WO2024032286A1 - 一种带液氮冷屏的直流超导液氢能源管道系统 - Google Patents

一种带液氮冷屏的直流超导液氢能源管道系统 Download PDF

Info

Publication number
WO2024032286A1
WO2024032286A1 PCT/CN2023/105912 CN2023105912W WO2024032286A1 WO 2024032286 A1 WO2024032286 A1 WO 2024032286A1 CN 2023105912 W CN2023105912 W CN 2023105912W WO 2024032286 A1 WO2024032286 A1 WO 2024032286A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
pipeline
liquid
liquid hydrogen
hydrogen
Prior art date
Application number
PCT/CN2023/105912
Other languages
English (en)
French (fr)
Inventor
廖勇
秦博宇
陈石义
王宏振
张谦君
王艳
胡一凡
张琳东
Original Assignee
成都精智艺科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都精智艺科技有限责任公司 filed Critical 成都精智艺科技有限责任公司
Publication of WO2024032286A1 publication Critical patent/WO2024032286A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/01Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables

Definitions

  • the invention relates to a DC superconducting liquid hydrogen energy pipeline system with a liquid nitrogen cold screen.
  • the Pacific Rim is one of the most populous and economically developed regions in the world. According to 2021 International Monetary Fund (IMF) data, the combined GDP (in U.S. dollars) of China, the United States, Russia, Japan, South Korea, and Canada is approximately Accounting for 23.44% of global GDP. At the same time, due to the continuous growth of energy demand, the Pacific Rim has become one of the world's largest energy consumption regions. However, while traditional fossil fuel energy meets this demand, it also brings environmental and climate problems.
  • IMF International Monetary Fund
  • liquid hydrogen superconducting energy pipelines have significant technical advantages and propose an optimized system based on this innovative technology: a DC superconducting liquid hydrogen energy pipeline system with a liquid nitrogen cooling screen.
  • the present invention proposes a DC superconducting liquid hydrogen energy pipeline system with a liquid nitrogen cold screen.
  • the liquid nitrogen cold screen structure is used to reduce the time required for efficient coordinated transmission of liquid hydrogen and electricity.
  • the segmented liquid nitrogen cold screen structure reduces the difficulty of cold screen implementation; the DC superconducting liquid hydrogen energy pipeline system can collect electricity and hydrogen energy from various new energy bases for long-distance transportation.
  • a DC superconducting liquid hydrogen energy pipeline system with a liquid nitrogen cooling screen including superconducting energy pipelines connected in sequence through a liquid hydrogen superconducting pipeline with a liquid nitrogen cooling screen System starting station A, superconducting energy pipeline system intermediate station B and superconducting energy pipeline system terminal station C.
  • the liquid hydrogen superconducting pipeline with liquid nitrogen cold screen includes a liquid hydrogen transportation pipeline, a liquid nitrogen cold screen layer, The external cold insulation layer and the superconducting cable set installed inside the liquid hydrogen transportation pipeline are equipped with liquid nitrogen cooling screens on the outer sections of the liquid hydrogen transportation pipeline. The bottom and top of each section of the liquid nitrogen cooling screen are connected to the liquid nitrogen supply through pipelines.
  • Pipeline and nitrogen recovery pipeline, the nitrogen recovery pipeline is connected to the nitrogen reliquefaction device through the pipeline, and the nitrogen reliquefaction device is connected to the liquid nitrogen supply pipeline through the pipeline.
  • the present invention focuses on optimizing the cold shield of the liquid hydrogen superconducting energy pipeline system, and proposes that a separate liquid nitrogen pipeline be provided to provide liquid nitrogen, the liquid nitrogen cold shield segmentally wrap the liquid hydrogen pipeline, and a nitrogen recovery system be arranged to reliquefy and replenish the liquid nitrogen. .
  • the present invention uses a support pulley set in the liquid hydrogen pipeline to assist in erecting the superconducting cable in the center of the liquid hydrogen pipeline to ensure that the superconducting cable is in the most favorable heat dissipation position.
  • the invention can be applied to large-scale new energy bases for DC superconducting electric power transmission.
  • the abundant electric power can be used to electrolyze water to produce hydrogen.
  • the produced hydrogen can provide a low-temperature environment for realizing superconductivity after being liquefied, and the entire system can realize energy utilization. It has the advantages of large capacity, low loss, high-efficiency transmission, and hydrogen and electricity synergy and complementarity.
  • the present invention solves the problem of excessive evaporation heat leakage of core liquid hydrogen and the risk of lag; the overhead design of the built-in low-temperature cable support pulley block in the pipeline proposed by the present invention solves the problem of superconducting heat leakage.
  • the heat dissipation requirements of conductive cables also solve the problem of irregular cable laying affecting the liquid hydrogen transport flow path and causing excessive fluid resistance.
  • the invention optimizes the existing liquid nitrogen cold shield liquid hydrogen superconducting mixed transmission technology, reduces the implementation difficulty of superconducting energy pipeline projects, and promotes the large-scale development of new energy and high-efficiency hydrogen and electricity mixed transmission mode in the context of future carbon neutrality. , provides a solution with broad application prospects.
  • Figure 1 is a schematic diagram of the overall structure of the present invention.
  • Figure 2 is a schematic structural cross-sectional view of a liquid hydrogen superconducting pipeline system with a liquid nitrogen cold shield;
  • FIG. 3 Schematic diagram of the multi-layer structure of the liquid hydrogen superconducting pipeline system with liquid nitrogen cold shield
  • Reference numbers in the figure include: first power access rectifier station 1, first normal temperature cable group 2, first low temperature cable group 3, first conversion joint 4, first liquid hydrogen storage tank 5, electrolysis water device 6, hydrogen Liquefaction device 7, first superconducting cable group 8, first liquid hydrogen transportation pipeline 9, first liquid nitrogen evaporation cold screen 10, first external cold insulation layer 11, liquid nitrogen supply pipeline 12, first liquid nitrogen pressure reducing valve 13.
  • a DC superconducting liquid hydrogen energy pipeline system with a liquid nitrogen cold screen including: superconducting energy pipeline system starting station A, superconducting energy pipeline system continuation station B, superconducting energy pipeline system terminal station C, with liquid
  • the nitrogen cooling screen is composed of liquid hydrogen superconducting pipeline system, nitrogen reliquefaction device and other subsystems. in:
  • the starting station A of the superconducting energy pipeline system can not only receive new energy power and electrolyze water from abundant new energy power into hydrogen, and liquefy the hydrogen; it can also connect liquid hydrogen with a liquid nitrogen cooling screen through a liquid hydrogen superconducting pipeline.
  • Superconducting pipeline systems deliver electricity and liquid hydrogen energy.
  • Station B of the superconducting energy pipeline system can not only transmit electricity and liquid hydrogen energy through the liquid hydrogen superconducting pipeline connected to the liquid hydrogen superconducting pipeline system with a liquid nitrogen cooling screen; it can also receive additional external power and evaporate the hydrogen. Reliquefaction, the liquid hydrogen that has not evaporated is then pressurized.
  • the continuation station B in the superconducting energy pipeline system only represents a schematic representation of one function. In actual implementation, it can be composed of the continuation station B 1 , the continuation station B 2 , ... which have the same structure as the continuation station B.
  • the continuation station B n is composed of series connections in sequence.
  • Terminal C of the superconducting energy pipeline system can not only receive electricity and liquid hydrogen energy through the liquid hydrogen superconducting pipeline connected to the liquid hydrogen superconducting pipeline system with a liquid nitrogen cooling screen; it can also convert the received DC power into AC power and transmit power to the external power grid. ;
  • the received liquid hydrogen can be pressurized and sold, and the evaporated gas hydrogen can be used for power generation or external sales.
  • the liquid hydrogen superconducting pipeline with liquid nitrogen cooling screen mainly plays the role of connecting three stations: the starting station A of the superconducting energy pipeline system, the continuation station B of the superconducting energy pipeline system, and the terminal station C of the superconducting energy pipeline system; at the same time
  • This system has separately laid liquid nitrogen and nitrogen pipelines that can provide liquid nitrogen for the cold screen and recover the nitrogen after the cold screen evaporates.
  • the liquid hydrogen superconducting pipeline with liquid nitrogen cold shield includes a liquid hydrogen transportation pipeline, a liquid nitrogen cold shield layer, an external cold insulation layer and a superconducting cable set arranged inside the liquid hydrogen transportation pipeline.
  • a liquid nitrogen cooling screen is provided on the outer section of the liquid hydrogen transportation pipeline. The bottom and top of each section of the liquid nitrogen cooling screen are respectively connected to the liquid nitrogen transportation pipeline and the low-temperature nitrogen recovery pipeline through pipelines.
  • the nitrogen reliquefaction device mainly re-liquefies the cold screen evaporated nitrogen into liquid nitrogen and replenishes it into the liquid nitrogen pipeline.
  • the setting of the nitrogen reliquefaction device is related to the cold energy consumption of liquid nitrogen. It can be set in any area that requires cold energy. The number of settings is determined according to the actual evaporation demand of the pipeline system.
  • Superconducting energy pipeline system starting station A including: the first power access rectifier station 1, the first normal temperature cable group 2, the first low temperature cable group 3, the first conversion joint 4, and the first liquid hydrogen storage tank 5 , water electrolysis device 6, hydrogen liquefaction device 7, first superconducting cable group 8, first liquid hydrogen transportation pipeline 9, etc.
  • the upstream clean energy base is connected to the first power access rectifier station 1 to receive external power.
  • the first power access rectifier station 1 is connected to the first normal temperature cable group 2.
  • the first normal temperature cable group 2 is connected to the first low temperature cable group 3.
  • the cable group 3 is connected to the first conversion joint 4, and the first conversion joint 4 is connected to the first superconducting cable group 8 to transmit power to the superconducting energy pipeline system intermediate station B through superconducting.
  • the first power access rectifier station 1 sends the abundant power to the water electrolysis device 6 through the cable.
  • the power decomposes water into hydrogen and oxygen in the water electrolysis device 6.
  • the oxygen is sold or discharged externally, and the hydrogen is sent to the hydrogen liquefaction unit through the pipeline.
  • the device 7 produces liquid hydrogen, and the hydrogen liquefaction device 7 sends the liquid hydrogen to the first liquid hydrogen storage tank 5 through a dedicated pipeline for liquid hydrogen.
  • the first liquid hydrogen storage tank 5 transports liquid hydrogen downstream through the first liquid hydrogen delivery pipeline 9 .
  • the first power access rectifier station 1 includes a combination of common power equipment such as a high voltage DC rectifier, a rectifier transformer, a filter, an isolation switch, a chopper switch and a chopper resistor, which mainly depends on the power input or output requirements. configuration.
  • common power equipment such as a high voltage DC rectifier, a rectifier transformer, a filter, an isolation switch, a chopper switch and a chopper resistor, which mainly depends on the power input or output requirements. configuration.
  • the first normal temperature cable group 2 refers to power cables used in DC power transmission and distribution systems.
  • the first low-temperature cable group 3 refers to low-temperature resistant cables in which polypropylene laminated paper (PPLP), basalt fiber, or other insulation materials are used as the main insulation layer.
  • PPLP polypropylene laminated paper
  • basalt fiber basalt fiber
  • the first liquid hydrogen storage tank 5 can be various types of insulated tanks. Insulation forms include but are not limited to vacuum powder insulation, vacuum-liquid nitrogen-vacuum three-layer insulation, gas-phase self-cooling screen composite insulation, etc.;
  • the water electrolysis device 6 may be an alkaline aqueous electrolyzer (ACE), a solid polymer electrolyzer (PEM), a solid oxide electrolyzer (SOEC), and other devices and their supporting facilities.
  • ACE alkaline aqueous electrolyzer
  • PEM solid polymer electrolyzer
  • SOEC solid oxide electrolyzer
  • the first superconducting cable group 8 is composed of multiple superconducting cables.
  • a single cable is composed of a cable skeleton, a superconductor, a shielding layer and a protective shell.
  • the core conductive material can be BSCCO strip, YBCO strip, MgB2 superconducting material, etc.
  • the skeleton material is copper, and the low-temperature insulation is generally PPLP.
  • Superconducting energy pipeline system continuation station B including: the second liquid hydrogen storage tank 18, the second conversion joint 19, the second low-temperature cable group 20, the second normal temperature cable group 21, and the second power access rectifier station 22 , the third normal temperature cable group 23, the third low-temperature cable group 24, the third conversion joint 25, the third liquid hydrogen storage tank 26, the hydrogen reliquefaction device 27, the liquid hydrogen pump 28, the second superconducting cable group 29, the second Liquid hydrogen transportation pipeline 30, etc.
  • the second liquid hydrogen storage tank 18 is connected to the upstream first superconducting cable group 8 through a superconducting cable, and the second liquid hydrogen storage tank 18 is connected to the upstream first liquid hydrogen transportation pipeline 9 through a pipeline.
  • the first superconducting cable group 8 is connected to the second conversion joint 19, the second conversion joint 19 is connected to the second low-temperature cable group 20, and the second low-temperature cable group 20 is finally connected to the second normal temperature cable group 21 to transmit power to the second power access Rectifier station 22.
  • the second power access rectifier station 22 can both receive external power and send power to the outside.
  • the second power access rectifier station 22 is connected to the third normal temperature cable group 23, the third normal temperature cable group 23 is connected to the third low temperature cable group 24, the third low temperature cable group 24 is connected to the third conversion joint 25, and the third conversion joint 25 is connected to the third conversion joint 25.
  • the two superconducting cable groups 29 transmit power to the terminal C of the superconducting energy pipeline system through superconducting cables.
  • the second liquid hydrogen storage tank 18 performs gas-liquid separation on the received liquid hydrogen.
  • the gas phase of the second liquid hydrogen storage tank 18 is sent to the hydrogen reliquefaction device 27 through the pipeline for re-liquefaction.
  • the re-liquefied liquid hydrogen is sent to the third party through the pipeline.
  • Liquid hydrogen storage tank 26 the liquid phase of the second liquid hydrogen storage tank 18 is sent to the liquid hydrogen pump 28 through a pipeline for pressurization, and the pressurized liquid hydrogen enters the third liquid hydrogen storage tank 26 through the pipeline to cooperate with the next round of superconducting delivery.
  • the liquid hydrogen pump 28 may be a centrifugal pump, a diaphragm pump, a bellows pump, a piston pump, etc.
  • Terminal C of the superconducting energy pipeline system including: the second superconducting cable group 29, the second liquid hydrogen transportation pipeline 30, the fourth liquid hydrogen storage tank 36, the fourth conversion joint 37, the fourth low-temperature cable group 38, The fourth normal temperature cable group 39, the power outgoing inverter station 40, the liquid hydrogen boosting and loading facility 41, the hydrogen heating and boosting device 42, and the hydrogen power generation device 43.
  • the fourth liquid hydrogen storage tank 36 is connected to the upstream second superconducting cable group 29 through a superconducting cable, and the fourth liquid hydrogen storage tank 36 is connected to the upstream second liquid hydrogen transportation pipeline 30 through a pipeline.
  • the second superconducting cable group 29 is connected to the fourth conversion joint 37
  • the fourth conversion joint 37 is connected to the fourth low-temperature cable group 38
  • the fourth low-temperature cable group 38 is finally connected to the fourth normal temperature cable group 39 to transmit power to the power outgoing inverter. Stand 40.
  • the power outgoing inverter station 40 can not only receive superconducting power and hydrogen power, but also send out power.
  • the fourth liquid hydrogen storage tank 36 decompresses and separates the received hydrogen.
  • the gas phase of the fourth liquid hydrogen storage tank 36 is sent to the hydrogen heating and boosting device 42 through a pipeline to raise the temperature to normal temperature and increase the pressure.
  • the normal temperature hydrogen is sent through the pipeline.
  • the hydrogen power generation device 43 produces electric power, and the power produced by the hydrogen power generation device 43 is sent to the power outgoing inverter station 40 for collection and then sent to the external transmission grid.
  • the liquid phase of the fourth liquid hydrogen storage tank 36 is sent to the liquid hydrogen pressurizing loading facility 41 through a pipeline for pressurization, and the pressurized liquid hydrogen is sent to liquid hydrogen users through a liquid hydrogen tanker.
  • the hydrogen heating and boosting device 42 may be a combination of an air-temperature aluminum fin reheater, a hydrogen compressor and auxiliary equipment.
  • the hydrogen power generation device 43 can be various types of fuel cells (such as proton exchange membrane fuel cells, alkaline fuel cells, solid oxide fuel cells, etc.), pure hydrogen/hydrogen-doped gas turbines, pure hydrogen/hydrogen-doped internal combustion engines, etc., depending on the output. Hydrogen scale and local resources are used to select corresponding hydrogen power generation equipment.
  • fuel cells such as proton exchange membrane fuel cells, alkaline fuel cells, solid oxide fuel cells, etc.
  • pure hydrogen/hydrogen-doped gas turbines pure hydrogen/hydrogen-doped internal combustion engines, etc.
  • the liquid hydrogen pressurized loading facility 41 is composed of a liquid hydrogen pump, a quantitative loading system, a liquid hydrogen loading hose, a ground scale, and auxiliary production facilities.
  • FIG. 2 The structure of the liquid hydrogen superconducting pipeline with liquid nitrogen cold shield is shown in Figures 2 and 3, including a first superconducting cable group 8, a cable support pulley group 44, a first liquid hydrogen transportation pipeline 9, and internal thermal insulation. Layer 45, first liquid nitrogen evaporation cold screen 10, first external cold insulation layer 11, liquid nitrogen supply pipeline 12, first liquid nitrogen pressure reducing valve 13, nitrogen recovery pipeline 14, etc.
  • FIG. 2 The cross-sectional schematic diagram of a liquid hydrogen superconducting pipeline equipped with a liquid nitrogen cooling screen is shown in Figure 2, including coaxially arranged from the inside to the outside: a first superconducting cable group 8, a cable support pulley group 44, and a first liquid hydrogen transportation pipeline 9 , internal thermal insulation layer 45, first liquid nitrogen evaporation cold screen 10, first external cold insulation layer 11. and the collaboratively constructed liquid nitrogen supply pipeline 12, the first liquid nitrogen pressure reducing valve 13, nitrogen recovery pipeline 14, etc., including:
  • the first superconducting cable group 8 is used for superconducting power transmission and is composed of a copper skeleton, superconducting material, electrical insulation layer, protective shell and cable assembly frame, etc., and is used for electric energy transmission.
  • the first layer of first liquid hydrogen transportation pipeline 9 is used for liquid hydrogen transmission and cooling of the first superconducting cable group 8 at the same time.
  • a cable support pulley set 44 is provided in the first liquid hydrogen transportation pipeline 9 to support the superconducting cable and assist in erecting the superconducting cable in the center of the liquid hydrogen pipeline to ensure that the superconducting cable is in the most favorable heat dissipation position and at the same time avoid This solves the problem of excessive resistance in the liquid hydrogen transport flow path caused by irregular laying of superconducting cables.
  • the second internal insulation layer 45 is used to isolate liquid hydrogen and liquid nitrogen. It can be a high-density insulation material or a vacuum insulation structure.
  • the third layer of the first liquid nitrogen evaporation cold screen 10 is mainly used to load liquid nitrogen, provide a heat leakage cold screen for the liquid hydrogen in the first layer, and reduce the liquid hydrogen evaporation rate.
  • the fourth layer of the first external cold and thermal insulation layer 11 is used to isolate the heat exchange between liquid nitrogen and the external environment. It is generally a low-density thermal insulation material.
  • the external cold and thermal insulation layer also includes common attachment structures such as conventional moisture-proof layers and protective layers.
  • the internal insulation layer 45 can be made of high vacuum multi-layer winding insulation: materials such as a reflective screen of 0.006mm aluminum foil, a spacer of 0.1mm thick cellophane, and a 5A molecular sieve or activated carbon adsorbent is installed in the interlayer. Adsorb leaking hydrogen to maintain interlayer vacuum for a long time.
  • the first liquid nitrogen evaporation cold screen 10 is a cold screen area that isolates liquid hydrogen outside the liquid hydrogen pipeline. Considering the cooling effect, zero pressure evaporation cold screen technology can be used to maintain a temperature of 77K to ensure the lowest leakage of liquid hydrogen inside. Effect; its specific structure can be a prefabricated concave jacketed casing, or a cold shield casing directly welded outside the liquid hydrogen pipeline.
  • the first external cold insulation layer 11 is a conventional low-temperature cold insulation material, and the outer surface of the insulation material is connected to the atmosphere.
  • Common liquid nitrogen engineering and LNG engineering pipeline cold insulation methods can be used.
  • the nitrogen reliquefaction device mainly includes a nitrogen reliquefaction device 15.
  • the nitrogen recovery pipeline 14 is connected to the nitrogen reliquefaction device 15 through the pipeline, and the nitrogen reliquefaction device 15 is connected to the liquid nitrogen supply pipeline 12 through the pipeline.
  • the core of the invention is to separate liquid nitrogen and endothermic vaporized low-temperature nitrogen from the superconducting pipeline system as two separate accompanying pipelines.
  • liquid nitrogen is injected into the main structure in sections for cold shielding, which avoids the coaxial laying of the entire liquid hydrogen pipeline and the liquid nitrogen pipeline in the existing technology, which causes inconsistent shrinkage of the steel pipe due to inconsistent temperatures and causes design and manufacturing difficulties.
  • the present invention innovatively uses a support pulley set in the liquid hydrogen pipeline to assist in erecting the superconducting cable in the center of the liquid hydrogen pipeline to ensure that the superconducting cable is in the most favorable heat dissipation position. At the same time, it also avoids the problem of excessive resistance in the liquid hydrogen transportation channel caused by irregular laying of superconducting cables.
  • the present invention proposes specific system settings of the superconducting energy pipeline system starting station A, the superconducting energy pipeline system continuation station B, and the superconducting energy pipeline system terminal station C, effectively dividing long-distance energy transportation into multiple sections.
  • the composition structure reduces the difficulty of implementing long-distance hydrogen-electricity superconducting mixed transmission energy pipelines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

公开了一种带液氮冷屏的直流超导液氢能源管道系统,包括通过带液氮冷屏的液氢超导管道依次连接的超导能源管道系统起始站A、超导能源管道系统中续站B和超导能源管道系统终点站C,带液氮冷屏的液氢超导管道包括液氢输送管道(9,30)、液氮冷屏层(10,16,32,35)、外部保冷层(11,33)和设置在液氢输送管道内部的超导电缆组(8,29),在液氢输送管道外部分段设置有液氮冷屏(10,16,32,35),每段液氮冷屏的底部和顶部分别通过管道接入液氮供应管道(12)和氮气回收管道(14)。该管道系统应用于大型新能源基地进行直流超导输送电力,富裕的电力可以用于电解水制氢,制成的氢气液化后可以用于实现超导的低温环境,进而整个系统可以实现能源的大容量、低损耗、高效率传输、氢电协同互补等优势。

Description

一种带液氮冷屏的直流超导液氢能源管道系统 技术领域
本发明涉及一种带液氮冷屏的直流超导液氢能源管道系统。
背景技术
环太平洋地区是世界上人口最多、经济最为发达的地区之一,根据2021年国际货币基金组织(IMF)的数据,中国、美国、俄罗斯、日本、韩国、加拿大的GDP(以美元计算)合计约占全球GDP的23.44%。同时,由于能源需求的不断增长,环太平洋地区成为了全球最大的能源消费地区之一。然而,传统的化石燃料能源在满足这一需求的同时,也带来了环境和气候问题。
从中国北京到美国华盛顿横跨12个时区,两国在光伏发电方面都具有丰富的资源。中国的南部地区和美国西部地区经常享受到充足的阳光,这为光伏发电提供了良好的条件。通过在两国之间建设环太平洋能源通道,可以将中国南部地区的太阳能资源和美国西部地区的太阳能资源进行互补,实现跨时区的能源交流,有望为区域能源转型和可持续发展提供有效支持。
为了应对全球能源挑战和趋势,我们倡议在环太平洋地区建立一个平等、有韧性和可持续的能源合作体系。目标是顺应清洁能源发展趋势,为服务区国家提供稳定安全的能源供应。我们认为液氢超导能源管道具有显著的技术优势,并提出了一种基于这一创新技术的优化系统:一种带液氮冷屏的直流超导液氢能源管道系统。
发明内容
为了实现大规模的可再生能开发高效传输,本发明提出了一种带液氮冷屏的直流超导液氢能源管道系统,采用液氮冷屏结构用于降低液氢与电力高效协同输送时保持降低液氢漏冷,分段式液氮冷屏结构降低了冷屏实施的实施难度;直流超导液氢能源管道系统可以将各个新能源基地的电力与氢能汇集后进行长距离输送。
本发明解决其技术问题所采用的技术方案是:一种带液氮冷屏的直流超导液氢能源管道系统,包括通过带液氮冷屏的液氢超导管道依次连接的超导能源管道系统起始站A、超导能源管道系统中续站B和超导能源管道系统终点站C,所述带液氮冷屏的液氢超导管道包括液氢输送管道、液氮冷屏层、外部保冷层和设置在液氢输送管道内部的超导电缆组,在液氢输送管道外部分段设置有液氮冷屏,每段液氮冷屏的底部和顶部分别通过管道接入液氮供应管道和氮气回收管道,所述氮气回收管道通过管道连接氮气再液化装置,氮气再液化装置通过管道连接液氮供应管道。
与现有技术相比,本发明的积极效果是:
本发明着眼于优化液氢超导能源管道系统冷屏,提出了单独设置液氮管道提供液氮、且液氮冷屏分段包裹液氢管道、以及布置氮气回收系统对液氮进行再液化补充。同时本发明为改善超导电缆在管道内敷设定位效果,利用液氢管道内设置支撑滑轮组辅助在液氢管道内部中心架设超导电缆,确保超导电缆处于最有利的散热位置。本发明能应用于大型新能源基地进行直流超导输送电力,富裕的电力可以用于电解水制氢,制成的氢气通过液化后可以提供实现超导的低温环境,进而整个系统可以实现能源的大容量、低损耗、高效率传输、氢电协同互补等优势。
与现有的液氢超导能源管道系统技术相比,本发明解决了核心液氢的蒸发漏热过快有失超风险问题;本发明提出的管道内置低温电缆支撑滑轮组架空设计,解决了超导电缆对散热的要求,同时还解决了电缆不规则敷设影响液氢输送流道、导致流体阻力过大的问题。本发明优化了现有的液氮冷屏液氢超导混输技术,降低了超导能源管道工程实施难度,为推动未来碳中和背景下新能源大规模发展、高效率氢电混输模式,给出了一种解决方案,应用前景广阔。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1是本发明的总体结构示意图;
图2带液氮冷屏的液氢超导管道系统的结构剖面示意图;
图3带液氮冷屏的液氢超导管道系统的多层结构示意图;
图中附图标记包括:第一电力接入整流站1、第一常温电缆组2、第一低温电缆组3、第一转换接头4、第一液氢储罐5、电解水装置6、氢气液化装置7、第一超导电缆组8、第一液氢输送管道9、第一液氮蒸发冷屏10、第一外保冷绝热层11、液氮供应管道12、第一液氮减压阀13、氮气回收管道14、氮气再液化装置15、第二液氮蒸发冷屏16、第二液氮减压阀17、第二液氢储罐18、第二转换接头19、第二低温电缆组20、第二常温电缆组21、第二电力接入整流站22、第三常温电缆组23、第三低温电缆组24、第三转换接头25、第三液氢储罐26、氢气再液化装置27、液氢泵28、第二超导电缆组29、第二液氢输送管道30、第三液氮减压阀31、第三液氮蒸发冷屏32、第二外保冷绝热层33、第四液氮减压阀34、第四液氮蒸发冷屏35、第四液氢储罐36、第四转换接头37、第四低温电缆组38、第四常温电缆组39、电力接出逆变站40、液氢增压装车设施41、氢气加热增压装置42、氢气发电装置43、电缆支持滑轮组44、内部绝热层45。
实施方式
一种带液氮冷屏的直流超导液氢能源管道系统,包括:超导能源管道系统起始站A,超导能源管道系统中续站B,超导能源管道系统终点站C,带液氮冷屏的液氢超导管道系统,氮气再液化装置等子系统构成。其中:
超导能源管道系统起始站A既可接收新能源电力和将富裕的新能源电力电解水制成氢气,并将氢气液化;亦可通过液氢超导管道连接带液氮冷屏的液氢超导管道系统输送电力和液氢能量。
超导能源管道系统中续站B既可通过液氢超导管道连接带液氮冷屏的液氢超导管道系统输送电力和液氢能量;亦可接收外部新增电力,并将蒸发的氢气再液化,未蒸发的液氢再增压。本发明中超导能源管道系统中续站B仅代表一种功能的示意,实际实施时可以是由与中续站B结构完全相同的中续站B 1、中续站B 2、……中续站B n依次串联组成。
超导能源管道系统终点站C既可通过液氢超导管道连接带液氮冷屏的液氢超导管道系统接收电力和液氢能量;亦可将接收的直流电为交流电,对外部电网输送电力;又可将接收的液氢增压销售,蒸发的气氢用于发电或对外销售。
带液氮冷屏的液氢超导管道主要起连接超导能源管道系统起始站A,超导能源管道系统中续站B,超导能源管道系统终点站C等三个站点的作用;同时本系统有单独敷设的液氮和氮气管道可以提供冷屏用液氮,并回收冷屏蒸发后的氮气。
带液氮冷屏的液氢超导管道包括液氢输送管道、液氮冷屏层、外部保冷层和设置在液氢输送管道内部的超导电缆组。在液氢输送管道外部分段设置有液氮冷屏,每段液氮冷屏的底部和顶部分别通过管道接入液氮输送管道和低温氮气回收管道。
氮气再液化装置主要是将冷屏蒸发氮气重新液化成为液氮,并补充进液氮管道。氮气再液化装置的设置和液氮的冷能消耗有关系,可以是设置在任何需要冷能的区域,设置的数量根据实际管道系统蒸发需求而定。
以下结合附图对各个子系统的内部构成及其相互之间的连接关系进行详细说明。
如图1所示:
1)超导能源管道系统起始站A,包括:第一电力接入整流站1、第一常温电缆组2、第一低温电缆组3、第一转换接头4、第一液氢储罐5、电解水装置6、氢气液化装置7、第一超导电缆组8、第一液氢输送管道9等。
上游清洁能源基地连接第一电力接入整流站1接收外部电力,第一电力接入整流站1连接第一常温电缆组2,第一常温电缆组2连接第一低温电缆组3,第一低温电缆组3连接第一转换接头4,第一转换接头4连接第一超导电缆组8通过超导将电力外送至超导能源管道系统中续站B。
第一电力接入整流站1将富裕的电力通过电缆送至电解水装置6,电力在电解水装置6中将水分解为氢气和氧气,氧气外对销售或者排放,氢气通过管道送至氢气液化装置7制成液氢,氢气液化装置7通过液氢专用管道送至第一液氢储罐5,第一液氢储罐5通过第一液氢输送管道9对下游输送液氢。
所述第一电力接入整流站1包括高压直流整流器、整流变压器、滤波器、隔离开关、斩波器开关和斩波器电阻等常见电力设备的组合,主要取决于电力输入或输出的需求进行配置。
所述第一常温电缆组2指用于直流输配电系统中的电力电缆。
所述第一低温电缆组3指聚丙烯层压纸(PPLP)、玄武岩纤维等作为主绝缘层的绝缘材料的耐低温电缆。
所述第一液氢储罐5可以是各类型式的绝热罐,绝热形式包括但不限于真空粉末绝热,真空-液氮-真空三层绝热,气相自冷屏复合绝热等;
所述电解水装置6可以是碱性水溶液电解槽(ACE)、固体聚合物电解槽(PEM)和固体氧化物电解槽(SOEC)等装置及其配套设施。
所述第一超导电缆组8,是由多根超导电缆组合而成,单根电缆由电缆骨架、超导体、屏蔽层和保护外壳组成。其核心导电材料可以是BSCCO带材,YBCO带材,MgB₂超导材料等,骨架材料是铜,低温绝缘一般是PPLP。
2)超导能源管道系统中续站B,包括:第二液氢储罐18、第二转换接头19、第二低温电缆组20、第二常温电缆组21、第二电力接入整流站22、第三常温电缆组23、第三低温电缆组24、第三转换接头25、第三液氢储罐26、氢气再液化装置27、液氢泵28、第二超导电缆组29、第二液氢输送管道30等。
第二液氢储罐18通过超导电缆连接上游第一超导电缆组8,第二液氢储罐18通过管道连接上游第一液氢输送管道9。第一超导电缆组8连接第二转换接头19,第二转换接头19连接第二低温电缆组20,第二低温电缆组20最终连接第二常温电缆组21将电力传送至第二电力接入整流站22。第二电力接入整流站22既可接收外部电力,亦可对外送出电力。第二电力接入整流站22连接第三常温电缆组23,第三常温电缆组23连接第三低温电缆组24,第三低温电缆组24连接第三转换接头25,第三转换接头25连接第二超导电缆组29通过超导电缆将电力外送至超导能源管道系统终点站C。第二液氢储罐18对接收的液氢进行了气液分离,第二液氢储罐18的气相通过管道送至氢气再液化装置27再液化,再液化的液氢通过管道送至第三液氢储罐26;第二液氢储罐18的液相通过管道送至液氢泵28进行增压,增压后的液氢通过管道进入第三液氢储罐26协同下一轮超导输送。
所述液氢泵28可以是离心泵、隔膜泵、波纹管泵和活塞泵等。
3)超导能源管道系统终点站C,包括:第二超导电缆组29、第二液氢输送管道30、第四液氢储罐36、第四转换接头37、第四低温电缆组38、第四常温电缆组39、电力接出逆变站40、液氢增压装车设施41、氢气加热增压装置42、氢气发电装置43。
第四液氢储罐36通过超导电缆连接上游第二超导电缆组29,第四液氢储罐36通过管道连接上游第二液氢输送管道30。第二超导电缆组29连接第四转换接头37,第四转换接头37连接第四低温电缆组38,第四低温电缆组38最终连接第四常温电缆组39将电力传送至电力接出逆变站40。电力接出逆变站40既可接收超导电力和氢气发电电力,亦可对外送出电力。第四液氢储罐36对接收的氢气进行了减压、分离,第四液氢储罐36的气相通过管道送至氢气加热增压装置42升温为常温、升压,常温的氢气通过管道送至氢气发电装置43生产电力,氢气发电装置43生产的电力送至电力接出逆变站40汇集后送出至外输电网。第四液氢储罐36的液相通过管道送至液氢增压装车设施41进行增压,增压后的液氢通过液氢槽车送至液氢用户。
所述氢气加热增压装置42可以是空温式铝翅片复热器和氢气压缩机及辅助设备组合而成。
所述氢气发电装置43可以是各类燃料电池(如质子交换膜燃料电池、碱性燃料电池和固体氧化物燃料电池等),纯氢/掺氢燃气轮机、纯氢/掺氢内燃机等,根据输氢规模和当地资源来选择对应的氢发电设备。
所述液氢增压装车设施41,是由液氢泵、定量装车系统、液氢装车软管、地衡及辅助生产设施等组合而成。
4)所述带液氮冷屏的液氢超导管道的结构如图2、图3所示,包括第一超导电缆组8,电缆支持滑轮组44、第一液氢输送管道9,内部绝热层45,第一液氮蒸发冷屏10,第一外保冷绝热层11,液氮供应管道12,第一液氮减压阀13,氮气回收管道14等。
设置有液氮冷屏的液氢超导管道的截面示意图如图2所示,包括由内向外同轴布置的:第一超导电缆组8,电缆支持滑轮组44、第一液氢输送管道9,内部绝热层45,第一液氮蒸发冷屏10,第一外保冷绝热层11。及协同建设的液氮供应管道12,第一液氮减压阀13,氮气回收管道14等,其中:
第一超导电缆组8用于超导输电,由铜骨架、超导材料、电气绝缘层、保护外壳和电缆组合架等组成,用于电能传输。
第一层第一液氢输送管道9,用于液氢传输,同时对第一超导电缆组8进行冷却。在第一液氢输送管道9内设置电缆支持滑轮组44,用于对超导电缆进行支撑,辅助在液氢管道内部中心架设超导电缆,确保超导电缆处于最有利的散热位置,同时亦避免了超导电缆不规则敷设导致液氢输送流道阻力过大的问题。
第二层内部绝热层45,用于隔绝液氢与液氮,可以是高密度绝热材料,也可以是真空绝热结构。
第三层第一液氮蒸发冷屏10,主要用于装载液氮,为第一层的液氢提供漏热冷屏,降低液氢蒸发率。
第四层第一外保冷绝热层11,用于隔绝液氮与外部环境的热交换,一般是低密度绝热材料,外部保冷绝热层还包含常规的防潮层、保护层等常见附着结构。
所述内部绝热层45,是可以采用高真空多层缠绕绝热:采用材料如反射屏为0.006mm的铝箔,隔垫为0.1mm厚的玻璃纸,同时夹层中装有5A分子筛或者活性碳吸附剂以吸附渗漏的氢气,以实现长期保持夹层真空度。
所述第一液氮蒸发冷屏10,在液氢管道外部是隔绝液氢的冷屏区,考虑保冷效果,可采用零压蒸发冷屏技术维持77K温度,确保内部的液氢最低的漏冷效果;其具体结构可以是提前预制的凹形夹套管,也可以是液氢管道外直接焊接的冷屏套管。
所述第一外保冷绝热层11,是常规低温保冷材料,而保温材料的外表面与大气相接,可采用常见的液氮工程和LNG工程管道保冷方式。如聚氨酯、聚异氰尿酸酯、低温弹性体绝热等绝热结构,同时设置有防潮层、保护层等细节。
5)所述氮气再液化装置主要包括氮气再液化装置15。
氮气回收管道14通过管道连接氮气再液化装置15,氮气再液化装置15通过管道连接液氮供应管道12。
本发明的工作原理:
本发明核心在于将液氮和吸热气化后的低温氮气从超导管道系统里分离出来作为单独的两根伴随管道。这样液氮就是分段式注入主结构进行冷屏,避免现有技术中整根液氢管道和液氮管道同轴敷设,因为温度不一致带来的钢管收缩率不一致、引起设计制造困难。
进一步地,本发明为改善超导电缆在液氢中的冷却效果,创新利用液氢管道内设置支撑滑轮组辅助在液氢管道内部中心架设超导电缆,确保超导电缆处于最有利的散热位置,同时亦避免了超导电缆不规则敷设导致液氢输送流道阻力过大的问题。
进一步地,本发明提出超导能源管道系统起始站A、超导能源管道系统中续站B和超导能源管道系统终点站C的具体系统设置,将长距离的能源输送有效的划分为多段组成结构,降低了长距离氢电超导混输能源管道的实施难度。

Claims (10)

  1. 一种带液氮冷屏的直流超导液氢能源管道系统,其特征在于:包括通过带液氮冷屏的液氢超导管道依次连接的超导能源管道系统起始站A、超导能源管道系统中续站B和超导能源管道系统终点站C,所述带液氮冷屏的液氢超导管道包括液氢输送管道、液氮冷屏层、外部保冷层和设置在液氢输送管道内部的超导电缆组,在液氢输送管道外部分段设置有液氮冷屏层,每段液氮冷屏的底部和顶部分别通过管道接入液氮供应管道和氮气回收管道,所述氮气回收管道通过管道连接氮气再液化装置,氮气再液化装置通过管道连接液氮供应管道。
  2. 根据权利要求1所述的一种带液氮冷屏的直流超导液氢能源管道系统,其特征在于:所述超导能源管道系统起始站A包括第一电力接入整流站、第一常温电缆组、第一低温电缆组、第一转换接头、第一液氢储罐、电解水装置、氢气液化装置、第一超导电缆组和第一液氢输送管道,其中:所述第一电力接入整流站、第一常温电缆组、第一低温电缆组、第一转换接头、第一超导电缆组依次连接;所述第一电力接入整流站、电解水装置、氢气液化装置、第一液氢储罐、第一液氢输送管道依次连接;第一低温电缆组、第一转换接头、第一超导电缆组设置在第一液氢储罐中。
  3. 根据权利要求1所述的一种带液氮冷屏的直流超导液氢能源管道系统,其特征在于:所述超导能源管道系统中续站B包括第二液氢储罐、第二转换接头、第二低温电缆组、第二常温电缆组、第二电力接入整流站、第三常温电缆组、第三低温电缆组、第三转换接头、第三液氢储罐、第二超导电缆组、第二液氢输送管道,其中:第二转换接头、第二低温电缆组、第二常温电缆组、第二电力接入整流站、第三常温电缆组、第三低温电缆组、第三转换接头、第二超导电缆组依次连接,第二转换接头、第二低温电缆组设置在第二液氢储罐中,第三低温电缆组、第三转换接头、第二超导电缆组设置在第三液氢储罐中。
  4. 根据权利要求3所述的一种带液氮冷屏的直流超导液氢能源管道系统,其特征在于:所述第二液氢储罐的气相出口通过管道与氢气再液化装置连接,氢气再液化装置通过管道与第三液氢储罐连接。
  5. 根据权利要求3所述的一种带液氮冷屏的直流超导液氢能源管道系统,其特征在于:所述第二液氢储罐的液相通过管道与液氢泵连接,液氢泵通过管道与第三液氢储罐连接。
  6. 根据权利要求1所述的一种带液氮冷屏的直流超导液氢能源管道系统,其特征在于:所述超导能源管道系统终点站C包括第二超导电缆组、第二液氢输送管道、第四液氢储罐、第四转换接头、第四低温电缆组、第四常温电缆组、电力接出逆变站、液氢增压装车设施、氢气加热增压装置、氢气发电装置,其中:第二超导电缆组、第四转换接头、第四低温电缆组、第四常温电缆组、电力接出逆变站依次连接,第二超导电缆组、第四转换接头、第四低温电缆组设置在第四液氢储罐中。
  7. 根据权利要求6所述的一种带液氮冷屏的直流超导液氢能源管道系统,其特征在于:所述第四液氢储罐的气相通过管道与氢气加热增压装置连接,氢气加热增压装置通过管道依次与氢气发电装置、电力接出逆变站连接。
  8. 根据权利要求6所述的一种带液氮冷屏的直流超导液氢能源管道系统,其特征在于:所述第四液氢储罐的液相通过管道与液氢增压装车设施连接。
  9. 根据权利要求1所述的一种带液氮冷屏的直流超导液氢能源管道系统,其特征在于:在液氢输送管道内部设置有三角形的支撑滑轮组,在支撑滑轮组上架设超导电缆,在液氢输送管道和液氮冷屏层之间设置内部绝热层。
  10. 根据权利要求1所述的一种带液氮冷屏的直流超导液氢能源管道系统,其特征在于:所述超导能源管道系统中续站B由结构完全相同的中续站B 1、B 2、......B n依次串联组成。
PCT/CN2023/105912 2022-08-08 2023-07-05 一种带液氮冷屏的直流超导液氢能源管道系统 WO2024032286A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210944639.X 2022-08-08
CN202210944639.XA CN115307062A (zh) 2022-08-08 2022-08-08 一种带液氮冷屏的直流超导液氢能源管道系统

Publications (1)

Publication Number Publication Date
WO2024032286A1 true WO2024032286A1 (zh) 2024-02-15

Family

ID=83861051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105912 WO2024032286A1 (zh) 2022-08-08 2023-07-05 一种带液氮冷屏的直流超导液氢能源管道系统

Country Status (2)

Country Link
CN (1) CN115307062A (zh)
WO (1) WO2024032286A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115307062A (zh) * 2022-08-08 2022-11-08 成都精智艺科技有限责任公司 一种带液氮冷屏的直流超导液氢能源管道系统
CN115978444B (zh) * 2023-03-21 2023-05-23 北京中科富海低温科技有限公司 一种低温传输系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419618A (en) * 1987-07-15 1989-01-23 Hitachi Ltd Superconductive bus-bar
CN103907162A (zh) * 2011-12-06 2014-07-02 住友电气工业株式会社 超导电缆、超导电缆线路、超导电缆的布设方法和超导电缆线路的操作方法
CN105162158A (zh) * 2015-09-29 2015-12-16 四川师范大学 一种液氢-液氧-液氮-超导直流电缆复合能源传输系统
CN110853829A (zh) * 2019-11-15 2020-02-28 深圳市开迩文科技有限公司 超导材料恒温系统
CN113922371A (zh) * 2021-10-13 2022-01-11 中国石油工程建设有限公司 一种基于超导技术的超长距离氢电混合输送集成系统
CN115307062A (zh) * 2022-08-08 2022-11-08 成都精智艺科技有限责任公司 一种带液氮冷屏的直流超导液氢能源管道系统
CN217784864U (zh) * 2022-08-08 2022-11-11 成都精智艺科技有限责任公司 一种带液氮冷屏的直流超导液氢能源管道系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419618A (en) * 1987-07-15 1989-01-23 Hitachi Ltd Superconductive bus-bar
CN103907162A (zh) * 2011-12-06 2014-07-02 住友电气工业株式会社 超导电缆、超导电缆线路、超导电缆的布设方法和超导电缆线路的操作方法
CN105162158A (zh) * 2015-09-29 2015-12-16 四川师范大学 一种液氢-液氧-液氮-超导直流电缆复合能源传输系统
CN110853829A (zh) * 2019-11-15 2020-02-28 深圳市开迩文科技有限公司 超导材料恒温系统
CN113922371A (zh) * 2021-10-13 2022-01-11 中国石油工程建设有限公司 一种基于超导技术的超长距离氢电混合输送集成系统
CN115307062A (zh) * 2022-08-08 2022-11-08 成都精智艺科技有限责任公司 一种带液氮冷屏的直流超导液氢能源管道系统
CN217784864U (zh) * 2022-08-08 2022-11-11 成都精智艺科技有限责任公司 一种带液氮冷屏的直流超导液氢能源管道系统

Also Published As

Publication number Publication date
CN115307062A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2024032286A1 (zh) 一种带液氮冷屏的直流超导液氢能源管道系统
CN109854825B (zh) 液氢-液化天然气-高温超导混合能源传输管道
Xiao et al. Development of a 10 kA HTS DC power cable
CN113922371B (zh) 一种基于超导技术的超长距离氢电混合输送集成系统
Sohn et al. Installation and power grid demonstration of a 22.9 kV, 50 MVA, high temperature superconducting cable for KEPCO
CN109140064B (zh) 一种低温燃料传导冷却的超导能源管道
AU2004285058B2 (en) Conduit component for a power supply network, use thereof, method for transporting cryogenic energy carriers in conduits and devices suitable therefor
CN101892491A (zh) 一种自然能源发电及电解海水或苦咸水的综合应用系统
CN217784864U (zh) 一种带液氮冷屏的直流超导液氢能源管道系统
US20050121214A1 (en) Active electrical transmission system
KR20200009348A (ko) 선박용 액화수소 저장탱크의 증발가스 처리시스템
EP3936717A1 (en) Wind park with heat recovery piping
US20230138866A1 (en) Energy storage device for water electrolysis hydrogen production coupled with low temperature and energy storage method
JP4375752B2 (ja) 超電導送電による石炭エネルギー利用システム
EP3936715B1 (en) Wind park with limited transmission capacity
CN109724367A (zh) 用于超导电缆工程的并联制冷机系统冷箱
Grant et al. A power grid for the hydrogen economy
Yamada et al. Study on 1 GW class hybrid energy transfer line of hydrogen and electricity
CN105546342A (zh) 一种lng接收站液化天然气气化方法
CN113074281A (zh) 一种液化气体能源储运管道及超导输电线路系统及方法
Bruzek et al. Using superconducting DC cables to improve the efficiency of electricity transmission and distribution (T&D) networks: An overview
Fu et al. Hydrogen-electricity hybrid energy pipelines for railway transportation: Design and economic evaluation
CN116260187A (zh) 一种基于超导技术的海上风力发电与氢电联合输送系统
CN217208308U (zh) 一种背压式及凝汽式汽轮机放空蒸汽管道结构
CN218599454U (zh) 一种lng接收站多能互补分布式能源系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851511

Country of ref document: EP

Kind code of ref document: A1