WO2024032292A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2024032292A1
WO2024032292A1 PCT/CN2023/106546 CN2023106546W WO2024032292A1 WO 2024032292 A1 WO2024032292 A1 WO 2024032292A1 CN 2023106546 W CN2023106546 W CN 2023106546W WO 2024032292 A1 WO2024032292 A1 WO 2024032292A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
harq feedback
subframe
tbs
dci
Prior art date
Application number
PCT/CN2023/106546
Other languages
English (en)
French (fr)
Inventor
杨若男
陈莹
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032292A1 publication Critical patent/WO2024032292A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of wireless communication technology, and in particular, to a data transmission method and device.
  • Hybrid automatic repeat request is a method to improve the reliability of data transmission.
  • Data packets with decoding errors will be stored in a HARQ buffer and merged with subsequently received retransmitted data packets. , resulting in a data packet that is more reliable than decoding alone (the process of "soft merging"). Then the merged data packet is decoded. If it still fails, the process of "requesting retransmission and then soft merging" is repeated.
  • the receiving end uses cyclic redundancy check (CRC) to determine whether the received data packet is in error, and uses HARQ feedback to indicate whether the CRC check is successful.
  • CRC cyclic redundancy check
  • the HARQ process sends data through the stop-and-wait protocol. That is, after the sender sends a transport block (TB), it stops and waits for HARQ feedback. However, the sender stops and waits for HARQ feedback after each transmission, which results in low throughput. Therefore multiple parallel wait-and-wait protocol processes are used. While waiting for confirmation information, the sender can use another process to continue sending data, so that data can be transmitted continuously.
  • TB transport block
  • NTN non-terrestrial networks
  • the round-trip delay is very large compared to the ground.
  • the waiting time under the HARQ stop-and-wait protocol will be very long and the throughput is very low. Therefore, some processes can be configured to not require HARQ feedback, thereby reducing throughput losses caused by large round-trip delays.
  • IoT Internet of things
  • NTN scenarios a maximum of two HARQ processes are usually configured for the terminal.
  • no specific configuration has been made on how the terminal's HARQ process performs HARQ feedback and how the corresponding physical downlink control channel (PDCCH) listens.
  • PDCCH physical downlink control channel
  • Embodiments of the present application provide a data transmission method and device, which can reduce the resource overhead of HARQ configuration by binding the HARQ feedback configuration scheduled by multiple TBs. In addition, by indicating not to perform HARQ feedback, the impact of round-trip delay on the transmission process can be reduced.
  • a data transmission method includes: a terminal device receiving first information, the first information being used to indicate scheduling of X transmission blocks TB; the terminal device receiving second information, The second information is used to indicate the HARQ feedback configuration of the X TBs.
  • the HARQ feedback configuration includes performing HARQ feedback or not performing HARQ feedback.
  • the second information occupies Y bits, Y ⁇
  • the first information and the second information determine a target time domain position, and the target time domain position is a time domain position where the terminal equipment needs to listen to the physical downlink control channel PDCCH.
  • the HARQ feedback configuration is indicated through the second information, and the second information occupies Y bits. Since Y is smaller than
  • HARQ feedback is configured for multi-TB scheduling, so that HARQ feedback is not required in some cases, reducing communication delays and improving traffic efficiency.
  • the method before the terminal device receives the second information, the method further includes: receiving third information, where the third information includes the feedback configuration of each of the X TBs; the second information is used to indicate the X
  • the HARQ feedback configuration of the TB includes: the second information indicates the feedback configuration of some TBs among the X TBs as the HARQ feedback configuration of the X TBs.
  • the third information is used to deliver the feedback configuration of each TB in the X TBs
  • the second information is used to indicate the feedback configuration of some TBs in the HARQ feedback configuration of the X TBs as the HARQ feedback configuration. That is to say, in multi-TB scheduling, the HARQ feedback configuration method of single-TB scheduling can be reused without additional HARQ feedback configuration for multi-TB scheduling, reducing signaling changes that may be caused by HARQ feedback configuration.
  • the second information is used to indicate the feedback configuration of part of the TB scheduling in the X single TB scheduling as the HARQ feedback configuration of the X TB, so that the HARQ feedback configuration of the Information resource overhead.
  • the first information is carried in downlink control information DCI
  • the second information is carried in radio resource control information In RRC signaling.
  • the first information and the second information are carried in DCI.
  • the second information is carried in the RRC signaling, which can realize the unified configuration of HARQ feedback configuration and reduce the resource overhead of HARQ feedback configuration.
  • Carrying the second information in the DCI allows the network device to configure HARQ feedback for multi-TB scheduling of a single DCI, thereby improving the flexibility of HARQ feedback configuration.
  • the target time domain position determined according to the first information and the second information does not include subframes n+k-p1 to subframes n+k-1, and subframes t+1 to t+p2, where n is the subframe in which the DCI is detected, and n+k is the subframe in which the DCI scheduled data starts to be received.
  • frame the t is the subframe in which the transmission of the last TB in the plurality of TBs ends, p1 is the time for decoding the DCI, and p2 is the time for decoding the data.
  • the target time domain position determined according to the first information and the second information does not include subframe n to subframe n+m+p3 , wherein the subframe n is the subframe in which the DCI is detected, the n+m is the subframe in which sending HARQ feedback ends, and p3 is the time to decode HARQ feedback.
  • the terminal device determines the time domain position for PDCCH listening, excluding data used for transmitting DCI, DCI scheduling, Just decode the DCI and the time domain position of the decoded data, and release the process in advance to ensure data transmission efficiency. If HARQ feedback for all processes is configured for HARQ feedback, the terminal device can determine not to monitor the PDCCH before the feedback content is decoded by the network device, which improves the efficiency of the terminal device in determining the target time domain position.
  • the method when the second information is carried in the RRC, the method further includes: receiving third information, the third information being carried in the DCI, used to indicate whether to The HARQ feedback configuration indicated by the information is changed; and the target time domain position is determined based on the change of the second indication information by the first information and the third information.
  • the HARQ feedback configuration is first indicated semi-statically through RRC, and then the HARQ feedback configuration is changed through the indication information in the DCI. This can complete the indication of the HARQ feedback configuration with less resource overhead, and at the same time, when needed, the HARQ feedback configuration is indicated through the DCI. Changing the HARQ feedback configuration ensures the flexibility of HARQ feedback configuration instructions.
  • a data transmission method includes: sending first information, the first information being used to indicate the scheduling of X transmission blocks TB; sending second information, the second information being used to indicate X TB HARQ feedback configuration, the HARQ feedback configuration includes performing HARQ feedback or not performing HARQ feedback, and the second information occupies Y bits, Y ⁇ X.
  • the method before sending the second information, further includes: sending third information, where the third information includes the feedback configuration of each of the X TBs; the second information is used to indicate the feedback configuration of the X TBs.
  • the HARQ feedback configuration includes: the second information indicates the feedback configuration of some TBs among the X TBs as the HARQ feedback configuration of the X TBs.
  • the first information is carried in downlink control information DCI
  • the second information is carried in radio resource control RRC signaling.
  • the first information and the second information are carried in the DCI.
  • the second information is carried in Radio Resource Control RRC signaling, and the method further includes:
  • Send third information which is carried in the DCI and used to indicate whether to change the HARQ feedback configuration indicated by the second information.
  • the method before sending the first information, further includes: determining that the terminal device is configured with the ability to perform multi-TB scheduling through RRC signaling.
  • a data transmission method includes: the terminal device receives first information from the network device, and the first information is used to instruct the scheduling of X transmission blocks TB; according to the first information and the network device Type, determine the HARQ feedback configuration of
  • the HARQ feedback configuration is determined based on the type of network device that sends the instruction information, mainly to determine the corresponding determination during the multi-TB scheduling process for the satellite base station. HARQ feedback configuration for all processes. Then, the time domain position where the terminal equipment listens to the PDCCH is determined. This process enables the HARQ feedback configuration to be determined without receiving additional HARQ feedback configuration information for the communication process between the terminal equipment and the satellite base station, thereby improving communication efficiency.
  • the type of network equipment is a satellite base station or a ground base station.
  • HARQ feedback is configured not to perform HARQ feedback.
  • the HARQ feedback configuration of the satellite base station is not to perform HARQ feedback, which can reduce the impact of RTT on the communication process and ensure the timeliness and accuracy of the communication process.
  • the target time domain position does not include subframe n+k-p1 and subframe n+k-1, and subframe t+1 to subframe t+ p2, where n is the subframe in which DCI is detected, n+k is the subframe in which data scheduled by DCI begins to be received, t is the subframe in which the transmission of the last TB in multiple TBs ends, and p1 is the subframe used to decode DCI. time, p2 is the time to decode the data.
  • the target time domain position does not include subframe n to subframe n+m+p3, where subframe n is the subframe in which DCI is detected, n+ m is the subframe at which sending HARQ feedback ends, and p3 is the time to decode HARQ feedback.
  • a communication device applied to terminal equipment, and the device includes:
  • a transceiver module configured to receive first information, where the first information is used to indicate scheduling of X transmission blocks TB;
  • the transceiver module is also used to receive second information.
  • the second information is used to indicate the HARQ feedback configuration of X TBs.
  • the HARQ feedback configuration includes performing HARQ feedback or not performing HARQ feedback.
  • the second information occupies Y bits, Y ⁇ X;
  • a processing module configured to determine a target time domain location based on the first information and the second information, where the target time domain location is a time domain location where the terminal equipment needs to listen to the physical downlink control channel PDCCH.
  • the transceiver module before receiving the second information, is also configured to: receive third information, where the third information includes the feedback configuration of each of the X TBs; the second information is used to indicate the X TBs.
  • the HARQ feedback configuration includes: the second information indicates the feedback configuration of some TBs among the X TBs as the HARQ feedback configuration of the X TBs.
  • the first information is carried in downlink control information DCI
  • the second information is carried in radio resource control RRC signaling.
  • the first information and the second information are carried in the DCI.
  • the target time domain position determined according to the first information and the second information does not include subframe n+k-p1 to subframe n+k-1, and subframe t+1 to subframe t+p2, where n is the subframe in which DCI is detected, n+k is the subframe in which DCI-scheduled data begins to be received, and t is the end of transmission of the last TB among multiple TBs. subframe, p1 is the time for decoding DCI, and p2 is the time for decoding data.
  • the target time domain position determined according to the first information and the second information does not include subframe n to subframe n+m+p3, where subframe n is the subframe in which DCI is detected, n+m is the subframe in which sending HARQ feedback ends, and p3 is the time to decode HARQ feedback.
  • the transceiver module when the second information is carried in the RRC, the transceiver module is also configured to: receive third information.
  • the third information is carried in the DCI and is used to indicate whether to configure the HARQ feedback indicated by the second information. Make changes; the processing module is also configured to: determine the target time domain position based on changes to the second indication information by the first information and the third information.
  • a communication device applied to network equipment, and the device includes:
  • a transceiver module configured to send first information, where the first information is used to indicate scheduling of X transmission blocks TB;
  • the transceiver module is also used to send second information.
  • the second information is used to indicate the HARQ feedback configuration of X TBs.
  • the HARQ feedback configuration includes performing HARQ feedback or not performing HARQ feedback.
  • the second information occupies Y bits, Y ⁇ X.
  • the transceiver module before receiving the second information, is also configured to: send third information, where the third information includes the feedback configuration of each of the X TBs; the second information is used to indicate the X TBs
  • the HARQ feedback configuration includes: the second information indicates the feedback configuration of some TBs among the X TBs as the HARQ feedback configuration of the X TBs.
  • the first information is carried in downlink control information DCI
  • the second information is carried in radio resource control RRC signaling.
  • the first information and the second information are carried in the DCI.
  • the second information is carried in Radio Resource Control RRC signaling, and the transceiver module is also used to:
  • Send third information which is carried in the DCI and used to indicate whether to change the HARQ feedback configuration indicated by the second information.
  • the processing module before sending the first information, is further configured to: determine that the terminal device is configured with the ability to perform multi-TB scheduling through RRC signaling.
  • a communication device applied to terminal equipment, and the device includes:
  • a transceiver module configured to receive first information from the network device, where the first information is used to instruct the scheduling of X transmission blocks TB;
  • a processing module configured to determine the HARQ feedback configuration of X TBs according to the first information and the type of network equipment.
  • the HARQ feedback configuration is not to perform HARQ feedback;
  • the processing module is also used to determine the target time domain position, which is the time domain position where the terminal equipment needs to listen to the physical downlink control channel PDCCH.
  • the type of network equipment is a satellite base station or a ground base station.
  • HARQ feedback is configured not to perform HARQ feedback.
  • the target time domain position does not include subframe n+k-p1 and subframe n+k-1, and subframe t+1 to subframe t+ p2, where n is the subframe in which DCI is detected, n+k is the subframe in which data scheduled by DCI begins to be received, t is the subframe in which the transmission of the last TB in multiple TBs ends, and p1 is the subframe used to decode DCI. time, p2 is the time to decode the data.
  • the target time domain position does not include subframe n to subframe n+m+p3, where subframe n is the subframe in which DCI is detected, n+ m is the subframe at which sending HARQ feedback ends, and p3 is the time to decode HARQ feedback.
  • embodiments of the present application provide a network device or terminal device, including:
  • At least one processor coupled to said memory
  • the instruction when the at least one processor executes the instruction, the instruction causes the processor to execute the method described in any one of the first aspect, the second aspect or the third aspect.
  • embodiments of the present application provide a chip system, including: a processor, the processor is coupled to a memory, and the memory is used to store programs or instructions. When the program or instructions are executed by the processor , so that the chip system implements the method of any one of the above-mentioned first aspect, second aspect or third aspect.
  • the chip system further includes an interface circuit for exchanging code instructions to the processor.
  • processors in the chip system there may be one or more processors in the chip system, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software code stored in memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited by this application.
  • the memory can be a non-transient processor, such as a read-only memory ROM, which can be integrated on the same chip as the processor, or can be separately provided on different chips.
  • This application describes the type of memory, and the relationship between the memory and the processor. There is no specific limitation on how the processor is configured.
  • embodiments of the present application provide a computer-readable storage medium on which a computer program or instructions are stored.
  • the computer executes the first aspect, the second aspect or the third aspect. aspect methods.
  • embodiments of the present application provide a computer program product, which when a computer reads and executes the computer program product, causes the computer to execute any of the possible implementation methods of the first aspect, the second aspect or the third aspect. method in.
  • embodiments of the present application provide a communication system, which includes the device of the first aspect and/or the second aspect.
  • Figure 1 is a schematic diagram of a typical system architecture of the NR NTN communication network provided by the embodiment of this application;
  • Figure 2 is a schematic diagram of a timing relationship provided by an embodiment of the present application.
  • Figure 3A is a flow chart of a data transmission method provided by an embodiment of the present application.
  • Figure 3B is a schematic diagram of a multi-TB scheduling process provided by an embodiment of the present application.
  • Figure 3C is a schematic diagram of a target time domain position provided by an embodiment of the present application.
  • Figure 4A is a flow chart of another data transmission method provided by an embodiment of the present application.
  • Figure 4B is a schematic diagram of a communication connection provided by an embodiment of the present application.
  • Figure 5 is a structural block diagram of a communication device provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the hardware structure of a communication device in an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • “Plural” means two or more. "And/or” describes the relationship between related objects, indicating that there can be three relationships. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. The character “/” generally indicates that the related objects are in an "or” relationship.
  • Non-terrestrial networks non terrestrial networks, NTN mobile communications: In the new radio (NR) system, NTN communications (also known as satellite communications) are introduced. Compared with terrestrial networks (TN) mobile communications, NTN mobile communications can achieve wide-area and even global coverage by using high, medium and low-orbit satellites, and can provide undifferentiated communication services to users around the world.
  • NTN mobile communications and 5G NR integrate with each other, learn from each other's strengths and complement each other's weaknesses, and jointly form an integrated integrated communications network of sea, land, air and space with seamless global coverage to meet the diverse business needs of users everywhere, which is an important direction for future communications development. The integration of NTN network and 5G will give full play to their respective advantages and provide users with more comprehensive and high-quality services.
  • Satellites can provide economical and reliable services. Network services extend the network to places where terrestrial networks cannot reach.
  • Satellites can provide continuous and uninterrupted network connections for IoT devices and users of mobile carriers such as aircraft, ships, trains, and automobiles. The integration of satellites and 5G can greatly enhance the service capabilities of the 5G system in this regard.
  • the superior broadcast/multicast capabilities of satellites can provide efficient data distribution services for network edges and user terminals. Compared with early satellite mobile communication systems, the current development of satellite mobile communications presents two characteristics. Miniaturization of mobile terminals: supports a variety of mobile communication terminals including handheld devices; broadband communication services: in addition to traditional narrowband voice services, it also provides high-speed data services and Internet multimedia communication services.
  • Figure 1 is a schematic diagram of a typical system architecture of an NR NTN communication network provided by an embodiment of this application.
  • ground mobile terminals access the network through 5G NR, and 5G base stations are deployed on satellites. on the ground and connected to the core network on the ground through wireless links.
  • wireless links between satellites to complete signaling interaction and user data transmission between base stations.
  • a mobile device that supports 5G NR can also be called terminal equipment (terminal equipment), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc.
  • the terminal device can be a mobile phone (mobile phone), tablet computer (Pad), computer with wireless transceiver function, virtual reality (VR) terminal device, augmented reality (AR) terminal device, industrial control (industrial control) ), wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc. It can access the satellite network through the air interface and initiate calls, Internet access and other services.
  • 5G base station refers to the radio access network (RAN) node (or device) in the 5G network that connects terminals to the wireless network. It can also be called access network equipment, network equipment, or nodes that continue to evolve.
  • RAN radio access network
  • B(gNB) It mainly provides wireless access services, dispatches wireless resources to access terminals, and provides reliable wireless transmission protocols and data encryption protocols.
  • 5G core network refers to the equipment in the core network (CN) that provides business support for terminal equipment in the 5G network. Used for user access control, mobility management, session management, user security authentication, accounting and other services. It consists of multiple functional units, which can be divided into control plane functional entities and data plane functional entities.
  • Authentication management function AMF is responsible for user access management, security authentication, and mobility management.
  • the user plane function UPF is responsible for managing user plane data transmission, traffic statistics and other functions.
  • Ground station responsible for forwarding signaling and business data between the satellite base station and the 5G core network.
  • 5G NR Wireless link between terminals and base stations.
  • Xn interface The interface between the 5G base station and the base station, mainly used for signaling interactions such as handover.
  • NG interface The interface between the 5G base station and the 5G core network. It mainly interacts with signaling such as the non-access stratum (NAS) of the core network, as well as user business data.
  • NAS non-access stratum
  • IoT Internet of things
  • the Internet of Things exchanges information and communicates by enabling physically independent objects to realize network connection functions to realize functions such as identification, monitoring, positioning and control of objects.
  • IoT can be widely used in scenarios such as smart meter reading, precision farming, industrial automation, smart buildings, POS machines, environmental monitoring, and telemedicine.
  • IoT devices are often installed in places where there is no power source and may need to be powered entirely by batteries, and the cost of battery replacement can be very high. In some cases, the life of the battery even determines the life of the entire device. Therefore, optimization of battery life is very important for IoT devices.
  • NB-IoT defines up to 3 coverage enhancement levels (coverage enhancement levels, CE levels).
  • CE level 0 corresponds to normal coverage (the best channel conditions);
  • CE level 2 corresponds to the worst channel conditions, and it is considered that the coverage may be very poor.
  • Different CE levels mainly affect the number of times a message is sent repeatedly. If the channel conditions are poor, it needs to be sent several times more.
  • both uplink and downlink need to support repeated transmissions. The terminal will use the decoding results of these repeated transmissions as a whole hybrid automatic repeat request (HARQ) process for HARQ feedback.
  • HARQ hybrid automatic repeat request
  • HARQ is a method to improve the reliability of data transmission. Packets with decoding errors are stored in a HARQ buffer and merged with subsequently received retransmission packets to obtain a data packet that is more reliable than decoding alone (the process of "soft merging"). Then the merged data packet is decoded. If it still fails, the process of "requesting retransmission and then soft merging" is repeated. The receiving end uses cyclic redundancy check (CRC) to determine whether the received data packet is in error, and indicates whether the CRC check is successful as a HARQ feedback.
  • CRC cyclic redundancy check
  • the HARQ process sends data through the stop-and-wait protocol. That is, after the sender sends a transport block (TB), it stops and waits for HARQ feedback. However, the sender stops and waits for HARQ feedback after each transmission, which results in low throughput. Therefore multiple parallel wait-and-wait protocol processes are used. While waiting for confirmation information, the sender can use another process to continue sending data, so that data can be transmitted continuously.
  • TB transport block
  • the round-trip delay of satellites is very large compared to that of the ground, the waiting time under the HARQ stop-and-wait protocol will be very long and the throughput will be very low. Therefore, for NR NTN, the maximum number of processes is increased from 16 to 32, and some processes can be configured to not require feedback, thereby reducing throughput losses caused by large round-trip delays.
  • NB-IoT Narrow Band Internet of Things
  • existing technology stipulates that the maximum number of HARQ processes for IoT downlink is 2, which is determined by the high-level configuration parameter twoHARQ-ProcessesConfig.
  • DCI downlink control information
  • NDI new data indicator
  • the meaning of the original NDI field indicates whether the first TB is newly transmitted or retransmitted.
  • the default process number corresponding to the first TB is 0, and the process number corresponding to the second TB is 1.
  • the HARQ feedback of the two TBs may be bundled and transmitted. Based on the HARQ stop-and-wait protocol, it is obvious that when a DCI schedules multiple TBs, multiple TBs can be rescheduled only after complete feedback from two TBs is received.
  • Figure 2 is a schematic diagram of a timing relationship provided by an embodiment of the present application. As shown in Figure 2, it includes the base station (gNB) downlink ( downlink (DL), base station uplink (UL), UE DL and UE UL.
  • the base station DL and the UE DL are links used to transmit the same content. The difference lies in the content transmitted on the same downlink subframe. There is a transmission delay difference between the base station DL and the UE DL.
  • the UE UL and the base station UL are used to transmit the same content.
  • TA timing advance
  • the subframe n is a DCI subframe for scheduling data, which is carried in a narrowband physical downlink control channel (NPDCCH) (a type of DL).
  • NPDCCH narrowband physical downlink control channel
  • Subframe n+k is the starting subframe of scheduling data, which is carried in a narrowband physical downlink shared channel (NPDSCH) (a type of DL).
  • Subframe h is the uplink subframe for HARQ feedback of data sent by the UE. It is carried in the narrowband physical uplink shared channel (NPUSCH) (a type of UL).
  • Subframe n+m is the same as uplink subframe h.
  • the time-aligned corresponding downlink subframe that is, the TA time difference between the downlink subframe n+m and the downlink subframe h.
  • the base station will not issue scheduling numbers.
  • the DCI of the data specifically includes the subframes after the base station delivers the DCI and before the DCI scheduled data is delivered, as well as the subframes after the base station completes the delivery of a single TB of data and before the terminal sends HARQ feedback of the data. Based on the provisions in the protocol, the terminal does not need to perform blind detection of NPDCCH on these subframes. Before the base station delivers DCI, the UE receives the TA sent by the base station, and then determines the time domain position of the blind detection DCI.
  • Defects in existing technology include:
  • both process numbers are configured not to require HARQ feedback, then neither TB needs feedback when scheduling multiple TBs.
  • HARQ needs to be updated.
  • Feedback configuration update two process numbers that do not require feedback to one of the process numbers that require feedback. If the configuration signaling is a semi-static indication in RRC, it needs to be updated frequently, and the signaling overhead is too large; and if it is a dynamic indication, since two TBs correspond to two processes, two bits need to be introduced to indicate whether the two processes are Feedback is needed.
  • the terminal needs to search for one more length of DCI format during blind detection.
  • Figure 3A is a flow chart of a data transmission method provided by an embodiment of the present application. As shown in Figure 3A, the method includes the following steps:
  • the network device sends first information, and the first information is used to instruct scheduling of X transmission blocks TB.
  • the terminal device in the embodiment of this application refers to a terminal device that communicates based on the IoT protocol, that is, the terminal device is an IoT terminal.
  • the terminal device in the following description includes this meaning, and will not be repeated in the specific embodiments.
  • network equipment also refers to network equipment that communicates based on IoT protocols.
  • the network device in the embodiment of this application refers to an NTN network device.
  • the network devices described in the corresponding method embodiment in Figure 3A all include this meaning, which will not be described again below.
  • the network device can schedule X TBs by sending the first information instruction to the terminal device.
  • one DCI is used to schedule X TBs, and only when the terminal device receives all X TBs sent by the network device, decoding is performed. get data.
  • the X TBs can be different TBs, or they can be different incremental redundant versions of the same TB, but correspond to X HARQ processes respectively.
  • X is a value greater than or equal to 2, that is, the first indication information is used to instruct multi-TB scheduling.
  • the network device sends second information.
  • the second information is used to indicate the HARQ feedback configuration of X transport blocks.
  • the HARQ feedback configuration includes performing HARQ feedback or not performing HARQ feedback.
  • the second information occupies Y bits, Y ⁇ X.
  • the network device may indicate the HARQ feedback configuration for X TBs by sending second information to the terminal device, that is, whether the terminal device needs to perform HARQ feedback for X TBs scheduled by a DCI.
  • the second information occupies Y bits, Y ⁇ It can save the overhead of HARQ feedback configuration.
  • Y can be 1 or greater than 1.
  • Process 0 and process 1 are used to transmit the first TB and the second TB respectively, and share a HARQ feedback configuration, while process 2, used to transmit the third TB, uses a separate HARQ feedback configuration.
  • the communication process between the IoT terminal device and the NTN network device has the characteristic of slow channel change.
  • the corresponding channel parameters and channel quality of the channels experienced by multi-TB scheduling are similar. Therefore, for multiple processes for multi-TB scheduling process, and its corresponding HARQ feedback configuration can correspond to the same configuration. This can reduce the overhead for HARQ feedback configuration.
  • the method before the terminal device receives the second information (that is, before the network device sends the second information), the method further includes: 104.
  • the network device sends third information, where the third information includes each TB of the X TBs. feedback configuration; the second information is used to indicate the HARQ feedback configuration of X TBs, including: the second information indicates the feedback configuration of some TBs in the The first information, the second information and the third information determine the HARQ feedback configuration of X TBs, and then determine the target time domain position.
  • the network device can perform separate HARQ feedback configuration for each single TB scheduled by DCI.
  • this method can be reused, that is, HARQ feedback configuration is performed for each TB (there is no limit on the execution order of step 101 and step 104).
  • the network device instructs the scheduling of X TB through the first information. That is to say, the same DCI is used to schedule X TB.
  • the HARQ feedback of some TBs may be configured to require HARQ feedback, while the HARQ feedback of other TBs may be configured not to require HARQ feedback.
  • HARQ feedback is performed in this way, the process number corresponding to the TB that completed the transmission first cannot be released before the transmission of the last TB among the X TBs scheduled by the same DCI is completed. If HARQ feedback is configured without HARQ feedback, the effect of reducing round-trip delay cannot be achieved.
  • the HARQ feedback configuration of X TBs in multi-TB scheduling can be mapped to the HARQ feedback configuration of a partial TB (one or more TBs).
  • the HARQ feedback configuration of X TB is mapped to the HARQ feedback configuration of one TB.
  • the network device configures the HARQ feedback configurations of the two TB schedules through the third information to be 0 and 1 respectively, that is, the scheduling of TB1 does not require HARQ feedback, and the scheduling of TB2 requires feedback.
  • the second indication information indicates by indicating "1" that the HARQ feedback configuration of the first TB is used as the feedback configuration of multi-TB scheduling. Then the HARQ feedback configuration corresponding to X TBs is 0.
  • (2) X TB HARQ feedback configurations are mapped to multiple single TB HARQ feedback configurations.
  • the second indication information indicates the feedback configuration of multi-TB scheduling by indicating "2", “1", and "0".
  • the HARQ feedback configuration corresponding to X TBs is: the HARQ feedback configuration of the first TB is 1, and the HARQ feedback configuration of the second TB is 0.
  • the second indication information may use "0" to indicate that the HARQ feedback configuration of the subsequent TB is the same as the HARQ feedback configuration of the previous TB. That is to say, the HARQ feedback configuration of the third TB and the fourth TB is the same as the HARQ feedback configuration of the second TB.
  • the HARQ feedback configuration of TB is the same, both are 0.
  • the HARQ feedback configuration of X TBs is a default value, and the second indication information is used to indicate a HARQ feedback configuration different from the default value.
  • the default value of HARQ feedback configuration for X TBs can be 0, even if the default multi-TB scheduling process does not require HARQ feedback.
  • the HARQ feedback configuration of the first TB completed in the transmission can reuse the third information configuration.
  • the third configuration information configures the HARQ feedback configuration of the fourth TB (the last TB) to be 1, and the second indication information indicates "4" to indicate that the HARQ feedback configuration of the first TB among X TBs is the same as the HARQ feedback configuration of the third TB.
  • the HARQ feedback configuration of the fourth TB of the information configuration is the same, which is also 1.
  • the third information is used to deliver the feedback configuration of each TB in the X TBs
  • the second information is used to indicate the feedback configuration of some TBs in the HARQ feedback configuration of the X TBs as X HARQ feedback configuration for TB. That is to say, in multi-TB scheduling, the HARQ feedback configuration method of single-TB scheduling can be reused without additional HARQ feedback configuration for multi-TB scheduling, reducing signaling changes that may be caused by HARQ feedback configuration.
  • the second information is used to indicate the feedback configuration of part of the TB scheduling in the X single TB scheduling as the HARQ feedback configuration of the X TB, so that the HARQ feedback configuration of the Information resource overhead.
  • step 103a the terminal device determines X based on the first information, the third information and the preset information.
  • the feedback configuration of each TB is used to determine the target time domain position.
  • the preset information may be a method for determining the feedback configuration of X TBs in a multi-TB scheduling situation pre-agreed by the network device and the terminal device. For example, it is agreed that the feedback configuration of X TB is not to perform HARQ feedback by default. Or when it is agreed that the feedback configurations of the X TBs configured in the third information are not exactly the same, the feedback configuration of the first TB will be used as the feedback configuration of the X TBs by default, etc.
  • step 105 and step 102 are parallel steps, that is to say, when step 105 is executed, step 102 does not need to be executed again. Similarly, step 105 is not executed when step 102 is executed.
  • the feedback configuration of X TBs is determined based on the content indicated by the second information.
  • the terminal device when the terminal device receives the HARQ feedback configuration of each TB in multi-TB scheduling and receives the instruction information for multi-TB scheduling, it can directly determine the HARQ feedback configuration of multi-TB scheduling in combination with the preset information. There is no need to make any additional configuration and signaling instructions for the HARQ feedback configuration determination process of multi-TB scheduling, reducing the signaling or resource overhead of this process.
  • the first information is carried in downlink control information DCI
  • the second information is carried in radio resource control RRC signaling.
  • the first information and the second information are carried in DCI.
  • the first information and the second information include two sending methods:
  • Second information In the RRC signaling npdsch-MultiTB-Config, add a signaling for HARQ feedback configuration of multi-TB scheduling.
  • the signaling can be "multiTB-HARQfeedback", and the corresponding value can be “enable” or “ disabled”, respectively used to indicate that HARQ feedback is required or HARQ feedback is not required;
  • a 1-bit indicator (flag) is used in DCI for HARQ feedback configuration of multi-TB scheduling. For example, a flag of 0 indicates that feedback is not required, and a flag of 1 indicates that feedback is required.
  • the third information can also be carried in the DCI. That is to say, when the network device instructs the terminal device to schedule X TBs, the third information is used to indicate how to obtain the HARQ feedback corresponding to the X TBs based on the second information. configuration.
  • the second information is carried in the RRC signaling, which can realize the unified configuration of HARQ feedback configuration and reduce the resource overhead of HARQ feedback configuration.
  • Carrying the second information in the DCI allows the network device to configure HARQ feedback for multi-TB scheduling of a single DCI, thereby improving the flexibility of HARQ feedback configuration.
  • the method before sending the first information, further includes: determining that the terminal device is configured with the ability to perform multi-TB scheduling through RRC signaling.
  • the network device instructs multi-TB scheduling by sending first information. However, before sending the first information, the network device needs to determine that the terminal device is configured with the ability to perform multi-TB scheduling.
  • the network device can configure the multi-TB scheduling capability for the terminal device through RRC signaling. Specifically, when the network device configures the high-level signaling npdsch-MultiTB-Config of the terminal device to "enabled", it means that the network device has configured the terminal device. Only with the ability to perform multi-TB scheduling, the network device can also perform multi-TB scheduling, that is, it can send the first information to the terminal device.
  • the terminal device receives the first information and the second information, and determines the target time domain position based on the first information and the second information.
  • the target time domain position is the time domain position where the terminal device needs to listen to the physical downlink control channel PDCCH.
  • the terminal device After receiving the first information and the second information, the terminal device can determine whether HARQ feedback is needed for X TBs. Correspondingly, the terminal device can determine the time domain location where the network device may deliver DCI or data, and then determine the time domain location where it needs to listen to the PDCCH.
  • the target time domain position determined according to the first information and the second information does not include subframe n+k-p1 to subframe n+k-1, and subframe t +1 to subframe t+p2, where n is the subframe in which DCI is detected, n+k is the subframe in which DCI scheduled data begins to be received, and t is the subframe in which the transmission of the last TB in multiple TBs ends, p1 is the time used to decode DCI, and p2 is the time to decode data.
  • Figure 3C is a schematic diagram of a target time domain location provided by an embodiment of the present application. As shown in (a) in Figure 3C, assuming that multiple TBs are scheduled according to the first information and the second information indication, And HARQ feedback is configured not to perform HARQ feedback, then the subframes marked with slashes in the figure are subframes not included in the target time domain position, that is, the network device will not issue DCI positions, and the terminal device does not need to be in the target time domain. Location listening PDCCH.
  • n is the subframe in which DCI is detected
  • n+k is the subframe in which DCI scheduled data starts to be received
  • at least p1 subframes before starting to receive data are used to decode the received DCI without performing PDCCH. Listen. Therefore, the target time domain position does not include subframe n+k-p1 to subframe n+k-1, where p1 may be 2, which means that the time for decoding DCI is 2ms (milliseconds). Or P1 can also be 1ms, 4ms or other values, which are not limited in the embodiment of this application.
  • the PDCCH can be sensed between subframe n after the DCI is delivered to the subframe in which the DCI is decoded (subframe n+1 to subframe n+k-p1-1).
  • subframe n+k when the terminal device starts receiving data and the subframe t when the last TB transmission ends since there is no need for HARQ feedback, after some of the TB transmissions are completed, some processes are released, and the network equipment may
  • the terminal device can also listen to the PDCCH at the time domain position during this process. In the p2 subframe after the last TB transmission ends, the terminal device needs to decode data in multiple TBs and does not listen to the PDCCH.
  • the target time domain position does not include subframes t+1 to t+p2.
  • p2 can be 12, which means that the time used to decode the data can be 12ms.
  • p2 can also be 10ms, 13ms or other other values, which are not limited in the embodiment of this application.
  • the target time domain position determined according to the first information and the second information does not include subframe n to subframe n+m+p3, where subframe n is the area where DCI is detected subframe, n+m is the subframe at which sending HARQ feedback ends, and p3 is the time to decode HARQ feedback.
  • the subframe marked with a slash in the figure is the target time domain
  • the location does not include subframes, that is, locations where the network device will not deliver DCI.
  • the terminal device does not need to listen to the PDCCH at the target time domain location.
  • n is the subframe in which DCI is detected
  • n+k is the subframe in which DCI scheduled data starts to be received
  • n+m is the subframe at which HARQ feedback ends.
  • HARQ feedback is configured to perform HARQ feedback, then it starts from the subframe n when the terminal device detects DCI to the subframe at which the terminal device sends HARQ feedback (including subframe n+k when the terminal device starts receiving data to the subframe n+k when the terminal device ends receiving data).
  • Subframe t since all processes are occupied by multi-TB scheduling, only when the ACK/NACK fed back by the terminal device is received and decoded by the network device, the network device will determine whether to schedule new data or to correctly decode the data that the terminal failed to decode. The data is retransmitted. That is, the network device will not issue new DCI during this process, so subframe n ⁇ subframe n+m+p3 are not included in the target time domain position, that is, the terminal device does not need to listen within the subframe range.
  • PDCCH. p3 is the time for the network device to perform HARQ feedback decoding, which may be 3 ms, 2 ms or 4 ms, and is not specifically limited in the embodiment of this application. That is to say, subframe n ⁇ subframe n+m+p3 are not included in the target time domain position.
  • HARQ feedback may specifically be NPUSCH format2, and decoding HARQ feedback may refer to decoding NPUSCH format2.
  • the terminal device determines that HARQ feedback needs to be performed based on the HARQ feedback configuration, and decodes the data to obtain the data. After determining the HARQ feedback results, the feedback results (ACK/NACK) of X TBs (or X processes) can be fed back separately or bundled. Certain feedback is not limited by the embodiments of this application.
  • the terminal device determines the time domain position for PDCCH listening, excluding the time domain used for transmitting DCI and DCI scheduling. Data, decoded DCI and the time domain position of the decoded data are enough, and the process is released in advance to ensure data transmission efficiency. If HARQ feedback for all processes is configured for HARQ feedback, the terminal device can determine not to monitor the PDCCH before the feedback content is decoded by the network device, which improves the efficiency of the terminal device in determining the target time domain position.
  • HARQ feedback when HARQ feedback is configured to not perform HARQ feedback, if any of the X TBs transmits MAC CE, determine that HARQ feedback is configured to perform HARQ feedback.
  • TA adjustment information is carried by MAC CE, and the transmission of MAC CE requires HARQ feedback. Then, assuming that the terminal device obtains the HARQ feedback configuration corresponding to the scheduling of Perform HARQ feedback.
  • the process corresponding to the TB used to transmit MAC CE can be individually determined as requiring HARQ feedback, while the HARQ feedback configuration of the process transmitting other TBs is retained as performing HARQ feedback.
  • the method further includes: the network device sends third information, and the third information is carried in DCI to indicate whether to change the HARQ feedback configuration indicated by the second information;
  • the terminal device receives the third information and determines the target time domain position based on the first information and the change of the second indication information by the third information.
  • the second information is carried in RRC, that is to say, the HARQ feedback configuration of multi-TB scheduling is indicated by RRC signaling, which is a semi-static indication method.
  • the HARQ feedback configuration for multi-TB scheduling may change after partial multi-TB scheduling is performed.
  • the third information may be carried in the DCI to indicate whether to change the HARQ feedback configuration indicated by the RRC signaling. If the third information indicates changing the HARQ feedback configuration, then change HARQ feedback indicated by the second information to not performing HARQ feedback, or change not performing HARQ feedback indicated by the second information to perform HARQ feedback. If possible, assuming that
  • the HARQ feedback configuration is first indicated semi-statically through RRC, and then the HARQ feedback configuration is changed through the indication information in the DCI.
  • the indication of the HARQ feedback configuration can be completed with less resource overhead, and at the same time, when needed Changing the HARQ feedback configuration through DCI ensures the flexibility of HARQ feedback configuration instructions.
  • Figure 4A is a flow chart of another data transmission method provided by an embodiment of the present application. As shown in Figure 4A, the method includes the following steps:
  • the network device sends first information, where the first information is used to instruct scheduling of X transmission blocks TB.
  • the terminal device in the embodiment of this application also refers to the IoT terminal, but the network device in the embodiment of this application Can refer to NTN network equipment or terrestrial (TN) network equipment that communicates through IoT protocols.
  • Figure 4B is a schematic diagram of a communication connection provided by an embodiment of the present application.
  • the IoT terminal can communicate with the satellite base station or with the satellite base station.
  • the first information is used to indicate scheduling of X TBs, and can be carried in the DCI and sent. Please refer to the relevant description of the first information for details, which will not be described again here.
  • the terminal device receives the first information, and determines the HARQ feedback configuration for X TBs according to the first information and the type of the network device.
  • the HARQ feedback configuration includes performing HARQ feedback or not performing HARQ feedback.
  • the type of network equipment refers to the satellite base station (NTN network equipment) or ground base station (TN network equipment) described above.
  • the scheduling of each TB in multi-TB scheduling can correspond to one process, that is, the scheduling of X TBs corresponds to X processes.
  • each TB scheduling process can correspond to a HARQ feedback configuration, that is, the scheduling of X TBs corresponds to X HARQ feedback configurations, occupying X bits (each HARQ feedback configuration occupies 1 bit, a value of 0 can indicate that HARQ feedback is not required, and a value of 1 can indicate that HARQ feedback is required).
  • HARQ feedback configurations can be bound. For example, for X processes corresponding to X TB scheduling, a unified HARQ feedback configuration for the X processes can be determined.
  • the terminal device may determine that the HARQ feedback configured by the terminal device for the X TB schedule is not to perform HARQ feedback. This is because, for satellite base stations, the RTT is very large, which will also have a greater impact on the communication process. You can set the HARQ feedback configuration to not perform HARQ feedback. To reduce the impact of RTT in the satellite communication process.
  • the terminal device determines that the type of the network device is a satellite base station, it may also determine that the HARQ feedback scheduled by the terminal device for X TBs is configured to perform HARQ feedback.
  • this HARQ feedback configuration is suitable for X processes corresponding to X TB.
  • the terminal device may determine that the HARQ feedback scheduled for X TBs is configured to perform HARQ feedback (or not to perform HARQ feedback), which is not specifically limited in this embodiment of the application.
  • the embodiment of the present application may also include step 204 in which the network device sends third information, where the third information is used to indicate the HARQ feedback configuration of each TB in the X TBs.
  • the terminal device determines the HARQ feedback configuration of the X TB schedule based on the first information and the type of the network device, including: the terminal device determines the HARQ feedback configuration of the X TB schedule based on the first information, the third information, and the type of the network device.
  • HARQ feedback configuration is based on the first information and the type of the network device.
  • the network device may indicate the HARQ feedback configuration corresponding to each TB in the manner in the prior art. The difference is that the terminal device receives the first information and determines that the network device has scheduled multiple TBs. Then the terminal device comprehensively determines the HARQ feedback configuration of X TB by combining the first information, the third information and the type of network device.
  • the terminal device can directly determine that the HARQ feedback configuration of the X TB schedule is not to perform HARQ feedback (or to perform HARQ feedback). Or the terminal device may determine the HARQ feedback configuration scheduled for X TBs and use the HARQ feedback of one TB (for example, the first TB) configured in the third information as the HARQ feedback configuration scheduled for X TBs. Similarly, the HARQ feedback configurations of some TBs (more than 1 TB) in the configured X HARQ feedback configurations can also be used as the HARQ feedback configurations of X TBs. For specific description, please refer to the description in step 104, and will not be described again here.
  • the terminal equipment can directly determine that the HARQ feedback configuration of X TB schedules is to perform HARQ feedback (or not to perform HARQ feedback). Or the terminal device may determine that the HARQ feedback configuration scheduled for X TBs shall be subject to the configuration content in the third information. Or the terminal device may determine the HARQ feedback configuration scheduled for X TBs and use the HARQ feedback of a portion (greater than or equal to one) of TBs configured in the third information as the HARQ feedback configuration scheduled for X TBs, etc.
  • the terminal device when the terminal device receives the HARQ feedback configuration of each TB in multi-TB scheduling and receives the instruction information for multi-TB scheduling, it can determine the HARQ feedback configuration of multi-TB scheduling based on the type of network device. .
  • This process makes full use of the existing HARQ feedback configuration process, as well as information such as the type of network equipment, to determine the HARQ feedback configuration suitable for different communication scenarios. There is no need to do any additional configuration and determination of the HARQ feedback configuration process for multi-TB scheduling. Signaling instructions reduce the signaling or resource overhead of the process.
  • the terminal device determines the target time domain position.
  • the target time domain position is the time domain position where the terminal device needs to listen to the physical downlink control channel PDCCH.
  • the terminal equipment After the terminal equipment determines the HARQ feedback configuration, it can accordingly determine the time domain position where the PDCCH needs to be listened to to ensure that sufficient communication time can be reserved for HARQ feedback and that no missed detection will occur.
  • the determined target time domain position does not include subframe n+k-p1 to subframe n+k-1, and subframe t+1 to subframe t+p2.
  • n is the subframe in which DCI is detected
  • n+k is the subframe in which DCI-scheduled data begins to be received
  • t is the subframe in which the transmission of the last TB in multiple TBs ends
  • p1 is the time used to decode DCI.
  • p2 is the time to decode data.
  • the determined target time domain position does not include subframe n to subframe n+m+p3, where subframe n is the subframe in which DCI is detected, and n+m is The subframe in which HARQ feedback ends is sent, and p3 is the time to decode HARQ feedback.
  • the terminal device can listen to the PDCCH after the terminal device has finished sending the HARQ feedback and the network device has completed decoding the HARQ feedback. Therefore, the target time domain position does not include subframe n to subframe n+m+p3.
  • the target time domain position does not include subframe n to subframe n+m+p3.
  • the HARQ feedback configuration is determined based on the type of network device that sends the instruction information, mainly to determine the multi-TB scheduling process for the satellite base station. Corresponding HARQ feedback configuration of all processes. Then, the time domain position where the terminal equipment listens to the PDCCH is determined. This process enables the HARQ feedback configuration to be determined without receiving additional HARQ feedback configuration information for the communication process between the terminal equipment and the satellite base station, thereby improving communication efficiency. In addition, determining that the HARQ feedback configuration of the satellite base station does not perform HARQ feedback can reduce the impact of RTT on the communication process and ensure the timeliness and accuracy of the communication process.
  • the terminal device determines the feedback configuration of X TBs based on the first information, the second information and the type of network device, and then determines the target time. domain location.
  • the specific implementation process will not be described again in the embodiments of this application.
  • the communication device 300 includes a transceiver module 301 and a processing module 302 .
  • the communication device 300 may be used to implement the functions of the terminal device or network device in the method embodiment shown in FIG. 3A or FIG. 4A.
  • the transceiver module 301 is configured to receive first information, and the first information is used to indicate scheduling of X transmission blocks TB;
  • the transceiver module 301 is also used to receive second information.
  • the second information is used to indicate the HARQ feedback configuration of X TBs.
  • the HARQ feedback configuration includes performing HARQ feedback or not performing HARQ feedback.
  • the second information occupies Y bits, Y ⁇ X;
  • the processing module 302 is configured to determine a target time domain location based on the first information and the second information.
  • the target time domain location is a time domain location where the terminal equipment needs to listen to the physical downlink control channel PDCCH.
  • the transceiver module 301 is configured to send first information, and the first information is used to indicate scheduling of X transmission blocks TB;
  • the transceiver module 301 is also used to send second information.
  • the second information is used to indicate the HARQ feedback configuration of X TBs.
  • the HARQ feedback configuration includes performing HARQ feedback or not performing HARQ feedback.
  • the second information occupies Y bits, Y ⁇ X.
  • the transceiver module 301 is configured to receive first information from the network device, where the first information is used to indicate scheduling of X transmission blocks TB;
  • the processing module 302 is configured to determine the HARQ feedback configuration of X TB according to the first information and the type of network equipment.
  • the HARQ feedback configuration includes performing HARQ feedback or not performing HARQ feedback;
  • the processing module 302 is also used to determine the target time domain location, which is the time domain location where the terminal equipment needs to listen to the physical downlink control channel PDCCH.
  • transceiver module 301 For a more detailed description of the above-mentioned transceiver module 301 and processing module 302, reference may be made to the relevant descriptions in the above-mentioned method embodiments, which will not be described again here.
  • FIG. 6 shows a schematic diagram of the hardware structure of a communication device in an embodiment of the present application.
  • the structure of the communication device in Figure 5 may refer to the structure shown in Figure 6 .
  • the communication device 900 includes: a processor 111 and a transceiver 112, and the processor 111 and the transceiver 112 are electrically coupled;
  • the processor 111 is configured to execute some or all of the computer program instructions in the memory. When the part or all of the computer program instructions are executed, the device performs the method described in any of the above embodiments.
  • the transceiver 112 is used to communicate with other devices; for example, receiving a message from the first network element, the message including the identifier of the multicast and/or broadcast service, and the key and/or key of the multicast and/or broadcast service. Key identification for multicast and/or broadcast services.
  • a memory 113 is also included for storing computer program instructions.
  • the memory 113 (memory #1) is located in the device, and the memory 113 (memory #2) is integrated with the processor 111. together, or the memory 113 (memory #3) is located outside the device.
  • the communication device 900 shown in FIG. 6 may be a chip or a circuit.
  • it may be a chip or circuit provided in a terminal device or a communication device.
  • the above-mentioned transceiver 112 may also be a communication interface.
  • a transceiver includes a receiver and a transmitter.
  • the communication device 900 also Can include bus systems.
  • the processor 111, the memory 113, and the transceiver 112 are connected through a bus system.
  • the processor 111 is used to execute instructions stored in the memory 113 to control the transceiver to receive signals and send signals to complete the first implementation method involved in this application. device or steps for a second device.
  • the memory 113 may be integrated in the processor 111 or may be provided separately from the processor 111 .
  • the function of the transceiver 112 may be implemented through a transceiver circuit or a dedicated transceiver chip.
  • the processor 111 may be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • the processor can be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor may further include a hardware chip or other general-purpose processor.
  • the above-mentioned hardware chip can be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) and other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components, etc. or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL general array logic
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Erase programmable read-only memory Electrodeically EPROM, EEPROM
  • Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application provide a computer storage medium that stores a computer program.
  • the computer program includes a method for executing the method corresponding to the terminal device in the above embodiments.
  • An embodiment of the present application provides a computer storage medium that stores a computer program.
  • the computer program includes a method for executing the method corresponding to the network device in the above embodiment.
  • Embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the method corresponding to the terminal device in the above embodiments.
  • Embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the method corresponding to the network device in the above embodiments.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, or each unit can be physically separated. exist, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Abstract

本申请公开了一种数据传输方法及装置,其中方法包括:网络设备发送第一信息和第二信息,第一信息用于指示进行X个传输块TB的调度,第二信息用于指示X个TB的HARQ反馈配置,HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈,第二信息占用Y比特,Y<X;终端设备根据接收到的第一信息和第二信息确定目标时域位置,目标时域位置为终端设备需要侦听物理下行控制信道PDCCH的时域位置。本申请实施例通过将多TB调度的HARQ反馈配置进行绑定指示,减少HARQ配置的资源开销。另外通过指示不进行HARQ反馈能够降低往返时延对传输过程的影响。

Description

数据传输方法及装置
本申请要求于2022年08月10日提交中国专利局、申请号为202210955268.5、申请名称为“数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
混合自动重传(hybrid automatic repeat request,HARQ)是一种提高数据传输可靠度的方法,对于译码错误的数据包会保存在一个HARQ缓存中,并与后续接收到的重传数据包进行合并,从而得到一个比单独解码更可靠的数据包(“软合并”的过程)。然后对合并后的数据包进行解码,如果还是失败,则重复“请求重传,再进行软合并”的过程。接收端通过循环冗余校验(cyclic redundancy check,CRC)来判断接收到的数据包是否出错,并通过HARQ反馈来指示CRC校验是否成功。
HARQ过程通过停等协议来发送数据。即发送端发送一个传输块(transport block,TB)后,就停下来等待HARQ反馈。但是每次传输后发送端就停下来等待HARQ反馈,会导致吞吐量很低。因此使用多个并行的停等协议进程。在等待确认信息时,发送端可以使用另一个进程来继续发送数据,从而使得数据可以连续传输。
在非陆地网络(non terrestrial networks,NTN)场景中,往返时延相较于地面来说非常大,HARQ停等协议下的等待时间就会非常久,吞吐量很低。因此可以支持有些进程配置为不需要HARQ反馈,从而降低由于大往返时延带来的吞吐损失。而针对物联网(IoT,Internet of things)NTN场景,通常为终端最大配置两个HARQ进程。但针对终端的HARQ进程如何进行HARQ反馈,以及相对应的物理下行控制信道(physical downlink control channel,PDCCH)如何进行侦听,还没有进行具体地配置。
发明内容
本申请实施例提供了一种数据传输方法及装置,用以通过将多TB调度的HARQ反馈配置进行绑定指示,能够减少HARQ配置的资源开销。另外通过指示不进行HARQ反馈能够降低往返时延对传输过程的影响。
第一方面,提供了一种数据传输方法,该方法包括:终端设备接收第一信息,所述第一信息用于指示进行X个传输块TB的调度;所述终端设备接收第二信息,所述第二信息用于指示所述X个TB的HARQ反馈配置,所述HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈,所述第二信息占用Y比特,Y<X;所述终端设备根据所述第一信息和所述第二信息确定目标时域位置,所述目标时域位置为所述终端设备需要侦听物理下行控制信道PDCCH的时域位置。
可见,在本申请实施例中,在进行X个TB的调度时,通过第二信息指示HARQ反馈配置,第二信息占用Y比特。由于Y小于X,相较于每个TB的调度占用1比特用于指示HARQ反馈配置,能够减少反馈配置占用的资源开销。另外,对多TB的调度进行HARQ反馈配置,使得在一些情况下不需要进行HARQ反馈,降低通信时延,提升通行效率。
在一种可能的设计中,X=2,Y=1。
在一种可能的设计中,在终端设备接收第二信息之前,该方法还包括:接收第三信息,第三信息包括X个TB中每个TB的反馈配置;第二信息用于指示X个TB的HARQ反馈配置,包括:第二信息指示X个TB中的部分TB的反馈配置作为X个TB的HARQ反馈配置。
在本申请实施例中,第三信息用于下发X个TB中每个TB的反馈配置,第二信息用于指示X个TB的HARQ反馈配置中的部分TB的反馈配置作为X个TB的HARQ反馈配置。也即是说,在多TB调度时,可以复用单TB调度的HARQ反馈配置方式,而不需要额外对多TB调度进行HARQ反馈配置,减少进行HARQ反馈配置可能造成的信令更改。同时通过第二信息指示X个单TB调度中部分TB调度的反馈配置作为X个TB的HARQ反馈配置,使得X个TB(中的部分或全部TB)的HARQ反馈配置绑定,也能减少指示信息的资源开销。
在一种可能的设计中,所述第一信息携带在下行控制信息DCI中,所述第二信息携带在无线资源控制 RRC信令中。
在一种可能的设计中,所述第一信息和所述第二信息携带在DCI中。
本申请实施例中,在RRC信令中携带第二信息,可以实现HARQ反馈配置的统一配置,减少进行HARQ反馈配置的资源开销。而在DCI中携带第二信息,可以使得网络设备针对单个DCI的多TB调度进行HARQ反馈配置,提升HARQ反馈配置的灵活性。
在一种可能的设计中,若所述HARQ反馈配置为不进行HARQ反馈,根据所述第一信息和所述第二信息确定的目标时域位置不包括子帧n+k-p1至子帧n+k-1,以及子帧t+1至子帧t+p2,其中,所述n为检测到所述DCI的子帧,所述n+k为开始接收所述DCI调度的数据的子帧,所述t为所述多个TB中的最后一个TB传输结束的子帧,p1为用于解码所述DCI的时间,p2为解码所述数据的时间。
在一种可能的设计中,若所述HARQ反馈配置为进行HARQ反馈,根据所述第一信息和所述第二信息确定的目标时域位置不包括子帧n至子帧n+m+p3,其中,所述子帧n为检测到所述DCI的子帧,所述n+m为发送HARQ反馈结束的子帧,所述p3为解码HARQ反馈的时间。
在本申请实施例中,针对多TB调度,如果针对全部进程的HARQ反馈配置为不进行HARQ反馈,那么终端设备确定进行PDCCH侦听的时域位置,排除用于传输DCI、DCI调度的数据、解码DCI以及解码数据的时域位置即可,提前释放进程,保障了数据传输效率。而如果针对全部进程的HARQ反馈配置为进行HARQ反馈,那么终端设备可以确定在该反馈内容被网络设备解码前,都不监听PDCCH,提升了终端设备确定目标时域位置的效率。
在一种可能的设计中,当所述第二信息携带在RRC中时,所述方法还包括:接收第三信息,所述第三信息携带在DCI中,用于指示是否对所述第二信息指示的HARQ反馈配置进行更改;根据所述第一信息和所述第三信息对所述第二指示信息的更改确定所述目标时域位置。
在本申请实施例中,首先通过RRC半静态指示HARQ反馈配置,然后通过DCI中的指示信息更改HARQ反馈配置,能够以更少的资源开销完成对HARQ反馈配置的指示,同时在需要时通过DCI更改HARQ反馈配置,保证了HARQ反馈配置指示的灵活性。
第二方面,提供了一种数据传输方法,该方法包括:发送第一信息,第一信息用于指示进行X个传输块TB的调度;发送第二信息,第二信息用于指示X个TB的HARQ反馈配置,HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈,第二信息占用Y比特,Y<X。
在一种可能的设计中,X=2,Y=1。
在一种可能的设计中,在发送第二信息之前,该方法还包括:发送第三信息,第三信息包括X个TB中每个TB的反馈配置;第二信息用于指示X个TB的HARQ反馈配置,包括:第二信息指示X个TB中的部分TB的反馈配置作为X个TB的HARQ反馈配置。
在一种可能的设计中,第一信息携带在下行控制信息DCI中,第二信息携带在无线资源控制RRC信令中。
在一种可能的设计中,第一信息和第二信息携带在DCI中。
在一种可能的设计中,第二信息携带在无线资源控制RRC信令中,方法还包括:
发送第三信息,第三信息携带在DCI中,用于指示是否对第二信息指示的HARQ反馈配置进行更改。
在一种可能的设计中,在发送第一信息之前,方法还包括:确定通过RRC信令为终端设备配置了进行多TB调度的能力。
第三方面,提供了一种数据传输方法,该方法包括:终端设备接收来自网络设备的第一信息,第一信息用于指示进行X个传输块TB的调度;根据第一信息和网络设备的类型,确定X个TB的HARQ反馈配置,HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈;确定目标时域位置,目标时域位置为终端设备需要侦听物理下行控制信道PDCCH的时域位置。
在本申请实施例中,在终端设备接收到指示进行多TB的调度时,结合发送指示信息的网络设备的类型,确定HARQ反馈配置,主要是确定针对卫星基站的多TB调度过程中,对应确定全部进程的HARQ反馈配置。进而确定终端设备侦听PDCCH的时域位置。该过程使得针对终端设备与卫星基站的通信过程,无需再接收额外的HARQ反馈配置信息,即可确定HARQ反馈配置,提升了通信效率。
在一种可能的设计中,网络设备的类型为卫星基站或地面基站。
在一种可能的设计中,若网络设备的类型为卫星基站,HARQ反馈配置为不进行HARQ反馈。
本申请实施例中,确定卫星基站的HARQ反馈配置为不进行HARQ反馈,能够降低RTT对通信过程的影响,保障了通信过程的及时性和准确性。
在一种可能的设计中,若HARQ反馈配置为不进行HARQ反馈,目标时域位置不包括子帧n+k-p1和子帧n+k-1,以及子帧t+1至子帧t+p2,其中,n为检测到DCI的子帧,n+k为开始接收DCI调度的数据的子帧,t为多个TB中的最后一个TB传输结束的子帧,p1为用于解码DCI的时间,p2为解码所述数据的时间。
在一种可能的设计中,若HARQ反馈配置为进行HARQ反馈,目标时域位置不包括子帧n至子帧n+m+p3,其中,子帧n为检测到DCI的子帧,n+m为发送HARQ反馈结束的子帧,p3为解码HARQ反馈的时间。
第四方面,提供了一种通信装置,应用于终端设备,该装置包括:
收发模块,用于接收第一信息,第一信息用于指示进行X个传输块TB的调度;
收发模块,还用于接收第二信息,第二信息用于指示X个TB的HARQ反馈配置,HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈,第二信息占用Y比特,Y<X;
处理模块,用于根据第一信息和第二信息确定目标时域位置,目标时域位置为终端设备需要侦听物理下行控制信道PDCCH的时域位置。
在一种可能的设计中,X=2,Y=1。
在一种可能的设计中,在接收第二信息之前,收发模块还用于:接收第三信息,第三信息包括X个TB中每个TB的反馈配置;第二信息用于指示X个TB的HARQ反馈配置,包括:第二信息指示X个TB中的部分TB的反馈配置作为X个TB的HARQ反馈配置。
在一种可能的设计中,第一信息携带在下行控制信息DCI中,第二信息携带在无线资源控制RRC信令中。
在一种可能的设计中,第一信息和第二信息携带在DCI中。
在一种可能的设计中,若HARQ反馈配置为不进行HARQ反馈,根据第一信息和第二信息确定的目标时域位置不包括子帧n+k-p1至子帧n+k-1,以及子帧t+1至子帧t+p2,其中,n为检测到DCI的子帧,n+k为开始接收DCI调度的数据的子帧,t为多个TB中的最后一个TB传输结束的子帧,p1为用于解码DCI的时间,p2为解码数据的时间。
在一种可能的设计中,若HARQ反馈配置为进行HARQ反馈,根据第一信息和第二信息确定的目标时域位置不包括子帧n至子帧n+m+p3,其中,子帧n为检测到DCI的子帧,n+m为发送HARQ反馈结束的子帧,p3为解码HARQ反馈的时间。
在一种可能的设计中,当第二信息携带在RRC中时,收发模块还用于:接收第三信息,第三信息携带在DCI中,用于指示是否对第二信息指示的HARQ反馈配置进行更改;处理模块还用于:根据第一信息和第三信息对第二指示信息的更改确定目标时域位置。
第五方面,提供了一种通信装置,应用于网络设备,该装置包括:
收发模块,用于发送第一信息,第一信息用于指示进行X个传输块TB的调度;
收发模块,还用于发送第二信息,第二信息用于指示X个TB的HARQ反馈配置,HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈,第二信息占用Y比特,Y<X。
在一种可能的设计中,X=2,Y=1。
在一种可能的设计中,在接收第二信息之前,收发模块还用于:发送第三信息,第三信息包括X个TB中每个TB的反馈配置;第二信息用于指示X个TB的HARQ反馈配置,包括:第二信息指示X个TB中的部分TB的反馈配置作为X个TB的HARQ反馈配置。
在一种可能的设计中,第一信息携带在下行控制信息DCI中,第二信息携带在无线资源控制RRC信令中。
在一种可能的设计中,第一信息和第二信息携带在DCI中。
在一种可能的设计中,第二信息携带在无线资源控制RRC信令中,收发模块还用于:
发送第三信息,第三信息携带在DCI中,用于指示是否对第二信息指示的HARQ反馈配置进行更改。
在一种可能的设计中,在发送第一信息之前,处理模块还用于:确定通过RRC信令为终端设备配置了进行多TB调度的能力。
第六方面,提供一种通信装置,应用于终端设备,该装置包括:
收发模块,用于接收来自网络设备的第一信息,第一信息用于指示进行X个传输块TB的调度;
处理模块,用于根据第一信息和网络设备的类型,确定X个TB的HARQ反馈配置,当所述网络设备的类型为卫星基站时,所述HARQ反馈配置为不进行HARQ反馈;
处理模块,还用于确定目标时域位置,目标时域位置为终端设备需要侦听物理下行控制信道PDCCH的时域位置。
在一种可能的设计中,网络设备的类型为卫星基站或地面基站。
在一种可能的设计中,若网络设备的类型为卫星基站,HARQ反馈配置为不进行HARQ反馈。
在一种可能的设计中,若HARQ反馈配置为不进行HARQ反馈,目标时域位置不包括子帧n+k-p1和子帧n+k-1,以及子帧t+1至子帧t+p2,其中,n为检测到DCI的子帧,n+k为开始接收DCI调度的数据的子帧,t为多个TB中的最后一个TB传输结束的子帧,p1为用于解码DCI的时间,p2为解码所述数据的时间。
在一种可能的设计中,若HARQ反馈配置为进行HARQ反馈,目标时域位置不包括子帧n至子帧n+m+p3,其中,子帧n为检测到DCI的子帧,n+m为发送HARQ反馈结束的子帧,p3为解码HARQ反馈的时间。
第七方面,本申请实施例提供一种网络设备或终端设备,包括:
存储器,用于存储指令;以及
至少一台处理器,与所述存储器耦合;
其中,当所述至少一台处理器执行所述指令时,所述指令致使所述处理器执行第一方面、第二方面或第三方面任一项所述的方法。
第八方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面、第二方面或第三方面任一方面的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于交互代码指令至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第九方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面、第二方面或第三方面的方法。
第十方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面、第二方面或第三方面任一种可能的实现方式中的方法。
第十一方面,本申请实施例提供一种通信系统,该通信系统包括上述的第一方面和/或第第二方面的装置。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的NR NTN通信网络典型系统架构示意图;
图2为本申请实施例提供的一种定时关系示意图;
图3A为本申请实施例提供的一种数据传输方法流程图;
图3B为本申请实施例提供的一种多TB调度过程示意图;
图3C为本申请实施例提供的一种目标时域位置示意图;
图4A为本申请实施例提供的另一种数据传输方法流程图;
图4B为本申请实施例提供的一种通信连接示意图;
图5为本申请实施例提供的一种通信装置结构框图;
图6为本申请实施例中的一种通信装置的硬件结构示意图。
具体实施方式
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
首先对结合图示对本申请实施例中的专业术语进行介绍。
非地面网络(non terrestrial networks,NTN)移动通信:在新空口(new radio,NR)系统中,引入了NTN通信(也即卫星通信)。相比地面网络(terrestrial networks,TN)移动通信,NTN移动通信利用高、中、低轨卫星可实现广域甚至全球覆盖,可以为全球用户提供无差别的通信服务。NTN移动通信与5G NR相互融合,取长补短,共同构成全球无缝覆盖的海、陆、空、天一体化综合通信网,满足用户无处不在的多种业务需求,是未来通信发展的重要方向。NTN网络与5G的融合将充分发挥各自优势,为用户提供更全面优质的服务,主要体现在:(1)在地面5G网络无法覆盖的偏远地区、飞机上或者远洋舰艇上,卫星可以提供经济可靠的网络服务,将网络延伸到地面网络无法到达的地方。(2)卫星可以为物联网设备以及飞机、轮船、火车、汽车等移动载体用户提供连续不间断的网络连接,卫星与5G融合后,可以大幅度增强5G系统在这方面的服务能力。(3)卫星优越的广播/多播能力可以为网络边缘及用户终端提供高效的数据分发服务。相比早期的卫星移动通信系统,当前卫星移动通信的发展呈现两个特点。移动终端小型化:支持包括手持机在内的多种移动通信终端;通信业务宽带化:除传统的窄带话音服务外,还提供高速数据业务和互联网多媒体通信服务。
请参阅图1,图1为本申请实施例提供的NR NTN通信网络典型系统架构示意图,如图1所示,NR NTN通信网络中,地面移动终端通过5G NR接入网络,5G基站部署在卫星上,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。图1中的各个网元以及他们的接口说明如下:
终端:支持5G NR的移动设备,也可以称为终端设备(terminal equipment)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。可以通过空口接入卫星网络并发起呼叫,上网等业务。
5G基站:是指5G网络中将终端接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为接入网设备,网络设备,或者继续演进的节点B(gNB)。主要是提供无线接入服务,调度无线资源给接入终端,提供可靠的无线传输协议和数据加密协议等。
5G核心网:是指在5G网络中为终端设备提供业务支持的核心网(core network,CN)中的设备。用于进行用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它有多个功能单元组成,可以分为控制面功能实体和数据面功能实体。认证管理功能(authentication management function,AMF),负责用户接入管理,安全认证,还有移动性管理。用户面功能(user plane function,UPF)负责管理用户面数据的传输,流量统计等功能。
地面站:负责转发卫星基站和5G核心网之间的信令和业务数据。
5G NR:终端和基站之间的无线链路。
Xn接口:5G基站和基站之间的接口,主要用于切换等信令交互。
NG接口:5G基站和5G核心网之间接口,主要交互核心网的非接入层(non-access-stratum,NAS)等信令,以及用户的业务数据。
物联网(Internet of things,IoT):物联网通过使物理上独立的物体实现网络连接功能,来进行信息交换和通信,以实现对物体的识别、监控、定位和控制等功能。IoT可广泛地应用于智能抄表、精准农耕、工业自动化、智能建筑、POS机、环境监控和远程医疗等场景。物联网设备经常安装在没有电源的地方,可能需要完全依靠电池来供电,并且换电池的成本可能非常高昂。在某些情况下,电池的寿命甚至决定了整个设备的寿命。因此,电池使用寿命的优化对物联网设备来说非常重要。另一方面,物联网设备的覆盖条件可能很差,例如位于地下室,因此需要显著地提高(室内)覆盖才能满足物联网的需求。为了应对不同的无线信道条件,NB-IoT定义了至多3个覆盖增强等级(coverage enhancement level,CE等级)。CE等级0对应正常覆盖(信道条件最好);CE等级2对应信道条件最差的情况,并认为该覆盖可能非常差。不同CE级别主要影响消息重复发送的次数,信道条件差的,就需要多重复发送几次。NB-IoT中上下行均需要支持重复传输,终端会将这些重复传输的解码结果作为一个整体的混合自动重传(hybrid automatic repeat request,HARQ)进程进行HARQ反馈。
HARQ反馈:HARQ是一种提高数据传输可靠度的方法。对于译码错误的数据包会保存在一个HARQ缓存中,并与后续接收到的重传数据包进行合并,从而得到一个比单独解码更可靠的数据包(“软合并”的过程)。然后对合并后的数据包进行解码,如果还是失败,则重复“请求重传,再进行软合并”的过程。接收端通过循环冗余校验(cyclic redundancy check,CRC)来判断接收到的数据包是否出错,并指示CRC校验是否成功为一次HARQ反馈。
HARQ过程通过停等协议来发送数据。即发送端发送一个传输块(transport block,TB)后,就停下来等待HARQ反馈。但是每次传输后发送端就停下来等待HARQ反馈,会导致吞吐量很低。因此使用多个并行的停等协议进程。在等待确认信息时,发送端可以使用另一个进程来继续发送数据,从而使得数据可以连续传输。
以下对现有技术进行介绍。
考虑到卫星的往返时延相较于地面来说非常大,HARQ停等协议下的等待时间就会非常久,吞吐量很低。因此,对于NR NTN,将最大进程数由16个增加到32个,同时可以支持有些进程配置为不需要反馈,从而降低由于大往返时延带来的吞吐损失。
由于窄带物联网(Narrow Band Internet of Things,NB-IoT)的终端能力有限,现有技术规定了IoT下行的最大HARQ进程数为2,由高层配置参数twoHARQ-ProcessesConfig确定。此外,为了增加吞吐,NB-IoT还支持一个下行控制信息(downlink control information,DCI)调度多个TB。当进行多TB调度时,DCI中的大部分字段含义都保持不变,但原本指示进程号的1bit(比特)字段HARQ process number的含义表示为第二个TB的新数据指示(new data indicator,NDI),也即用来指示第二个TB是新传还是重传。而原本的NDI字段的含义表示第一个TB是新传还是重传。在进行多TB调度时,默认第一个TB对应的进程号为0,第二个TB对应的进程号为1。同时根据相应的高层参数配置,只有当两个TB的传输方式为交织传输时,才可能会将两个TB的HARQ反馈进行绑定传输。基于HARQ的停等协议,显然,当一个DCI调度了多TB时,只有等完全收到两个TB的反馈,才可以重新进行多TB的调度。
为了不增加终端的复杂度,现有技术展开了关于对NB-IoT的HARQ也不反馈的讨论,以降低由于往返时延(round trip time,RTT)带来的影响。关于如何指示终端HARQ进程是否需要反馈给出了以下几种方案:
(1)通过高层信令配置半静态指示终端每个进程是否需要反馈,信令为终端级别或是小区级别;(2)由调度数据的DCI动态指示;(3)根据数据的重复次数等隐式指示。
此外,为了降低终端的功耗,对于调度的定时关系,可以参阅图2,图2为本申请实施例提供的一种定时关系示意图,如图2所示,包括基站(gNB)下行链路(downlink,DL),基站上行链路(uplink,UL),UE DL和UE UL。其中基站DL和UE DL是用于传输相同内容的链路,区别在于同一个下行子帧上传输的内容,基站DL和UE DL之间相差一个传输时延。UE UL和基站UL用于传输相同的内容,UE在发送上行的时候通过定时提前(Timing advance,TA)可以保证基站在期望的上行子帧接收到数据,因此,UE DL和UE UL的相同子帧之间相差TA时间。其中子帧n为调度数据的DCI的子帧,在窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH)(DL的一种)中承载。子帧n+k为调度数据的起始子帧,在窄带物理下行共享信道(narrowband physical downlink shared channel,NPDSCH)(DL的一种)中承载。子帧h为UE发送数据的HARQ反馈的上行子帧,在窄带物理上行共享信道(narrowband physical uplink shared channel,NPUSCH)(UL的一种)中承载,子帧n+m为与上行子帧h时间对齐的相应下行子帧,即下行子帧n+m与下行子帧h之间相差TA时间。在斜线方块的子帧上基站不会下发调度数 据的DCI,具体包括基站下发DCI之后和下发DCI调度的数据之前的子帧,以及基站完成单个TB的数据下发之后和终端发送数据的HARQ反馈之前的子帧。基于协议中的规定,终端也不需要在这些子帧上进行NPDCCH的盲检。在基站下发DCI之前,UE接收到了基站发送的TA,进而确定了盲检DCI的时域位置。
现有技术存在的缺陷包括:
如果对于多TB的调度复用单TB的调度方式,可能会出现以下情况:
(1)两个进程都不需要反馈
假如两个进程号都被配置为不需要进行HARQ反馈,那么调度多TB的时候两个TB都不需要反馈。但是在NTN无线通信中,由于TA调整的信息由MAC CE承载,且已经确定了MAC CE的传输需要使用反馈开启的进程(即需要进行HARQ反馈),所以当需要传输MAC CE时,需要更新HARQ反馈的配置(将两个进程号都不需要反馈更新为其中一个进程号需要反馈)。如果配置信令是在RRC中半静态的指示,需要频繁更新,信令开销太大;而如果是动态的指示,由于两个TB对应两个进程,需要引入两个bit分别指示两个进程是否需要反馈,终端在盲检时需要多搜索一种长度的DCI格式。
(2)一个进程反馈关闭,一个进程反馈开启
假设两个进程中ID0的进程反馈关闭,ID1的进程反馈开启。在仅有两个进程的IoT系统中,如果针对多TB的调度始终需要有一个TB需要进行反馈,那么在网络侧收到反馈之前,由于ID1的进程被占用,无法进行下一个多TB的调度,这样将会导致HARQ反馈关闭带来的数据连续传输等好处不复存在。
(3)两个进程都配置为需要反馈
假设两个进程都配置为需要反馈,由于两个进程号都被占用,显然,只有当终端发送的针对两个进程的HARQ反馈都被基站接收到且解码以后,基站才会调度新的数据。相比较于现有规定中单TB调度的定时关系,多TB调度针对每个TB调度都有对应的定时关系,且每个定时关系都有其对应的盲检时机,该过程增加了盲检的时机,进而增加了功耗。
综上说明,假设多TB调度复用单TB调度的HARQ反馈配置,针对TB-IoT系统,无论是两个进程都进行反馈,都不进行反馈,或是一个进程反馈另一个进程不反馈,都存在缺陷。
基于此,请参阅图3A,为本申请实施例提供的一种数据传输方法流程图,如图3A所示,该方法包括如下步骤:
101、网络设备发送第一信息,第一信息用于指示进行X个传输块TB的调度。
本申请实施例中的终端设备是指基于IoT的协议进行通信的终端设备,也即终端设备为IoT终端,以下描述中的终端设备都包括该含义,具体实施例中不再赘述。同样的,网络设备也是指基于IoT的协议进行通信的网络设备。进一步地,本申请实施例中的网络设备是指NTN网络设备。图3A对应方法实施例中描述的网络设备都包括该含义,以下不再赘述。网络设备可以通过向终端设备发送第一信息指示进行X个TB的调度,即是说,一个DCI用于调度X个TB,只有当终端设备全部接收到网络设备发送的X个TB时,进行解码获得数据。X个TB可以是不同的TB,也可以是同一TB的不同增量冗余版本,但分别对应X个HARQ进程。X为大于或等于2的值,即第一指示信息用于指示进行多TB的调度。
102、网络设备发送第二信息,第二信息用于指示X个传输块的HARQ反馈配置,HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈,第二信息占用Y比特,Y<X。
网络设备可以通过向终端设备发送第二信息指示针对X个TB的HARQ反馈配置,即针对一个DCI调度的X个TB,终端设备是否需要进行HARQ反馈。第二信息占用Y比特,Y<X,也即是说,相比于每个TB都占用1比特的HARQ反馈配置,本申请实施例中,HARQ反馈配置占用的比特数小于TB个数。能够节省HARQ反馈配置的开销。
可选情况下,X=2,Y=1。也即是说,网络设备发送的一个DCI用于进行2个TB的调度,而针对该2个TB的调度,网络设备通过1比特的信息指示终端设备是否需要针对该2个TB的调度进行HARQ反馈。
请参阅图3B,图3B为本申请实施例提供的一种多TB调度过程示意图,如图3B中的(a)所示,当X=2时,Y=1,也即是说,用于调度两个TB的两个进程采用一个HARQ反馈配置,为进行HARQ反馈或者不进行HARQ反馈。
另一些情况下,X>2时,Y可以为1,也可以大于1。如图3B中的(b)所示,X=3,Y=2。其中进程0和进程1分别用于传输第一个TB和第二个TB,且共用一个HARQ反馈配置,而用于传输第三个TB的进程2采用单独的HARQ反馈配置。
可见,在本申请实施例中,针对IoT终端设备与NTN网络设备的通信过程,存在信道变化慢的特点,多TB调度经历的信道,其对应的信道参数相近,信道质量也相近。因此,对于用于多TB调度的多个进 程,其对应的HARQ反馈配置可以对应同一个配置。这样能够减少用于进行HARQ反馈配置的开销。
可选情况下,在终端设备接收第二信息之前(也即网络设备发送第二信息之前),该方法还包括:104、网络设备发送第三信息,第三信息包括X个TB中每个TB的反馈配置;第二信息用于指示X个TB的HARQ反馈配置,包括:第二信息指示X个TB中的部分TB的反馈配置作为X个TB的HARQ反馈配置;终端设备根据接收到的第一信息、第二信息和第三信息确定X个TB的HARQ反馈配置,进而确定目标时域位置。
现有技术中,网络设备可以针对每个DCI调度的单TB进行单独的HARQ反馈配置。本申请实施例中,可以复用这种方法,即为每个TB进行HARQ反馈配置(步骤101和步骤104无执行先后顺序的限定)。区别在于,本申请实施例中,网络设备通过第一信息指示了进行X个TB的调度,也即是说,同一个DCI用于调度X个TB。此时同一个DCI调度的X个TB中,可能部分TB的HARQ反馈配置为需要进行HARQ反馈,而另一部分TB的HARQ反馈配置为不需要进行HARQ反馈。如果按照这种方式执行HARQ反馈,则在同一个DCI调度的X个TB中的最后一个TB传输完成之前,先完成传输的TB对应的进程号也无法释放,那么即使先完成传输的TB对应的HARQ反馈配置为不进行HARQ反馈,也无法达成减少往返时延的效果。
基于这种考虑,可以将多TB调度时X个TB的HARQ反馈配置映射为部分TB(一个或多个TB)的HARQ反馈配置。
举例来说:(1)X个TB的HARQ反馈配置映射为一个TB的HARQ反馈配置。假设网络设备通过第三信息配置了2个TB调度的HARQ反馈配置分别为0,1,即TB1的调度为不进行HARQ反馈,TB2的调度为需要反馈。第二指示信息通过指示“1”表示将第1个TB的HARQ反馈配置作为多TB调度的反馈配置。那么X个TB对应的HARQ反馈配置为0。
(2)X个TB的HARQ反馈配置映射为多个单TB的HARQ反馈配置。假设网络设备通过第三信息配置了4个TB调度的HARQ反馈配置分别为0,1,0,1。第二指示信息通过指示“2”、“1”、“0”来指示多TB调度的反馈配置。那么X个TB对应的HARQ反馈配置为:第一个TB的HARQ反馈配置为1,第二个TB的HARQ反馈配置为0。另外,第二指示信息可以通过“0”来指示后续TB的HARQ反馈配置与前一个TB的HARQ反馈配置相同,也即是说,第三个TB和第四个TB的HARQ反馈配置与第二TB的HARQ反馈配置相同,都为0。
(3)X个TB的HARQ反馈配置为默认值,通过第二指示信息来指示与默认值不同的HARQ反馈配置。例如,X个TB的HARQ反馈配置的默认值可以为0,即使说默认多TB调度过程不需要进行HARQ反馈。但是考虑到多TB调度过程中第一个传输完成的TB,其对应的可开销传输时延比后续TB大,因此,第一个传输完成的TB,其HARQ反馈配置可以复用第三信息配置的单个TB的HARQ反馈配置。例如第三配置信息配置了第四个TB(最后一个TB)的HARQ反馈配置为1,第二指示信息通过指示“4”用于指示X个TB中第一个TB的HARQ反馈配置与第三信息配置的第四个TB的HARQ反馈配置相同,也为1。
可见,在本申请实施例中,第三信息用于下发X个TB中每个TB的反馈配置,第二信息用于指示X个TB的HARQ反馈配置中的部分TB的反馈配置作为X个TB的HARQ反馈配置。也即是说,在多TB调度时,可以复用单TB调度的HARQ反馈配置方式,而不需要额外对多TB调度进行HARQ反馈配置,减少进行HARQ反馈配置可能造成的信令更改。同时通过第二信息指示X个单TB调度中部分TB调度的反馈配置作为X个TB的HARQ反馈配置,使得X个TB(中的部分或全部TB)的HARQ反馈配置绑定,也能减少指示信息的资源开销。
可选情况下,还可以包括一种实施方式,在执行步骤101、步骤104之后,执行步骤103a、(图中未示出):终端设备根据第一信息、第三信息和预设信息确定X个TB的反馈配置,进而确定目标时域位置。
预设信息可以是网络设备和终端设备预先约定的多TB调度情况下X个TB的反馈配置的确定方式。例如约定默认X个TB的反馈配置为不进行HARQ反馈。或者约定在第三信息中配置的X个TB的反馈配置不完全相同时,默认以第1个TB的反馈配置作为X个TB的反馈配置等。
通常情况下,步骤105和步骤102为并列的步骤,也即是说,在执行步骤105的情况下,无需再执行步骤102。同理执行步骤102时不执行步骤105。一些情况下,假设包括确定X个TB的反馈配置的预设信息,网络设备又向终端设备发送了第二信息,则根据第二信息指示的内容确定X个TB的反馈配置。
可见,在本实施例中,终端设备接收多TB调度中每个TB的HARQ反馈配置,并接收到进行多TB调度的指示信息时,可以直接结合预设信息确定多TB调度的HARQ反馈配置。无需对多TB调度的HARQ反馈配置确定过程做任何额外的配置和信令指示,减少该过程的信令或资源开销。
可选地,第一信息携带在下行控制信息DCI中,第二信息携带在无线资源控制RRC信令中。
可选地,第一信息和第二信息携带在DCI中。
第一信息和第二信息包括两种发送方式:
(1)第一信息:DCI中的Number of scheduled TB for Unicast字段,其值为1,用于指示进行X个TB的调度;
第二信息:RRC信令npdsch-MultiTB-Config中,增加一条信令用作多TB调度的HARQ反馈配置,该信令具体可以为“multiTB-HARQfeedback”,对应取值可以为“enable”或“disabled”,分别用于表示需要进行HARQ反馈,或不需要进行HARQ反馈;
(2)第一信息:DCI中的Number of scheduled TB for Unicast字段,其值为1,用于指示进行X个TB的调度;
第二信息:DCI中使用1bit指示符(flag)用作多TB调度的HARQ反馈配置,例如flag为0表示不需要反馈,flag为1表示需要反馈。
另外,第三信息也可以携带在DCI中,也即是说,当网络设备指示终端设备进行X个TB的调度时,再通过第三信息指示如何根据第二信息获取X个TB对应的HARQ反馈配置。
本申请实施例中,在RRC信令中携带第二信息,可以实现HARQ反馈配置的统一配置,减少进行HARQ反馈配置的资源开销。而在DCI中携带第二信息,可以使得网络设备针对单个DCI的多TB调度进行HARQ反馈配置,提升HARQ反馈配置的灵活性。
可选地,在发送第一信息之前,该方法还包括:确定通过RRC信令为终端设备配置了进行多TB调度的能力。
网络设备通过发送第一信息指示进行多TB调度。但是在发送第一信息之前,网络设备需要确定给终端设备配置了进行多TB调度的能力。网络设备可以通过RRC信令为终端设备配置多TB调度的能力,具体地,当网络设备将终端设备的高层信令npdsch-MultiTB-Config配置为“enabled”时,表示网络设备为终端设备配置了进行多TB调度的能力,网络设备也才可以进行多TB的调度,即可以向终端设备发送第一信息。
103、终端设备接收第一信息和第二信息,根据第一信息和第二信息确定目标时域位置,目标时域位置为终端设备需要侦听物理下行控制信道PDCCH的时域位置。
终端设备接收到第一信息和第二信息后,可以确定是否需要对X个TB进行HARQ反馈。相对应的,终端设备可以确定网络设备可能下发DCI或数据的时域位置,进而确定自身需要侦听PDCCH的时域位置。
可选地,若HARQ反馈配置为不进行HARQ反馈,根据第一信息和第二信息确定的目标时域位置不包括子帧n+k-p1至子帧n+k-1,以及子帧t+1至子帧t+p2,其中,n为检测到DCI的子帧,n+k为开始接收DCI调度的数据的子帧,t为多个TB中的最后一个TB传输结束的子帧,p1为用于解码DCI的时间,p2为解码数据的时间。
请参阅图3C,图3C为本申请实施例提供的一种目标时域位置示意图,如图3C中的(a)所示,假设根据第一信息和第二信息指示进行多个TB的调度,并且HARQ反馈配置为不进行HARQ反馈,那么图中斜线标识的子帧为目标时域位置不包括的子帧,也即网络设备不会下发DCI的位置,终端设备不需要在目标时域位置侦听PDCCH。
具体地,n为检测到DCI的子帧,n+k为开始接收DCI调度的数据的子帧,在开始接收数据之前的至少p1个子帧,用于解码接收到的DCI,而不需要进行PDCCH侦听。因此目标时域位置不包括子帧n+k-p1至子帧n+k-1,其中p1可以为2,也即是说用于解码DCI的时间为2ms(毫秒)。或者P1也可以为1ms,4ms等其他值,本申请实施例不做限定。在下发DCI的子帧n之后至解码DCI的子帧(子帧n+1~子帧n+k-p1-1)之间,可以侦听PDCCH。另外,在终端设备开始接收数据的子帧n+k至最后一个TB传输结束的子帧t之间,由于不需要进行HARQ反馈,在其中部分TB传输结束后,有进程被释放,网络设备可能下发新的DCI,则在这个过程中的时域位置,终端设备也可以进行PDCCH的侦听。而在最后一个TB传输结束之后的p2个子帧内,终端设备需要解码多个TB中的数据,不侦听PDCCH。也即目标时域位置不包括子帧t+1~子帧t+p2。其中p2可以为12,也即是说用于解码数据的时间可以为12ms。或者p2也可以为10ms,13ms等其他值,本申请实施例不做限定。
可选地,若HARQ反馈配置为进行HARQ反馈,根据第一信息和第二信息确定的目标时域位置不包括子帧n至子帧n+m+p3,其中,子帧n为检测到DCI的子帧,n+m为发送HARQ反馈结束的子帧,p3为解码HARQ反馈的时间。
如图3C中的(b)所示,假设根据第一信息和第二信息指示进行多个TB的调度,并且HARQ反馈配置为进行HARQ反馈,那么图中斜线标识的子帧为目标时域位置不包括的子帧,也即网络设备不会下发DCI的位置,终端设备不需要在目标时域位置侦听PDCCH。
具体地,与前述描述相同,n为检测到DCI的子帧,n+k为开始接收DCI调度的数据的子帧。n+m为发送HARQ反馈结束的子帧。HARQ反馈配置为进行HARQ反馈,那么在终端设备检测到DCI的子帧n开始,到终端设备发送HARQ反馈结束的子帧(其中包括终端设备开始接收数据的子帧n+k到结束接收数据的子帧t),由于进程全部被多TB调度占用,只有当终端设备反馈的ACK/NACK被网络设备接收到且解码以后,网络设备才会确定是调度新的数据还是对终端未能解码正确的数据进行重传。即在这个过程网络设备不会下发新的DCI,因此子帧n~子帧n+m+p3都不包括在目标时域位置中,即终端设备在该子帧范围内都不需要侦听PDCCH。其中p3为网络设备进行HARQ反馈解码的时间,可以为3ms,也可以为2ms或4ms,本申请实施例不做具体限定。也即是说子帧n~子帧n+m+p3都不包括在目标时域位置内。HARQ反馈具体可以为NPUSCH format2,解码HARQ反馈可以是指解码NPUSCH format2。
需要说明的是,在一些情况下,假设X个TB调度对应的X个进程中,部分需要进行HARQ反馈,另一部分不需要进行HARQ反馈,那么在处理部分需要进行HARQ反馈的进程反馈的ACK/NACK时,可以释放不需要HARQ反馈的进程,允许终端设备监听PDCCH。即使说,该种情况对应的目标时域位置与前述描述的HARQ配置为不需要进行HARQ反馈的目标时域位置相同。
终端设备根据HARQ反馈配置确定需要进行HARQ反馈,并解码获得数据,确定HARQ反馈结果之后,X个TB(或者说X个进程)的反馈结果(ACK/NACK)可以是分开反馈,也可以是绑定反馈,本申请实施例不做限定。
可见,在本申请实施例中,针对多TB调度,如果针对全部进程的HARQ反馈配置为不进行HARQ反馈,那么终端设备确定进行PDCCH侦听的时域位置,排除用于传输DCI、DCI调度的数据、解码DCI以及解码数据的时域位置即可,提前释放进程,保障了数据传输效率。而如果针对全部进程的HARQ反馈配置为进行HARQ反馈,那么终端设备可以确定在该反馈内容被网络设备解码前,都不监听PDCCH,提升了终端设备确定目标时域位置的效率。
可选地,当HARQ反馈配置为不进行HARQ反馈时,如果X个TB中有TB传输的是MAC CE,确定HARQ反馈配置为进行HARQ反馈。
如前述描述的,TA调整的信息由MAC CE承载,MAC CE的传输需要进行HARQ反馈。那么,假设终端设备获取到X个TB的调度对应的HARQ反馈配置为不进行HARQ反馈,但是根据数据头获知TB传输的是MAC CE,则放弃接收到的HARQ反馈配置,认为该X个TB需要进行HARQ反馈。或者,假设用于进行X个TB传输的进程大于2,则可以单独将用于传输MAC CE的TB对应的进程确定为需要进行HARQ反馈,而传输其他TB的进程,其HARQ反馈配置保留为进行HARQ反馈。
可选地,当第二信息携带在RRC中时,该方法还包括:网络设备发送第三信息,第三信息携带在DCI中,用于指示是否对第二信息指示的HARQ反馈配置进行更改;终端设备接收第三信息,根据第一信息和第三信息对第二指示信息的更改确定目标时域位置。
第二信息携带在RRC中,即是说多TB调度的HARQ反馈配置由RRC信令指示,这是一种半静态的指示方式。一些情况下,多TB调度的HARQ反馈配置可能在进行了部分多TB的调度之后发生更改。那么可以通过DCI中携带第三信息,用于指示是否对RRC信令指示的HARQ反馈配置进行更改。如果第三信息指示对HARQ反馈配置进行更改,那么将第二信息指示的进行HARQ反馈更改为不进行HARQ反馈,或者将第二信息指示的不进行HARQ反馈更改为进行HARQ反馈。可能的情况下,假设X>2,1<Y<X,第三信息可以用于指示对部分HARQ反馈配置进行更改,对另一部分HARQ反馈配置不进行更改。
可见,在本申请实施例中,首先通过RRC半静态指示HARQ反馈配置,然后通过DCI中的指示信息更改HARQ反馈配置,能够以更少的资源开销完成对HARQ反馈配置的指示,同时在需要时通过DCI更改HARQ反馈配置,保证了HARQ反馈配置指示的灵活性。
上述为通过显式的指示信息指示HARQ反馈配置的实施方法。也可以通过隐式信息确定HARQ反馈配置。具体请参阅图4A,图4A为本申请实施例提供的另一种数据传输方法流程图,如图4A所示,该方法包括如下步骤:
201、网络设备发送第一信息,第一信息用于指示进行X个传输块TB的调度。
与前述实施例相同的,本申请实施例中的终端设备也是指IoT终端,但是本申请实施例中的网络设备 可以是指通过IoT协议通信的NTN网络设备或地面(TN)网络设备。具体可参阅图4B,图4B为本申请实施例提供的一种通信连接示意图,如图4B所示,IoT终端可以与卫星基站通信,也可以与卫星基站通信。与前述图3A~图3C实施例描述相同的,第一信息用于指示进行X个TB的调度,可以携带在DCI中发送。具体参阅第一信息的相关描述,在此不再赘述。
202、终端设备接收第一信息,根据第一信息和网络设备的类型,确定X个TB的HARQ反馈配置,HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈。
网络设备的类型是指前述描述的卫星基站(NTN网络设备)或地面基站(TN网络设备)。在终端设备与网络设备的通信过程中,多TB调度中每个TB的调度可以对应一个进程,也即是说X个TB的调度对应X个进程。对于地面基站与终端设备的通信来说,针对每一个TB调度的进程,可以对应一个HARQ反馈配置,即X个TB的调度对应X个HARQ反馈配置,占用X比特(每个HARQ反馈配置占用1比特,值为0时可以表示不需要进行HARQ反馈,值为1时可以表示需要进行HARQ反馈)。而卫星基站与终端设备通信的过程中,信道变化慢,多TB调度经历的信道,其对应的信道参数可能相近,信道质量也相近。因此,对于多TB调度的多个进程,HARQ反馈配置可以进行绑定。例如针对X个TB调度对应的X个进程,可以确定1个针对该X个进程的统一的HARQ反馈配置。
更进一步地说,终端设备可以在确定网络设备的类型为卫星基站时,确定终端设备针对X个TB调度的HARQ反馈配置为不进行HARQ反馈。这是因为,对于卫星基站来说,RTT很大,带来的通信过程影响也会较大。可以设置HARQ反馈配置为不进行HARQ反馈。以降低卫星通信过程中的RTT带来的影响。
当然,终端设备也可以在确定网络设备的类型为卫星基站时,确定终端设备针对X个TB调度的HARQ反馈配置为进行HARQ反馈。总之,这种HARQ反馈配置是适用于X个TB对应的X个进程的配置。
在一些情况下,终端设备可以在确定网络设备的类型为地面基站时,确定X个TB调度的HARQ反馈配置为进行HARQ反馈(或者为不进行HARQ反馈),本申请实施例不做具体限定。
可选地,本申请实施例在步骤202之前,还可以包括步骤204、网络设备发送第三信息,第三信息用于指示X个TB中每个TB的HARQ反馈配置。相对应地,步骤202中终端设备根据第一信息和网络设备的类型确定X个TB调度的HARQ反馈配置包括:终端设备根据第一信息、第三信息和网络设备的类型确定X个TB调度的HARQ反馈配置。
具体地,网络设备可以按照现有技术中的方式指示每个TB对应的HARQ反馈配置。区别在于,终端设备接收到了第一信息,确定网络设备进行了多TB的调度。则终端设备结合第一信息、第三信息和网络设备的类型综合确定X个TB的HARQ反馈配置。
在网络设备的类型为卫星基站的情况下,终端设备可以直接确定X个TB调度的HARQ反馈配置为不进行HARQ反馈(或进行HARQ反馈)。或者终端设备可以确定X个TB调度的HARQ反馈配置以第三信息中配置的一个TB(例如第一个TB)的HARQ反馈作为X个TB调度的HARQ反馈配置。同样的,也可以以配置的X个HARQ反馈配置中部分TB(大于1个TB)的HARQ反馈配置作为X个TB的HARQ反馈配置。具体描述可参阅前述步骤104中的描述,在此不再赘述。
在网络设备的类型为地面基站的情况下,终端设备可以直接确定X个TB调度的HARQ反馈配置为进行HARQ反馈(或不进行HARQ反馈)。或者终端设备可以确定X个TB调度的HARQ反馈配置以第三信息中的配置内容为准。或者终端设备可以确定X个TB调度的HARQ反馈配置以第三信息中配置的部分(大于或等于一个)TB的HARQ反馈作为X个TB调度的HARQ反馈配置等。
可见,在本申请实施例中,终端设备接收多TB调度中每个TB的HARQ反馈配置,并接收到进行多TB调度的指示信息时,可以结合网络设备的类型确定多TB调度的HARQ反馈配置。该过程充分利用现有HARQ反馈配置的过程,以及网络设备的类型等信息,确定了适用于不同通信场景下的HARQ反馈配置,无需对多TB调度的HARQ反馈配置确定过程做任何额外的配置和信令指示,减少该过程的信令或资源开销。
203、终端设备确定目标时域位置,目标时域位置为终端设备需要侦听物理下行控制信道PDCCH的时域位置。
终端设备确定HARQ反馈配置后,可以相应确定需要侦听PDCCH的时域位置,以保障能够为HARQ反馈预留足够的通信时间,同时保障不会发生漏检。
可选地,若HARQ反馈配置为不进行HARQ反馈,确定的目标时域位置不包括子帧n+k-p1至子帧n+k-1,以及子帧t+1至子帧t+p2,其中,n为检测到DCI的子帧,n+k为开始接收DCI调度的数据的子帧,t为多个TB中的最后一个TB传输结束的子帧,p1为用于解码DCI的时间,p2为解码数据的时间。
该目标时域位置的确定方式,具体可参阅前述图3A~图3C中的相关描述,在此不再赘述。
可选地,若HARQ反馈配置为进行HARQ反馈,确定的目标时域位置不包括子帧n至子帧n+m+p3,其中,子帧n为检测到DCI的子帧,n+m为发送HARQ反馈结束的子帧,p3为解码HARQ反馈的时间。
当HARQ反馈配置为进行HARQ反馈时,终端设备在发送HARQ反馈结束,以及网络设备完成HARQ反馈的解码之后,可以进行PDCCH的侦听。因此目标时域位置不包括子帧n至子帧n+m+p3。具体也可以参阅图3A~图3C实施例中的相关描述,在此不再赘述。
可见,在本申请实施例中,在终端设备接收到指示进行多TB的调度时,结合发送指示信息的网络设备的类型,确定HARQ反馈配置,主要是确定针对卫星基站的多TB调度过程中,对应的全部进程的HARQ反馈配置。进而确定终端设备侦听PDCCH的时域位置。该过程使得针对终端设备与卫星基站的通信过程,无需再接收额外的HARQ反馈配置信息,即可确定HARQ反馈配置,提升了通信效率。另外,确定卫星基站的HARQ反馈配置为不进行HARQ反馈,能够降低RTT对通信过程的影响,保障了通信过程的及时性和准确性。
需要说明的是,本实施例可以与前述图3A~图3C的实施例相结合,例如终端设备根据第一信息、第二信息以及网络设备的类型确定X个TB的反馈配置,进而确定目标时域位置。具体实施过程本申请实施例不再赘述。
如图5所示,通信装置300包括收发模块301和处理模块302。通信装置300可用于实现上述图3A或图4A所示的方法实施例中终端设备或网络设备的功能。
当通信装置300用于实现图3A所述方法实施例中终端设备的功能时:
收发模块301,用于接收第一信息,第一信息用于指示进行X个传输块TB的调度;
收发模块301,还用于接收第二信息,第二信息用于指示X个TB的HARQ反馈配置,HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈,第二信息占用Y比特,Y<X;
处理模块302,用于根据第一信息和第二信息确定目标时域位置,目标时域位置为终端设备需要侦听物理下行控制信道PDCCH的时域位置。
当通信装置300用于实现图3A所述方法实施例中网络设备的功能时:
收发模块301,用于发送第一信息,第一信息用于指示进行X个传输块TB的调度;
收发模块301,还用于发送第二信息,第二信息用于指示X个TB的HARQ反馈配置,HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈,第二信息占用Y比特,Y<X。
当通信装置300用于实现图4A所述方法实施例中终端设备的功能时:
收发模块301,用于接收来自网络设备的第一信息,第一信息用于指示进行X个传输块TB的调度;
处理模块302,用于根据第一信息和网络设备的类型,确定X个TB的HARQ反馈配置,HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈;
处理模块302,还用于确定目标时域位置,目标时域位置为终端设备需要侦听物理下行控制信道PDCCH的时域位置。
关于上述收发模块301和处理模块302更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
如图6所示,图6示出了本申请实施例中的一种通信装置的硬件结构示意图。图5中的通信装置的结构可以参考图6所示的结构。通信装置900包括:处理器111和收发器112,所述处理器111和所述收发器112之间电偶合;
所述处理器111,用于执行所述存储器中的部分或者全部计算机程序指令,当所述部分或者全部计算机程序指令被执行时,使得所述装置执行上述任一实施例所述的方法。
收发器112,用于和其他设备进行通信;例如接收来自第一网元的消息,消息中包括组播和/或广播业务的标识,以及,组播和/或广播业务的密钥和/或组播和/或广播业务的密钥标识。
可选的,还包括存储器113,用于存储计算机程序指令,可选的,所述存储器113(存储器#1)位于所述装置内,所述存储器113(存储器#2)与处理器111集成在一起,或者所述存储器113(存储器#3)位于所述装置之外。
应理解,图6所示的通信装置900可以是芯片或电路。例如可设置在终端装置或者通信装置内的芯片或电路。上述收发器112也可以是通信接口。收发器包括接收器和发送器。进一步地,该通信装置900还 可以包括总线系统。
其中,处理器111、存储器113、收发器112通过总线系统相连,处理器111用于执行该存储器113存储的指令,以控制收发器接收信号和发送信号,完成本申请涉及的实现方法中第一设备或者第二设备的步骤。所述存储器113可以集成在所述处理器111中,也可以与所述处理器111分开设置。
作为一种实现方式,收发器112的功能可以考虑通过收发电路或者收发专用芯片实现。处理器111可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述实施例中对应用于终端设备的方法。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述实施例中对应用于网络设备的方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中对应用于终端设备的方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中对应用于网络设备的方法。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理 存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (24)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    终端设备接收第一信息,所述第一信息用于指示进行X个传输块TB的调度;
    所述终端设备接收第二信息,所述第二信息用于指示所述X个TB的HARQ反馈配置,所述HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈,所述第二信息占用Y比特,Y<X;
    所述终端设备根据所述第一信息和所述第二信息确定目标时域位置,所述目标时域位置为所述终端设备需要侦听物理下行控制信道PDCCH的时域位置。
  2. 根据权利要求1所述的方法,其特征在于,X=2,Y=1。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述终端设备接收第二信息之前,所述方法还包括:接收第三信息,所述第三信息包括所述X个TB中每个TB的反馈配置;
    所述第二信息用于指示所述X个TB的HARQ反馈配置,包括:所述第二信息指示所述X个TB中的部分TB的反馈配置作为所述X个TB的HARQ反馈配置。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一信息携带在下行控制信息DCI中,所述第二信息携带在无线资源控制RRC信令中。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一信息和所述第二信息携带在DCI中。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,若所述HARQ反馈配置为不进行HARQ反馈,根据所述第一信息和所述第二信息确定的目标时域位置不包括子帧n+k-p1至子帧n+k-1,以及子帧t+1至子帧t+p2,其中,所述n为检测到所述DCI的子帧,所述n+k为开始接收所述DCI调度的数据的子帧,所述t为所述多个TB中的最后一个TB传输结束的子帧,p1为用于解码所述DCI的时间,p2为解码所述数据的时间。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,若所述HARQ反馈配置为进行HARQ反馈,根据所述第一信息和所述第二信息确定的目标时域位置不包括子帧n至子帧n+m+p3,其中,所述子帧n为检测到所述DCI的子帧,所述n+m为发送HARQ反馈结束的子帧,所述p3为解码HARQ反馈的时间。
  8. 根据权利要求1-4或6-7任一项所述的方法,其特征在于,当所述第二信息携带在RRC中时,所述方法还包括:
    接收第三信息,所述第三信息携带在DCI中,用于指示是否对所述第二信息指示的HARQ反馈配置进行更改;根据所述第一信息和所述第三信息对所述第二指示信息的更改确定所述目标时域位置。
  9. 一种数据传输方法,其特征在于,所述方法包括:
    发送第一信息,所述第一信息用于指示进行X个传输块TB的调度;
    发送第二信息,所述第二信息用于指示所述X个TB的HARQ反馈配置,所述HARQ反馈配置包括进行HARQ反馈或不进行HARQ反馈,所述第二信息占用Y比特,Y<X。
  10. 根据权利要求9所述的方法,其特征在于,X=2,Y=1。
  11. 根据权利要求9或10所述的方法,其特征在于,在发送第二信息之前,所述方法还包括:发送第三信息,所述第三信息包括所述X个TB中每个TB的反馈配置;
    所述第二信息用于指示所述X个TB的HARQ反馈配置,包括:所述第二信息指示所述X个TB中的部分TB的反馈配置作为所述X个TB的HARQ反馈配置。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述第一信息携带在下行控制信息DCI中,所述第二信息携带在无线资源控制RRC信令中。
  13. 根据权利要求9-11任一项所述的方法,其特征在于,所述第一信息和所述第二信息携带在DCI中。
  14. 根据权利要求9-12任一项所述的方法,其特征在于,所述第二信息携带在无线资源控制RRC信令中,所述方法还包括:
    发送第三信息,所述第三信息携带在DCI中,用于指示是否对所述第二信息指示的HARQ反馈配置进行更改。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,在发送第一信息之前,所述方法还包括:确定通过RRC信令为终端设备配置了进行多TB调度的能力。
  16. 一种数据传输方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的第一信息,所述第一信息用于指示进行X个传输块TB的调度;
    根据所述第一信息和所述网络设备的类型,确定所述X个TB的HARQ反馈配置,所述HARQ反馈 配置包括进行HARQ反馈或不进行HARQ反馈;
    确定目标时域位置,所述目标时域位置为所述终端设备需要侦听物理下行控制信道PDCCH的时域位置。
  17. 根据权利要求16所述的方法,其特征在于,所述网络设备的类型为卫星基站或地面基站。
  18. 根据权利要求17所述的方法,其特征在于,若所述网络设备的类型为卫星基站,所述HARQ反馈配置为不进行HARQ反馈。
  19. 根据权利要求16-18任一项所述的方法,其特征在于,若所述HARQ反馈配置为不进行HARQ反馈,所述目标时域位置不包括子帧n+k-p1至子帧n+k-1,以及子帧t+1至子帧t+p2,其中,所述n为检测到所述DCI的子帧,所述n+k为开始接收所述DCI调度的数据的子帧,所述t为所述多个TB中的最后一个TB传输结束的子帧,p1为用于解码所述DCI的时间,p2为解码所述数据的时间。
  20. 根据权利要求16-18任一项所述的方法,其特征在于,若所述HARQ反馈配置为进行HARQ反馈,所述目标时域位置不包括子帧n至子帧n+m+p3,其中,所述子帧n为检测到所述DCI的子帧,所述n+m为发送HARQ反馈结束的子帧,所述p3为解码HARQ反馈的时间。
  21. 一种通信装置,其特征在于,包括用于执行如权利要求1至20中的任一项所述方法的模块。
  22. 一种通信装置,其特征在于,所述装置的结构中包括处理器,还可以包括存储器;处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行如权利要求1至20任一项所述的方法。
  23. 一种可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,使如权利要求1至20中任一项所述的方法被实现。
  24. 一种通信系统,其特征在于,所述通信系统包括终端设备和网络设备,其中所述终端设备用于执行如权利要求1至8任一项所述的方法或者权利要求16至20中任一项所述的方法,所述网络设备用于执行如权利要求9至15中任一项所述的方法。
PCT/CN2023/106546 2022-08-10 2023-07-10 数据传输方法及装置 WO2024032292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210955268.5A CN117675126A (zh) 2022-08-10 2022-08-10 数据传输方法及装置
CN202210955268.5 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024032292A1 true WO2024032292A1 (zh) 2024-02-15

Family

ID=89850684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106546 WO2024032292A1 (zh) 2022-08-10 2023-07-10 数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN117675126A (zh)
WO (1) WO2024032292A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913478A (zh) * 2018-09-15 2020-03-24 华为技术有限公司 一种信息发送、接收方法及通信装置
CN113271180A (zh) * 2020-02-14 2021-08-17 华为技术有限公司 混合自动重传请求harq位图信息的反馈方法及相关设备
WO2021168833A1 (zh) * 2020-02-28 2021-09-02 Oppo广东移动通信有限公司 数据传输方法、装置及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913478A (zh) * 2018-09-15 2020-03-24 华为技术有限公司 一种信息发送、接收方法及通信装置
CN113271180A (zh) * 2020-02-14 2021-08-17 华为技术有限公司 混合自动重传请求harq位图信息的反馈方法及相关设备
WO2021168833A1 (zh) * 2020-02-28 2021-09-02 Oppo广东移动通信有限公司 数据传输方法、装置及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on HARQ for NTN", 3GPP DRAFT; R1-1904003, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051699414 *

Also Published As

Publication number Publication date
CN117675126A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
JP6516976B2 (ja) 移動装置および通信方法
WO2018133720A1 (zh) 反馈信息传输方法及装置
EP3949608A1 (en) Systems and methods for multiple redundant transmissions for user equipment cooperation
CN110121848A (zh) 无线通信网络中的方法及装置
WO2020143731A1 (zh) 用于传输数据的方法、通信设备和网络设备
WO2018202193A1 (zh) 一种数据传输方法、装置和系统
WO2014026386A1 (zh) 数据包传输方法和装置
WO2014082208A1 (zh) 数据发送方法、转发方法、接收方法、装置及系统
CN108737036B (zh) 反馈信息接收方法、发送方法、装置及系统
WO2020143374A1 (zh) 传输处理方法、装置、设备及存储介质
US20210409161A1 (en) Multiple access point operation of a wireless network
CN102573096B (zh) 回传链路上的半持续调度方法、接收方法、系统及装置
WO2020051754A1 (zh) 传输反馈信息、数据重传的方法和设备
WO2022082604A1 (en) Method and apparatus for hybrid automatic retransmission request
EP2342857B1 (en) Communication system, dependent station thereof and dependent-station relay transmission method
WO2018082554A1 (zh) 动态harq-ack反馈方法及装置
US9432146B2 (en) Method for communication in a wireless network and communication device
WO2024032292A1 (zh) 数据传输方法及装置
US9768936B2 (en) Message transmission in an unlicensed spectrum
CN111756479B (zh) 一种通信方法及装置
WO2021056419A1 (zh) 边链路资源的预留方法以及装置
WO2021022518A1 (zh) 上行数据的重传方法、装置及设备
WO2020215218A1 (zh) 用于传输侧行数据的方法和终端设备
JP2010536301A (ja) データの再送信のために周波数帯域フリッピングを用いるシステムおよび方法
WO2015123828A1 (zh) 基站、用户设备及自适应重传方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851517

Country of ref document: EP

Kind code of ref document: A1