WO2024032432A1 - 一种射频电源信号采集方法及装置 - Google Patents

一种射频电源信号采集方法及装置 Download PDF

Info

Publication number
WO2024032432A1
WO2024032432A1 PCT/CN2023/110657 CN2023110657W WO2024032432A1 WO 2024032432 A1 WO2024032432 A1 WO 2024032432A1 CN 2023110657 W CN2023110657 W CN 2023110657W WO 2024032432 A1 WO2024032432 A1 WO 2024032432A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
data
signal
preset
falling edge
Prior art date
Application number
PCT/CN2023/110657
Other languages
English (en)
French (fr)
Inventor
唐亚海
林桂浩
乐卫平
Original Assignee
深圳市恒运昌真空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210943878.3A external-priority patent/CN115015796B/zh
Priority claimed from CN202210943879.8A external-priority patent/CN115015618B/zh
Application filed by 深圳市恒运昌真空技术有限公司 filed Critical 深圳市恒运昌真空技术有限公司
Publication of WO2024032432A1 publication Critical patent/WO2024032432A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies

Definitions

  • the invention relates to the technical field of radio frequency power signal acquisition, and in particular to a radio frequency power signal acquisition method and device.
  • a typical data acquisition system will collect signals from the surrounding environment or various objects under test through various sensors. Generally speaking, these signals are generated randomly, so the data acquisition system must continuously sample to ensure that no important signals are missed.
  • the current acquisition board collects voltage and current signals through continuous sampling. In the existing technology, the acquisition board continuously collects voltage and current signals and outputs signals continuously, even in the power on and off and PULSE modes. , the signal is still continuously collected and output during the slope generation stage, resulting in inaccurate output data.
  • the technical problem to be solved by the present invention is to overcome the existing radio frequency power supply technology. Since the acquisition board continuously collects voltage and current signals and continuously outputs signals, even in the power on and off and PULSE modes, there is still no problem in the slope generation stage. Intermittent signal collection and output results in the problem of inaccurate output data, thereby providing a radio frequency power signal collection method and device.
  • disclosed embodiments of the present invention provide at least one radio frequency power signal acquisition method and device.
  • disclosed embodiments of the present invention provide a method for collecting radio frequency power signals, including include:
  • setting the data bits corresponding to the rising edge interval and the falling edge interval in the sampling array to 0, the low bit of the signal or the empty signal is: setting the sampling delay or the sampling data output to 0.
  • the data bits in the sampling array corresponding to the rising edge interval and the falling edge interval are set to 0, a low signal, or a null signal.
  • setting the data bits corresponding to the rising edge interval and the falling edge interval in the sampling array to 0, a low signal or a null signal in the sampling array includes: In the rising edge interval, when data is sampled, the data bit corresponding to the rising edge interval in the sampling array is set to 0, low signal or empty signal by delaying the sampling time, or, when the sampling data is output, the data bit in the sampling array is set to The data bits corresponding to the rising edge interval are set to 0, low signal or empty signal; in the falling edge interval, when data is sampled, the data bits corresponding to the falling edge interval in the sampling array are set to 0, low signal or empty signal, or, when the sampled data is output, the falling edge interval or the data bit corresponding to the falling edge interval in the sampling array is set to 0, low signal or empty signal.
  • setting the data bit corresponding to the rising edge interval in the sampling array to 0, low signal or empty signal by delaying the sampling time includes: starting from the starting point of the rising edge in the current pulse period, starting the first sampling Delay, set the data bit corresponding to the first sampling delay in the sampling array to 0, low signal or empty signal; set the data bit corresponding to the falling edge interval in the sampling array to 0.
  • Signal low or empty signal includes: from the current pulse period Starting from the starting point of the falling edge within, the second sampling delay is started, and the data bit corresponding to the second sampling delay in the sampling array is set to 0, low signal, or empty signal.
  • setting the data bit corresponding to the rising edge interval in the sampling array to 0, a low signal, or a null signal includes: while completing signal sampling of the rising edge end point in the current pulse cycle, determining the first An abnormal data, the first abnormal data is the data in the sampling array, starting from the data bit corresponding to the rising edge end point, counting forward within a first preset length, and setting the first abnormal data 0.
  • the signal is low or empty, and the first preset length is the array length corresponding to the rising edge interval;
  • Setting the data bit corresponding to the falling edge interval in the sampling array to 0, low signal, or empty signal includes: while completing signal sampling of the falling edge end point in the current pulse cycle, determining the second abnormal data,
  • the second abnormal data is the data within the second preset length in the sampling array, starting from the data bit corresponding to the falling edge end point and counting forward.
  • the second abnormal data is set to 0 and the signal is low. or an empty signal, and the second preset length is the array length corresponding to the falling edge interval.
  • the step of setting the data bit corresponding to the first sampling delay in the sampling array to 0 and the low signal or empty signal is: setting the data bit corresponding to the first preset sampling duration in the sampling array to 0, The signal is low or empty, and the delay ends; the data bit corresponding to the second sampling delay in the sampling array is set to 0, the signal is low or the empty signal is: setting the data bit corresponding to the second preset sampling duration in the sampling array The data bit is set to 0, signal low or empty signal, and the delay ends.
  • the step of setting the data bit corresponding to the first sampling delay in the sampling array to 0 and the low signal or empty signal is: setting the data bit corresponding to the first preset array length in the sampling array to 0, The signal is low or empty, and the delay ends; the second sample in the sample array is delayed The corresponding data bit is set to 0, the signal is low, or the null signal is: Set the data bit corresponding to the second preset array length in the sampling array to 0, the signal is low, or the null signal, and the delay ends.
  • determining the rising edge interval and falling edge interval within the current pulse cycle includes:
  • the rising edge interval and falling edge interval in the current pulse cycle are determined by the reference threshold, the rising edge duration and the falling edge duration, and the reference threshold is used to mark the low level of the signal; or,
  • the rising edge interval and falling edge interval in the current pulse cycle are determined by the reference threshold and the top threshold, and the top threshold is used to mark the high level of the signal; or,
  • the rising edge interval and falling edge interval in the current pulse period are determined by the power change of the sampling point.
  • the first preset sampling duration is equal to the rising edge duration
  • the second preset sampling duration is equal to the falling edge duration
  • the first preset array length and the second preset array length are determined according to a preset operation relationship between the rising edge duration or the falling edge duration and the sampling period.
  • the first preset array length rising edge duration/sampling period
  • the second preset array length falling edge duration/sampling period
  • the first preset array length the second preset array length.
  • determining the rising edge interval and falling edge interval in the current pulse period through the power change of the sampling point includes: obtaining the rising edge starting point, the rising edge starting point is the first time in the current pulse period that the power is greater than The sampling point of the rising edge reference threshold; obtain the falling edge starting point, which is the sampling point where the power is less than the falling edge reference threshold for the first time in the current pulse cycle.
  • the above method further includes: outside the rising edge interval and the falling edge interval, the sampling array reads and outputs sampled data in sequence.
  • the sampling delay or sampling data output The method of setting 0 to set the data bit corresponding to the rising edge interval and the falling edge interval in the sampling array to 0, low signal or empty signal includes: when the sampling data is output, after completing the falling edge in the current pulse period While sampling the signal along the end point, the third delay duration is calculated.
  • the third delay duration is the difference between the rising edge duration and the falling edge duration.
  • the third delay is started. At the end of the three delays, the third abnormal data is determined.
  • the third abnormal data is within the third preset length in the sampling array starting from the data bit corresponding to the third delay end point and counting forward. data, set the third abnormal data to 0, signal low or empty signal, and the third preset length is the array length corresponding to the falling edge interval.
  • determining the rising edge interval and falling edge interval within the current pulse cycle includes:
  • the rising edge interval and the falling edge interval in the current pulse period are respectively determined according to the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number.
  • the method before determining the rising edge interval and falling edge interval within the current pulse cycle, the method further includes:
  • the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number are obtained through continuous sampling testing.
  • the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number packets are obtained through continuous sampling testing.
  • the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number packets are obtained through continuous sampling testing.
  • each of the first radio frequency power signals including a first voltage V and a first current I;
  • the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number are determined according to the first voltage V and the first current I.
  • the rising edge interval and falling edge interval in the current pulse period are respectively determined according to the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number. include:
  • each of the second radio frequency power signals including a second voltage V and a second current I;
  • the starting point of the falling edge interval and the preset number of falling edge padding data are determined according to the power of each sampling point, the power drop threshold and the number of falling edge padding data.
  • the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge are determined according to the first voltage V and the first current I.
  • the number of padding data includes:
  • the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge are determined according to the first voltage V and the first current I.
  • the number of padding data also includes:
  • Td the falling edge time
  • Tr the rising edge.
  • T the sampling period
  • disclosed embodiments of the present invention also provide a radio frequency power signal acquisition device, including:
  • Abnormal data interval determination module used to determine the rising edge interval and falling edge interval within the current pulse cycle
  • the sampling data setting module is used to set the data bits in the sampling array corresponding to the rising edge interval and the falling edge interval to 0, a low signal, or a null signal.
  • disclosed embodiments of the present invention further provide a computer device, including: a processor, a memory, and a bus.
  • the memory stores machine-readable instructions executable by the processor.
  • the The processor communicates with the memory through a bus, and when the machine-readable instructions are executed by the processor, the steps in the above-mentioned first aspect, or any possible implementation manner of the first aspect, are performed.
  • the disclosed embodiments of the present invention also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program When the computer program is run by a processor, it executes the above-mentioned first aspect, or the first aspect. steps in any possible implementation.
  • the sampling array is set to 0 to shield the data in the abnormal segment, that is, the data in the ramp segment in the power on and off and PULSE modes are output to 0, and the power is output only in the correct time period other than the slope.
  • Figure 1 shows a flow chart of a radio frequency power signal acquisition method provided by a disclosed embodiment of the present invention
  • FIG. 2 shows a flow chart of another radio frequency power signal acquisition method provided by the disclosed embodiment of the present invention
  • Figure 3 shows a schematic diagram of the pulse structure in the disclosed embodiment of the present invention
  • Figure 4 shows a schematic diagram of the pulse structure of Example 1 in the disclosed embodiments of the present invention
  • Figure 5 shows a schematic diagram of the pulse structure of Example 2 in the disclosed embodiment of the present invention.
  • Figure 6 shows a schematic diagram of the pulse structure of Example 3 in the disclosed embodiments of the present invention.
  • FIG. 7 shows yet another radio frequency power signal acquisition method provided by the disclosed embodiment of the present invention. flow chart
  • Figure 8 shows a schematic diagram of a pulse structure using data padding method to shield ramp segment data in the disclosed embodiment of the present invention
  • Figure 9 shows another pulse structure schematic diagram using data padding method to shield ramp segment data in the disclosed embodiment of the present invention.
  • Figure 10 shows a flow chart of yet another radio frequency power signal acquisition method provided by the disclosed embodiment of the present invention.
  • Figure 11 shows a flow chart of yet another radio frequency power signal acquisition method based on the method shown in Figure 10 provided by the disclosed embodiment of the present invention
  • Figure 12 shows a schematic structural diagram of a radio frequency power signal acquisition device provided by a disclosed embodiment of the present invention
  • Figure 13 shows a schematic structural diagram of another radio frequency power signal acquisition device provided by a disclosed embodiment of the present invention.
  • Figure 14 shows a schematic structural diagram of a computer device provided by a disclosed embodiment of the present invention.
  • FIG. 1 there is a flow chart of a radio frequency power signal acquisition method provided by an embodiment disclosed in the present invention.
  • the method includes:
  • the technical solution provided by this embodiment determines the rising edge interval and falling edge interval within the current pulse cycle, and sets the data bits corresponding to the rising edge interval and falling edge interval in the sampling array to 0, signal low bit, or For empty signals, use the FIFO (First Input First Output, first in first out) sampling array to set it to 0 to shield the data in the abnormal section, that is, make the data in the slope section output 0 in the power on and off and PULSE modes, and only correct the data outside the slope. Output power during the time period.
  • FIFO First Input First Output, first in first out
  • FIG. 2 there is a flow chart of another radio frequency power signal acquisition method provided by the disclosed embodiment of the present invention. See Figure 3. This method masks abnormal data generated during the ramp phase within the pulse cycle.
  • the method includes:
  • S22 converts the sampling array corresponding to the rising edge interval and the falling edge interval.
  • the data bits are set to 0, the signal is low, or the signal is empty.
  • the data bits corresponding to the rising edge interval and the falling edge interval in the sampling array are set to 0, the signal is low, or empty by setting the sampling delay or the sampling data output to 0. Signal.
  • S22 may include the following steps:
  • Data judgment modes include:
  • (A) Use the reference threshold to determine whether the input signal changes from the low signal level to the rising edge interval, that is, when the signal data is lower than the reference threshold, it is regarded as the signal low level (or signal zero output, or 0 output), When the signal data is higher than the reference threshold, it is regarded as the signal climbing to a high level, and the climbing process is regarded as the rising edge interval.
  • the length of the sampling delay is the length of the rising edge interval.
  • the sampled data read is first set to 0, low signal or empty signal, and then filled in the sampling array.
  • (A-12) Mark the sampled data read during the sampling delay period and imported into the sampling array.
  • the sampling data is output, set the data bit corresponding to the rising edge interval in the sampling array to 0, low signal or empty signal. .
  • (B) Use the reference threshold to determine whether the input signal changes from the low signal level to the rising edge interval, and use the top threshold to determine whether the input signal changes from the rising edge interval to the signal high level.
  • the signal When reading sampling data, once the sampling data read and scheduled to be imported into the sampling array exceeds the reference threshold, the signal is considered to enter a rising edge, and the sampling delay is started at this time. When the sample data read and scheduled to be imported into the sampling array exceeds the top threshold, the signal is considered to enter the signal high position from the rising edge. At this time, the sampling delay ends, and normal operations of reading sampled data and filling in the sampled array resume.
  • the corresponding data processing method is adopted according to the length of the corresponding collection array as described above (A-1) and (A-2).
  • the length of the sampling delay depends on the length of time the read sample value is between the base threshold and the top threshold, that is, based on the actual length of the rising edge interval. That is to say, the low level, rising edge and high level of the signal are determined only by the reference threshold and the top threshold.
  • the data processing methods are as described above (A-1) and (A-2).
  • sampling data When reading sampling data, once multiple consecutive sampling data that are scheduled to be imported into the sampling array are read, they change from constant low-bit data to rising data (the pre-read data is lower than the post-data). That is, it is considered that the signal enters the rising edge, and the sampling delay is started at this time.
  • the pre-read data is equal to the post-data
  • the corresponding data processing method is adopted according to the length of the corresponding collection array as described above (A-1) and (A-2).
  • the length of the sampling delay depends on the length of time the read sample value is between the base threshold and the top threshold, that is, based on the actual length of the rising edge interval. That is to say, the length of the rising edge interval can be ignored, and the low level, rising edge and high level of the signal can be determined through the conversion of constant data and rising data.
  • the data processing methods are as described above (A-11) and (A-12).
  • Data judgment modes include:
  • (D) Use the reference threshold to determine whether the input signal has reached the falling edge interval and turned to the signal low position, that is, the signal has reached the end of the falling edge interval, and further can be regarded as entering the signal low position, zero position or no output.
  • sampling delay is started. hour. When the sampling delay ends, the normal reading operation of sampling data is resumed.
  • the duration of the sampling delay is the sum of the data sampling durations corresponding to the data bits of the collection array - the falling edge duration.
  • the sum of the data sampling duration corresponding to the data bits of the collection array is not less than the falling edge duration. According to the length of the corresponding collection array, the delay processing method is as follows: Down:
  • the delayed sampling period is started (D-2 above)
  • the data of the entire sampling array still maintains FIFO operation.
  • the sampling delay time ends (or D-2 above) 1 does not enable sampling delay
  • all data fields in the sampling array are set to 0, low signal or empty signal, and normal data sampling operations are performed at the same time.
  • (E) Use the top threshold to determine whether the input signal changes from a high signal level to a falling edge interval, that is, when the signal data is higher than the top threshold, the signal is deemed to be high, and when the signal data is lower than the top threshold, the signal is deemed to be falling to a low level. , the falling process is regarded as the falling edge interval.
  • sampling delay is started at this time.
  • the length of the sampling delay is the sum of the length of the falling edge interval and the length of the data sampling corresponding to the data bits of the acquisition array, whichever is longer; if the two are the same, choose either one. Therefore, after the delay is over, the acquired data read will fall to the low level of the signal.
  • the corresponding data processing method is adopted, which is explained as follows:
  • the sampled data read is first set to 0, low signal or empty signal, and then filled in the sampling array.
  • (E-12) Mark the sampled data read during the sampling delay period and imported into the sampling array.
  • the sampling data is output, set the data bit corresponding to the falling edge interval in the sampling array to 0, low signal or empty signal. .
  • (F) Use the top threshold to determine whether the input signal changes from the high signal level to the falling edge interval, and use the reference threshold to determine whether the input signal changes from the falling edge interval to the signal low level.
  • sampling delay When reading sampling data, once the sampling data that is read and scheduled to be imported into the sampling array is lower than the top threshold, the signal is considered to have entered a falling edge, and the sampling delay is started at this time. When the sampled data read and scheduled to be imported into the sampling array is lower than the reference threshold, the signal is considered to enter the signal low position from the falling edge. At this time, the sampling delay ends, and normal operations of reading sampled data and filling in the sampled array resume.
  • the length of the sampling delay depends on the length of time the read sample value is between the base threshold and the top threshold, that is, based on the actual length of the falling edge interval. That is to say, the high level, falling edge and low level of the signal are determined only by the reference threshold and the top threshold value.
  • the data processing methods are as described above (E-1) and (E-2).
  • the corresponding data processing method is adopted according to the length of the corresponding acquisition array as described above (E-1) and (E-2).
  • the length of the sampling delay depends on the length of time the read sample value is between the base threshold and the top threshold, that is, based on the actual length of the rising edge interval. That is to say, the length of the rising edge interval can be ignored, and the low level, rising edge and high level of the signal can be determined through the conversion of constant data and rising data.
  • the data processing methods are as described above (E-11) and (E-12).
  • S22 includes: when sampling data, setting the data bit corresponding to the falling edge interval in the sampling array to 0, a low signal, or a null signal by delaying the sampling time, or, when the sampling data is output, setting the sampling The data bit corresponding to the falling edge interval or falling edge interval in the array is set to 0, low signal or empty signal.
  • S221 may include: starting from the starting point of the rising edge in the current pulse period, starting the first sampling delay, and setting the data bit corresponding to the first sampling delay in the sampling array to 0, a low signal, or an empty signal. ;
  • the above method sets the data bit corresponding to the falling edge interval in the sampling array to 0.
  • the signal is low or empty.
  • the signal may include: starting from the starting point of the falling edge in the current pulse cycle, starting the second sampling delay, and setting the data bit corresponding to the second sampling delay in the sampling array to 0.
  • the signal is low or empty. Signal.
  • S222 may include: while completing signal sampling of the rising edge end point in the current pulse period, determining the first abnormal data, and An abnormal data is the data within the first preset length in the sampling array, starting from the data bit corresponding to the rising edge end point, counting forward, setting the first abnormal data to 0, signal low or empty signal, the first preset length is the array length corresponding to the rising edge interval;
  • the above-mentioned setting of the data bit corresponding to the falling edge interval in the sampling array to 0, low signal or empty signal can be achieved through the following process: while completing the signal sampling of the falling edge end point in the current pulse period, determine the second Abnormal data, the second abnormal data is the data in the sampling array, starting from the data bit corresponding to the falling edge end point, counting forward to the second preset length, setting the second abnormal data to 0, low signal or empty signal, the The second preset length is the array length corresponding to the falling edge interval.
  • the above-mentioned setting of the data bit corresponding to the first sampling delay in the sampling array to 0, the signal low bit or the empty signal may be: setting the data bit corresponding to the first preset sampling duration in the sampling array to 0, The signal is low or empty, and the delay ends; the above-mentioned setting of the data bit corresponding to the second sampling delay in the sampling array to 0, the signal low or empty signal can be: setting the data bit corresponding to the second preset sampling duration in the sampling array Set to 0, low signal or empty signal, the delay ends.
  • the above-mentioned setting of the data bit corresponding to the first sampling delay in the sampling array to 0, the low bit of the signal or the empty signal may be: setting the data bit corresponding to the first preset array length in the sampling array to 0, The signal is low or empty, and the delay ends; the above will sample the second sample in the array
  • Setting the data bit corresponding to the delay to 0, low signal, or empty signal can be: setting the data bit corresponding to the second preset array length in the sampling array to 0, low signal, or empty signal, and the delay ends.
  • S21 may include:
  • the reference threshold is used to mark the low level of the signal
  • the top threshold is used to mark the high level of the signal
  • the specific performance is to perform detection sampling, using the sampling period as the base, starting when the power rises beyond the rising threshold, and ending when the power reaches the falling threshold, calculating the number of samples or sampling timing, and obtaining Rising edge interval; on the contrary, it starts when the power drops beyond the falling threshold and ends when the power reaches the rising threshold. Calculate the number of samples or sampling timing to obtain the falling edge interval.
  • the first sampling delay duration is equal to the rising edge duration
  • the second sampling delay duration is equal to the falling edge duration
  • the first preset array length ⁇ falling edge duration/sampling period, and the second preset array length ⁇ falling edge duration/sampling period are identical to each other.
  • the first preset array length and the second preset array length are determined according to a preset operation relationship between the rising edge duration or the falling edge duration and the sampling period.
  • the first preset array length rising edge duration/sampling period
  • the second preset array length falling edge duration/sampling period
  • the sampling delay or sampling data output is set to 0. Setting the data bits corresponding to the rising edge interval and falling edge interval in the sampling array to 0, low signal or empty signal includes:
  • the third delay duration is calculated.
  • the third delay duration is the difference between the rising edge duration and the falling edge duration.
  • the third abnormal data is within the third preset length in the sampling array starting from the data bit corresponding to the end point of the third delay and counting forward. data, set the third abnormal data to 0, low signal or empty signal, and the third preset length is the array length corresponding to the falling edge interval.
  • S21 may include: obtaining the rising edge starting point, which is the sampling point where the power is greater than the reference threshold for the first time in the current pulse period; obtaining the rising edge end point, which is the sampling point at which the rising edge ends in the current pulse period.
  • the sampling point where the power is greater than the top threshold for the first time in the pulse cycle get the starting point of the falling edge, which is the sampling point where the power is less than the falling edge reference threshold for the first time in the current pulse cycle; get the ending point of the falling edge, the falling edge
  • the edge end point is the sampling point where the power is less than the reference threshold for the first time in the current pulse period.
  • Example 1 (known baseline threshold), as shown in Figure 7 and Figure 4:
  • the reference threshold is used to determine whether the input signal changes from the low signal level to the rising edge interval. Once the sampling data that is read and scheduled to be imported into the sampling array exceeds the reference threshold, the signal is considered to have entered the rising edge, and sampling is started at this time. Delay. When the first digit of the FIFO array reaches point A on the rising edge, and the power (Pa) of the next acquisition point exceeds the reference threshold, the 10 ⁇ s delay T1 is started at this time, and each data in the FIFO array is limited to 0 at this time.
  • the sampling delay ends at this time, and the first digit of the FIFO array begins to fill in data until the C position is initially filled with the entire FIFO array. Then according to the FIFO theory, the data is first in, first out.
  • the FIFO The data output before the array reaches the C position is still 0, and the initially input point B data is not output until point C. The output data is normal until it reaches point E.
  • the reference threshold is used to determine whether the input signal has reached the falling edge interval and turned to the low level of the signal.
  • the sampling delay is started at this time.
  • the first digit of the FIFO array reaches point G, the last digit reaches point E, and the FIFO array clears the data to 0 and outputs it.
  • Example 2 (known base threshold and top threshold), as shown in Figure 7 and Figure 5:
  • the reference threshold is used to determine whether the input signal changes from a low signal level to a rising edge interval
  • the top threshold is used to determine whether the input signal changes from a rising edge interval to a signal high level.
  • the data is first in, first out.
  • the output data is still 0, and the initial output is not until point C.
  • the input data at point B and the output data until reaching point E are normal outputs.
  • the top threshold is used to determine whether the input signal changes from the high signal level to the falling edge interval
  • the reference threshold is used to determine whether the input signal changes from the falling edge interval to the signal low level.
  • the data bits corresponding to the falling edge interval in the sampling array are Set to 0, low signal or empty signal, the data processing method is as above (E-1).
  • the power (Pb) of the collection point will be lower than the top threshold, and the sampling delay is started at this time; when the first digit of the FIFO array reaches point F on the falling edge, the power (Pb) of the collection point ) will be lower than the baseline threshold.
  • the sampling delay ends and normal sampling data reading and filling in the sampling array operations resume.
  • the power change determines the rising edge interval in the current pulse cycle, and sets the data bit corresponding to the falling edge interval in the sampling array to 0, low signal, or empty signal.
  • the data processing method is as described above (A-1) or (A-1).
  • the low-power data collected from the beginning to point A is accurate; point A to point B is an upward slope, and the data collected at this time is inaccurate; the high-power data collected from point B to point C is accurate.
  • the data processing method is as above ( E-1) and (E-2).
  • the absolute values of the two changes are greater than or equal to 0, empty signal value or low signal value, and less than the determination threshold ⁇ th, the collected data is accurate.
  • the corresponding data collected should be retained, otherwise the abnormal data bits should be set to 0, empty signal value or low signal value, or, when outputting the sampling data, skip the data output of the abnormal data bits, that is, ⁇ 1 and ⁇ 2 are at least If the absolute value of one is greater than or equal to + ⁇ th, the data is incorrect. In this case, all collected data will be discarded.
  • the rising edge duration (T 1 ) and falling edge duration (T 2 ) in the embodiment of the present invention can be detected and sampled, with the sampling period as the base, starting when the power rise exceeds the rising threshold. , it ends when the power reaches the falling threshold, calculates the number of samples or sampling timing, and obtains the rising edge duration; on the contrary, it starts when the power decreases beyond the falling threshold, and ends when the power reaches the rising threshold, and calculates the number of samples Counting or sampling timing can be used to obtain the falling edge duration, or other methods selected by those skilled in the art according to engineering needs will not be described again here. This method is especially suitable for solving the problem of inaccurate signal acquisition within a pulse cycle in the power on and off and PULSE modes.
  • the technical solution provided by this embodiment determines the rising edge interval and falling edge interval within the current pulse cycle, and sets the data bits corresponding to the rising edge interval and falling edge interval in the sampling array to 0, signal low bit, or For empty signals, use the FIFO (First Input First Output, first in first out) sampling array to set it to 0 to shield the data in the abnormal section, that is, make the data in the slope section output 0 in the power on and off and PULSE modes, and only correct the data outside the slope. Time period output power.
  • FIFO First Input First Output, first in first out
  • a sampling test stage in order to obtain the parameter values required for determining the rising edge interval and falling edge interval, a sampling test stage can be added based on Embodiment 1.
  • a sampling test stage can be added based on Embodiment 1.
  • FIG. 7 an embodiment disclosed by the present invention A flow chart of another radio frequency power signal acquisition method is provided. The method includes:
  • S32 Signal sampling stage, including:
  • S321 Determine the rising edge interval within the current pulse cycle (also known as the rising edge data padding area interval) and falling edge interval (also called falling edge data filling interval), specifically, according to the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number Determine the rising edge interval and falling edge interval within the current pulse cycle respectively.
  • the data filling method is used to set (i.e. fill) the data bits corresponding to the rising edge interval and falling edge interval in the sampling array to 0, signal low bit (also called signal low bit value) or empty signal (also called signal low bit value). called a null signal value).
  • step S31 obtains the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number through continuous sampling testing.
  • each first radio frequency power signal includes a first voltage V and a first current I;
  • S312 Determine the preset power rising threshold, the preset power falling threshold, the number of rising edge padding data and the number of falling edge padding data according to the first voltage V and the first current I.
  • step S321 determines the rising edge interval and falling edge in the current pulse period according to the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number.
  • the range includes:
  • each second radio frequency power signal includes a second voltage V and a second current I;
  • S3212 Determine the power of each sampling point according to the second voltage V and the second current I;
  • S3213 Fill the number of data according to the power of each sampling point, power rising threshold and rising edge Determine the starting point of the rising edge interval and the number of preset rising edge padding data;
  • S3214 Determine the starting point of the falling edge interval and the preset number of falling edge padding data based on the power of each sampling point, the power drop threshold and the number of falling edge padding data.
  • step S312 determines the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number according to the first voltage V and the first current I, including:
  • step S312 determines the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number according to the first voltage V and the first current I, and also includes:
  • the number of preset rising edge padding data in the rising edge process can be determined based on T r /T, and the preset number of falling edge padding data in the falling edge process can be determined based on T d /T.
  • T d is the falling edge time.
  • T r is the rising edge time
  • T is the sampling period, where the falling edge time and the rising edge time can be obtained by those skilled in the art through testing or other known means, and will not be described again here.
  • FIG. 8 This is a schematic diagram of using the data filling method to mask the slope segment data. Filling in the corresponding number of data 0 in the rising edge and falling edge stages can make the slope data output as 0 by default, thereby achieving the purpose of masking the slope segment data and avoiding inaccurate collection. value.
  • the number of padding data is T r /T; similarly, with falling The time from threshold P d to zero potential is the falling edge time T d , then the number of padded data is T d /T, and the padded data is 0, which is used to shield the slope segment data.
  • the specific power value is determined by those skilled in the art according to engineering needs. The calculation settings will not be described here.
  • the acquisition board works normally, using the FIFO array to collect data, and the sampling period is T.
  • the RF power supply gradually rises from zero potential to the top potential.
  • the power begins to rise.
  • the limiter is started Data padding, padding 0 into the FIFO array, the number is T r /T.
  • the first digit of the FIFO array After filling T r /T data 0s, the first digit of the FIFO array reaches point B on the rising edge, and the limited data filling is turned off.
  • the first digit of the FIFO array begins to fill in the sampled data, until the sampled data initially fills the entire FIFO array at the C position, and then FIFO theory, data is first in, first out.
  • the output data is still the limited data 0.
  • the initially input point B data is not output until point C.
  • the output data is normal output until it reaches point E.
  • the power value is the top potential power average P e .
  • the RF power supply When shutting down or in PULSE mode, the RF power supply gradually drops from the top potential to zero potential. When the first digit of the corresponding FIFO array reaches point E on the falling edge, the power begins to drop. When the power value is lower than the drop threshold P d , the limited data is started. Filling, filling 0 into the FIFO array, the number is T d /T.
  • the first digit of the FIFO array After filling T d /T data 0s, the first digit of the FIFO array reaches point F on the falling edge, the limited data filling is turned off, and the first digit of the FIFO array begins to fill in the sampled data. At this time, the RF power supply is at zero potential.
  • the difference from the first one is that when the power value is higher than or reaches the falling threshold P d , the first digit of the corresponding FIFO array will be very close to or reach point B on the rising edge. At this time, limited data filling is turned off, and the first digit of the FIFO array begins to fill in the sampling data.
  • the number of zeros padded on the rising edge will correspond to the interval length between the two thresholds. In some embodiments, it is T r /T or its adjacent number.
  • the first digit of the FIFO array begins to fill in the sampled data, and the sampled data initially fills the entire FIFO array until the C bit. Then according to the FIFO theory, the data is first in, first out. When the FIFO array reaches the C bit, the output data is still Limit the data to 0 and output the maximum value until point C. From the initially input point B data, the output data is normal until it reaches point E. At this time, the power value is the top potential power average P e .
  • the RF power supply gradually drops from the top potential to zero potential.
  • the power begins to drop.
  • the power value is lower than the drop threshold P d , Start limited data padding and fill 0 in the FIFO array.
  • the difference from the first one is that when the power value is lower than or reaches the falling threshold P r , the first digit of the corresponding FIFO array will be very close to or reach the point F on the falling edge. At this time, limited data filling is turned off, and the first digit of the FIFO array begins to fill in the sampling data.
  • the number of zeros padded on the falling edge will correspond to the interval length between the two thresholds. In some embodiments, it is T d /T or its adjacent number.
  • the first digit of the FIFO array begins to fill in the sampling data.
  • the RF power supply is at zero potential.
  • the third type can be regarded as a combination of the first and the second type
  • the first digit of the corresponding FIFO array When it is judged that the power value is higher than or reaches the falling threshold P d , the first digit of the corresponding FIFO array will be very close to or reach point B on the rising edge. At this time, limited data filling is turned off, and the first digit of the FIFO array begins to fill in the sampling data. On the contrary, when the power value does not reach the falling threshold P d , filling continues.
  • the first digit of the corresponding FIFO array When it is judged that the power value is lower than or reaches the rising threshold P r , the first digit of the corresponding FIFO array will be very Approaching or reaching point F on the rising edge, limited data filling is turned off at this time, and the first digit of the FIFO array begins to fill in sampling data. On the contrary, when the power value does not reach the rising threshold P r , filling continues.
  • the technical solution provided by this embodiment uses a data filling method to mask the slope segment data, and fills in the corresponding number of data 0 in the rising edge and falling edge stages, so that the default output of the slope data is 0, thereby achieving the goal of masking the slope.
  • segment data is to avoid collecting inaccurate values and fill in the corresponding number of limited data on the rising and falling edges, and to solve the problem of incorrect data read by the acquisition board during the ramp stage in related technologies, which affects subsequent calculations of power values and impedance values. The problem.
  • an embodiment of the present invention also provides a radio frequency power signal acquisition device, including:
  • Abnormal data interval determination module 71 is used to determine the rising edge interval and falling edge interval within the current pulse cycle
  • the sampling data setting module 72 is used to set the data bits corresponding to the rising edge interval and the falling edge interval in the sampling array to 0, low signal or empty signal.
  • the device further includes:
  • the FIFO array output module 73 is used to read the sampling array and output the sampling data in sequence outside the rising edge interval and falling edge interval.
  • the above-mentioned sampling data setting module 72 sets the data bits corresponding to the rising edge interval and the falling edge interval in the sampling array to 0, and the signal low bit or empty signal is: the sampling data setting module 72 uses the sampling delay Or the sampling data output is set to 0 by setting the data bits corresponding to the rising edge interval and falling edge interval in the sampling array to 0, low signal or empty signal.
  • the sample data setting module 72 includes:
  • the rising edge exception processing sub-module 721 is used to set the data bit corresponding to the rising edge interval in the sampling array to 0, low signal or empty signal by delaying the sampling time during data sampling in the rising edge interval, or, in When sampling data is output, set the data bit corresponding to the rising edge interval in the sampling array to 0, low signal, or empty signal;
  • the falling edge exception processing sub-module 722 is used to set the data bit corresponding to the falling edge interval in the sampling array to 0, low signal or empty signal by delaying the sampling time during data sampling in the falling edge interval, or, in When sampling data is output, set the falling edge interval or the data bit corresponding to the falling edge interval in the sampling array to 0, low signal, or empty signal.
  • the above-mentioned rising edge exception processing sub-module 721 sets the data bit corresponding to the rising edge interval in the sampling array to 0, low signal or empty signal by delaying the sampling time, including: rising edge exception processing Submodule 721 starts from the starting point of the rising edge in the current pulse period, starts the first sampling delay, and sets the data bit corresponding to the first sampling delay in the sampling array to 0, low signal, or empty signal.
  • the above-mentioned falling edge exception processing sub-module 722 sets the data bit corresponding to the falling edge interval in the sampling array to 0 by delaying the sampling time.
  • the signal low bit or the empty signal includes: starting from the starting point of the falling edge in the current pulse cycle, starting the second Sampling delay, set the data bit corresponding to the second sampling delay in the sampling array to 0, low signal or empty signal.
  • the above-mentioned rising edge exception processing sub-module 721 sets the data bit corresponding to the rising edge interval in the sampling array to 0, signals a low bit or an empty signal including: after completing the signaling of the rising edge end point in the current pulse period.
  • sampling determine the first abnormal data.
  • the first abnormal data is the data in the sampling array starting from the data bit corresponding to the rising edge end point and counting forward within the first preset length. Set the first abnormal data to 0.
  • the first preset length is the array length corresponding to the rising edge interval; the falling edge exception processing sub-module 722 will sample The data bit corresponding to the falling edge interval in the array is set to 0, the signal is low or the empty signal includes: while completing the signal sampling of the falling edge end point in the current pulse cycle, the second abnormal data is determined, and the second abnormal data is sampled In the array, starting from the data bit corresponding to the falling edge end point, count the data within the second preset length forward, set the second abnormal data to 0, signal low or empty signal, the second preset length corresponds to the falling edge interval The length of the array.
  • the above-mentioned rising edge exception processing sub-module 721 sets the data bit corresponding to the first sampling delay in the sampling array to 0, and the signal low bit or empty signal is: sets the data bit corresponding to the first preset sampling duration in the sampling array to The data bit is set to 0, the signal is low or the signal is empty, and the delay ends;
  • the above-mentioned falling edge exception processing sub-module 722 sets the data bit corresponding to the second sampling delay in the sampling array to 0, the signal is low or the signal is empty: the sample is The data bit corresponding to the second preset sampling duration in the array is set to 0, low signal or empty signal, and the delay ends.
  • the above-mentioned rising edge exception processing sub-module 721 sets the data bit corresponding to the first sampling delay in the sampling array to 0, and the signal low bit or empty signal is: the rising edge exception processing sub-module 721 sets the first sampling delay in the sampling array to 0.
  • the data bit corresponding to a preset array length is set to 0, signal low or empty signal, and the delay ends;
  • the above-mentioned falling edge exception processing sub-module 722 sets the data bit corresponding to the second sampling delay in the sampling array to 0, signal low Or an empty signal is: the falling edge exception processing sub-module 722 sets the data bit corresponding to the second preset array length in the sampling array to 0, a low signal or an empty signal, and the delay ends.
  • the abnormal data interval determination module 71 includes:
  • a reference threshold determination unit configured to determine the rising edge interval and falling edge interval within the current pulse cycle through the reference threshold, the rising edge duration and the falling edge duration, where the reference threshold is used to mark the low position of the signal; or,
  • a top threshold determination unit configured to determine the rising edge interval and falling edge interval within the current pulse cycle through the reference threshold and the top threshold, where the top threshold is used to mark the high level of the signal; or,
  • the power determination unit is used to determine the rising edge interval and falling edge interval in the current pulse period through the power change of the sampling point.
  • the first preset sampling duration is equal to the rising edge duration
  • the second preset sampling duration is equal to the falling edge duration
  • the first preset array length and the second preset array length are determined according to a preset operation relationship between the rising edge duration or the falling edge duration and the sampling period.
  • the first preset array length rising edge duration/sampling period
  • the second preset array length falling edge duration/sampling period
  • the abnormal data interval determination module 71 includes:
  • the rising edge starting point is the sampling point where the power is greater than the rising edge reference threshold for the first time in the current pulse period
  • Falling edge starting point acquisition sub-module 712. The falling edge starting point is the sampling point where the power is less than the falling edge reference threshold for the first time in the current pulse period.
  • the sampling data setting module 72 will use sampling delay or sampling
  • the method of setting the data output to 0 sets the data bits corresponding to the rising edge interval and the falling edge interval in the sampling array to 0, the signal low bit or the empty signal includes: when the sampling data is output, While completing the signal sampling of the falling edge end point in the current pulse cycle, the sampling data setting module 72 calculates the duration of the third delay.
  • the third delay duration is the difference between the duration of the rising edge and the duration of the falling edge, and starts The third delay: at the end of the third delay, the third abnormal data is determined.
  • the third abnormal data is within the third preset length in the sampling array starting from the data bit corresponding to the end point of the third delay and counting forward. data, set the third abnormal data to 0, low signal or empty signal, and the third preset length is the array length corresponding to the falling edge interval.
  • the technical solution provided by this embodiment determines the rising edge interval and falling edge interval within the current pulse cycle, and sets the data bits corresponding to the rising edge interval and falling edge interval in the sampling array to 0, signal low bit, or For empty signals, use the FIFO (First Input First Output, first in first out) sampling array to set it to 0 to shield the data in the abnormal section, that is, make the data in the slope section output 0 in the power on and off and PULSE modes, and only correct the data outside the slope. Time period output power.
  • FIFO First Input First Output, first in first out
  • an embodiment of the present invention also provides a radio frequency power signal acquisition device, which includes a signal sampling module 81.
  • the signal sampling module 81 includes:
  • the abnormal data interval determination module 811 (also called the padding interval determination sub-module) is used to respectively determine the number of padding data based on the preset power rising threshold, the preset power falling threshold, the number of preset rising edge padding data, and the preset number of preset falling edge padding data. Determine the rising edge interval and falling edge interval within the current pulse cycle;
  • the sampling data setting module 812 (also known as the data filling sub-module) is used to set the data bits corresponding to the rising edge interval and the falling edge interval in the sampling array to 0, low signal, or empty signal during the sampling process.
  • the signal sampling module 81 also includes:
  • the array output module 813 is used to collect and output corresponding sampling point data within a time period other than the rising edge interval and the falling edge interval.
  • the device also includes:
  • the sampling test module 82 obtains the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number through continuous sampling testing.
  • the sampling test module 82 includes:
  • the first signal acquisition sub-module 821 is used to continuously collect the first radio frequency power signal of multiple sampling points, where each first radio frequency power signal includes a first voltage V and a first current I;
  • the threshold determination sub-module 822 is used to determine the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number according to the first voltage V and the first current I.
  • the abnormal data interval determination module 811 includes:
  • the second signal acquisition submodule is used to continuously collect second radio frequency power signals at multiple sampling points, where each second radio frequency power signal includes a second voltage V and a second current I;
  • the sampling point power determination submodule is used to determine the power of each sampling point according to the second voltage V and the second current I;
  • the rising edge threshold data determination submodule is used to determine the starting point of the rising edge interval and the preset number of rising edge padding data based on the power of each sampling point, the power rising threshold and the number of rising edge padding data;
  • the falling edge threshold data determination submodule is used to determine the starting point of the falling edge interval and the preset number of falling edge padding data based on the power of each sampling point, the power falling threshold and the number of falling edge padding data.
  • the threshold determination sub-module 822 determines the preset power rising threshold, the preset power falling threshold, the preset rising edge padding data number and the preset falling edge padding data number according to the first voltage V and the first current I. include:
  • the threshold determination sub-module 822 determines the number of preset rising edge padding data in the rising edge process based on T r /T, and determines the preset number of falling edge padding data in the falling edge process based on T d /T, where T d is the falling edge time. T r is the rising edge time, and T is the sampling period.
  • the technical solution provided by this embodiment uses a data filling method to mask the slope segment data, and fills in the corresponding number of data 0 in the rising edge and falling edge stages, so that the default output of the slope data is 0, thereby achieving the goal of masking the slope.
  • segment data is to avoid collecting inaccurate values and fill in the corresponding number of limited data on the rising and falling edges, and to solve the problem of incorrect data read by the acquisition board during the ramp stage in related technologies, which affects subsequent calculations of power values and impedance values. The problem.
  • an embodiment of the present application also provides a computer device, including a memory 1 and a processor 2.
  • the memory 1 stores a computer program
  • the processor 2 executes the computer program.
  • the memory 1 includes at least one type of readable storage medium, including flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), magnetic memory, magnetic disk, optical disk, etc.
  • Memory 1 may in some embodiments be an OTT video industry
  • the internal storage unit of the service monitoring system such as a hard disk.
  • the memory 1 may also be an external storage device of the OTT video service monitoring system, such as a plug-in hard disk, a smart media card (SMC), a secure digital (SD) card, or a flash memory card. (Flash Card) etc.
  • the memory 1 may also include both an internal storage unit of the OTT video service monitoring system and an external storage device.
  • the memory 1 can not only be used to store application software and various data installed in the OTT video service monitoring system, such as the code of the OTT video service monitoring program, etc., but can also be used to temporarily store data that has been output or will be output.
  • the processor 2 may be a central processing unit (CPU), a controller, a microcontroller, a microprocessor or other data processing chips, used to run program codes or processes stored in the memory 1 Data, such as executing OTT video service monitoring programs, etc.
  • CPU central processing unit
  • controller a controller
  • microcontroller a microprocessor or other data processing chips, used to run program codes or processes stored in the memory 1 Data, such as executing OTT video service monitoring programs, etc.
  • the technical solution provided by this embodiment determines the rising edge interval and falling edge interval within the current pulse cycle, and sets the data bits corresponding to the rising edge interval and falling edge interval in the sampling array to 0, signal low bit, or For empty signals, use the FIFO (First Input First Output, first in first out) sampling array to set it to 0 to shield the data in the abnormal section, that is, make the data in the slope section output 0 in the power on and off and PULSE modes, and only correct the data outside the slope. Time period output power.
  • FIFO First Input First Output, first in first out
  • Disclosed embodiments of the present invention also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program When the computer program is run by a processor, it executes the radio frequency power signal acquisition method described in the above method embodiment. step.
  • the storage medium may be a volatile or non-volatile computer-readable storage medium.
  • the computer program product of the radio frequency power signal acquisition method provided by the disclosed embodiments of the present invention
  • the product includes a computer-readable storage medium storing program code.
  • the instructions included in the program code can be used to execute the steps of the radio frequency power signal acquisition method described in the above method embodiment. For details, please refer to the above method embodiment, here No longer.
  • Disclosed embodiments of the present invention also provide a computer program, which when executed by a processor, implements any of the methods in the foregoing embodiments.
  • the computer program product can be implemented specifically through hardware, software or a combination thereof.
  • the computer program product is embodied as a computer storage medium.
  • the computer program product is embodied as a software product, such as a Software Development Kit (SDK), etc. wait.
  • SDK Software Development Kit
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • each functional unit in various embodiments of the present invention can be integrated into a processing module, or each unit can exist physically alone, or two or more units can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer-readable storage medium.
  • the storage media mentioned above can be read-only memory, magnetic disks or optical disks, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

一种射频电源信号采集方法及装置,其中,该方法包括:确定当前脉冲周期内的上升沿区间和下降沿区间(S11);将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号(S12),解决了现有技术中由于采集板连续不间断采集电压和电流信号并且连续进行信号输出,即使在开关机和PULSE模式下,在斜坡产生阶段仍然不间断采集信号并输出,导致输出数据不准确的问题。

Description

一种射频电源信号采集方法及装置 技术领域
本发明涉及射频电源信号采集技术领域,具体涉及一种射频电源信号采集方法及装置。
背景技术
一个典型的数据采集系统会通过各式各样的传感器搜集周围环境或是各种待测物产生的信号。一般而言,这些信号会随机地产生,所以数据采集系统必须不断地进行采样,才能确保不漏掉任何重要的信号。在射频电源中,目前的采集板是通过连续采样的方式来采集电压和电流信号,现有技术由于采集板连续不间断采集电压和电流信号并且连续进行信号输出,即使在开关机和PULSE模式下,在斜坡产生阶段仍然不间断采集信号并输出,导致输出数据不准确的问题。
发明内容
因此,本发明要解决的技术问题在于克服现有射频电源技术中,由于采集板连续不间断采集电压和电流信号并且连续进行信号输出,即使在开关机和PULSE模式下,在斜坡产生阶段仍然不间断采集信号并输出,导致输出数据不准确的问题,从而提供一种射频电源信号采集方法及装置。
为解决上述技术问题,本发明公开实施例至少提供一种射频电源信号采集方法及装置。
第一方面,本发明公开实施例提供了一种射频电源信号采集方法,包 括:
确定当前脉冲周期内的上升沿区间和下降沿区间;
将采样数组内与所述上升沿区间和所述下降沿区间对应的数据位设置为0、信号低位或空信号。
可选地,所述将采样数组内与所述上升沿区间和所述下降沿区间对应的数据位设置为0、信号低位或空信号为:通过采样延时或采样数据输出置0的方式将采样数组内与所述上升沿区间和所述下降沿区间对应的数据位设置为0、信号低位或空信号。
可选地,所述通过采样延时或采样数据输出置0的方式将采样数组内与所述上升沿区间和所述下降沿区间对应的数据位设置为0、信号低位或空信号包括:在上升沿区间内,在数据采样时,通过延时采样时间将采样数组内所述上升沿区间对应的数据位设置为0、信号低位或空信号,或,在采样数据输出时,将采样数组内所述上升沿区间对应的数据位设置为0、信号低位或空信号;在下降沿区间内,在数据采样时,通过延时采样时间将采样数组内所述下降沿区间对应的数据位设置为0、信号低位或空信号,或,在采样数据输出时,将采样数组内所述下降沿区间或所述下降沿区间对应的数据位设置为0、信号低位或空信号。
可选地,所述通过延时采样时间将采样数组内所述上升沿区间对应的数据位设置为0、信号低位或空信号包括:当前脉冲周期内的上升沿起始点开始,启动第一采样延时,将采样数组中所述第一采样延时对应的数据位设置为0、信号低位或空信号;所述通过延时采样时间将采样数组内所述下降沿区间对应的数据位设置为0、信号低位或空信号包括:从当前脉冲周期 内的下降沿起始点开始,启动第二采样延时,将采样数组中所述第二采样延时对应的数据位设置为0、信号低位或空信号。
可选地,所述将采样数组内所述上升沿区间对应的数据位设置为0、信号低位或空信号包括:在完成对当前脉冲周期内的上升沿结束点进行信号采样的同时,确定第一异常数据,所述第一异常数据是所述采样数组内、从所述上升沿结束点对应的数据位开始、往前计数第一预设长度内的数据,将所述第一异常数据置0、信号低位或空信号,所述第一预设长度为所述上升沿区间对应的数组长度;
所述将采样数组内所述下降沿区间对应的数据位设置为0、信号低位或空信号包括:在完成对当前脉冲周期内的下降沿结束点进行信号采样的同时,确定第二异常数据,所述第二异常数据是所述采样数组内、从所述下降沿结束点对应的数据位开始、往前计数第二预设长度内的数据,将所述第二异常数据置0、信号低位或空信号,所述第二预设长度为所述下降沿区间对应的数组长度。
可选地,所述将采样数组中所述第一采样延时对应的数据位设置为0、信号低位或空信号为:将采样数组中第一预设采样时长对应的数据位设置为0、信号低位或空信号,延时结束;所述将采样数组中所述第二采样延时对应的数据位设置为0、信号低位或空信号为:将采样数组中第二预设采样时长对应的数据位设置为0、信号低位或空信号,延时结束。
可选地,所述将采样数组中所述第一采样延时对应的数据位设置为0、信号低位或空信号为:将采样数组中第一预设数组长度对应的数据位设置为0、信号低位或空信号,延时结束;所述将采样数组中所述第二采样延时 对应的数据位设置为0、信号低位或空信号为:将采样数组中第二预设数组长度对应的数据位设置为0、信号低位或空信号,延时结束。
可选地,所述确定当前脉冲周期内的上升沿区间和下降沿区间包括:
通过基准阈值、上升沿时长和下降沿时长确定当前脉冲周期内的上升沿区间和下降沿区间,所述基准阈值用于标记信号低位;或,
通过所述基准阈值和顶端阈值确定当前脉冲周期内的上升沿区间和下降沿区间,所述顶端阈值用于标记信号高位;或,
通过采样点的功率变化确定当前脉冲周期内的上升沿区间和下降沿区间。
可选地,所述第一预设采样时长等于上升沿时长,所述第二预设采样时长等于下降沿时长。
可选地,所述第一预设数组长度、所述第二预设数组长度是由所述上升沿时长或所述下降沿时长与采样周期按照预设运算关系确定的。
可选地,第一预设数组长度=上升沿时长/采样周期,所述第二预设数组长度=下降沿时长/采样周期;或者,所述第一预设数组长度=所述第二预设数组长度=上升沿时长/采样周期;或者,所述第一预设数组长度=所述第二预设数组长度=下降沿时长/采样周期。
可选地,所述通过采样点的功率变化确定当前脉冲周期内的上升沿区间和下降沿区间包括:获取上升沿起始点,所述上升沿起始点是在当前脉冲周期内功率第一次大于上升沿基准阈值的采样点;获取下降沿起始点,所述下降沿起始点是在当前脉冲周期内功率第一次小于下降沿基准阈值的采样点。
可选地,上述方法还包括:在所述上升沿区间和所述下降沿区间以外,所述采样数组读取并按顺序输出采样数据。
可选地,若所述第一预设数组长度=所述第二预设数组长度=上升沿时长/采样周期,且上升沿时长大于下降沿时长,则所述通过采样延时或采样数据输出置0的方式将采样数组内与所述上升沿区间和所述下降沿区间对应的数据位设置为0、信号低位或空信号包括:在采样数据输出时,在完成对当前脉冲周期内的下降沿结束点进行信号采样的同时,计算第三延时的时长,所述第三延时时长是所述上升沿时长与所述下降沿时长的差值,启动第三延时,在所述第三延时结束时,确定第三异常数据,所述第三异常数据是所述采样数组内、从所述第三延时结束点对应的数据位开始、往前计数第三预设长度内的数据,将所述第三异常数据置0、信号低位或空信号,所述第三预设长度为所述下降沿区间对应的数组长度。
可选的,所述确定当前脉冲周期内的上升沿区间和下降沿区间包括:
根据预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数分别确定当前脉冲周期内的上升沿区间和下降沿区间。
可选的,在所述确定当前脉冲周期内的上升沿区间和下降沿区间之前,所述方法还包括:
通过连续采样测试获取所述预设功率上升阈值、所述预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数。
可选的,所述通过连续采样测试获取所述预设功率上升阈值、所述预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数包 括:
连续采集多个采样点的第一射频电源信号,每个所述第一射频电源信号包括第一电压V和第一电流I;
根据所述第一电压V和所述第一电流I确定所述预设功率上升阈值、所述预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数。
可选的,所述根据预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数分别确定当前脉冲周期内的上升沿区间和下降沿区间包括:
连续采集多个采样点的第二射频电源信号,每个所述第二射频电源信号包括第二电压V和第二电流I;
根据所述第二电压V和所述第二电流I确定每个采样点的功率;
根据每个所述采样点的功率、所述功率上升阈值和所述上升沿填补数据个数确定所述上升沿区间的起始点和所述预设上升沿填补数据个数;
根据每个所述采样点的功率、所述功率下降阈值和所述下降沿填补数据个数确定所述下降沿区间的起始点和所述预设下降沿填补数据个数。
可选的,所述根据所述第一电压V和所述第一电流I确定所述预设功率上升阈值、所述预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数包括:
由P=VI计算每个采样点的功率值,得到:零电位后的第一个特定功率值Pr,顶电位功率均值Pe后的第一个非Pe功率值Pd,将Pr作为所述预设功率上升阈值,将Pd作为所述预设功率下降阈值。
可选的,所述根据所述第一电压V和所述第一电流I确定所述预设功率上升阈值、所述预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数还包括:
根据Tr/T确定上升沿过程中所述预设上升沿填补数据个数,根据Td/T确定下降沿过程中所述预设下降沿填补数据个数,Td为下降沿时间,Tr为上升沿时间,T为采样周期。
第二方面,本发明公开实施例还提供一种射频电源信号采集装置,包括:
异常数据区间确定模块,用于确定当前脉冲周期内的上升沿区间和下降沿区间;
采样数据置0模块,用于将采样数组内与所述上升沿区间所述下降沿区间对应的数据位设置为0、信号低位或空信号。
第三方面,本发明公开实施例还提供一种计算机设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当计算机设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行上述第一方面,或第一方面中任一种可能的实施方式中的步骤。
第四方面,本发明公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述第一方面,或第一方面中任一种可能的实施方式中的步骤。
本发明的实施例提供的技术方案可以具有以下有益效果:
确定当前脉冲周期内的上升沿区间和下降沿区间,将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号,用FIFO(First Input First Output,先进先出)采样数组置0来实现屏蔽掉异常段的数据,也就是使开关机和PULSE模式下斜坡段的数据输出0,只在斜坡以外的正确时间段输出功率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明公开实施例所提供的一种射频电源信号采集方法的流程图;
图2示出了本发明公开实施例所提供的另一种射频电源信号采集方法的流程图;
图3示出了本发明公开实施例中脉冲结构示意图;
图4示出了本发明公开实施例中示例1的脉冲结构示意图;
图5示出了本发明公开实施例中示例2的脉冲结构示意图;
图6示出了本发明公开实施例中示例3的脉冲结构示意图;
图7示出了本发明公开实施例所提供的又一种射频电源信号采集方法 的流程图;
图8示出了本发明公开实施例中采用数据填补法屏蔽斜坡段数据的一个脉冲结构示意图;
图9示出了本发明公开实施例中采用数据填补法屏蔽斜坡段数据的另一个脉冲结构示意图;
图10示出了本发明公开实施例所提供的又一种射频电源信号采集方法的流程图;
图11示出了本发明公开实施例所提供的基于图10所示方法的又一种射频电源信号采集方法的流程图;
图12示出了本发明公开实施例所提供的一种射频电源信号采集装置的结构示意图;
图13示出了本发明公开实施例所提供的另一种射频电源信号采集装置的结构示意图;
图14示出了本发明公开实施例所提供的一种计算机设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
实施例1
如图1所示,本发明公开实施例所提供的一种射频电源信号采集方法的流程图,方法包括:
S11:确定当前脉冲周期内的上升沿区间和下降沿区间;
S12:将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号;
S13:在上升沿区间和下降沿区间以外,采样数组读取并按顺序输出采样数据。
可以理解的是,本实施例提供的技术方案,确定当前脉冲周期内的上升沿区间和下降沿区间,将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号,用FIFO(First Input First Output,先进先出)采样数组置0来实现屏蔽掉异常段的数据,也就是使开关机和PULSE模式下斜坡段的数据输出0,只在斜坡以外的正确时间段输出功率。
实施例2
如图2所示,本发明公开实施例所提供的另一种射频电源信号采集方法的流程图,参见图3,该方法将脉冲周期内的斜坡阶段产生的异常数据屏蔽掉,该方法包括:
S21:确定当前脉冲周期内的上升沿区间和下降沿区间;
S22:将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号;
S23:在上升沿区间和下降沿区间以外,采样数组读取并按顺序输出采样数据。
在一些实施例中,S22将采样数组内与上升沿区间和下降沿区间对应的 数据位设置为0、信号低位或空信号可以为:通过采样延时或采样数据输出置0的方式将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号。
在一些实施例中,S22可以包括以下步骤:
S221:在上升沿区间内,根据不同的数据判定模式,可以采用不同的数据处理方式。数据判定模式包括:
(A)通过基准阈值判定输入信号是否从信号低位转为上升沿区间,即是指,当信号数据低于基准阈值即视为信号低位(又或信号零位输出,又或是0输出),当信号数据高于基准阈值即视为信号向高位爬升,爬升过程即视为上升沿区间。
在读取采样数据时,一旦读取到、预定导入采样数组的采样数据超过基准阈值时,即认为信号进入上升沿,此时启动采样延时。当采样延时结束时,即恢复正常的采样数据的读取作业。在一些实施例中,采样延时的时长即为上升沿区间的时长。其中,依据对应的采集数组的长度,采取相应的数据处理方式,说明如下:
(A-1)当采集数组的数据位对应的时长大于或等于上升沿区间的时长,通过如下方式择一处理:
(A-11)采样延时期间内,所读取到的采样数据,先设置为0、信号低位或空信号,再填入采样数组。
(A-12)标记采样延时期间内所读取到的,导入采样数组的采样数据,在采样数据输出时,将采样数组内上升沿区间对应的数据位设置为0、信号低位或空信号。
(A-13)启动延时采样时间的期间,不论读取到何种采样数据,整个采样数组的数据仍保持FIFO的运作,当延时采样时间结束,采样数组内的数据栏位全数设置为0、信号低位或空信号,同时进行正常的数据采样作业。
(A-2)当采集数组的数据位对应的时长小于上升沿区间的时长,通过(A-11)或(A-12)的方式对读取的数据进行处理。
(B)通过基准阈值判定输入信号是否从信号低位转为上升沿区间,及通过顶端阈值判定输入信号是否从上升沿区间转为信号高位。
在读取采样数据时,一旦读取到、预定导入采样数组的采样数据超过基准阈值时,即认为信号进入上升沿,此时启动采样延时。当读取到、预定导入采样数组的采样数据超过顶端阈值时,即认为信号从上升沿进入信号高位。此时,结束采样延时,恢复正常的采样数据读取与填入采样数组作业。
在一些实施例中,上升沿区间的时长为已知时,依据对应的采集数组的长度所采取相应的数据处理方式如上述(A-1)与(A-2)。
在一些实施例中,采样延时的时长需视所读取的采样数值在基准阈值与顶端阈值之间的时长,即是按上升沿区间的实际时长而定。即是指,仅通过基准阈值与顶端阈值判定信号低位、上升沿与信号高位。数据处理方式如上述(A-1)与(A-2)。
(C)通过前后读取的采样数值进行对比,依据数据大小变化判定输入信号是否从信号低位转为上升沿区间,及是否从上升沿区间转为信号高位。
在读取采样数据时,一旦读取到、预定导入采样数组的连续的多个采样数据,从恒定的低位数据变成上升数据(读取的前数据低于后数据), 即认为信号进入上升沿,此时启动采样延时。当读取到、预定导入采样数组的连续的多个采样数据,从上升数据变成恒定高位数据(读取的前数据等于后数据)时,即认为信号从上升沿进入信号高位,此时结束采样延时,恢复正常的采样数据读取与填入采样数组作业。
在一些实施例中,上升沿区间的时长为已知时,依据对应的采集数组的长度所采取相应的数据处理方式如上述(A-1)与(A-2)。
在一些实施例中,采样延时的时长需视所读取的采样数值在基准阈值与顶端阈值之间的时长,即是按上升沿区间的实际时长而定。即是指,可不考量上升沿区间的时长,通过恒定数据与上升数据的转换,判定信号低位、上升沿与信号高位。数据处理方式如上述(A-11)与(A-12)。
S222:在下降沿区间内,根据不同的数据判定模式,可以采用不同的数据处理方式。数据判定模式包括:
(D)通过基准阈值判定输入信号是否已到达下降沿区间转至信号低位,即是指,信号已到达下降沿区间末端,进一步的可视为进入信号低位、零位或无输出。
在读取采样数据时,一旦读取到、预定导入采样数组的采样数据低于基准阈值时,即认为信号通过下降沿末端,甚至于达到信号低位、零位或无输出,此时启动采样延时。当采样延时结束时,即恢复正常的采样数据的读取作业。
在一些实施例中,采样延时的时长为采集数组的数据位对应的数据采样时长总和-下降沿时长。其中,采集数组的数据位对应的数据采样时长总和不小于下降沿时长。而依据对应的采集数组的长度,延时处理的方式如 下:
(D-1)采集数组的数据位对应的数据采样时长总和等于下降沿时长,采样延时的时长为0,即形成不启用采样延时,直接进行后续的数据处理。
(D-2)采集数组的数据位对应的数据采样时长总和大于下降沿时长,采样延时的时长即为前述两者的差值,在延时结束后,进行后续的数据处理。
在一些实施例中,若启动延时采样期间(上述D-2),不论读取到何种采样数据,整个采样数组的数据仍保持FIFO的运作,当采样延时时间结束(或上述D-1的不启用采样延时),采样数组内的数据栏位全数设置为0、信号低位或空信号,同时进行正常的数据采样作业。
(E)通过顶端阈值判定输入信号是否从信号高位转为下降沿区间,即是指,当信号数据高于顶端阈值即视为信号高位,当信号数据低于顶端阈值即视为信号向往低位落下,落下过程即视为下降沿区间。
在读取采样数据时,一旦读取到、预定导入采样数组的采样数据低于顶端阈值时,即认为信号进入下降沿,此时启动采样延时。当采样延时结束时,即恢复正常的采样数据的读取作业。
在一些实施例中,采样延时的时长为下降沿区间的时长与采集数组的数据位对应的数据采样时长总和,取两者中较长者;若两者相同,则任择一即可。因此,延时结束后,所读取的采集数据会落于信号低位。
其中,依据对应的采集数组的长度,采取相应的数据处理方式,说明如下:
(E-1)当采集数组的数据位对应的时长大于或等于下降沿区间的时 长,通过如下方式择一处理:
(E-11)采样延时期间内,所读取到的采样数据,先设置为0、信号低位或空信号,再填入采样数组。
(E-12)标记采样延时期间内所读取到的,导入采样数组的采样数据,在采样数据输出时,将采样数组内下降沿区间对应的数据位设置为0、信号低位或空信号。
(E-13)启动延时采样时间的期间,不论读取到何种采样数据,整个采样数组的数据仍保持FIFO的运作,当延时采样时间结束,采样数组内的数据栏位全数设置为0、信号低位或空信号,同时进行正常的数据采样作业。
(E-2)当采集数组的数据位对应的时长小于下降沿区间的时长,通过(E-11)或(E-12)的方式对读取的数据进行处理。
(F)通过顶端阈值判定输入信号是否从信号高位转为下降沿区间,及通过基准阈值判定输入信号是否从下降沿区间转为信号低位。
在读取采样数据时,一旦读取到、预定导入采样数组的采样数据低于顶端阈值时,即认为信号进入下降沿,此时启动采样延时。当读取到、预定导入采样数组的采样数据低于基准阈值时,即认为信号从下降沿进入信号低位。此时,结束采样延时,恢复正常的采样数据读取与填入采样数组作业。
在一些实施例中,采样延时的时长需视所读取的采样数值在基准阈值与顶端阈值之间的时长,即是按下降沿区间的实际时长而定。即是指,仅通过基准阈值与顶端域值判定信号高位、下降沿与信号低位。数据处理方式如上述(E-1)与(E-2)。
(G)通过前后读取的采样数值进行对比,依据数据大小变化判定输入信号是否从信号高位转为下降沿区间,及是否从下降沿区间转为信号低位。
在读取采样数据时,一旦读取到、预定导入采样数组的连续的多个采样数据,从恒定的高位数据变成上升数据(读取的前数据低于后数据),即认为信号进入下降沿,此时启动采样延时。当读取到、预定导入采样数组的连续的多个采样数据,从下降数据变成恒定的低位数据(读取的前数据等于后数据)时,即认为信号从下降沿进入信号低位,此时结束采样延时,恢复正常的采样数据读取与填入采样数组作业。
在一些实施例中,下降沿区间的时长为已知时,依据对应的采集数组的长度所采取相应的数据处理方式如上述(E-1)与(E-2)。
在一些实施例中,采样延时的时长需视所读取的采样数值在基准阈值与顶端阈值之间的时长,即是按上升沿区间的实际时长而定。即是指,可不考量上升沿区间的时长,通过恒定数据与上升数据的转换,判定信号低位、上升沿与信号高位。数据处理方式如上述(E-11)与(E-12)。
在一些实施例中,S22包括:在数据采样时,通过延时采样时间将采样数组内下降沿区间对应的数据位设置为0、信号低位或空信号,或,在采样数据输出时,将采样数组内下降沿区间或下降沿区间对应的数据位设置为0、信号低位或空信号。
在一些实施例中,S221可以包括:当前脉冲周期内的上升沿起始点开始,启动第一采样延时,将采样数组中第一采样延时对应的数据位设置为0、信号低位或空信号;
上述通过延时采样时间将采样数组内下降沿区间对应的数据位设置为 0、信号低位或空信号可以包括:从当前脉冲周期内的下降沿起始点开始,启动第二采样延时,将采样数组中第二采样延时对应的数据位设置为0、信号低位或空信号。
在一些实施例中,尤其在有些不能够获得上升沿功率基准阈值的情况下,S222可以包括:在完成对当前脉冲周期内的上升沿结束点进行信号采样的同时,确定第一异常数据,第一异常数据是采样数组内、从上升沿结束点对应的数据位开始、往前计数第一预设长度内的数据,将第一异常数据置0、信号低位或空信号,第一预设长度为上升沿区间对应的数组长度;
其中,上述将采样数组内下降沿区间对应的数据位设置为0、信号低位或空信号可以通过以下过程实现:在完成对当前脉冲周期内的下降沿结束点进行信号采样的同时,确定第二异常数据,第二异常数据是采样数组内、从下降沿结束点对应的数据位开始、往前计数第二预设长度内的数据,将第二异常数据置0、信号低位或空信号,第二预设长度为下降沿区间对应的数组长度。
在一些实施例中,上述将采样数组中第一采样延时对应的数据位设置为0、信号低位或空信号可以为:将采样数组中第一预设采样时长对应的数据位设置为0、信号低位或空信号,延时结束;上述将采样数组中第二采样延时对应的数据位设置为0、信号低位或空信号可以为:将采样数组中第二预设采样时长对应的数据位设置为0、信号低位或空信号,延时结束。
在一些实施例中,上述将采样数组中第一采样延时对应的数据位设置为0、信号低位或空信号可以为:将采样数组中第一预设数组长度对应的数据位设置为0、信号低位或空信号,延时结束;上述将采样数组中第二采样 延时对应的数据位设置为0、信号低位或空信号可以为:将采样数组中第二预设数组长度对应的数据位设置为0、信号低位或空信号,延时结束。
在一些实施例中,S21可以包括:
a、通过基准阈值、上升沿时长和下降沿时长确定当前脉冲周期内的上升沿区间和下降沿区间,基准阈值用于标记信号低位;或,
b、通过基准阈值和顶端阈值确定当前脉冲周期内的上升沿区间和下降沿区间,顶端阈值用于标记信号高位;或,
c、通过采样点的功率变化确定当前脉冲周期内的上升沿区间和下降沿区间。
在一些实施例中,具体表现为,作检测采样,以采样周期为基数,在功率上升超过上升阈值开始时作为起始,在功率到达下降阈值时作为结束,计算采样个数或采样计时,得到上升沿区间;相反的,在功率下降超过下降阈值开始时作为起始,在功率到达上升阈值时作为结束,计算采样个数或采样计时,得到下降沿区间。
在一些实施例中,第一采样延时时长等于上升沿时长,第二采样延时时长等于下降沿时长。
在一些实施例中,第一预设数组长度≥下降沿时长/采样周期,第二预设数组长度≥下降沿时长/采样周期。
在一些实施例中,第一预设数组长度、第二预设数组长度是由上升沿时长或下降沿时长与采样周期按照预设运算关系确定的。
在一具体实施例中,第一预设数组长度=上升沿时长/采样周期,第二预设数组长度=下降沿时长/采样周期;或者,第一预设数组长度=第二预设 数组长度=上升沿时长/采样周期;或者,第一预设数组长度=第二预设数组长度=下降沿时长/采样周期。
在一些实施例中,若第一预设数组长度=第二预设数组长度=上升沿时长/采样周期,且上升沿时长大于下降沿时长,则通过采样延时或采样数据输出置0的方式将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号包括:
在采样数据输出时,在完成对当前脉冲周期内的下降沿结束点进行信号采样的同时,计算第三延时的时长,第三延时时长是上升沿时长与下降沿时长的差值,启动第三延时,在第三延时结束时,确定第三异常数据,第三异常数据是采样数组内、从第三延时结束点对应的数据位开始、往前计数第三预设长度内的数据,将第三异常数据置0、信号低位或空信号,第三预设长度为下降沿区间对应的数组长度。
在一些实施例中,S21可以包括:获取上升沿起始点,上升沿起始点是在当前脉冲周期内功率第一次大于基准阈值的采样点;获取上升沿结束点,上升沿结束点是在当前脉冲周期内功率第一次大于顶端阈值的采样点;获取下降沿起始点,下降沿起始点是在当前脉冲周期内功率第一次小于下降沿基准阈值的采样点;获取下降沿结束点,下降沿结束点是在当前脉冲周期内功率第一次小于基准阈值的采样点。
为便于读者理解,下面通过具体示例对上述射频电源信号采集方法进行说明,首先,假定上升沿时长10μs(T1),下降沿时长4μs(T2),设定采样数组长度为5,周期1μs:
示例1(已知基准阈值),如图7、图4所示:
在上升沿区间内,通过基准阈值判定输入信号是否从信号低位转为上升沿区间,一旦读取到、预定导入采样数组的采样数据超过基准阈值时,即认为信号进入上升沿,此时启动采样延时。FIFO数组首数位跑到上升沿A点时,下一个采集点的功率(Pa)超过基准阈值时,此时启动延时T1的10μs,此时FIFO数组每一数据限定为0。FIFO数组首数位跑到上升沿B点时,此时结束采样延时,FIFO数组首数位开始填补数据,直到C位时初步填满整个FIFO数组,然后就FIFO理论,数据先进先出,当FIFO数组到达C位之前输出的数据仍为0,直到C点时才输出最初输入的B点数据,一直到达E点前输出数据都为正常输出。
在下降沿区间内,通过基准阈值判定输入信号是否已到达下降沿区间转至信号低位,在读取采样数据时,一旦读取到、预定导入采样数组的采样数据低于基准阈值时,即认为信号通过下降沿末端,甚至于达到信号低位、零位或无输出,此时启动采样延时。在下降沿阶段,FIFO数组首数位跑到下降沿F点时,采集点的功率(Pb)会低于基准阈值,实质输出为D点数据,此时启动延时T2=5us-4us=1us,延时结束时,FIFO数组首数位到达G点,尾数位到达E点,FIFO数组作数据清0输出。
示例2(已知基准阈值、顶端阈值),如图7、图5所示:
在上升沿区间内,通过基准阈值判定输入信号是否从信号低位转为上升沿区间,及通过顶端阈值判定输入信号是否从上升沿区间转为信号高位。在上升沿阶段,FIFO数组首数位跑到上升沿A点时,下一个采集点的功率(Pa)高于基准阈值时,此时启动采样延时。FIFO数组首数位跑到上升沿B点时,下一个采集点的功率(Pa)高于顶端阈值时,此时结束采样延时。 FIFO数组首数位开始填补数据,直到C位时初步填满整个FIFO数组,然后就FIFO理论,数据先进先出,当FIFO数组到达C位之前输出的数据仍为0,直到C点时才输出最初输入的B点数据,一直到达E点前输出数据都为正常输出。
在下降沿区间内,通过顶端阈值判定输入信号是否从信号高位转为下降沿区间,及通过基准阈值判定输入信号是否从下降沿区间转为信号低位,将采样数组内下降沿区间对应的数据位设置为0、信号低位或空信号,数据处理方式如上述(E-1)。FIFO数组首数位跑到下降沿E点时,采集点的功率(Pb)会低于顶端阈值,此时启动采样延时;FIFO数组首数位跑到下降沿F点时,采集点的功率(Pb)会低于基准阈值,此时结束采样延时,恢复正常的采样数据读取与填入采样数组作业。
示例3,如图6所示:
在上升沿区间内,通过前后读取的采样数值进行对比,依据数据大小变化判定输入信号是否从信号低位转为上升沿区间,及是否从上升沿区间转为信号高位,具体可以通过采样点的功率变化确定当前脉冲周期内的上升沿区间,将采样数组内下降沿区间对应的数据位设置为0、信号低位或空信号,数据处理方式如上述(A-1)或(A-1)。
在读取采样数据时,一旦读取到、预定导入采样数组的连续的多个采样数据,从恒定的低位数据变成上升数据(读取的前数据低于后数据),即认为信号进入上升沿,此时启动采样延时。当读取到、预定导入采样数组的连续的多个采样数据,从上升数据变成恒定高位数据(读取的前数据等于后数据)时,即认为信号从上升沿进入信号高位,此时结束采样延时, 恢复正常的采样数据读取与填入采样数组作业。
从开始到A点采集的低功率数据是准确的;A点到B点为上升的斜坡,此时采集的数据不准确;B点到C点采集的高功率数据是准确的。
在下降沿区间内,通过前后读取的采样数值进行对比,依据数据大小变化判定输入信号是否从信号高位转为下降沿区间,及是否从下降沿区间转为信号低位,数据处理方式如上述(E-1)与(E-2)。
在读取采样数据时,一旦读取到、预定导入采样数组的连续的多个采样数据,从恒定的高位数据变成上升数据(读取的前数据低于后数据),即认为信号进入下降沿,此时启动采样延时。当读取到、预定导入采样数组的连续的多个采样数据,从下降数据变成恒定的低位数据(读取的前数据等于后数据)时,即认为信号从下降沿进入信号低位,此时结束采样延时,恢复正常的采样数据读取与填入采样数组作业。
C点到D点为下降的斜坡,此时采集的数据不准确;D点到E点采集的低功率数据是准确的。采集的连续三点功率值P1,P2和P3的时间顺序如图6所示,P1是最晚采集到的数据,P2次之,P3是最早采集到的数据。
对采集的功率值依次作差得到变化量Δ1=P1-P2,Δ2=P2-P3;Δth大于0,为判定所采集的数据是否准确的阈值。当两个变化量的绝对值都满足大于或等于0、空信号数值或信号低位数值,且小于判定阈值Δth时,采集到的数据是准确的。此时要保留采集到的对应数据,否则将异常数据位设置为0、空信号数值或信号低位数值,或,在进行采样数据输出时,跳过异常数据位的数据输出,即Δ1和Δ2至少一个的绝对值大于等于+Δth,则数据不正确,这种情况下将采集到的数据全丢弃。
需要说明的是,本发明实施例中的上升沿时长(T1)和下降沿时长(T2),可通过作检测采样,以采样周期为基数,在功率上升超过上升阈值开始时作为起始,在功率到达下降阈值时作为结束,计算采样个数或采样计时,得到上升沿时长;相反的,在功率下降超过下降阈值开始时作为起始,在功率到达上升阈值时作为结束,计算采样个数或采样计时,得到下降沿时长,也可以是本领域技术人员根据工程需要选择的其它方式,此处不再赘述。该方法尤其适用于在开关机和PULSE模式下,在一个脉冲周期内,解决信号采集不准确的问题。
可以理解的是,本实施例提供的技术方案,确定当前脉冲周期内的上升沿区间和下降沿区间,将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号,用FIFO(First Input First Output,先进先出)采样数组置0来实现屏蔽掉异常段的数据,也就是使开关机和PULSE模式下斜坡段的数据输出0,只在斜坡以外的正确时间段输出功率。
实施例3
一些可选实施例中,为了获取上升沿区间和下降沿区间确定所需的参数值,在实施例1的基础上可以增加采样测试阶段,具体的,如图7所示,本发明公开实施例所提供的另一种射频电源信号采集方法的流程图,方法包括:
S31:采样测试阶段,通过连续采样测试获取预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数。
S32:信号采样阶段,具体包括:
S321:确定当前脉冲周期内的上升沿区间(也称为上升沿数据填补区 间)和下降沿区间(也称为下降沿数据填补区间),具体为,根据预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数分别确定当前脉冲周期内的上升沿区间和下降沿区间。
S322:在采样过程中,采用数据填补法将采样数组中上升沿区间和下降沿区间对应的数据位设置(也即填补)为0、信号低位(也称为信号低位数值)或空信号(也称为空信号数值)。
S323:在所述上升沿区间和所述下降沿区间以外的时间,读取并按顺序输出采样数据。
在具体实践中,如图7中虚线内容所示,步骤S31通过连续采样测试获取预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数包括:
S311:连续采集多个采样点的第一射频电源信号,每个第一射频电源信号包括第一电压V和第一电流I;
S312:根据第一电压V和第一电流I确定预设功率上升阈值、预设功率下降阈值、上升沿填补数据个数和下降沿填补数据个数。
在具体实践中,步骤S321根据预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数分别确定当前脉冲周期内的上升沿区间和下降沿区间包括:
S3211:连续采集多个采样点的第二射频电源信号,每个第二射频电源信号包括第二电压V和第二电流I;
S3212:根据第二电压V和第二电流I确定每个采样点的功率;
S3213:根据每个采样点的功率、功率上升阈值和上升沿填补数据个数 确定上升沿区间的起始点和预设上升沿填补数据个数;
S3214:根据每个采样点的功率、功率下降阈值和下降沿填补数据个数确定下降沿区间的起始点和预设下降沿填补数据个数。
在具体实践中,步骤S312根据第一电压V和第一电流I确定预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数包括:
由P=VI计算每个采样点的功率值,得到:零电位后的第一个特定功率值Pr,顶电位功率均值Pe后的第一个非Pe功率值Pd,将Pr作为功率预设上升阈值,将Pd作为预设功率下降阈值;
在具体实践中,步骤S312根据第一电压V和第一电流I确定预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数还包括:
在具体实践中,可以根据Tr/T确定上升沿过程中预设上升沿填补数据个数,根据Td/T确定下降沿过程中预设下降沿填补数据个数,Td为下降沿时间,Tr为上升沿时间,T为采样周期,其中,下降沿时间和上升沿时间由本领域技术人员通过测试获取,或者通过其它已知手段获取,此处不再赘述。
在具体实践中,在开关机和PULSE模式下,射频电源输出从零电位上升到顶电位需要经过一定的时间,称为上升过程,同理从顶电位下降到零电位的过程称为下降过程。因此,在对射频电源进行连续采样时,会产生斜坡数据段,上述上升过程和下降过程分别对应斜坡段的上升沿和下降沿,这些数据对于射频电源来说是不准确的,应当采取相应方法进行屏蔽。图8 为采用数据填补法屏蔽斜坡段数据的示意图,在上升沿及下降沿阶段填补相应个数的数据0,可以使斜坡数据默认输出为0,从而达到屏蔽斜坡段数据的目的,避免采集到不准确的数值。
为了便于读者理解,下面通过具体示例说明上述射频电源信号采集方法的实现方式。
首先,确定判定阈值及填补数据个数:
在采样测试阶段,首先通过连续采样,得到包含斜坡数据的多组数据。然后对数据进行分析,其中所采集的数据为电压V与电流I,功率值由P=VI计算而来。如图9所示,以零电位后的第一个特定功率值作为功率上升阈值Pr,取顶电位功率均值为Pe,以顶电位后的第一个非Pe功率值作为下降阈值Pd。以上升阈值Pr到顶电位功率均值Pe的时间为上升沿时间Tr,可以确定填补数据的个数,假定采样周期为T,则填补数据个数为Tr/T;同理,以下降阈值Pd到零电位的时间为下降沿时间Td,则填补数据个数为Td/T,所填补数据为0,用以屏蔽斜坡段数据,其中特定功率值由本领域技术人员根据工程需要而测算设定,此处不再赘述。
其次,数据填补法具体流程:
第一种:
在射频电源处于零电位时,采集板正常工作,利用FIFO数组来采集数据,采样周期为T。在开机或PULSE模式时,射频电源从零电位逐渐上升至顶电位,对应的,FIFO数组首数位跑到上升沿A点时,功率开始上升,当功率值高于上升阈值Pr时,启动限定数据填补,向FIFO数组中填补0,个数为Tr/T。
填补Tr/T个数据0后,FIFO数组首数位跑到上升沿B点,关闭限定数据填补,FIFO数组首数位开始填补采样数据,直到C位时采样数据初步填满整个FIFO数组,然就FIFO理论,数据先进先出,当FIFO数组到达C位之前输出的数据仍为限定数据0,直到C点时才输出最初输入的B点数据,一直到达E点前输出数据都为正常输出,此时功率值为顶电位功率均值Pe
在关机或PULSE模式时,射频电源从顶电位逐渐下降至零电位,对应的FIFO数组首数位跑到下降沿E点时,功率开始下降,当功率值低于下降阈值Pd时,启动限定数据填补,向FIFO数组中填补0,个数为Td/T。
填补Td/T个数据0后,FIFO数组首数位跑到下降沿F点,关闭限定数据填补,FIFO数组首数位开始填补采样数据,此时射频电源处于零电位。
上述基于数据填补法的采样流程图如图10所示。
第二种:
参见图11,在开机或PULSE模式时,射频电源从零电位逐渐上升至顶电位,对应的,FIFO数组首数位跑到上升沿A点时,功率开始上升,当功率值到达或高于上升阈值Pr时,启动限定数据填补,向FIFO数组中填补0。
与第一种不同在于,当功率值高于或到达下降阈值Pd时,相应的FIFO数组首数位会非常接近或到达上升沿B点,此时关闭限定数据填补,FIFO数组首数位开始填补采样数据。一般而言,在上升沿填补0的个数会与两阈值的间隔时长对应,在一些实施例中,为Tr/T或其邻近个数。
关闭限定数据填补后,FIFO数组首数位开始填补采样数据,直到C位时采样数据初步填满整个FIFO数组,然就FIFO理论,数据先进先出,当FIFO数组到达C位之前输出的数据仍为限定数据0,直到C点时才输出最 初输入的B点数据,一直到达E点前输出数据都为正常输出,此时功率值为顶电位功率均值Pe
相对的,在关机或PULSE模式时,射频电源从顶电位逐渐下降至零电位,对应的FIFO数组首数位跑到下降沿E点时,功率开始下降,当功率值低于下降阈值Pd时,启动限定数据填补,向FIFO数组中填补0。
与第一种不同在于,当功率值低于或到达下降阈值Pr时,相应的FIFO数组首数位会非常接近或到达下降沿F点,此时关闭限定数据填补,FIFO数组首数位开始填补采样数据。一般而言,在下降沿填补0的个数会与两阈值的间隔时长对应,在一些实施例中,为Td/T或其邻近个数。
关闭限定数据填补后,FIFO数组首数位开始填补采样数据,此时射频电源处于零电位。
第三种:可视为第一种与第二种的组合
就上升沿,FIFO数组首数位跑到上升沿A点时,功率开始上升,当功率值高于上升阈值Pr时,启动限定数据填补,向FIFO数组中填补0,个数为Tr/T。
判断功率值高于或到达下降阈值Pd时,相应的FIFO数组首数位会非常接近或到达上升沿B点,此时关闭限定数据填补,FIFO数组首数位开始填补采样数据。相反的,功率值未到达下降阈值Pd时,继续填补。
就下降沿,FIFO数组首数位跑到下降沿E点时,功率开始下降,当功率值低于下降阈值Pd时,启动限定数据填补,向FIFO数组中填补0,个数为Td/T。
判断功率值低于或到达上升阈值Pr时,相应的FIFO数组首数位会非常 接近或到达上升沿F点,此时关闭限定数据填补,FIFO数组首数位开始填补采样数据。相反的,功率值未到达上升阈值Pr时,继续填补。
可以理解的是,本实施例提供的技术方案,采用数据填补法屏蔽斜坡段数据,在上升沿及下降沿阶段填补相应个数的数据0,可以使斜坡数据默认输出为0,从而达到屏蔽斜坡段数据的目的,避免采集到不准确的数值就上升沿和下降沿填补相应个数的限定数据,解决相关技术中采集板在斜坡阶段读取的数据不正确,影响后续功率值和阻抗值计算的问题。
实施例4
如图12所示,本发明实施例还提供一种射频电源信号采集装置,包括:
异常数据区间确定模块71,用于确定当前脉冲周期内的上升沿区间和下降沿区间;
采样数据置0模块72,用于将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号。
在一些实施例中,如图12中虚线部分所示,该装置还包括:
FIFO数组输出模块73,用于在上升沿区间和下降沿区间以外,采样数组读取并按顺序输出采样数据。
在一些实施例中,上述采样数据置0模块72将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号为:采样数据置0模块72通过采样延时或采样数据输出置0的方式将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号。
在一些实施例中,如图12中虚线部分所示,采样数据置0模块72包括:
上升沿异常处理子模块721,用于在上升沿区间内,在数据采样时,通过延时采样时间将采样数组内上升沿区间对应的数据位设置为0、信号低位或空信号,或,在采样数据输出时,将采样数组内上升沿区间对应的数据位设置为0、信号低位或空信号;
下降沿异常处理子模块722,用于在下降沿区间内,在数据采样时,通过延时采样时间将采样数组内下降沿区间对应的数据位设置为0、信号低位或空信号,或,在采样数据输出时,将采样数组内下降沿区间或下降沿区间对应的数据位设置为0、信号低位或空信号。
在一些实施例中,上述上升沿异常处理子模块721在采样过程中,通过延时采样时间将采样数组内上升沿区间对应的数据位设置为0、信号低位或空信号包括:上升沿异常处理子模块721当前脉冲周期内的上升沿起始点开始,启动第一采样延时,将采样数组中第一采样延时对应的数据位设置为0、信号低位或空信号。上述下降沿异常处理子模块722通过延时采样时间将采样数组内下降沿区间对应的数据位设置为0、信号低位或空信号包括:从当前脉冲周期内的下降沿起始点开始,启动第二采样延时,将采样数组中第二采样延时对应的数据位设置为0、信号低位或空信号。
在一些实施例中,上述上升沿异常处理子模块721将采样数组内上升沿区间对应的数据位设置为0、信号低位或空信号包括:在完成对当前脉冲周期内的上升沿结束点进行信号采样的同时,确定第一异常数据,第一异常数据是采样数组内、从上升沿结束点对应的数据位开始、往前计数第一预设长度内的数据,将第一异常数据置0、信号低位或空信号,第一预设长度为上升沿区间对应的数组长度;上述下降沿异常处理子模块722将采样 数组内下降沿区间对应的数据位设置为0、信号低位或空信号包括:在完成对当前脉冲周期内的下降沿结束点进行信号采样的同时,确定第二异常数据,第二异常数据是采样数组内、从下降沿结束点对应的数据位开始、往前计数第二预设长度内的数据,将第二异常数据置0、信号低位或空信号,第二预设长度为下降沿区间对应的数组长度。
在一些实施例中,上述上升沿异常处理子模块721将采样数组中第一采样延时对应的数据位设置为0、信号低位或空信号为:将采样数组中第一预设采样时长对应的数据位设置为0、信号低位或空信号,延时结束;上述下降沿异常处理子模块722将采样数组中第二采样延时对应的数据位设置为0、信号低位或空信号为:将采样数组中第二预设采样时长对应的数据位设置为0、信号低位或空信号,延时结束。
在一些实施例中,上述上升沿异常处理子模块721将采样数组中第一采样延时对应的数据位设置为0、信号低位或空信号为:上升沿异常处理子模块721将采样数组中第一预设数组长度对应的数据位设置为0、信号低位或空信号,延时结束;上述下降沿异常处理子模块722将采样数组中第二采样延时对应的数据位设置为0、信号低位或空信号为:下降沿异常处理子模块722将采样数组中第二预设数组长度对应的数据位设置为0、信号低位或空信号,延时结束。
在一些实施例中,异常数据区间确定模块71包括:
基准阈值确定单元,用于通过基准阈值、上升沿时长和下降沿时长确定当前脉冲周期内的上升沿区间和下降沿区间,所述基准阈值用于标记信号低位;或,
顶端阈值确定单元,用于通过所述基准阈值和顶端阈值确定当前脉冲周期内的上升沿区间和下降沿区间,所述顶端阈值用于标记信号高位;或,
功率确定单元,用于通过采样点的功率变化确定当前脉冲周期内的上升沿区间和下降沿区间。
在一些实施例中,第一预设采样时长等于上升沿时长,第二预设采样时长等于下降沿时长。
在一些实施例中,第一预设数组长度、第二预设数组长度是由上升沿时长或下降沿时长与采样周期按照预设运算关系确定的。
在一具体实施例中,第一预设数组长度=上升沿时长/采样周期,第二预设数组长度=下降沿时长/采样周期;或者,第一预设数组长度=第二预设数组长度=上升沿时长/采样周期;或者,第一预设数组长度=第二预设数组长度=下降沿时长/采样周期。
在一些实施例中,如图12中虚线内容所示,异常数据区间确定模块71包括:
上升沿起始点获取子模块711,上升沿起始点是在当前脉冲周期内功率第一次大于上升沿基准阈值的采样点;
下降沿起始点获取子模块712,下降沿起始点是在当前脉冲周期内功率第一次小于下降沿基准阈值的采样点。
在一些实施例中,若第一预设数组长度=第二预设数组长度=上升沿时长/采样周期,且上升沿时长大于下降沿时长,则采样数据置0模块72通过采样延时或采样数据输出置0的方式将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号包括:在采样数据输出时, 采样数据置0模块72在完成对当前脉冲周期内的下降沿结束点进行信号采样的同时,计算第三延时的时长,第三延时时长是上升沿时长与下降沿时长的差值,启动第三延时,在第三延时结束时,确定第三异常数据,第三异常数据是采样数组内、从第三延时结束点对应的数据位开始、往前计数第三预设长度内的数据,将第三异常数据设置为0、信号低位或空信号,第三预设长度为下降沿区间对应的数组长度。
可以理解的是,本实施例提供的技术方案,确定当前脉冲周期内的上升沿区间和下降沿区间,将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号,用FIFO(First Input First Output,先进先出)采样数组置0来实现屏蔽掉异常段的数据,也就是使开关机和PULSE模式下斜坡段的数据输出0,只在斜坡以外的正确时间段输出功率。
实施例5
如图13所示,本发明实施例还提供一种射频电源信号采集装置,包括信号采样模块81,信号采样模块81包括:
异常数据区间确定模块811(也称为填补区间确定子模块),用于根据预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数分别确定当前脉冲周期内的上升沿区间和下降沿区间;
采样数据置0模块812(也称为数据填补子模块),用于在采样过程中,将采样数组中上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号。
在具体实践中,如图13中虚线部分所示,信号采样模块81还包括:
数组输出模块813,用于在上升沿区间和下降沿区间以外的时间内采集并输出相应采样点数据。
在具体实践中,如图13中虚线部分所示,该装置还包括:
采样测试模块82,通过连续采样测试获取预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数。
在具体实践中,如图13中虚线部分所示,采样测试模块82包括:
第一信号采集子模块821,用于连续采集多个采样点的第一射频电源信号,每个第一射频电源信号包括第一电压V和第一电流I;
阈值确定子模块822,用于根据第一电压V和第一电流I确定预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数。
在具体实践中,异常数据区间确定模块811包括:
第二信号采集子模块,用于连续采集多个采样点的第二射频电源信号,每个第二射频电源信号包括第二电压V和第二电流I;
采样点功率确定子模块,用于根据第二电压V和第二电流I确定每个采样点的功率;
上升沿阈值数据确定子模块,用于根据每个采样点的功率、功率上升阈值和上升沿填补数据个数确定上升沿区间的起始点和预设上升沿填补数据个数;
下降沿阈值数据确定子模块,用于根据每个采样点的功率、功率下降阈值和下降沿填补数据个数确定下降沿区间的起始点和预设下降沿填补数据个数。
在具体实践中,阈值确定子模块822根据第一电压V和第一电流I确定预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数包括:
阈值确定子模块822由P=VI计算每个采样点的功率值,得到:零电位后的第一个特定功率值Pr,顶电位功率均值Pe后的第一个非Pe功率值Pd,将Pr作为预设功率上升阈值,将Pd作为预设功率下降阈值。
阈值确定子模块822根据Tr/T确定上升沿过程中预设上升沿填补数据个数,根据Td/T确定下降沿过程中预设下降沿填补数据个数,Td为下降沿时间,Tr为上升沿时间,T为采样周期。
可以理解的是,本实施例提供的技术方案,采用数据填补法屏蔽斜坡段数据,在上升沿及下降沿阶段填补相应个数的数据0,可以使斜坡数据默认输出为0,从而达到屏蔽斜坡段数据的目的,避免采集到不准确的数值就上升沿和下降沿填补相应个数的限定数据,解决相关技术中采集板在斜坡阶段读取的数据不正确,影响后续功率值和阻抗值计算的问题。
实施例6
基于同一技术构思,本申请实施例还提供了一种计算机设备,包括存储器1和处理器2,如图14所示,所述存储器1存储有计算机程序,所述处理器2执行所述计算机程序时实现上述任一项所述的射频电源信号采集方法。
其中,存储器1至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、磁性存储器、磁盘、光盘等。存储器1在一些实施例中可以是OTT视频业 务监控系统的内部存储单元,例如硬盘。存储器1在另一些实施例中也可以是OTT视频业务监控系统的外部存储设备,例如插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器1还可以既包括OTT视频业务监控系统的内部存储单元也包括外部存储设备。存储器1不仅可以用于存储安装于OTT视频业务监控系统的应用软件及各类数据,例如OTT视频业务监控程序的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。
处理器2在一些实施例中可以是一中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,用于运行存储器1中存储的程序代码或处理数据,例如执行OTT视频业务监控程序等。
可以理解的是,本实施例提供的技术方案,确定当前脉冲周期内的上升沿区间和下降沿区间,将采样数组内与上升沿区间和下降沿区间对应的数据位设置为0、信号低位或空信号,用FIFO(First Input First Output,先进先出)采样数组置0来实现屏蔽掉异常段的数据,也就是使开关机和PULSE模式下斜坡段的数据输出0,只在斜坡以外的正确时间段输出功率。
本发明公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述方法实施例中所述的射频电源信号采集方法的步骤。其中,该存储介质可以是易失性或非易失的计算机可读取存储介质。
本发明公开实施例所提供的射频电源信号采集方法的计算机程序产 品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的指令可用于执行上述方法实施例中所述的射频电源信号采集方法的步骤,具体可参见上述方法实施例,在此不再赘述。
本发明公开实施例还提供一种计算机程序,该计算机程序被处理器执行时实现前述实施例的任意一种方法。该计算机程序产品可以具体通过硬件、软件或其结合的方式实现。在一个可选实施例中,所述计算机程序产品具体体现为计算机存储介质,在另一个可选实施例中,计算机程序产品具体体现为软件产品,例如软件开发包(Software Development Kit,SDK)等等。
可以理解的是,上述各实施例中相同或相似部分可以相互参考,在一些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是指至少两个。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合 适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (23)

  1. 一种射频电源信号采集方法,其特征在于,包括:
    确定当前脉冲周期内的上升沿区间和下降沿区间;
    将采样数组内与所述上升沿区间和所述下降沿区间对应的数据位设置为0、信号低位或空信号。
  2. 根据权利要求1所述的射频电源信号采集方法,其特征在于,所述将采样数组内与所述上升沿区间和所述下降沿区间对应的数据位设置为0、信号低位或空信号为:通过采样延时或采样数据输出置0的方式将采样数组内与所述上升沿区间和所述下降沿区间对应的数据位设置为0、信号低位或空信号。
  3. 根据权利要求2所述的射频电源信号采集方法,其特征在于,所述通过采样延时或采样数据输出置0的方式将采样数组内与所述上升沿区间和所述下降沿区间对应的数据位设置为0、信号低位或空信号包括:
    在上升沿区间内,在数据采样时,通过延时采样时间将采样数组内所述上升沿区间对应的数据位设置为0、信号低位或空信号,或,在采样数据输出时,将采样数组内所述上升沿区间对应的数据位设置为0、信号低位或空信号;
    在下降沿区间内,在数据采样时,通过延时采样时间将采样数组内所述下降沿区间对应的数据位设置为0、信号低位或空信号,或,在采样数据输出时,将采样数组内所述下降沿区间或所述下降沿区间对应的数据位设置为0、信号低位或空信号。
  4. 根据权利要求3所述的射频电源信号采集方法,其特征在于,所述 通过延时采样时间将采样数组内所述上升沿区间对应的数据位设置为0、信号低位或空信号包括:当前脉冲周期内的上升沿起始点开始,启动第一采样延时,将采样数组中所述第一采样延时对应的数据位设置为0、信号低位或空信号;
    所述通过延时采样时间将采样数组内所述下降沿区间对应的数据位设置为0、信号低位或空信号包括:从当前脉冲周期内的下降沿起始点开始,启动第二采样延时,将采样数组中所述第二采样延时对应的数据位设置为0、信号低位或空信号。
  5. 根据权利要求3所述的射频电源信号采集方法,其特征在于,所述将采样数组内所述上升沿区间对应的数据位设置为0、信号低位或空信号包括:在完成对当前脉冲周期内的上升沿结束点进行信号采样的同时,确定第一异常数据,所述第一异常数据是所述采样数组内、从所述上升沿结束点对应的数据位开始、往前计数第一预设长度内的数据,将所述第一异常数据置0、信号低位或空信号,所述第一预设长度为所述上升沿区间对应的数组长度;
    所述将采样数组内所述下降沿区间对应的数据位设置为0、信号低位或空信号包括:在完成对当前脉冲周期内的下降沿结束点进行信号采样的同时,确定第二异常数据,所述第二异常数据是所述采样数组内、从所述下降沿结束点对应的数据位开始、往前计数第二预设长度内的数据,将所述第二异常数据置0、信号低位或空信号,所述第二预设长度为所述下降沿区间对应的数组长度。
  6. 根据权利要求4所述的射频电源信号采集方法,其特征在于,所述 将采样数组中所述第一采样延时对应的数据位设置为0、信号低位或空信号为:将采样数组中第一预设采样时长对应的数据位设置为0、信号低位或空信号,延时结束;
    所述将采样数组中所述第二采样延时对应的数据位设置为0、信号低位或空信号为:将采样数组中第二预设采样时长对应的数据位设置为0、信号低位或空信号,延时结束。
  7. 根据权利要求4所述的射频电源信号采集方法,其特征在于,所述将采样数组中所述第一采样延时对应的数据位设置为0、信号低位或空信号为:将采样数组中第一预设数组长度对应的数据位设置为0、信号低位或空信号,延时结束;
    所述将采样数组中所述第二采样延时对应的数据位设置为0、信号低位或空信号为:将采样数组中第二预设数组长度对应的数据位设置为0、信号低位或空信号,延时结束。
  8. 根据权利要求4所述的射频电源信号采集方法,其特征在于,所述确定当前脉冲周期内的上升沿区间和下降沿区间包括:
    通过基准阈值、上升沿时长和下降沿时长确定当前脉冲周期内的上升沿区间和下降沿区间,所述基准阈值用于标记信号低位;或,
    通过所述基准阈值和顶端阈值确定当前脉冲周期内的上升沿区间和下降沿区间,所述顶端阈值用于标记信号高位;或,
    通过采样点的功率变化确定当前脉冲周期内的上升沿区间和下降沿区间。
  9. 根据权利要求6所述的射频电源信号采集方法,其特征在于,所述 第一预设采样时长等于上升沿时长,所述第二预设采样时长等于下降沿时长。
  10. 根据权利要求7所述的射频电源信号采集方法,其特征在于,所述第一预设数组长度、所述第二预设数组长度是由所述上升沿时长或所述下降沿时长与采样周期按照预设运算关系确定的。
  11. 根据权利要求10所述的射频电源信号采集方法,其特征在于,所述第一预设数组长度=上升沿时长/采样周期,所述第二预设数组长度=下降沿时长/采样周期;或者,所述第一预设数组长度=所述第二预设数组长度=上升沿时长/采样周期;或者,所述第一预设数组长度=所述第二预设数组长度=下降沿时长/采样周期。
  12. 根据权利要求8所述的射频电源信号采集方法,其特征在于,所述通过采样点的功率变化确定当前脉冲周期内的上升沿区间和下降沿区间包括:
    获取上升沿起始点,所述上升沿起始点是在当前脉冲周期内功率第一次大于上升沿基准阈值的采样点;
    获取下降沿起始点,所述下降沿起始点是在当前脉冲周期内功率第一次小于下降沿基准阈值的采样点。
  13. 根据权利要求1-12任一项所述的射频电源信号采集方法,其特征在于,还包括:在所述上升沿区间和所述下降沿区间以外,所述采样数组读取并按顺序输出采样数据。
  14. 根据权利要求11所述的射频电源信号采集方法,其特征在于,若所述第一预设数组长度=所述第二预设数组长度=上升沿时长/采样周期,且 上升沿时长大于下降沿时长,则所述通过采样延时或采样数据输出置0的方式将采样数组内与所述上升沿区间和所述下降沿区间对应的数据位设置为0、信号低位或空信号包括:
    在采样数据输出时,在完成对当前脉冲周期内的下降沿结束点进行信号采样的同时,计算第三延时的时长,所述第三延时时长是所述上升沿时长与所述下降沿时长的差值,启动第三延时,在所述第三延时结束时,确定第三异常数据,所述第三异常数据是所述采样数组内、从所述第三延时结束点对应的数据位开始、往前计数第三预设长度内的数据,将所述第三异常数据置0、信号低位或空信号,所述第三预设长度为所述下降沿区间对应的数组长度。
  15. 根据权利要求1所述的射频电源信号采集方法,其特征在于,所述确定当前脉冲周期内的上升沿区间和下降沿区间包括:
    根据预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数分别确定当前脉冲周期内的上升沿区间和下降沿区间。
  16. 根据权利要求15所述的射频电源信号采集方法,其特征在于,在所述确定当前脉冲周期内的上升沿区间和下降沿区间之前,所述方法还包括:
    通过连续采样测试获取所述预设功率上升阈值、所述预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数。
  17. 根据权利要求16所述的射频电源信号采集方法,其特征在于,所述通过连续采样测试获取所述预设功率上升阈值、所述预设功率下降阈值、 预设上升沿填补数据个数和预设下降沿填补数据个数包括:
    连续采集多个采样点的第一射频电源信号,每个所述第一射频电源信号包括第一电压V和第一电流I;
    根据所述第一电压V和所述第一电流I确定所述预设功率上升阈值、所述预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数。
  18. 根据权利要求16所述的射频电源信号采集方法,其特征在于,所述根据预设功率上升阈值、预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数分别确定当前脉冲周期内的上升沿区间和下降沿区间包括:
    连续采集多个采样点的第二射频电源信号,每个所述第二射频电源信号包括第二电压V和第二电流I;
    根据所述第二电压V和所述第二电流I确定每个采样点的功率;
    根据每个所述采样点的功率、所述功率上升阈值和所述上升沿填补数据个数确定所述上升沿区间的起始点和所述预设上升沿填补数据个数;
    根据每个所述采样点的功率、所述功率下降阈值和所述下降沿填补数据个数确定所述下降沿区间的起始点和所述预设下降沿填补数据个数。
  19. 根据权利要求17所述的射频电源信号采集方法,其特征在于,所述根据所述第一电压V和所述第一电流I确定所述预设功率上升阈值、所述预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数包括:
    由P=VI计算每个采样点的功率值,得到:零电位后的第一个特定功率 值Pr,顶电位功率均值Pe后的第一个非Pe功率值Pd,将Pr作为所述预设功率上升阈值,将Pd作为所述预设功率下降阈值。
  20. 根据权利要求19所述的射频电源信号采集方法,其特征在于,所述根据所述第一电压V和所述第一电流I确定所述预设功率上升阈值、所述预设功率下降阈值、预设上升沿填补数据个数和预设下降沿填补数据个数还包括:
    根据Tr/T确定上升沿过程中所述预设上升沿填补数据个数,根据Td/T确定下降沿过程中所述预设下降沿填补数据个数,Td为下降沿时间,Tr为上升沿时间,T为采样周期。
  21. 一种射频电源信号采集装置,其特征在于,包括:
    异常数据区间确定模块,用于确定当前脉冲周期内的上升沿区间和下降沿区间;
    采样数据置0模块,用于将采样数组内与所述上升沿区间和所述下降沿区间对应的数据位设置为0、信号低位或空信号。
  22. 一种计算机设备,其特征在于,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当计算机设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行如权利要求1至20中任一项所述的射频电源信号采集方法。
  23. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行如权利要求1至20中任一项所述的射频电源信号采集方法。
PCT/CN2023/110657 2022-08-08 2023-08-02 一种射频电源信号采集方法及装置 WO2024032432A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210943878.3A CN115015796B (zh) 2022-08-08 2022-08-08 一种射频电源信号采集方法及装置
CN202210943879.8 2022-08-08
CN202210943878.3 2022-08-08
CN202210943879.8A CN115015618B (zh) 2022-08-08 2022-08-08 一种射频电源信号采集方法及装置

Publications (1)

Publication Number Publication Date
WO2024032432A1 true WO2024032432A1 (zh) 2024-02-15

Family

ID=89850820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110657 WO2024032432A1 (zh) 2022-08-08 2023-08-02 一种射频电源信号采集方法及装置

Country Status (1)

Country Link
WO (1) WO2024032432A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050128916A1 (en) * 2003-11-11 2005-06-16 Samsung Electronics Co., Ltd. Recording and/or reproducing apparatus and method with asignal quality determining device and method
TWI268487B (en) * 2005-10-12 2006-12-11 Realtek Semiconductor Corp Apparatus and method for jitter measurement in an optical storage system
JP2010263452A (ja) * 2009-05-08 2010-11-18 Shindengen Electric Mfg Co Ltd 高周波電源装置
CN104715988A (zh) * 2013-12-17 2015-06-17 中微半导体设备(上海)有限公司 等离子体处理装置及其基片直流偏置电压测量方法
CN105277801A (zh) * 2015-08-10 2016-01-27 工业和信息化部电信研究院 一种测量调制脉冲参数的方法
CN105549487A (zh) * 2016-01-26 2016-05-04 广州龙之杰科技有限公司 一种数字信号边沿延时修正系统及方法
CN107402597A (zh) * 2017-07-31 2017-11-28 上海联影医疗科技有限公司 一种数据与时钟对齐的方法、装置、介质及磁共振设备
CN107836031A (zh) * 2015-07-13 2018-03-23 Mks仪器有限公司 用于连续模式和脉冲模式操作的统一rf功率传输单输入、多输出控制
CN109171787A (zh) * 2018-08-27 2019-01-11 苏州瑞派宁科技有限公司 脉冲信号的采样方法、装置和计算机程序介质
CN114520677A (zh) * 2020-11-18 2022-05-20 中微半导体设备(上海)股份有限公司 一种射频功率控制方法及等离子体处理装置
CN115015796A (zh) * 2022-08-08 2022-09-06 深圳市恒运昌真空技术有限公司 一种射频电源信号采集方法及装置
CN115015618A (zh) * 2022-08-08 2022-09-06 深圳市恒运昌真空技术有限公司 一种射频电源信号采集方法及装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050128916A1 (en) * 2003-11-11 2005-06-16 Samsung Electronics Co., Ltd. Recording and/or reproducing apparatus and method with asignal quality determining device and method
TWI268487B (en) * 2005-10-12 2006-12-11 Realtek Semiconductor Corp Apparatus and method for jitter measurement in an optical storage system
JP2010263452A (ja) * 2009-05-08 2010-11-18 Shindengen Electric Mfg Co Ltd 高周波電源装置
CN104715988A (zh) * 2013-12-17 2015-06-17 中微半导体设备(上海)有限公司 等离子体处理装置及其基片直流偏置电压测量方法
CN107836031A (zh) * 2015-07-13 2018-03-23 Mks仪器有限公司 用于连续模式和脉冲模式操作的统一rf功率传输单输入、多输出控制
CN105277801A (zh) * 2015-08-10 2016-01-27 工业和信息化部电信研究院 一种测量调制脉冲参数的方法
CN105549487A (zh) * 2016-01-26 2016-05-04 广州龙之杰科技有限公司 一种数字信号边沿延时修正系统及方法
CN107402597A (zh) * 2017-07-31 2017-11-28 上海联影医疗科技有限公司 一种数据与时钟对齐的方法、装置、介质及磁共振设备
CN109171787A (zh) * 2018-08-27 2019-01-11 苏州瑞派宁科技有限公司 脉冲信号的采样方法、装置和计算机程序介质
CN114520677A (zh) * 2020-11-18 2022-05-20 中微半导体设备(上海)股份有限公司 一种射频功率控制方法及等离子体处理装置
CN115015796A (zh) * 2022-08-08 2022-09-06 深圳市恒运昌真空技术有限公司 一种射频电源信号采集方法及装置
CN115015618A (zh) * 2022-08-08 2022-09-06 深圳市恒运昌真空技术有限公司 一种射频电源信号采集方法及装置

Similar Documents

Publication Publication Date Title
CN103842835B (zh) 自主式通道级老化监控装置和方法
US7330061B2 (en) Method and apparatus for correcting the duty cycle of a digital signal
US9354261B2 (en) Duty cycle detecting circuit for pulse width modulation
US7595675B2 (en) Duty cycle measurement method and apparatus that operates in a calibration mode and a test mode
US8522067B2 (en) Variable latency interface for read/write channels
US9716506B2 (en) Phase lock method
US10256801B2 (en) Integrated circuit with clock detection and selection function and related method and storage device
CN115015796B (zh) 一种射频电源信号采集方法及装置
CN104704477A (zh) 针对外部存储器调谐序列的最佳使用的算法
US11342146B2 (en) System and method for energy monitoring
US20090285061A1 (en) Device and method for reproducing digital signal and device and method for recording digital signal
TW202407355A (zh) 一種射頻電源信號採集方法及裝置(一)
WO2024032431A1 (zh) 一种射频电源信号采集方法及装置
CN103563249A (zh) Pll双边沿锁定检测器
US20140327467A1 (en) Energy tracking system
US20140244203A1 (en) Testing system and method of inter-integrated circuit bus
WO2024032432A1 (zh) 一种射频电源信号采集方法及装置
US7895457B2 (en) Memory card with power saving
CN111351972A (zh) 终端空闲态睡眠电流探测方法和装置
JP6796731B2 (ja) 電圧検出システム及び方法
US8120379B2 (en) Operating characteristic measurement device and methods thereof
JP2014045266A (ja) 半導体装置
US11853188B2 (en) Method for generating power profile in low power processor
KR101273750B1 (ko) 카운터를 이용한 팬의 회전속도 측정 방법
US8885671B1 (en) System for compensating for periodic noise in time interleaved system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851653

Country of ref document: EP

Kind code of ref document: A1