WO2024032281A1 - 音频控制方法、可穿戴设备以及电子设备 - Google Patents

音频控制方法、可穿戴设备以及电子设备 Download PDF

Info

Publication number
WO2024032281A1
WO2024032281A1 PCT/CN2023/105729 CN2023105729W WO2024032281A1 WO 2024032281 A1 WO2024032281 A1 WO 2024032281A1 CN 2023105729 W CN2023105729 W CN 2023105729W WO 2024032281 A1 WO2024032281 A1 WO 2024032281A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide structure
acoustic waveguide
control method
audio
processor
Prior art date
Application number
PCT/CN2023/105729
Other languages
English (en)
French (fr)
Inventor
姜龙
朱宗霞
安康
吴劼
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2024032281A1 publication Critical patent/WO2024032281A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/385Transceivers carried on the body, e.g. in helmets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/385Transceivers carried on the body, e.g. in helmets
    • H04B2001/3872Transceivers carried on the body, e.g. in helmets with extendable microphones or earphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/01Aspects of volume control, not necessarily automatic, in sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers

Definitions

  • the present application relates to wearable devices, and in particular, to an audio control method, wearable devices and electronic devices.
  • wearable devices As the frequency of use of wearable devices increases, users will use wearable devices to make calls, listen to music, or watch videos. However, the sound leakage of wearable devices can cause user privacy leaks.
  • the volume of the smart glasses is set low, the impact on the neighbors will be relatively small, and it will not be easy to be recognized when making voice calls and listening to songs through the smart glasses.
  • the user if the user is in a high-noise environment, the user needs to adjust the call volume of the smart glasses to the maximum in order to hear the audio clearly.
  • the content of the call or audio is easily recognized by the outside world, which leads to the technical problem of low privacy of smart glasses.
  • One purpose of this application is to provide a new technology solution for an audio control method, a wearable device, and an electronic device.
  • an audio control method is provided.
  • the audio control method is used to control a wearable device.
  • the control method includes:
  • the sound volume of the speaker of the wearable device is reduced according to the first control signal.
  • the method before obtaining the operating status of the acoustic waveguide structure, the method further includes:
  • a first prompt signal is generated.
  • the first prompt signal is used to prompt the user whether to turn on the acoustic waveguide structure.
  • the operating status of the acoustic waveguide is obtained after a set time interval after the first prompt signal is generated.
  • the obtaining environmental noise includes:
  • the difference between the environmental sound and the speech is calculated, and the environmental noise is the difference.
  • the wearable device includes a microphone and a bone conduction audio sensing device, the microphone is used to acquire environmental sounds, and the bone conduction audio sensing device is used to acquire speech;
  • the method Before obtaining the environmental noise, the method includes: obtaining the operating mode of the wearable device, and generating a second prompt signal when the operating mode is the music mode;
  • the second prompt signal is used to prompt the user whether to turn on the microphone and the bone conduction audio sensing device.
  • the acoustic waveguide structure before obtaining the operating status of the acoustic waveguide structure, it also includes:
  • the operating mode of the wearable device When the operating mode is the call mode, obtain the operating state of the acoustic waveguide structure. When the operating state is the acoustic waveguide structure being in an open state, generate a second control signal,
  • the second control signal is used to adjust the frequency of the speaker to a set range.
  • the setting range is 300Hz-4KHz.
  • the threshold is 85 decibels.
  • a wearable device comprising:
  • An acoustic waveguide structure the acoustic waveguide structure is configured to realize the function of sound focusing;
  • a detection module the detection device is configured to detect the operating status of the acoustic waveguide structure and send it to the outside;
  • the audio adjustment device is configured to adjust the sound volume
  • a processor the processor is configured to obtain the operating status of the acoustic waveguide structure, and when the acoustic waveguide structure is in an open state, the processor generates a first control signal and sends it outward;
  • the audio adjustment module obtains the first control signal and reduces the sound volume of the speaker of the wearable device.
  • an electronic device including a memory and a processor
  • the memory is used to store computer programs
  • the processor is used to execute the computer program to implement the above audio control method.
  • a computer-readable storage medium is provided, a computer program is stored on the computer-readable storage medium, and the computer program implements the above audio control method when executed by a processor.
  • the acoustic waveguide structure can form a physical barrier between the sound outlet and the outside world, thereby preventing sound from leaking out.
  • the sound can be gathered in the direction of the user, making the sound heard by the user louder and ensuring the user's user experience.
  • Figure 1 is one of the flow diagrams of the audio control method of the wearable device in the embodiment of the present application
  • Figure 2 is the second schematic flowchart of the audio control method of the wearable device in the embodiment of the present application.
  • Figure 3 is the third schematic flowchart of the audio control method of the wearable device in the embodiment of the present application.
  • Figure 4 is the fourth schematic flowchart of the audio control method of the wearable device in the embodiment of the present application.
  • Figure 5 is the fifth schematic flowchart of the audio control method of the wearable device in the embodiment of the present application.
  • Figure 6 is a schematic diagram of an electronic device in an embodiment of the present application.
  • Figure 7 is a structural diagram of a wearable device in an embodiment of the present application.
  • Figure 8 is a response frequency effect diagram of the audio control method of the wearable device in the embodiment of the present application.
  • an audio control method is provided.
  • the audio control method is used to control a wearable device.
  • the execution subject is a processor.
  • Figure 1 is a flow chart of an audio control method for a wearable device according to an embodiment of the present application.
  • control method includes:
  • S101 Provide an acoustic waveguide structure configured to achieve the function of sound focusing
  • the acoustic waveguide structure is a structure that can realize the function of acoustic focusing.
  • the processor of the wearable device obtains the operating status of the acoustic waveguide structure.
  • a first control signal is generated to reduce the sound volume of the speaker.
  • the operating status of the acoustic waveguide structure acquired by the processor is off, the volume of the speaker's sound does not change.
  • the processor obtains that the acoustic waveguide structure is in an open state, and the processor generates a first control signal.
  • the processor reduces the sound of the speaker to a set level according to the first control signal.
  • the loudness of the sound before the acoustic waveguide structure is turned on is 40dB.
  • the loudness of the speaker sound is reduced to 30dB.
  • the acoustic waveguide structure itself has a sound focusing function, thereby preventing sound from leaking out.
  • the volume of the speaker is reduced, which can better prevent sound from leaking out.
  • the above control method before acquiring the operating status of the acoustic waveguide structure, the above control method further includes:
  • the processor obtains the environmental noise.
  • the processor determines that the current environment is a high-noise environment.
  • a high-noise environment refers to the noise environment when the environmental noise is greater than or equal to the set threshold.
  • the processor sends a first prompt signal.
  • step S201 is performed.
  • the processor obtains the operating status of the acoustic waveguide structure.
  • the operating status of the acoustic waveguide structure obtained by the processor is on, it generates a third a control signal.
  • step S202 is performed, and the sound of the speaker is reduced.
  • the processor receives the feedback of the first prompt signal as "no", the audio control ends.
  • the processor obtains the environmental noise.
  • the processor sends a first prompt signal to the user.
  • the first prompt signal may be a voice signal or a vibration signal, whichever can prompt the user.
  • the processor obtains the "yes" feedback.
  • the processor obtains the operating status of the acoustic waveguide structure.
  • the processor Reduce the speaker volume.
  • the processor can identify environmental noise to determine the noisy environment the current user is in. When the environmental noise meets the set threshold, the processor determines the high-noise environment. And proactively prompt the user to choose whether to turn on the acoustic waveguide structure. By actively prompting the user to turn on the acoustic waveguide structure in a high-noise environment, the sound focusing function can be achieved and the volume of the speaker in a high-noise environment can be reduced at the same time. Therefore, it can ensure that users can clearly receive the sound from the speakers in high-noise environments, and at the same time, it can also prevent user privacy from being leaked.
  • the operating status of the acoustic waveguide is acquired after a set time interval after the first prompt signal is generated.
  • the processor is set to obtain the operating status of the acoustic waveguide after a set interval time after generating the first prompt signal. For example, 2 seconds after the first prompt signal is generated, the processor begins to acquire the operating status of the acoustic waveguide.
  • the obtaining of environmental noise includes:
  • the difference between the environmental sound and the speech is calculated, and the environmental noise is the difference.
  • the processor obtains environmental sounds and speech, and the processor calculates the difference between the loudness of the environmental sound and the loudness of the speech to obtain the environmental noise. Compare the environmental noise with the set threshold.
  • the set threshold is 85dB.
  • the processor determines that the current environment is a high-noise environment. As shown in Figure 2 and Figure 3, when the environmental noise is greater than or equal to 85dB, the current environment is a high-noise environment. After being identified as a high-noise environment, the processor obtains that the acoustic waveguide structure is turned on, and the processor reduces the sound of the speaker to the set level. Alternatively, after being identified as a high-noise environment, the processor can generate a first prompt signal. After receiving the user's "yes" feedback, the processor obtains the operating status of the acoustic waveguide structure, and the processor obtains the acoustic waveguide structure. is turned on, the processor reduces the speaker sound to the set level.
  • the acoustic waveguide structure on the basis of the acoustic waveguide structure, combined with the environmental noise judgment function, it is possible to prompt the user according to the noise environment to remind the user to turn on the acoustic waveguide structure, and to determine the audio frequency based on whether the acoustic waveguide is turned on.
  • the loudness is automatically adjusted to prevent the sound from becoming louder after the acoustic waveguide structure is turned on, which will affect the user's hearing experience.
  • the wearable device includes a microphone and a bone conduction audio sensing device, the microphone is used to acquire environmental sounds, and the bone conduction audio sensing device is used to acquire speech;
  • the second prompt signal is used to prompt the user whether to turn on the microphone and the bone conduction audio sensing device.
  • the processor obtains the operating mode of the wearable device.
  • the wearable device has call mode and music mode.
  • Music mode includes music playback mode and video playback mode.
  • the processor acquires that the operating mode is the music mode, it generates a second prompt signal and sends it out to prompt the user to turn on the microphone and the bone conduction audio sensing device to obtain environmental noise.
  • step 401 is performed to obtain the environmental noise.
  • the processor generates the first prompt signal.
  • step 402 is performed to obtain the operating status of the acoustic waveguide structure at a set time after the first prompt signal is generated.
  • a first control signal is generated, and the volume of the speaker sound is reduced according to the first control signal.
  • the user's usage status can be determined, thereby prompting whether to turn on the acoustic waveguide structure according to the user's needs.
  • the method before obtaining the operating status of the acoustic waveguide structure, the method further includes: obtaining the operating mode of the wearable device, and when the operating mode is the call mode, obtaining the acoustic waveguide structure.
  • the operating state of the waveguide structure When the operating state is that the acoustic waveguide structure is in an open state, a second control signal is generated, and the second control signal is used to The frequency of the speaker is adjusted to a set range.
  • the processor obtains the operating mode of the wearable device.
  • the processor obtains whether the acoustic waveguide structure is in an open state.
  • the processor generates a second control signal and sends it outward to change the frequency of the speaker. Adjust to the set range.
  • the processor when using smart glasses to answer or make a call, when the processor recognizes that the smart glasses are in call mode, the processor obtains the operating status of the acoustic waveguide structure. When the acoustic waveguide structure is in an open state, the processor reduces the speaker the volume of sound. At the same time, the processor generates a second control signal to adjust the frequency of the speaker to the set range.
  • the acoustic waveguide structure can further protect the privacy of the user's call.
  • the setting range is 300Hz-4KHz.
  • the frequency of the speaker is in the frequency band below 8kHz.
  • the processor obtains that the acoustic waveguide structure is on, it concentrates the frequency band below 8kHz to 300Hz-4KHz.
  • the volume is turned down to a set intensity.
  • FIG. 8 is a response frequency effect diagram of the audio control method of the wearable device in the embodiment of the present application.
  • the abscissa in Figure 8 is the frequency of the voice signal sensed by the bone conduction audio sensing device, and the ordinate is the loudness of the sound that the user can feel at the frequency of the voice signal.
  • L2 is the response frequency curve after the acoustic waveguide structure is turned on.
  • L1 is the response frequency curve after the acoustic waveguide structure is closed.
  • the loudness of the sound experienced by the user when the acoustic waveguide structure is turned on is significantly higher than the loudness of the sound experienced by the user when the acoustic waveguide structure is closed.
  • the loudness of the sound perceived by the user is higher. Therefore, when the loudness of the speaker sound is reduced, the loudness of the sound perceived by the user will not be affected. In this way, the user's privacy can be guaranteed while ensuring that the user can receive good voice signals.
  • a wearable device in one embodiment, includes an acoustic waveguide structure, and the acoustic waveguide structure is configured to achieve a sound focusing function;
  • a detection module the detection device is configured to detect the operating status of the acoustic waveguide structure and send it to the outside;
  • An audio adjustment module configured to adjust the sound size of the speaker
  • a processor the processor is configured to obtain the operating status of the acoustic waveguide structure, and when the acoustic waveguide structure is in an open state, the processor generates a first control signal and sends it outward;
  • the audio adjustment module obtains the first control signal and reduces the sound volume of the speaker of the wearable device.
  • the smart glasses have a casing, and a sound hole is provided on the casing.
  • an audio component is provided at a position opposite to the sound hole, and the audio component has a speaker. The sound emitted by the speaker can be transmitted outward through the sound hole and received by the user.
  • the sound waveguide structure is located on the housing and on the side of the sound outlet away from the user.
  • the acoustic waveguide structure is a movable baffle 403, and the baffle 403 can be a straight plate or the baffle 403 can have a curvature.
  • the baffle 403 extends from the housing to prevent the sound waves from the sound outlet from spreading outward and change the propagation direction of the sound waves from the sound outlet; when the acoustic waveguide structure is closed, The baffle 403 extends into the housing and is received in the housing.
  • the detection module is a Hall sensor, and a magnetic element matching the Hall sensor is provided on the baffle 403 of the acoustic waveguide structure.
  • the Hall sensor is in a running state.
  • the baffle 403 with the magnetic element extends out of the housing, the magnetic element is close to the Hall sensor and forms an induction with the Hall sensor. It is judged based on whether the Hall sensor forms an induction state with the magnetic element, thus Determine the operating status of the acoustic waveguide structure.
  • the processor detects that the acoustic waveguide structure is turned on, the processor generates a first control signal.
  • the audio adjustment module can obtain the first control signal, and the audio adjustment module lowers the volume of the speaker.
  • the audio adjustment module is a module that can adjust the sound volume of the speaker, and those skilled in the art can choose it by themselves.
  • the acoustic waveguide structure when the acoustic waveguide structure is in an open state, the acoustic waveguide structure can form a physical barrier between the sound outlet and the outside world, thereby preventing sound from leaking out.
  • the sound propagated from the sound hole to the surroundings can be gathered in the direction of the user. In this way, when the sound output frequency is the same, the sound heard by the user will be louder. In this way, while increasing the privacy of wearable devices, the user experience is guaranteed.
  • the wearable device further includes a prompt module.
  • the prompt module is used to receive the first prompt signal and make a corresponding prompt to remind the user to choose whether to open the acoustic waveguide structure.
  • the processor obtains "yes" feedback
  • the processor obtains that the acoustic waveguide structure is turned on, and the processor reduces the sound of the speaker to the set size.
  • the wearable device includes a microphone and a bone conduction audio sensing device, the microphone is used to acquire environmental sounds, and the bone conduction audio sensing device is used to acquire speech.
  • Microphones are used to collect ambient sounds.
  • the user of the bone conduction audio sensing device obtains the downlink voice signal.
  • the downlink voice signal is the voice signal received by the bone conduction audio sensing device.
  • the voice signal is different from the ambient sound.
  • the prompt module is also capable of receiving a second prompt signal.
  • the processor recognizes that the wearable device is in the music mode, the processor generates a second prompt signal.
  • the processor obtains the working modes of the microphone and the bone conduction audio sensing device and determines the working mode of the wearable device.
  • the wearable device is in call mode; when the microphone is off and the bone conduction audio sensing device is on, the wearable device is in music mode.
  • the second prompt signal is used to prompt the user whether to turn on the microphone and bone conduction audio sensing device to obtain environmental noise.
  • an electronic device 400 is also provided. As shown in Figure 6, the electronic device includes: memory 402 for storing executable computer instructions;
  • the processor 401 is configured to execute the above detection method according to the control of executable computer instructions.
  • a computer-readable storage medium on which computer instructions are stored, and when the computer instructions are run by a processor, the detection method of the first aspect is executed.
  • Computer-readable storage media may be tangible devices that can retain and store instructions for use by an instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the above.
  • Non-exhaustive list of computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) or flash memory), static random access memory (step RAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical coding device, such as one with instructions stored on it Punch cards or raised structures in grooves, and any suitable combination of the above.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory static random access memory
  • step RAM portable compact disk read-only memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical coding device such as one with instructions stored on it Punch cards or raised structures in grooves, and any suitable combination of the above.
  • computer-readable storage media are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (e.g., light pulses through fiber optic cables), or through electrical wires transmitted electrical signals.
  • Computer-readable program instructions described herein may be downloaded from a computer-readable storage medium to various computing/processing devices, or to an external computer or external storage device over a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • a network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for storage on a computer-readable storage medium in the respective computing/processing device .
  • Computer program instructions for performing the operations of this application may be assembly instructions, instruction set architecture (I-step A) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or programmed in one or more Source code or object code written in any combination of languages, including object-oriented programming languages—such as Malltalk, C++, etc. and conventional procedural programming languages - such as "C" or similar programming languages.
  • the computer-readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server implement.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as an Internet service provider through the Internet). connect).
  • LAN local area network
  • WAN wide area network
  • an external computer such as an Internet service provider through the Internet. connect
  • an electronic circuit such as a programmable logic circuit, a field programmable gate array (FPGA), or a programmable logic array (PLA)
  • the electronic circuit can Computer readable program instructions are executed to implement various aspects of the application.
  • These computer-readable program instructions may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing apparatus, thereby producing a machine that, when executed by the processor of the computer or other programmable data processing apparatus, , resulting in an apparatus that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • These computer-readable program instructions can also be stored in a computer-readable storage medium. These instructions cause the computer, programmable data processing device and/or other equipment to work in a specific manner. Therefore, the computer-readable medium storing the instructions includes An article of manufacture that includes instructions that implement aspects of the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
  • Computer-readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other equipment, causing a series of operating steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executed on a computer, other programmable data processing apparatus, or other equipment to implement the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams.
  • Each block in the process diagram or block diagram may represent a module, program segment, or part of an instruction.
  • the module, program segment, or part of the instruction contains one or more executable instructions for implementing the specified logical function.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or acts. , or can be implemented using a combination of specialized hardware and computer instructions. It is well known to those skilled in the art that implementation through hardware, implementation through software, and implementation through a combination of software and hardware are all equivalent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

一种音频控制方法、可穿戴设备以及电子设备(400),音频控制方法用于控制可穿戴设备,音频控制方法包括提供声波导结构,声波导结构被配置为能够实现声音聚焦的功能(S101);获取声波导结构的运行状态,在运行状态为声波导结构处于开启状态的情况下,生成第一控制信号(S102,S201,S303,S403,S502);根据第一控制信号减小可穿戴设备的扬声器的声音大小(S103,S202,S304,S404,S503)。

Description

音频控制方法、可穿戴设备以及电子设备
本申请要求于2022年8月10日提交中国专利局、申请号为202210953134.X、申请名称为“音频控制方法、可穿戴设备以及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及可穿戴设备,具体地,涉及一种音频控制方法、可穿戴设备以及电子设备。
背景技术
随着可穿戴设备使用频率的增加,用户会使用可穿戴设备进行通话、听音乐或看视频。但是,可穿戴设备的漏音现象会造成用户的隐私泄露。
如果智能眼镜音量被设置的较小时,对邻座的影响比较小,通过智能眼镜进行语音通话和收听歌曲时,不容易被识别。但是如果在高噪音的环境下,用户则需要将智能眼镜的通话音量调整至最大以便听清音频。但这样,通话或音频的内容也很容易被外界识别,从而导致了智能眼镜的私密性低的技术问题。
发明内容
本申请的一个目的是提供一种音频控制方法、可穿戴设备以及电子设备的新技术方案。
在本申请的一个方面,提供了一种音频控制方法,所述音频控制方法用于控制可穿戴设备,所述控制方法包括:
提供声波导结构,所述声波导结构被配置为能够实现声音聚焦的功能;
获取声波导结构的运行状态,在所述运行状态为所述声波导结构处于开启状态的情况下,生成第一控制信号;
根据所述第一控制信号减小所述可穿戴设备的扬声器的声音大小。
可选地,在所述获取声波导结构的运行状态之前,还包括:
获取环境噪音,在所述环境噪音大于或等于设定阈值的情况下,生成第一提示信号,所述第一提示信号用于提示用户是否开启所述声波导结构。
可选地,在生成所述第一提示信号后间隔设定时间,再获取所述声波导的运行状态。
可选地,所述获取环境噪音包括:
获取环境声音;
获取语音;
计算所述环境声音与所述语音的差值,所述环境噪音为所述差值。
可选地,所述可穿戴设备包括麦克风和骨传导音频感测装置,所述麦克风用于获取环境声音,所述骨传导音频感测装置用于获取语音;
在所述获取环境噪音之前包括:获取所述可穿戴设备的运行模式,在所述运行模式为音乐模式的情况下,生成第二提示信号;
所述第二提示信号用于提示用户是否开启所述麦克风和所述骨传导音频感测装置。
可选地,在获取声波导结构的运行状态前还包括:
获取所述可穿戴设备的运行模式,在所述运行模式为通话模式的情况下,获取所述声波导结构的运行状态,在所述运行状态为所述声波导结构处于开启状态的情况下,生成第二控制信号,
所述第二控制信号用于将所述扬声器的频率调整至设定范围。
可选地,所述设定范围为300Hz-4KHz。
可选地,所述阈值为85分贝。
在本申请的另一个方面,提供了一种可穿戴设备,所述可穿戴设备包括:
声波导结构,所述声波导结构被配置为能够实现声音聚焦的功能;
检测模块,所述检测装置被配置为用于检测所述声波导结构的运行状态,并向外发送;
音频调节模块,所述音频调节装置被配置为用于调节所述扬声器的 声音大小;
处理器,所述处理器被配置为用于获取所述声波导结构的运行状态,在所述声波导结构处于开启的状态下,所述处理器生成第一控制信号,并向外发送;
所述音频调节模块获取所述第一控制信号,并减小所述可穿戴设备的扬声器的声音大小。
在本申请的另一个方面,提供了一种电子设备,所述电子设备包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序,以实现上述的音频控制方法。
在本申请的另一个方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序在被处理器执行时实现上述的音频控制方法。
通过这样的方式,当智能眼镜的音量较大,声波导结构处于开启的状态时,声波导结构能够在出声孔与外界之间形成物理阻隔,从而起到了避免声音外泄的效果。同时,在声波导结构的阻挡下,声音能够朝向用户的方向聚拢,使得用户听到的声音的响度会更大,保证用户的使用体验。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本申请实施例中可穿戴设备的音频控制方法流程示意图之一;
图2是本申请实施例中可穿戴设备的音频控制方法流程示意图之二;
图3是本申请实施例中可穿戴设备的音频控制方法流程示意图之三;
图4是本申请实施例中可穿戴设备的音频控制方法流程示意图之四;
图5是本申请实施例中可穿戴设备的音频控制方法流程示意图之五;
图6是本申请实施例中的电子设备的示意图;
图7是本申请实施例中可穿戴设备的结构图;
图8是本申请实施例中可穿戴设备的音频控制方法的响应频率效果图。
附图标记说明:
400、电子设备;401、处理器;402、存储器;403、挡板。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
<控制方法>
在本申请的一个实施例中,提供一种音频控制方法,所述音频控制方法用于控制可穿戴设备,在该方法中,执行主体为处理器。图1为本申请实施例的可穿戴设备的音频控制方法流程图。
如图1所示,该控制方法包括:
S101、提供声波导结构,所述声波导结构被配置为能够实现声音聚焦的功能;
S102、获取声波导结构的运行状态,在所述运行状态为所述声波导结构处于开启状态的情况下,生成第一控制信号;
S103、根据所述第一控制信号减小所述可穿戴设备的扬声器的声音大小。
例如,可穿戴设备为具有音频功能的智能眼镜等。其中,声波导结构为能够实现声聚焦的功能的结构。如图1所示,可穿戴设备的处理器获取声波导结构的运行状态,当处理器获取的声波导结构的运行状态为开启时,生成第一控制信号,以减小扬声器的声音大小。当处理器获取的声波导结构的运行状态为关闭时,不改变扬声器的声音的大小。
例如,当用户佩戴智能眼镜时,处理器获取声波导结构处于开启的状态,处理器生成第一控制信号。处理器根据第一控制信号,将扬声器的声音减小至设定大小。
例如,在开启声波导结构之前的声音响度为40dB,在处理器检测到声波导结构被开启后,将扬声器声音的响度被降低至30dB。这样,声波导结构本身具有声音的聚焦功能,从而阻止了声音的外泄,同时,扬声器的音量被降低,能够起到更好的防止声音外泄的效果。此外,避免了声波导结构被开启,声音被聚焦后,用户接收到声音的响度更高,从而对用户的听觉造成影响。
通过这样的方式,在声波导结构处于开启的状态下,在声波导结构的阻挡下,由出声孔向四周传播的声音能够朝向用户的方向聚拢。这样,在声音输出频率相同的情况下,用户听到的声音的响度会更大。因此,即使处理器减小了可穿戴设备扬声器的响度,也不会造成用户听觉障碍。这样,在增加可穿戴设备的私密性的同时,保证用户的使用体验。
在本申请的一个实施例中,上述控制方法在获取声波导结构的运行状态之前,还包括:
S200、获取环境噪音,在所述环境噪音大于或等于设定阈值的情况下,生成第一提示信号,所述第一提示信号用于提示用户是否开启所述声波导结构。
如图2所示,处理器获取环境噪音,在获取的环境噪音大于或等于设定阈值的情况下,处理器判定当前为高噪声环境。高噪环境是指,当环境噪音大于或等于设定阈值时所处的噪音环境。在获取的环境噪音大于或等于设定阈值的情况下,处理器发出第一提示信号。当处理器收到第一提示信号的反馈为“是”的情况时,进行步骤S201,处理器获取声波导结构的运行状态,当处理器获取的声波导结构的运行状态为开启时,生成第一控制信号。而后进行步骤S202,扬声器的声音被减小。当处理器收到第一提示信号的反馈为“否”的情况时,结束该音频控制。
例如,在处理器获取声波导结构的运行状态之前,处理器获取环境噪音,当环境噪音落入设定阈值或阈值范围,或与设定阈值相同时,处理器向用户发出第一提示信号。第一提示信号可以为语音信号或振动信号,以能对用户形成提示为准。处理器获取“是”的反馈后,处理器获取声波导结构的运行状态,处理器获取到声波导结构处于开启的状态时,处理器 将扬声器的声音减小。
处理器能够识别环境噪音,从而判定当前用户所处的噪音环境,当环境噪音符合设定的阈值时,处理器判断高噪环境。并主动提示用户以使用户选择是否开启声波导结构。通过在高噪环境下,主动提示用户开启声波导结构,以实现声音的聚焦功能,并同时降低在高噪环境下扬声器音量的大小。从而,能够保证用户在高噪环境下,能够清楚的接收来自扬声器的声音,同时,还能够防止用户隐私被泄露。
在本申请的一个实施例中,在生成所述第一提示信号后间隔设定时间,再获取所述声波导的运行状态。
如图3所示,处理器被设定为在生成第一提示信号后的设定间隔时间后,处理器再获取声波导的运行状态。例如,在生成第一提示信号后的2秒后,处理器开始获取声波导的运行状态。
在本申请的一个实施例中,所述获取环境噪音包括:
获取环境声音;
获取语音;
计算所述环境声音与所述语音的差值,所述环境噪音为所述差值。
例如,处理器获取环境声音以及语音,处理器计算环境声音的响度与语音的响度之间的差值,得出环境噪音。将该环境噪音与设定好的阈值进行比对。
这样,能够准确地获取环境噪音,从而判定高噪音环境。
在一个例子中,该设定的阈值为85dB。
例如,当环境声音的响度为100dB,语音的响度为10dB。环境噪音为90dB。环境噪音大于设定的阈值85dB,处理器判定当前为高噪环境。如图2及图3所示,当环境噪音大于或等于85dB时,当前所处环境为高噪环境。在被识别为高噪环境后,处理器获取声波导结构被开启,处理器将扬声器的声音减小至设定大小。或是,也可以在被识别为高噪环境后,处理器生成第一提示信号,当收到用户的“是”的反馈后,处理器获取声波导结构的运行状态,处理器获取声波导结构被开启,处理器将扬声器的声音减小至设定大小。
这样,在声波导结构的基础上,结合环境噪音的判定功能,从而使得能够根据噪音环境,对用户进行提示,以提醒用户开启声波导结构,并根据声波导是否被开启的状态,对音频的响度进行自动调节,以避免声波导结构在开启后,声音变大,对用户的听觉感受造成影响。
在本申请的一个例子中,所述可穿戴设备包括麦克风和骨传导音频感测装置,所述麦克风用于获取环境声音,所述骨传导音频感测装置用于获取语音;
在所述获取环境噪音之前还包括:
获取所述可穿戴设备的运行模式,在所述运行模式为音乐模式的情况下,生成第二提示信号;
所述第二提示信号用于提示用户是否开启所述麦克风和所述骨传导音频感测装置。
如图4所示,处理器获取可穿戴设备的运行模式。可穿戴设备具有通话模式和音乐模式。音乐模式中包括音乐播放模式和视频播放模式。当处理器获取运行模式为音乐模式时,生成第二提示信号,并向外发送,以提示用户开启麦克风和骨传导音频感测装置,从而获取环境噪音。
例如,在处理器获取智能眼镜处于音乐模式的情况下,处理器发出第二提示信号。在处理器收到第二提示信号的反馈为“是”的情况下,进行步骤401,获取环境噪音,当环境噪音大于或等于设定阈值时,处理器生成第一提示信号。在处理器生成第一提示信号后,进行步骤402,在生成第一提示信号后的设定时间获取声波导结构的运行状态。当声波导结构处于开启的状态时,生成第一控制信号,并根据第一控制信号,降低扬声器声音的大小。
通过这样的方式,能够对用户的使用状态进行判定,从而根据用户的需要提示是否开启声波导结构。
在一个实施例中,如图5所示,在获取声波导结构的运行状态前还包括:获取所述可穿戴设备的运行模式,在所述运行模式为通话模式的情况下,获取所述声波导结构的运行状态,在所述运行状态为所述声波导结构处于开启状态的情况下,生成第二控制信号,所述第二控制信号用于将 所述扬声器的频率调整至设定范围。
例如,如图5所示,处理器获取可穿戴设备的运行模式。当可穿戴设备处于通话模式时,处理器获取声波导结构是否处于开启的状态,当声波导结构处于开启的状态下时,处理器生成第二控制信号,并向外发送,以将扬声器的频率调整至设定的范围。
例如,当使用智能眼镜接听或拨打电话时,当处理器识别智能眼镜处于通话模式下,处理器获取声波导结构的运行状态,在声波导结构处于开启的状态的情况下,处理器减小扬声器的声音大小。同时,处理器生成第二控制信号,将扬声器的频率调整至设定的范围。
在这里,不对生成第一控制信号和第二控制信号的先后顺序进行限定,与不对处理器调整扬声器的频率和扬声器声音大小的先后顺序进行限定,本领域技术人员可以根据需要自行选择。
这样,在用户处于通话模式时,在对声波导结构从而能够进一步地保护用户通话的私密性。
例如,所述设定范围为300Hz-4KHz。
例如,在正常的情况下,扬声器的频率为低于8kHz的频段。当处理器获取声波导结构处于开启的状态下,将低于8kHz的频段集中至300Hz-4KHz。
这样,能够使得通话音频更加清晰。
在一个例子中,在将扬声器的频率调整至300Hz-4KHz的同时,调低音量至设定的强度。
这样,能够进一步地增加用户的私密性,防止扬声器漏音的情况发生。
如图8所示,图8为本申请实施例中可穿戴设备的音频控制方法的响应频率效果图。图8中的横坐标为骨传导音频感测装置感测的语音信号的频率,纵坐标为在该语音信号频率下,用户能够感受到的声音的响度。L2为声波导结构开启后,响应频率的曲线。L1为声波导结构关闭后,响应频率的曲线。在相同的语音信号的频率下,在声波导结构开启时用户感受到的声音的响度明显高于在声波导结构关闭时用户感受到的声音的响 度。
因此,通过本申请中的音频控制方法,用户感受到的声音的响度更高,因此,在降低扬声器声音的响度时,也不会影响用户感受到的声音的响度。这样,在保证用户能够接收良好的语音信号的前提下,能够保证用户的私密性。
<可穿戴设备>
在本申请的一个实施例中,提供一种可穿戴设备,可穿戴设备包括声波导结构,所述声波导结构被配置为能够实现声音聚焦的功能;
检测模块,所述检测装置被配置为用于检测所述声波导结构的运行状态,并向外发送;
音频调节模块,所述音频调节装置被配置为用于调节所述扬声器的声音大小;
处理器,所述处理器被配置为用于获取所述声波导结构的运行状态,在所述声波导结构处于开启的状态下,所述处理器生成第一控制信号,并向外发送;
所述音频调节模块获取所述第一控制信号,并减小所述可穿戴设备的扬声器的声音大小。
如图7所示,智能眼镜具有外壳,在外壳上设置有出声孔,在外壳中,与出声孔相对的位置设置有音频组件,音频组件具有扬声器。扬声器发出的声音能够通过出声孔向外传播并被用户接收。声波导结构位于外壳上,并位于出声孔远离用户的一侧。
例如,声波导结构为可以移动的挡板403,挡板403可以为直板或挡板403可以具有弧度。在声波导结构被开启的情况下,挡板403由壳体内伸出,以防止出声孔的声波向外扩散,改变出声孔的声波的传播方向;在声波导结构被关闭的情况下,挡板403伸入壳体并收纳于壳体中。
例如,检测模块为霍尔传感器,在声波导结构的挡板403上设置有与霍尔传感器相配合的磁性元件。霍尔传感器处在运行的状态,当带有磁性元件的挡板403伸出壳体时,磁性元件靠近霍尔传感器,并与霍尔传感器形成感应。根据霍尔传感器是否与磁性元件形成感应的状态判断,从而 判断声波导结构的运行状态。处理器检测出声波导结构被开启后,处理器生成第一控制信号。音频调节模块能够获取第一控制信号,音频调节模块将扬声器的音量调低。音频调节模块为能够调节扬声器声音大小的模块,本领域技术人员可以自行选择。
通过这样的方式,在声波导结构处于开启的状态下,声波导结构能够在出声孔与外界之间形成物理阻隔,从而起到了避免声音外泄的效果。同时,在声波导结构的阻挡下,由出声孔向四周传播的声音能够朝向用户的方向聚拢。这样,在声音输出频率相同的情况下,用户听到的声音的响度会更大。这样,在增加可穿戴设备的私密性的同时,保证用户的使用体验。
在本申请的一个实施例中,可穿戴设备还包括提示模块。该提示模块用于接收第一提示信号,并做出相应的提示,以提醒用户选择是否开启声波导结构。当用户选择开启后,处理器获取“是”的反馈后,处理器获取声波导结构被开启,处理器将扬声器的声音减小至设定大小。
在一个例子中,所述可穿戴设备包括麦克风和骨传导音频感测装置,所述麦克风用于获取环境声音,所述骨传导音频感测装置用于获取语音。
麦克风用于收集环境声音。骨传导音频感测装置用户获取下行的语音信号,下行语音信号为骨传导音频感测装置接收到的语音信号,该语音信号与环境声音不同。
在一个例子中,提示模块还能够接收第二提示信号。当处理器识别可穿戴设备处于音乐模式时,处理器生成第二提示信号。处理器获取麦克风和骨传导音频感测装置的工作模式判定可穿戴设备的工作模式。当麦克风处于开启状态,且骨传导音频感测装置也处于开启状态时。可穿戴设备为通话模式;当麦克风处于关闭状态,骨传导音频感测装置处于开启状态时,可穿戴设备为音乐模式。第二提示信号用于提示用户是否开启麦克风和骨传导音频感测装置,以获取环境噪音。
<电子设备>
在本申请另一个实施例中,还提供了一种电子设备400。如图6所示,该电子设备包括:存储器402,用于存储可执行的计算机指令;
处理器401,用于根据可执行的计算机指令的控制,执行上述的检测方法。
<计算机可读存储介质>
根据本申请的另一个实施例,提供了一种计算机可读存储介质,其上存储有计算机指令,计算机指令被处理器运行时执行以上第一方面的检测方法。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(步骤RAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本申请操作的计算机程序指令可以是汇编指令、指令集架构(I步骤A)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,编程语言包括面向对象的编程语言—诸如步骤malltalk、C++等, 以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本申请的各个方面。
这里参照根据本申请实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本申请的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流 程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。对于本领域技术人员来说公知的是,通过硬件方式实现、通过软件方式实现以及通过软件和硬件结合的方式实现都是等价的。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。本申请的范围由所附权利要求来限定。

Claims (11)

  1. 一种音频控制方法,其特征在于,所述音频控制方法用于控制可穿戴设备,所述音频控制方法包括:
    提供声波导结构,所述声波导结构被配置为能够实现声音聚焦的功能;
    获取声波导结构的运行状态,在所述运行状态为所述声波导结构处于开启状态的情况下,生成第一控制信号;
    根据所述第一控制信号减小所述可穿戴设备的扬声器的声音大小。
  2. 根据权利要求1所述的音频控制方法,其特征在于,在所述获取声波导结构的运行状态之前,还包括:
    获取环境噪音,在所述环境噪音大于或等于设定阈值的情况下,生成第一提示信号,所述第一提示信号用于提示用户是否开启所述声波导结构。
  3. 根据权利要求2所述的音频控制方法,其特征在于,在生成所述第一提示信号后间隔设定时间,再获取所述声波导的运行状态。
  4. 根据权利要求2所述的音频控制方法,其特征在于,所述获取环境噪音包括:
    获取环境声音;
    获取语音;
    计算所述环境声音与所述语音的差值,所述环境噪音为所述差值。
  5. 根据权利要求4所述的音频控制方法,其特征在于,所述可穿戴设备包括麦克风和骨传导音频感测装置,所述麦克风用于获取环境声音,所述骨传导音频感测装置用于获取语音;
    在所述获取环境噪音之前还包括:
    获取所述可穿戴设备的运行模式,在所述运行模式为音乐模式的情况下,生成第二提示信号;
    所述第二提示信号用于提示用户是否开启所述麦克风和所述骨传导音频感测装置。
  6. 根据权利要求1所述的音频控制方法,其特征在于,在获取声波 导结构的运行状态前还包括:获取所述可穿戴设备的运行模式,在所述运行模式为通话模式的情况下,获取所述声波导结构的运行状态,在所述运行状态为所述声波导结构处于开启状态的情况下,生成第二控制信号,
    所述第二控制信号用于将所述扬声器的频率调整至设定范围。
  7. 根据权利要求6所述的音频控制方法,其特征在于,所述设定范围为300Hz-4KHz。
  8. 根据权利要求2所述的音频控制方法,其特征在于,所述阈值为85分贝。
  9. 一种可穿戴设备,其特征在于,包括:
    声波导结构,所述声波导结构被配置为能够实现声音聚焦的功能;
    检测模块,所述检测装置被配置为用于检测所述声波导结构的运行状态,并向外发送;
    音频调节模块,所述音频调节装置被配置为用于调节扬声器的声音大小;
    处理器,所述处理器被配置为用于获取所述声波导结构的运行状态,在所述声波导结构处于开启的状态下,所述处理器生成第一控制信号,并向外发送;
    所述音频调节模块获取所述第一控制信号,并减小所述可穿戴设备的扬声器的声音大小。
  10. 一种电子设备,其特征在于,包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现根据权利要求1-8任意一项所述的音频控制方法。
  11. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序在被处理器执行时实现根据权利要求1-8任意一项所述的音频控制方法。
PCT/CN2023/105729 2022-08-10 2023-07-04 音频控制方法、可穿戴设备以及电子设备 WO2024032281A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210953134.X 2022-08-10
CN202210953134.XA CN115038009B (zh) 2022-08-10 2022-08-10 音频控制方法、可穿戴设备以及电子设备

Publications (1)

Publication Number Publication Date
WO2024032281A1 true WO2024032281A1 (zh) 2024-02-15

Family

ID=83130722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105729 WO2024032281A1 (zh) 2022-08-10 2023-07-04 音频控制方法、可穿戴设备以及电子设备

Country Status (2)

Country Link
CN (1) CN115038009B (zh)
WO (1) WO2024032281A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038009B (zh) * 2022-08-10 2022-12-09 歌尔股份有限公司 音频控制方法、可穿戴设备以及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106791122A (zh) * 2016-12-27 2017-05-31 广东小天才科技有限公司 一种可穿戴设备的通话控制方法及可穿戴设备
CN106792354A (zh) * 2016-12-27 2017-05-31 广东小天才科技有限公司 一种可穿戴设备的播放模式控制方法及可穿戴设备
US20170289998A1 (en) * 2016-03-30 2017-10-05 Chiun Mai Communication Systems, Inc. Interactive communication system, method and wearable device therefor
US20180035186A1 (en) * 2016-07-27 2018-02-01 Bose Corporation Audio Device
CN110350935A (zh) * 2019-05-27 2019-10-18 努比亚技术有限公司 音频信号输出控制方法、可穿戴设备及可读存储介质
CN111052762A (zh) * 2017-08-31 2020-04-21 伯斯有限公司 具有外放和私密操作模式的可穿戴个人声学设备
CN115038009A (zh) * 2022-08-10 2022-09-09 歌尔股份有限公司 音频控制方法、可穿戴设备以及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478198B1 (ko) * 2002-09-25 2005-03-23 엠엠기어 주식회사 헬멧형 스피커장치을 이용한 의자용 스피커 시스템
US20100215198A1 (en) * 2009-02-23 2010-08-26 Ngia Lester S H Headset assembly with ambient sound control
US10872595B2 (en) * 2018-01-24 2020-12-22 Bose Corporation Flexible acoustic waveguide device
US10531186B1 (en) * 2018-07-11 2020-01-07 Bose Corporation Acoustic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170289998A1 (en) * 2016-03-30 2017-10-05 Chiun Mai Communication Systems, Inc. Interactive communication system, method and wearable device therefor
US20180035186A1 (en) * 2016-07-27 2018-02-01 Bose Corporation Audio Device
CN106791122A (zh) * 2016-12-27 2017-05-31 广东小天才科技有限公司 一种可穿戴设备的通话控制方法及可穿戴设备
CN106792354A (zh) * 2016-12-27 2017-05-31 广东小天才科技有限公司 一种可穿戴设备的播放模式控制方法及可穿戴设备
CN111052762A (zh) * 2017-08-31 2020-04-21 伯斯有限公司 具有外放和私密操作模式的可穿戴个人声学设备
CN110350935A (zh) * 2019-05-27 2019-10-18 努比亚技术有限公司 音频信号输出控制方法、可穿戴设备及可读存储介质
CN115038009A (zh) * 2022-08-10 2022-09-09 歌尔股份有限公司 音频控制方法、可穿戴设备以及电子设备

Also Published As

Publication number Publication date
CN115038009A (zh) 2022-09-09
CN115038009B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
JP6489563B2 (ja) 音量調節方法、システム、デバイス及びプログラム
CN105185383B (zh) 用于存在可理解语音时部分保留音乐的方法
US9779716B2 (en) Occlusion reduction and active noise reduction based on seal quality
CN103262155B (zh) 环境噪声消除的自动极性适应
US9271064B2 (en) Method and system for contact sensing using coherence analysis
EP3471099B1 (en) Speech processing method and terminal
WO2021184920A1 (zh) 一种声音的掩蔽方法、装置及终端设备
JP2004226656A (ja) マイクロホンアレイを用いた話者距離検出装置及び方法並びに当該装置を用いた音声入出力装置
KR20140019023A (ko) 전자 디바이스 상에서의 마스킹 신호 생성
US10121491B2 (en) Intelligent volume control interface
WO2017117290A1 (en) Audio monitoring and adaptation using headset microphones inside user&#39;s ear canal
WO2017032012A1 (zh) 一种音量调节方法及用户终端
WO2024032281A1 (zh) 音频控制方法、可穿戴设备以及电子设备
US11741985B2 (en) Method and device for spectral expansion for an audio signal
CN113099336A (zh) 调整耳机音频参数的方法及装置、耳机、存储介质
CN110603804A (zh) 干扰生成
JPH04278796A (ja) 外部環境適応型音量調整方法
CN112771888B (zh) 基于环境声音和语音的音量调节
CN105472128A (zh) 一种通话控制方法及装置
CN115278441A (zh) 语音检测方法、装置、耳机及存储介质
CN115065921A (zh) 一种防止助听器啸叫的方法及装置
WO2017156880A1 (zh) 一种终端音频参数管理方法、装置及系统
CN111615036B (zh) 一种数据处理方法、装置及电子设备
CN113495713B (zh) 调整耳机音频参数的方法及装置、耳机、存储介质
US20240089671A1 (en) Hearing aid comprising a voice control interface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851507

Country of ref document: EP

Kind code of ref document: A1