WO2024032345A1 - 设置为声纹监测的聚音装置及制备方法 - Google Patents

设置为声纹监测的聚音装置及制备方法 Download PDF

Info

Publication number
WO2024032345A1
WO2024032345A1 PCT/CN2023/108399 CN2023108399W WO2024032345A1 WO 2024032345 A1 WO2024032345 A1 WO 2024032345A1 CN 2023108399 W CN2023108399 W CN 2023108399W WO 2024032345 A1 WO2024032345 A1 WO 2024032345A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
laser
concentrating device
sound wave
zigzag
Prior art date
Application number
PCT/CN2023/108399
Other languages
English (en)
French (fr)
Inventor
李勇
陈挺
鞠玲
印吉景
张泽
徐兴春
翁蓓蓓
揣振国
吴艳
陈利
程阳
何天雨
袁乐
钱杰
汤德宝
朱岩泉
丁安琪
卞凯鸣
陈文�
胡万剑
戴红波
时维俊
Original Assignee
国网江苏省电力有限公司泰州供电分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网江苏省电力有限公司泰州供电分公司 filed Critical 国网江苏省电力有限公司泰州供电分公司
Publication of WO2024032345A1 publication Critical patent/WO2024032345A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/28Sound-focusing or directing, e.g. scanning using reflection, e.g. parabolic reflectors

Definitions

  • the present application relates to the technical field of voiceprint monitoring, for example, to a sound focusing device configured for voiceprint monitoring and a preparation method.
  • a typical example is low-frequency ultrasonic testing technology used in insulation diagnosis of high-voltage equipment. Since the use of sound to monitor the operating status of power equipment can achieve non-contact and loss-free measurement, acoustic voiceprint detection technology has been vigorously promoted. With several innovations in signal transmission technology and the advent of the big data era, acoustic voiceprint monitoring technology has gradually developed towards intelligence and networking.
  • CN114280436A provides an F-P ultrasonic sensor array implantation device for monitoring partial discharge of power equipment.
  • the device consists of an F-P ultrasonic sensor support, an F-P ultrasonic sensor array and an optical fiber terminal.
  • the array can be implanted inside power equipment with a coaxial structure of bushings and current transformers, and can sensitively and quickly detect ultrasonic signals generated by partial discharges in multiple parts of the power equipment, such as bushings, body, leads, coils, etc.
  • the detection range can Covers the ultrasonic frequency band of 20kHz to 300kHz.
  • the monitored sound wave frequency band range is narrow, and weak acoustic signals cannot be monitored. It cannot fully realize the intelligent standard for voiceprint monitoring of power equipment.
  • the sound concentration device used in voiceprint monitoring technology is a key component of voiceprint monitoring.
  • Related technologies mostly focus on the design and improvement of its mechanical structure.
  • the problem of large monitoring sound loss has always existed, which seriously affects the sound quality of power equipment.
  • the monitoring effect of wrinkles has always existed, which seriously affects the sound quality of power equipment.
  • This application provides a sound concentrating device configured for voiceprint monitoring and a preparation method.
  • the pattern array is set to a zigzag groove array, the corresponding groove width and depth are set, and the inclination angle of the horn-shaped front end is correspondingly adjusted, thereby reducing the loss rate of the collected sound waves and increasing the reflectivity.
  • the present application provides a sound concentrating device configured for voiceprint monitoring.
  • the sound concentrating device has a cone structure, including a front end and a rear end.
  • the front end is in the shape of a trumpet, and the inner wall surface of the front end is in a pattern array.
  • the microstructure of the pattern array is formed by laser etching;
  • the sound wave frequency monitored by the sound concentrating device is 50Hz ⁇ 10kHz.
  • the sound wave enters the sound concentrating device from the front entrance, is reflected by the microstructure of the pattern array on the inner wall surface, and is transmitted from the rear exit.
  • the sound pressure at the rear exit is equal to that of the front exit. 4 to 8 times the entrance sound pressure.
  • this application also provides a method for preparing the above sound concentrating device, including:
  • the sound concentrating device is prefabricated into a cone structure, and the sound concentrating device includes a front end part and a rear end part;
  • the parameter categories of the laser include laser pulse width, laser wavelength, power range and scanning speed;
  • the laser focusing method build a laser focusing device to focus the laser beam emitted by the laser;
  • the laser is started, and the inner wall surface of the front end is laser etched to prepare the microstructure of the inner surface of the sound concentrating device.
  • Figure 1 is an overall structural diagram of a sound focusing device configured for voiceprint monitoring provided by an embodiment of the present application
  • Figure 2 is a partial cross-sectional view of a sound focusing device configured for voiceprint monitoring provided by an embodiment of the present application
  • Figure 3 is a schematic structural diagram of a zigzag groove array on the inner wall surface of the front end provided by an embodiment of the present application;
  • Figure 4 is a schematic diagram of the reflection path of sound waves under a back-shaped groove array on the inner wall surface of the front end provided by an embodiment of the present application;
  • Figure 5 is a flowchart of a method for preparing a sound concentrating device provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of a laser focusing device focusing a laser beam according to an embodiment of the present application.
  • this application provides a sound concentrating device configured for voiceprint monitoring.
  • the sound concentrating device as a whole has a cone structure, including a front end 1 and a rear end 2.
  • the front end 1 is in the shape of a trumpet.
  • the inner wall surface of the front end 1 is a microstructure 3 showing a pattern array, and the microstructure 3 of the pattern array is formed by laser etching.
  • the sound wave frequency monitored by the sound concentrating device is 50Hz ⁇ 10kHz.
  • the sound wave enters the sound concentrating device from the entrance of the front end 1, is reflected by the microstructure 3 of the pattern array on the inner wall surface, and is transmitted from the exit of the rear end 2.
  • the rear end 2 The exit sound pressure is 4 to 8 times the inlet sound pressure of the front end 1.
  • the front section of the front end 1 is the inlet of the sound wave, and the rear section is the outlet of the sound wave. After the sound wave is transmitted from the front end 1, it enters the rear end 2, and then enters the follow-up device of voiceprint monitoring from the rear end 2, thereby completing the detection. Collection of weak acoustic signals from power equipment.
  • the surface of sound concentrating equipment in the related art is relatively smooth and cannot control the directionality of reflected sound waves.
  • the improvement of the sound concentrating device in this application adopts the idea of material surface micro-processing, and uses ultrafast laser micro-nano processing technology to control the size and shape of the acoustic microstructure on the inner surface of the sound concentrating device.
  • the inner wall surface of the part 1 is etched to form a pattern array of microstructures 3, which increases the control of sound waves on the inner surface of the sound concentrator and enhances the directivity of the sound.
  • the material of the sound concentrator configured for voiceprint monitoring can be metal or plastic, and the front end 1 and the rear end 2 can also be made of different materials, which are not limited here.
  • the length of the front end part 1 is set to 5cm-30cm, and the length of the rear end part 2 is set to 2cm-10cm.
  • the inner wall surface of the front end 1 is laser-etched into a patterned microstructure 3, and the inner wall surface of the rear end 2 is a relatively smooth surface, with a roughness of 0.1 ⁇ m to 1 ⁇ m.
  • Setting the size of the front end 1 and the rear end 2 of the sound concentrator can make the sound waves reflect on the inner wall surface of the front end 1 and then mirrorly reflect through the relatively smooth surface of the rear end 2, thereby realizing the micro-control of power equipment.
  • the collection and monitoring of weak acoustic signals not only extends the path of sound wave reflection, but also does not increase the number of reflections, and reduces the loss in the collection process of weak sound wave signals through the sound concentrating device.
  • the pattern array of the microstructures 3 on the inner wall surface of the front end 1 is defined as a zigzag groove array, and the shape of the entire zigzag groove array is rectangular.
  • the zigzag groove array includes a plurality of zigzag grooves 4 arranged side by side, and the dimensions of the plurality of zigzag grooves 4 are the same.
  • each zigzag groove 4 is limited to 200 ⁇ m to 400 ⁇ m, and the spacing range between two adjacent zigzag grooves 4 is limited to 18 ⁇ m to 22 ⁇ m.
  • each zigzag groove 4 includes a central trench 41 and at least two layers of edge steps 42.
  • the depth of the central trench 41 is 40 ⁇ m to 50 ⁇ m, where the depth of the central trench 41 is relative to the inner wall surface of the front end 1
  • the vertical depth of each layer of edge steps 42 is 20 ⁇ m to 30 ⁇ m.
  • the edge steps 42 extend from the edge of the zigzag trench 4 to the center trench 41 layer by layer.
  • the layer-by-layer depth and edge steps of the edge steps 42 are not specified here.
  • the number of layers is limited to 42. Among them, the number of layers of edge steps 42 shown in Figure 2 is two.
  • the depth value of the central trench 41, the width value of the edge step 42, the number of layers of edge steps 42, and the depth value of each layer of edge steps 42 can be limited in applicability according to different monitored power equipment.
  • the inner wall surface of the front end 1 is set into a meander-shaped groove array.
  • the reflection path of weak sound waves in the entire sound concentrating device is extended, and the edge steps provided in the meander-shaped grooves 4 are 42 can also play a transitional role, reducing the loss of weak sound waves during the reflection process.
  • the phase of the weak sound wave reflected by the zigzag groove 4 can be increased, This in turn increases the reflectivity of the collected sound waves.
  • is the changing phase of the sound wave after being reflected by the zigzag groove 4
  • is the additional phase of the sound wave incident on the zigzag groove interface, is the difference compared with the smooth inner wall surface
  • is the wavelength of the sound wave
  • l is the width of each zigzag groove 4
  • d is the total width of the single edge step of each zigzag groove 4
  • H is the sound wave reflection and The absolute value of the sound wave incident height difference
  • h is the depth of the central groove 41
  • is the inclination angle of the front end 1 .
  • Using a zigzag groove array to increase the reflectivity of weak sound waves also requires consideration of the loss of weak sound waves.
  • the phase of the sound wave reflected by the zigzag groove is increased, thereby increasing the reflectivity of the sound wave.
  • the depth of the central groove 41 and the width of the edge step 42, combined with the horn-shaped shape of the front end 1 The tilt angle is considered to increase the reflection angle of sound waves through the zigzag groove interface, thereby reducing the number of reflections and reducing the loss of weak sound waves in the collection and propagation of sound concentrating equipment.
  • is the reflection angle of the sound wave through the zigzag groove interface
  • is the incident angle of the sound wave incident on the zigzag groove interface
  • x is the transverse coordinate value of the point where the sound wave is incident on the zigzag groove interface
  • is the wavelength of the sound wave
  • l is the width of each zigzag groove 4
  • d is the single side of each zigzag groove 4
  • h is the depth of the central groove 41
  • is the inclination angle of the front end 1.
  • l is the width of each zigzag groove 4
  • d is the total width of the single edge step of each zigzag groove 4
  • h is the depth of the center groove 41
  • is the inclination angle of the front end 1
  • the inclination angle of the front end 1 ranges from 15° to 60°
  • the range of R ranges from 0.1 to 0.65.
  • the inclination angle of the front end 1 is consistent with the depth of the central groove 41 of each zigzag groove 4 of the zigzag groove array, the width of the edge step 42 and
  • the weak sound waves collected by the sound concentrating device are compared with the weak sound waves collected by the smooth inner wall surface, especially the sound wave reflectivity in a specific frequency range is increased by about 15% to 25%. , the loss rate of sound waves is reduced by about 15% to 25%.
  • this application also provides a method for preparing the above-mentioned sound concentrating device, including the following steps:
  • a sound concentrating device with a cone structure is made in advance, and the sound concentrating device includes a front end part 1 and a rear end part 2; based on the pattern array on the inner wall surface of the front end part 1 of the sound concentrating device, the path of the laser beam is planned; the laser beam is set Parameter values, among which, the parameter categories of the laser include laser pulse width, laser wavelength, power range and scanning speed; according to the laser focusing method, build a laser focusing device 5 to focus the laser emitted by the laser; start the laser, and focus on the front end 1
  • the inner wall surface is laser etched to prepare the microstructure 3 of the inner surface of the sound concentrating device.
  • the front end 1 of the sound concentrating device has a trumpet-shaped structure, which cannot be processed in depth by conventional processing methods, and the degree of customization is low.
  • This application adopts an ultrafast laser processing method for the inner wall surface of the front end 1 of the sound concentrating device to form a microstructure 3 showing a pattern array.
  • the precision of laser processing is high, and at the same time, the inner wall surface of the front end 1 of the sound concentrating device can be realized.
  • Customized processing of complex patterns suitable for weak acoustic wave monitoring and diagnosis of power equipment in different scenarios.
  • planning the path of the laser beam includes the following steps:
  • the selected position of the path node information is not limited here. It can be set according to different pattern array shapes. At the same time, There is no limit on the number of times the laser beam travels, and it is enough to ensure that a high-precision and complete customized pattern array can be obtained.
  • the gap value between parallel lines and the laser spot diameter value selected here are mainly given based on the overall shape of the microstructure 3 of the pattern array and the numerical range of depth and width. The values are also not limited.
  • the gap value between parallel lines in a specific laser scan and the laser spot diameter can be limited according to the weak acoustic wave characteristics of the monitored power equipment.
  • setting the parameter values of the laser includes: setting the laser pulse width to 0.001fs to 1fs, the laser wavelength to 355nm to 1064nm, the power range to 50mW to 15W, and the scanning speed to 200mm/s ⁇ 800mm/s.
  • the processing depth and width of the inner wall surface material can be controlled, and a pattern array corresponding to the scene can be prepared. microstructure.
  • the laser focusing device 5 focuses the laser light emitted by the laser.
  • the laser focusing device 5 includes a reflector group, a beam expander, a scanning galvanometer and an F-Theta lens.
  • the reflector group is configured to adjust the scanning movement of the laser beam. Through the scanning movement of the laser beam, the inner wall surface of the front end 1 is realized. Etch to prepare the microstructure 3 that forms the pattern array; the beam expansion factor of the beam expander is 2 to 4 times, the range of the scanning galvanometer is ⁇ (100 ⁇ 100) mm, and the focus range of the F-Theta lens is ⁇ (-30 ⁇ 30)mm.
  • the range of the scanning galvanometer is limited to the transverse (X-axis direction) and longitudinal (Y-axis direction) of the entire laser focus plane, that is, the range of the scanning galvanometer is not less than 100 ⁇ 100mm. Moreover, generally speaking, the horizontal and vertical dimensions of the scanning galvanometer are the same.
  • the focus range of the F-Theta lens is limited to the vertical direction (Z-axis direction) of the entire laser focus plane, that is, the focus range of the F-Theta lens is not less than 30mm in the vertical direction of the lens.
  • the values of the beam expansion factor of the beam expander used to focus the laser beam, the range of the scanning galvanometer, and the focal range of the F-Theta lens are all related to the pattern array processing process on the inner wall surface of the front end 1 of the sound concentrating device. Within this numerical range, the accuracy and efficiency of pattern array microstructure processing on the inner wall surface can be guaranteed. There are no special limitations on the numerical points here, and they can be adjusted according to the size of the applied pattern array.
  • the combination of the scanning galvanometer and the F-Theta lens can realize scanning processing in a three-dimensional space with a high degree of freedom, and is suitable for processing the microstructure 3 of the pattern array on the inner wall surface of the horn-shaped sound concentrating device.
  • the laser beam is focused in a positive defocusing manner, and the defocusing amount is 1 ⁇ m to 5 ⁇ m.
  • the defocus amount is the distance between the laser beam and the inner wall surface of the front end 1 of the focus device. Setting an appropriate defocus amount can ensure the accuracy of laser processing. If the defocus amount is too small, the laser will cause serious damage to the inner wall surface, resulting in rough surface, the processing accuracy of the pattern array cannot be guaranteed, and the zigzag 4 grooves will appear tapered; if the defocus amount is too large, the laser energy will not be sufficient. It is transmitted to the inner wall surface and cannot be processed to form a microstructure that conforms to the expected pattern array 3.
  • This application provides a sound concentrating device and preparation method configured for voiceprint monitoring, including the following effects:
  • the inner wall surface of the front end presents a pattern array microstructure, which can expand the frequency range of sound wave monitoring, increase the sound wave reflectivity, and reduce sound wave loss.
  • the laser beam can be adapted to the pattern array microstructure, which ensures the processing speed of the pattern array microstructure on the inner wall surface of the front end and improves the processing accuracy of the microstructure.
  • the reflectivity of the sound waves collected through the pattern array microstructure formed by laser scanning etching is improved, while the loss during sound wave transmission is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

一种设置为声纹监测的聚音装置,该聚音装置为锥体结构,包括前端部(1)和后端部(2),前端部呈喇叭状,前端部的内壁表面为呈现图案阵列的微结构(3),图案阵列的微结构通过激光刻蚀形成;该聚音装置监测的声波频率为50Hz~10kHz,声波自前端部的入口进入聚音装置,经内壁表面的图案阵列的微结构反射,从后端部的出口传出,后端部的出口声压为前端部的入口声压的4~8倍。该聚音装置前端部的内壁表面呈现图案阵列的微结构,可以扩大声波监测的频率范围,提高声波反射率,降低声波损耗。还涉及一种聚音装置的制备方法。

Description

设置为声纹监测的聚音装置及制备方法
本申请要求在2022年08月12日提交中国专利局、申请号为202210965809.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及声纹监测技术领域,例如涉及设置为声纹监测的聚音装置及制备方法。
背景技术
电力设备在运行过程中由于铁芯松动或局部放电等原因会产生微弱的声学信号,经验丰富的运维人员可通过电力设备发出的异常声音定性判断设备是否存在故障。然而,这种人工辨识的方式检测效率低、耗时耗力、主观性强而且依赖于巡视人员的工程经验,仅限于可听声频段范围内,声波频段窄,无法实现电力设备的实时超声频段监测,无法适应电力设备监测的要求。
利用声音参数判断电力设备的运行状态,反应不同电力设备不同运行状态,就需要采用设备采集声纹,进行电力设备的巡检监测。典型案例如应用于高压设备绝缘诊断中的低频超声检测技术。由于利用声音监测电力设备运行状态可以实现无接触无损耗测量,声学声纹检测技术得到大力推广。随着信号传输技术的几次革新以及大数据时代的来临,声学声纹监测技术也逐步向智能化、网络化发展。
如CN114280436A给出了一种监测电力设备局部放电的F-P超声传感器阵列植入装置,装置由F-P超声传感器支撑件、F-P超声传感器阵列和光纤接线端组成。该阵列能够植入具有套管与电流互感器同轴结构的电力设备内部,灵敏迅速地检测电力设备套管、器身、引线、线圈等多个部位因局部放电产生的超声波信号,检测范围可覆盖20kHz~300kHz超声波频带。但是,该技术方案仍然存在一定的局限性,监测的声波频带范围较窄,且不能监测微弱的声学信号,不能完全实现电力设备声纹监测的智能化标准。
声纹监测技术中用到的聚音装置是声纹监测的关键部件,相关技术多集中在对其机械结构的设计与改进,但是监测声音损耗较大的问题一直存在,严重影响了电力设备声纹的监测效果。
发明内容
本申请提供了设置为声纹监测的聚音装置及制备方法。尤其是将图案阵列设定为回字形沟槽阵列,设置相应的沟槽宽度和深度,对应调整喇叭状前端部的倾斜角,从而使得采集的声波损耗率降低、反射率增高。
第一方面,本申请提供一种设置为声纹监测的聚音装置,聚音装置为锥体结构,包括前端部和后端部,前端部呈喇叭状,前端部的内壁表面为呈现图案阵列的微结构,图案阵列的微结构通过激光刻蚀形成;
聚音装置监测的声波频率为50Hz~10kHz,声波自前端部入口进入聚音装置,经内壁表面的图案阵列的微结构反射,从后端部出口传出,后端部出口声压为前端部入口声压的4~8倍。
第二方面,本申请还提供一种制备上述聚音装置的方法,包括:
预先制成锥体结构的聚音装置,聚音装置包括前端部和后端部;
基于聚音装置的前端部的内壁表面的图案阵列,规划激光光束行走的路径;
设定激光器的参数数值,其中,激光器的参数类别包括激光脉宽、激光波长、功率范围及扫描速度;
根据激光聚焦方式,搭建激光聚焦装置,对激光器发出的激光光束进行聚焦;
启动激光器,对前端部的内壁表面进行激光刻蚀,制备得到聚音装置内表面的微结构。
附图说明
图1为本申请实施例提供的一种设置为声纹监测的聚音装置的整体结构图;
图2为本申请实施例提供的一种设置为声纹监测的聚音装置的局部剖视图;
图3为本申请实施例提供的一种前端部的内壁表面的回字形沟槽阵列的结构示意图;
图4为本申请实施例提供的一种前端部的内壁表面的回字形沟槽阵列下声波的反射路径示意图;
图5为本申请实施例提供的一种制备聚音装置的流程方法图;
图6为本申请实施例提供的一种激光聚焦装置对激光光束进行聚焦的示意图。
其中:1、前端部;2、后端部;3、微结构;4、回字形沟槽;41、中心沟槽;42、边缘台阶;5激光聚焦装置。
具体实施方式
下面将结合说明书附图以及具体的实施方式对上述技术方案进行说明。所描述的实施例仅仅是本申请一部分实施例。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文表示其他含义,“多种”一般包含至少两种。
术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
如图1及图2所示,本申请提供一种设置为声纹监测的聚音装置,聚音装置整体为锥体结构,包括前端部1和后端部2,前端部1呈喇叭状,前端部1的内壁表面为呈现图案阵列的微结构3,图案阵列的微结构3通过激光刻蚀形成。
聚音装置监测的声波频率为50Hz~10kHz,声波自前端部1的入口进入聚音装置,经内壁表面的图案阵列的微结构3反射,从后端部2的出口传出,后端部2的出口声压为前端部1的入口声压的4~8倍。
前端部1的前段为声波的入口,后段为声波的出口,声波从前端部1传出后,进入后端部2,随后从后端部2进入声纹监测的后续装置中,从而完成对电力设备微弱声学信号的采集。
相关技术中的聚音设备,其表面较为光滑,无法实现对反射声波的方向性调控。本申请中针对聚音装置的改进是采用材料表面微处理的思路,通过超快激光微纳加工技术调控聚音装置内表面的声学微结构尺寸与形貌,在聚音装置的喇叭状的前端部1的内壁表面蚀刻形成图案阵列的微结构3,增加聚音装置的内表面对声波的调控,同时增强对声音的指向性。
在一个实施例中,设置为声纹监测的聚音装置材质可以选用金属或者塑料,前端部1和后端部2也可以选择不同的材质,在此不做限定。其中,前端部1的长度设置为5cm-30cm,后端部2的长度设置为2cm-10cm。前端部1的内壁表面通过激光蚀刻为呈图案陈列的微结构3,后端部2的内壁表面则为相对光滑的表面,将其粗糙度设置为0.1μm~1μm。
设定聚音装置的前端部1和后端部2的尺寸,可以使得声波在前端部1的内壁表面进行反射后,再经后端部2相对光滑表面镜面反射,实现电力设备微 弱声学信号的采集监测,既延长了声波反射的路径,又不至于增多反射次数,降低了微弱声波信号通过聚音装置进行采集过程中的损耗。同时,在前端部1的喇叭状结构的内壁表面进行微结构加工,也更加便捷,同时也能保证加工精度。
在一个实施例中,如图2及图3所示,将前端部1的内壁表面的微结构3的图案阵列限定为回字形沟槽阵列,且整个回字形沟槽阵列的形状为长方形。
回字形沟槽阵列包括多个并列排布的回字形沟槽4,多个回字形沟槽4的尺寸相同。
将每个回字形沟槽4的宽度范围限定为200μm~400μm,相邻两个回字形沟槽4之间的间距范围限定为18μm~22μm。
并且每个回字形沟槽4包括中心沟槽41和至少两层的边缘台阶42,中心沟槽41的深度为40μm~50μm,此处中心沟槽41的深度是相对于前端部1的内壁表面的垂直深度,每层边缘台阶42的宽度为20μm~30μm,边缘台阶42自回字形沟槽4的边线向中心沟槽41位置逐层延伸,在此不对边缘台阶42的逐层深度和边缘台阶42的层数做限定。其中,图2给出的边缘台阶42的层数为2层。
中心沟槽41的深度值、边缘台阶42的宽度值、边缘台阶42的层数以及每层边缘台阶42的深度值可以根据不同监测的电力设备进行适用性的限定。
将前端部1的内壁表面设置为回字形沟槽阵列,通过在内壁表面深浅的层次设置,延长了微弱声波在整个聚音装置中的的反射路径,且回字形沟槽4中设置的边缘台阶42也能起到过渡作用,降低微弱声波在反射过程中的损耗。
如图4所示,一特定方向的声波在进入聚音装置的前端部1后,入射到内壁表面的回字形沟槽阵列的中心沟槽41中,经过反射传入后端部2中,进而实现声波的采集。其他方向或者角度的声波反射路径与图4中给出的相似,在此不做重复叙述。在针对每个电力设备进行声波采集监测的实施例中,针对多个方向传入的声波均需要考虑前端部1的倾斜角与回字形沟槽阵列的每个回字形沟槽4的中心沟槽41的深度、边缘台阶42的宽度以及监测的声波参数之间的关系。
基于每个回字形沟槽4的宽度、中心沟槽41的深度以及边缘台阶42的宽度,并对应设置前端部1的倾斜角,才能增大微弱声波经回字形沟槽4反射后的相位,进而增大采集到的声波的反射率。
前端部1的倾斜角与回字形沟槽阵列的每个回字形沟槽4的中心沟槽41的深度、边缘台阶42的宽度以及监测的声波参数之间的关系为:
其中,为声波经回字形沟槽4反射后的变化相位,φ为声波入射到回字形沟槽界面上的额外相位,为相比光滑内壁表面的差值,λ为声波的波长,l为每个回字形沟槽4的宽度,d为每个回字形沟槽4的单边边缘台阶总宽度,H为声波反射与声波入射高度差的绝对值,h为中心沟槽41的深度,α为前端部1的倾斜角。
利用回字形沟槽阵列增大微弱声波的反射率,也需要同时考虑微弱声波的损耗问题。
微弱声波在聚音装置内部进行反射时,为降低损耗,需要尽量减少微弱声波的反射次数。因而,必须尽量保证从多个方向进入聚音装置前端部1的声波在回字形沟槽4经过较少次数的反射后,传入到后端部2,再进入后段的声波监测处理装置中。
基于回字形沟槽的宽度、中心沟槽深度以及边缘台阶宽度,并对应设置前端部喇叭的倾斜角,增大声波经回字形沟槽反射后的相位,进而增大声波的反射率。在增大声波的反射率基础上,针对降低声波损耗的效果,需要基于回字形沟槽4的宽度、中心沟槽41的深度以及边缘台阶42的宽度的数值,结合前端部1的喇叭状的倾斜角,考虑增大声波经回字形沟槽界面的反射角,进而使得反射次数减少,降低微弱声波在聚音设备采集传播中的损耗。
前端部1的倾斜角与回字形沟槽阵列的每个回字形沟槽4的中心沟槽41的深度、边缘台阶42的宽度以及监测的声波参数之间的关系,还需要满足以下条件:
其中,β为声波经回字形沟槽界面的反射角,γ为声波入射到回字形沟槽界面的入射角,x为声波入射到回字形沟槽界面点的横向坐标值,为声波在横向坐标值为x的点的变化相位与x的求导数值,λ为声波的波长,l为每个回字形沟槽4的宽度,d为每个回字形沟槽4的单边边缘台阶总宽度,h为中心沟槽41的深度,α为前端部1的倾斜角。
中心沟槽41的深度、每个回字形沟槽4的宽度、以及每个回字形沟槽4的单边边缘台阶总宽度之间的关系为:
式中,l为每个回字形沟槽4的宽度,d为每个回字形沟槽4的单边边缘台阶总宽度,h为中心沟槽41的深度,α为前端部1的倾斜角,在一个实施例中,前端部1的倾斜角取值为15°~60°,R的取值范围为0.1~0.65。
在设定的该前端部1的倾斜角数值范围,符合以上前端部1的倾斜角与回字形沟槽阵列的每个回字形沟槽4的中心沟槽41的深度、边缘台阶42的宽度以及监测的声波参数之间的关系的情况下,经聚音装置采集的微弱声波相较光滑的内壁表面采集到的微弱声波,尤其是对特定频率范围的声波反射率提升了约15%~25%,声波的损耗率降低了约15%~25%。
同时,如图5所示,本申请还提供一种制备上述聚音装置的方法,包括如下步骤:
预先制成锥体结构的聚音装置,聚音装置包括前端部1和后端部2;基于聚音装置的前端部1的内壁表面的图案阵列,规划激光光束行走的路径;设定激光器的参数数值,其中,激光器的参数类别包括激光脉宽、激光波长、功率范围及扫描速度;根据激光聚焦方式,搭建激光聚焦装置5,对激光器发出的激光进行聚焦;启动激光器,对前端部1的内壁表面进行激光刻蚀,制备得到聚音装置内表面的微结构3。
聚音装置的前端部1为喇叭状结构,常规的加工方式无法深入加工,并且定制化程度较低。本申请针对聚音装置的前端部1的内壁表面采用超快激光的加工方法,形成呈现图案阵列的微结构3,激光加工的精度高,同时又可实现聚音装置的前端部1的内壁表面复杂图案的定制化加工,适用不同场景的电力设备的微弱声波监测诊断中。
在一个实施例中,规划激光光束行走的路径,包括如下的步骤:
在激光器中设定扫描方式为网格状,并输入扫描加工过程中光束行走的路径节点信息;在此不对路径节点信息选取的位置进行限定,可以根据不同的图案阵列形状进行设定,同时也不对激光光束行走的次数进行限定,保证能得到精度高、且完整的定制化图案阵列即可。
设定激光扫描中平行线间的间隙为18μm~22μm,激光的光斑直径为13μm-17μm。在此选用的平行线间的间隙数值和激光光斑直径数值,主要是基于图案阵列的微结构3的整体形状及深度和宽度的数值范围给定。同样不对数值进行限定,特定的激光扫描中平行线间的间隙数值和激光的光斑直径可以根据监测的电力设备的微弱声波特性进行限定。
在一实施例中,设定激光器的参数数值,包括:设定激光脉宽为0.001fs~1fs,激光波长为355nm~1064nm,功率范围50mW~15W,扫描速度为 200mm/s~800mm/s。
对激光器的激光功率的参数进行限定,适应聚音装置的前端部1内壁表面的图案阵列的微结构3,可以实现针对内壁表面材料的加工深度和宽度的调控,进而制备得到相应场景的图案阵列微结构。
在一实施例中,如图6所示,激光聚焦装置5对激光器发出的激光进行聚焦。激光聚焦装置5包括反射镜组、扩束镜、扫描振镜和F-Theta镜头,其中,反射镜组设置为调整激光光束的扫描移动,通过激光光束的扫描移动实现在前端部1内壁表面的刻蚀,制备形成图案阵列的微结构3;扩束镜的扩束倍数为2~4倍,扫描振镜的范围为≥(100×100)mm,F-Theta镜头的焦点范围≥(-30~30)mm。
扫描振镜的范围限定的是整个激光聚焦平面的横向(X轴方向)及纵向(Y轴方向),即扫描振镜的范围不小于100×100mm。并且,通常来说扫描振镜的横向和纵向的尺寸相同。F-Theta镜头的焦点范围限定的是整个激光聚焦平面的竖向(Z轴方向),即F-Theta镜头的焦点在镜头竖向上下的数值均不小于30mm。
针对激光发出光束聚焦的扩束镜的扩束倍数、扫描振镜的范围以及F-Theta镜头的焦点范围的数值均与聚音装置的前端部1内壁表面的加工图案阵列过程相关。在此数值范围内,能保证内壁表面的图案阵列微结构加工的精度和效率。对于数值点在此不做特殊的限定,可以根据应用的图案阵列的尺寸数值进行调整。扫描振镜与F-Theta镜头组合可实现高自由度三维空间的扫描加工,适合喇叭状聚音装置内壁表面图案阵列的微结构3的加工。
在一个实施例中,激光光束聚焦的方式为正离焦,离焦量为1μm~5μm。
离焦量即为激光光束与聚音装置的前端部1内壁表面的间距,设置合适的离焦量,可以保证激光加工的精度。离焦量过小,激光会造成内壁表面的严重损坏,导致表面粗糙,图案阵列的加工精度无法保证,且回字形4沟槽会呈现锥形;离焦量过大,激光的能量无法充足的传到到内壁表面,无法加工形成符合预期的图案阵列的微结构3。
本申请提供的一种设置为声纹监测的聚音装置及制备方法,包括如下效果:
(1)前端部的内壁表面呈现图案阵列的微结构,可以扩大声波监测的频率范围,提高声波反射率,降低声波损耗。
(2)将图案阵列设计为回字形沟槽阵列结构,延长声波在聚音装置的空间内的传输路径,降低声波的反射次数,提升声波的反射率,降低声波的损耗;并且在设定的回字形沟槽的中心沟槽深度、沟槽宽度、边缘台阶宽度以及喇叭状前端部倾斜角的情况下,相较光滑的内壁表面,声波反射率提高15%~25%, 声波损耗率降低15%~25%。
(3)采用激光扫描加工的方式,可以将激光光束与图案阵列微结构相适用,保证了前端部内壁表面的图案阵列微结构的加工速度,提升了微结构的加工精度。通过激光扫描刻蚀形成的图案阵列微结构采集到的声波,反射率提到了提升,同时降低了声波传输过程中的损耗。
(4)对激光器的激光功率的参数进行限定,适应聚音装置的前端部内壁表面的图案阵列微结构,可以实现针对内壁表面材料的加工深度和宽度的调控,进而制备得到相应场景的图案阵列微结构。针对激光发出光束聚焦的扩束镜的扩束倍数、扫描振镜的范围以及F-Theta镜头的焦点范围的数值,能保证内壁表面的图案阵列微结构加工的精度和效率。扫描振镜与F-Theta镜头组合可实现高自由度三维空间的扫描加工,适合喇叭状聚音装置内壁表面图案阵列微结构的加工。设置合适的离焦量,可以保证激光加工的精度。

Claims (10)

  1. 一种设置为声纹监测的聚音装置,所述聚音装置为锥体结构,包括前端部(1)和后端部(2),所述前端部(1)呈喇叭状,所述前端部(1)的内壁表面为呈现图案阵列的微结构(3),所述图案阵列的微结构(3)通过激光刻蚀形成;
    所述聚音装置监测的声波频率为50Hz~10kHz,声波自所述前端部(1)的入口进入所述聚音装置,经所述内壁表面的图案阵列的微结构(3)反射,从所述后端部(2)的出口传出,所述后端部(2)的出口声压为所述前端部(1)的入口声压的4~8倍。
  2. 如权利要求1所述的聚音装置,其中,所述聚音装置为金属或者塑料材质,所述前端部(1)的长度为5cm-30cm,所述后端部(2)的长度为2cm-10cm,所述后端部(2)的内壁表面的粗糙度为0.1μm~1μm。
  3. 如权利要求1所述的聚音装置,其中,所述图案阵列的微结构(3)为回字形沟槽阵列的结构,所述回字形沟槽阵列为长方形;
    所述回字形沟槽阵列包括多个并列排布的回字形沟槽(4),多个回字形沟槽(4)的尺寸相同,每个回字形沟槽(4)的宽度为200μm~400μm,相邻两回字形沟槽(4)的间距为18μm~22μm;
    每个回字形沟槽(4)包括中心沟槽(41)和至少两层的边缘台阶(42),所述中心沟槽(41)的深度为40μm~50μm,每层边缘台阶(42)的宽度为20μm~30μm。
  4. 如权利要求3所述聚音装置,其中,所述前端部(1)的倾斜角与每个回字形沟槽(4)的中心沟槽(41)的深度、边缘台阶(42)的宽度以及监测的声波参数之间的关系为:
    其中,为声波经所述回字形沟槽(4)反射后的变化相位,φ为声波入射到回字形沟槽界面上的额外相位,为相比光滑内壁表面的差值,λ为声波的波长,l为每个回字形沟槽(4)的宽度,d为每个回字形沟槽(4)的单边边缘台阶总宽度,H为声波反射与声波入射高度差的绝对值,h为所述中心沟槽(41)的深度,α为所述前端部(1)的倾斜角;β为声波经所述回字形沟槽界面的反射角,γ为声波入射到所述回字形沟槽界面的入射角,x为声波入射到回字形沟槽界面点的横向坐标值,为声波在横向坐标值为x的点的变化相位与x的求导数值。
  5. 如权利要求4所述的聚音装置,其中,所述中心沟槽(41)的深度、每个回字形沟槽(4)的宽度、以及每个回字形沟槽(4)的单边边缘台阶总宽度之间的关系为:
    其中,α的取值范围为15°~60°,R的取值范围为0.1~0.65。
  6. 一种制备方法,用于制备如权利要求1-5任一项所述的聚音装置,包括:
    预先制成锥体结构的聚音装置,所述聚音装置包括前端部和后端部;
    基于所述聚音装置的前端部的内壁表面的图案阵列,规划激光光束行走的路径;
    设定激光器的参数数值,其中,所述激光器的参数类别包括激光脉宽、激光波长、功率范围及扫描速度;
    根据激光光束聚焦方式,搭建激光聚焦装置,对所述激光器发出的激光光束进行聚焦;
    启动所述激光器,对所述前端部的内壁表面进行激光刻蚀,制备得到所述聚音装置内表面的微结构。
  7. 如权利要求6所述的方法,其中,所述规划激光光束行走的路径,包括:
    在所述激光器中设定扫描方式为网格状,并输入扫描加工过程中光束行走的路径节点信息;
    设定激光扫描中平行线间的间隙为18μm~22μm,激光的光斑直径为13μm-17μm。
  8. 如权利要求6所述的方法,其中,所述设定激光器的参数数值,包括:
    设定激光脉宽为0.001fs~1fs,激光波长为355nm~1064nm,功率范围50mW~15W,扫描速度为200mm/s~800mm/s。
  9. 如权利要求6所述的方法,其中,所述激光聚焦装置包括反射镜组、扩束镜、扫描振镜和F-Theta镜头,所述反射镜组设置为调整激光光束的扫描移动;
    所述扩束镜的扩束倍数为2~4倍,所述扫描振镜的范围为大于或等于100×100mm,所述F-Theta镜头的焦点在镜头竖向上下的数值均不小于30mm。
  10. 如权利要求9所述的方法,其中,所述激光光束聚焦的方式为正离焦,离焦量为1μm~5μm。
PCT/CN2023/108399 2022-08-12 2023-07-20 设置为声纹监测的聚音装置及制备方法 WO2024032345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210965809.2A CN115255650A (zh) 2022-08-12 2022-08-12 一种用于声纹监测的聚音装置及制备方法
CN202210965809.2 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032345A1 true WO2024032345A1 (zh) 2024-02-15

Family

ID=83751177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108399 WO2024032345A1 (zh) 2022-08-12 2023-07-20 设置为声纹监测的聚音装置及制备方法

Country Status (2)

Country Link
CN (1) CN115255650A (zh)
WO (1) WO2024032345A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115255650A (zh) * 2022-08-12 2022-11-01 国网江苏省电力有限公司泰州供电分公司 一种用于声纹监测的聚音装置及制备方法
CN115771882B (zh) * 2022-11-03 2023-05-02 江苏光微半导体有限公司 一种量子声纹探头的制备方法及量子声纹探头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109365995A (zh) * 2018-12-06 2019-02-22 哈尔滨工业大学 一种高度均一的微锥阵列结构的制备方法
CN110082653A (zh) * 2019-05-08 2019-08-02 广东锦煜智能科技有限公司 一种局部放电在线监测系统以及设备
CN209264896U (zh) * 2018-11-15 2019-08-16 贵州电网有限责任公司 一种用于10kv配网变压器声学检测装置
CN111095010A (zh) * 2017-04-25 2020-05-01 伊利斯控股公司 用于听觉监测电气部件和检测电气故障的面板
US20200184054A1 (en) * 2018-12-11 2020-06-11 Alibaba Group Holding Limited Authentication using sound based monitor detection
CN112305462A (zh) * 2020-11-09 2021-02-02 北京中拓新源科技有限公司 一种基于变压器声音识别变压器典型故障的系统
CN115255650A (zh) * 2022-08-12 2022-11-01 国网江苏省电力有限公司泰州供电分公司 一种用于声纹监测的聚音装置及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095010A (zh) * 2017-04-25 2020-05-01 伊利斯控股公司 用于听觉监测电气部件和检测电气故障的面板
CN209264896U (zh) * 2018-11-15 2019-08-16 贵州电网有限责任公司 一种用于10kv配网变压器声学检测装置
CN109365995A (zh) * 2018-12-06 2019-02-22 哈尔滨工业大学 一种高度均一的微锥阵列结构的制备方法
US20200184054A1 (en) * 2018-12-11 2020-06-11 Alibaba Group Holding Limited Authentication using sound based monitor detection
CN110082653A (zh) * 2019-05-08 2019-08-02 广东锦煜智能科技有限公司 一种局部放电在线监测系统以及设备
CN112305462A (zh) * 2020-11-09 2021-02-02 北京中拓新源科技有限公司 一种基于变压器声音识别变压器典型故障的系统
CN115255650A (zh) * 2022-08-12 2022-11-01 国网江苏省电力有限公司泰州供电分公司 一种用于声纹监测的聚音装置及制备方法

Also Published As

Publication number Publication date
CN115255650A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024032345A1 (zh) 设置为声纹监测的聚音装置及制备方法
US20220347796A1 (en) Systems for and methods of forming micro-holes in glass-based objects using an annular vortex laser beam
CN108873322B (zh) 一种长焦深非球面反射镜曲面结构确定方法及系统
KR20160010041A (ko) 레이저 회절빔의 필라멘테이션을 이용한 취성 소재 가공 방법 및 이를 위한 레이저 가공 장치
CN109702326A (zh) 一种提高激光打孔深度的装置及其方法
CN112276344B (zh) 一种超快激光切割透明材料的焦点定位方法
CN210220974U (zh) 一种激光光斑焦点的自动化检测与定位装置
CN109682759A (zh) 一种实现超声快速扫描和定点聚焦的激光超声激发与检测系统及方法
CN107297574B (zh) 一种激光切割机切割头调焦方法
KR101335688B1 (ko) 미세 요철부를 형성하기 위한 레이저 가공 방법
CN101689531A (zh) 反光性多层靶结构的激光处理
JP2006007257A (ja) レーザ加工装置
CN115138997A (zh) 一种多点贝塞尔光束玻璃打孔装置及方法
JP5816793B2 (ja) 欠陥検出方法
CN115533302A (zh) 同光源式激光超声导波焊接熔透状态实时监测装置及方法
CN210803334U (zh) 一种原子束显微装置
KR20160001818U (ko) 레이저 회절빔의 필라멘테이션을 이용한 취성 소재 가공을 위한 레이저 가공 장치
JPH04167986A (ja) レーザ加工装置
JP2004055819A (ja) レーザ光集光器、及びレーザ光集光方法
CN104880256B (zh) 一种测试太赫兹横波和纵波相位动态变化的方法和装置
KR101736693B1 (ko) 레이저 회절빔의 필라멘테이션을 이용한 취성 소재 가공 방법 및 이를 위한 레이저 가공 장치
CN111975215A (zh) 激光加工装置及方法
CN114018826B (zh) 一种光偏转法激光超声无损检测设备及方法
CN117476448A (zh) 一种高效减薄剥离半导体材料的加工装置及方法
US11611190B2 (en) Technique for optimizing coupling to optical fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851567

Country of ref document: EP

Kind code of ref document: A1