请实施例还提供一种计算机可读指令,其中当处理器执行指令时,其中的程序使得处理器执行如上所描述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本文的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本文所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本文实施例方案的目的。
另外,在本文各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本文的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本文各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本文中应用了具体实施例对本文的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本文的方法及其核心思想;同时,对于本领域的一般技术人员,依据本文的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本文的限制。

Claims (14)

  1. 一种无线充电装置,所述无线充电装置包括:
    功率发射模块,其通过发射线圈对待充电设备进行无线充电;
    电源模块,其向所述功率发射模块供电;以及
    控制模块,其调节所述发射线圈的输出功率,
    其特征在于,所述控制模块在待机状态下使所述发射线圈间歇性发射侦测信号。
  2. 根据权利要求1所述的无线充电装置,其特征在于,所述控制模块通过所述电源模块调节所述发射线圈的输出功率。
  3. 根据权利要求1所述的无线充电装置,其特征在于,
    所述电源模块包括升降压电路,所述升降压电路包括多个第一场效应管和第一电感,
    所述电源模块还包括:
    RC吸收电路,其与所述第一电感的一端并联地连接且接地,和/或
    一个或多个反向二极管,任意一个所述反向二极管连接于一个所述第一场效应管的栅极。
  4. 根据权利要求3所述的无线充电装置,其特征在于,
    在所述电源模块包括所述RC吸收电路的情况下,所述RC吸收电路的数量至少为2,所述第一电感的两端分别设置至少一个所述RC吸收电路。
  5. 根据权利要求1所述的无线充电装置,其特征在于,
    所述功率发射模块包括多个第二场效应管和谐振电容,
    所述功率发射模块还包括:
    一个或多个π型滤波电路,任意一个所述π型滤波电路包括一个第二电感和两个滤波电容,所述一个第二电感串接于所述第二场效应管和所述谐振电容之间,所述两个滤波电容分别设置于所述一个第二电感的两端并接地。
  6. 根据权利要求1至5中任意一项所述的无线充电装置,其特征在于,
    所述无线充电装置还包括设置于外部电源和所述电源模块之间的输入接口模块,
    所述输入接口模块包辐射抑制电路,所述辐射抑制电路包括如下三者中的至少一者:共模电感、差模电感、差模电容。
  7. 根据权利要求1至5中任意一项所述的无线充电装置,其特征在于,
    所述无线充电装置为车载无线充电装置。
  8. 根据权利要求1至5中任意一项所述的无线充电装置,其特征在于,
    所述控制模块在待机状态下使所述发射线圈每隔t秒发射侦测信号,所述t为1至3范围内的任意数值。
  9. 一种侦测信号发射方法,应用于无线充电装置,所述无线充电装置包括:功率发射模块,其通过发射线圈对待充电设备进行无线充电;电源模块,其向所述功率发射模块供电;以及控制模块,其调节所述发射线圈的输出功率,
    其特征在于,所述侦测信号发射方法包括:
    所述控制模块在待机状态下使所述发射线圈间歇性发射侦测信号。
  10. 根据权利要求9所述的侦测信号发射方法,其特征在于,所述控制模块通过所述电源模块调节所述发射线圈的输出功率。
  11. 根据权利要求9所述的侦测信号发射方法,其特征在于,
    所述控制模块在待机状态下使所述发射线圈每隔t秒发射侦测信号,所述t为1至3范围内的任意数值。
  12. 一种车辆,其特征在于,所述车辆具有如上述权利要求1-8中任意一项所述的无线充电装置。
  13. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述权利要求9至11中任一项所述的方法。
  14. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该计算机指令被处理器执行时实现上述权利要求9至11中任一项所述的方法。
PCT/CN2023/112670 2022-08-12 2023-08-11 一种无线充电装置、侦测信号发射方法及车辆 WO2024032788A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210967482.2A CN115296440A (zh) 2022-08-12 2022-08-12 一种无线充电装置、侦测信号发射方法及车辆
CN202210967482.2 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032788A1 true WO2024032788A1 (zh) 2024-02-15

Family

ID=83828990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112670 WO2024032788A1 (zh) 2022-08-12 2023-08-11 一种无线充电装置、侦测信号发射方法及车辆

Country Status (2)

Country Link
CN (1) CN115296440A (zh)
WO (1) WO2024032788A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296440A (zh) * 2022-08-12 2022-11-04 长春捷翼汽车零部件有限公司 一种无线充电装置、侦测信号发射方法及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816938A (zh) * 2015-11-30 2017-06-09 中惠创智无线供电技术有限公司 一种小功率无线充电装置
US20170207659A1 (en) * 2016-01-14 2017-07-20 Qualcomm Incorporated Method and apparatus for coexistence between communication and wireless power transfer devices
CN109094389A (zh) * 2017-06-21 2018-12-28 深圳市中兴新能源汽车科技有限公司 无线充电接收装置、电动汽车和无线充电系统
CN109742833A (zh) * 2018-12-15 2019-05-10 深圳先进技术研究院 发射端、接收端、无线充电系统及无线充电方法
CN114123532A (zh) * 2021-10-22 2022-03-01 信利半导体有限公司 低功耗无线充电的控制方法及控制系统
CN115296440A (zh) * 2022-08-12 2022-11-04 长春捷翼汽车零部件有限公司 一种无线充电装置、侦测信号发射方法及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816938A (zh) * 2015-11-30 2017-06-09 中惠创智无线供电技术有限公司 一种小功率无线充电装置
US20170207659A1 (en) * 2016-01-14 2017-07-20 Qualcomm Incorporated Method and apparatus for coexistence between communication and wireless power transfer devices
CN109094389A (zh) * 2017-06-21 2018-12-28 深圳市中兴新能源汽车科技有限公司 无线充电接收装置、电动汽车和无线充电系统
CN109742833A (zh) * 2018-12-15 2019-05-10 深圳先进技术研究院 发射端、接收端、无线充电系统及无线充电方法
CN114123532A (zh) * 2021-10-22 2022-03-01 信利半导体有限公司 低功耗无线充电的控制方法及控制系统
CN115296440A (zh) * 2022-08-12 2022-11-04 长春捷翼汽车零部件有限公司 一种无线充电装置、侦测信号发射方法及车辆

Also Published As

Publication number Publication date
CN115296440A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024032788A1 (zh) 一种无线充电装置、侦测信号发射方法及车辆
KR101243544B1 (ko) 기구들 및 장비들에 대한 무선 전력 전달
US9537352B2 (en) Differential load detecting method for detecting a wireless power receiver in wireless power network and wireless power transmitter
EP3350817A1 (en) Wireless power transfer antenna having a split shield
US5293145A (en) Switch battery charger with reduced electromagnetic emission
US20090224609A1 (en) Packaging and Details of a Wireless Power device
US20160172869A1 (en) Wireless Power Receiver
KR20160100754A (ko) 무선 전력 수신 장치 및 방법
US10971951B2 (en) Electronic system having power adapter for wired and wireless charging
KR20150089754A (ko) 무선 전력 수신 장치 및 단말기
US10068704B2 (en) Shielded antenna to reduce electromagnetic interference (EMI) and radio frequency (RF) interference in a wireless power transfer system
EP3232451B1 (en) Shield for a wireless power transmitter
CN103248131A (zh) 一种无线充电装置
JP2011083080A (ja) 空気調和機とそのためのモータ駆動システム
CN108847561B (zh) 一种电子设备
TWI701888B (zh) 微波轉電並儲能的無線充電器
CN204089274U (zh) 一种无线充电装置
WO2020237549A1 (zh) 一种无线电力接收电路
WO2020039502A1 (ja) 受電機器
CN213948068U (zh) 车载电控组件、车载空调器直流供电系统及车载空调器
WO2024140491A1 (zh) 处理方法、通信设备及存储介质
CN104242357A (zh) 具有无线充电功能的显示器及与其适配的电子设备
CN220510829U (zh) 一种车载双模充电器
CN218976384U (zh) 一种车载集成式充电电路、车载充电器及汽车
US20230057095A1 (en) Embedded power supply apparatus and power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852008

Country of ref document: EP

Kind code of ref document: A1