WO2024032644A1 - 核燃料装卸与位置自动化跟踪系统及方法 - Google Patents

核燃料装卸与位置自动化跟踪系统及方法 Download PDF

Info

Publication number
WO2024032644A1
WO2024032644A1 PCT/CN2023/111897 CN2023111897W WO2024032644A1 WO 2024032644 A1 WO2024032644 A1 WO 2024032644A1 CN 2023111897 W CN2023111897 W CN 2023111897W WO 2024032644 A1 WO2024032644 A1 WO 2024032644A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
fuel
layout information
unloading
loading
Prior art date
Application number
PCT/CN2023/111897
Other languages
English (en)
French (fr)
Inventor
洪谦
杨波
郝浩然
吴桂凯
沈艳荣
杨庆湘
党哈雷
Original Assignee
上海核工程研究设计院股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海核工程研究设计院股份有限公司 filed Critical 上海核工程研究设计院股份有限公司
Publication of WO2024032644A1 publication Critical patent/WO2024032644A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0633Workflow analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/20Arrangements for introducing objects into the pressure vessel; Arrangements for handling objects within the pressure vessel; Arrangements for removing objects from the pressure vessel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of nuclear reactor loading and unloading.
  • Pressurized water reactor nuclear power plants need to adjust the arrangement of nuclear fuel assemblies in the core by loading and unloading materials according to a certain time period (called a fuel cycle).
  • a fuel cycle a certain time period
  • Implementing loading and unloading usually requires manual preparation of a loading plan and operating the loading and unloading machine according to the plan.
  • the workload of data processing and conversion is large, which is not only inefficient but also error-prone. Sometimes, core loading errors may even occur, affecting the reactor. Core safety.
  • the loading and unloading of existing reactors in nuclear power plants mainly uses manual preparation of reactor refueling plans.
  • refueling engineers completely rely on their own experience to formulate reactor refueling plans.
  • This refueling method requires an extremely heavy workload. Large, the possibility of human error is higher. Even if human error is ensured, the refueling plans selected by different refueling engineers for reactor cores in the same condition will still vary greatly. On the one hand, this results in the failure to optimize the operation of the nuclear power unit. On the other hand, it also makes the refueling engineer's on-site workload too heavy and the responsibilities he shoulders too great.
  • the present invention provides a nuclear fuel loading and unloading and position automatic tracking system and method, which can automatically formulate a dumping plan, simplify data processing and conversion during the loading and unloading process, and realize position tracking of fuel components.
  • the present invention provides a nuclear fuel loading and unloading and position automated tracking system, including:
  • a fuel assembly which is provided with first identification information that can uniquely identify the fuel assembly
  • An inner plug which is provided on the fuel assembly and is provided with second identification information that can uniquely identify the inner plug;
  • a system database that stores core layout information and spent fuel pool layout information.
  • the core layout information includes first identification information corresponding to each fuel assembly in the nuclear reactor core, second identification information corresponding to each insert, and each fuel assembly. and the corresponding relationship information of the corresponding inserts and the location information of each fuel assembly in the nuclear reactor core.
  • the spent fuel pool layout information includes the first identification information corresponding to each fuel assembly in the spent fuel pool, and the corresponding information of each insert.
  • a processing device that establishes a corresponding relationship with the preset core layout information for the next cycle based on the current core layout information and spent fuel pool layout information, and configures the dumping movement of each fuel assembly and its corresponding insert. information to generate a dumping plan.
  • the processing device includes: a relationship establishment module for obtaining the current core layout information and the current spent fuel pool layout information, and based on the current core layout information and the current spent fuel pool layout information to establish a corresponding relationship with the preset core layout information for the next cycle; the dumping plan generation module is used to match the preset core layout for the next cycle based on the current core layout information and the current spent fuel pool layout information.
  • the corresponding relationship between the layout information is to configure the corresponding dumping movement information for the fuel assemblies and their corresponding inserts in the preset core layout information for the next cycle, and generate a dumping plan.
  • the relationship establishment module includes: an information merging module, used to read the current core layout information and spent fuel pool layout information from the system database, and merge the two to form the first spent fuel pool layout information; the corresponding relationship
  • the establishment module is configured to establish, based on the first identification information corresponding to each fuel assembly and the second identification information corresponding to each insert in the first spent fuel pool layout information, the next cycle core layout information that is consistent with the preset The corresponding relationship forms the second spent fuel pool layout information.
  • the correspondence relationship establishment module includes: a first traversal module, used to traverse the first identification information of all fuel assemblies and the second identification information of their corresponding inserts in the first spent fuel pool layout information; and a judgment module. , used to determine whether the first identification information and the second identification information traversed by the first traversal module are consistent with the preset core layout information of the next cycle; a corresponding module, used to convert the first A corresponding relationship consistent with the preset next cycle core layout information is established between the first identification information of all fuel assemblies to be moved into the core and the second identification information of the insert in the fuel pool layout information, forming the required The second spent fuel pool layout information; a second traversal module, used to traverse the second spent fuel pool layout information, and obtain the first identification of the fuel assembly that appears in the preset next cycle core layout information.
  • the information and the second identification information of the corresponding plug-in are input into the material dumping plan generation module, and the corresponding material dumping movement information is configured.
  • the nuclear fuel loading and unloading and location automatic tracking system of the present invention also includes an identification device that identifies the first identification information of the fuel assembly and the second identification information of the corresponding insert; a loading and unloading machine, which is connected to the processing device communicate, and execute the operation instructions issued by the processing device according to the material dumping plan to realize the movement of the fuel assembly and the insert.
  • the loading and unloading machine includes a communication device, a driving device and a mobile execution device,
  • the communication device receives and stores the material dumping plan pushed by the processing device
  • the driving device After receiving the material dumping plan, the driving device drives the movement execution device to sequentially execute the movement of the fuel assembly and its corresponding insert according to the material dumping plan;
  • the movement execution device executes the movement action after the recognition device identifies the first identification information of the corresponding fuel assembly and the second identification information of the corresponding insert.
  • the nuclear fuel loading and unloading and position automatic tracking system of the present invention is characterized in that it also includes an alarm device and a monitoring device,
  • the monitoring device communicates with the processing device and is used to monitor whether the moving position of the loading and unloading machine or the clamped fuel assembly is consistent with the information in the dumping plan;
  • the alarm device communicates with the processing device and issues an alarm prompt when the monitoring results of the monitoring device are inconsistent.
  • the correspondence information includes first correspondence information and second correspondence information
  • the first correspondence information includes the first identification information of the fuel assembly and its location information, and the start time and end time of establishing a correspondence between the fuel assembly and its location;
  • the second correspondence information includes the second identification information of the plug-in and its location information, and the start time and end time of the corresponding position of the plug-in and the position.
  • the processing device further includes an information update module, which is used to update the correspondence information when the fuel assembly or insert enters or leaves a certain location in the nuclear reactor core or spent fuel pool.
  • an information update module which is used to update the correspondence information when the fuel assembly or insert enters or leaves a certain location in the nuclear reactor core or spent fuel pool.
  • the processing device further includes a distribution monitoring module, which is configured to analyze and obtain all fuel assemblies and records by finding records in the correspondence information in which the start time is not empty and the end time is empty Distribution of plug-ins.
  • a distribution monitoring module configured to analyze and obtain all fuel assemblies and records by finding records in the correspondence information in which the start time is not empty and the end time is empty Distribution of plug-ins.
  • the processing device further includes an information tracking module
  • the system database also stores a history record of the correspondence information
  • the information tracking module is adapted to track the fuel assembly by reading the history record of the correspondence information. and the position changes and movements of the plug-in.
  • the present invention provides a nuclear fuel loading and unloading and automatic position tracking method, which is implemented using the above-mentioned nuclear fuel loading and unloading and automatic position tracking system, and includes the following steps:
  • the fuel assemblies and components that will appear in the preset next cycle core layout information are obtained. It corresponds to the material dumping movement information of the plug-in;
  • a material material discharge plan is generated.
  • the nuclear fuel loading and unloading and position automatic tracking system and method of the present invention automatically generates a dumping plan based on the core layout information and spent fuel pool layout information in its own system database, simplifying the data processing and conversion work during the loading and unloading process, and improving Work efficiency, reduce the risk of errors in core loading and unloading operations, and ensure the safety of core operation.
  • Figure 1 is a schematic diagram of a nuclear fuel loading and unloading and position automated tracking system according to a specific embodiment of the present invention
  • Figure 2 is a schematic diagram of the core layout of a specific embodiment of the present invention.
  • Figure 3 is a schematic layout diagram of a spent fuel pool according to a specific embodiment of the present invention.
  • FIG. 4 is a functional block diagram of a processing device according to a specific embodiment of the present invention.
  • FIG. 5 is a functional block diagram of a loading and unloading machine according to a specific embodiment of the present invention.
  • Figure 6 is a schematic diagram of a nuclear fuel loading and unloading and position automated tracking system according to another embodiment of the present invention.
  • Figure 7 is a flow chart of a nuclear fuel loading and unloading and automatic location tracking method according to a specific embodiment of the present invention.
  • the mobile management of nuclear fuel relies more on manpower and experience. In this way, the process of refueling the nuclear power reactor core is time-consuming, error-prone, and inconvenient to use. It can only reflect the status of the factory where it is located, but cannot reflect the status of another plant. Movement status of fuel assemblies in the plant. Even with the help of computers, the storage status of nuclear fuel is only displayed graphically, and the data between the nuclear fuel movement management system and the fuel storage system are still incompatible, and the computer cannot be relied upon to automatically generate a refueling plan; and, the existing The technology also does not realize continuous monitoring, tracking and feedback of the movement process of nuclear fuel assemblies.
  • the present invention proposes a nuclear fuel loading and unloading and location automatic tracking system and method.
  • a specific data storage structure is designed to record the fuel assemblies and related components in the nuclear power plant.
  • a dumping plan can be formulated and generated without manual intervention, which is used to drive the loading and unloading machine to operate automatically; when the loading and unloading machine moves to the designated position, By sending network signals, the system updates the position changes of fuel assemblies and related plug-ins, and compares them with pre-established loading and unloading plans to realize automation of fuel loading and unloading and position tracking.
  • Figure 1 is a schematic diagram of a nuclear fuel loading and unloading and position automated tracking system 100 according to a specific embodiment of the present invention.
  • the nuclear fuel loading and unloading and location automatic tracking system 100 of the present invention includes a fuel assembly 10, an inserter 20, a system database 30, a processing device 40, an identification device 50 and a loading and unloading machine 60.
  • the fuel assembly 10 is provided with first identification information that can uniquely identify the fuel assembly 10 .
  • the insert 20 is a device inserted into the fuel assembly 10 and plays a role in core power control.
  • the insert 20 is provided on the fuel assembly 10 and is provided with second identification information that can uniquely identify the insert 20 .
  • the first identification information of the fuel assembly 10 and the second identification information of the insert 20 may be in any form of letters, numbers, graphics, or a combination of the three.
  • the system database 30 stores reactor core layout information and spent fuel pool layout information.
  • Figure 2 is a schematic diagram of the core layout of a specific embodiment of the present invention.
  • each inner plug 20 can be placed in each nuclear fuel assembly 10. Different pattern marks represent different types of inner plugs 20, and each inner plug 20 corresponds to A fuel assembly 10.
  • the insert 20 includes a resistance plug 201, a control rod 202, a primary neutron source 203, a secondary neutron source 204, a combustible poison 205, etc.
  • the core layout composed of these fuel assemblies 10 and corresponding inserts 20 in Figure 2 is only an example of the present invention and does not limit the present invention.
  • the horizontal letters and vertical numbers in Figure 2 represent the grid coordinate information corresponding to the location of the fuel assembly 10.
  • Each fuel assembly 10 and insert 20 has a unique code (first identification information and second identification information), these codes remain globally unique, and their specific forms are not limited.
  • the reactor core and its associated spent fuel pool 90 contain several positions, and each position has a unique code.
  • Each fuel assembly 10 in the reactor core includes an insert 20 .
  • the corresponding relationship between the fuel assembly 10, the insert 20 and the core positions in the core is called the core layout.
  • the core layout information includes first identification information corresponding to each fuel assembly 10 in the nuclear reactor core, second identification information corresponding to each insert 20, correspondence information between each fuel assembly 10 and its corresponding insert 20, and Position information of each fuel assembly 10 within the nuclear reactor core.
  • Figure 3 is a schematic diagram of the layout of a spent fuel pool according to a specific embodiment of the present invention.
  • the used fuel assemblies 10 in the reactor core will be temporarily stored in the spent fuel pool 90 attached to the reactor core.
  • the fuel assemblies 10, inserts 20 and the spent fuel pool are located.
  • the corresponding relationship is called spent fuel pool arrangement.
  • all the fuel assemblies 10 in the reactor core are usually moved into the spent fuel pool 90 , and then the fuel assemblies 10 in the reactor core are rearranged according to a preset refueling plan.
  • the spent fuel pool layout information includes first identification information corresponding to each fuel assembly 10 in the spent fuel pool 90 , second identification information corresponding to each insert 20 , and correspondence information between each fuel assembly 10 and its corresponding insert 20 , and the location information of each fuel assembly 20 in the spent fuel pool 90 .
  • the correspondence information of each fuel assembly 10 and its corresponding insert 20 includes first correspondence information and second correspondence information.
  • the first correspondence information includes the first identification information of the fuel assembly 10 and its location information, and the start time and end time of establishing a correspondence between the fuel assembly 10 and its location.
  • the second correspondence information includes the second identification information of the plug-in 20 and its location information, and the start time and end time of the corresponding position of the plug-in 20 and the position.
  • the first correspondence information and the second correspondence information can be stored in the system database 30 in the form of two linked lists. By traversing the two linked lists, it is possible to find the correspondence information in which the start time is not empty and the end time is empty. Record, thereby analyze and obtain the distribution of all fuel assemblies 10 and inserts 20, and display the distribution in a graphical interface through text, graphics, color and a combination thereof, and store it in the system database 30.
  • the first correspondence information is in the form of a first data structure
  • the second correspondence information is in the form of a second data structure, respectively stored in the system database 30 .
  • the type of insert 20 of the fuel assembly 10 may include at least multiple types such as resistance plug 201, control rod 202, primary neutron source 203, secondary neutron source 204, and combustible poison 205. It is generally composed of 24 rods.
  • the fuel assembly 10 grid contains 264 fuel rods and 24 insert guide tubes; the planar distribution of the rods of the insert 20 is consistent with the guide tubes of the fuel assembly 10 grid, so the insert 20 can be installed on the fuel assembly 10 .
  • the present invention completes the steps of autonomous data collection by arranging the insert 20 in the fuel assembly 10 and recording the data of the insert 20 in the system database 30 through the network, thereby realizing the automatic collection and storage of the data of the fuel assembly 10. Subsequently, the material dumping plan is automatically generated to provide data support.
  • the processing device 40 establishes a corresponding relationship with the preset core layout information of the next cycle based on the current core layout information and spent fuel pool layout information, and configures the dumping of each fuel assembly 10 and its corresponding insert 20 Move information and generate material dumping plan.
  • the refueling scheme is an operation step that transitions the arrangement of the fuel assembly 10 and the insert 20 in the reactor from the current state to the target state.
  • the current state is the core layout state corresponding to the core layout information
  • the target state is the core layout state corresponding to the preset core layout information for the next cycle.
  • the identification device 50 identifies the first identification information of the fuel assembly 10 and the second identification information of the insert 20 .
  • the identification device 50 can be a machine vision identification device, such as a camera, a video camera, an infrared light identification device or a laser identification device, etc.
  • the identification device 50 can also be an induction identification device.
  • the insert 20 is provided with a sensing device corresponding to the identification device 50 .
  • the sensing device is used to record the information of the insert 20 and provide the information of the insert 20 to the induction identification device after receiving a signal from the sensing identification device.
  • the identification device 50 transmits the information identified from the plug-in 20 to the system database 30 through a network, which may be a wide area network with security measures or a local area network.
  • the loading and unloading machine 60 realizes the movement of each fuel assembly 10 and the insert 20.
  • the loading and unloading machine 60 communicates with the processing device 40 and executes the operation instructions issued by the processing device 40 according to the material dumping plan.
  • the loading and unloading machine 60 receives and stores the automatically generated feeding plan; according to the feeding plan, it sequentially identifies the first identification information of the corresponding fuel assembly 10 and the second identification information of the insert 20 provided thereon; after identifying the fuel assembly 10 After the first identification information and the second identification information of the inserter 20 set thereon, the movement action of the fuel assembly 10 and the inserter 20 provided thereon, or the movement action of the inserter 20 is executed according to the material dumping movement information.
  • the identification device 50 can be integrated on the loading and unloading machine 60 .
  • the nuclear fuel loading and unloading and position automated tracking system of this embodiment realizes the recording of the fuel assembly 10 and its corresponding insert 20 in the nuclear power plant, and formulates and generates a material dumping plan without manual intervention.
  • the dumping plan can be used to drive
  • the loading and unloading machine 60 operates automatically; when the loading and unloading machine 60 moves to a designated position, the position changes of the fuel assembly 10 and related inserts 20 can be updated and compared with the pre-made loading and unloading plan, thereby realizing fuel loading and unloading and position tracking. automation.
  • FIG. 4 is a functional block diagram of the processing device 40 according to a specific embodiment of the present invention.
  • the processing device 40 includes a relationship establishment module 401 and a material dumping plan generation module 402.
  • the relationship establishment module 401 is used to obtain the current core layout information and the current spent fuel pool layout. Information, based on the current core layout information and the current spent fuel pool layout information, establish a corresponding relationship with the preset core layout information for the next cycle.
  • the dumping plan generation module 402 is used to generate the preset core layout information for the next cycle based on the correspondence between the current core layout information, the current spent fuel pool layout information, and the preset core layout information for the next cycle.
  • the fuel assembly 10 and its corresponding plug-in 20 in the fuel assembly are configured with corresponding pouring movement information to generate a pouring plan.
  • the relationship establishment module 401 includes an information merging module 403 and a corresponding relationship establishment module 404.
  • the information merging module 403 is used to read the current core layout information and spent fuel pool layout information from the system database 30, and merge the two to form the first spent fuel pool layout information.
  • the loader and unloader 60 can realize that all fuel assemblies and inserts in the core are transferred according to the current layout of the fuel assemblies and inserts in the core.
  • the insert is moved into the exhaust tank to form the first exhaust tank layout diagram.
  • the corresponding relationship establishment module 404 establishes a core layout consistent with the preset next cycle core layout information based on the first identification information corresponding to each fuel assembly 10 and the second identification information corresponding to each insert 20 in the first spent fuel pool layout information.
  • the corresponding relationship forms the second spent fuel pool layout information.
  • the dumping plan generation module 402 configures corresponding dumping movement information for the first identification information of each fuel assembly 10 and the second identification information of the corresponding inserter 20 in the preset next cycle core layout information, and based on the first The spent fuel pool layout information, the second spent fuel pool layout information and the dumping movement information automatically generate a dumping plan.
  • the correspondence relationship establishment module 404 includes a first traversal module 405, a judgment module 406, a correspondence module 407 and a second traversal module 408.
  • the first traversal module 405 is configured to traverse the first identification information of all fuel assemblies and the second identification information of their corresponding inserts in the first spent fuel pool layout information.
  • the judgment module 406 is used to judge whether the first identification information and the second identification information traversed by the first traversal module are consistent with the preset next cycle core layout information.
  • the corresponding module 407 is used to establish the relationship between the first identification information of all fuel assemblies to be moved into the core and the second identification information of the insert in the first spent fuel pool layout information and the preset next cycle.
  • the corresponding correspondence between the reactor core layout information and the second spent fuel pool layout information is formed;
  • the first traversal module 405 traverses the first identification information of all fuel assemblies in the first spent fuel pool layout information and the second identification information of the corresponding inserts. If the determination module 406 determines that a certain fuel assembly 10 is set If the second identification information of the insert 20 does not match the preset core layout information for the next cycle, the corresponding module 407 will compare the second identification information of the insert 20 set for the fuel assembly 10 with the first identification of the target fuel assembly 10 The information establishes a corresponding relationship; if the judgment module 406 determines that the second identification information of the inserter 20 that is inconsistent with the preset next cycle core layout information already exists on the target fuel assembly 10, the corresponding module 407 will The second identification information establishes a corresponding relationship with the first identification information of the fuel assemblies 10 that do not contain the inserter 20 in the first spent fuel pool layout information, until all the fuel assemblies 10 to be moved into the core in the first spent fuel pool layout information are A corresponding relationship consistent with the preset core layout information of the next cycle is established between the first identification information of the
  • all fuel assemblies 10 in the first spent pool layout diagram can be traversed. If the corresponding insert 20 does not match the preset core layout information of the next cycle, the insert 20 will be moved to the target fuel assembly 10 ; If the target fuel assembly 10 already has an insert 20, move it to the fuel assembly 10 that does not contain the insert 20 in the spent fuel pool 90 until all the fuel assemblies 10 and inserts in the spent fuel pool 90 that are to be moved into the core
  • the corresponding relationship of 20 is consistent with the preset core layout information for the next cycle, forming a second depletion tank layout diagram.
  • the second traversal module 408 is used to traverse the second spent fuel pool arrangement information, which will appear in The first identification information of the fuel assembly 10 and the second identification information of the corresponding inserter 20 in the preset core layout information of the next cycle are input to the dumping plan generation module 402 to configure the corresponding dumping movement information.
  • the dumping plan is automatically generated based on the first spent fuel pool layout information, the second spent fuel pool layout information and the dumping movement information.
  • the dumping plan may specifically include dumping movement information, first identification information of the fuel assembly 10 to be moved, and second identification information of its insert 20 .
  • the refueling movement information includes refueling sequence information, initial position information and target position information corresponding to the fuel assembly 10 to be moved and its insert 20; the refueling plan is stored in the system database 30 in the form of a third data structure.
  • the third data structure is shown in Table 3.
  • the unique data structure of the present invention enables accurate recording of the reactor loading and unloading process and status data. This process does not require manual intervention at all and achieves complete automation.
  • the loader and unloader 60 can traverse the second spent pool layout diagram when executing the generated refueling plan. If the fuel assembly 10 appears in the preset core layout information of the next cycle, it and the corresponding inserter 20 will be The corresponding relationship between the fuel assembly 10 and the insert 20 in the preset core layout information of the next cycle is moved into the core.
  • FIG. 5 is a functional block diagram of the loading and unloading machine 60 according to a specific embodiment of the present invention.
  • the loading and unloading machine 60 includes a communication device 601 , a driving device 602 and a mobile execution device 603 .
  • the communication device 601 receives and stores the material dumping plan pushed by the processing device 40 .
  • the driving device 602 After receiving the material pouring plan, the driving device 602 drives the movement execution device 603 to sequentially execute the movement of the fuel assembly 10 and its corresponding insert 20 according to the material pouring plan.
  • the movement execution device 603 executes the movement action after the identification device 50 identifies the first identification information of the corresponding fuel assembly 10 and the corresponding second identification information of the insert 20 .
  • the communication device 601 is also used to send a network signal to the processing device 40 when the mobile execution device 603 moves the fuel assembly 10 out of the initial position or into the target position.
  • the network signal includes mobile sequence information and a mobile identifier, and the mobile identifier describes the sending network.
  • the signal indicates the action direction of the movement execution device 603.
  • Figure 6 is a schematic diagram of a nuclear fuel loading and unloading and position automated tracking system 100 according to another embodiment of the present invention.
  • the nuclear fuel loading and unloading and position automated tracking system 100 of the present invention also includes an alarm device 70 and a monitoring device 80 .
  • the monitoring device 80 communicates with the processing device 40 and is used to monitor whether the moving position of the loading and unloading machine 60 or the clamped fuel assembly 10 is consistent with the information in the charging plan.
  • the alarm device 70 communicates with the processing device 40 and issues an alarm when the monitoring device 80 detects that the moving position of the loading and unloading machine or the clamped fuel assembly is inconsistent with the information in the charging plan.
  • the alarm prompt can be at least one of sound, light, and electrical signals.
  • the network signal sent by the loader 60 used to move the fuel assembly 10 and the insert 20 is received. After the signal, split the dumping scheme into the first pair of the first data structure The corresponding relationship information and the data structure of the second corresponding relationship information of the second data structure.
  • the processing device 40 pushes the loading and unloading plan represented by the third data structure shown in Table 3 stored in the system database 30 to the loading and unloading machine 60 through the network, so that the loading and unloading machine 60 sequentially follows the plan.
  • the action of moving the fuel assembly 10 is performed.
  • the loader and unloader 60 moves the fuel assembly 10 out of the initial position or into the target position, it sends a network signal to the processing device 40.
  • the network signal includes a serial number and an identifier, and the identifier describes the action direction of the unloader when sending the signal.
  • the processing device 40 When the processing device 40 receives the network signal sent from the loading and unloading machine 60, it decomposes the data recorded in Table 3 into the first data structure of Table 1 and the second data structure of Table 2, and fills in the required data. And record the current time as the start time or end time, and save it to the system database 30.
  • the monitoring device 80 checks whether the actions performed by the loading and unloading machine 60 are consistent with the predetermined loading and unloading plan. If not, an alarm is issued to prompt the staff to check and verify. The system issues alarm prompts through sound, light signals, etc.
  • the present invention realizes real-time movement management of the nuclear fuel assembly 10 on the loading and unloading machine 60, thereby improving the accuracy of loading and unloading of nuclear reactors and the efficiency of loading and unloading.
  • the processing device 40 also includes an information update module 409, which is used to update the corresponding relationship information when the fuel assembly 10 or the insert 20 enters or leaves a certain location in the nuclear reactor core or the spent fuel pool 90 .
  • Updating the corresponding relationship information includes: when the fuel assembly 10 or the inserter 20 enters a certain location in the core or spent fuel pool 90, create a new piece of data according to the first data structure or the second data structure, set the start time to the current time, and set the start time to the current time.
  • the end time is set to empty; when the fuel assembly 10 or the inserter 20 leaves a certain position in the core or spent fuel pool 90, the end time in the information representing the original correspondence is set to the current time.
  • the processing device 40 also includes a distribution monitoring module 410, which is used to analyze and obtain records by searching for records in the correspondence information in which the start time is not empty and the end time is empty. Distribution of all fuel assemblies 10 and inserts 20.
  • the processing device 40 further includes an information tracking module 411.
  • the system database 30 also stores a historical record of correspondence information.
  • the information tracking module 411 is adapted to track the fuel assembly 10 and Position changes and movements of the insert 20.
  • Figure 7 is a flow chart of a nuclear fuel loading and unloading and automatic location tracking method according to a specific embodiment of the present invention.
  • the present invention also provides a nuclear fuel loading and unloading and location automated tracking method, which is implemented using the above-mentioned nuclear fuel loading and unloading and location automated tracking system 100, and includes the following steps:
  • Step S1 Obtain current core layout information and current spent fuel pool layout information.
  • Step S2 According to the current core layout information and the current spent fuel pool layout information, obtain the corresponding relationship with the preset next cycle core layout information.
  • Step S3 According to the correspondence between the current core layout information, the current spent fuel pool layout information, and the preset next cycle core layout information, obtain the fuel that will appear in the preset next cycle core layout information.
  • Step S4 Generate a material dumping plan based on the material dumping movement information.
  • nuclear fuel loading and unloading and location automated tracking method can be referred to the implementation of the above-mentioned nuclear fuel loading and unloading and location automated tracking system, and will not be described again here.
  • the nuclear fuel loading and unloading and location automatic tracking system and method of the present invention automatically generates a dumping plan based on the core layout information and spent fuel pool layout information in its own system database 30, simplifying the data processing and conversion work during the loading and unloading process. Improve work efficiency, reduce the risk of errors in core loading and unloading operations, and ensure the safety of core operation.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本发明提供一种核燃料装卸与位置自动化跟踪系统及方法,系统包括:燃料组件,其设有能唯一标识该燃料组件的第一标识信息;内插件,其设置于所述燃料组件,并设有能唯一标识该内插件的第二标识信息;系统数据库,其存储堆芯布置信息和乏燃料池布置信息;处理装置,其根据当前的堆芯布置信息和乏燃料池布置信息,建立与预设的下一循环的堆芯布置信息的对应关系,并配置各燃料组件及其对应的内插件的倒料移动信息,生成倒料方案。本发明依据自身系统数据库中的堆芯布置信息和乏燃料池布置信息,自动生成倒料方案,简化了装卸料过程中的数据处理和转换工作,提高工作效率,降低堆芯装卸料作业发生错误的风险,保障堆芯运行安全。

Description

核燃料装卸与位置自动化跟踪系统及方法
相关申请的交叉引用
本申请要求享有于2022年08月10日提交的名称为“一种核燃料装卸与位置自动化跟踪方法、装置及系统”的中国专利申请202210956195.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及核反应堆装卸料技术领域。
背景技术
压水堆核电厂需要按照一定的时间周期(称为一个燃料循环)以装卸料的方式调整核燃料组件在堆芯内的排布方式。实施装卸料通常需要人工制定倒料计划,并根据该计划操作装卸料机,数据处理和转换工作量较大,不仅效率低,而且容易出现错误,有时甚至会出现堆芯装料错误,影响堆芯安全。
目前,核电厂现有反应堆装卸料主要采用人工制定堆换料方案,在反应堆装料和卸料时,换料工程师完全依赖自身的经验制定堆换料方案,这种换料方式的工作量极大,发生人为错误的可能性较高。即使在确保不发生人为错误的情况下,不同的换料工程师对相同状态的堆芯所选择出的换料方案仍会有巨大差异。这样一方面导致核电机组的运行无法实现最优化,另一方面也使换料工程师的现场作业负荷太大、肩负的责任也过大。
随着计算机技术的发展和逐步成熟,人们开始利用计算机程序来实现核燃料的移动管理,现有的技术方案中主要依据事先生成的贮存状况来 创建燃料组件的移动顺序图,并以图形的方式进行展示,最后对燃料组件的贮存状况进行更新。然而此类方案并不能更有效率地创建移动顺序图,无法更有效地节约核电厂实际换料操作所需的时间。
发明内容
针对现有技术存在的问题,本发明提供一种核燃料装卸与位置自动化跟踪系统及方法,能够自动制定倒料方案,简化装卸料过程中数据处理和转换工作,并实现燃料组件的位置跟踪。
本发明第一方面,提供一种核燃料装卸与位置自动化跟踪系统,包括:
燃料组件,其设有能唯一标识该燃料组件的第一标识信息;
内插件,其设置于所述燃料组件,并设有能唯一标识该内插件的第二标识信息;
系统数据库,其存储堆芯布置信息和乏燃料池布置信息,堆芯布置信息包括在核反应堆堆芯内的各燃料组件对应的第一标识信息、各内插件对应的第二标识信息、各燃料组件及其对应的内插件的对应关系信息以及各燃料组件在核反应堆堆芯内所处的位置信息,乏燃料池布置信息包括在乏燃料池内的各燃料组件对应的第一标识信息、各内插件对应的第二标识信息、各燃料组件及其对应设置的内插件的对应关系信息以及各燃料组件在乏燃料池内所处的位置信息;
处理装置,其根据当前的堆芯布置信息和乏燃料池布置信息,建立与预设的下一循环的堆芯布置信息的对应关系,并配置各燃料组件及其对应的内插件的倒料移动信息,生成倒料方案。
优选地,处理装置包括:关系建立模块,用于获取当前堆芯布置信息和当前乏燃料池布置信息,根据当前堆芯布置信息和当前乏燃料池布置 信息,建立与预设的下一循环堆芯布置信息之间的对应关系;倒料方案生成模块,用于根据当前堆芯布置信息和当前乏燃料池布置信息与预设的下一循环堆芯布置信息之间的对应关系,为所述预设的下一循环堆芯布置信息中的燃料组件及其对应内插件配置相应的倒料移动信息,生成倒料方案。
优选地,关系建立模块包括:信息合并模块,用于从所述系统数据库读取当前的堆芯布置信息和乏燃料池布置信息,并将二者合并形成第一乏燃料池布置信息;对应关系建立模块,根据所述第一乏燃料池布置信息中各燃料组件对应的第一标识信息和各内插件对应的第二标识信息,建立与所述预设的下一循环堆芯布置信息相符合的对应关系,形成第二乏燃料池布置信息。
优选地,对应关系建立模块包括:第一遍历模块,用于遍历所述第一乏燃料池布置信息中的所有燃料组件的第一标识信息及其对应的内插件的第二标识信息;判断模块,用于判断所述第一遍历模块遍历的所述第一标识信息和所述第二标识信息与预设的下一循环堆芯布置信息是否相符;对应模块,用于将所述第一乏燃料池布置信息中所有待移入堆芯内的燃料组件的第一标识信息和内插件的第二标识信息之间建立与所述预设的下一循环堆芯布置信息相符的对应关系,形成所述第二乏燃料池布置信息;第二遍历模块,用于遍历所述第二乏燃料池布置信息,将出现在所述预设的下一循环堆芯布置信息中的燃料组件的第一标识信息及其对应内插件的第二标识信息,输入至所述倒料方案生成模块,配置相应的倒料移动信息。
优选地,本发明的核燃料装卸与位置自动化跟踪系统,还包括识别装置,其识别所述燃料组件的第一标识信息以及对应内插件的第二标识信息;装卸料机,其与所述处理装置通信,并执行所述处理装置根据所述倒料方案发出的操作指令,实现所述燃料组件及所述内插件的移动。
优选地,装卸料机包括通信装置、驱动装置和移动执行装置,
所述通信装置接收并存储所述处理装置推送的所述倒料方案;
所述驱动装置在接收到所述倒料方案后,驱动所述移动执行装置按所述倒料方案依次执行燃料组件及其对应的内插件的移动动作;
所述移动执行装置在所述识别装置识别出相应燃料组件的第一标识信息及其对应的内插件的第二标识信息后,执行所述移动动作。
优选地,本发明的核燃料装卸与位置自动化跟踪系统,其特征在于,还包括报警装置和监测装置,
所述监测装置与所述处理装置通信,用于监测所述装卸料机的移动位置或所夹取的燃料组件与所述倒料方案中的信息是否一致;
所述报警装置与所述处理装置通信,当所述监测装置监测的结果不一致时发出警报提示。
优选地,对应关系信息包括第一对应关系信息以及第二对应关系信息,
所述第一对应关系信息包括燃料组件的第一标识信息及其所处位置信息、燃料组件及其所处位置建立对应关系的开始时间和结束时间;
所述第二对应关系信息包括内插件的第二标识信息及其所处位置信息、内插件与位置对应位置的开始时间和结束时间。
优选地,处理装置还包括信息更新模块,所述信息更新模块用于在所述燃料组件或内插件进入或离开核反应堆堆芯或乏燃料池某个位置时,更新所述对应关系信息。
优选地,处理装置还包括分布监测模块,所述分布监测模块用于通过查找所述对应关系信息中的所述开始时间不为空且所述结束时间为空的记录,分析得到所有燃料组件和内插件的分布情况。
优选地,处理装置还包括信息跟踪模块,所述系统数据库还存储所述对应关系信息的历史记录,所述信息跟踪模块适于通过读取所述对应关系信息的历史记录,跟踪所述燃料组件和内插件的位置变化以及移动情况。
本发明第二方面,提供一种核燃料装卸与位置自动化跟踪方法,其利用上述的核燃料装卸与位置自动化跟踪系统实现,包括以下步骤:
获取当前堆芯布置信息和当前乏燃料池布置信息,根据当前堆芯布置信息和当前乏燃料池布置信息,获取与预设的下一循环堆芯布置信息之间的对应关系;
根据当前堆芯布置信息和当前乏燃料池布置信息与预设的下一循环堆芯布置信息相之间的对应关系,获取将出现在预设的下一循环堆芯布置信息中的燃料组件及其对应内插件的倒料移动信息;
根据倒料移动信息,生成倒料方案。
本发明的核燃料装卸与位置自动化跟踪系统及方法,依据自身系统数据库中的堆芯布置信息和乏燃料池布置信息,自动生成倒料方案,简化了装卸料过程中的数据处理和转换工作,提高工作效率,降低堆芯装卸料作业发生错误的风险,保障堆芯运行安全。
通过本系统更新燃料组件和相关组件位置变化,并且与事先制定的装卸料计划对比,实现燃料装卸与位置跟踪的自动化,堆芯装料的自动跟踪,缩短停堆大修时间。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需使用的附图作简单地介绍。
图1为本发明一个具体实施例的核燃料装卸与位置自动化跟踪系统的示意图;
图2为本发明一个具体实施例的堆芯布置示意图;
图3为本发明一个具体实施例的乏燃料池布置示意图;
图4为本发明一个具体实施例的处理装置的功能框图;
图5为本发明一个具体实施例的装卸料机的功能框图;
图6为本发明另一个实施例的核燃料装卸与位置自动化跟踪系统的示意图;
图7为本发明一个具体实施例的核燃料装卸与位置自动化跟踪方法流程图。
附图标记:
100-核燃料装卸与位置自动化跟踪系统;
10-燃料组件;
20-内插件;
201-阻力塞;
202-控制棒;
203-初级中子源;
204-次级中子源;
205-可燃毒物;
30-系统数据库;
40-处理装置;
401-关系建立模块;
403-信息合并模块;
404-对应关系建立模块;
405-第一遍历模块;
406-判断模块;
407-对应模块;
408-第二遍历模块;
402-倒料方案生成模块;
409-信息更新模块;
410-分布监测模块;
411-信息跟踪模块;
50-识别装置;
60-装卸料机;
601-通信装置;
602-驱动装置;
603-移动执行装置;
70-报警装置;
80-监测装置;
90-乏燃料池。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
现有技术中,对于核燃料的移动管理,更多地是依靠人力和经验,如此在核电堆芯换料过程中费时费力、容易出错、使用不便,仅能体现所在厂房的状态,不能反映另一厂房中燃料组件的移动状态。即便借助计算机的手段,也只是通过图形的方式展示核燃料的存储状况,而核燃料移动管理系统与燃料存储系统之间数据仍然是不兼容的,并不能依靠计算机自动生成倒料方案;并且,现有技术中也未实现对核燃料组件移动过程的不间断监控跟踪与反馈。
本发明提出一种核燃料装卸与位置自动化跟踪系统及方法,通过设 计特定的数据存储结构,实现核电厂内燃料组件和相关组件的记录,不需要人工干预即可制定生成倒料方案,用于驱动装卸料机自动运行;当装卸料机运行到指定位置时,发送网络信号,本系统更新燃料组件和相关内插件位置变化,并且与事先制定的装卸料计划对比,实现燃料装卸与位置跟踪的自动化。
图1为本发明一个具体实施例的核燃料装卸与位置自动化跟踪系统100的示意图。
如图1所示,本发明的核燃料装卸与位置自动化跟踪系统100,包括燃料组件10、内插件20、系统数据库30、处理装置40、识别装置50和装卸料机60。
燃料组件10设有能唯一标识该燃料组件10的第一标识信息。
内插件20是插入在燃料组件10中的起到堆芯功率控制相关的装置。内插件20设置于燃料组件10,并设有能唯一标识该内插件20的第二标识信息。
燃料组件10的第一标识信息和内插件20的第二标识信息可以是文字、数字、图形中的任一形式,或这三者中的组合。
系统数据库30存储堆芯布置信息和乏燃料池布置信息。
图2为本发明一个具体实施例的堆芯布置示意图。
如图2所示,本发明的一个具体实施例的堆芯布置中,每个核燃料组件10中可放置1个内插件20,不同图案标记代表不同类型的内插件20,每个内插件20对应一个燃料组件10。在图2中,内插件20包括阻力塞201、控制棒202、初级中子源203、次级中子源204和可燃毒物205等。图2这些燃料组件10及相应的内插件20构成的堆芯布置,只是作为本发明的一个示例,并不对本发明构成限制。
图2中横向字母和纵向数字代表燃料组件10所处位置对应的格架坐标信息。每个燃料组件10和内插件20均有唯一的编码(第一标识信息和第二标识信息),这些编码保持全局唯一,其具体形式没有限制。根据反应堆型号的不同,堆芯及其附属的乏燃料池90内包含若干个位置,每个位置均有唯一的编码。堆芯内每个燃料组件10均包含1个内插件20。堆芯内燃料组件10、内插件20和堆芯位置的对应关系称为堆芯布置。
堆芯布置信息包括在核反应堆堆芯内的各燃料组件10对应的第一标识信息、各内插件20对应的第二标识信息、各燃料组件10及其对应的内插件20的对应关系信息、和各燃料组件10在核反应堆堆芯内所处的位置信息。
图3为本发明一个具体实施例的乏燃料池布置示意图。
如图3所示,堆芯中使用过的燃料组件10,将暂时存放于堆芯附属的乏燃料池90内,乏燃料池90中燃料组件10、内插件20和所处乏燃料池位置的对应关系称为乏燃料池布置。执行堆芯内燃料组件10的换料操作时,通常会将堆芯内的所有燃料组件10移入乏燃料池90内,而后按照预先设定的倒料计划重新布置堆芯内的燃料组件10。
乏燃料池布置信息包括在乏燃料池90内的各燃料组件10对应的第一标识信息、各内插件20对应的第二标识信息、各燃料组件10及其对应的内插件20的对应关系信息、和各燃料组件20在乏燃料池90内所处的位置信息。
在一个实施例中,各燃料组件10及其对应的内插件20的对应关系信息包括第一对应关系信息以及第二对应关系信息。
第一对应关系信息包括燃料组件10的第一标识信息及其所处位置信息、燃料组件10及其所处位置建立对应关系的开始时间和结束时间。
第二对应关系信息包括内插件20的第二标识信息及其所处位置信息、内插件20与位置对应位置的开始时间和结束时间。
第一对应关系信息和第二对应关系信息在系统数据库30中可以通过两个链表的形式存储,通过遍历两个链表,就可以查找对应关系信息中的开始时间不为空且结束时间为空的记录,从而分析得到所有燃料组件10和内插件20的分布情况,并将分布情况在图形界面中,通过文字、图形、颜色及其结合的方式对数据进行表示,并存储在系统数据库30中。
具体地,第一对应关系信息通过第一数据结构的形式,第二对应关系信息通过第二数据结构的形式,分别存储于系统数据库30中。
第一数据结构的表现形式见表1。
表1 第一数据结构
第二数据结构的表现形式见表2。
表2 第二数据结构
通过表1的第一数据结构和表2的第二数据结构,对核电厂燃料组件10和内插件20的分布进行记录,追溯燃料组件10和内插件20位置变化的历史,通过追加和更新数据可追踪燃料组件10和内插件20位置的变化。
燃料组件10的内插件20的类型至少可以包括阻力塞201、控制棒202、初级中子源203、次级中子源204和可燃毒物205等多种类型,一般由24根棒构成。燃料组件10格架中包含264根燃料棒和24个内插件导向管;内插件20的棒的平面分布与燃料组件10格架的导向管一致,因此可将内插件20安装到燃料组件10上。
本发明通过在燃料组件10中设置内插件20,并通过网络将内插件20的数据记录在系统数据库30中,完成自主采集数据的步骤,从而实现了燃料组件10数据的自动采集和保存,为后续自动生成倒料方案提供数据支撑。
处理装置40根据当前的堆芯布置信息和乏燃料池布置信息,建立与预设的下一循环的堆芯布置信息的对应关系,并配置各燃料组件10及其对应的内插件20的倒料移动信息,生成倒料方案。
倒料方案是使反应堆中燃料组件10和内插件20排布从当前状态过渡到目标状态的操作步骤。本实施例中,当前状态即堆芯布置信息对应的堆芯布置状态,目标状态即预设的下一循环的堆芯布置信息对应的堆芯布置状态。
识别装置50识别燃料组件10的第一标识信息以及内插件20的第二标识信息。
识别装置50可以是机器视觉识别装置,如照相机、摄像机、红外光识别装置或激光识别装置等,识别装置50也可以是感应识别装置,此时 在内插件20内设有与识别装置50相对应的感应装置,感应装置用于记载内插件20的信息,并在接受到感应识别装置的信号后向感应识别装置提供内插件20的信息。
识别装置50通过网络将其从内插件20中所识别的信息传送到系统数据库30中,网络可以是具有安全措施的广域网,也可以是局域网。
装卸料机60实现各个燃料组件10以及内插件20的移动,装卸料机60与处理装置40通信,并执行处理装置40根据倒料方案发出的操作指令。
装卸料机60接收并存储自动生成的倒料方案;按倒料方案依次识别相应燃料组件10的第一识别信息及设置其上的内插件20的第二标识信息;在识别出燃料组件10的第一识别信息及设置其上的内插件20的第二标识信息后,根据倒料移动信息执行燃料组件10及其设置的内插件20的移动动作,或者执行内插件20的移动动作。
在一个具体实施例中,识别装置50可以集成于装卸料机60上。
本实施例的核燃料装卸与位置自动化跟踪系统,实现了核电厂内燃料组件10和其对应内插件20的记录,以不需要人工干预的方式制定生成倒料方案,该倒料方案能够用于驱动装卸料机60自动运行;当装卸料机60运行到指定位置时,能够更新燃料组件10和相关内插件20位置变化,并且与事先制定的装卸料计划对比,从而实现了燃料装卸与位置跟踪的自动化。
图4为本发明一个具体实施例的处理装置40的功能框图。
如图4所示,处理装置40包括关系建立模块401和倒料方案生成模块402。
关系建立模块401用于获取当前堆芯布置信息和当前乏燃料池布置 信息,根据当前堆芯布置信息和当前乏燃料池布置信息,建立与预设的下一循环堆芯布置信息之间的对应关系。
倒料方案生成模块402用于根据当前堆芯布置信息和当前乏燃料池布置信息与预设的下一循环堆芯布置信息相之间的对应关系,为预设的下一循环堆芯布置信息中的燃料组件10及其对应内插件20配置相应的倒料移动信息,生成倒料方案。
关系建立模块401包括信息合并模块403和对应关系建立模块404。
信息合并模块403用于从系统数据库30读取当前的堆芯布置信息和乏燃料池布置信息,并将二者合并形成第一乏燃料池布置信息。
通过信息合并模块403生成第一乏燃料池布置信息,装卸料机60在执行生成的倒料方案时,能够实现根据当前堆芯中燃料组件和内插件布置情况,将堆芯内所有燃料组件及内插件移动到乏池中,形成第一乏池布置图。
对应关系建立模块404根据第一乏燃料池布置信息中各燃料组件10对应的第一标识信息和各内插件20对应的第二标识信息,建立与预设的下一循环堆芯布置信息相符合的对应关系,形成第二乏燃料池布置信息。
倒料方案生成模块402为预设的下一循环堆芯布置信息中各燃料组件10的第一标识信息及其对应内插件20的第二标识信息配置相应的倒料移动信息,并基于第一乏燃料池布置信息、第二乏燃料池布置信息和倒料移动信息自动生成倒料方案。
在一个具体实施例中,对应关系建立模块404包括第一遍历模块405、判断模块406、对应模块407和第二遍历模块408。
第一遍历模块405用于遍历所述第一乏燃料池布置信息中的所有燃料组件的第一标识信息及其对应的内插件的第二标识信息。
判断模块406用于判断所述第一遍历模块遍历的所述第一标识信息和所述第二标识信息与预设的下一循环堆芯布置信息是否相符。
对应模块407用于将所述第一乏燃料池布置信息中所有待移入堆芯内的燃料组件的第一标识信息和内插件的第二标识信息之间建立与所述预设的下一循环堆芯布置信息相符的对应关系,形成所述第二乏燃料池布置信息;
具体地,第一遍历模块405遍历第一乏燃料池布置信息中的所有燃料组件的第一标识信息及其对应的内插件的第二标识信息,若判断模块406判断某燃料组件10所设置的内插件20的第二标识信息与预设的下一循环堆芯布置信息不符,则对应模块407将该燃料组件10所设置的内插件20的第二标识信息与目标燃料组件10的第一标识信息建立对应关系;若判断模块406判断目标燃料组件10上已存在与预设的下一循环堆芯布置信息不符的内插件20的第二标识信息,则对应模块407将该内插件20的第二标识信息与第一乏燃料池布置信息中不含内插件20的燃料组件10的第一标识信息建立对应关系,直至将第一乏燃料池布置信息中所有待移入堆芯内的燃料组件10的第一标识信息和内插件20的第二标识信息之间建立与预设的下一循环堆芯布置信息相符的对应关系,形成第二乏燃料池布置信息。
通过上述步骤可以遍历第一乏池布置图中所有燃料组件10,若其对应的内插件20与预设的下一循环的堆芯布置信息不符,则将内插件20移动到目标燃料组件10上;若目标燃料组件10上已有内插件20,则移动到乏燃料池90中不含内插件20的燃料组件10上,直至乏燃料池90中所有待移入堆芯的燃料组件10和内插件20的对应关系与预设的下一循环的堆芯布置信息相符,形成第二乏池布置图。
第二遍历模块408用于遍历所述第二乏燃料池布置信息,将出现在 预设的下一循环堆芯布置信息中的燃料组件10的第一标识信息及其对应内插件20的第二标识信息,输入至倒料方案生成模块402,配置相应的倒料移动信息。
倒料方案基于第一乏燃料池布置信息、第二乏燃料池布置信息和倒料移动信息自动生成。倒料方案具体可以包括倒料移动信息、待移动的燃料组件10的第一标识信息及其内插件20的第二标识信息。倒料移动信息包括倒料序列信息、待移动的燃料组件10及其内插件20相对应的初始位置信息与目标位置信息;倒料方案通过第三数据结构的形式存储于系统数据库30中。
具体地,第三数据结构表3所示。
表3 第三数据结构
本发明特有的数据结构实现反应堆装卸料过程和状态数据的准确记录,该过程完全无需人工干预,实现完全自动化。
装卸料机60在执行生成的倒料方案时能够遍历第二乏池布置图,若燃料组件10出现在预设的下一循环的堆芯布置信息中,则将其及对应的内插件20按照预设的下一循环的堆芯布置信息中燃料组件10和内插件20的对应关系移动到堆芯内。
图5为本发明一个具体实施例的装卸料机60的功能框图。
如图5所示,在一个具体实施例中,装卸料机60包括通信装置601、驱动装置602和移动执行装置603。
通信装置601接收并存储处理装置40推送的倒料方案。
驱动装置602在接收到倒料方案后,驱动移动执行装置603按倒料方案依次执行燃料组件10及其对应的内插件20的移动动作。
移动执行装置603在识别装置50识别出相应燃料组件10的第一标识信息及其对应的内插件20的第二标识信息后,执行移动动作。
通信装置601还用于在移动执行装置603将燃料组件10移出初始位置或放入目标位置时,向处理装置40发送网络信号,网络信号包括移动序列信息和移动标识符,移动标识符描述发送网络信号时移动执行装置603的动作方向。
图6为本发明另一个实施例的核燃料装卸与位置自动化跟踪系统100的示意图。
如图6所示,在另一个具体实施例中,本发明的核燃料装卸与位置自动化跟踪系统100还包括报警装置70和监测装置80。
监测装置80与处理装置40通信,用于监测装卸料机60的移动位置或所夹取的燃料组件10与倒料方案中的信息是否一致。
报警装置70与处理装置40通信,当监测装置80监测到所述装卸料机的移动位置或所夹取的燃料组件与所述倒料方案中的信息不一致时发出警报提示。警报提示可以为声、光、电信号中的至少一种。
在一个实施例中,在燃料组件10或内插件20离开堆芯或乏燃料池90某个位置时,在接收到用于实现燃料组件10以及内插件20移动的装卸料机60所发出的网络信号之后,将倒料方案拆分为第一数据结构的第一对 应关系信息以及第二数据结构的第二对应关系信息的数据结构。
在进行装卸料操作时,处理装置40将系统数据库30中保存的如表3所示的第三数据结构表示的倒料方案通过网络推送到装卸料机60,令装卸料机60按照该方案依次执行燃料组件10移动的动作。当装卸料机60将燃料组件10移出初始位置、或放入目标位置时,向处理装置40发送网络信号,网络信号包含序号和标识符,标识符描述发送信号时装卸料机的动作方向。当处理装置40收到装卸料机60发送来的网络信号后,将表3中所记录的数据分解为表1的第一数据结构和表2的第二数据结构,并填入要求的数据,并记录当前时刻为开始时间或结束时间,保存到系统数据库中30。同时,监测装置80对装卸料机60执行的动作是否与预定的装卸料计划一致,若不一致则报警提示工作人员进行检查核实。系统通过声音、光信号等方式发出报警提示。
本发明通过对装卸料机的监控,实现对装卸料机60执行核燃料组件10的实时移动管理,提升核反应堆装卸料的准确性和装卸料的工作效率。
在一个实施例中,处理装置40还包括信息更新模块409,信息更新模块409用于在燃料组件10或内插件20进入或离开核反应堆堆芯或乏燃料池90某个位置时,更新对应关系信息。
更新对应关系信息包括:在燃料组件10或内插件20进入堆芯或乏燃料池90某个位置时,按照第一数据结构或第二数据结构新建一条数据,将开始时间设置为当前时间,将结束时间设置为空;在燃料组件10或内插件20离开堆芯或乏燃料池90某个位置时,将表征原对应关系信息中的结束时间设置为当前时间。
在一个实施例中,处理装置40还包括分布监测模块410,用于通过查找对应关系信息中的开始时间不为空且结束时间为空的记录,分析得到 所有燃料组件10和内插件20的分布情况。
在另一个实施例中,处理装置40还包括信息跟踪模块411,系统数据库30还存储对应关系信息的历史记录,信息跟踪模块411适于通过读取对应关系信息的历史记录,跟踪燃料组件10和内插件20的位置变化以及移动情况。
图7为本发明一个具体实施例的核燃料装卸与位置自动化跟踪方法流程图。
如图7所示,本发明还提供一种核燃料装卸与位置自动化跟踪方法,其利用上述的核燃料装卸与位置自动化跟踪系统100实现,包括以下步骤:
步骤S1,获取当前堆芯布置信息和当前乏燃料池布置信息。
步骤S2,根据当前堆芯布置信息和当前乏燃料池布置信息,获取与预设的下一循环堆芯布置信息之间的对应关系。
步骤S3,根据当前堆芯布置信息和当前乏燃料池布置信息与预设的下一循环堆芯布置信息之间的对应关系,获取将出现在预设的下一循环堆芯布置信息中的燃料组件及其对应内插件的倒料移动信息。
步骤S4,根据倒料移动信息,生成倒料方案。
核燃料装卸与位置自动化跟踪方法的具体实施可以参考上述核燃料装卸与位置自动化跟踪系统的实施,此处不再赘述。
本发明的核燃料装卸与位置自动化跟踪系统及方法,依据自身系统数据库30中的堆芯布置信息和乏燃料池布置信息,自动生成倒料方案,简化了装卸料过程中的数据处理和转换工作,提高工作效率,降低堆芯装卸料作业发生错误的风险,保障堆芯运行安全。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的 精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种核燃料装卸与位置自动化跟踪系统,其特征在于,包括:
    燃料组件,其设有能唯一标识该燃料组件的第一标识信息;
    内插件,其设置于所述燃料组件,并设有能唯一标识该内插件的第二标识信息;
    系统数据库,其存储堆芯布置信息和乏燃料池布置信息,所述堆芯布置信息包括在核反应堆堆芯内的各燃料组件对应的第一标识信息、各内插件对应的第二标识信息、各燃料组件及其对应的内插件的对应关系信息以及各燃料组件在所述核反应堆堆芯内所处的位置信息,所述乏燃料池布置信息包括在乏燃料池内的各燃料组件对应的第一标识信息、各内插件对应的第二标识信息、各燃料组件及其对应的内插件的对应关系信息以及各燃料组件在所述乏燃料池内所处的位置信息;
    处理装置,其根据当前的堆芯布置信息和乏燃料池布置信息,建立与预设的下一循环的堆芯布置信息的对应关系,并配置各燃料组件及其对应的内插件的倒料移动信息,生成倒料方案。
  2. 根据权利要求1所述的核燃料装卸与位置自动化跟踪系统,其特征在于,所述处理装置包括:
    关系建立模块,用于获取当前堆芯布置信息和当前乏燃料池布置信息,根据当前堆芯布置信息和当前乏燃料池布置信息,建立与预设的下一循环堆芯布置信息之间的对应关系;
    倒料方案生成模块,用于根据当前堆芯布置信息和当前乏燃料池布置信息与预设的下一循环堆芯布置信息之间的对应关系,为所述预设的下一循环 堆芯布置信息中的燃料组件及其对应内插件配置相应的倒料移动信息,生成倒料方案。
  3. 根据权利要求2所述的核燃料装卸与位置自动化跟踪系统,其特征在于,所述关系建立模块包括:
    信息合并模块,用于从所述系统数据库读取当前的堆芯布置信息和乏燃料池布置信息,并将二者合并形成第一乏燃料池布置信息;
    对应关系建立模块,根据所述第一乏燃料池布置信息中各燃料组件对应的第一标识信息和各内插件对应的第二标识信息,建立与所述预设的下一循环堆芯布置信息相符合的对应关系,形成第二乏燃料池布置信息。
  4. 根据权利要求3所述的核燃料装卸与位置自动化跟踪系统,其特征在于,所述对应关系建立模块包括:
    第一遍历模块,用于遍历所述第一乏燃料池布置信息中的所有燃料组件的第一标识信息及其对应的内插件的第二标识信息;
    判断模块,用于判断所述第一遍历模块遍历的所述第一标识信息和所述第二标识信息与预设的下一循环堆芯布置信息是否相符;
    对应模块,用于将所述第一乏燃料池布置信息中所有待移入堆芯内的燃料组件的第一标识信息和内插件的第二标识信息之间建立与所述预设的下一循环堆芯布置信息相符的对应关系,形成所述第二乏燃料池布置信息;
    第二遍历模块,用于遍历所述第二乏燃料池布置信息,将出现在所述预设的下一循环堆芯布置信息中的燃料组件的第一标识信息及其对应内插件的第二标识信息,输入至所述倒料方案生成模块,配置相应的倒料移动信息。
  5. 根据权利要求1所述的核燃料装卸与位置自动化跟踪系统,其特征在于,还包括
    识别装置,其识别所述燃料组件的第一标识信息以及对应内插件的第二标识信息;
    装卸料机,其与所述处理装置通信,并执行所述处理装置根据所述倒料方案发出的操作指令,实现所述燃料组件及所述内插件的移动。
  6. 根据权利要求5所述的核燃料装卸与位置自动化跟踪系统,其特征在于,所述装卸料机包括通信装置、驱动装置和移动执行装置,
    所述通信装置接收并存储所述处理装置推送的所述倒料方案;
    所述驱动装置在接收到所述倒料方案后,驱动所述移动执行装置按所述倒料方案依次执行燃料组件及其对应的内插件的移动动作;
    所述移动执行装置在所述识别装置识别出相应燃料组件的第一标识信息及其对应的内插件的第二标识信息后,执行所述移动动作。
  7. 根据权利要求6所述的核燃料装卸与位置自动化跟踪系统,其特征在于,还包括报警装置和监测装置,
    所述监测装置与所述处理装置通信,用于监测所述装卸料机的移动位置或所夹取的燃料组件与所述倒料方案中的信息是否一致;
    所述报警装置与所述处理装置通信,当所述监测装置监测的结果不一致时发出警报提示。
  8. 根据权利要求1所述的核燃料装卸与位置自动化跟踪系统,其特征在于,所述对应关系信息包括第一对应关系信息以及第二对应关系信息,
    所述第一对应关系信息包括燃料组件的第一标识信息及其所处位置信息、燃料组件及其所处位置建立对应关系的开始时间和结束时间;
    所述第二对应关系信息包括内插件的第二标识信息及其所处位置信息、内插件与位置对应位置的开始时间和结束时间。
  9. 根据权利要求8所述的核燃料装卸与位置自动化跟踪系统,其特征在于,所述处理装置还包括信息更新模块,
    所述信息更新模块用于在所述燃料组件或内插件进入或离开核反应堆堆芯或乏燃料池某个位置时,更新所述对应关系信息。
  10. 根据权利要求9所述的核燃料装卸与位置自动化跟踪系统,其特征在于,所述处理装置还包括分布监测模块,
    所述分布监测模块用于通过查找所述对应关系信息中的所述开始时间不为空且所述结束时间为空的记录,分析得到所有燃料组件和内插件的分布情况。
  11. 根据权利要求10所述的核燃料装卸与位置自动化跟踪系统,其特征在于,所述处理装置还包括信息跟踪模块,
    所述系统数据库还存储所述对应关系信息的历史记录,所述信息跟踪模块适于通过读取所述对应关系信息的历史记录,跟踪所述燃料组件和内插件的位置变化以及移动情况。
  12. 一种核燃料装卸与位置自动化跟踪方法,其利用权利要求1所述的核燃料装卸与位置自动化跟踪系统实现,其特征在于,包括以下步骤:
    获取当前堆芯布置信息和当前乏燃料池布置信息,根据当前堆芯布置信息和当前乏燃料池布置信息,获取与预设的下一循环堆芯布置信息之间的对应关系;
    根据当前堆芯布置信息和当前乏燃料池布置信息与预设的下一循环堆芯布置信息之间的对应关系,获取将出现在预设的下一循环堆芯布置信息中的燃料组件及其对应内插件的倒料移动信息;
    根据倒料移动信息,生成倒料方案。
PCT/CN2023/111897 2022-08-10 2023-08-09 核燃料装卸与位置自动化跟踪系统及方法 WO2024032644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210956195.1 2022-08-10
CN202210956195.1A CN115423152B (zh) 2022-08-10 2022-08-10 一种核燃料装卸与位置自动化跟踪方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2024032644A1 true WO2024032644A1 (zh) 2024-02-15

Family

ID=84197846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111897 WO2024032644A1 (zh) 2022-08-10 2023-08-09 核燃料装卸与位置自动化跟踪系统及方法

Country Status (2)

Country Link
CN (1) CN115423152B (zh)
WO (1) WO2024032644A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115423152B (zh) * 2022-08-10 2024-01-23 上海核工程研究设计院股份有限公司 一种核燃料装卸与位置自动化跟踪方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713212A (en) * 1983-09-06 1987-12-15 Ateliers De Constructions Electriques De Charleroi Process for surveillance and control of operations of loading and unloading of the fuel of a nuclear reactor and apparatus applying this process
KR20150141782A (ko) * 2014-06-10 2015-12-21 한국원자력연구원 원자력발전소의 핵연료주기 제공 방법 및 그 장치
CN108885909A (zh) * 2016-03-29 2018-11-23 纽斯高动力有限责任公司 模块间燃料倒换
CN115423152A (zh) * 2022-08-10 2022-12-02 上海核工程研究设计院有限公司 一种核燃料装卸与位置自动化跟踪方法、装置及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856889B2 (ja) * 1990-10-31 1999-02-10 株式会社東芝 原子炉監視装置
CN105022303A (zh) * 2015-08-12 2015-11-04 上海核工程研究设计院 装换料设备的控制方法及系统
CN108074652B (zh) * 2016-11-09 2019-09-03 国家电投集团科学技术研究院有限公司 反应堆监测及预警方法及系统
CN107342109B (zh) * 2017-06-08 2019-11-15 中广核研究院有限公司 用于燃料组件的容器、燃料组件的换料和转运方法
CN109649995B (zh) * 2018-11-02 2021-02-12 中广核核电运营有限公司 一种核电厂反应堆装卸料状态模拟系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713212A (en) * 1983-09-06 1987-12-15 Ateliers De Constructions Electriques De Charleroi Process for surveillance and control of operations of loading and unloading of the fuel of a nuclear reactor and apparatus applying this process
KR20150141782A (ko) * 2014-06-10 2015-12-21 한국원자력연구원 원자력발전소의 핵연료주기 제공 방법 및 그 장치
CN108885909A (zh) * 2016-03-29 2018-11-23 纽斯高动力有限责任公司 模块间燃料倒换
CN115423152A (zh) * 2022-08-10 2022-12-02 上海核工程研究设计院有限公司 一种核燃料装卸与位置自动化跟踪方法、装置及系统

Also Published As

Publication number Publication date
CN115423152B (zh) 2024-01-23
CN115423152A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024032644A1 (zh) 核燃料装卸与位置自动化跟踪系统及方法
EP0823118B1 (en) Integrated data management system for nuclear power plant components
CN111324647A (zh) 一种生成etl代码的方法及装置
CN101713823A (zh) 一种卫星遥测数据处理方法
CN108971807A (zh) 一种现场焊接施工工艺智能管理控制方法及管理系统
CN109522526A (zh) 一种利用软件系统远程自动生成标准化作业指导书的方法
CN110571927B (zh) 一种四遥信号参数校核方法
CN111585349B (zh) 一种电网模型管理及监视系统
CN109933521A (zh) 基于bdd的自动化测试方法、装置、计算机设备及存储介质
CN109146253A (zh) 一种智能化自动开票和防护闭锁的交互操作系统
CN106951593B (zh) 一种生成保护测控装置的配置文件的方法和装置
CN113468747B (zh) 一种大型飞机燃油系统全模台
CN109840098A (zh) 一种嵌入式软件的追溯方法和系统
CN112231303A (zh) 一种数据迁移系统及方法
CN110502257B (zh) 一种变电站监控信息管控及核对方法
CN109649995B (zh) 一种核电厂反应堆装卸料状态模拟系统及方法
CN109656589A (zh) 一种智能变电站二次设备软件管控方法及系统
CN113342987A (zh) 配电dtu验收专用语料库的复合网络构建方法
CN108733767B (zh) 一种基于解耦技术的智能变电站配置文件管控方法
CN112989478B (zh) 一种基于Revit的筒仓结构钢筋建模绘图方法及系统
CN111176257B (zh) 一种新能源控制系统参数调试方法及系统
CN113963443B (zh) 核动力装置中人因失误模式识别方法、装置、设备和介质
CN111611684B (zh) 干涉区逻辑块的生成方法、系统、装置和存储介质
CN111582819B (zh) 一种电网输变电设备检修单填单方法及装置
JPS63154994A (ja) 燃料取替機制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851865

Country of ref document: EP

Kind code of ref document: A1