WO2024032593A1 - 显示装置和触控结构 - Google Patents

显示装置和触控结构 Download PDF

Info

Publication number
WO2024032593A1
WO2024032593A1 PCT/CN2023/111695 CN2023111695W WO2024032593A1 WO 2024032593 A1 WO2024032593 A1 WO 2024032593A1 CN 2023111695 W CN2023111695 W CN 2023111695W WO 2024032593 A1 WO2024032593 A1 WO 2024032593A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
sub
electrode
channel
area
Prior art date
Application number
PCT/CN2023/111695
Other languages
English (en)
French (fr)
Inventor
颜俊
董向丹
金贤善
邱海军
胡明
何帆
仝可蒙
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024032593A1 publication Critical patent/WO2024032593A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display device and a touch structure.
  • AMOLED Active Matrix Organic Light-Emitting Diode, active matrix organic light-emitting diode
  • display devices can achieve full-screen, narrow borders, high resolution, rollable wear, folding, etc., and have become an important development direction in the field of display technology.
  • a display device including a touch area, a fan-out area surrounding the touch area, a first peripheral area, a second peripheral area and a third peripheral area, the first peripheral area and the The second peripheral area is located on both sides of the touch area along the first direction, and the fan-out area and the third peripheral area are located on both sides of the touch area along the second direction.
  • the first direction and the second direction intersect.
  • the touch area includes a first sub-area, a second sub-area, a third sub-area and a fourth sub-area, the first sub-area and the second sub-area are arranged along the first direction, and the third sub-area One sub-region and the third sub-region are arranged along the second direction, and the third sub-region and the fourth sub-region are arranged along the first direction.
  • the display device includes a plurality of first touch channels and a plurality of second touch channels, a plurality of first touch traces, a plurality of second touch traces, and a plurality of first touch traces provided in the touch area. control chip and the second touch chip.
  • each first touch channel includes a plurality of first touch electrodes arranged along the first direction and connected in series
  • each second touch channel includes a plurality of first touch electrodes arranged along the second direction and connected in series. second touch electrode.
  • At least one first touch channel and at least one second touch channel are provided in each sub-area, and the at least one first touch channel and the at least one second touch channel are arranged crosswise and insulated from each other.
  • the first touch channels located in different sub-regions are insulated from each other, and the second touch channels located in different sub-regions are insulated from each other.
  • a plurality of first touch traces are electrically connected to the plurality of first touch channels.
  • the first touch trace connecting the first touch channel in the first sub-region and the third sub-region extends from the first peripheral region to the fan-out region.
  • the first touch channel in the second sub-region and the fourth sub-region is connected to Touch traces extend from the second peripheral area to the fan-out area.
  • a plurality of second touch traces are electrically connected to the plurality of second touch channels.
  • the second touch trace connected to the second touch channel in the first sub-region is led from the third peripheral region and extends to the fan-out region through the first peripheral region.
  • the second touch trace connected to the second touch channel in the second sub-region is led from the third peripheral region and extends to the fan-out region through the second peripheral region.
  • the second touch trace electrically connected to the second touch channel in the third sub-region and the fourth sub-region directly extends to the fan-out region.
  • the first touch chip and the second touch chip in any two sub-areas, the first touch trace connected to the first touch channel and the second touch trace connected to the second touch channel Touch control wires are electrically connected to the first touch control chip. In the remaining two sub-regions except any two sub-regions, the first touch trace connected to the first touch channel and the second touch trace connected to the second touch channel are Lines electrically connected to the second touch chip.
  • the first touch channels located in different sub-regions have substantially equal dimensions along the first direction; the second touch channels located in different sub-regions have dimensions along the second direction. The dimensions in the directions are approximately equal.
  • the first touch channels located in different sub-regions include an equal number of first touch electrodes; the second touch channels located in different sub-regions include an equal number of second touch electrodes.
  • the quantities are equal.
  • the centers of the two adjacent first touch channels that are respectively located in the first sub-region and the second sub-region are approximately at the center extending along the first direction.
  • the centers of the two adjacent first touch channels located in the third sub-region and the fourth sub-region respectively are substantially on the same straight line extending along the first direction.
  • the centers of the two adjacent second touch channels located in the first sub-region and the third sub-region respectively are substantially on the same straight line extending along the second direction, and are respectively located at The centers of the two adjacent second touch channels in the second sub-region and the fourth sub-region are substantially on the same straight line extending along the second direction.
  • first touch channels that belong to different sub-regions and are adjacently arranged along the first direction
  • two first touch channels that belong to different sub-regions and are adjacent to each other along the second direction There is a gap between two adjacent second touch channels, and the gap extends in a zigzag shape.
  • the first touch trace connected to the first touch channel in the first sub-region and the second sub-region and the first touch trace connected to the second touch channel are The second touch control wire is electrically connected to the first touch control chip.
  • the first touch trace connected to the first touch channel in the third sub-region and the fourth sub-region and the second touch trace connected to the second touch channel electrically connected to the second touch chip.
  • the first touch chip and the second touch chip are both disposed on a side of the fan-out area away from the third peripheral area. In the second direction, the second touch chip is closer to the fan-out area than the first touch chip.
  • the portion of the first touch trace located in the first peripheral area is closer to the touch screen than the portion of the second touch trace located in the first peripheral area.
  • Control area settings Relative to the portion of the second touch trace located in the second peripheral region, the portion of the first touch trace located in the second peripheral region is disposed closer to the touch area.
  • the display device further includes a first virtual electrode.
  • the first virtual electrode is disposed between adjacent first touch electrodes and second touch electrodes, and is insulated from the first touch electrodes and the second touch electrodes.
  • the boundary of the first virtual electrode close to the first touch electrode and the boundary close to the second touch electrode are in the shape of a polygonal line, and the first virtual electrode and the first touch electrode are close to each other.
  • the boundary shapes of the first virtual electrode and the second touch electrode are adapted to each other.
  • the first virtual electrode is a centrally symmetrical pattern.
  • the midpoint of a line connecting the center of the first touch electrode adjacent to the first virtual electrode and the center of the second touch electrode adjacent to the first virtual electrode, and The centers of the first virtual electrodes coincide with each other.
  • the first virtual electrode includes a plurality of extending portions connected in sequence, each extending portion is in a strip shape; the extending directions of any two adjacent extending portions intersect.
  • the first dummy electrode includes a first extension part and two second extension parts located at both ends of the first extension part and connected to the first extension part.
  • the extension portion extends generally along the second direction, and the second extension portion generally extends along the first direction.
  • the plurality of extensions are approximately equal in length.
  • the first virtual electrode is in a strip shape, and the width of the first virtual electrode at different positions is approximately equal along the length direction of the first virtual electrode.
  • first virtual electrodes are provided around the first touch electrode, and the four first virtual electrodes are arranged centrally symmetrically with respect to the center of the first touch electrode.
  • Four first virtual electrodes are provided around the second touch electrode, and the four first virtual electrodes are arranged centrally symmetrically with respect to the center of the second touch electrode.
  • the first touch electrode and the second touch electrode each include a main body, two first protrusions, and two second protrusions.
  • the main body is rectangular, so The two first protrusions are provided on both sides of the main body along the first direction, and the two second protrusions are provided on both sides of the main body along the second direction; The two first protrusions and the two second protrusions are respectively connected with the main body part.
  • the display device further includes a second virtual electrode.
  • the second virtual electrode is disposed between two adjacent first touch electrodes that belong to different first touch channels, and is disposed between two adjacent first touch electrodes that belong to different second touch channels. Between the two touch electrodes; the second virtual electrode is insulated from the first touch electrode and the second touch electrode.
  • the second virtual electrode is rectangular.
  • At least one first touch channel includes a plurality of first sub-channels, the plurality of first sub-channels are arranged along the second direction, and each first sub-channel extends along the first direction.
  • the first sub-channel includes a plurality of first touch electrodes that are electrically connected; a plurality of first sub-channels included in the same first touch channel are electrically connected.
  • At least one second touch channel includes a plurality of second sub-channels, the plurality of second sub-channels are arranged along the first direction, each second sub-channel extends along the second direction, and
  • the second sub-channel includes a plurality of second touch electrodes that are electrically connected; a plurality of second sub-channels included in the same second touch channel are electrically connected.
  • At least a pair of first touch electrodes adjacent along the second direction are electrically connected; and/or in the same second touch channel, At least a pair of second touch electrodes adjacent along the first direction are electrically connected.
  • the first touch channel further includes a first connection portion, and in the same first touch channel, at least one pair of two first touch electrodes adjacent along the second direction are electrically connected through the first connection part; and/or the second touch channel further includes a second connection part, and in the same second touch channel, at least one pair is adjacent along the first direction. The two second touch electrodes are electrically connected through the second connection portion.
  • the display device includes a first conductive layer, an insulating layer and a second conductive layer that are stacked.
  • the insulating layer is located between the first conductive layer and the second conductive layer, and a via hole is provided in the insulating layer.
  • the first touch electrode and the second touch electrode are located on the first conductive layer.
  • the display device includes at least a pair of intersecting first connection parts and second connection parts.
  • the first connection part is located on the first conductive layer
  • the second connection part is located on the second conductive layer
  • the second connection part is electrically connected to the corresponding second touch electrode through the via hole.
  • connection alternatively, the second connection part is located on the first conductive layer, the first connection part is located on the second conductive layer, and the first connection part communicates with the corresponding first touch through the via hole.
  • the electrodes are electrically connected.
  • the first touch channel is located in a first rectangular area extending along the first direction
  • the second touch channel is located in a second rectangular area extending along the second direction
  • the The rectangular area where the first rectangular area and the second rectangular area intersect is the touch unit area.
  • a plurality of first electrode groups and a plurality of second electrode groups are provided in the touch unit area, and each first electrode group The electrode group includes a plurality of first touch electrodes that are electrically connected in sequence along the first direction, and each second electrode group includes a plurality of second touch electrodes that are electrically connected in sequence along the second direction; the plurality of The first electrode components belong to a plurality of first sub-channels of the same first touch channel, and the plurality of second electrode components belong to a plurality of second sub-channels of the same second touch channel.
  • a plurality of first touch electrodes located on the same side edge of the touch unit area among the plurality of first electrode groups are a plurality of first setting electrodes, and the plurality of first setting electrodes are arranged along the second direction in series.
  • a plurality of second touch electrodes located on the same side edge of the touch unit area among the plurality of second electrode groups are a plurality of second setting electrodes, and the plurality of second setting electrodes are arranged along the first direction in series.
  • the display device when the display device further includes a first connection part and a second connection part, the plurality of first setting electrodes are connected in series through the first connection part, and the plurality of first setting electrodes are connected in series through the first connection part.
  • the second setting electrodes are connected in series through the second connection part; the first connection part and the second connection part are provided on the same conductive layer.
  • a touch structure including a plurality of first touch channels, a plurality of second touch channels and first virtual electrodes.
  • each first touch channel extends along a first direction, and each first touch channel includes a plurality of first touch electrodes arranged sequentially along the first direction. Two adjacent first touch electrodes are electrically connected.
  • each second touch channel extends along the second direction, and each second touch channel includes a plurality of second touch electrodes arranged sequentially along the second direction. Two adjacent second touch electrodes are electrically connected.
  • the first touch channel and the second touch channel cross each other and are insulated from each other; the first direction and the second direction cross each other.
  • the first virtual electrode is disposed between adjacent first touch electrodes and second touch electrodes, and is insulated from the first touch electrodes and the second touch electrodes.
  • the boundary of the first virtual electrode close to the first touch electrode and the boundary close to the second touch electrode are in the shape of a polygonal line, and the first virtual electrode and the first touch electrode are close to each other.
  • the boundary shapes of the first virtual electrode and the second touch electrode are adapted to each other.
  • the first virtual electrode includes a plurality of extending portions connected in sequence, each extending portion is in a strip shape; the extending directions of any two adjacent extending portions intersect.
  • first virtual electrodes are provided around the first touch electrode, and the four first virtual electrodes are arranged centrally symmetrically with respect to the center of the first touch electrode.
  • Four first virtual electrodes are provided around the second touch electrode, and the four first virtual electrodes are arranged centrally symmetrically with respect to the center of the second touch electrode.
  • At least one first touch channel includes a plurality of first sub-channels, the plurality of first sub-channels The first sub-channels are arranged along the second direction, each first sub-channel extends along the first direction, and the first sub-channels include a plurality of electrically connected first touch electrodes; the same first sub-channel
  • the touch channel includes a plurality of first sub-channels that are electrically connected.
  • At least one second touch channel includes a plurality of second sub-channels, the plurality of second sub-channels are arranged along the first direction, each second sub-channel extends along the second direction, and
  • the second sub-channel includes a plurality of second touch electrodes that are electrically connected; a plurality of second sub-channels included in the same second touch channel are electrically connected.
  • Figure 1 is a top view of a display device according to some embodiments.
  • Figure 2 is an exploded view of a display device provided in accordance with some embodiments.
  • Figure 3 is a cross-sectional view along section line B-B’ in Figure 1;
  • Figure 4 is another top view of a display device provided according to some embodiments.
  • Figure 5 is an enlarged view of the structure corresponding to the area where the dotted line box C in Figure 4 is located;
  • Figure 6 is an enlarged view of a structure corresponding to the area where the dotted box D in Figure 4 is located;
  • Figure 7 is a top view of a touch structure provided according to some embodiments.
  • Figure 8 is an enlarged view of the structure corresponding to the area where the dotted box E in Figure 6 is located;
  • Figure 9 is another structural enlargement corresponding to the area where the dotted box D in Figure 4 is located;
  • Figure 10 is an enlarged view of the structure corresponding to the area where the dotted box F in Figure 9 is located;
  • Figure 11 is an enlarged view of the structure corresponding to the area where the dotted box G in Figure 9 is located;
  • Figure 12 is an enlarged view of the structure corresponding to the area where the dotted box H is located in Figure 9;
  • Figure 13 is another top view of a display device provided according to some embodiments.
  • Figure 14 is an enlarged view of a structure corresponding to the area where the dotted line frame I in Figure 13 is located;
  • Figure 15 is an enlarged view of the structure corresponding to the area where the dotted line box Q1 in Figure 14 is located;
  • Figure 16 is an enlarged view of the structure corresponding to the area where the dotted line box Q2 in Figure 14 is located;
  • Figure 17 is an enlarged view of the structure corresponding to the area where the dotted line box Q3 in Figure 14 is located;
  • Figure 18 is a cross-sectional view along section line W-W’ in Figure 17;
  • Figure 19 is an enlarged view of the structure corresponding to the area where the dotted line box Q4 in Figure 14 is located;
  • Figure 20 is a cross-sectional view along the section line Z-Z' in Figure 19;
  • Figure 21 is another structural enlargement corresponding to the area where the dotted line frame I in Figure 13 is located;
  • Figure 22 is an enlarged structural view of the touch unit area in Figure 21;
  • Figure 23 is a touch point distribution diagram of the touch unit area in Figure 21;
  • Figure 24 is a top view of a touch structure provided according to some embodiments.
  • Figure 25 is another top view of a touch structure provided according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • FIG. 1 is a top view of a display device 1000 provided by some embodiments of the present disclosure.
  • the display device 1000 may be any device that displays text or images, whether moving (eg, video) or stationary (eg, still images). More specifically, it is contemplated that embodiments may be implemented in or associated with a variety of electronic devices, such as (but not limited to) mobile phones, wireless devices, personal digital assistants (Personal Digital Assistants, for short).
  • PDA Virtual Reality
  • VR Virtual Reality
  • GPS Global Positioning System
  • camera MP4 video player
  • video camera game console
  • Watches clocks
  • calculators television monitors
  • flat panel displays computer monitors
  • automotive displays e.g., odometer displays, etc.
  • navigators cockpit controls and/or displays
  • camera view displays e.g., in the rear of the vehicle monitors for video cameras
  • electronic photographs electronic billboards or signs
  • projectors architectural structures, packaging and aesthetic structures (for example, displays for images of a piece of jewelry), etc.
  • the display device 1000 may include a display panel 100 .
  • the display panel 100 may be a Liquid Crystal Display (LCD); the display panel 100 may also be an electroluminescent display panel or a photoluminescent display panel.
  • the electroluminescent display panel may be an organic electroluminescent (Organic Light-Emitting Diode, OLED for short) display panel or a quantum dot electroluminescent (Quantum Dot Light Emitting Diode, QLED for short) display panel. ) display panel.
  • the photoluminescence display device may be a quantum dot photoluminescence display panel.
  • the display panel 100 includes a display side and a non-display side.
  • the display side is the side where the display panel 100 performs light-emitting display
  • the non-display side is the side of the display panel 100 that is away from the display side.
  • the display panel 100 may include a light-emitting substrate 20 and a touch structure 10 .
  • the display device 1000 may further include a flexible circuit board 200 .
  • the flexible circuit board 200 is configured to be bonded and connected to the display panel 100 . Referring to FIG. 2 , the flexible circuit board 200 can be bent along the dotted line L toward the non-display side of the display panel 100 so that the flexible circuit board 200 is located on the back of the display panel 100 .
  • the display device 1000 may further include a touch chip 300 .
  • the touch chip 300 is provided on the flexible circuit board 200 .
  • the touch chip 300 is configured to be electrically connected to the touch structure in the display panel 100 so as to transmit touch signals to the touch structure to implement the touch function.
  • the display device 1000 may further include a cover plate 400 and a polarizer 500 located between the cover plate 400 and the display panel 100 .
  • the polarizer 500 is configured to reduce reflected light after external light is reflected by the metal structure in the display panel 100 .
  • the polarizer 500 and the cover plate 400 are attached together through optical glue.
  • the cover 400 may include a light-transmitting area A1 and a light-shielding area A2.
  • the light-transmitting area A1 may at least partially overlap with the display area (effective light-emitting display area) of the display panel 100, and the light emitted from the display panel 100 may pass through the light-transmitting area A1 of the cover 400 and be emitted to the outside to be emitted to the outside. What the human eye sees.
  • the light-shielding area A2 may be disposed at the periphery of the light-transmitting area A1 and may at least partially overlap with the peripheral area of the display panel 100 (disposed around the display area), thereby effectively displaying traces of the panel 100 located in the peripheral area.
  • the display device 1000 may further include a back cover.
  • the back case may be a U-shaped groove, and the back case and the cover 400 form a frame of the display device 1000 , and the aforementioned display panel 100 , the bent flexible circuit board 200 and other components are disposed within the frame.
  • the aforementioned display panel 100 includes It includes a touch structure 10 and a light-emitting substrate 20.
  • the aforementioned light-emitting substrate 20 includes a plurality of sub-pixels P, and the light-emitting substrate 20 is configured to implement light-emitting display.
  • the aforementioned light-emitting substrate 20 includes a substrate 21 , and a pixel circuit layer 22 and a light-emitting device layer 23 stacked on the substrate 21 .
  • the substrate 21 may have a single-layer structure or a multi-layer structure.
  • the substrate 21 may include a flexible base layer and a buffer layer that are stacked in sequence.
  • the substrate 21 may include a plurality of flexible base layers and buffer layers arranged alternately.
  • the material of the flexible base layer may include polyimide
  • the material of the buffer layer may include silicon nitride and/or silicon oxide to achieve the effects of blocking water and oxygen and blocking alkaline ions.
  • the pixel circuit layer 22 includes an active layer 201, a first gate insulating layer 202, a first gate conductive layer 203, a second gate insulating layer 204, a second gate conductive layer 205, and an interlayer dielectric which are sequentially stacked on the substrate 21.
  • the source-drain conductive layer may have only one layer (for example, only the first source-drain conductive layer 207 or only the second source-drain conductive layer 210).
  • the planarization layer may also have only one layer (for example, only the first source-drain conductive layer 210). planarization layer 209 or only the second planarization layer 211).
  • the pixel circuit layer 22 is provided with a plurality of thin film transistors TFT and a plurality of capacitor structures Cst.
  • Each sub-pixel P includes at least one thin film transistor TFT and at least one capacitor structure Cst.
  • FIG. 3 only illustrates two thin film transistors TFT and two corresponding capacitor structures Cst.
  • the thin film transistor TFT includes a gate electrode Ta, a source electrode Tb, a drain electrode Tc, and an active layer pattern Td.
  • the source electrode Tb, the drain electrode Tc and the active layer pattern Td are in electrical contact.
  • the active layer pattern Td is configured to form a channel under the control of the gate electrode Ta, so that there is conduction between the source electrode Tb and the drain electrode Tc connected to the active layer pattern Td, thereby turning on the thin film transistor TFT.
  • the thin film transistor TFT further includes a portion of the first gate insulating layer 202 located between the film layer where the gate electrode Ta is located and the film layer where the active layer pattern Td is located.
  • each thin film transistor TFT is the gate electrode Ta of the transistor
  • the first electrode is one of the source electrode Tb and the drain electrode Tc of the thin film transistor TFT
  • the second electrode is the source electrode Tb and the drain electrode Tc of the thin film transistor TFT.
  • the source electrode Tb and the drain electrode Tc of the thin film transistor TFT may be symmetrical in structure, the source electrode Tb and the drain electrode Tc may have no structural difference.
  • the capacitor structure Cst includes a first plate Cst1 and a second plate Cst2, where the first plate Cst1 is located on the first gate conductive layer 203 and the second plate Cst2 is located on the second gate conductive layer 205 .
  • the light-emitting device layer 23 includes anodes laminated in sequence and disposed on the side of the pixel circuit layer 22 away from the substrate 21 .
  • the light-emitting device layer 23 is provided with a plurality of light-emitting devices L.
  • Each sub-pixel P includes a light-emitting device L correspondingly.
  • the light-emitting device L includes an anode L4 located on the anode layer 301 , a cathode L5 located on the cathode layer 304 , and a light-emitting pattern L3 located on the light-emitting functional layer 303 .
  • the anode L4 located on the anode layer 301 is configured to transmit a high-level voltage (eg, the power supply voltage signal VDD), and the cathode L5 located on the cathode layer 304 is configured to transmit a low-level voltage (eg, the cathode voltage signal VSS).
  • a high-level voltage eg, the power supply voltage signal VDD
  • the cathode L5 located on the cathode layer 304 is configured to transmit a low-level voltage (eg, the cathode voltage signal VSS).
  • the light-emitting functional layer 303 may also include an electron transporting layer (Election Transporting Layer, ETL for short), an electron injection layer (Election Injection Layer, EIL for short), a hole transporting layer (Hole Transporting Layer). , HTL for short) and one or more layers of the Hole Injection Layer (HIL for short).
  • ETL Electrode Transporting Layer
  • EIL Electrometic Layer
  • Hole Transporting Layer Hole Transporting Layer
  • the anode L4 may be electrically connected to the source Tb or the drain Tc of the thin film transistor TFT, so that the light emitting device L emits light under the control of the thin film transistor TFT.
  • the pixel definition layer 302 is provided with a plurality of openings K.
  • the light-emitting pattern L3 is at least partially located within the openings K. The light emitted by the light-emitting pattern L3 is emitted to the outside through the openings K.
  • a support layer 305 can be disposed between the pixel definition layer 302 and the cathode layer 304 .
  • the support layer 305 can play a role in supporting the protective film layer to avoid contact between the protective film layer and the anode layer. 301 or other traces come into contact, causing the anode layer 301 or other traces to break.
  • the light-emitting substrate 20 further includes an encapsulation layer 24 provided on the side of the light-emitting device L away from the substrate 21 .
  • the encapsulation layer 24 may include a first encapsulation sub-layer, a second encapsulation sub-layer and a third encapsulation sub-layer that are stacked in sequence away from the substrate 21 .
  • the materials of the first encapsulation sub-layer and the third encapsulation sub-layer include inorganic materials
  • the material of the second encapsulation sub-layer includes organic materials.
  • the first packaging sub-layer and the third packaging sub-layer have the function of blocking water vapor and oxygen, while the second packaging sub-layer has certain flexibility and the function of absorbing water vapor.
  • the aforementioned light-emitting substrate 20 has a light-emitting side and a backlight side.
  • the light-emitting side refers to the side of the light-emitting substrate 20 that emits light
  • the backlight side refers to the side of the light-emitting substrate 20 away from the light-emitting side.
  • the aforementioned touch structure 10 is disposed on the light emitting side of the light emitting substrate 20 .
  • the touch structure 10 may be configured to sense the user's touch and obtain touch information, for example, sense the touch of the user's finger or stylus, and obtain touch coordinate information to implement the touch function of the display panel 100 .
  • the touch structure 10 can be formed as a separate component, and an adhesive layer is used to adhere the touch structure 10 to the encapsulation layer 24 of the light-emitting substrate 20 .
  • the touch structure 10 may further include a carrier film for carrying touch electrodes.
  • the carrier film may be at least one of a resin film, a glass substrate, and a composite film.
  • the adhesive layer may be a pressure-sensitive adhesive (Pressure Sensitive Adhesive, referred to as PSA), an optically clear adhesive (Optical Clear Adhesive, referred to as OCA), and an optically transparent resin (Optical Clear Resin, referred to as OCR). at least one.
  • PSA Pressure Sensitive Adhesive
  • OCA optically clear adhesive
  • OCR optically transparent resin
  • the touch structure 10 can be directly disposed on the light-emitting substrate 20 , for example, directly on the encapsulation layer 24 of the light-emitting substrate 20 , that is, there is no gap between the touch structure 10 and the encapsulation layer 24 .
  • the touch structure 10 can be formed on the encapsulation layer 24 of the light-emitting substrate 20 through a continuous process. That is, the touch structure 10 can be formed directly on the encapsulation layer 24 after the encapsulation layer 24 is formed on the light-emitting substrate 20, which facilitates A lighter and thinner display device 1000 is prepared, which has good application prospects.
  • the aforementioned touch control structure 10 can also be touched by a stylus pen.
  • the stylus may include an active capacitive pen (ie, active pen) and a passive capacitive pen (ie, passive pen).
  • active capacitive pen ie, active pen
  • passive capacitive pen ie, passive pen
  • the passive pen like a finger, changes the capacitance of the touch structure 10 at the contact position by contacting the touch structure 10, thereby achieving the same touch effect as a finger.
  • the active pen is equipped with its own circuit, and the touch control structure 10 receives the signal emitted by the active pen, thereby knowing the coordinates of the active pen on the display screen to achieve the touch effect.
  • the active pen does not need to be in direct contact with the touch structure 10, that is, the active pen can achieve floating touch.
  • active pens Compared with passive pens, active pens have both floating touch functions (which can prevent the display from being damaged by the stylus) and switch control functions (which can turn off the active pen's own circuit when not in use to prevent accidental touches).
  • floating touch functions which can prevent the display from being damaged by the stylus
  • switch control functions which can turn off the active pen's own circuit when not in use to prevent accidental touches.
  • the performance of active pens can include accuracy, linearity, signal-to-noise ratio, and suspension height.
  • the touch structure 10 after the touch structure 10 is laid on the light-emitting side of the light-emitting substrate 20 , the touch structure 10 and the conductive structure in the light-emitting substrate 20 have a facing area, and parasitic capacitance is easily generated.
  • the cathode layer 304 is a whole layer design. There is a facing area between the touch structure 10 and the cathode layer 304.
  • a parasitic capacitance i.e., a noise signal
  • the value of this parasitic capacitance The larger the value, the greater the interference to the touch signal emitted by the active pen. That is, the signal-to-noise ratio of the active pen is relatively low, and the touch chip cannot distinguish the signal emitted by the active pen from the noise signal through filtering, resulting in Active pen performance is poor.
  • an embodiment of the present disclosure provides a display device 1000.
  • the touch structure 10 of the display device 1000 includes a touch area S5, a fan-out area S4 surrounding the touch area S5, a first peripheral area S1, a second peripheral area S2, and a third peripheral area S3. .
  • the first peripheral area S1 and the second peripheral area S2 are respectively located on both sides of the touch area S5 along the first direction X
  • the fan-out area S4 and the third peripheral area S3 are respectively located on both sides of the touch area S5 along the second direction Y. Both sides of control area S5.
  • first direction X and second direction Y intersect.
  • first direction X and the second direction Y may be perpendicular to each other.
  • the two directions Y may be the column directions in the array arrangement of multiple sub-pixels P.
  • the first direction X is the row direction and the second direction Y is the column direction.
  • technical solutions obtained by rotating the drawings at a certain angle are also within the protection scope of the present disclosure.
  • the fan-out area S4, the first peripheral area S1, the second peripheral area S2 and the third peripheral area S3 surrounding the touch area S5 are configured to provide a plurality of touch traces (including the first touch trace shown in Figure 4 The line L1 and the second touch trace L2) are wired. Among them, the fan-out area S4 is also configured to be bonded and connected with the aforementioned flexible circuit board 200.
  • the multiple touch traces in the display device 1000 eventually extend to the fan-out area S4 and are exposed in the fan-out area S4. The exposed parts serve as pins to facilitate binding with the flexible circuit board 200, so that multiple touch traces are electrically connected to the touch chip 300 on the flexible circuit board 200, so as to realize the touch function of the display device 1000.
  • the aforementioned touch area S5 is configured to provide a plurality of touch electrodes (including the first touch electrode Tx and the second touch electrode Rx as shown in FIG. 4 ), that is, the touch area S5 is a display device.
  • the effective touch area of the touch structure 10 is 1000.
  • the touch area S5 includes a first sub-area S51, a second sub-area S52, a third sub-area S53 and a fourth sub-area S54.
  • the first sub-area S51 and the second sub-area S52 are arranged along the first direction X
  • the first sub-area S51 and the third sub-area S53 are arranged along the second direction Y
  • the third sub-area S53 and the fourth sub-area S54 are arranged along the first Arrange in direction X. That is, the aforementioned four sub-regions (the first sub-region S51, the second sub-region S52, the third sub-region S53 and the fourth sub-region S54) are distributed in an array along the first direction X and the second direction Y.
  • the display device 1000 includes a plurality of first touch channels 1 and a plurality of second touch channels 2 .
  • first touch channel 1 is a channel composed of a plurality of first touch electrodes Tx that are electrically connected to each other in the touch structure 10 and transmit the same first touch signal at the same time
  • second touch channel 2 is a channel composed of a plurality of second touch electrodes Rx that are electrically connected to each other in the touch structure 10 and transmit the same second touch signal at the same time.
  • Each first touch channel 1 includes a plurality of first touch electrodes Tx arranged along the first direction X and connected in series.
  • Each second touch channel 2 includes a plurality of first touch electrodes Tx arranged along the second direction Y and connected in series. Two touch electrodes Rx.
  • the plurality of first touch channels 1 and the plurality of second touch channels 2 are insulated from each other. And the plurality of first touch channels 1 and the plurality of second touch channels 2 intersect with each other, so that the first touch electrodes Tx and the second touch electrodes Rx are insulated and arranged alternately.
  • the first touch electrodes Tx and the second touch electrodes Rx are alternately arranged, and between different adjacent touch electrodes (ie, the first touch electrodes Tx and the second touch electrodes Rx ) are insulated between each other and can generate mutual capacitance.
  • the mutual capacitance value of these touch electrodes will change after being touched.
  • the change amount of the mutual capacitance value before and after the touch can be determined to determine the touch position.
  • the touch effect of the touch structure 10 is achieved.
  • the touch structure 10 of the display device 1000 includes a plurality of metal lines GL, and the plurality of metal lines GL intersect with each other to form a plurality of metal grids G.
  • the touch electrodes (including the first touch electrode Tx and the second touch electrode Rx) adopt a metal mesh structure (ie, include a plurality of metal meshes G ), compared to using ITO (Indium Tin Oxide) to form planar electrodes as touch electrodes, the touch electrodes with a metal mesh structure have low resistance and high sensitivity, which can improve the touch control of the touch structure 10 sensitivity. And the touch electrodes using metal mesh structure have high mechanical strength and can reduce the size of the touch structure10 When the touch structure 10 is used in the display device 1000, the display device 1000 can be made thinner and lighter.
  • a metal mesh structure ie, include a plurality of metal meshes G
  • ITO Indium Tin Oxide
  • the first touch electrode Tx and the second touch electrode Rx adopt a metal mesh structure.
  • the metal grid G of the first touch electrode Tx and the second touch electrode Rx can be disposed in the same film layer, and the metal grid G of the first touch electrode Tx is separated from the metal grid G of the second touch electrode Rx. open, thereby insulating the first touch electrode Tx and the second touch electrode Rx from each other.
  • metal grid G in Figure 5 is filled with different patterns in order to distinguish different touch electrodes.
  • the metal grid G of the first touch electrode Tx and the second touch electrode Rx can be made of the same material. Formed using the same process.
  • the shapes of the first touch electrode Tx and the second touch electrode Rx are rhombus or substantially rhombus.
  • “roughly rhombus-shaped” means that the shape of the touch electrodes (i.e., the first touch electrode Tx and the second touch electrode Rx) is a rhombus shape as a whole, but is not limited to a standard rhombus shape.
  • the touch electrodes The boundary is allowed to be non-linear (such as a zigzag shape).
  • the shape of the touch electrode is a rhombus as a whole, but its boundary is a zigzag shape.
  • the electrode pattern shapes of the first touch electrode Tx and the second touch electrode Rx are not limited to a rhombus or a rough rhombus, and may also be rectangular, elongated, etc., for example.
  • the shape of a metal grid G may be roughly a hexagon, a rectangle, or an irregular polygon.
  • each sub-area (the first sub-area S51, the second sub-area S52, the third sub-area S53 and the fourth sub-area S54) is provided with at least one first touch channel 1 and at least one second touch channel.
  • touch channel 2 and at least one first touch channel 1 and at least one second touch channel 2 located in the same sub-area are arranged crosswise and insulated from each other.
  • each sub-area is provided with a plurality of first touch electrodes Tx and a plurality of second touch electrodes Rx.
  • the touch structure 10 of the display device 1000 is divided into four touch screens ( That is, the part where the four sub-areas of the touch structure 10 are located).
  • each sub-area is provided with multiple first touch channels 1 and multiple second touch channels 2 , wherein the multiple first touch channels 1 are arranged in an array along the second direction Y.
  • each first touch channel 1 extends along the first direction X
  • a plurality of second touch channels 2 are arranged along the first direction X
  • each second touch channel 2 extends along the second direction Y.
  • the first touch channels 1 located in different sub-regions are insulated from each other, and the second touch channels 2 located in different sub-regions are insulated from each other.
  • two first touch channels 1 located in different sub-areas and adjacent to each other are disconnected from each other, and two second touch channels 2 located in different sub-areas and located adjacent to each other are disconnected from each other. Disconnected from each other. That is, different parts of the touch structure 10 corresponding to different sub-regions are insulated from each other, thereby dividing the touch structure 10 into four touch screens.
  • the display device 1000 further includes a plurality of first touch traces L1 and a plurality of second touch traces L2.
  • the plurality of first touch traces L1 are electrically connected to the plurality of first touch channels 1 .
  • a plurality of first touch traces L1 are electrically connected to a plurality of first touch channels 1 in a one-to-one correspondence, that is, a first touch trace L1 is electrically connected to a first touch channel 1 .
  • the first touch trace L1 is configured to be electrically connected to the first touch channel 1 so as to transmit a touch signal to the first touch electrode Tx in the first touch channel 1 .
  • the plurality of second touch traces L2 are electrically connected to the plurality of second touch channels 2 .
  • a plurality of second touch traces L2 are electrically connected to a plurality of second touch channels 2 in a one-to-one correspondence, that is, a second touch trace L2 is electrically connected to a second touch channel 2 .
  • the second touch trace L2 is configured to be electrically connected to the second touch channel 2 so as to transmit a touch signal to the second touch electrode Rx in the second touch channel 2 .
  • the first touch trace L1 connected to the first touch channel 1 in the first sub-region S51 and the third sub-region S53 extends from the first peripheral region S1 to the fan-out region S4.
  • the first sub-area S51 is closer to the third peripheral area S3 than the third sub-area S53.
  • the first touch trace L1 electrically connected to the first touch channel 1 in the first sub-region S51 is led out from the part of the first peripheral region S1 close to the third peripheral region S3 and along the first peripheral region S1 Extends to the fan-out area S4, and is finally bound to the flexible circuit board 200 through the fan-out area S4;
  • the first touch trace L1 electrically connected to the first touch channel 1 in the third sub-area S53 is connected by the third sub-area S53.
  • a portion of a peripheral area S1 away from the third peripheral area S3 is led out and extends along the first peripheral area S1 to the fan-out area S4, and is finally bonded to the flexible circuit board 200 through the fan-out area S4.
  • the first touch trace L1 in the first sub-region S51 is The first touch trace L1 connected to the touch channel 1 is far away from the touch area S5 in the first peripheral area S1, thereby avoiding the first touch trace connected to the first touch channel 1 in the first sub-region S51.
  • L1 the first touch trace L1 connected to the first touch channel 1 in the third sub-region S53 intersects in the first peripheral region S1, thereby optimizing the wiring space.
  • the first touch trace L1 connected to the first touch channel 1 in the second sub-region S52 and the fourth sub-region S54 extends from the second peripheral region S2 to the fan-out region S4.
  • the second sub-area S52 is closer to the third peripheral area S3 than the fourth sub-area S54.
  • the first touch trace L1 electrically connected to the first touch channel 1 in the second sub-region S52 is led out from the part of the second peripheral region S2 close to the third peripheral region S3 and along the second peripheral region S2 Extends to the fan-out area S4, and is finally bound and connected to the flexible circuit board 200 through the fan-out area S4; and the fourth sub-area
  • the first touch trace L1 electrically connected to the first touch channel 1 in S54 is led out from the part of the second peripheral area S2 away from the third peripheral area S3, and extends along the second peripheral area S2 to the fan-out area.
  • S4 Finally, the flexible circuit board 200 is bonded and connected through the fan-out area S4.
  • the first touch trace L1 in the second sub-region S52 is The first touch trace L1 connected to the touch channel 1 is located away from the touch area S5 in the second peripheral area S2, thereby avoiding the first touch trace connected to the first touch channel 1 in the second sub-region S52.
  • L1 the first touch trace L1 connected to the first touch channel 1 in the fourth sub-region S54, intersects in the second peripheral region S2, thereby optimizing the wiring space.
  • the second touch trace L2 connected to the second touch channel 2 in the first sub-region S51 is led from the third peripheral region S3, and extends to the fan-out region S4 through the first peripheral region S1.
  • the flexible circuit board 200 is bonded and connected through the fan-out area S4.
  • the second touch trace L2 connected to the second touch channel 2 in the second sub-region S52 is led from the third peripheral region S3, extends to the fan-out region S4 through the second peripheral region S2, and finally passes through the fan-out region S4 is bound and connected to the flexible circuit board 200 .
  • the second touch trace L2 electrically connected to the second touch channel 2 in the third sub-region S53 and the fourth sub-region S54 directly extends to the fan-out area S4, and finally connects to the flexible circuit board 200 through the fan-out area S4. Bind connection.
  • the second touch channel 2 connected to the first sub-area S51 is The part of the second touch trace L2 in the first peripheral area S1 is away from the touch area S5 to avoid the intersection of the first touch trace L1 and the second touch trace L2 in the first peripheral area S1, thereby optimizing the wiring space.
  • the second touch channel 2 connected to the second sub-area S52 is The part of the second touch trace L2 in the second peripheral area S2 is away from the touch area S5 to avoid the intersection of the first touch trace L1 and the second touch trace L2 in the second peripheral area S2, thereby optimizing the wiring space.
  • the display device 1000 further includes a first touch chip 300A and a second touch chip 300B.
  • the first touch trace L1 connected to the first touch channel 1 and the second touch trace L2 connected to the second touch channel 2 are electrically connected to the first touch chip 300A.
  • the first touch trace L1 connected to the first touch channel 1 and the second touch trace L2 connected to the second touch channel 2 are electrically connected.
  • the first touch chip 300A is configured to transmit touch signals to the touch electrodes (including the first touch electrode Tx and the second touch electrode Rx) in any two of the aforementioned sub-regions
  • the second touch chip 300B It is configured to transmit touch signals to the touch electrodes in the remaining two sub-areas.
  • any two sub-regions are any two of the first sub-region S51, the second sub-region S52, the third sub-region S53 and the fourth sub-region S54, for example, they are the first sub-region S51 and the second sub-area S52;
  • the aforementioned “remaining two sub-areas” refer to the first sub-area S51, the second sub-area S52, the third sub-area S53 and the fourth sub-area S54, except for any two of the aforementioned sub-areas.
  • the remaining two sub-areas are, for example, the third sub-area S53 and the fourth sub-area S54.
  • each touch chip may include at least one socket, and each socket corresponds to a touch channel in the same sub-area. (including the first touch channel 1 and the second touch channel 2) connected to the touch traces (including the first touch trace L1 and the second touch trace L2), that is, the sub-regions and sockets one by one
  • different sub-areas correspond to different sockets, which facilitates the touch chip to implement partition control of different sub-areas.
  • the touch structure 10 ′ is configured for the entire screen.
  • the touch structure 10 ′ includes a plurality of first touch channels 1 ′ and a plurality of second touch channels 2 ′.
  • a plurality of first touch channels 1' are arranged along the second direction Y', each first touch channel 1' extends along the first direction X', and the plurality of second touch channels 2' are arranged along the first direction X'.
  • each second touch channel 2' extends along the second direction Y.
  • the inventor of the present disclosure found that in the touch structure 10' provided on the entire screen, the area of the touch channel (the first touch channel 1' or the second touch channel 2') is larger, that is, the touch channel and If the facing area between the conductive structures of the light-emitting substrate (for example, the cathode layer 304) is large, the parasitic capacitance between the touch channel and the conductive structure of the light-emitting substrate is large, that is, the intensity of the generated noise signal is relatively strong, and it is easy to interfere.
  • the efficiency of transmitting and receiving signals sent by the active pen affects the touch performance of the active pen when touching.
  • the larger the size of the display device 1000, the larger the area of the touch channel in the touch structure 10' provided on the entire screen, and the parasitic interference between the touch channel and the conductive structure of the light-emitting substrate will increase.
  • the display device 1000 provided by the embodiment of the present disclosure divides the touch area S5 into a first sub-area S51, a second sub-area S52, a third sub-area S53 and a fourth sub-area S54, and sets different sub-areas in the four sub-areas.
  • the touch channels (including the first touch channel Tx and the second touch channel Rx) in the sub-area are insulated from each other, thereby dividing the touch structure 10 into four touch screens.
  • the area of each touch screen is approximately one quarter of the area of the touch structure 10' provided on the entire screen, and the area of the touch channel in each sub-area is approximately It is one-half of the area of the touch channel provided on the entire screen.
  • the area of the first touch channel 1 in the first sub-region S51 is roughly the area of the touch control structure 10' provided on the entire screen.
  • One-half of the area of the first touch channel 1' see Figure 7).
  • the effective touch area of the touch structure 10 can be ensured without reducing the touch effect.
  • reduce the area of the touch channel where each touch electrode (first touch electrode Tx or second touch electrode Rx) is located that is, reduce the area of the touch channel where each touch electrode is located and
  • the parasitic capacitance (i.e., the self-capacitance value of the touch electrode) between the conductive structures (such as the cathode layer 304) of the light-emitting substrate 20 reduces the intensity of the noise signal at the location of each touch electrode, that is, improves the efficiency of the active pen.
  • the signal-to-noise ratio during touch at the position of the touch electrode improves the touch effect of the active pen during the touch process, strengthens the compatibility of the display device 1000, especially the large-size display device, and the active pen, and broadens the The application market of active pens, for example, expands the application of active pens in large-size display devices.
  • the display device 1000 provided by the embodiment of the present disclosure provides a first touch chip 300A and a second touch chip 300B, and sets touch channels in any two sub-regions to be electrically connected to the first touch chip 300A.
  • the touch channels in the two sub-areas are electrically connected to the second touch chip 300B, which can achieve the effect of reducing the signal-to-noise ratio of the active pen while preventing one touch chip from controlling the entire screen touch structure 10'.
  • the problem of large chip load is to reduce the load of a single touch chip (including the first touch chip 300A and the second touch chip 300B) and extend the service life of the display device 1000 .
  • the dimensions of the first touch channels 1 located in different sub-regions along the first direction X are substantially equal.
  • the dimensions of the second touch channels 2 located in different sub-regions along the second direction Y are substantially equal. That is, the lengths of the first touch channels 1 in the four sub-regions are substantially equal, and the lengths of the second touch channels 2 in the four sub-regions are substantially equal.
  • the dimensions of the first touch channels 1 located in different sub-regions along the second direction Y are substantially equal.
  • the dimensions of the second touch channels 2 located in different sub-regions along the first direction X are approximately equal. That is, the widths of the first touch channels 1 in the four sub-regions are substantially equal, and the widths of the second touch channels 2 in the four sub-regions are substantially equal.
  • the touch channels in the different sub-regions are in contact with the conductive structures (such as cathodes) of the light-emitting substrate.
  • the parasitic capacitances between layers 304) are approximately the same, so that the signal-to-noise ratio of the active pen when touching in different sub-areas is approximately the same, that is, the floating height and touch sensitivity of the active pen in different sub-areas are approximately uniform. , improving the touch effect of the display device 1000 .
  • the number of first touch channels 1 located in different sub-areas is approximately equal.
  • the number of second touch channels 2 located in different sub-areas is approximately equal. It can also be ensured that the effective touch areas in the four sub-areas are approximately the same, that is, the areas of the touch channels (including the first touch channel 1 and the second touch channel 2) in the four sub-areas are ensured to be approximately the same, so that The signal-to-noise ratio of the active pen when touching in different sub-areas is approximately the same, that is, the floating height and touch sensitivity of the active pen in different sub-areas are approximately uniform, thereby improving the touch effect of the display device 1000 .
  • the first touch channels 1 located in different sub-regions include an equal number of first touch electrodes Tx.
  • the second touch channels 2 located in different sub-regions include an equal number of second touch electrodes Rx.
  • the number of touch electrodes (including the first touch electrode Tx and the second touch electrode Rx) in the touch channels (including the first touch channel 1 and the second touch channel 2) in different sub-regions approximately are equal, so that the areas of the touch channels in different sub-regions are approximately the same, then the parasitic capacitances between the touch channels in different sub-regions and the conductive structure (such as the cathode layer 304) of the light-emitting substrate are approximately the same, so that the active pen can
  • the signal-to-noise ratio when performing touch in different sub-areas is approximately the same, that is, the floating height and touch sensitivity of the active pen in different sub-areas are approximately uniform, thereby improving the touch effect of the display device 1000 .
  • the size and shape of the first touch electrode Tx in the four sub-regions are substantially the same, and the size and shape of the second touch electrode Rx in the four sub-regions are substantially the same. This ensures that the areas of the touch channels in different sub-areas are approximately the same, making the floating height and touch sensitivity of the active pen in different sub-areas approximately uniform, thereby improving the touch effect of the display device 1000 .
  • the centers of the two adjacent first touch channels 1 are located in the third sub-region S53 and the fourth sub-region S54, respectively, and are generally located along the same line. on the same straight line extending in the first direction X.
  • the centers of the two first touch channels 1 that belong to different sub-regions and are adjacently arranged along the first direction X may be on the same straight line.
  • the plurality of first touch channels 1 are distributed in an array in the first direction X and the second direction Y, so that the first touch electrodes Evenly distributing Tx on the touch structure 10 can make the touch effect at different positions of the touch structure 10 roughly the same, thereby improving the user experience of the active pen during the touch process.
  • the center of all the first touch electrodes Tx in the two adjacent first touch channels 1 are located in the first sub-region S51 and the second sub-region S52 respectively, and are approximately at On the same straight line extending along the first direction X (straight line La shown in Figure 4).
  • the centers of all the first touch electrodes Tx in the two adjacent first touch channels 1 located in the third sub-region S53 and the fourth sub-region S54 are generally located along the first direction X. extending on the same straight line. This further ensures that the first touch electrodes Tx are evenly distributed on the touch structure 10, thereby improving the user experience of the active pen during the touch process.
  • the centers of two adjacent second touch channels 2 located in the first sub-region S51 and the third sub-region S53 respectively and arranged adjacently are generally located along the second direction Y. extend on the same straight line (straight line Lb as shown in Figure 4), respectively located in the second sub-region S52 and the fourth sub-region S54, and the centers of the two adjacent second touch channels 2 are approximately located along the second sub-region S52 and the fourth sub-region S54.
  • the two directions are on the same straight line extending in Y.
  • the centers of two second touch channels 2 that belong to different sub-regions and are adjacently arranged along the second direction Y may be on the same straight line.
  • the plurality of second touch channels 2 are distributed in an array in the first direction X and the second direction Y, so that the second touch electrodes Rx is evenly distributed on the touch structure 10, which can make the touch effect at different positions of the touch structure 10 roughly the same, improving the user experience of the active pen during the touch process.
  • the centers of all the second touch electrodes Rx in the two adjacent second touch channels 2 are located in the first sub-region S51 and the third sub-region S53 respectively, and are approximately at On the same straight line extending along the second direction Y (straight line Lb as shown in Figure 4).
  • the centers of all the second touch electrodes Rx in the two adjacent second touch channels 2 located in the second sub-region S52 and the fourth sub-region S54 are generally located along the second direction Y. extending on the same straight line. This further ensures that the second touch electrode Rx is evenly distributed on the touch structure 10, thereby improving the user experience of the active pen during the touch process.
  • center is the geometric center.
  • the center of the first touch channel 1 is the geometric center of the first touch channel 1
  • the center of the first touch electrode Tx is the geometric center of the first touch electrode Tx.
  • two first touch channels 1 that belong to different sub-areas and are adjacently arranged along the first direction X are arranged symmetrically, and their symmetry axis extends roughly along the second direction Y;
  • the two second touch channels 2 that belong to different sub-regions and are adjacently arranged along the second direction Y are arranged symmetrically, and the symmetry axis extends generally along the first direction X.
  • the first touch channel 1 and the second touch channel 2 are controlled to be distributed in an array along the first direction X and the second direction Y, and the shape, size and number of the first touch channel 1 located in different sub-areas are controlled.
  • the shape, size and number of the second touch channels 2 located in different sub-regions are approximately the same, so that the first touch electrode Tx and the second touch electrode Rx are evenly distributed in the touch structure 10, and
  • the signal-to-noise ratio at the positions of the touch electrodes (including the first touch electrode Tx and the second touch electrode Rx) in different sub-regions is approximately the same, thereby optimizing the touch performance of the active pen and improving the performance of the display device 1000 and the active pen.
  • the adaptability of the pen improves the touch experience of the display device 1000 .
  • the touch structure 10 of the display device 1000 is a metal grid structure (see Figures 5 and 8).
  • the metal grid G is disconnected at the location where insulation is required. , for example, disconnect at the adjacent and mutually close boundaries of two sub-regions, specifically, at the respective The metal grid is disconnected between two adjacent first touch channels 1 in different sub-regions, or between two second touch channels 2, thereby dividing the touch structure 10 into four mutually exclusive areas. Insulated touch screen.
  • first touch channels 1 and different second touch channels 2 are insulated from each other (for example, insulation is achieved by disconnecting the metal grid G).
  • the adjacently arranged first touch electrode Tx and the second touch electrode Rx are also insulated from each other.
  • the gap is formed by disconnecting the metal grid lines GL between the two first touch channels 1 and the two second touch channels 2 .
  • the gap is configured such that the two first touch channels 1 and the two second touch channels 2 are insulated from each other.
  • any position that needs to be disconnected such as the gap formed after the metal grid line GL between the adjacent first touch electrode Tx and the second touch electrode Rx is disconnected, extends in a zigzag shape.
  • the gap By setting the gap in a polyline shape, after the touch structure 10 is divided into four touch screens by four sub-areas, the division boundaries between adjacent sub-areas are relatively uneven, thus avoiding phase differences caused by partitioning through long-distance straight lines.
  • the problem of obvious line marks appearing between adjacent sub-regions is to avoid the problem of shadowing in the display process of the display device 1000 and improve the display effect of the display device 1000 .
  • the second touch trace L2 is electrically connected to the first touch chip 300A. That is, the touch traces (including the first touch trace L1 and the second touch trace L2) drawn from the first sub-region S51 and the second sub-region S52 are electrically connected to the first touch chip 300A.
  • the touch screen where the first sub-area S51 and the second sub-area S52 are located realizes touch control through the first touch chip 300A.
  • Chip 300B is electrically connected. That is, the touch traces (including the first touch trace L1 and the second touch trace L2) drawn from the third sub-region S53 and the fourth sub-region S54 are electrically connected to the second touch chip 300B.
  • the touch screen where the third sub-area S53 and the fourth sub-area S54 are located realizes touch control through the second touch chip 300B.
  • the touch structure 10 behind the screen realizes touch, and at the same time can reduce the load of a single touch chip and increase the service life of the display device 1000.
  • the first touch chip 300A and the second touch chip 300B are both located on the side of the fan-out area S4 away from the third peripheral area S3. In the second direction Y, relative to the first touch chip 300A, the second touch chip 300B is closer to the fan-out area S4.
  • the first touch chip 300A and the second touch chip 300B are provided on the flexible circuit board 200 .
  • the flexible circuit board 200 is bound and connected to the display panel 100 , the flexible circuit board 200 is bent.
  • the first touch chip 300A and the second touch chip 300B were located on the side of the fan-out area S4 away from the third peripheral area S3.
  • the third sub-area S53 and the fourth sub-area S54 are closer to the fan-out area S4.
  • the second touch chip 300B is closer to the fan-out area S4, so that the touch traces drawn from the third sub-region S53 and the fourth sub-region S54 corresponding to the second touch chip 300B are electrically connected to the first touch chip 300A.
  • the touch traces drawn from the first sub-area S51 and the second sub-area S52 are closer to the touch area S5, thereby avoiding the touch traces drawn from the first sub-area S51 and the second sub-area S52 and the third sub-area S52.
  • the touch traces drawn from the area S53 and the fourth sub-area S54 intersect, thereby optimizing the wiring space, reducing the wiring difficulty, and facilitating the thinning and lightness of the display device 1000 .
  • the display device 1000 provided by the present disclosure is not limited to the arrangement and connection methods of the touch chips described in the above embodiments.
  • the first touch chip 300A can also be connected with the first sub-region S51 and the third The first touch trace L1 connected to the first touch channel 1 and the second touch trace L2 connected to the second touch channel 2 in the sub-region S53 are electrically connected, and the second touch chip 300B is electrically connected to the second sub-region S53.
  • S52 is electrically connected to the first touch trace L1 connected to the first touch channel 1 and the second touch trace L2 connected to the second touch channel 2 in the fourth sub-region S54.
  • the first touch chip 300A is electrically connected to the first sub-region S51 and the third sub-region S53
  • the second touch chip 300B is electrically connected to the second sub-region S52 and the fourth sub-region S54.
  • the part of the first touch trace L1 located in the first peripheral region S1 is closer to the touch screen than the part of the second touch trace L2 located in the first peripheral region S1 .
  • the control area S5 is provided; relative to the part of the second touch control line L2 located in the second peripheral area S2, the part of the first touch control line L1 located in the second peripheral area S2 is provided closer to the touch control area S5.
  • the second touch traces L2 drawn out from the first sub-region S51 and the second sub-region S52 are respectively Passing through the first peripheral area S1 and the second peripheral area S2, and finally extending to the fan-out area S4, through the aforementioned settings, the intersection of the first touch trace L1 and the second touch trace L2 can be avoided, thereby optimizing the wiring space. , reducing the difficulty of wiring.
  • the display device 1000 further includes a first virtual electrode 3 .
  • the touch structure 10 of the display device 1000 includes the first virtual electrode 3 .
  • the first virtual electrode 3 is disposed between the adjacent first touch electrode Tx and the second touch electrode Rx, and is in contact with the first touch electrode Tx and the second touch electrode.
  • Rx are insulated from each other.
  • the first touch electrode Tx, the second touch electrode Rx and the first dummy electrode 3 are all metal mesh structures.
  • the metal grid line GL is disconnected at the position where insulation is required.
  • the metal grid line GL is disconnected.
  • the metal grid line GL between a touch electrode Tx and the adjacent first dummy electrode 3 is disconnected, thereby achieving insulation between the first touch electrode Tx and the first dummy electrode 3 .
  • the boundary of the first virtual electrode 3 close to the first touch electrode Tx and the boundary close to the second touch electrode Rx are in a polygonal shape, and the edges of the first virtual electrode 3 and the first touch electrode Tx are close to each other.
  • the boundary shapes of the first virtual electrode 3 and the second touch electrode Rx are adapted to each other and are close to each other.
  • the shape of the gap between the first touch electrode Tx and the second touch electrode Rx is adapted to the shape of the first dummy electrode 3.
  • the first dummy electrode 3 is approximately filled in the first touch electrode Tx and the second touch electrode Rx. within the gap between the second touch electrodes Rx.
  • the area of the electrode Tx and the second touch electrode Rx can reduce the initial mutual capacitance value of the entire touch structure 10 (the mutual capacitance value of the touch structure 10 when no finger is touching), thereby improving the performance of the touch structure 10 Touch sensitivity, optimize the touch effect.
  • the heat generated by the touch structure 10 can also be reduced, thereby preventing the display device 1000 from suffering large losses due to temperature changes. For example, it can avoid certain materials in the display device 1000, such as the polarizer 500 and other structures, from experiencing large temperature changes. The ghost problem that appears below.
  • reducing the area of the touch electrode can reduce the parasitic capacitance between the touch electrode and the cathode layer 304, thereby improving the signal-to-noise ratio of the active pen and further optimizing the touch effect of the active pen.
  • the first virtual electrode 3 is centrally symmetrical graphics. That is, the boundary of the first dummy electrode 3 close to the first touch electrode Tx and the boundary close to the second touch electrode Rx are substantially symmetrical, so that the shapes of the first touch electrode Tx and the second touch electrode Rx are substantially the same, As a result, the touch electrodes in the touch structure 10 are arranged more regularly.
  • the center of the first touch electrode Tx adjacent to the first virtual electrode 3 and the center of the second touch electrode Tx adjacent to the first virtual electrode 3 coincides with the center of the first virtual electrode 3 .
  • the areas of the first touch electrode Tx and the second touch electrode Rx are approximately the same, and the noise signals at different positions of the touch structure 10 are relatively uniform, so that the signal-to-noise ratio of the active pen at different positions during the touch process is approximately the same.
  • the touch performance of the active pen is optimized, for example, making the floating height of the active pen more uniform.
  • center may be a geometric center.
  • the center of the first virtual electrode 3 is the geometric center of the first virtual electrode 3 .
  • the first virtual electrode 3 is centrally symmetrically arranged with its own center as the center of symmetry.
  • the first touch electrode Tx and the second touch electrode Rx are arranged centrally symmetrically with the center of the first virtual electrode as the center of symmetry.
  • the first virtual electrode 3 includes a plurality of extension portions 3' connected in sequence, each extension portion 3' is in a strip shape, and the extension direction of any two adjacent extension portions 3' intersect.
  • the first dummy electrode 3 can be The boundary formed after the metal grid line GL between the touch electrodes is disconnected is relatively uneven, which avoids the problem of obvious line marks between the first virtual electrode 3 and the touch electrode due to long-distance straight line disconnection, that is, to avoid display
  • the device 1000 has a shadowing problem during the display process, so the display effect of the display device 1000 is improved.
  • the first dummy electrode 3 includes a first extension part 31 and two second extension parts 32 located at both ends of the first extension part 31 and connected to the first extension part 31 .
  • the first extension portion 31 extends generally along the second direction Y
  • the second extension portion 32 generally extends along the first direction X.
  • the first dummy electrode 3 is generally in a "Z" shape as a whole.
  • the boundary between the first touch electrode Tx and the second touch electrode Rx is generally in a "Z” shape.
  • the font can not only avoid the problem of fading in the display device 1000 during the display process, but also avoid the boundary of the touch electrode being too uneven, causing the active pen to appear during the touch process. In the case of jitter, that is, the effect of avoiding the ghosting problem and the effect of improving the linearity of the active pen can be taken into account at the same time.
  • the plurality of extensions 3' are approximately equal in length.
  • the size of the first extending portion 31 in the second direction Y is substantially equal to the size of the second extending portion 32 in the first direction
  • the shapes of the three-phase matched touch electrodes are roughly the same, and can also reduce the difficulty of preparing the touch structure 10 .
  • the first virtual electrode 3 is in a strip shape, and the width of the first virtual electrode at different positions along the length direction of the first virtual electrode 3 is approximately equal.
  • the size of the first extension part 31 in the first direction The shapes of the touch electrodes that the electrodes 3 match are roughly the same, and the difficulty of preparing the touch structure 10 can also be reduced.
  • first virtual electrodes 3 are provided around the first touch electrode Tx, and the four first virtual electrodes 3 are relative to the center of the first touch electrode Tx. Centrally symmetrical setting.
  • Four first dummy electrodes 3 are provided around the second touch electrode Rx, and the four first dummy electrodes 3 are arranged centrally symmetrically with respect to the center of the second touch electrode Rx.
  • the shape and area of the first touch electrode Tx and the second touch electrode Rx can be made approximately the same, so that the noise signals at different positions of the touch structure 10 are approximately the same, and the active pen can be used during the touch process.
  • the signal-to-noise ratio at different positions of the touch structure 10 is approximately the same, which can improve the touch performance of the active pen, for example, making the floating height of the active pen more uniform.
  • first virtual electrodes 3 are provided around each touch electrode.
  • each of the first touch electrode Tx and the second touch electrode Rx includes a main body portion C3, two first protruding portions C1, and two second protruding portions C2.
  • the main body C3 has a rectangular shape, two first protrusions C1 are provided on both sides of the main body C3 along the first direction X, and two second protrusions C2 are provided on the main body along the second direction Y. Both sides of part C3.
  • the two first protruding parts C1 and the two second protruding parts C2 are respectively connected to the main body part C3.
  • the boundaries of the main body portion C3, the two first protruding portions C1, and the two second protruding portions C2 are all smooth straight lines.
  • the size and shape of the two first protrusions C1 are approximately the same.
  • the two second protrusions C2 have approximately the same size and shape.
  • the size and shape of the first protrusion C1 and the second protrusion C2 are substantially the same.
  • the first touch electrode Tx and the second touch electrode Rx are both roughly in the shape of a "cross", which can ensure that the boundary between the first touch electrode Tx and the second touch electrode Rx has fewer corners. This ensures, on the one hand, the linearity of the active pen when touching the display device 1000, and on the other hand, avoids the problem of border fading caused by long-distance straight line breaks.
  • the display device 1000 further includes a second virtual electrode 4 .
  • the touch structure 10 of the display device 1000 includes the second virtual electrode 4 .
  • the second virtual electrode 4 is disposed between two adjacent first touch electrodes Tx that belong to different first touch channels 1, and is disposed between two adjacent first touch electrodes Tx that belong to different second touch channels 2. between the two second touch electrodes Rx.
  • the second dummy electrode 4 is insulated from the first touch electrode Tx and the second touch electrode Rx. That is, the second dummy electrode 4 is configured to surround the touch electrode together with the first dummy electrode 3, thereby spacing the first touch electrode Tx and the second touch electrode Rx.
  • the second dummy electrode 4 may be connected with the first dummy electrode 3 .
  • the second dummy electrode 4 is in the shape of a metal mesh.
  • the second virtual electrode 4 is in a rectangular shape.
  • the present disclosure also provides a method that can enhance the active pen.
  • Touch precision display device 1000 Based on the above-mentioned embodiment of dividing the touch structure 10 into four touch screens and the embodiment of providing the first virtual electrode 3 and the second virtual electrode 4 , the present disclosure also provides a method that can enhance the active pen. Touch precision display device 1000.
  • At least one first touch channel 1 includes a plurality of first sub-channels 1A, the plurality of first sub-channels 1A are arranged along the second direction Y, and each first sub-channel 1A Extending along the first direction X, the first sub-channel 1A includes a plurality of electrically connected first touch electrodes Tx.
  • a first touch channel 1 includes two first sub-channels 1A.
  • a first touch channel 1 includes four first sub-channels 1A.
  • At least one second touch channel 2 includes a plurality of second sub-channels 2A.
  • the plurality of second sub-channels 2A are arranged along the first direction X, and each second sub-channel 2A extends along the second direction Y.
  • the second sub-channel 2A includes a plurality of electrically connected second touch electrodes Tx.
  • a second touch channel 2 includes two second sub-channels 2A.
  • a second touch channel 2 includes four second sub-channels 2A.
  • multiple first sub-channels 1A included in the same first touch channel 1 are electrically connected.
  • Multiple second sub-channels 2A included in the same second touch channel 2 are electrically connected.
  • two first touch electrodes Tx belonging to two different and adjacent first sub-channels 1A are electrically connected, thereby realizing the same first touch electrode Tx.
  • two adjacent first sub-channels 1A can be electrically connected to the same touch line M, thereby realizing multiple first sub-channels in the same first touch channel 1.
  • Channel 1A electrical connection purpose.
  • two second touch electrodes Rx belonging to two different and adjacent second sub-channels 2A are electrically connected, thereby realizing the same first touch electrode Rx.
  • two adjacent second sub-channels 2A can be electrically connected to the same touch line M, thereby realizing multiple second sub-channels in the same second touch channel 2.
  • Channel 2A electrical connection purpose for example, in the same second touch channel 2, two adjacent second sub-channels 2A can be electrically connected to the same touch line M, thereby realizing multiple second sub-channels in the same second touch channel 2.
  • the first touch channel 1 is located in the first rectangular area extending along the first direction X
  • the second touch channel 2 is located in the first rectangular area extending along the second direction Y. Two rectangular areas.
  • first rectangular area is the area where the first touch electrode Tx is located in the first touch channel 1.
  • first rectangular area can include the area in the same first touch channel 1.
  • second rectangular area is the area where the second touch electrode Rx is located in the second touch channel 2.
  • the second rectangular area can include all the second touches in the same second touch channel 2.
  • the rectangular area where the first rectangular area and the second rectangular area intersect is the touch unit area J. That is, the touch unit area J is the intersection area of the first touch channel 1 and the second touch channel 2 .
  • the intersection position of the first sub-channel 1A and the second sub-channel 2A may be a touch point M1.
  • each touch channel (first touch channel 1' or second touch channel 2') of the display device 1000' is provided with only one sub-channel (the first sub-channel 1A' or second sub-channel 2A').
  • the intersection position of a first touch channel 1' and a second touch channel 2' is a touch point M1', and there is only one intersection position in a touch unit area J', that is, there is only one Touch point M1', when a finger touches the touch unit area J', the mutual capacitance value of the touch electrode at the intersection position will change, thereby detecting the touch position of the finger, and realizing the touch control of the touch structure 10' Function.
  • the area size of the touch unit area J' in the touch structure 10' is adapted to the size of the finger.
  • the area of a touch unit area J' is approximately 4 ⁇ 4mm 2 , which is suitable for touching the finger.
  • the contact area between the finger and the screen is roughly the same, resulting in higher accuracy when pointing out the finger.
  • the tip size of the active pen is smaller, for example, the active pen
  • the pen tip size is roughly a quarter of the finger or even smaller (for example, the pen tip size of the active pen is 1 mm).
  • the area of the touch unit area J' is far If it is much larger than the size of the active pen tip, the accuracy of the active pen will drop sharply, which is not conducive to the application of the active pen.
  • multiple adjacent sub-touch channels are provided in at least one touch channel (including the first touch channel 1 and the second touch channel 2).
  • channel 1A and second sub-channel 2A are provided between multiple sub-touch channels in the same touch channel, so that the touch unit area J includes multiple first sub-channels 1A and multiple second sub-channels
  • Multiple intersection positions between the channels 2A that is, the touch unit area J includes multiple touch points M1, so that the area of the touch unit area J in the touch structure 10 can not be changed, thereby ensuring finger touch.
  • a plurality of touch points M1 that match the size of the active pen tip are divided into the touch unit area J, which greatly improves the accuracy of the active pen and takes into account the active pen's accuracy. Touch function in display device 1000 .
  • At least one pair of first touch electrodes Tx adjacent along the second direction Y are electrically connected.
  • the aforementioned “at least one pair” refers to two first touch electrodes that belong to different first sub-channels 1A in the same first touch channel 1 and are adjacently arranged in the second direction Y. Tx.
  • the plurality of first sub-channels 1A located in the same first touch channel 1 are electrically connected, so that the plurality of first sub-channels 1A are located in the same first touch channel 1.
  • Multiple first sub-channels 1A in the same first touch channel 1 transmit the same touch signal to avoid increasing or decreasing the size of the first touch channel 1, thereby avoiding changes in the area of the touch unit area J, ensuring The compatibility between finger touch and display device 1000.
  • At least a pair of second touch electrodes Rx adjacent along the first direction Y are electrically connected.
  • the aforementioned “at least one pair” refers to two second touch electrodes that belong to different second sub-channels 2A in the same second touch channel 2 and are adjacently arranged in the first direction X. Rx.
  • two second touch electrodes Rx belonging to two different and adjacent second sub-channels 2A are electrically connected, thereby realizing the same The purpose of electrical connection between two adjacent second sub-channels 2A in the second touch channel 2.
  • the plurality of second sub-channels 2A located in the same second touch channel 2 are electrically connected, so that the multiple second sub-channels 2A located in the same second touch channel 2 transmit the same touch signal to avoid Increase or reduce the size of the second touch channel 2 to avoid changes in the area of the touch unit area J and ensure the adaptability of finger touch to the display device 1000 .
  • the first touch channel 1 further includes a first connection part B1 .
  • at least one pair is phase-phased along the second direction Y.
  • the two adjacent first touch electrodes Tx are electrically connected through the first connection portion B1.
  • the first connection part B1 extends generally along the second direction Y.
  • the first touch electrode Tx may be integrally provided with the first connection part B1.
  • the same first touch channel 1 may include at least one first connection part B1.
  • first touch channel 1 By arranging the same first touch channel 1, at least a pair of two adjacent first touch electrodes Tx along the second direction Y are electrically connected through the first connection portion B1, so that they are located in the same first touch channel 1.
  • the plurality of first sub-channels 1A are electrically connected.
  • the second touch channel 2 further includes a second connection part B2 .
  • at least one pair of phases is connected along the first direction X.
  • Two adjacent second touch electrodes Rx are electrically connected through the second connection portion B2.
  • the second connection part B2 extends generally along the first direction X.
  • the second touch electrode Rx may be integrally provided with the second connection part B2.
  • the same second touch channel 2 may include at least one second connection part B2.
  • the display device 1000 includes a stacked first conductive layer 10A, an insulating layer 10B, and a second conductive layer 10C.
  • the insulating layer 10B is located between the first conductive layer 10A and the second conductive layer 10C, and a via H is provided in the insulating layer 10B.
  • the first touch electrode Tx and the second touch electrode Rx are located on the first conductive layer 10A.
  • the first touch channel 1 includes a third connection portion B3. Along the first direction X, any two adjacent first touch electrodes Tx are electrically connected through the third connection portion B3. connect.
  • the second touch channel 2 also includes a fourth connection portion B4. Along the second direction Y, any two adjacent second touch electrodes Rx are electrically connected through the fourth connection portion B4.
  • the third connection part B3 and the fourth connection part B4 intersect.
  • the insulating layer 10B is used to separate the third connection part B3 and the fourth connection part B4, thereby achieving electrical connection of the touch electrodes in the same touch channel. At the same time, it is avoided that electrical conduction occurs at the intersection position, causing crosstalk in the touch signals transmitted on the first touch electrode Tx and the second touch electrode Rx.
  • the third connection part B3 is located on the first conductive layer 10A
  • the fourth connection part B4 is located on the second conductive layer 10C.
  • the third connection part B3 is integrally provided with the first touch electrode Tx.
  • a via hole H is provided in the insulating layer 10B, and the fourth connection portion B4 is electrically connected to the second touch electrode Rx through the via hole H.
  • connection part B3 may also be located on the second conductive layer 10C, and correspondingly the fourth connection part B4 is located on the first conductive layer 10A.
  • the fourth connection part B4 is integrally provided with the second touch electrode Rx.
  • a via hole H is provided in the insulating layer 10B, and the third connection part B3 is electrically connected to the first touch electrode Tx through the via hole H.
  • both the third connection part B3 and the fourth connection part B4 are metal mesh structures.
  • the number of connection structures composed of the third connection part B3 and the fourth connection part B4 is compared with the number of connection structures in the related art.
  • a large number that is, a large number of metal grid lines GL, can effectively reduce the resistance of the touch structure 10 .
  • the first touch channel 1 includes a plurality of first connection parts B1 .
  • two adjacent first touch electrodes Tx are arranged along the second direction Y. They are electrically connected through the first connection part B1.
  • the second touch channel 2 also includes a second connection portion B2.
  • two adjacent second touch electrodes Rx along the first direction X are electrically connected through the second connection portion B2.
  • At least one first connection part B1 and at least one second connection part B2 intersect.
  • the first connection part B1 and the second connection part B2 are separated by the insulating layer 10B, thereby achieving electrical connection of the touch electrodes in the same touch channel. At the same time, it is avoided that electrical conduction occurs at the intersection position, causing crosstalk in the touch signals transmitted on the first touch electrode Tx and the second touch electrode Rx.
  • the first connection part B1 is located on the first conductive layer 10A
  • the second connection part B2 is located on the second conductive layer 10C.
  • the first connection part B1 is integrally provided with the first touch electrode Tx.
  • a via hole H is provided in the insulating layer 10B, and the second connection portion B2 is electrically connected to the second touch electrode Rx through the via hole H.
  • first connection part B1 may also be located on the second conductive layer 10C, and accordingly the second connection part B1 may be located on the second conductive layer 10C.
  • Part B2 is located on the first conductive layer 10A.
  • the second connection part B2 and the second touch electrode Rx are integrally provided.
  • a via hole H is provided in the insulating layer 10B, and the first connection portion B1 is electrically connected to the first touch electrode Tx through the via hole H.
  • both the first connection part B1 and the second connection part B2 are metal mesh structures.
  • the number of connection structures composed of the first connection part B1 and the second connection part B2 is larger than the number of connection structures in the related art, that is, There are many metal grid lines GL, which can effectively reduce the resistance of the touch structure 10 .
  • the first touch channel 1 is located in a first rectangular area extending along the first direction X
  • the second touch channel 2 is located in a second rectangular area extending along the second direction Y.
  • the rectangular area where the first rectangular area and the second rectangular area intersect is the touch unit area J.
  • Each first electrode group O1 and a plurality of second electrode groups O2 are provided in the touch unit area J.
  • Each first electrode group O1 includes a plurality of first contacts electrically connected in sequence along the first direction X.
  • Each second electrode group O2 includes a plurality of second touch electrodes Rx that are electrically connected in sequence along the second direction Y.
  • the plurality of first electrode groups O1 belong to a plurality of first sub-channels 1A of the same first touch channel 1
  • the plurality of second electrode groups O2 belong to a plurality of second sub-channels 2A of the same second touch channel 2.
  • the first electrode groups O1 are portions of the first sub-channels 1A located in the touch unit area J
  • the second electrode groups O2 are portions of the second sub-channels 2A located in the touch unit area J. Part of unit area J.
  • the plurality of first touch electrodes Tx located on the same side edge of the touch unit area J in the plurality of first electrode groups O1 are a plurality of first setting electrodes O1', and the plurality of first setting electrodes O1' Connect in series along the second direction Y.
  • the plurality of second touch electrodes Rx located on the same side edge of the touch unit area J in the plurality of second electrode groups O2 are a plurality of second setting electrodes O2', and the plurality of second setting electrodes O2' are along the first direction. X series.
  • a plurality of first setting electrodes O1' can be connected in series along the second direction Y, and a plurality of second setting electrodes O2' can be connected in series along the second direction Y.
  • the first direction X is connected in series.
  • the touch unit area J only includes half of the first setting electrode O1' and only half of the second setting electrode O2'.
  • the multiple sub-channels can be electrically connected according to the division of the touch unit area J to avoid
  • the self-capacitance values at different positions of the display device 1000 vary greatly, for example, to avoid the problem of different self-capacitance values in different touch unit areas J caused by arbitrary removal of the second dummy electrode 4 .
  • the display device 1000 when the display device 1000 further includes a first connection part B1 and a second connection part B2, the plurality of first setting electrodes O1' are connected through the first connection part B1 The plurality of second setting electrodes O2' are connected in series through the second connection part B2.
  • first connection part B1 and the second connection part B2 are provided on the same conductive layer.
  • first connection part B1 and the second connection part B2 are both provided on the first conductive layer 10A.
  • the first connection part B1 may be integrally formed with the first setting electrode O1'
  • the second connection part B2 may be integrally formed with the second setting electrode O2'.
  • the inventor of the present disclosure conducted an analysis of the touch effect of the display device 1000 provided by some embodiments of the present disclosure.
  • the display device 1000 provided by the embodiment of the present disclosure includes a first virtual electrode 3, and one touch channel (including the first touch channel 1 and the second touch channel 2) includes a plurality of sub-channels ( Including the first sub-channel 1A and the second sub-channel 2A).
  • a touch channel includes a sub-channel.
  • the “initial mutual capacitance value” is the mutual capacitance value of the touch structure 10 when the finger does not touch the screen.
  • the “touch mutual capacitance value” is the mutual capacitance value of the touch structure 10 when a finger touches the screen.
  • the “change amount of mutual capacitance value” is the difference between the initial mutual capacitance value and the touch mutual capacitance value.
  • Proportion of change in mutual capacitance value is the proportion of change in mutual capacitance value relative to the initial mutual capacitance value.
  • embodiments of the present disclosure also reduce the self-capacitance value of the touch electrode (including the parasitic capacitance generated by the touch electrode and the cathode layer), effectively improve the signal-to-noise ratio of the active pen during the touch process, and optimize the active pen's Touch effect.
  • the disclosed embodiments also greatly reduce the resistance of the touch electrode, which can effectively reduce the attenuation of the signal emitted by the active pen, while reducing the load of the touch structure 10 and further optimizing the touch effect.
  • the display device 1000 provided by the embodiments of the present disclosure reduces the initial mutual capacitance value, the self-capacitance value and the resistance value of the touch electrode, thereby greatly improving the sensitivity and signal-to-noise ratio of the active pen during the touch process. and other performance, optimizing the touch effect.
  • the inventor of the present disclosure analyzed the touch effects of the touch points (1 ⁇ 9) in the touch unit area J in the experimental group. During the analysis process, the touch points corresponding to the display device 1000' in the related art were used. Control points (1 ⁇ 9) serve as the control group.
  • the size of the touch unit area J in the experimental group and the touch unit area J' in the control group are approximately the same.
  • F1 is the coupling capacitance between the active pen and the first touch electrode Tx when the active pen touches the touch point in the display device 1000
  • F2 is the coupling capacitance between the active pen and the first touch electrode Tx when the active pen touches the touch point in the display device 1000.
  • the coupling capacitance between the active pen and the touch electrode is quite different at different locations, such as touch point 1 and touch point 2.
  • the coupling capacitance between the first touch electrode Tx and the active pen is also quite different from the coupling capacitance between the second touch electrode Rx and the active pen, resulting in poor linearity of the active pen during the touch process.
  • Poorly, the attenuation of the signal emitted by the active pen at different touch points is also different, resulting in different floating heights of the active pen at different positions, affecting the touch experience.
  • the coupling capacitance between the active pen and the touch electrode is approximately the same at touch points 1 and 2, for example, at touch points 2 and 2.
  • the coupling capacitance difference between the active pen and the touch electrode also decreases.
  • the coupling capacitance between the first touch electrode Tx and the active pen It is approximately the same as the coupling capacitance between the second touch electrode Rx and the active pen.
  • the display device 1000 provided by the embodiment of the present disclosure can effectively improve the linearity of the active pen during the touch process, and can also make the signal amount of the active pen at different positions approximately uniform and the floating height approximately uniform, improving the Enhanced active pen touch experience.
  • the embodiment of the present disclosure also provides a touch structure 10.
  • the touch structure 10 includes a plurality of first touch channels 1, a plurality of second touch channels 2 and a first virtual electrode 3.
  • each first touch channel 1 extends along the first direction X, and each first touch channel 1 includes a plurality of first touch electrodes Tx sequentially arranged along the first direction X. , two adjacent first touch electrodes Tx are electrically connected.
  • each second touch channel 2 extends along the second direction Y, and each second touch channel 2 includes a plurality of second touch electrodes Rx sequentially arranged along the second direction Y. , two adjacent second touch electrodes Rx are electrically connected.
  • the first touch channel 1 and the second touch channel 2 cross each other and are insulated from each other. Thereby, the first touch electrode Tx and the second touch electrode Rx are insulated from each other.
  • the first direction X and the second direction Y cross each other.
  • the first direction X and the second direction Y may be perpendicular to each other.
  • the touch structure 10 includes a plurality of metal lines GL, and the plurality of metal lines GL intersect with each other to form a plurality of metal grids G.
  • the first dummy electrode 3 is disposed between the adjacent first touch electrode Tx and the second touch electrode Rx, and is insulated from the first touch electrode Tx and the second touch electrode Rx. .
  • the first touch electrode Tx, the second touch electrode Rx and the first dummy electrode 3 are all metal mesh structures.
  • the boundary of the first virtual electrode 3 close to the first touch electrode Tx and the boundary close to the second touch electrode Tx are shown in FIG.
  • the boundary of the touch electrode Rx is in the shape of a polygonal line, and the shapes of the mutually close boundaries of the first virtual electrode 3 and the first touch electrode Tx are adapted to each other.
  • the mutually close boundaries of the first virtual electrode 3 and the second touch electrode Rx Shape to fit.
  • the shape of the gap between the first touch electrode Tx and the second touch electrode Rx is adapted to the shape of the first dummy electrode 3.
  • the first dummy electrode 3 is approximately filled in the first touch electrode Tx and the second touch electrode Rx. within the gap between the second touch electrodes Rx.
  • the area of the electrode Tx and the second touch electrode Rx can reduce the initial mutual capacitance value of the entire touch structure 10 (the mutual capacitance value of the touch structure 10 when no finger is touching), thereby improving the performance of the touch structure 10 Touch sensitivity, optimize the touch effect.
  • the heat generated by the touch structure 10 can also be reduced, thereby preventing the display device 1000 from suffering large losses due to temperature changes. For example, it can avoid certain materials in the display device 1000, such as the polarizer 500 and other structures, from experiencing large temperature changes. The ghost problem that appears below.
  • reducing the area of the touch electrode can reduce the parasitic capacitance between the touch electrode and the cathode layer 304, thereby improving the signal-to-noise ratio of the active pen and further optimizing the touch effect of the active pen.
  • the first virtual electrode 3 includes a plurality of extension portions 3' connected in sequence, each extension portion 3' is in a strip shape, and the extension direction of any two adjacent extension portions 3' intersect.
  • the first virtual electrode 3 is in a "Z" shape.
  • the first dummy electrode 3 can be The boundary formed after the metal grid line GL between the touch electrodes is disconnected is relatively uneven, which avoids the problem of obvious line marks between the first virtual electrode 3 and the touch electrode due to long-distance straight line disconnection, that is, to avoid display
  • the device 1000 has a shadowing problem during the display process, so the display effect of the display device 1000 is improved.
  • first virtual electrodes 3 are provided around the first touch electrode Tx, and the four first virtual electrodes 3 are centrally symmetrical with respect to the center of the first touch electrode Tx. set up.
  • Four first dummy electrodes 3 are provided around the second touch electrode Rx, and the four first dummy electrodes 3 are arranged centrally symmetrically with respect to the center of the second touch electrode Rx.
  • the shapes and areas of the first touch electrode Tx and the second touch electrode Rx can be made approximately the same, so that the noise signals at different positions of the touch structure 10 are approximately the same. If the same, the signal-to-noise ratio of the active pen at different positions of the touch structure 10 during the touch process is approximately the same, which can improve the touch performance of the active pen, for example, making the floating height of the active pen more uniform.
  • At least one first touch channel 1 includes a plurality of first sub-channels 1A, the plurality of first sub-channels 1A are arranged along the second direction Y, and each first sub-channel 1A Extending along the first direction X, the first sub-channel 1A includes a plurality of electrically connected first touch electrodes Tx.
  • a first touch channel 1 includes four first sub-channels 1A.
  • At least one second touch channel 2 includes a plurality of second sub-channels 2A.
  • the plurality of second sub-channels 2A are arranged along the first direction X, and each second sub-channel 2A extends along the second direction Y.
  • the second sub-channel 2A includes a plurality of electrically connected second touch electrodes Tx.
  • a second touch channel 2 includes four second sub-channels 2A.
  • multiple first sub-channels 1A included in the same first touch channel 1 are electrically connected.
  • Multiple second sub-channels 2A included in the same second touch channel 2 are electrically connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种显示装置(1000)和触控结构(10),其中,显示装置(1000)包括第一子区(S51)、第二子区(S52)、第三子区(S53)和第四子区(S54)。显示装置(1000)包括多个第一触控通道(1)、多个第二触控通道(2)、多条第一触控走线(L1)、多条第二触控走线(L2)、第一触控芯片(300A)和第二触控芯片(300B)。每个子区内均设有至少一个第一触控通道(1)和至少一个第二触控通道(2)。多条第一触控走线(L1)与多个第一触控通道(1)电连接,多条第二触控走线(L2)与多个第二触控通道(2)电连接。任意两个子区内的,第一触控通道(1)连接的第一触控走线(L1)及第二触控通道(2)连接的第二触控走线(L2),与第一触控芯片(300A)电连接;除任意两个子区外的其余两个子区内的,第一触控通道(1)连接的第一触控走线(L1)及第二触控通道(2)连接的第二触控走线(L2),与第二触控芯片(300B)电连接。

Description

显示装置和触控结构
本申请要求于2022年08月10日提交的、申请号为202210956632.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其是涉及一种显示装置和触控结构。
背景技术
随着电子产品的不断发展,具有触控功能和显示功能的显示装置,可以实现简易灵活的人机交互,因而得到广泛应用。
AMOLED(Active Matrix Organic Light-Emitting Diode,有源矩阵有机发光二极管)显示装置可以实现全面屏、窄边框、高分辨率、卷曲穿戴、折叠等,成为显示技术领域的重要发展方向。
发明内容
一方面,提供一种显示装置,包括触控区,及围绕所述触控区的扇出区、第一周边区、第二周边区和第三周边区,所述第一周边区和所述第二周边区沿第一方向分别位于所述触控区的两侧,所述扇出区和所述第三周边区沿第二方向分别位于所述触控区的两侧。所述第一方向和所述第二方向相交叉。所述触控区包括第一子区、第二子区、第三子区和第四子区,所述第一子区和所述第二子区沿所述第一方向排列,所述第一子区和所述第三子区沿所述第二方向排列,所述第三子区和所述第四子区沿所述第一方向排列。
所述显示装置包括设于所述触控区的多个第一触控通道和多个第二触控通道、多条第一触控走线、多条第二触控走线、第一触控芯片和第二触控芯片。其中,每个第一触控通道包括沿所述第一方向排列且串接的多个第一触控电极,每个第二触控通道包括沿所述第二方向排列且串接的多个第二触控电极。每个子区内均设有至少一个第一触控通道和至少一个第二触控通道,且所述至少一个第一触控通道和所述至少一个第二触控通道交叉设置且相互绝缘。位于不同子区的所述第一触控通道相互绝缘,位于不同子区的所述第二触控通道相互绝缘。
多条第一触控走线与所述多个第一触控通道电连接。所述第一子区和所述第三子区内的第一触控通道连接的第一触控走线,由所述第一周边区延伸至所述扇出区。所述第二子区和所述第四子区内的第一触控通道连接的第一 触控走线,由所述第二周边区延伸至所述扇出区。多条第二触控走线与所述多个第二触控通道电连接。所述第一子区内的第二触控通道连接的第二触控走线,从所述第三周边区引出,并经所述第一周边区延伸至所述扇出区。所述第二子区内的第二触控通道连接的第二触控走线,从所述第三周边区引出,并经所述第二周边区延伸至所述扇出区。所述第三子区和所述第四子区内的第二触控通道电连接的第二触控走线,直接延伸至所述扇出区。
第一触控芯片和第二触控芯片,任意两个子区内的,所述第一触控通道连接的所述第一触控走线及所述第二触控通道连接的所述第二触控走线,与所述第一触控芯片电连接。除所述任意两个子区外的其余两个子区内的,所述第一触控通道连接的所述第一触控走线及所述第二触控通道连接的所述第二触控走线,与所述第二触控芯片电连接。
在一些实施例中,位于不同子区内的所述第一触控通道的沿所述第一方向的尺寸大致相等;位于不同子区内的所述第二触控通道的沿所述第二方向的尺寸大致相等。
在一些实施例中,位于不同子区内的所述第一触控通道包括的第一触控电极的数量相等;位于不同子区内的所述第二触控通道包括的第二触控电极的数量相等。
在一些实施例中,分别位于所述第一子区和所述第二子区内,且相邻设置的两个所述第一触控通道的中心,大致处于沿所述第一方向延伸的同一直线上,分别位于所述第三子区和所述第四子区内,且相邻设置的两个所述第一触控通道的中心,大致处于沿所述第一方向延伸的同一直线上。分别位于所述第一子区和所述第三子区内,且相邻设置的两个所述第二触控通道的中心,大致处于沿所述第二方向延伸的同一直线上,分别位于所述第二子区和所述第四子区内,且相邻设置的两个所述第二触控通道的中心,大致处于沿所述第二方向延伸的同一直线上。
在一些实施例中,分属于不同子区内,且沿所述第一方向相邻设置的两个第一触控通道之间,以及分属于不同子区内,且沿所述第二方向相邻设置的两个第二触控通道之间均具有间隙,所述间隙呈折线状延伸。
在一些实施例中,所述第一子区和所述第二子区内的所述第一触控通道连接的所述第一触控走线及所述第二触控通道连接的所述第二触控走线,与所述第一触控芯片电连接。所述第三子区和所述第四子区内的所述第一触控通道连接的所述第一触控走线及所述第二触控通道连接的所述第二触控走线,与所述第二触控芯片电连接。
在一些实施例中,所述第一触控芯片和所述第二触控芯片均设于所述扇出区远离所述第三周边区的一侧。在所述第二方向上,相对于所述第一触控芯片,所述第二触控芯片更靠近所述扇出区。
在一些实施例中,相对于所述第二触控走线的位于所述第一周边区的部分,所述第一触控走线的位于所述第一周边区的部分更靠近所述触控区设置。相对于所述第二触控走线的位于所述第二周边区的部分,所述第一触控走线的位于所述第二周边区的部分更靠近所述触控区设置。
在一些实施例中,所述显示装置还包括第一虚拟电极。所述第一虚拟电极设于相邻的第一触控电极和第二触控电极之间,且与所述第一触控电极和所述第二触控电极相互绝缘。所述第一虚拟电极的靠近所述第一触控电极的边界和靠近所述第二触控电极的边界为折线状,且所述第一虚拟电极和所述第一触控电极的相互靠近的边界形状相适配,所述第一虚拟电极和所述第二触控电极的相互靠近的边界形状相适配。
在一些实施例中,所述第一虚拟电极为中心对称图形。
在一些实施例中,与所述第一虚拟电极相邻的第一触控电极的中心,和与所述第一虚拟电极相邻的第二触控电极的中心的连线的中点,与所述第一虚拟电极的中心重合。
在一些实施例中,所述第一虚拟电极包括依次相连的多个延伸部,每个延伸部呈条形;任意相邻两个延伸部的延伸方向相交叉。
在一些实施例中,所述第一虚拟电极包括第一延伸部,及分设于所述第一延伸部两端且与所述第一延伸部相连的两个第二延伸部,所述第一延伸部大致沿所述第二方向延伸,所述第二延伸部大致沿所述第一方向延伸。
在一些实施例中,所述多个延伸部的长度大致相等。
在一些实施例中,所述第一虚拟电极呈条形,沿所述第一虚拟电极的长度延伸方向,所述第一虚拟电极在不同位置处的宽度大致相等。
在一些实施例中,所述第一触控电极周围设有四个所述第一虚拟电极,四个所述第一虚拟电极相对于所述第一触控电极的中心呈中心对称设置。所述第二触控电极周围设有四个所述第一虚拟电极,四个所述第一虚拟电极相对于所述第二触控电极的中心呈中心对称设置。
在一些实施例中,所述第一触控电极和所述第二触控电极均包括主体部、两个第一凸起部以及两个第二凸起部,所述主体部呈矩形,所述两个第一凸起部沿所述第一方向分设于所述主体部的两侧,所述两个第二凸起部沿所述第二方向分设于所述主体部的两侧;所述两个第一凸起部和所述两个第二凸起 部分别与所述主体部连接。
在一些实施例中,所述显示装置还包括第二虚拟电极。所述第二虚拟电极设于相邻且分属于不同的第一触控通道的两个第一触控电极之间,并设于相邻且分属于不同的第二触控通道的两个第二触控电极之间;第二虚拟电极与所述第一触控电极和所述第二触控电极相互绝缘。
在一些实施例中,所述第二虚拟电极呈矩形。
在一些实施例中,至少一个第一触控通道包括多个第一子通道,所述多个第一子通道沿所述第二方向排列,每个第一子通道沿所述第一方向延伸,且所述第一子通道包括电连接的多个第一触控电极;同一所述第一触控通道包括的多个第一子通道电连接。和/或,至少一个第二触控通道包括多个第二子通道,所述多个第二子通道沿所述第一方向排列,每个第二子通道沿所述第二方向延伸,且所述第二子通道包括电连接的多个第二触控电极;同一所述第二触控通道包括的多个第二子通道电连接。
在一些实施例中,同一所述第一触控通道中,至少一对沿所述第二方向相邻的第一触控电极电连接;和/或,同一所述第二触控通道中,至少一对沿所述第一方向相邻的第二触控电极电连接。
在一些实施例中,所述第一触控通道还包括第一连接部,同一所述第一触控通道中,至少一对沿所述第二方向相邻的两个第一触控电极之间通过所述第一连接部电连接;和/或,所述第二触控通道还包括第二连接部,同一所述第二触控通道中,至少一对沿所述第一方向相邻的两个第二触控电极之间通过所述第二连接部电连接。
在一些实施例中,所述显示装置包括层叠设置的第一导电层、绝缘层和第二导电层。所述绝缘层位于所述第一导电层和所述第二导电层之间,所述绝缘层中设有过孔。所述第一触控电极和所述第二触控电极位于所述第一导电层。
所述显示装置包括至少一对相交叉的第一连接部和第二连接部。其中,所述第一连接部位于所述第一导电层,所述第二连接部位于所述第二导电层,所述第二连接部通过所述过孔与相应的第二触控电极电连接;或者,所述第二连接部位于所述第一导电层,所述第一连接部位于所述第二导电层,所述第一连接部通过所述过孔与相应的第一触控电极电连接。
在一些实施例中,所述第一触控通道位于沿所述第一方向延伸的第一矩形区域,所述第二触控通道位于沿所述第二方向延伸的第二矩形区域,所述第一矩形区域和所述第二矩形区域相交叉的矩形区域为触控单元区域。
所述触控单元区域内设有多个第一电极组和多个第二电极组,每个第一 电极组包括沿所述第一方向依次电连接的多个第一触控电极,每个第二电极组包括沿所述第二方向依次电连接的多个第二触控电极;所述多个第一电极组分属于同一第一触控通道的多个第一子通道,所述多个第二电极组分属于同一第二触控通道的多个第二子通道。
所述多个第一电极组中位于所述触控单元区域同侧边缘的多个第一触控电极为多个第一设定电极,所述多个第一设定电极沿所述第二方向串联。所述多个第二电极组中位于所述触控单元区域同侧边缘的多个第二触控电极为多个第二设定电极,所述多个第二设定电极沿所述第一方向串联。
在一些实施例中,在所述显示装置还包括第一连接部和第二连接部的情况下,所述多个第一设定电极之间通过所述第一连接部串联,所述多个第二设定电极之间通过所述第二连接部串联;所述第一连接部和所述第二连接部设于同一导电层。
另一方面,提供一种触控结构,包括多个第一触控通道、多个第二触控通道和第一虚拟电极。
所述多个第一触控通道中,每个第一触控通道沿第一方向延伸,每个第一触控通道包括沿所述第一方向依次排列的多个第一触控电极,相邻两个第一触控电极之间电连接。
所述多个第二触控通道中,每个第二触控通道沿第二方向延伸,每个第二触控通道包括沿所述第二方向依次排列的多个第二触控电极,相邻两个第二触控电极之间电连接。所述第一触控通道和所述第二触控通道相互交叉且相互绝缘;所述第一方向和所述第二方向相互交叉。
所述第一虚拟电极设于相邻的第一触控电极和第二触控电极之间,且与所述第一触控电极和所述第二触控电极相互绝缘。所述第一虚拟电极的靠近所述第一触控电极的边界和靠近所述第二触控电极的边界为折线状,且所述第一虚拟电极和所述第一触控电极的相互靠近的边界形状相适配,所述第一虚拟电极和所述第二触控电极的相互靠近的边界形状相适配。
在一些实施例中,所述第一虚拟电极包括依次相连的多个延伸部,每个延伸部呈条形;任意相邻两个延伸部的延伸方向相交叉。
在一些实施例中,所述第一触控电极周围设有四个所述第一虚拟电极,四个所述第一虚拟电极相对于所述第一触控电极的中心呈中心对称设置。所述第二触控电极周围设有四个所述第一虚拟电极,四个所述第一虚拟电极相对于所述第二触控电极的中心呈中心对称设置。
在一些实施例中,至少一个第一触控通道包括多个第一子通道,所述多个 第一子通道沿所述第二方向排列,每个第一子通道沿所述第一方向延伸,且所述第一子通道包括电连接的多个第一触控电极;同一所述第一触控通道包括的多个第一子通道电连接。和/或,至少一个第二触控通道包括多个第二子通道,所述多个第二子通道沿所述第一方向排列,每个第二子通道沿所述第二方向延伸,且所述第二子通道包括电连接的多个第二触控电极;同一所述第二触控通道包括的多个第二子通道电连接。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例提供的显示装置的一种俯视图;
图2为根据一些实施例提供的显示装置的爆炸图;
图3为沿图1中的剖面线B-B’的截面图;
图4为根据一些实施例提供的显示装置的另一种俯视图;
图5为图4中虚线框C所在区域对应的结构放大图;
图6为图4中虚线框D所在区域对应的一种结构放大图;
图7为根据一些实施例提供的触控结构的一种俯视图;
图8为图6中虚线框E所在区域对应的结构放大图;
图9为图4中虚线框D所在区域对应的另一种结构放大图;
图10为图9中虚线框F所在区域对应的结构放大图;
图11为图9中虚线框G所在区域对应的结构放大图;
图12为图9中虚线框H所在区域对应的结构放大图;
图13为根据一些实施例提供的显示装置的另一种俯视图;
图14为图13中虚线框I所在区域对应的一种结构放大图;
图15为图14中虚线框Q1所在区域对应的结构放大图;
图16为图14中虚线框Q2所在区域对应的结构放大图;
图17为图14中虚线框Q3所在区域对应的结构放大图;
图18为沿图17中的剖面线W-W’的截面图;
图19为图14中虚线框Q4所在区域对应的结构放大图;
图20为沿图19中的剖面线Z-Z’的截面图;
图21为图13中虚线框I所在区域对应的另一种结构放大图;
图22为图21中的触控单元区域的结构放大图;
图23为图21中的触控单元区域的触控点分布图;
图24为根据一些实施例提供的触控结构的一种俯视图;
图25为根据一些实施例提供的触控结构的另一种俯视图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”以及其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“电连接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“电连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特 定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
图1为本公开的一些实施例提供的显示装置1000的俯视图。该显示装置1000可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论是文字的还是图像的任何装置。更明确地说,预期实施例可实施在多种电子装置中,或与多种电子装置关联,多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(Personal Digital Assistant,简称PDA)、虚拟现实(Virtual Reality,简称VR)显示器、手持式或便携式计算机、全球定位系统(Global Positioning System,简称GPS)接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
在一些实施例中,如图2所示,该显示装置1000可以包括显示面板100。
该显示面板100可以为液晶显示面板(Liquid Crystal Display,简称LCD);该显示面板100也可以为电致发光显示面板或光致发光显示面板。在该显示 面板100为电致发光显示面板的情况下,电致发光显示面板可以为有机电致发光(Organic Light-Emitting Diode,简称OLED)显示面板或量子点电致发光(Quantum Dot Light Emitting Diode,简称QLED)显示面板。在该显示面板100为光致发光显示面板的情况下,光致发光显示装置可以为量子点光致发光显示面板。
该显示面板100包括显示侧和非显示侧,显示侧为显示面板100进行发光显示的一侧,非显示侧为显示面板100的背离显示侧的一侧。
示例性地,如图2所示,该显示面板100可以包括发光基板20和触控结构10。
在一些实施例中,如图2所示,该显示装置1000还可以包括柔性线路板200。
该柔性线路板200被配置为,与前述显示面板100进行绑定连接。参阅图2,柔性线路板200可以沿虚线L朝向显示面板100的非显示侧弯折,以使柔性线路板200位于显示面板100的背面。
在一些实施例中,如图2所示,该显示装置1000还可以包括触控芯片300。
示例性地,参阅图2,该触控芯片300设于柔性线路板200上。触控芯片300被配置为,与显示面板100中的触控结构电连接,以便向触控结构传输触控信号,实现触控功能。
在一些实施例中,如图2所示,该显示装置1000还可以包括盖板400和位于盖板400与显示面板100之间的偏光片500。
偏光片500被配置为减少外界光线被显示面板100中的金属结构反射后的反射光线。其中,偏光片500与盖板400通过光学胶贴附在一起。
如图2所示,盖板400可以包括透光区A1和遮光区A2。透光区A1可以至少部分地与显示面板100的显示区(有效发光显示的区域)重叠,从显示面板100发射过来的光可以透过盖板400的透光区A1,发射至外侧,以被人眼所看到。遮光区A2可以设置在透光区A1的外围,并且可以至少部分地与显示面板100的周边区(围绕显示区设置)重叠,可以有效地显示面板100的位于周边区中的走线。
在一些实施例中,该显示装置1000还可以包括后壳。示例性地,后壳可以为U型槽,后壳与盖板400对盒形成显示装置1000的框架,前述显示面板100、弯折后的柔性线路板200等部件均设于该框架内。
在本公开提供的一些实施例中,如图2和图3所示,前述显示面板100包 括触控结构10和发光基板20。
其中,参阅图2,前述发光基板20包括多个子像素P,发光基板20被配置为实现发光显示。
参阅图3,前述发光基板20包括衬底21,以及层叠设置于衬底21上的像素电路层22和发光器件层23。
衬底21可为单层结构,也可为多层结构。例如,该衬底21可包括依次层叠设置的柔性基层和缓冲层。又例如,衬底21可包括交替设置的多个柔性基层和缓冲层。其中,柔性基层的材料可包括聚酰亚胺,缓冲层的材料可包括氮化硅和/或氧化硅,以达到阻水氧和阻隔碱性离子的效果。
像素电路层22包括依次层叠设置在衬底21上的有源层201、第一栅绝缘层202、第一栅导电层203、第二栅绝缘层204、第二栅导电层205、层间介质层206、第一源漏导电层207、钝化层208、第一平坦化层209、第二源漏导电层210、第二平坦化层211。
可选地,源漏导电层可以只有一层(例如只有第一源漏导电层207或只有第二源漏导电层210),相应地,平坦化层也可以只有一层(例如只有第一平坦化层209或只有第二平坦化层211)。
像素电路层22设置有多个薄膜晶体管TFT和多个电容结构Cst。每个子像素P对应包括至少一个薄膜晶体管TFT和至少一个电容结构Cst。图3中仅示例性示出了其中两个薄膜晶体管TFT和对应的两个电容结构Cst。
其中,薄膜晶体管TFT包括栅极Ta、源极Tb、漏极Tc以及有源层图案Td。源极Tb、漏极Tc和有源层图案Td电接触。
该有源层图案Td被配置为在栅极Ta的控制下形成沟道,使得与有源层图案Td连接的源极Tb和漏极Tc之间导通,从而打开薄膜晶体管TFT。示例性地,薄膜晶体管TFT还包括位于栅极Ta所在膜层和有源层图案Td所在膜层之间的第一栅绝缘层202的部分。
需要说明的是,各薄膜晶体管TFT的控制极为晶体管的栅极Ta,第一极为薄膜晶体管TFT的源极Tb和漏极Tc中一者,第二极为薄膜晶体管TFT的源极Tb和漏极Tc中另一者。由于薄膜晶体管TFT的源极Tb和漏极Tc在结构上可以是对称的,所以其源极Tb和漏极Tc在结构上可以是没有区别的。
电容结构Cst包括第一极板Cst1和第二极板Cst2,其中,第一极板Cst1位于第一栅导电层203,第二极板Cst2位于第二栅导电层205。
发光器件层23包括依次层叠设置在像素电路层22远离衬底21一侧的阳 极层301、像素界定层302、发光功能层303以及阴极层304。
发光器件层23设置有多个发光器件L。每个子像素P对应包括一个发光器件L。发光器件L包括位于阳极层301的阳极L4、位于阴极层304的阴极L5以及位于发光功能层303的发光图案L3。
其中,位于阳极层301的阳极L4被配置为传输高电平电压(例如电源电压信号VDD),位于阴极层304的阴极L5被配置为传输低电平电压(例如阴极电压信号VSS)。在阳极L4和阴极L5形成的电场的作用下,发光图案L3可以实现发光。
示例性地,发光功能层303除包括发光图案L3外,还可以包括电子传输层(Election Transporting Layer,简称ETL)、电子注入层(Election Injection Layer,简称EIL)、空穴传输层(Hole Transporting Layer,简称HTL)以及空穴注入层(Hole Injection Layer,简称HIL)中的一层或多层。
示例性地,阳极L4可与薄膜晶体管TFT的源极Tb或漏极Tc电连接,从而使得发光器件L在薄膜晶体管TFT的控制下实现发光。
示例性地,如图3所示,像素界定层302开设有多个开口K,发光图案L3至少部分位于开口K内,发光图案L3发出的光通过开口K发射至外界。
示例性地,如图3所示,像素界定层302和阴极层304之间还可设置有支撑层305,该支撑层305可起到支撑保护膜层的作用,以避免保护膜层与阳极层301或其他走线接触而导致阳极层301或其他走线断裂。
示例性地,如图3所示,发光基板20还包括设于发光器件L远离衬底21一侧的封装层24。封装层24可以包括远离衬底21依次层叠设置的第一封装子层、第二封装子层和第三封装子层。示例性地,第一封装子层和第三封装子层的材料包括无机材料,第二封装子层的材料包括有机材料。第一封装子层和第三封装子层具有阻隔水汽和氧气的作用,而第二封装子层具有一定的柔性和吸收水汽的作用等。
前述发光基板20具有出光侧和背光侧,出光侧是指发光基板20发出光线的一侧,背光侧是指发光基板20的背离出光侧的一侧。
参阅图3,前述触控结构10设置在发光基板20的出光侧。
该触控结构10可以被配置为,感应用户的触摸并获取触控信息,例如,感应用户手指或触控笔的触摸,并获取触摸坐标信息,实现显示面板100的触控功能。
在一些实施例中,触控结构10可以形成为单独的元件,并且采用粘合层将触控结构10粘贴在发光基板20的封装层24上。在触控结构10形成单独的元件(例如单独的膜层)的情况下,触控结构10还可以包括用于承载触控电极的承载膜。
示例性的,承载膜可以为树脂膜、玻璃基底和复合膜中的至少一个。
示例性的,粘合层可以为压敏粘合剂(Pressure Sensitive Adhesive,简称PSA)、光学透明粘合剂(Optical Clear Adhesive,简称OCA)和光学透明树脂(Optical Clear Resin,简称OCR)中的至少一个。
在另一些实施例中,参阅图3,触控结构10可以直接设置在发光基板20上,例如直接设置在发光基板20的封装层24上,即,触控结构10和封装层24之间不设置其它膜层。示例性的,触控结构10可以通过连续工艺形成在发光基板20的封装层24上,即,触控结构10可以在发光基板20形成封装层24后,直接形成在封装层24的上方,利于制备得到更轻更薄的显示装置1000,具有较好的应用前景。
前述触控结构10除了可以通过手指进行触控外,还可以通过触控笔进行触控。
其中,触控笔可以包括主动式电容笔(即主动笔)和被动式电容笔(即被动笔)。
被动笔与手指一样,通过与触控结构10接触来改变触控结构10在接触位置处的电容,从而实现与手指一样的触控效果。
主动笔内设有自有的电路,触控结构10接收主动笔发射的信号,从而得知主动笔在显示屏上的坐标,实现触控效果。主动笔无需与触控结构10直接接触,即,主动笔可以实现悬浮触控。
相对于被动笔,主动笔兼具悬浮触控功能(可以避免显示屏受到触控笔的损伤)和开关控制功能(可以在不需要使用时关闭主动笔的自有电路,防止误触),具有广泛的应用场景。
随着触控显示技术的发展,对主动笔的各项性能有了更高的要求。主动笔的性能可以包括精确度、线性度、信噪比以及悬浮高度等。
其中,精确度越高,主动笔的触控位置越准确。线性度越高,主动笔在触控结构10上画出的线条越精美,线条发生抖动的可能性越低。信噪比越高,即主动笔自有电路发出的信号,与环境噪声信号的比值越高,说明主动笔发出的实现触控的有效信号的比例越多,即环境噪声信号对触控的干扰较低,触控 效果较好。悬浮高度越高,且不同触控位置处的悬浮高度越均匀,主动笔的使用体验越好。
在一些实施例中,参阅图3,触控结构10铺设在发光基板20的出光侧之后,触控结构10与发光基板20中的导电结构具有正对面积,容易产生寄生电容。
例如,参阅图3,阴极层304为整层设计。触控结构10与阴极层304之间具有正对面积,当触控结构10有电流流通时,触控结构10会与阴极层304之间产生寄生电容(即噪声信号),该寄生电容的值越大,则对主动笔发出的用于触控的信号的干扰越大,即主动笔的信噪比相对较低,触控芯片无法通过滤波将主动笔发出的信号与噪声信号区分开,导致主动笔的工作性能很差。
为了解决上述问题,本公开实施例提供了一种显示装置1000。
如图4所示,该显示装置1000的触控结构10包括触控区S5,及围绕触控区S5的扇出区S4、第一周边区S1、第二周边区S2和第三周边区S3。
其中,参阅图4,第一周边区S1和第二周边区S2沿第一方向X分别位于触控区S5的两侧,扇出区S4和第三周边区S3沿第二方向Y分别位于触控区S5的两侧。
前述第一方向X和第二方向Y相交叉。例如,第一方向X与第二方向Y可以相互垂直。
需要说明的是,第一方向X可以是显示装置1000的横向,第二方向Y可以是显示装置1000的纵向;或者,第一方向X可以是多个子像素P阵列式排列中的行方向,第二方向Y可以是多个子像素P阵列式排列中的列方向。
本公开的多个附图中仅以第一方向X为行方向,第二方向Y为列方向为例进行示意。在本公开的实施例中,通过将附图进行一定角度(例如30度、45度或90度等)的旋转所得到的技术方案亦在本公开的保护范围之内。
围绕触控区S5的扇出区S4、第一周边区S1、第二周边区S2和第三周边区S3被配置为供多条触控走线(包括图4所示的第一触控走线L1和第二触控走线L2)进行布线。其中,扇出区S4还被配置为,与前述柔性线路板200进行绑定连接,显示装置1000中的多条触控走线均最终延伸至扇出区S4,并在扇出区S4裸露,裸露的部分作为引脚便于与柔性线路板200进行绑定,从而使多条触控走线与柔性线路板200上的触控芯片300电连接,以便实现显示装置1000的触控功能。
参阅图4,前述触控区S5被配置为设置多个触控电极(包括如图4所示的第一触控电极Tx和第二触控电极Rx),即,触控区S5为显示装置1000的触控结构10的有效触控区域。
其中,触控区S5包括第一子区S51、第二子区S52、第三子区S53和第四子区S54。
第一子区S51和第二子区S52沿第一方向X排列,第一子区S51和第三子区S53沿第二方向Y排列,第三子区S53和第四子区S54沿第一方向X排列。即,前述四个子区(第一子区S51、第二子区S52、第三子区S53和第四子区S54)沿第一方向X和第二方向Y呈阵列分布。
参阅图4,显示装置1000包括多个第一触控通道1和多个第二触控通道2。
需要说明的是,前述“第一触控通道1”为,触控结构10中,相互电连接的,且同时传输相同第一触控信号的多个第一触控电极Tx所组成的通道;前述“第二触控通道2”为,触控结构10中,相互电连接的,且同时传输相同第二触控信号的多个第二触控电极Rx所组成的通道。
每个第一触控通道1包括沿第一方向X排列且串接的多个第一触控电极Tx,每个第二触控通道2包括沿第二方向Y排列且串接的多个第二触控电极Rx。
示例性地,多个第一触控通道1和多个第二触控通道2之间相互绝缘。且多个第一触控通道1和多个第二触控通道2之间相互交叉,从而使得第一触控电极Tx和第二触控电极Rx绝缘且交替设置。
示例性地,如图4所示,第一触控电极Tx和第二触控电极Rx交替设置,相邻的不同触控电极之间(即第一触控电极Tx和第二触控电极Rx之间)绝缘且能够产生互容,这些触控电极在被触摸后互容值会发生变化,可以通过侦测互容值,确定互容值在触摸前后的变化量,进行触摸位置的判断,实现触控结构10的触控效果。
示例性地,如图5所示,显示装置1000的触控结构10包括多条金属线GL,多条金属线GL相互交叉形成多个金属网格G。
示例性地,如图5所示,在触控结构10中,触控电极(包括第一触控电极Tx和第二触控电极Rx)采用金属网格结构(即包括多个金属网格G),相比于采用ITO(Indium Tin Oxide,氧化铟锡)形成面状电极作为触控电极,金属网格结构的触控电极的电阻小、灵敏度较高,能够提高触控结构10的触控灵敏度。且采用金属网格结构的触控电极机械强度高,能减小触控结构10 的重量,在触控结构10应用于显示装置1000中时,能够实现显示装置1000的轻薄化。
示例性地,如图5所示,第一触控电极Tx和第二触控电极Rx采用金属网格结构。第一触控电极Tx和第二触控电极Rx的金属网格G可以设置于同一膜层中,第一触控电极Tx的金属网格G与第二触控电极Rx的金属网格G断开,从而使得第一触控电极Tx和第二触控电极Rx相互绝缘。
需要说明的是,图5中金属网格G做不同的图案填充,是为了区分不同的触控电极,第一触控电极Tx和第二触控电极Rx的金属网格G可以采用相同材料,采用相同的工艺制程形成。
示例性地,如图5所示,第一触控电极Tx和第二触控电极Rx的形状为菱形或大致为菱形。其中,“大致为菱形”是指,触控电极(即第一触控电极Tx和第二触控电极Rx)的形状整体上呈菱形形状,但是并不局限为标准的菱形,例如触控电极的边界允许是非直线形的(例如锯齿形),又如在后面的实施例中,所涉及的触控电极的形状整体呈菱形,但是其边界呈锯齿形。
并且,本公开实施例中第一触控电极Tx和第二触控电极Rx的电极图案形状不限于菱形或大致的菱形,例如还可以为矩形、长条形等。
示例性地,根据金属线GL的交叉方式的不同,一个金属网格G的形状可以大致呈六边形、矩形或不规则多边形。
参阅图4,每个子区(第一子区S51、第二子区S52、第三子区S53和第四子区S54)内均设有至少一个第一触控通道1和至少一个第二触控通道2,且位于同一子区内的至少一个第一触控通道1和至少一个第二触控通道2交叉设置且相互绝缘。
即,每个子区内均设有多个第一触控电极Tx和多个第二触控电极Rx,对应前述四个子区,显示装置1000的触控结构10被划分为四个触控屏幕(即触控结构10的四个子区所在的部分)。
示例性地,参阅图4,每个子区内均设有多个第一触控通道1和多个第二触控通道2,其中,多个第一触控通道1沿第二方向Y排列设置,每个第一触控通道1沿第一方向X延伸,多个第二触控通道2沿第一方向X排列设置,每个第二触控通道2沿第二方向Y延伸。
参阅图4和图6,位于不同子区的第一触控通道1相互绝缘,位于不同子区的第二触控通道2相互绝缘。
例如,参阅图6,位于不同子区的且相邻设置的两个第一触控通道1之间相互断开,位于不同子区的且相邻设置的两个第二触控通道2之间相互断开。 即,不同子区所对应的触控结构10的不同的部分之间相互绝缘,从而将触控结构10划分为四个触控屏幕。
参阅图4,显示装置1000还包括多条第一触控走线L1和多条第二触控走线L2。
多条第一触控走线L1与多个第一触控通道1电连接。示例性地,多条第一触控走线L1与多个第一触控通道1一一对应电连接,即,一条第一触控走线L1与一个第一触控通道1电连接。第一触控走线L1被配置为与第一触控通道1电连接,以便向第一触控通道1中的第一触控电极Tx传输触控信号。
多条第二触控走线L2与多个第二触控通道2电连接。示例性地,多条第二触控走线L2与多个第二触控通道2一一对应电连接,即,一条第二触控走线L2与一个第二触控通道2电连接。第二触控走线L2被配置为与第二触控通道2电连接,以便向第二触控通道2中的第二触控电极Rx传输触控信号。
参阅图4,第一子区S51和第三子区S53内的第一触控通道1连接的第一触控走线L1,由第一周边区S1延伸至扇出区S4。
例如,参阅图4,相对于第三子区S53,第一子区S51更靠近第三周边区S3。与第一子区S51内的第一触控通道1电连接的第一触控走线L1,由第一周边区S1的靠近第三周边区S3的部分引出,并沿着第一周边区S1延伸至扇出区S4,最终通过扇出区S4与柔性线路板200进行绑定连接;与第三子区S53内的第一触控通道1电连接的第一触控走线L1,由第一周边区S1的远离第三周边区S3的部分引出,并沿着第一周边区S1延伸至扇出区S4,最终通过扇出区S4与柔性线路板200进行绑定连接。
示例性地,参阅图4,相对于第三子区S53内的第一触控通道1连接的第一触控走线L1在第一周边区S1的部分,第一子区S51内的第一触控通道1连接的第一触控走线L1在第一周边区S1的部分远离触控区S5,从而避免第一子区S51内的第一触控通道1连接的第一触控走线L1,和第三子区S53内的第一触控通道1连接的第一触控走线L1,在第一周边区S1交叉,从而优化布线空间。
参阅图4,第二子区S52和第四子区S54内的第一触控通道1连接的第一触控走线L1,由第二周边区S2延伸至扇出区S4。
例如,参阅图4,相对于第四子区S54,第二子区S52更靠近第三周边区S3。与第二子区S52内的第一触控通道1电连接的第一触控走线L1,由第二周边区S2的靠近第三周边区S3的部分引出,并沿着第二周边区S2延伸至扇出区S4,最终通过扇出区S4与柔性线路板200进行绑定连接;与第四子区 S54内的第一触控通道1电连接的第一触控走线L1,由第二周边区S2的远离第三周边区S3的部分引出,并沿着第二周边区S2延伸至扇出区S4,最终通过扇出区S4与柔性线路板200进行绑定连接。
示例性地,参阅图4,相对于第四子区S54内的第一触控通道1连接的第一触控走线L1在第二周边区S2的部分,第二子区S52内的第一触控通道1连接的第一触控走线L1在第二周边区S2的部分远离触控区S5,从而避免第二子区S52内的第一触控通道1连接的第一触控走线L1,和第四子区S54内的第一触控通道1连接的第一触控走线L1,在第二周边区S2交叉,从而优化布线空间。
参阅图4,第一子区S51内的第二触控通道2连接的第二触控走线L2,从第三周边区S3引出,并经第一周边区S1延伸至扇出区S4,最终通过扇出区S4与柔性线路板200进行绑定连接。
第二子区S52内的第二触控通道2连接的第二触控走线L2,从第三周边区S3引出,并经第二周边区S2延伸至扇出区S4,最终通过扇出区S4与柔性线路板200进行绑定连接。
第三子区S53和第四子区S54内的第二触控通道2电连接的第二触控走线L2,直接延伸至扇出区S4,最终通过扇出区S4与柔性线路板200进行绑定连接。
示例性地,参阅图4,相对于第一触控通道1连接的第一触控走线L1在第一周边区S1的部分,第一子区S51内的第二触控通道2连接的第二触控走线L2在第一周边区S1的部分远离触控区S5,避免在第一周边区S1内的第一触控走线L1和第二触控走线L2交叉,从而优化布线空间。
示例性地,参阅图4,相对于第一触控通道1连接的第一触控走线L1在第二周边区S2的部分,第二子区S52内的第二触控通道2连接的第二触控走线L2在第二周边区S2的部分远离触控区S5,避免在第二周边区S2内的第一触控走线L1和第二触控走线L2交叉,从而优化布线空间。
参阅图4,显示装置1000还包括第一触控芯片300A和第二触控芯片300B。
任意两个子区内的,第一触控通道1连接的第一触控走线L1及第二触控通道2连接的第二触控走线L2,与第一触控芯片300A电连接。除该任意两个子区外的其余两个子区内的,第一触控通道1连接的第一触控走线L1及第二触控通道2连接的所述第二触控走线L2,与第二触控芯片300B电连接。
即,第一触控芯片300A被配置为,向前述任意两个子区内的触控电极(包括第一触控电极Tx和第二触控电极Rx)传输触控信号,第二触控芯片300B 被配置为,向前述其余两个子区内的触控电极传输触控信号。
需要说明的是,前述“任意两个子区”为,第一子区S51、第二子区S52、第三子区S53和第四子区S54中的任意两个,例如,为第一子区S51和第二子区S52;前述“其余两个子区”为,第一子区S51、第二子区S52、第三子区S53和第四子区S54中的,除前述任意两个子区外,剩余的两个子区,例如为第三子区S53和第四子区S54。
示例性地,在另一些实施例中,每个触控芯片(包括第一触控芯片300A和第二触控芯片300B)可以包括至少一个插口,每个插口对应同一个子区内的触控通道(包括第一触控通道1和第二触控通道2)所连接的触控走线(包括第一触控走线L1和第二触控走线L2),即,子区与插口一一对应,不同的子区分别对应不同的插口,从而便于触控芯片对不同的子区实现分区控制。
在相关技术中,如图7所示,触控结构10’为整屏设置,该触控结构10’中包括多个第一触控通道1’和多个第二触控通道2’,该多个第一触控通道1’沿第二方向Y’排列,每个第一触控通道1’沿第一方向X’延伸,该多个第二触控通道2’沿第一方向X’排列,每个第二触控通道2’沿第二方向Y延伸。
经本公开发明人研究发现,整屏设置的触控结构10’中,触控通道(第一触控通道1’或第二触控通道2’)的面积较大,即,触控通道与发光基板的导电结构(例如阴极层304)之间的正对面积较大,则触控通道与发光基板的导电结构之间的寄生电容较大,即产生的噪声信号的强度较强,容易干扰主动笔发出的信号的传递和被接收效率,影响主动笔进行触控时的触控性能。
尤其在大尺寸显示装置中,显示装置1000的尺寸越大,整屏设置的触控结构10’中的触控通道的面积就越大,则触控通道与发光基板的导电结构之间的寄生电容越大,噪声信号强度越强,则对主动笔的触控效果影响非常大。
本公开实施例提供的显示装置1000,通过将触控区S5划分为第一子区S51、第二子区S52、第三子区S53和第四子区S54,并设置该四个子区中不同子区内的触控通道(包括第一触控通道Tx和第二触控通道Rx)相互绝缘,从而将触控结构10划分为四个触控屏幕,相对于整屏设置的触控结构10’,该四个触控屏幕中,每个触控屏幕的面积均大致为整屏设置的触控结构10’的面积的四分之一,每个子区内的触控通道的面积,均大致为整屏设置的触控通道的面积的二分之一,例如,参阅图4,第一子区S51内的第一触控通道1的面积,大致为整屏设置的触控结构10’中的第一触控通道1’的面积(参阅图7)的二分之一。
通过前述设计,可以在不减少触控结构10的有效触控面积,保证触控效 果的前提下,减小每个触控电极(第一触控电极Tx或第二触控电极Rx)所在的触控通道的面积,即,减小每个触控电极所在的触控通道与发光基板20的导电结构(例如阴极层304)之间的寄生电容(即触控电极的自容值),从而减小每个触控电极所在位置处的噪声信号的强度,即,提高主动笔在该触控电极所在位置处进行触控时的信噪比,提升主动笔在触控过程中的触控效果,加强显示装置1000,尤其大尺寸显示装置与主动笔的配适性,拓宽了主动笔的应用市场,例如,拓展了主动笔在大尺寸显示装置中的应用。
此外,本公开实施例提供的显示装置1000,通过设置第一触控芯片300A和第二触控芯片300B,并设置任意两个子区中的触控通道与第一触控芯片300A电连接,其余两个子区中的触控通道与第二触控芯片300B电连接,可以在实现降低主动笔信噪比的效果的同时,避免一个触控芯片控制整屏触控结构10’的情况下触控芯片负载较大的问题,即,减少单个触控芯片(包括第一触控芯片300A和第二触控芯片300B)的负载,延长显示装置1000的使用寿命。
在一些实施例中,如图4所示,位于不同子区内的第一触控通道1的沿第一方向X的尺寸大致相等。位于不同子区内的第二触控通道2的沿第二方向Y的尺寸大致相等。即,前述四个子区内的第一触控通道1的长度大致相等,前述四个子区内的第二触控通道2的长度大致相等。
在一些实施例中,如图4所示,位于不同子区内的第一触控通道1的沿第二方向Y的尺寸大致相等。位于不同子区内的第二触控通道2的沿第一方向X的尺寸大致相等。即,前述四个子区内的第一触控通道1的宽度大致相等,前述四个子区内的第二触控通道2的宽度大致相等。
通过设置不同子区内的触控通道的长度和宽度大致相同,即设置不同子区内的触控通道的面积大致相同,使得不同子区内的触控通道与发光基板的导电结构(例如阴极层304)之间的寄生电容大致相同,从而使得主动笔在不同子区内进行触控时的信噪比大致相同,即,使得主动笔在不同子区内的悬浮高度以及触控灵敏度大致均一,提高显示装置1000的触控效果。
示例性地,如图4所示,位于不同子区内的第一触控通道1的数量大致相等。位于不同子区内的第二触控通道2的数量大致相等。同样可以保证四个子区内的有效触控的面积大致相同,即,保证四个子区内的触控通道(包括第一触控通道1和第二触控通道2)的面积大致相同,从而使得主动笔在不同子区内进行触控时的信噪比大致相同,即,使得主动笔在不同子区内的悬浮高度以及触控灵敏度大致均一,提高显示装置1000的触控效果。
在一些实施例中,如图4所示,位于不同子区内的第一触控通道1包括的第一触控电极Tx的数量相等。位于不同子区内的第二触控通道2包括的第二触控电极Rx的数量相等。
通过设置不同子区内的触控通道(包括第一触控通道1和第二触控通道2)中的触控电极(包括第一触控电极Tx和第二触控电极Rx)的数量大致相等,使得不同子区内的触控通道的面积大致相同,则不同子区内的触控通道与发光基板的导电结构(例如阴极层304)之间的寄生电容大致相同,从而使得主动笔在不同子区内进行触控时的信噪比大致相同,即,使得主动笔在不同子区内的悬浮高度以及触控灵敏度大致均一,提高显示装置1000的触控效果。
示例性地,在前述实施例的基础上,四个子区内的第一触控电极Tx的尺寸和形状大致相同,四个子区内的第二触控电极Rx的尺寸和形状大致相同。从而保证不同子区内的触控通道的面积大致相同,使得主动笔在不同子区内的悬浮高度以及触控灵敏度大致均一,提高显示装置1000的触控效果。
在一些实施例中,如图4所示,分别位于第一子区S51和第二子区S52内,且相邻设置的两个第一触控通道1的中心,大致处于沿第一方向X延伸的同一直线(如图4所示的直线La)上,分别位于第三子区S53和第四子区S54内,且相邻设置的两个第一触控通道1的中心,大致处于沿第一方向X延伸的同一直线上。
即,分属于不同子区且沿第一方向X相邻设置的两个第一触控通道1的中心可以处于同一条直线上。
通过前述设置,可以保证被前述四个子区分割后的触控结构10中,多个第一触控通道1在第一方向X和第二方向Y上呈阵列分布,从而使得第一触控电极Tx在触控结构10上均匀分布,可以使得触控结构10不同位置处的触控效果大致相同,提高主动笔在触控过程中的使用体验。
示例性地,参阅图4,分别位于第一子区S51和第二子区S52内,且相邻设置的两个第一触控通道1内的所有第一触控电极Tx的中心,大致处于沿第一方向X延伸的同一直线(如图4所示的直线La)上。同理,分别位于第三子区S53和第四子区S54内,且相邻设置的两个第一触控通道1内的所有第一触控电极Tx的中心,大致处于沿第一方向X延伸的同一直线上。进一步保证第一触控电极Tx在触控结构10上均匀分布,从而提高主动笔在触控过程中的使用体验。
在一些实施例中,如图4所示,分别位于第一子区S51和第三子区S53内,且相邻设置的两个第二触控通道2的中心,大致处于沿第二方向Y延伸 的同一直线(如图4所示的直线Lb)上,分别位于第二子区S52和第四子区S54内,且相邻设置的两个第二触控通道2的中心,大致处于沿第二方向Y延伸的同一直线上。
即,分属于不同子区且沿第二方向Y相邻设置的两个第二触控通道2的中心可以处于同一条直线上。
通过前述设置,可以保证被前述四个子区分割后的触控结构10中,多个第二触控通道2在第一方向X和第二方向Y上呈阵列分布,从而使得第二触控电极Rx在触控结构10上均匀分布,可以使得触控结构10不同位置处的触控效果大致相同,提高主动笔在触控过程中的使用体验。
示例性地,参阅图4,分别位于第一子区S51和第三子区S53内,且相邻设置的两个第二触控通道2内的所有第二触控电极Rx的中心,大致处于沿第二方向Y延伸的同一直线(如图4所示的直线Lb)上。同理,分别位于第二子区S52和第四子区S54内,且相邻设置的两个第二触控通道2内的所有第二触控电极Rx的中心,大致处于沿第二方向Y延伸的同一直线上。进一步保证第二触控电极Rx在触控结构10上均匀分布,从而提高主动笔在触控过程中的使用体验。
需要说明的是,前述“中心”为几何中心。例如,第一触控通道1的中心即为第一触控通道1的几何中心,第一触控电极Tx的中心即为第一触控电极Tx的几何中心。
示例性地,如图4所示,分属于不同子区,且沿第一方向X相邻设置的两个第一触控通道1呈对称设置,其对称轴大致沿第二方向Y延伸;分属于不同子区,且沿第二方向Y相邻设置的两个第二触控通道2呈对称设置,且对称轴大致沿第一方向X延伸。
即,控制第一触控通道1和第二触控通道2均沿第一方向X和第二方向Y呈阵列分布,并控制位于不同子区的第一触控通道1的形状、尺寸和数量大致相同,以及位于不同子区的第二触控通道2的形状、尺寸和数量大致相同,从而使得第一触控电极Tx和第二触控电极Rx在触控结构10中均匀地分布,并使得不同子区内的触控电极(包括第一触控电极Tx和第二触控电极Rx)所在位置处的信噪比大致相同,从而优化主动笔的触控性能,提高显示装置1000和主动笔的适配度,提升显示装置1000的触控体验。
在一些实施例中,前述显示装置1000的触控结构10为金属网格结构(参阅图5和图8),触控结构10一体成型后,在需要绝缘的位置处将金属网格G断开,例如,在两个子区的相邻且相互靠近的边界处断开,具体地,在分属 于不同子区,且相邻设置的两个第一触控通道1之间,或两个第二触控通道2之间将金属网格断开,从而将触控结构10划分为四个相互绝缘的触控屏幕。
示例性地,不同的第一触控通道1之间,以及不同的第二触控通道2之间,均相互绝缘(例如通过断开金属网格G实现绝缘)。
示例性地,相邻设置的第一触控电极Tx和第二触控电极Rx之间也相互绝缘。
在一些实施例中,如图8所示,分属于不同子区内,且沿第一方向X相邻设置的两个第一触控通道1之间,以及分属于不同子区内,且沿第二方向Y相邻设置的两个第二触控通道2之间均具有间隙(例如图8中的虚线Lc所示意的路径),该间隙呈折线状延伸。
示例性地,参阅图8,该间隙由该两个第一触控通道1之间,以及该两个第二触控通道2之间的金属网格线GL断开后形成。示例性地,该间隙被配置为,使得该两个第一触控通道1之间,以及该两个第二触控通道2之间相互绝缘。
示例性地,任意需要断开的位置,例如相邻的第一触控电极Tx和第二触控电极Rx之间的金属网格线GL断开后形成的间隙均呈折线状延伸。
通过设置间隙为折线状,使得触控结构10被四个子区划分为四个触控屏幕后,相邻子区之间的划分界限较为参差,避免由于通过长距离直线断线进行分区导致的相邻子区之间出现明显的线痕的问题,即避免显示装置1000在显示过程中出现消影问题,提高显示装置1000的显示效果。
在一些实施例中,如图4所示,第一子区S51和第二子区S52内的第一触控通道1连接的第一触控走线L1及第二触控通道2连接的第二触控走线L2,与第一触控芯片300A电连接。即,由第一子区S51和第二子区S52引出的触控走线(包括第一触控走线L1和第二触控走线L2)均与第一触控芯片300A电连接,第一子区S51和第二子区S52所在的触控屏幕通过第一触控芯片300A实现触控。
第三子区S53和第四子区S54内的第一触控通道1连接的第一触控走线L1及第二触控通道2连接的第二触控走线L2,与第二触控芯片300B电连接。即,由第三子区S53和第四子区S54引出的触控走线(包括第一触控走线L1和第二触控走线L2)均与第二触控芯片300B电连接,第三子区S53和第四子区S54所在的触控屏幕通过第二触控芯片300B实现触控。
通过设置第一触控芯片300A和第二触控芯片300B分别控制两个子区内的触控通道(包括第一触控通道1和第二触控通道2),使得分割为四个触控 屏幕后的触控结构10实现触控,同时可以减小单个触控芯片的负载,提高显示装置1000的使用寿命。
在前述实施例的基础上,在一些实施例中,如图4所示,第一触控芯片300A和第二触控芯片300B均位于扇出区S4远离第三周边区S3的一侧,在第二方向Y上,相对于第一触控芯片300A,第二触控芯片300B更靠近扇出区S4。
示例性地,参阅图4,第一触控芯片300A和第二触控芯片300B设于柔性线路板200上,在柔性线路板200与显示面板100绑定连接后,且柔性线路板200弯折之前,第一触控芯片300A和第二触控芯片300B位于扇出区S4远离第三周边区S3的一侧。
参阅图4,在第二方向Y上,相对于第一子区S51和第二子区S52,第三子区S53和第四子区S54更靠近扇出区S4,通过设置第二触控芯片300B更靠近扇出区S4,使得与第二触控芯片300B对应电连接的第三子区S53、第四子区S54引出的触控走线,相对于与第一触控芯片300A对应电连接的第一子区S51、第二子区S52引出的触控走线,更靠近触控区S5,从而可以避免第一子区S51、第二子区S52引出的触控走线和第三子区S53、第四子区S54引出的触控走线发生交叉,从而优化布线空间,降低布线难度,且利于实现显示装置1000的轻薄化。
需要说明的是,本公开提供的显示装置1000并不仅限于上述实施例所述的触控芯片的布置方式和连接方式,例如,第一触控芯片300A还可以与第一子区S51和第三子区S53内的第一触控通道1连接的第一触控走线L1及第二触控通道2连接的第二触控走线L2电连接,第二触控芯片300B与第二子区S52和第四子区S54内的第一触控通道1连接的第一触控走线L1及第二触控通道2连接的第二触控走线L2电连接。
示例性地,在第一触控芯片300A与第一子区S51和第三子区S53对应电连接、第二触控芯片300B与第二子区S52和第四子区S54对应电连接的情况下,在第一方向X上,相对于第一触控芯片300A,第二触控芯片300B更靠近第二周边区S2,从而避免触控走线相互交叉,优化布线空间。
在一些实施例中,如图4所示,相对于第二触控走线L2的位于第一周边区S1的部分,第一触控走线L1的位于第一周边区S1的部分更靠近触控区S5设置;相对于第二触控走线L2的位于第二周边区S2的部分,第一触控走线L1的位于第二周边区S2的部分更靠近触控区S5设置。
参阅图4,第一子区S51和第二子区S52中引出的第二触控走线L2分别 经过第一周边区S1和第二周边区S2,并最终延伸至扇出区S4,通过前述设置,可以避免第一触控走线L1和第二触控走线L2发生交叉,从而优化布线空间,降低布线难度。
在一些实施例中,如图9所示,显示装置1000还包括第一虚拟电极3。示例性地,显示装置1000的触控结构10中包括该第一虚拟电极3。
参阅图9和图10,该第一虚拟电极3设于相邻的第一触控电极Tx和第二触控电极Rx之间,且与该第一触控电极Tx和该第二触控电极Rx相互绝缘。
示例性地,参阅图10,第一触控电极Tx、第二触控电极Rx以及第一虚拟电极3均为金属网格结构。
示例性地,第一触控电极Tx、第二触控电极Rx以及第一虚拟电极3一体成型后,在需要绝缘的位置处将金属网格线GL断开,例如,参阅图10,将第一触控电极Tx和相邻的第一虚拟电极3之间的金属网格线GL断开,实现第一触控电极Tx和第一虚拟电极3的绝缘。
参阅图10,第一虚拟电极3的靠近第一触控电极Tx的边界和靠近第二触控电极Rx的边界为折线状,且第一虚拟电极3和第一触控电极Tx的相互靠近的边界形状相适配,第一虚拟电极3和第二触控电极Rx的相互靠近的边界形状相适配。
即,第一触控电极Tx和第二触控电极Rx之间的间隙的形状与第一虚拟电极3的形状相适配,例如,第一虚拟电极3大致填充于第一触控电极Tx和第二触控电极Rx之间的间隙内。
通过设置第一虚拟电极3,并设置第一虚拟电极3的边界与靠近该第一虚拟电极3的触控电极(包括第一触控电极Tx和第二触控电极Rx)的边界相适配,使得第一虚拟电极3大致填充于第一触控电极Tx和第二触控电极Rx之间的间隙内,从而在触控结构10整屏尺寸不变的情况下,减小第一触控电极Tx和第二触控电极Rx的面积,从而可以减小触控结构10整体的初始互容值(手指未进行触摸时触控结构10的互容值),从而可以提高触控结构10的触控灵敏度,优化触控效果。还可以减少触控结构10的产热量,从而避免显示装置1000由于温度变化受到较大的损耗,例如,避免显示装置1000中的某些材料,例如偏光片500等结构在温度变化较大的情况下出现的鬼点问题。此外,减少触控电极的面积后,可以减少触控电极与阴极层304之间的寄生电容,从而提高主动笔的信噪比,进一步优化主动笔的触控效果。
在一些实施例中,如图9和图11所示,第一虚拟电极3为中心对称 图形。即,第一虚拟电极3的靠近第一触控电极Tx的边界,和靠近第二触控电极Rx的边界大致对称,使得第一触控电极Tx和第二触控电极Rx的形状大致相同,从而使得触控结构10中的触控电极的布置较为规律。
在前述实施例的基础上,在一些实施例中,如图11所示,与第一虚拟电极3相邻的第一触控电极Tx的中心,和与第一虚拟电极3相邻的第二触控电极Rx的中心的连线(参阅图11中的虚线Gd)的中点,与第一虚拟电极3的中心重合。从而使得第一触控电极Tx和第二触控电极Rx的面积大致相同,则触控结构10不同位置处的噪声信号较为均一,使得主动笔在触控过程中不同位置处的信噪比大致相同,优化主动笔的触控性能,例如,使得主动笔的悬浮高度较为均一。
需要说明的是,前述“中心”可以为几何中心,例如,第一虚拟电极3的中心即为第一虚拟电极3的几何中心。
示例性地,第一虚拟电极3以自身的中心为对称中心呈中心对称设置。
示例性地,第一触控电极Tx和第二触控电极Rx以第一虚拟电极的中心为对称中心呈中心对称设置。
在一些实施例中,如图11所示,第一虚拟电极3包括依次相连的多个延伸部3’,每个延伸部3’呈条形,任意相邻两个延伸部3’的延伸方向相交叉。
通过设置条形的多个延伸部3’,并设置任意相邻两个延伸部3’的延伸方向相交叉,使得第一虚拟电极3的整体形状呈折线形,可以使第一虚拟电极3与触控电极之间的金属网格线GL断开后形成的边界较为参差,避免由于长距离直线断线导致第一虚拟电极3与触控电极之间出现明显的线痕的问题,即避免显示装置1000在显示过程中出现消影问题,提高显示装置1000的显示效果。
在一些实施例中,如图11所示,第一虚拟电极3包括第一延伸部31,及分设于第一延伸部31两端且与第一延伸部31相连的两个第二延伸部32,第一延伸部31大致沿第二方向Y延伸,第二延伸部32大致沿第一方向X延伸。
即,第一虚拟电极3整体大致呈“Z”字型,通过设置“Z”字型第一虚拟电极3,使得第一触控电极Tx和第二触控电极Rx的边界大致呈“Z”字型,可以在避免显示装置1000在显示过程中出现消影问题的同时,还可以避免触控电极的边界过于参差导致主动笔在触控过程中出现 抖动的情况,即,可以同时兼顾避免消影问题的效果和提高主动笔的线性度的效果。
在一些实施例中,多个延伸部3’的长度大致相等。例如,第一延伸部31在第二方向Y上的尺寸,和第二延伸部32在第一方向X上的尺寸大致相等,从而使得第一虚拟电极3呈规则图形,使得与第一虚拟电极3相适配的触控电极的形状大致相同,且还可以降低触控结构10的制备难度。
在一些实施例中,第一虚拟电极3呈条形,沿第一虚拟电极3的长度延伸方向,第一虚拟电极在不同位置处的宽度大致相等。例如,第一延伸部31在第一方向X上的尺寸,和第二延伸部32在第二方向Y上的尺寸大致相等,从而进一步使得第一虚拟电极3呈规则图形,使得与第一虚拟电极3相适配的触控电极的形状大致相同,且还可以降低触控结构10的制备难度。
在一些实施例中,如图9和图12所示,第一触控电极Tx周围设有四个第一虚拟电极3,该四个第一虚拟电极3相对于第一触控电极Tx的中心呈中心对称设置。第二触控电极Rx周围设有四个第一虚拟电极3,该四个第一虚拟电极3相对于第二触控电极Rx的中心呈中心对称设置。
根据前述实施例,可以使得第一触控电极Tx和第二触控电极Rx的形状和面积大致相同,从而使得触控结构10不同位置处的噪声信号大致相同,则主动笔在触控过程中在触控结构10不同位置处的信噪比大致相同,可以提高主动笔的触控性能,例如,使得主动笔的悬浮高度较为均一。
示例性地,每个触控电极的周围均设有四个第一虚拟电极3。
在一些实施例中,第一触控电极Tx和第二触控电极Rx均包括主体部C3、两个第一凸起部C1以及两个第二凸起部C2。
如图12所示,主体部C3呈矩形,两个第一凸起部C1沿第一方向X分设于主体部C3的两侧,两个第二凸起部C2沿第二方向Y分设于主体部C3的两侧。两个第一凸起部C1和两个第二凸起部C2分别与主体部C3连接。
示例性地,前述主体部C3、两个第一凸起部C1以及两个第二凸起部C2的边界均为平滑的直线。
示例性地,两个第一凸起部C1的尺寸和形状大致相同。
示例性地,两个第二凸起部C2的尺寸和形状大致相同。
示例性地,第一凸起部C1和第二凸起部C2的尺寸和形状大致相同。
通过前述实施例,使得第一触控电极Tx和第二触控电极Rx均大致呈“十”字型,可以保证第一触控电极Tx和第二触控电极Rx的边界的折角较少,从而一方面保证主动笔在该显示装置1000上进行触控时的线性度,另一方面避免边界由于长距离直线断线导致的消影问题。
在一些实施例中,如图9所示,显示装置1000还包括第二虚拟电极4。示例性地,显示装置1000的触控结构10包括该第二虚拟电极4。
该第二虚拟电极4设于相邻且分属于不同的第一触控通道1的两个第一触控电极Tx之间,并设于相邻且分属于不同的第二触控通道2的两个第二触控电极Rx之间。第二虚拟电极4与第一触控电极Tx和第二触控电极Rx相互绝缘。即,第二虚拟电极4被配置为,与第一虚拟电极3一起围绕触控电极,从而将第一触控电极Tx和第二触控电极Rx间隔开来。
示例性地,第二虚拟电极4可以与第一虚拟电极3连接。
示例性地,第二虚拟电极4呈金属网格状。
示例性地,如图9所示,第二虚拟电极4呈矩形。
在上述将触控结构10划分为四个触控屏幕的实施例,以及设置第一虚拟电极3和第二虚拟电极4的实施例的基础上,本公开还提供了一种可以提升主动笔的触控精确度的显示装置1000。
在一些实施例中,如图13所示,至少一个第一触控通道1包括多个第一子通道1A,多个第一子通道1A沿第二方向Y排列,每个第一子通道1A沿第一方向X延伸,且第一子通道1A包括电连接的多个第一触控电极Tx。例如,参阅图13,一个第一触控通道1包括两个第一子通道1A。例如,参阅图14,一个第一触控通道1包括四个第一子通道1A。
如图13所示,至少一个第二触控通道2包括多个第二子通道2A,多个第二子通道2A沿第一方向X排列,每个第二子通道2A沿第二方向Y延伸,且第二子通道2A包括电连接的多个第二触控电极Tx。例如,参阅图13,一个第二触控通道2包括两个第二子通道2A。例如,参阅图14,一个第二触控通道2包括四个第二子通道2A。
在前述实施方式的基础上,同一第一触控通道1包括的多个第一子通道1A电连接。同一第二触控通道2包括的多个第二子通道2A电连接。
示例性地,参阅图14,同一第一触控通道1中,分属于不同且相邻的两个第一子通道1A中的两个第一触控电极Tx之间电连接,从而实现同一第一 触控通道1中的多个第一子通道1A电连接的目的。
示例性地,同一第一触控通道1中,相邻两个第一子通道1A,可以与同一条触控线M电连接,从而实现同一第一触控通道1中的多个第一子通道1A电连接的目的。
示例性地,参阅图14,同一第二触控通道2中,分属于不同且相邻的两个第二子通道2A中的两个第二触控电极Rx之间电连接,从而实现同一第二触控通道2中的多个第二子通道2A电连接的目的。
示例性地,同一第二触控通道2中,相邻两个第二子通道2A,可以与同一条触控线M电连接,从而实现同一第二触控通道2中的多个第二子通道2A电连接的目的。
参阅图14,在本公开实施例提供的显示装置1000中,第一触控通道1位于沿第一方向X延伸的第一矩形区域,第二触控通道2位于沿第二方向Y延伸的第二矩形区域。
需要说明的是,前述“第一矩形区域”为第一触控通道1中第一触控电极Tx所在的区域,具体的,第一矩形区域为,能够囊括同一个第一触控通道1中全部第一触控电极Tx的面积最小的矩形区域。前述“第二矩形区域”为第二触控通道2中第二触控电极Rx所在的区域,具体的,第二矩形区域为,能够囊括同一个第二触控通道2中全部第二触控电极Rx的面积最小的矩形区域。
参阅图14,第一矩形区域和第二矩形区域相交叉的矩形区域为触控单元区域J。即,触控单元区域J为第一触控通道1和第二触控通道2的交叉区域。
参阅图14,触控单元区域J中,第一子通道1A和第二子通道2A的交叉位置可以为一个触控点M1。
在相关技术中,如图7所示,显示装置1000’的每个触控通道(第一触控通道1’或第二触控通道2’)中均仅设置一个子通道(第一子通道1A’或第二子通道2A’)。参阅图7,一个第一触控通道1’和一个第二触控通道2’相交叉的位置为一个触控点M1’,一个触控单元区域J’内仅有一个交叉位置,即只有一个触控点M1’,当手指触摸该触控单元区域J’时,交叉位置处的触控电极会发生互容值的变化,从而检测到手指的触摸位置,实现触控结构10’的触控功能。
在相关技术中,触控结构10’中触控单元区域J’的面积大小与手指的大小相适配,例如,一个触控单元区域J’的面积大致为4×4mm2,与手指进行触控时,手指与屏幕的接触面积大致相同,从而使得手指出口明时的精确度较高。
然而,经本公开发明人研究发现,主动笔的笔头尺寸较小,例如,主动笔 的笔头尺寸大致为手指的四分之一甚至更小(例如主动笔的笔头尺寸为1mm),当主动笔应用于相关技术中的显示装置1000’中时,触控单元区域J’的面积远远大于主动笔笔头的尺寸,主动笔的准确度会急剧下降,不利于主动笔的应用。
本公开实施例提供的触控结构10中,通过在至少一个触控通道(包括第一触控通道1和第二触控通道2)内设置相邻的多个子触控通道(包括第一子通道1A和第二子通道2A),并设置同一触控通道中的多个子触控通道之间电连接,从而使得触控单元区域J内包括多个第一子通道1A和多个第二子通道2A之间的多个交叉位置,即,使得触控单元区域J内包括多个触控点M1,从而可以在不改变触控结构10中触控单元区域J的面积,从而保障手指触控与显示装置1000的适配度的同时,在触控单元区域J内划分多个与主动笔的笔头尺寸相适配的触控点M1,极大地提升了主动笔的准确度,兼顾了主动笔在显示装置1000中的触控功能。
在一些实施例中,如图14、图15和图17所示,同一第一触控通道1中,至少一对沿第二方向Y相邻的第一触控电极Tx电连接。
需要说明的是,前述“至少一对”为,在同一第一触控通道1中分属于不同的第一子通道1A,且在第二方向Y上相邻设置的两个第一触控电极Tx。
示例性地,参阅图14、图15和图17,同一第一触控通道1中,分属于不同的且相邻的两个第一子通道1A中的两个第一触控电极Tx之间电连接,从而实现同一第一触控通道1中相邻两个第一子通道1A电连接的目的。
通过设置至少一对沿第二方向Y相邻的第一触控电极Tx之间电连接,使得位于同一第一触控通道1中的多个第一子通道1A之间电连接,从而使得位于同一第一触控通道1中的多个第一子通道1A传输相同的触控信号,避免增大或减少第一触控通道1的尺寸,从而避免触控单元区域J的面积发生变化,保障手指触控与显示装置1000的适配度。
在一些实施例中,如图14、图16和图17所示,同一第二触控通道2中,至少一对沿第一方向Y相邻的第二触控电极Rx电连接。
需要说明的是,前述“至少一对”为,在同一第二触控通道2中分属于不同的第二子通道2A,且在第一方向X上相邻设置的两个第二触控电极Rx。
示例性地,参阅图14,同一第二触控通道2中,分属于不同的且相邻的两个第二子通道2A中的两个第二触控电极Rx之间电连接,从而实现同一第二触控通道2中相邻两个第二子通道2A电连接的目的。
通过设置至少一对沿第一方向X相邻的第二触控电极Rx之间电连接, 使得位于同一第二触控通道2中的多个第二子通道2A之间电连接,从而使得位于同一第二触控通道2中的多个第二子通道2A传输相同的触控信号,避免增大或减少第二触控通道2的尺寸,从而避免触控单元区域J的面积发生变化,保障手指触控与显示装置1000的适配度。
在一些实施例中,如图14、图15和图17所示,第一触控通道1还包括第一连接部B1,同一第一触控通道1中,至少一对沿第二方向Y相邻的两个第一触控电极Tx之间通过第一连接部B1电连接。
示例性地,参阅图14、图15和图17,第一连接部B1大致沿第二方向Y延伸。
示例性地,第一触控电极Tx可以与第一连接部B1一体设置。
示例性地,同一第一触控通道1中,可以包括至少一个第一连接部B1。
通过设置同一第一触控通道1中,至少一对沿第二方向Y相邻的两个第一触控电极Tx之间通过第一连接部B1电连接,使得位于同一第一触控通道1中的多个第一子通道1A之间实现电连接。
在一些实施例中,如图14、图16和图17所示,第二触控通道2还包括第二连接部B2,同一第二触控通道2中,至少一对沿第一方向X相邻的两个第二触控电极Rx之间通过第二连接部B2电连接。
示例性地,参阅图14、图16和图17,第二连接部B2大致沿第一方向X延伸。
示例性地,第二触控电极Rx可以与第二连接部B2一体设置。
示例性地,同一第二触控通道2中,可以包括至少一个第二连接部B2。
通过设置同一第二触控通道2中,至少一对沿第一方向X相邻的两个第二触控电极Rx之间通过第二连接部B2电连接,使得位于同一第二触控通道2中的多个第二子通道2A之间实现电连接。
在一些实施例中,如图18所示,显示装置1000包括层叠设置的第一导电层10A、绝缘层10B和第二导电层10C。
绝缘层10B位于第一导电层10A和第二导电层10C之间,绝缘层10B中设有过孔H。
第一触控电极Tx和第二触控电极Rx位于第一导电层10A。
在示例性实施例中,参阅图19,第一触控通道1包括第三连接部B3,沿第一方向X,任意相邻两个第一触控电极Tx之间通过第三连接部B3电连接。第二触控通道2还包括第四连接部B4,沿第二方向Y,任意相邻两个第二触控电极Rx之间通过第四连接部B4电连接。第三连接部B3与第四连接部B4 相交叉。
在第三连接部B3与第四连接部B4的交叉位置处,利用绝缘层10B将第三连接部B3与第四连接部B4隔开,从而在实现同一触控通道中的触控电极电连接的同时,避免在交叉位置处发生电导通,导致第一触控电极Tx和第二触控电极Rx上传输的触控信号发生串扰的问题。
示例性地,如图20所示,第三连接部B3位于第一导电层10A,第四连接部B4位于第二导电层10C。
其中,第三连接部B3与第一触控电极Tx一体设置。绝缘层10B中设有过孔H,第四连接部B4通过过孔H与第二触控电极Rx电连接。
示例性地,第三连接部B3还可以位于第二导电层10C,相应地第四连接部B4位于第一导电层10A。
其中,第四连接部B4与第二触控电极Rx一体设置。绝缘层10B中设有过孔H,第三连接部B3通过过孔H与第一触控电极Tx电连接。
示例性地,第三连接部B3与第四连接部B4均为金属网格结构。
对比图7和图14所示,触控结构10的一个触控单元区域J中,第三连接部B3和第四连接部B4所组成的连接结构的数量相较于相关技术中的连接结构的数量多,即,金属网格线GL较多,可以有效地降低触控结构10的电阻。
在示例性实施例中,参阅图17,第一触控通道1包括多个第一连接部B1,同一第一触控通道1中,沿第二方向Y相邻两个第一触控电极Tx之间通过第一连接部B1电连接。第二触控通道2还包括第二连接部B2,同一第二触控通道2中,沿第一方向X相邻两个第二触控电极Rx之间通过第二连接部B2电连接。
参阅图17,至少一个第一连接部B1和至少一个第二连接部B2相交叉。
在第一连接部B1与第二连接部B2的交叉位置处,利用绝缘层10B将第一连接部B1与第二连接部B2隔开,从而在实现同一触控通道中的触控电极电连接的同时,避免在交叉位置处发生电导通,导致第一触控电极Tx和第二触控电极Rx上传输的触控信号发生串扰的问题。
示例性地,如图18所示,第一连接部B1位于第一导电层10A,第二连接部B2位于第二导电层10C。
其中,第一连接部B1与第一触控电极Tx一体设置。绝缘层10B中设有过孔H,第二连接部B2通过过孔H与第二触控电极Rx电连接。
示例性地,第一连接部B1也可以位于第二导电层10C,相应地第二连接 部B2位于第一导电层10A。
其中,第二连接部B2与第二触控电极Rx一体设置。绝缘层10B中设有过孔H,第一连接部B1通过过孔H与第一触控电极Tx电连接。
示例性地,第一连接部B1与第二连接部B2均为金属网格结构。
示例性地,触控结构10的触控单元区域J中,第一连接部B1和第二连接部B2所组成的连接结构的数量相较于相关技术中的来连接结构的数量多,即,金属网格线GL较多,可以有效地降低触控结构10的电阻。
在另一些实施例中,如图21所示,第一触控通道1位于沿第一方向X延伸的第一矩形区域,第二触控通道2位于沿第二方向Y延伸的第二矩形区域,第一矩形区域和第二矩形区域相交叉的矩形区域为触控单元区域J。
参阅图22,触控单元区域J内设有多个第一电极组O1和多个第二电极组O2,每个第一电极组O1包括沿第一方向X依次电连接的多个第一触控电极Tx,每个第二电极组O2包括沿第二方向Y依次电连接的多个第二触控电极Rx。多个第一电极组O1分属于同一第一触控通道1的多个第一子通道1A,多个第二电极组O2分属于同一第二触控通道2的多个第二子通道2A。
即,该多个第一电极组O1为多个第一子通道1A中位于该触控单元区域J的部分,该多个第二电极组O2为多个第二子通道2A中位于该触控单元区域J的部分。
参阅图22,多个第一电极组O1中位于触控单元区域J同侧边缘的多个第一触控电极Tx为多个第一设定电极O1’,多个第一设定电极O1’沿第二方向Y串联。多个第二电极组O2中位于触控单元区域J同侧边缘的多个第二触控电极Rx为多个第二设定电极O2’,多个第二设定电极O2’沿第一方向X串联。
示例性地,可以通过去除触控单元区域J的边缘处的第二虚拟电极4实现多个第一设定电极O1’沿第二方向Y串联,以及实现多个第二设定电极O2’沿第一方向X串联。
需要说明的是,该触控单元区域J内仅包括前述第一设定电极O1’的一半,以及仅包括前述第二设定电极O2’的一半。
通过将触控单元区域J边缘处的触控电极电连接,在实现同一触控通道中的多个子通道电连接的同时,可以按照触控单元区域J的划分对多个子通道进行电连接,避免显示装置1000不同位置处的自容值变化较大,例如,避免随意去除第二虚拟电极4导致的不同触控单元区域J内的自容值不同的问题。
在一些实施例中,如图22所示,在显示装置1000还包括第一连接部B1和第二连接部B2的情况下,多个第一设定电极O1’之间通过第一连接部B1串联,多个第二设定电极O2’之间通过第二连接部B2串联。
其中,第一连接部B1和第二连接部B2设于同一导电层。例如,第一连接部B1和第二连接部B2均设于第一导电层10A。
示例性地,参阅图22,第一连接部B1可以与第一设定电极O1’一体成型,第二连接部B2可以与第二设定电极O2’一体成型。
本公开发明人对本公开一些实施例提供的显示装置1000进行了触控效果的分析。
实验组:参阅图21,本公开实施例提供的显示装置1000中包括第一虚拟电极3,且一个触控通道(包括第一触控通道1和第二触控通道2)包括多个子通道(包括第一子通道1A和第二子通道2A)。
对照组:参阅图7,在相关技术中,一个触控通道包括一个子通道。
分析结果如下:
表1
其中,“初始互容值”为,手指没有触摸屏幕时,触控结构10的互容值。“触摸互容值”为,手指触碰屏幕进行触控时,触控结构10的互容值。“互容值的变化量”为初始互容值与触摸互容值的差值。“互容值变化量的占比”为互容值的变化量相对于初始互容值的占比。
互容值变化量的占比越高,则说明手指触碰屏幕时触控结构10的感应能力越强,即,说明触控结构10的触控灵敏度越高,触控效果越好。
通过表1可知,本公开实施例提供的显示装置1000中,在互容值的变化 量不变的情况下,降低了初始互容值,从而提高了互容值变化量的占比,也即提升了触控灵敏度。同时,本公开实施例还降低了触控电极的自容值(包括触控电极与阴极层产生的寄生电容),有效地提高了主动笔在触控过程中的信噪比,优化主动笔的触控效果。同时,本公开实施例还大幅降低了触控电极的电阻,可以有效地降低主动笔发出的信号的衰减,同时降低触控结构10的负载,进一步优化触控效果。
综上所述,本公开实施例提供的显示装置1000,降低了初始互容值、触控电极的自容值以及电阻值,从而大幅提升了主动笔在触控过程中的灵敏度、信噪比等性能,优化触控效果。
参阅图23,本公开发明人对实验组中触控单元区域J内的触控点(①~⑨)进行触控效果的分析,分析过程中,以相关技术中的显示装置1000’对应的触控点(①~⑨)作为对照组。
需要说明的是,实验组中的触控单元区域J和对照组中的触控单元区域J’的尺寸大致相同。
分析结果如下:
表2
其中,“F1”为,主动笔在显示装置1000中的触控点进行触控时,主动笔与第一触控电极Tx之间的耦合电容,“F2”为,主动笔在显示装置1000中的触控点进行触控时,主动笔与第二触控电极Rx之间的耦合电容。
参阅表2,在相关技术中(即对照组),在不同位置处,例如在触控点①和触控点②处,主动笔与触控电极之间的耦合电容相差较大,此外,在相同位置处,第一触控电极Tx与主动笔之间的耦合电容,与第二触控电极Rx与主动笔之间的耦合电容相差也较大,导致主动笔在触控过程中的线性度较差,主动笔在不同触控点处发出的信号的衰减量也不同,导致主动笔不同位置处的悬浮高度不同,影响触控体验。
通过表2可知,本公开实施例提供的显示装置1000中,例如在触控点①和触控点②处,主动笔与触控电极之间的耦合电容大致相同,例如在触控点②和触控点③处,主动笔与触控电极之间的耦合电容相差值也减少,在相同位置处,例如在触控点①处,第一触控电极Tx与主动笔之间的耦合电容,与第二触控电极Rx与主动笔之间的耦合电容大致相同。
综上所述,本公开实施例提供的显示装置1000,可以有效提升主动笔在触控过程中的线性度,还可以使主动笔在不同位置处的信号量大致均一,悬浮高度大致均一,提升了主动笔的触控体验。
本公开实施例还提供了一种触控结构10,如图24所示,该触控结构10包括多个第一触控通道1、多个第二触控通道2和第一虚拟电极3。
多个第一触控通道1中,每个第一触控通道1沿第一方向X延伸,每个第一触控通道1包括沿第一方向X依次排列的多个第一触控电极Tx,相邻两个第一触控电极Tx之间电连接。
多个第二触控通道2中,每个第二触控通道2沿第二方向Y延伸,每个第二触控通道2包括沿第二方向Y依次排列的多个第二触控电极Rx,相邻两个第二触控电极Rx之间电连接。
第一触控通道1和第二触控通道2相互交叉且相互绝缘。从而使得第一触控电极Tx和第二触控电极Rx相互绝缘。
第一方向X和第二方向Y相互交叉。例如,第一方向X与第二方向Y可以相互垂直。
示例性地,触控结构10包括多条金属线GL,多条金属线GL相互交叉形成多个金属网格G。
参阅图24,该第一虚拟电极3设于相邻的第一触控电极Tx和第二触控电极Rx之间,且与该第一触控电极Tx和该第二触控电极Rx相互绝缘。
示例性地,第一触控电极Tx、第二触控电极Rx以及第一虚拟电极3均为金属网格结构。
参阅图24,第一虚拟电极3的靠近第一触控电极Tx的边界和靠近第二 触控电极Rx的边界为折线状,且第一虚拟电极3和第一触控电极Tx的相互靠近的边界形状相适配,第一虚拟电极3和第二触控电极Rx的相互靠近的边界形状相适配。
即,第一触控电极Tx和第二触控电极Rx之间的间隙的形状与第一虚拟电极3的形状相适配,例如,第一虚拟电极3大致填充于第一触控电极Tx和第二触控电极Rx之间的间隙内。
通过设置第一虚拟电极3,并设置第一虚拟电极3的边界与靠近该第一虚拟电极3的触控电极(包括第一触控电极Tx和第二触控电极Rx)的边界相适配,使得第一虚拟电极3大致填充于第一触控电极Tx和第二触控电极Rx之间的间隙内,从而在触控结构10整屏尺寸不变的情况下,减小第一触控电极Tx和第二触控电极Rx的面积,从而可以减小触控结构10整体的初始互容值(手指未进行触摸时触控结构10的互容值),从而可以提高触控结构10的触控灵敏度,优化触控效果。还可以减少触控结构10的产热量,从而避免显示装置1000由于温度变化受到较大的损耗,例如,避免显示装置1000中的某些材料,例如偏光片500等结构在温度变化较大的情况下出现的鬼点问题。此外,减少触控电极的面积后,可以减少触控电极与阴极层304之间的寄生电容,从而提高主动笔的信噪比,进一步优化主动笔的触控效果。
在一些实施例中,如图24所示,第一虚拟电极3包括依次相连的多个延伸部3’,每个延伸部3’呈条形,任意相邻两个延伸部3’的延伸方向相交叉。
示例性地,如图24所示,第一虚拟电极3呈“Z”字型。
通过设置条形的多个延伸部3’,并设置任意相邻两个延伸部3’的延伸方向相交叉,使得第一虚拟电极3的整体形状呈折线形,可以使第一虚拟电极3与触控电极之间的金属网格线GL断开后形成的边界较为参差,避免由于长距离直线断线导致第一虚拟电极3与触控电极之间出现明显的线痕的问题,即避免显示装置1000在显示过程中出现消影问题,提高显示装置1000的显示效果。
在一些实施例中,如图24所示,第一触控电极Tx周围设有四个第一虚拟电极3,该四个第一虚拟电极3相对于第一触控电极Tx的中心呈中心对称设置。第二触控电极Rx周围设有四个第一虚拟电极3,该四个第一虚拟电极3相对于第二触控电极Rx的中心呈中心对称设置。
根据前述实施例,可以使得第一触控电极Tx和第二触控电极Rx的形状和面积大致相同,从而使得触控结构10不同位置处的噪声信号大致 相同,则主动笔在触控过程中在触控结构10不同位置处的信噪比大致相同,可以提高主动笔的触控性能,例如,使得主动笔的悬浮高度较为均一。
在一些实施例中,如图25所示,至少一个第一触控通道1包括多个第一子通道1A,多个第一子通道1A沿第二方向Y排列,每个第一子通道1A沿第一方向X延伸,且第一子通道1A包括电连接的多个第一触控电极Tx。例如,参阅图25,一个第一触控通道1包括四个第一子通道1A。
如图25所示,至少一个第二触控通道2包括多个第二子通道2A,多个第二子通道2A沿第一方向X排列,每个第二子通道2A沿第二方向Y延伸,且第二子通道2A包括电连接的多个第二触控电极Tx。例如,参阅图25,一个第二触控通道2包括四个第二子通道2A。
在前述实施方式的基础上,同一第一触控通道1包括的多个第一子通道1A电连接。同一第二触控通道2包括的多个第二子通道2A电连接。
通过在至少一个触控通道(包括第一触控通道1和第二触控通道2)内设置相邻的多个子触控通道(包括第一子通道1A和第二子通道2A),并设置同一触控通道中的多个子触控通道之间电连接,从而可以在不改变触控结构10中触控单元区域J的面积,从而保障手指触控与显示装置1000的适配度的同时,在触控单元区域J内划分多个与主动笔的笔头尺寸相适配的触控点,极大地提升了主动笔的准确度,兼顾了主动笔在显示装置1000中的触控功能。同时,还有效提升了主动笔在触控过程中的线性度,同时使主动笔在不同位置处的信号量大致均一,悬浮高度大致均一,提升了主动笔的触控体验。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种显示装置,包括触控区,及围绕所述触控区的扇出区、第一周边区、第二周边区和第三周边区,所述第一周边区和所述第二周边区沿第一方向分别位于所述触控区的两侧,所述扇出区和所述第三周边区沿第二方向分别位于所述触控区的两侧;所述第一方向和所述第二方向相交叉;
    所述触控区包括第一子区、第二子区、第三子区和第四子区,所述第一子区和所述第二子区沿所述第一方向排列,所述第一子区和所述第三子区沿所述第二方向排列,所述第三子区和所述第四子区沿所述第一方向排列;
    所述显示装置包括:
    设于所述触控区的多个第一触控通道和多个第二触控通道,每个第一触控通道包括沿所述第一方向排列且串接的多个第一触控电极,每个第二触控通道包括沿所述第二方向排列且串接的多个第二触控电极;每个子区内均设有至少一个第一触控通道和至少一个第二触控通道,且所述至少一个第一触控通道和所述至少一个第二触控通道交叉设置且相互绝缘;位于不同子区的所述第一触控通道相互绝缘,位于不同子区的所述第二触控通道相互绝缘;
    多条第一触控走线,与所述多个第一触控通道电连接;所述第一子区和所述第三子区内的第一触控通道连接的第一触控走线,由所述第一周边区延伸至所述扇出区;所述第二子区和所述第四子区内的第一触控通道连接的第一触控走线,由所述第二周边区延伸至所述扇出区;
    多条第二触控走线,与所述多个第二触控通道电连接;所述第一子区内的第二触控通道连接的第二触控走线,从所述第三周边区引出,并经所述第一周边区延伸至所述扇出区;所述第二子区内的第二触控通道连接的第二触控走线,从所述第三周边区引出,并经所述第二周边区延伸至所述扇出区;所述第三子区和所述第四子区内的第二触控通道电连接的第二触控走线,直接延伸至所述扇出区;
    第一触控芯片和第二触控芯片,任意两个子区内的,所述第一触控通道连接的所述第一触控走线及所述第二触控通道连接的所述第二触控走线,与所述第一触控芯片电连接;除所述任意两个子区外的其余两个子区内的,所述第一触控通道连接的所述第一触控走线及所述第二触控通道连接的所述第二触控走线,与所述第二触控芯片电连接。
  2. 根据权利要求1所述的显示装置,其中,位于不同子区内的所述第一触控通道的沿所述第一方向的尺寸大致相等;位于不同子区内的所述第二触控通道的沿所述第二方向的尺寸大致相等。
  3. 根据权利要求1所述的显示装置,其中,位于不同子区内的所述第一 触控通道包括的所述第一触控电极的数量相等;位于不同子区内的所述第二触控通道包括的所述第二触控电极的数量相等。
  4. 根据权利要求1~3中任一项所述的显示装置,其中,分别位于所述第一子区和所述第二子区内,且相邻设置的两个所述第一触控通道的中心,大致处于沿所述第一方向延伸的同一直线上,分别位于所述第三子区和所述第四子区内,且相邻设置的两个所述第一触控通道的中心,大致处于沿所述第一方向延伸的同一直线上;
    分别位于所述第一子区和所述第三子区内,且相邻设置的两个所述第二触控通道的中心,大致处于沿所述第二方向延伸的同一直线上,分别位于所述第二子区和所述第四子区内,且相邻设置的两个所述第二触控通道的中心,大致处于沿所述第二方向延伸的同一直线上。
  5. 根据权利要求4所述的显示装置,其中,分属于不同子区内,且沿所述第一方向相邻设置的两个第一触控通道之间,以及分属于不同子区内,且沿所述第二方向相邻设置的两个第二触控通道之间均具有间隙,所述间隙呈折线状延伸。
  6. 根据权利要求1~5中任一项所述的显示装置,其中,所述第一子区和所述第二子区内的所述第一触控通道连接的所述第一触控走线及所述第二触控通道连接的所述第二触控走线,与所述第一触控芯片电连接;
    所述第三子区和所述第四子区内的所述第一触控通道连接的所述第一触控走线及所述第二触控通道连接的所述第二触控走线,与所述第二触控芯片电连接。
  7. 根据权利要求6所述的显示装置,其中,所述第一触控芯片和所述第二触控芯片均设于所述扇出区远离所述第三周边区的一侧;在所述第二方向上,相对于所述第一触控芯片,所述第二触控芯片更靠近所述扇出区。
  8. 根据权利要求1~7中任一项所述的显示装置,其中,相对于所述第二触控走线的位于所述第一周边区的部分,所述第一触控走线的位于所述第一周边区的部分更靠近所述触控区设置;相对于所述第二触控走线的位于所述第二周边区的部分,所述第一触控走线的位于所述第二周边区的部分更靠近所述触控区设置。
  9. 根据权利要求1~8中任一项所述的显示装置,还包括:
    第一虚拟电极,设于相邻的第一触控电极和第二触控电极之间,且与所述第一触控电极和所述第二触控电极相互绝缘;所述第一虚拟电极的靠近所述第一触控电极的边界和靠近所述第二触控电极的边界为折线状,且所述第一 虚拟电极和所述第一触控电极的相互靠近的边界形状相适配,所述第一虚拟电极和所述第二触控电极的相互靠近的边界形状相适配。
  10. 根据权利要求9所述的显示装置,其中,所述第一虚拟电极为中心对称图形。
  11. 根据权利要求10所述的显示装置,其中,与所述第一虚拟电极相邻的第一触控电极的中心,和与所述第一虚拟电极相邻的第二触控电极的中心的连线的中点,与所述第一虚拟电极的中心重合。
  12. 根据权利要求9~11中任一项所述的显示装置,其中,所述第一虚拟电极包括依次相连的多个延伸部,每个延伸部呈条形;任意相邻两个延伸部的延伸方向相交叉。
  13. 根据权利要求12所述的显示装置,其中,所述第一虚拟电极包括第一延伸部,及分设于所述第一延伸部两端且与所述第一延伸部相连的两个第二延伸部,所述第一延伸部大致沿所述第二方向延伸,所述第二延伸部大致沿所述第一方向延伸。
  14. 根据权利要求12或13所述的显示装置,其中,所述多个延伸部的长度大致相等。
  15. 根据权利要求9~14中任一项所述的显示装置,其中,所述第一虚拟电极呈条形,沿所述第一虚拟电极的长度延伸方向,所述第一虚拟电极在不同位置处的宽度大致相等。
  16. 根据权利要求9~15中任一项所述的显示装置,其中,
    所述第一触控电极周围设有四个所述第一虚拟电极,四个所述第一虚拟电极相对于所述第一触控电极的中心呈中心对称设置;
    所述第二触控电极周围设有四个所述第一虚拟电极,四个所述第一虚拟电极相对于所述第二触控电极的中心呈中心对称设置。
  17. 根据权利要求9~16中任一项所述的显示装置,其中,所述第一触控电极和所述第二触控电极均包括主体部、两个第一凸起部以及两个第二凸起部,所述主体部呈矩形,所述两个第一凸起部沿所述第一方向分设于所述主体部的两侧,所述两个第二凸起部沿所述第二方向分设于所述主体部的两侧;所述两个第一凸起部和所述两个第二凸起部分别与所述主体部连接。
  18. 根据权利要求9~17中任一项所述的显示装置,还包括:
    第二虚拟电极,设于相邻且分属于不同的第一触控通道的两个第一触控电极之间,并设于相邻且分属于不同的第二触控通道的两个第二触 控电极之间;第二虚拟电极与所述第一触控电极和所述第二触控电极相互绝缘。
  19. 根据权利要求18所述的显示装置,其中,所述第二虚拟电极呈矩形。
  20. 根据权利要求1~19中任一项所述的显示装置,其中,至少一个第一触控通道包括多个第一子通道,所述多个第一子通道沿所述第二方向排列,每个第一子通道沿所述第一方向延伸,且所述第一子通道包括电连接的多个第一触控电极;同一所述第一触控通道包括的多个第一子通道电连接;和/或,
    至少一个第二触控通道包括多个第二子通道,所述多个第二子通道沿所述第一方向排列,每个第二子通道沿所述第二方向延伸,且所述第二子通道包括电连接的多个第二触控电极;同一所述第二触控通道包括的多个第二子通道电连接。
  21. 根据权利要求20所述的显示装置,其中,同一所述第一触控通道中,至少一对沿所述第二方向相邻的两个第一触控电极电连接;和/或,
    同一所述第二触控通道中,至少一对沿所述第一方向相邻的两个第二触控电极电连接。
  22. 根据权利要求20或21所述的显示装置,其中,
    所述第一触控通道还包括第一连接部,同一所述第一触控通道中,至少一对沿所述第二方向相邻的第一触控电极之间通过所述第一连接部电连接;和/或,
    所述第二触控通道还包括第二连接部,同一所述第二触控通道中,至少一对沿所述第一方向相邻的第二触控电极之间通过所述第二连接部电连接。
  23. 根据权利要求22所述的显示装置,包括层叠设置的第一导电层、绝缘层和第二导电层,所述绝缘层位于所述第一导电层和所述第二导电层之间,所述绝缘层中设有过孔;所述第一触控电极和所述第二触控电极位于所述第一导电层;
    所述显示装置包括至少一对相交叉的第一连接部和第二连接部,
    其中,所述第一连接部位于所述第一导电层,所述第二连接部位于所述第二导电层,所述第二连接部通过所述过孔与相应的第二触控电极电连接;或者,
    所述第二连接部位于所述第一导电层,所述第一连接部位于所述第二导电层,所述第一连接部通过所述过孔与相应的第一触控电极电连接。
  24. 根据权利要求20~23中任一项所述的显示装置,其中,所述第一触控通道位于沿所述第一方向延伸的第一矩形区域,所述第二触控通道位于沿所 述第二方向延伸的第二矩形区域,所述第一矩形区域和所述第二矩形区域相交叉的矩形区域为触控单元区域;
    所述触控单元区域内设有多个第一电极组和多个第二电极组,每个第一电极组包括沿所述第一方向依次电连接的多个第一触控电极,每个第二电极组包括沿所述第二方向依次电连接的多个第二触控电极;所述多个第一电极组分属于同一第一触控通道的多个第一子通道,所述多个第二电极组分属于同一第二触控通道的多个第二子通道;
    所述多个第一电极组中位于所述触控单元区域同侧边缘的多个第一触控电极为多个第一设定电极,所述多个第一设定电极沿所述第二方向串联;
    所述多个第二电极组中位于所述触控单元区域同侧边缘的多个第二触控电极为多个第二设定电极,所述多个第二设定电极沿所述第一方向串联。
  25. 根据权利要求24所述的显示装置,其中,在所述显示装置还包括第一连接部和第二连接部的情况下,所述多个第一设定电极之间通过所述第一连接部串联,所述多个第二设定电极之间通过所述第二连接部串联;所述第一连接部和所述第二连接部设于同一导电层。
  26. 一种触控结构,包括:
    多个第一触控通道,每个第一触控通道沿第一方向延伸,每个第一触控通道包括沿所述第一方向依次排列的多个第一触控电极,相邻两个第一触控电极之间电连接;
    多个第二触控通道,每个第二触控通道沿第二方向延伸,每个第二触控通道包括沿所述第二方向依次排列的多个第二触控电极,相邻两个第二触控电极之间电连接;所述第一触控通道和所述第二触控通道相互交叉且相互绝缘;所述第一方向和所述第二方向相互交叉;
    第一虚拟电极,设于相邻的第一触控电极和第二触控电极之间,且与所述第一触控电极和所述第二触控电极相互绝缘;所述第一虚拟电极的靠近所述第一触控电极的边界和靠近所述第二触控电极的边界为折线状,且所述第一虚拟电极和所述第一触控电极的相互靠近的边界形状相适配,所述第一虚拟电极和所述第二触控电极的相互靠近的边界形状相适配。
  27. 根据权利要求26所述的触控结构,其中,所述第一虚拟电极包括依次相连的多个延伸部,每个延伸部呈条形;任意相邻两个延伸部的延伸方向相交叉。
  28. 根据权利要求26或27所述的触控结构,其中,所述第一触控 电极周围设有四个所述第一虚拟电极,四个所述第一虚拟电极相对于所述第一触控电极的中心呈中心对称设置;
    所述第二触控电极周围设有四个所述第一虚拟电极,四个所述第一虚拟电极相对于所述第二触控电极的中心呈中心对称设置。
  29. 根据权利要求26~28中任一项所述的触控结构,其中,
    至少一个第一触控通道包括多个第一子通道,所述多个第一子通道沿所述第二方向排列,每个第一子通道沿所述第一方向延伸,且所述第一子通道包括电连接的多个第一触控电极;同一所述第一触控通道包括的多个第一子通道电连接;和/或,
    至少一个第二触控通道包括多个第二子通道,所述多个第二子通道沿所述第一方向排列,每个第二子通道沿所述第二方向延伸,且所述第二子通道包括电连接的多个第二触控电极;同一所述第二触控通道包括的多个第二子通道电连接。
PCT/CN2023/111695 2022-08-10 2023-08-08 显示装置和触控结构 WO2024032593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210956632.XA CN115268698A (zh) 2022-08-10 2022-08-10 显示装置和触控结构
CN202210956632.X 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024032593A1 true WO2024032593A1 (zh) 2024-02-15

Family

ID=83751639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111695 WO2024032593A1 (zh) 2022-08-10 2023-08-08 显示装置和触控结构

Country Status (2)

Country Link
CN (1) CN115268698A (zh)
WO (1) WO2024032593A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115268698A (zh) * 2022-08-10 2022-11-01 京东方科技集团股份有限公司 显示装置和触控结构
CN118113177A (zh) * 2022-11-29 2024-05-31 华为技术有限公司 触控膜、触控屏和电子设备
WO2024130659A1 (zh) * 2022-12-22 2024-06-27 京东方科技集团股份有限公司 一种触控基板、触控显示面板及触控显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932733A (zh) * 2014-03-18 2015-09-23 群创光电股份有限公司 触控显示装置
KR20170055862A (ko) * 2015-11-12 2017-05-22 엘지디스플레이 주식회사 터치 방식 표시장치
CN110178106A (zh) * 2017-11-09 2019-08-27 京东方科技集团股份有限公司 触摸基板和触控显示装置
CN110471568A (zh) * 2019-08-15 2019-11-19 京东方科技集团股份有限公司 触控结构、触控显示装置及其制备方法
CN113485576A (zh) * 2021-06-30 2021-10-08 合肥维信诺科技有限公司 触控面板和触控显示装置
CN216388033U (zh) * 2021-06-30 2022-04-26 京东方科技集团股份有限公司 触控层和显示装置
CN115268698A (zh) * 2022-08-10 2022-11-01 京东方科技集团股份有限公司 显示装置和触控结构
CN218273359U (zh) * 2022-08-10 2023-01-10 京东方科技集团股份有限公司 显示装置和触控结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932733A (zh) * 2014-03-18 2015-09-23 群创光电股份有限公司 触控显示装置
KR20170055862A (ko) * 2015-11-12 2017-05-22 엘지디스플레이 주식회사 터치 방식 표시장치
CN110178106A (zh) * 2017-11-09 2019-08-27 京东方科技集团股份有限公司 触摸基板和触控显示装置
CN110471568A (zh) * 2019-08-15 2019-11-19 京东方科技集团股份有限公司 触控结构、触控显示装置及其制备方法
CN113485576A (zh) * 2021-06-30 2021-10-08 合肥维信诺科技有限公司 触控面板和触控显示装置
CN216388033U (zh) * 2021-06-30 2022-04-26 京东方科技集团股份有限公司 触控层和显示装置
CN115268698A (zh) * 2022-08-10 2022-11-01 京东方科技集团股份有限公司 显示装置和触控结构
CN218273359U (zh) * 2022-08-10 2023-01-10 京东方科技集团股份有限公司 显示装置和触控结构

Also Published As

Publication number Publication date
CN115268698A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN107342370B (zh) 显示面板及显示装置
WO2024032593A1 (zh) 显示装置和触控结构
CN109388283B (zh) 显示装置及制造该显示装置的方法
EP3350837B1 (en) Array substrate, related display panels, and related display apparatus
KR101891985B1 (ko) 액정표시장치
US8994669B2 (en) Display with in-cell touch sensor
US11216130B2 (en) Touch display panel and method for preparing the same
CN110377182A (zh) 有机发光显示装置
CN111638812B (zh) 触控面板及其制备方法、显示装置
CN102221754B (zh) 具有内嵌触控装置的显示器
US11842019B2 (en) Touch substrate and display panel
WO2021114472A1 (zh) 触控模组及触控显示面板
WO2024060974A1 (zh) 显示面板、显示装置以及显示装置的控制方法
CN105739797B (zh) 包括触摸屏面板的触摸感测系统
CN218273359U (zh) 显示装置和触控结构
CN218383922U (zh) 触控显示结构及显示装置
US11989602B2 (en) Display device and sensing system including the same
KR20200077987A (ko) 터치 스크린 패널 및 터치 스크린 일체형 표시 장치
CN116414247A (zh) 透明触摸显示装置
CN116414248A (zh) 透明触摸显示装置
CN201740946U (zh) 具有内嵌触控装置的显示器
CN113031809A (zh) 一种显示面板及显示装置
WO2023246378A1 (zh) 触控显示结构及显示装置
CN219068848U (zh) 显示面板和显示装置
WO2023273388A1 (zh) 触控基板、显示面板及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851814

Country of ref document: EP

Kind code of ref document: A1