WO2024032248A1 - 一种测量、调度方法及装置 - Google Patents
一种测量、调度方法及装置 Download PDFInfo
- Publication number
- WO2024032248A1 WO2024032248A1 PCT/CN2023/104766 CN2023104766W WO2024032248A1 WO 2024032248 A1 WO2024032248 A1 WO 2024032248A1 CN 2023104766 W CN2023104766 W CN 2023104766W WO 2024032248 A1 WO2024032248 A1 WO 2024032248A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time domain
- rmtc
- measurement
- symbol group
- downlink signal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 186
- 238000000691 measurement method Methods 0.000 title claims abstract description 6
- 238000005259 measurement Methods 0.000 claims abstract description 559
- 230000005540 biological transmission Effects 0.000 claims abstract description 68
- 238000012545 processing Methods 0.000 claims abstract description 54
- 238000004891 communication Methods 0.000 claims description 146
- 238000004590 computer program Methods 0.000 claims description 20
- 239000002699 waste material Substances 0.000 abstract description 18
- 230000006870 function Effects 0.000 description 50
- 238000013461 design Methods 0.000 description 38
- 238000010586 diagram Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 17
- 230000000875 corresponding effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000000969 carrier Substances 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
Definitions
- the embodiments of the present application relate to the field of communications, and in particular, to a measurement and scheduling method and device.
- RSSI received signal strength indicator
- CO channel occupancy
- the terminal device can perform RSSI/CO measurement and downlink reception at the same time.
- BWP activated bandwidth part
- This application provides a measurement and scheduling method and device, which can reduce the impact of beam switching on measurement results, thereby reducing measurement errors.
- a measurement method is provided.
- the method can be executed by a first terminal device, or can be executed by a component of the first terminal device, such as a processor, a chip, or a chip system of the first terminal device. It can also be It is implemented by a logic module or software that can realize all or part of the functions of the first terminal device.
- the method includes: determining a first time domain symbol group, and determining measurement results of RSSI measurement and/or channel occupancy CO measurement within the first time domain symbol group.
- the first time domain symbol group includes time domain symbols in the RMTC window except the second time domain symbol group.
- the second time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols within the RMTC window, where N and M are positive integers.
- the terminal equipment when determining the measurement results of RSSI measurement and/or CO measurement, the terminal equipment excludes the first N time domain symbols and/or the last M time domain symbols within the RMTC window.
- the impact of beam switching on the measurement can be reduced. effect on the results, thereby reducing measurement errors.
- the second time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols within the RMTC window.
- the first subcarrier interval is the subcarrier interval of the activated bandwidth part BWP of the first carrier, and the first carrier is the carrier where the measurement bandwidth of RSSI measurement or CO measurement is located; or, the first subcarrier interval is the carrier of RSSI measurement or CO measurement. subcarrier spacing.
- the length of the time domain symbol is small. At this time, the duration occupied by the beam switching within the time domain symbol cannot be ignored. Exclude time domain symbols within the RMTC window where beam switching may occur, so that the first N and/or last M time domain symbols do not participate in the calculation of the measurement results, thus reducing the impact of beam switching on the measurement results, thereby reducing measurement errors. .
- the second time domain symbol group includes the first N time domain symbols in the RMTC window; the first downlink signal is RMTC The downlink signal on the first time domain symbol before the window, or the first downlink signal is the downlink signal closest to the RMTC window before the RMTC window; RSSI measurement resources are used for RSSI measurement or CO measurement.
- the second time domain symbol group includes the last M time domain symbols within the RMTC window; the second downlink signal is the first time domain symbol after the RMTC window.
- the upper downlink signal, or the second downlink signal is the downlink signal closest to the RMTC window after the RMTC window.
- the first terminal device when the RSSI measurement resource and the first downlink signal are not QCL, after receiving the first downlink signal, the first terminal device needs to perform beam switching to perform RSSI/CO measurement. At this time, if the beam switching is performed in the first N time domain symbols within the RMTC window, it will affect the measurement results within the first N time domain symbols, so that the first time domain symbol group can exclude those in the RMTC window. The first N time domain symbols are used to reduce the impact of beam switching on the measurement results, thereby reducing the measurement error.
- the first terminal equipment needs to perform beam switching to receive the second downlink signal.
- the beam switching is performed in the last M time domain symbols within the RMTC window, it will affect the measurement results within the last M time domain symbols, so that the first time domain symbol group can exclude those in the RMTC window.
- the last M time domain symbols of Reduce the impact of beam switching on measurement results, thereby reducing measurement errors.
- the method further includes: sending capability information to the network device.
- the capability information indicates whether the first terminal device supports simultaneous RSSI/CO measurement and downlink reception when the RSSI measurement resource and downlink signal are QCL.
- a scheduling method is provided.
- the method can be executed by a network device, or by a component of the network device, such as a processor, a chip, or a chip system of the network device. It can also be executed by a device that can implement all or part of the Logic module or software implementation of network device functions.
- the method includes: determining an RMTC configuration of the first terminal device, the RMTC configuration being used for RSSI measurement and/or channel occupancy CO measurement.
- the transmission resources that can be used for downlink signals of the first terminal device are determined according to the scheduling rules, and the scheduling rules include: not allowing the network device to send downlink signals to the first terminal device within the second time domain symbol group on the first carrier.
- the first carrier is the carrier where the measurement bandwidth of RSSI measurement and/or CO measurement is located;
- the second time domain symbol group includes the first N time domain symbols and/or the last M time domain within the RMTC window of the first terminal device. Symbols, N and M are positive integers.
- the first terminal device may perform beam switching within the second time domain symbol group
- the network device may Downlink reception cannot be performed, resulting in transmission failure and waste of resources.
- the network device is not allowed to send a downlink signal to the first terminal device within the second time domain symbol group on the first carrier. Therefore, the network device may not send a downlink signal to the first terminal device within the second time domain symbol group on the first carrier.
- a terminal device sends downlink signals, thereby reducing resource waste.
- the second time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols of the RMTC window.
- the first subcarrier spacing is the subcarrier spacing of the activated bandwidth part BWP of the first carrier, or the first subcarrier spacing is the subcarrier spacing of RSSI measurement or CO measurement.
- the second time domain symbol group includes the first N time domain symbols of the RMTC window; the first downlink signal is the RMTC window The downlink signal on the first time domain symbol before the RMTC window, or the first downlink signal is the downlink signal closest to the RMTC window before the RMTC window; RSSI measurement resources are used for RSSI measurement or CO measurement.
- the second time domain symbol group includes the last M time domain symbols of the RMTC window; the second downlink signal is the first time domain symbol after the RMTC window.
- the downlink signal, or the second downlink signal is the downlink signal closest to the RMTC window after the RMTC window.
- the scheduling rule further includes: not allowing the network device to send a downlink signal that is not QCL with the RSSI measurement resource to the first terminal device within the first time domain symbol group on the first carrier.
- the first time domain symbol group includes time domain symbols in the RMTC window except the second time domain symbol group.
- the scheduling rule further includes: allowing the network device to send a downlink signal that is QCL with the RSSI measurement resource to the first terminal device within the first time domain symbol group on the first carrier.
- the first time domain symbol group includes time domain symbols in the RMTC window except the second time domain symbol group.
- the network device can send a downlink signal whose RSSI measurement resource is QCL to the first terminal device in the first time domain symbol group on the first carrier.
- the first terminal device can use the same beam to perform RSSI/CO measurement and downlink reception. That is, the first terminal device can perform downlink reception while performing RSSI/CO measurement, so that the resources be fully utilized, thereby improving resource utilization and network throughput.
- the scheduling rule further includes: not allowing the network device to send downlink signals to the first terminal device within the third time domain symbol group on the second carrier.
- the second carrier and the first carrier are located in the same frequency band; the time domain symbols in the third time domain symbol group partially or completely overlap with the time domain symbols in the second time domain symbol group.
- the network device is not allowed to send downlink signals to the first terminal device within the third time domain symbol group on the second carrier. Therefore, the network device may not send downlink signals to the first terminal device in the third time domain symbol group on the second carrier.
- the downlink signal is sent internally to the first terminal device, thereby reducing resource waste.
- the scheduling rule further includes: not allowing the network device to send a downlink signal with an RSSI measurement resource other than QCL to the first terminal device in the fourth time domain symbol group on the second carrier.
- the time domain position of the fourth time domain symbol group includes the time domain position in the time domain position of the RMTC window except the time domain position of the third time domain symbol group.
- the scheduling rule further includes: allowing the network device to send a downlink signal whose RSSI measurement resource is QCL to the first terminal device in the fourth time domain symbol group on the second carrier.
- the time domain position of the fourth time domain symbol group includes the time domain position in the time domain position of the RMTC window except the time domain position of the third time domain symbol group.
- the network device can send a downlink signal whose RSSI measurement resource is QCL to the first terminal device in the fourth time domain symbol group on the second carrier.
- the first terminal device can use the same beam to perform RSSI/CO measurement and downlink reception, that is, the first terminal device can perform downlink reception while performing RSSI/CO measurement. Make full use of resources, thereby improving resource utilization and network throughput.
- the method further includes: receiving capability information from the first terminal device.
- the capability information indicates whether the first terminal device supports simultaneous RSSI/CO measurement and downlink reception when the RSSI measurement resource and downlink signal are QCL.
- a scheduling method is provided.
- the method can be executed by a network device, or by a component of the network device, such as a processor, a chip, or a chip system of the network device. It can also be executed by a device that can implement all or part of the Logic module or software implementation of network device functions.
- the method includes: determining an RMTC configuration of the first terminal device, the RMTC configuration being used for RSSI measurement and/or channel occupancy CO measurement.
- the transmission resources that can be used for the downlink signal of the first terminal device are determined according to the scheduling rules.
- the scheduling rules include: not allowing the network device to transmit to the first terminal device within the first time domain symbol group on the first carrier the RSSI measurement resource is not QCL. downward signal.
- the first time domain symbol group includes time domain symbols in the RMTC window except the second time domain symbol group.
- the second time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols within the RMTC window of the first terminal device, where N and M are positive integers.
- the network device can send a downlink signal whose RSSI measurement resource is QCL to the first terminal device within the first time domain symbol group on the first carrier.
- the first terminal device can use the same beam to perform RSSI/CO measurement and downlink reception. That is, the first terminal device can perform downlink reception while performing RSSI/CO measurement, so that the resources be fully utilized, thereby improving resource utilization and network throughput.
- a scheduling method is provided.
- the method can be executed by a network device, or by a component of the network device, such as a processor, a chip, or a chip system of the network device. It can also be executed by a device that can implement all or part of the scheduling method.
- the method includes: determining an RMTC configuration of the first terminal device, the RMTC configuration being used for RSSI measurement and/or channel occupancy CO measurement.
- the transmission resources that can be used for downlink signals of the first terminal device are determined according to the scheduling rules, and the scheduling rules include: not allowing the network device to send downlink signals to the first terminal device within the fifth time domain symbol group on the first carrier.
- the first carrier is the carrier where the measurement bandwidth of RSSI measurement and/or CO measurement is located;
- the fifth time domain symbol group includes X time domain symbols before the RMTC window of the first terminal device and/or Y time domain symbols after the RMTC window.
- Time domain symbols, X and Y are positive integers.
- the first terminal device When beam switching is performed in the X time domain symbols before the RMTC window, the first terminal device may not be able to perform downlink reception within the X time domain symbols. At this time, if the network device still sends downlink signals to the first terminal device within the X time domain symbols on the first carrier, transmission failure will occur because the first terminal device cannot perform downlink reception, resulting in a waste of resources. Based on this solution, the network device is not allowed to send downlink signals to the first terminal device within the X time domain symbols on the first carrier, thereby reducing the resources caused by the network device sending downlink signals but the first terminal device being unable to receive them. waste.
- the network device is not allowed to send downlink signals to the first terminal device within the Y time domain symbols on the first carrier. , thereby reducing the waste of resources caused by the network device sending a downlink signal but the first terminal device being unable to receive it.
- the fifth time domain symbol group includes X time domain symbols before the RMTC window and/or Y time domain symbols after the RMTC window.
- the first subcarrier spacing is the subcarrier spacing of the activated bandwidth part BWP of the first carrier, or the first subcarrier spacing is the subcarrier spacing of RSSI measurement or CO measurement.
- the fifth time domain symbol group includes X time domain symbols before the RMTC window; the third downlink signal is the The downlink signal on the domain symbols, or the third downlink signal is the downlink signal closest to X time domain symbols before X time domain symbols; RSSI measurement resources are used for RSSI measurement or CO measurement.
- the fifth time domain symbol group includes Y time domain symbols after the RMTC window; the fourth downlink signal is the downlink signal on Y time domain symbols, or, the fourth downlink The signal is the downlink signal closest to the Y time domain symbols after the Y time domain symbols.
- the scheduling rule further includes: not allowing the network device to send a downlink signal with an RSSI measurement resource other than QCL to the first terminal device within the RMTC window on the first carrier.
- the scheduling rule further includes: allowing the network device to send a downlink signal whose RSSI measurement resource is QCL to the first terminal device within the RMTC window on the first carrier.
- the network device can send a downlink signal with the QCL as the RSSI measurement resource to the first terminal device within the RMTC window on the first carrier.
- the first terminal device can use the same beam to perform RSSI/CO measurement and downlink reception. That is, the first terminal device can perform downlink reception while performing RSSI/CO measurement, so that the resources be fully utilized, thereby improving resource utilization and network throughput.
- the scheduling rule further includes: not allowing the network device to send downlink signals to the first terminal device within the sixth time domain symbol group on the second carrier.
- the second carrier and the first carrier are located in the same frequency band; the time domain symbols in the sixth time domain symbol group partially or completely overlap with the time domain symbols in the fifth time domain symbol group.
- the scheduling rule further includes: not allowing the network device to send a downlink signal with an RSSI measurement resource other than QCL to the first terminal device in the seventh time domain symbol group on the second carrier.
- the time domain position of the seventh time domain symbol group includes the time domain position in the time domain position of the RMTC window except the time domain position of the sixth time domain symbol group.
- the scheduling rule further includes: allowing the network device to send a downlink signal whose RSSI measurement resource is QCL to the first terminal device in the seventh time domain symbol group on the second carrier.
- the time domain position of the seventh time domain symbol group includes the time domain position in the time domain position of the RMTC window except the time domain position of the sixth time domain symbol group.
- the method further includes: receiving capability information from the first terminal device.
- the capability information indicates whether the first terminal device supports simultaneous RSSI/CO measurement and downlink reception when the RSSI measurement resource and downlink signal are QCL.
- a scheduling method is provided.
- the method can be executed by a network device, or by a component of the network device, such as a processor, a chip, or a chip system of the network device. It can also be executed by a device that can implement all or part of the scheduling method.
- Logic module or software implementation of network device functions.
- the method includes: determining an RMTC configuration of the first terminal device, the RMTC configuration being used for RSSI measurement and/or channel occupancy CO measurement.
- the transmission resources that can be used for the downlink signal of the first terminal device are determined according to the scheduling rules.
- the scheduling rules include: the network device is not allowed to send downlink signals with RSSI measurement resources that are not QCL to the first terminal device within the RMTC window on the first carrier.
- the first carrier is the carrier in which the measurement bandwidth of RSSI measurement and/or CO measurement is located.
- the network device can send a downlink signal whose RSSI measurement resource is QCL to the first terminal device within the RMTC window on the first carrier.
- the first terminal device can use the same beam to perform RSSI/CO measurement and downlink reception. That is, the first terminal device can perform downlink reception while performing RSSI/CO measurement, so that the resources be fully utilized, thereby improving resource utilization and network throughput.
- the sixth aspect provides a communication method, which can be executed by the first terminal device, or can be executed by components of the first terminal device, such as the processor, chip, or chip system of the first terminal device, or can also be executed by the first terminal device. It is implemented by a logic module or software that can realize all or part of the functions of the first terminal device.
- the method includes: determining capability information; and sending the capability information to a network device. Wherein, when the capability information indicates that the received signal power indicates that the RSSI measurement resource and the downlink signal are quasi-co-located QCL, whether the first terminal device supports simultaneous RSSI/channel occupancy CO measurement and downlink reception.
- the first terminal device reports its capability information to the network device, which helps the network device perform scheduling more accurately based on the capability information and improves scheduling efficiency.
- the method when the capability information indicates that the RSSI measurement resource and the downlink signal are QCL, the first terminal device does not support simultaneous RSSI/CO measurement and downlink reception; the method also includes: the network device configures the first terminal device When performing RSSI/CO measurement on the RSSI measurement resource and receiving downlink signals at the same time, the first terminal device performs RSSI/CO measurement and does not receive downlink signals.
- a communication method is provided.
- the method can be executed by a network device, or by a component of the network device, such as a processor, a chip, or a chip system of the network device. It can also be executed by a device that can implement all or part of the communication method.
- Logic module or software implementation of network device functions.
- the method includes: receiving capability information from a first terminal device, and determining, according to the capability information, transmission resources that can be used for downlink signals of the first terminal device.
- the capability information indicates whether the first terminal device supports simultaneous RSSI/channel occupancy CO measurement and downlink reception when the received signal power indication RSSI measurement resource and the downlink signal are quasi-co-located QCL.
- the technical effects brought by the seventh aspect can be referred to the technical effects brought by the above-mentioned sixth aspect, which will not be described again here.
- the downlink signal can be used for the first terminal equipment.
- the transmission resources do not include the RMTC window on the first carrier.
- a measurement method is provided.
- the method may be executed by the first terminal device, or may be executed by a component of the first terminal device, such as a processor, chip, or chip system of the first terminal device. It may also be executed by It is implemented by a logic module or software that can realize all or part of the functions of the first terminal device.
- the method includes: determining an eighth time domain symbol group, and determining a measurement result of a received signal power indication RSSI measurement and/or a channel occupancy CO measurement within the eighth time domain symbol group.
- the eighth time domain symbol group includes time domain symbols in the RMTC window except the ninth time domain symbol group, and the ninth time domain symbol group includes the RMTC window
- the first N time domain symbols and/or the last M time domain symbols within , N and M are positive integers.
- the eighth time domain symbol group includes all time domain symbols in the RMTC window.
- the terminal device can choose to perform beam switching within the RMTC window or outside the RMTC window based on the length of the RMTC window.
- the length of the RMTC window is long, beam switching is performed within the RMTC window, so that downlink transmission can be performed before and after the RMTC window, improving resource utilization and network throughput.
- the length of the RMTC window is short, beam switching is performed outside the RMTC window, thereby reducing the impact on RSSI/CO measurement and improving the accuracy of the measurement results.
- the length of the RMTC window is the total number of time domain symbols in the RMTC window; or, the length of the RMTC window is the length of time occupied by the RMTC window.
- a scheduling method is provided.
- the method can be executed by a network device, or by a component of the network device, such as a processor, a chip, or a chip system of the network device. It can also be executed by a device that can implement all or part of the scheduling method.
- Logic module or software implementation of network device functions.
- the method includes: determining an RMTC configuration of the first terminal device, the RMTC configuration being used for RSSI measurement and/or channel occupancy CO measurement; and determining transmission resources that can be used for downlink signals of the first terminal device according to scheduling rules.
- the scheduling rule includes: the network device is not allowed to send downlink signals to the first terminal device within the tenth time domain symbol group on the first carrier.
- the tenth time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols within the RMTC window, and N and M are positive integers.
- the tenth time domain symbol group includes X time domain symbols before the RMTC window and/or Y time domain symbols after the RMTC window, and X and Y are positive integers.
- the network device determines the transmission resources that are not allowed to send downlink signals to the first terminal device based on the RMTC window length. In the scenario of beam switching on these transmission resources, the network device does not send signals to the first terminal device on these transmission resources. Downlink signals, thereby reducing resource waste.
- the length of the RMTC window is the total number of time domain symbols in the RMTC window; or, the length of the RMTC window is the length of time occupied by the RMTC window.
- a communication device for implementing various methods.
- the communication device may be the first terminal device in the first aspect, the sixth aspect, or the eighth aspect, or a device included in the first terminal device, such as a chip or a chip system; or the communication device may be the first terminal device in the second aspect to
- the communication device includes modules, units, or means (means) corresponding to the implementation method.
- the modules, units, or means can be implemented by hardware, software, or by hardware executing corresponding software.
- the hardware or software includes one or more modules or units corresponding to functions.
- the communication device may include a processing module. Further, the communication device may also include a transceiver module. This processing module can be used to implement the processing functions in any of the above aspects and any possible implementation manner thereof.
- the transceiver module may include a receiving module and a sending module, respectively used to implement the receiving function and the sending function in any of the above aspects and any possible implementation manner thereof.
- the transceiver module can be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
- a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device performs the method described in any aspect.
- the communication device may be the first terminal device in the first aspect, the sixth aspect, or the eighth aspect, or a device included in the first terminal device, such as a chip or a chip system; or the communication device may be the first terminal device in the second aspect to The network equipment in the fifth aspect, the seventh aspect, or the ninth aspect, or the device included in the network equipment, such as a chip or a chip system.
- a communication device including: a processor and a communication interface; the communication interface is used to communicate with a module outside the communication device; the processor is used to execute a computer program or instructions to enable the communication
- the apparatus performs the method described in any aspect.
- the communication device may be the first terminal device in the first aspect, the sixth aspect, or the eighth aspect, or a device included in the first terminal device, such as a chip or a chip system; or the communication device may be the first terminal device in the second aspect to The network equipment in the fifth aspect, the seventh aspect, or the ninth aspect, or the device included in the network equipment, such as a chip or a chip system.
- a communication device including: at least one processor; the processor is configured to execute a computer program or instructions stored in a memory, so that the communication device executes the method described in any aspect.
- the memory may be coupled to the processor, or may be independent of the processor.
- the communication device may be the first terminal device in the first aspect, the sixth aspect, or the eighth aspect, or a device included in the first terminal device, such as a chip or a chip system; or the communication device may be the first terminal device in the second aspect to The network equipment in the fifth aspect, the seventh aspect, or the ninth aspect, or the device included in the network equipment, such as a chip or a chip system.
- a computer-readable storage medium In a fourteenth aspect, a computer-readable storage medium is provided. Computer programs or instructions are stored in the computer-readable storage medium. When run on a communication device, the communication device can perform the method described in any aspect. .
- a fifteenth aspect provides a computer program product containing instructions that, when run on a communication device, enable the communication device to perform the method described in any aspect.
- a sixteenth aspect provides a communication device (for example, the communication device may be a chip or a chip system).
- the communication device includes a processor for implementing the functions involved in any aspect.
- the communication device includes a memory for storing necessary program instructions and data.
- the device when it is a system-on-a-chip, it may be composed of a chip or may include chips and other discrete components.
- the communication device provided in any one of the tenth to sixteenth aspects is a chip
- the sending action/function of the communication device Ability can be understood as output information
- the receiving action/function of a communication device can be understood as input information.
- Figure 1 is a schematic diagram provided by this application that cannot measure and receive at the same time;
- Figure 2a is a schematic diagram of the length of time domain symbols under different subcarrier intervals provided by this application;
- Figure 2b is a schematic diagram of beam switching within the RMTC window provided by this application.
- FIG. 3 is a schematic structural diagram of a communication system provided by this application.
- Figure 4 is a schematic flow chart of a measurement and scheduling method provided by this application.
- Figure 5 is a schematic diagram of a first time domain symbol group provided by this application.
- Figure 6 is a schematic diagram of a second time domain symbol group provided by this application.
- Figure 7a is a schematic diagram of the relationship between an RMTC window and the first time domain symbol group provided by this application;
- Figure 7b is a schematic diagram of the relationship between an RMTC window and the first time domain symbol group and the second time domain symbol group provided by this application;
- Figure 7c is a schematic diagram of the relationship between another RMTC window and the first time domain symbol group provided by this application;
- Figure 7d is a schematic diagram of the relationship between another RMTC window and the first time domain symbol group provided by this application;
- Figure 8 is a schematic diagram of scheduling restrictions within the same frequency band provided by this application.
- Figure 9 is a schematic flow chart of another measurement and scheduling method provided by this application.
- Figure 10 is a schematic diagram of a fifth time domain symbol group provided by this application.
- FIG 11 is a schematic diagram of another fifth time domain symbol group provided by this application.
- Figure 12a is a schematic diagram of a scenario without beam switching provided by this application.
- Figure 12b is a schematic diagram of another fifth time domain symbol group provided by this application.
- Figure 13 is a schematic diagram of another scheduling restriction within the same frequency band provided by this application.
- Figure 14 is a schematic flow chart of another measurement and scheduling method provided by this application.
- Figure 15 is a schematic structural diagram of a communication device provided by this application.
- Figure 16 is a schematic structural diagram of another communication device provided by the present application.
- Figure 17 is a schematic structural diagram of yet another communication device provided by this application.
- A/B can mean A or B; "and/or” in this application only means It is an association relationship that describes associated objects. It means that there can be three relationships.
- a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. Among them, A and B Can be singular or plural.
- plural means two or more than two.
- At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
- at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
- words such as “first” and “second” are used to distinguish identical or similar items with basically the same functions and effects. Those skilled in the art can understand that words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
- words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
- an embodiment means that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referred to the same embodiment throughout this specification. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It can be understood that in the various embodiments of the present application, the size of the sequence numbers of each process does not mean the order of execution. The execution order of each process should be determined by its functions and internal logic, and should not be determined by the execution order of the embodiments of the present application. The implementation process constitutes no limitation.
- the terminal equipment can use omnidirectional antennas for reception without aiming the beam in a specific direction. Therefore, in the low-frequency unlicensed frequency band, if the RSSI/CO measurement bandwidth is within the active bandwidth part (BWP) of the terminal device's serving cell, the terminal device can perform RSSI/CO measurement and downlink reception at the same time.
- BWP active bandwidth part
- the terminal equipment needs to use beam forming technology to perform downlink reception in a certain beam direction.
- the terminal equipment needs to perform RSSI/CO measurements in a certain beam direction.
- the network device can send an RSSI measurement timing configuration (RMTC) to the terminal device to configure the terminal device to perform RSSI/CO measurements.
- RMTC RSSI measurement timing configuration
- the RMTC configuration may include at least one of the following:
- RMTC period Indicates the period of RSSI/CO measurement.
- RMTC subframe offset (RMTC-SubFameOffset): Indicates the starting time domain position of the RMTC window.
- the RMTC window can be understood as the time domain resource of RSSI/CO measurement.
- Measurement duration symbols Indicates the length of time occupied by the RMTC window.
- RMTC frequency Indicates the center frequency of the measurement bandwidth of RSSI/CO measurement.
- the indication may be an absolute frequency point, such as an absolute radio frequency channel number (ARFCN).
- ARFCN absolute radio frequency channel number
- the carrier where the RSSI/CO measurement is located can be known.
- Reference sub-carrier spacing Indicates the reference sub-carrier spacing (SCS) and cyclic prefix (CP) used for RSSI measurement.
- the RMTC configuration may also include at least one of the following:
- RMTC bandwidth (rmtc-Bandwidth): Indicates the measurement bandwidth of RSSI/CO measurement.
- Transmission configuration indicator (TCI)-state information (tci-StateInfo): Indicates the TCI state (TCI-state) used for RSSI measurement.
- the TCI state indicates a certain downlink (DL) reference signal (reference signal) ,RS).
- the RSSI measurement resource and the downlink reference signal (corresponding reference signal resource) are quasi co-location (QCL) (QCL-ed).
- RSSI measurement resources are used for RSSI/CO measurement.
- the RSSI measurement resource may be a time-frequency resource.
- the QCL-ed in this application is QCL of type D (typeD) (i.e. QCL-ed with typeD).
- typeD type D
- the QCL-ed may also be QCL of other types (such as typeA, typeB, or typeC), and there is no limitation on this.
- Multiple resources being QCL-ed can indicate that multiple resources have one or more identical or similar communication characteristics.
- the same or similar communication configuration can be used.
- the same beam may be used for reception on the multiple resources.
- the TCI status information may be considered to indicate the beam used for RSSI/CO measurement.
- the embodiment of the beam in the protocol can be a spatial domain filter, or a spatial filter, or a spatial domain parameter, a spatial parameter, or a spatial domain setting. ), spatial setting, or QCL information, QCL assumptions, QCL instructions, etc.
- the beam may be indicated by a transmission configuration indication (TCI) state (TCI-state) parameter, or by a spatial relation parameter. Therefore, in this application, the beam can be replaced by a spatial filter, a spatial filter, a spatial parameter, a spatial parameter, a spatial setting, a spatial setting, QCL information, a QCL assumption, a QCL indication, a TCI-state, or a spatial relationship, etc.
- TCI transmission configuration indication
- the beam can be replaced by a spatial filter, a spatial filter, a spatial parameter, a spatial parameter, a spatial setting, a spatial setting, QCL information, a QCL assumption, a QCL indication, a TCI-state, or a spatial relationship, etc.
- the above terms are also equivalent to each
- the terminal device can assume that the RSSI measurement resource is the same as the most recently received physical downlink shared channel (PDSCH) or the most recently monitored physical downlink shared channel (PDSCH) on the active BWP (active BWP) of the current carrier.
- the control resource set (CORESET) is QCL-ed. Among them, if a certain resource and channel are QCL-ed, it can be understood that the time-frequency resource where the resource and channel are located is QCL-ed.
- RSSI/CO measurement mechanism As mentioned above, there are differences in the RSSI/CO measurement mechanism and RMTC configuration in the low-frequency band and the high-frequency band. Therefore, some implementations of RSSI/CO measurement in the low-frequency band may no longer be applicable to the high-frequency band.
- the terminal equipment can perform RSSI/CO measurement and downlink reception at the same time. Therefore, the network equipment can configure the terminal equipment to perform RSSI/CO measurement and downlink reception at the same time. However, in high-frequency bands, terminal equipment may not be able to perform RSSI/CO measurement and downlink reception at the same time.
- the terminal device since the terminal device is The beam can only be aimed in one direction at the same time. Therefore, the terminal device cannot perform RSSI/CO measurement and downlink reception simultaneously within the RMTC window on carrier 1.
- carrier 1 and carrier 2 may be carriers of different cells.
- one of carrier 1 and carrier 2 may be a primary carrier and the other may be a secondary carrier; or, carrier 1 and carrier 2 may both be secondary carriers.
- the terminal equipment performs RSSI/CO measurements on beam 1 on carrier 1, it cannot receive the downlink signal on beam 2 within the time domain symbols on carrier 2 that coincide with the RMTC window.
- the network device still configures the terminal device to perform RSSI/CO measurement and downlink reception at the same time, it may cause downlink reception failure or RSSI/CO measurement failure.
- new larger sub-carrier spacing may be introduced, such as 480 kilohertz (KHz) or 960 KHz.
- KHz 480 kilohertz
- 960 KHz 960 KHz
- the length of the time domain symbol is greatly shortened compared with smaller subcarrier intervals (such as 120KHz), and the CP is also very short. Therefore, the time taken for beam switching of the terminal equipment cannot be ignored.
- RSSI/CO measurement is still performed according to the current solution, the measurement results may have large errors.
- a time domain symbol can be the smallest granularity of a time domain resource.
- the time domain symbols can be orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols or the like.
- the network device configures the terminal device to use beam 1 for RSSI/CO measurement on carrier 1, and the beam used for the downlink signal before the RMTC window is different from beam 1, then before the measurement, The terminal device needs to perform beam switching to switch to beam 1. If the beam switching is performed within the RMTC window, for example, it is performed on the first time domain symbol within the RMTC window as shown in Figure 2b, that is, part of the duration of the first time domain symbol is occupied by the beam switching, then the terminal equipment The power measured on a time domain symbol may be smaller than the actual power on the time domain symbol, resulting in a large error in the final measurement result.
- part of the time in the first time domain symbol is occupied by beam switching, and the terminal equipment cannot measure all the power on the entire time domain symbol (for example, only 70% of the power on the time domain symbol is measured). Therefore, it may The following situation occurs: the actual power on the time domain symbol is greater than the threshold of CO measurement, but because only 70% of the power is measured, it is determined that the power on the time domain symbol is less than the threshold of CO measurement, affecting the measurement results of CO measurement. . In addition, since only 70% of the power on the time domain symbol is measured, the measurement result of the RSSI measurement will also be too small.
- the beam used for downlink signals on the first time domain symbol after the RMTC window is different from beam 1, the beam switching performed by the terminal equipment on the last time domain symbol within the RMTC window will also affect the measurement results. .
- this application provides a measurement and scheduling method that can reduce measurement errors or reduce resource waste caused by downlink reception failure or RSSI/CO measurement failure.
- the technical solution provided by this application can be used in various communication systems.
- the communication system can be a third generation partnership project (3GPP) communication system, for example, the fourth generation (4th generation, 4G) long-term evolution (long term evolution, LTE) system, fifth generation (5th generation, 5G) new radio (NR) system, vehicle to everything (V2X) system, LTE and NR hybrid networking system, or device-to-device (device-to-device, D2D) system, machine to machine (machine to machine, M2M) communication system, Internet of Things (IoT), and other next-generation communication systems, etc.
- 3GPP third generation partnership project
- 4G fourth generation, 4G) long-term evolution (long term evolution, LTE) system
- 5th generation, 5G) new radio (NR) system vehicle to everything (V2X) system
- V2X vehicle to everything
- LTE and NR hybrid networking system or device-to-device (device-to-device, D2D) system, machine to machine (mach
- the technical solution provided by this application can be used for RSSI/CO measurement in various scenarios.
- it can be used for unlicensed spectrum RSSI/CO measurement, or it can be used for cross link interference (CLI)-RSSI measurement.
- CLI cross link interference
- RSSI/CO measurement in other scenarios, which is not specifically limited in this application.
- the communication system includes network equipment and at least one terminal equipment.
- different terminal devices can communicate with each other.
- the network device is a device that connects the terminal device to the wireless network, which can be an evolutionary base station (eNB or eNodeB) in LTE or evolved LTE system (LTE-Advanced, LTE-A). ), such as traditional macro base station eNB and micro base station eNB in heterogeneous network scenarios; or it can be the next generation node B (next generation node B, gNodeB or gNB) in the 5G system; or it can be the transmission reception point (transmission reception point, TRP); or it can be a base station in the future evolved public land mobile network (public land mobile network, PLMN); or it can be a broadband network service gateway (broadband network gateway, BNG), aggregation switch or non-3GPP access equipment ; Or it can be a wireless controller in a cloud radio access network (CRAN); or it can be an access point (AP) in a WiFi system; or it can be a wireless relay node or wireless backend It may be a device that implements the e
- the base stations in the embodiments of the present application may include various forms of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, access points, etc., which are not specifically limited in the embodiments of the present application. .
- the terminal device may refer to a user-side device with wireless transceiver function.
- Terminal equipment can also be called user equipment (UE), terminal, access terminal, user unit, user station, mobile station (MS), remote station, remote terminal, mobile terminal (MT) , user terminal, wireless communication equipment, user agent or user device, etc.
- the terminal may be, for example, a wireless terminal in an IoT, V2X, D2D, M2M, 5G network, or a future evolved PLMN.
- Terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
- the terminal device may be a drone, an IoT device (for example, a sensor, an electricity meter, a water meter, etc.), a V2X device, a station (ST) in a wireless local area network (WLAN), a cellular phone, Cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices Or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices (also known as wearable smart devices), tablets or computers with wireless transceiver functions, virtual reality (VR) terminals, industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, vehicle-mounted terminals, vehicles with vehicle-to-vehicle (V2V) communication capabilities, intelligent connected vehicles , UAVs with UAV to UAV (U2U)
- the execution subject can perform some or all of the steps in the embodiment of the present application. These steps or operations are only examples. The embodiment of the present application can also perform other operations or variations of various operations. In addition, various steps may be performed in a different order than those presented in the embodiments of the present application, and it may not be necessary to perform all operations in the embodiments of the present application.
- the measurement and scheduling method includes the following steps:
- the network device determines the RMTC configuration of the first terminal device.
- the RMTC is configured for RSSI and/or CO measurement.
- the RMTC configuration may configure the first terminal device to perform RSSI and/or CO measurements within the RMTC window on the first carrier.
- the RMTC configuration can configure RSSI measurement resources, for example, configure the length and domain position of the RMTC window, the measurement bandwidth of RSSI and/or CO measurement, and the carrier where the measurement bandwidth of RSSI and/or CO measurement is located (under this application (referred to as “first carrier” in the above embodiment), etc. It can be understood that the RMTC measurement resource is used for RSSI/CO measurement.
- the RMTC configuration may also include TCI status information, and the TCI status information may indicate that the RSSI measurement resource is a QCL-ed reference signal.
- the terminal device can determine the beam used for RSSI and/or CO measurement based on the TCI status information.
- the RMTC configuration may not include TCI status information. Please refer to the above-mentioned related instructions on RMTC configuration, which will not be repeated here.
- the network device sends the RMTC configuration of the first terminal device to the first terminal device.
- the first terminal device receives the message from The RMTC configuration of the network device.
- the first terminal device can determine RSSI measurement resources according to the RMTC configuration, such as the RMTC window, the first carrier, etc.
- the RMTC configuration includes TCI status information
- the beam used for RSSI and/or CO measurement may also be determined according to the RMTC configuration.
- the first terminal device may determine that the RSSI measurement resource is QCL-ed with the most recently received PDSCH or most recently monitored CORESET on the activated BWP of the first carrier, thereby determining the RSSI and / or CO measurement beam.
- the first terminal device determines the first time domain symbol group.
- the first terminal device determines the measurement results of RSSI measurement and/or CO measurement in the first time domain symbol group. That is, the time domain resource actually used to calculate the measurement results is not the RMTC window, but the first time domain symbol group.
- the first terminal device can perform RSSI/CO measurement within the RMTC window to determine the measurement result within the first time domain symbol group.
- the first terminal device may perform RSSI/CO measurement within the first time domain symbol group and determine the measurement result within the first time domain symbol group. This application does not specifically limit this.
- the first time domain symbol group includes time domain symbols in the RMTC window except the second time domain symbol group.
- the second time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols within the RMTC window.
- N and M are positive integers. That is to say, the first time domain symbol group is located within the RMTC window, and the first time domain symbol group does not include the first N and/or last M time domain symbols within the RMTC window.
- the RMTC window configured in the RMTC configuration includes 10 time domain symbols with indexes 0-9. Assume that N and M are equal to 1, that is, the second time domain symbol group is composed of the RMTC The first and last components in the window, then the first time domain symbol group includes time domain symbols with indexes 1-8 in the RMTC window.
- the second time domain symbol group includes the first N time domain symbols and/or the following ones within the RMTC window. M time domain symbols.
- the first threshold may be 480KHz.
- the first time domain symbol group is composed of all time domain symbols in the RMTC window, that is, the first time domain symbol group and the RMTC window are the same (at this time, the second time domain symbol group can be considered Time domain symbol group does not exist).
- the first subcarrier interval is the subcarrier interval of activated BWP of the first carrier, or the first subcarrier interval is the subcarrier interval of RSSI/CO measurement.
- the subcarrier spacing of RSSI/CO measurement may be indicated in the RMTC configuration.
- the second time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols within the RMTC window.
- the first time domain symbol group consists of all time domain symbols within the RMTC window.
- the second time domain symbol group includes the first N time domain symbols within the RMTC window. And/or, if the RSSI measurement resource and the second downlink signal are not QCL-ed, the second time domain symbol group includes the last M time domain symbols within the RMTC window.
- a and B are not QCL-ed, which can also be described as A and B do not have a QCL relationship.
- a and B are QCL-ed, which can also be described as having a QCL relationship between A and B.
- the first downlink signal is the downlink signal on the first time domain symbol before the RMTC window.
- the first time domain symbol before the RMTC window refers to the time domain symbol before the RMTC window adjacent to the first time domain symbol in the RMTC window.
- the first downlink signal is the downlink signal closest to the RMTC window before the RMTC window.
- the beam used for RSSI/CO measurement is different from the beam used for the first downlink signal (for example, the transmission beam of the first downlink signal), and the first terminal device The same beam cannot be used for RSSI/CO measurement and reception of the first downlink signal.
- the first terminal equipment needs to perform beam switching to perform RSSI/CO measurement. Therefore, if the RSSI measurement resource and the first downlink signal are not QCL-ed, it can also be described as: if beam switching is required before RSSI/CO measurement.
- the beam switching is performed in the first N time domain symbols within the RMTC window, it will affect the measurement results within the first N time domain symbols, so that the first time domain symbol group can exclude those in the RMTC window.
- the first N time domain symbols are used to reduce the impact of beam switching on the measurement results, thereby reducing the measurement error.
- the RMTC window includes time domain symbols with indexes 10-19
- the downlink signal before the RMTC window includes the downlink signal transmitted on the time domain symbols with indexes 4-6
- the second time domain symbol group includes the first N time domain symbols within the RMTC window. Taking N equal to 1 as an example, the second time domain symbol group includes the time domain symbol with index 10.
- the second downlink signal is the downlink signal on the first time domain symbol after the RMTC window, or the second downlink signal is RMTC The nearest downward signal to the RMTC window after the window. That is to say, if the RSSI measurement resource and the resource carrying the second downlink signal are not QCL-ed, the second time domain symbol group includes the last M time domain symbols within the RMTC window.
- the QCL relationship between the RSSI measurement resource and the resource carrying the second downlink signal may be pre-configured by the network device.
- the beam used for RSSI/CO measurement and the beam used for the second downlink signal are different, and the first terminal device cannot use the same
- the beam performs RSSI/CO measurement and reception of the second downlink signal. Therefore, after RSSI/CO measurement, the first terminal equipment needs to perform beam switching to receive the second downlink signal. Therefore, if the RSSI measurement resource and the second downlink signal are not QCL-ed, it can also be described as: if beam switching is required after RSSI/CO measurement.
- the beam switching is performed in the last M time domain symbols within the RMTC window, it will affect the measurement results within the last M time domain symbols, so that the first time domain symbol group can exclude those in the RMTC window.
- the last M time domain symbols are used to reduce the impact of beam switching on the measurement results, thereby reducing the measurement error.
- the RMTC window includes time domain symbols with indexes 10-19, and time domain symbols with indexes 20-22 are used to carry downlink signals. It is assumed that the beam measured by RSSI/CO is a beam. 1. The beam used for the downlink signal is beam 2, then the second time domain symbol group includes the last M time domain symbols within the RMTC window. Taking M equal to 1 as an example, the second time domain symbol group includes the time domain symbol with index 19.
- the second time domain symbol group does not include the first N time domain symbols in the RMTC window, or in other words, the first time domain symbol group also includes RMTC The first N time domain symbols within the window.
- the second time domain symbol group does not include the last M time domain symbols within the RMTC window, or in other words, the first time domain symbol group also includes the RMTC window The last M time domain symbols within .
- the second time domain symbol group does not include the last M time domain symbols within the RMTC window.
- the RSSI measurement resource and the first downlink signal are QCL-ed, and the RSSI measurement resource and the second downlink signal are QCL-ed, then the first time domain symbol group and the RMTC window are the same, The second time domain symbol group does not exist.
- the RSSI measurement resources and the first downlink signal are QCL-ed, and the RSSI measurement resources and the second downlink signal are not QCL-ed.
- the second time domain symbol group includes the last M time domains within the RMTC window. Symbol, in Figure 7b, M is equal to 1 as an example for illustration.
- the RSSI measurement resource and the first downlink signal are QCL-ed, and the first time domain symbol after the RMTC window is not used to carry the downlink signal, then the first time domain symbol group and the RMTC window are the same, and the first time domain symbol group is the same as the RMTC window.
- the second time domain symbol group does not exist.
- the RSSI measurement resource and the first downlink signal are not QCL-ed, and the first time domain symbol after the RMTC window is not used to carry the downlink signal, then the second time domain symbol group includes the first time domain symbol within the RMTC window.
- N time domain symbols, Figure 7d takes N equal to 1 as an example for illustration.
- the downlink signal in this application may refer to at least one of PDSCH, physical downlink shared channel (PDCCH), reference signal, etc.
- the reference signal may be, for example, channel state information-reference signal (CSI-RS), demodulation reference signal (demodulation reference signal, DMRS), etc., which is not specifically limited in this application.
- CSI-RS channel state information-reference signal
- DMRS demodulation reference signal
- the terminal device when determining the measurement results of RSSI measurement and/or CO measurement, the terminal device excludes the first N time domain symbols and/or the last M time domain symbols within the RMTC window.
- the impact of beam switching on the measurement can be reduced. effect on the results, thereby reducing measurement errors.
- the network device determines the transmission resources that can be used for the downlink signal of the first terminal device according to the scheduling rule.
- the scheduling rules include rule 1): the network device is not allowed to send downlink signals to the first terminal device within the second time domain symbol group on the first carrier, or in other words, the network device is not on the first carrier Send a downlink signal to the first terminal device within the second time domain symbol group. That is to say, the transmission resources that can be used for the downlink signal of the first terminal device do not include the second time domain symbol group on the first carrier.
- the transmission resources that can be used for the downlink signal of the first terminal device do not include the second time domain symbol group on the first carrier.
- the first terminal equipment may perform beam switching within the second time domain symbol group.
- the network device sends a downlink signal to the first terminal device within the second time domain symbol group on the first carrier, the first terminal device may be unable to perform downlink reception, resulting in transmission failure and a waste of resources.
- the network device is not allowed to send a downlink signal to the first terminal device within the second time domain symbol group on the first carrier. Therefore, the network device may not send a downlink signal to the first terminal device within the second time domain symbol group on the first carrier.
- the downlink signal is sent internally to the first terminal device, thereby reducing resource waste.
- the scheduling rule may include rule 2): the network device is not allowed to send downlink signals with RSSI measurement resources that are not QCL-ed to the first terminal device within the first time domain symbol group on the first carrier.
- the rule 2) can be described as: allowing the network to send QCL-ed downlink signals with RSSI measurement resources to the first terminal device within the first time domain symbol group on the first carrier.
- the transmission resources that can be used for the downlink signal of the first terminal device may include the first time domain symbol group on the first carrier, and the downlink signal and RSSI measurement resource are QCL-ed.
- whether the transmission resources that can be used for the downlink signal of the first terminal device ultimately include the first time domain symbol group on the first carrier may be determined based on the capabilities of the terminal device.
- the method provided by the embodiment of this application may also include the following steps:
- the first terminal device determines the capability information and sends the capability information to the network device.
- the network device receives capability information from the terminal device.
- the capability information indicates whether the first terminal device supports simultaneous RSSI/CO measurement and downlink reception when the RSSI measurement resource and the downlink signal are QCL-ed.
- the network device receives the capability information
- the capability information indicates that the RSSI measurement resource and the downlink signal are QCL-ed, and the first terminal device supports simultaneous RSSI/CO measurement and downlink reception
- the transmission resources of the downlink signal of the terminal device may include the first time domain symbol group on the first carrier. If the capability information indicates that the RSSI measurement resources and downlink signals are QCL-ed and the first terminal equipment does not support simultaneous RSSI/CO measurement and downlink reception, the transmission resources that can be used for the downlink signals of the first terminal equipment do not include the first terminal equipment.
- the first group of time domain symbols on a carrier If the capability information indicates that the RSSI measurement resources and downlink signals are QCL-ed and the first terminal equipment does not support simultaneous RSSI/CO measurement and downlink reception, the transmission resources that can be used for the downlink signals of the first terminal equipment do not include the first terminal equipment.
- the first group of time domain symbols on a carrier are examples of time domain symbols on a carrier.
- the first terminal device when the RSSI measurement resource and downlink signal are QCL-ed and the first terminal device does not support simultaneous RSSI/CO measurement and downlink reception, if the network device still configures the first terminal device on the RSSI measurement resource If the RSSI/CO measurement is performed and the downlink signal is received at the same time, then the first terminal device can perform the RSSI/CO measurement on the RSSI resource without receiving the downlink signal. That is, the first terminal device performs RSSI/CO measurement first, or in other words, the priority of RSSI/CO measurement is higher than the priority of downlink reception.
- the first terminal device when the RSSI measurement resource and downlink signal are QCL-ed, and the first terminal device supports simultaneous RSSI/CO measurement and downlink reception, if the network device configures the first terminal device to perform RSSI on the RSSI measurement resource /CO measurement and receiving the downlink signal at the same time, then the first terminal device can perform RSSI/CO measurement on the RSSI resource and receive the downlink signal at the same time.
- the network device can send the QCL-ed downlink signal with the RSSI measurement resource to the first terminal device within the first time domain symbol group on the first carrier.
- the first terminal device can use the same beam to perform RSSI/CO measurement and downlink reception, that is, the first terminal device can perform downlink reception while performing RSSI/CO measurement, so that Resources are fully utilized, thereby improving resource utilization and network throughput.
- scheduling rules in this application can also be called scheduling restrictions, and the two can be replaced with each other.
- scheduling rule may also have other names, such as the first rule, etc., which is not specifically limited in this application.
- rule 1) and 2) can be used independently, that is, there is no interdependence between rule 1) and rule 2).
- rule 1) and rule 2) can also be used in combination.
- the scheduling rule can include rule 1) and rule 2) at the same time.
- the above rules 1) and 2) may be considered as scheduling restrictions on the first carrier or the serving cell on the first carrier.
- the scheduling restriction also applies to time domain symbols that completely or partially overlap with the restricted time domain symbols on other carriers belonging to the same frequency band as the first carrier.
- the restricted time domain symbols in rule 1) may be time domain symbols in the second time domain symbol group.
- the restricted time domain symbols in rule 2) may be time domain symbols in the first time domain symbol group. That is to say, the above scheduling rules may also include the following rules 3) and/or rules 4).
- Rule 3 The network device is not allowed to send downlink signals to the first terminal device within the third time domain symbol group on the second carrier. In other words, the network device does not send the downlink signal to the first terminal device within the third time domain symbol group on the second carrier.
- the second carrier and the first carrier are located in the same frequency band.
- the second carrier and the first carrier are carriers that provide services for the first terminal device in a carrier aggregation scenario.
- the time domain symbols in the third time domain symbol group partially or completely overlap with the time domain symbols in the second time domain symbol group.
- each time domain symbol in the third time domain symbol group may partially or completely overlap with at least one time domain symbol in the second time domain symbol group; or, each time domain symbol in the third time domain symbol group may partially or completely overlap.
- the time domain position of the domain symbol overlaps part or all of the time domain position of at least one time domain symbol in the second time domain symbol group.
- the time domain position can refer to the absolute time domain position.
- the RMTC window on carrier 1 includes time domain symbols with indexes 10-19
- the second time domain symbol group Includes time domain symbols with indices 10 and 19.
- the third group of time domain symbols on carrier 2 includes the time domain symbols on carrier 2 with indexes 10, 11, 19, and 20.
- the time domain symbols with index 10 and 11 on carrier 2 partially overlap with the time domain symbol with index 10 on carrier 1, or in other words, the time domain position (t3 to t4) of the time domain symbol with index 10 on carrier 2 Partially overlaps with the time domain position (t1 to t2) of the time domain symbol with index 10 on carrier 1; the time domain position (t4 to t5) of the time domain symbol with index 11 on carrier 2 overlaps with the time domain position (t4 to t5) of the time domain symbol with index 10 on carrier 1
- the time domain positions (t1 to t2) of the time domain symbols partially overlap.
- the network device is not allowed to send downlink signals to the first terminal device within the third time domain symbol group on the second carrier. Therefore, the network device may not send downlink signals to the first terminal device within the third time domain symbol group on the second carrier.
- the downlink signal is sent internally to the first terminal device, thereby reducing resource waste.
- Rule 4) The network device is not allowed to send to the first terminal device an RSSI measurement resource that is inconsistent with the RSSI measurement resource in the fourth time domain symbol group on the second carrier. It is QCL-ed down signal.
- the rule 4) can be described as: allowing the network device to send QCL-ed downlink signals with RSSI measurement resources to the first terminal device within the fourth time domain symbol group on the second carrier.
- the second carrier please refer to the relevant description in rule 3) above, which will not be described again here.
- the transmission resources that can be used for the downlink signal of the first terminal device may include the fourth time domain symbol group on the second carrier, and the downlink signal and RSSI measurement resource are QCL-ed.
- the time domain symbols in the fourth time domain symbol group partially or completely overlap with the time domain symbols in the first time domain symbol group.
- the time domain position of the fourth time domain symbol group includes the time domain position in the time domain position of the RMTC window, except for the time domain position of the third time domain symbol group.
- the time domain position may refer to the absolute time domain position.
- the fourth time domain symbol group may include time domain symbols with indexes 12-18 on carrier 2.
- whether the transmission resources that can be used for the downlink signal of the first terminal device ultimately include the fourth time domain symbol group on the second carrier may be determined based on the capabilities of the terminal device. Please refer to the relevant descriptions in Rule 2) above, which will not be repeated here.
- the network device can send the QCL-ed downlink signal with the RSSI measurement resource to the first terminal device in the fourth time domain symbol group on the second carrier.
- the first terminal device can use the same beam to perform RSSI/CO measurement and downlink reception, that is, the first terminal device can perform downlink reception while performing RSSI/CO measurement, so that Resources are fully utilized, thereby improving resource utilization and network throughput.
- steps S405 and S402 have no strict execution order.
- Step S402 may be executed first, and then step S405 may be executed; or step S405 may be executed first, and then step S402 may be executed; or step S402 and step S405 may be executed simultaneously, which is not specifically limited in this application.
- step S405 the method provided by the embodiment of the present application may also include the following step S406:
- the network device sends a downlink signal to the first terminal device on the first resource.
- the first terminal device receives the downlink signal from the network device on the first resource.
- the first resource is part or all of the above-mentioned transmission resources that can be used for the downlink signal of the first terminal device.
- the first resource includes the first time domain symbol group on the first carrier and/or the fourth time domain symbol group on the second carrier, the first resource (or the downlink signal) and the RSSI measurement resource are QCL-ed.
- the terminal device determines the measurement results of RSSI measurement and/or CO measurement
- the first N time domain symbols and/or the last M time domain symbols within the RMTC window can be excluded.
- the impact of beam switching on the measurement results can be reduced, thereby reducing measurement errors.
- the network equipment will not send downlink signals within the time domain symbols where beam switching occurs, thereby avoiding downlink transmission failures due to beam switching of the terminal equipment, thereby reducing resource waste.
- the method shown in Figure 4 above can be applied to the scenario where beam switching is performed within the RMTC window.
- this application also provides a measurement and scheduling method suitable for when beam switching is performed outside the RMTC window.
- the measurement and scheduling method includes the following steps:
- the network device determines the RMTC configuration of the first terminal device.
- the network device sends the RMTC configuration of the first terminal device to the first terminal device.
- the first terminal device receives the RMTC configuration from the network device.
- steps S901-S902 are the same as the above-mentioned steps S401-S402. Please refer to the relevant description of the above-mentioned steps S401-S402, which will not be described again here.
- the first terminal device determines the measurement result of the RSSI/CO measurement within the RMTC window. That is, in the method shown in Figure 9, the time domain resource actually used to calculate the measurement structure is the RMTC window.
- the first terminal device may perform RSSI/CO measurement within the RMTC window, thereby determining the measurement result of the RSSI/CO measurement within the RMTC window.
- the network device determines the transmission resources that can be used for the downlink signal of the first terminal device according to the scheduling rule.
- the scheduling rules include rule 5): the network device is not allowed to send downlink signals to the first terminal device within the fifth time domain symbol group on the first carrier, or in other words, the network device is not on the first carrier Send a downlink signal to the first terminal device within the fifth time domain symbol group. That is to say, the transmission resources that can be used for the downlink signal of the first terminal device do not include the fifth time domain symbol group on the first carrier.
- the first carrier reference may be made to the relevant descriptions in the foregoing steps S403-S404, which will not be described again here.
- the fifth time domain symbol group includes X time domain symbols before the RMTC window of the first terminal device and/or Y time domain symbols after the RMTC window.
- X and Y are positive integers.
- the time domain symbols in the fifth time domain symbol group may be used by the first terminal device to perform beam switching, that is, the first terminal device may perform beam switching in the fifth time domain symbol group.
- the fifth time domain symbol group includes one time domain symbol before the RMTC window and/or one time domain symbol after the RMTC window.
- the one time domain symbol before the RMTC window is adjacent to the first time domain symbol in the RMTC window.
- the RMTC The 1 time domain symbol after the window is the first time domain symbol after the RMTC window.
- the RMTC window includes time domain symbols with indexes 10-19.
- the fifth time domain symbol group includes time domain symbols with indexes 9 and 20. .
- the X time domain symbols before the RMTC window are consecutive X time domain symbols, and the last time domain symbol among the X time domain symbols is the same as the first time domain symbol in the RMTC window Time domain symbols are adjacent.
- the Y time domain symbols after the RMTC window are Y consecutive time domain symbols, and the first time domain symbol among the Y time domain symbols is adjacent to the last time domain symbol in the RMTC window.
- the RMTC window includes time domain symbols with indexes 10-19.
- the fifth time domain symbol group includes indexes 8, 9, 20, and 21 time domain symbols.
- the fifth time domain symbol group in a possible implementation, if the first subcarrier spacing is greater than or equal to the first threshold, the fifth time domain symbol group includes X time domain symbols before the RMTC window and/or RMTC Y time domain symbols behind the window.
- first subcarrier spacing and the first threshold reference may be made to the relevant descriptions in the method shown in FIG. 4 and will not be described again here.
- rule 5 if the first subcarrier interval is less than the first threshold, rule 5) may not take effect or may not exist.
- the fifth time domain symbol group includes X time domain symbols before the RMTC window and/or Y time domain symbols after the RMTC window.
- this rule 5 may not take effect or may not exist.
- the fifth time domain symbol group includes X time domain symbols before the RMTC window. And/or, if the RSSI measurement resource and the fourth downlink signal are not QCL-ed, the fifth time domain symbol group includes Y time domain symbols after the RMTC window.
- a certain resource or signal is (or is not) QCL-ed, please refer to the relevant description in the method shown in Figure 4, which will not be described again here.
- the third downlink signal is the downlink signal on the X time domain symbols, or the third downlink signal is the downlink signal closest to the X time domain symbols before the X time domain symbols.
- the beam used for RSSI/CO measurement and the beam used for the third downlink signal are different, and the first terminal device cannot use the same
- the beam performs RSSI/CO measurement and reception of the third downlink signal. Therefore, after receiving the third downlink signal, the first terminal equipment needs to perform beam switching to perform RSSI/CO measurement. Therefore, if the RSSI measurement resource and the third downlink signal are not QCL-ed, it can also be described as: if beam switching is required before RSSI/CO measurement.
- the first terminal device may not be able to perform downlink reception within the X time domain symbols.
- the network device still sends a downlink signal to the first terminal device within the X time domain symbols on the first carrier, transmission failure will occur because the first terminal device cannot perform downlink reception, resulting in a waste of resources.
- the network device is not allowed to send downlink signals to the first terminal device within the X time domain symbols on the first carrier, thereby reducing the risk of the network device sending downlink signals but being unable to receive them by the first terminal device. waste of resources.
- the third downlink signal is the downlink signal transmitted on the time domain symbol with index 7-8.
- the beam measured by RSSI/CO is beam 1 and the beam used for the third downlink signal is beam 2
- the fifth time domain symbol group includes 1 time domain symbol before the RMTC window.
- the fourth downlink signal is a downlink signal on the Y time domain symbols, or the fourth downlink signal is a downlink signal after the Y time domain symbols that is closest to the Y time domain symbols. That is to say, if the RSSI measurement resource and the resource carrying the fourth downlink signal are not QCL-ed, the fifth time domain symbol group includes Y time domain symbols after the RMTC window.
- the QCL relationship between the RSSI measurement resource and the resource carrying the fourth downlink signal may be pre-configured by the network device.
- the beam used for RSSI/CO measurement and the beam used for the fourth downlink signal are different, and the first terminal device cannot use the same
- the beam performs RSSI/CO measurement and reception of the fourth downlink signal. Therefore, after RSSI/CO measurement, the first terminal equipment needs to perform beam switching to receive the fourth downlink signal. Therefore, if the RSSI measurement resource and the fourth downlink signal are not QCL-ed, it can also be described as: if beam switching is required after RSSI/CO measurement.
- the first terminal device may not be able to perform downlink reception within the Y time domain symbols.
- the network device still sends a downlink signal to the first terminal device within the Y time domain symbols on the first carrier, transmission failure will occur because the first terminal device cannot perform downlink reception, resulting in a waste of resources.
- the network device is not allowed to send downlink signals to the first terminal device within the Y time domain symbols on the first carrier, thereby reducing the risk of the network device sending downlink signals but being unable to receive the first terminal device. waste of resources.
- the RMTC window includes time domain symbols with indexes 10-19, and time domain symbols with indexes 20-22 are used to carry downlink signals. It is assumed that the beam measured by RSSI/CO is a beam. 1. The beam used for downlink signals is beam 2, then the fifth time domain The symbol group includes time domain symbols with indices 20-22.
- the fifth time domain symbol group does not include the X time domain symbols before the RMTC window. And/or, if the RSSI measurement resource and the fourth downlink signal are QCL-ed, the fifth time domain symbol group does not include the following Y time domain symbols within the RMTC window. And/or, if the Y time domain symbols after the RMTC window are not used to carry downlink signals, the fifth time domain symbol group does not include the Y time domain symbols after the RMTC window.
- the fifth time domain symbol group includes X time domain symbols before the RMTC window, In Figure 12b, X is equal to 1 as an example for explanation.
- the scheduling rule may include rule 6): the network device is not allowed to send downlink signals with RSSI measurement resources that are not QCL-ed to the first terminal device within the RMTC window on the first carrier.
- the rule 6) can be described as: allowing the network device to send QCL-ed downlink signals with RSSI measurement resources to the first terminal device within the RMTC window on the first carrier.
- the transmission resources that can be used for the downlink signal of the first terminal device may include the RMTC window on the first carrier, and the downlink signal and RSSI measurement resources are QCL-ed.
- whether the transmission resources that can be used for the downlink signal of the first terminal device ultimately include the first time domain symbol group on the first carrier may be determined based on the capabilities of the terminal device. Reference may be made to the relevant description in step S405 above, which will not be described again here.
- the network device can send the QCL-ed downlink signal with the RSSI measurement resource to the first terminal device within the RMTC window on the first carrier.
- the first terminal device can use the same beam to perform RSSI/CO measurement and downlink reception, that is, the first terminal device can perform downlink reception while performing RSSI/CO measurement, so that Resources are fully utilized, thereby improving resource utilization and network throughput.
- rule 5) and 6) can be used independently, that is, there is no interdependence between rules 5) and 6).
- rule 5) and rule 6) can also be used in combination.
- the scheduling rule can include rule 5) and rule 6) at the same time.
- the above rules 5) and 6) are also applicable to time domain symbols that completely or partially overlap with restricted time domain symbols on other carriers that belong to the same frequency band as the first carrier.
- the restricted time domain symbols in rule 5) may be time domain symbols in the fifth time domain symbol group.
- the restricted time domain symbols in rule 6) may be time domain symbols within the RMTC window. That is to say, the above scheduling rules may also include the following rules 7) and/or rules 8).
- Rule 7) The network device is not allowed to send downlink signals to the first terminal device within the sixth time domain symbol group on the second carrier, or in other words, the network device does not send downlink signals to the first terminal device within the sixth time domain symbol group on the second carrier.
- the device sends a downlink signal.
- For the second carrier please refer to the relevant description in rule 3) above, which will not be described again here.
- the time domain symbols in the sixth time domain symbol group partially or completely overlap with the time domain symbols in the fifth time domain symbol group.
- each time domain symbol in the sixth time domain symbol group may partially or completely overlap with at least one time domain symbol in the fifth time domain symbol group.
- Rule 8) The network device is not allowed to send downlink signals that are not QCL-ed with RSSI measurement resources to the first terminal device in the seventh time domain symbol group on the second carrier.
- the rule 8) can be described as: allowing the network device to send QCL-ed downlink signals with RSSI measurement resources to the first terminal device within the seventh time domain symbol group on the second carrier.
- the transmission resources that can be used for the downlink signal of the first terminal device may include the seventh time domain symbol group on the second carrier, and the downlink signal and RSSI measurement resource are QCL-ed.
- the time domain symbols in the seventh time domain symbol group partially or completely overlap with the time domain symbols in the RMTC window.
- the time domain position of the seventh time domain symbol group includes the time domain position in the time domain position of the RMTC window except the time domain position of the sixth time domain symbol group.
- the time domain position may refer to the absolute time domain position.
- the seventh time domain symbol group may include time domain symbols with indexes 11-19 on carrier 2.
- whether the transmission resources that can be used for the downlink signal of the first terminal device ultimately include the seventh time domain symbol group on the second carrier may be determined based on the capabilities of the terminal device. Reference may be made to the relevant description in step S405 above, which will not be described again here.
- steps S904 and S902 have no strict execution order.
- Step S902 may be executed first, and then step S904 may be executed; or step S904 may be executed first, and then step S902 may be executed; or step S902 and step S904 may be executed simultaneously, which is not specifically limited in this application.
- step S904 the method provided by the embodiment of the present application may also include the following step S905:
- the network device sends a downlink signal to the first terminal device on the second resource.
- the first terminal device receives the downlink signal from the network device on the second resource.
- the second resource is part or all of the above-mentioned transmission resources that can be used for the downlink signal of the first terminal device.
- the second resource includes time domain symbols within the RMTC window on the first carrier and/or the seventh time domain symbol group on the second carrier, the second resource (or the downlink signal) and the RSSI measurement resource is QCL-ed.
- the network equipment will not send downlink signals within the time domain symbols where beam switching occurs, thereby avoiding downlink transmission failures caused by beam switching of the terminal equipment, thereby reducing resource waste.
- S1401-S1402 are the same as the above-mentioned steps S401-S402. Please refer to the relevant description of the above-mentioned steps S401-S402, which will not be described again here.
- the first terminal device determines the eighth time domain symbol group.
- the eighth time domain symbol group includes time domain symbols in the RMTC window except the ninth time domain symbol group.
- the ninth time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols within the RMTC window, where N and M are positive integers.
- the eighth time domain symbol group may be the above-mentioned first time domain symbol group
- the ninth time domain symbol group may be the above-mentioned second time domain symbol group.
- the eighth time domain symbol group includes all time domain symbols in the RMTC window.
- the terminal device can perform the relevant steps of the first terminal device in the method shown in Figure 9, that is, the terminal device can perform beam switching outside the RMTC window. Please refer to the relevant description in the method shown in Figure 9 above.
- the length of the RMTC window can be the total number of time domain symbols within the RMTC window. Alternatively, it can be the length of time occupied by the RMTC window.
- the first terminal device determines the measurement results of RSSI measurement and/or CO measurement in the eighth time domain symbol group.
- the network device determines the transmission resources that can be used for the downlink signal of the first terminal device according to the scheduling rule.
- the scheduling rule includes: not allowing the network device to send downlink signals to the first terminal device within the tenth time domain symbol group on the first carrier.
- the tenth time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols within the RMTC window, where N and M are positive integers.
- the tenth time domain symbol group can be the above-mentioned second time domain symbol group, and the network device can perform the relevant steps of the network device in the method shown in Figure 4.
- the scheduling rules include at least one of the above-mentioned rules 1) to 4). Reference may be made to the relevant descriptions in the method shown in Figure 4, which will not be described again here.
- the tenth time domain symbol group includes X time domain symbols before the RMTC window and/or Y time domain symbols after the RMTC window, and X and Y are positive integers.
- the tenth time domain symbol group may be the fifth time domain symbol group, and the network device may perform the relevant steps of the network device in the method shown in FIG. 9 .
- the scheduling rules include at least one of the above-mentioned rules 5) to 8). Reference may be made to the relevant descriptions in the method shown in Figure 9, which will not be described again here.
- step S1405 the method provided by the embodiment of the present application may also include the following step S1406:
- the network device sends a downlink signal to the first terminal device on the third resource.
- the first terminal device receives the downlink signal from the network device on the third resource.
- the third resource can be the same as the first resource; when the network device and the first terminal device perform the method shown in Figure 9 In the relevant steps, the third resource can be the same as the second resource. Please refer to the above related explanations and will not repeat them here.
- the terminal device can choose to perform beam switching within the RMTC window or outside the RMTC window based on the length of the RMTC window.
- the length of the RMTC window is long, beam switching is performed within the RMTC window, so that downlink transmission can be performed before and after the RMTC window, improving resource utilization and network throughput.
- the length of the RMTC window is short, beam switching is performed outside the RMTC window, thereby reducing the impact on RSSI/CO measurement and improving the accuracy of the measurement results.
- the methods and/or steps implemented by the network device can also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, or software that can be used in the network device). chip or circuit); the methods and/or steps implemented by the terminal device can also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, etc.) that can be used in the terminal device. or software such as chips or circuits).
- the above mainly introduces the solutions provided by this application.
- this application also provides a communication device, which is used to implement the various methods mentioned above.
- the communication device may be the first terminal device in the above method embodiment, or a device including the above-mentioned first terminal device, or a component that can be used in the first terminal device, such as a chip or a chip system; or, the communication device may be
- the network device in the above method embodiment is either a device including the above network device, or a component that can be used in the network device, such as a chip or a chip system.
- the communication device includes corresponding hardware structures and/or software modules for performing each function.
- the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
- Embodiments of the present application can divide the communication device into functional modules according to the above method embodiments.
- functional modules can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
- the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
- FIG. 15 shows a schematic structural diagram of a communication device 150 .
- the communication device 150 includes a processing module 1501 and a transceiver module 1502.
- the communication device 150 may be used to implement the functions of the above-mentioned network device or the first terminal device.
- the communication device 150 may also include a storage module (not shown in Figure 15) for storing program instructions and data.
- the transceiver module 1502 which may also be called a transceiver unit, is used to implement sending and/or receiving functions.
- the transceiver module 1502 may be composed of a transceiver circuit, a transceiver, a transceiver, or a communication interface.
- the transceiver module 1502 may include a receiving module and a sending module, respectively configured to perform the receiving and sending steps performed by the network device or the first terminal device in the above method embodiments, and/or to support Other processes of the technology described herein; the processing module 1501 can be used to perform steps of the processing class (such as determining, generating, etc.) performed by the network device or the first terminal device in the above method embodiments, and/or used to support Other processes for the techniques described herein.
- the processing module 1501 can be used to perform steps of the processing class (such as determining, generating, etc.) performed by the network device or the first terminal device in the above method embodiments, and/or used to support Other processes for the techniques described herein.
- the processing module 1501 is used to determine the first time domain symbol group.
- the processing module 1501 is also used to determine the measurement results of RSSI measurement and/or channel occupancy CO measurement in the first time domain symbol group.
- the first time domain symbol group includes time domain symbols in the RMTC window except the second time domain symbol group.
- the second time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols within the RMTC window, where N and M are positive integers.
- the second time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols within the RMTC window.
- the first subcarrier interval is the subcarrier interval of the activated bandwidth part BWP of the first carrier, and the first carrier is the carrier where the measurement bandwidth of RSSI measurement or CO measurement is located; or, the first subcarrier interval is the carrier of RSSI measurement or CO measurement. subcarrier spacing.
- the second time domain symbol group includes the first N time domain symbols in the RMTC window; the first downlink signal is the first time domain symbol before the RMTC window.
- the downlink signal on the domain symbol, or the first downlink signal is the downlink signal closest to the RMTC window before the RMTC window; RSSI measurement resources are used for RSSI measurement or CO measurement.
- the second time domain symbol group includes the last M time domain symbols within the RMTC window; the second downlink signal is the first time domain after the RMTC window.
- the downlink signal on the symbol, or the second downlink signal is the downlink signal closest to the RMTC window after the RMTC window.
- the transceiving module 1502 is used to send capability information to the network device.
- the capability information indicates whether the first terminal device supports simultaneous RSSI/CO measurement and downlink reception when the RSSI measurement resource and downlink signal are QCL-ed.
- the processing module 1501 is used to determine capability information.
- the transceiver module 1502 is used to send the capability information to the network device. Wherein, when the capability information indicates that the received signal power indicates RSSI measurement resources and the downlink signal is QCL-ed, whether the first terminal device supports simultaneous RSSI/channel occupancy CO measurement and downlink reception.
- the network device configures the first terminal device to use the RSSI measurement resource Perform RSSI/CO measurement on the Internet and receive downlink signals at the same time.
- the processing module 1501 is also used to determine to perform RSSI/CO measurement and not receive downlink signals.
- the processing module 1501 is used to determine the eighth time domain symbol group.
- the processing module 1501 is also configured to determine the measurement results of the received signal power indicator RSSI measurement and/or the channel occupancy CO measurement in the eighth time domain symbol group.
- the eighth time domain symbol group includes the ninth time domain symbol group in the RMTC window.
- Time domain symbols, the ninth time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols in the RMTC window, N and M are positive integers.
- the eighth time domain symbol group includes all time domain symbols in the RMTC window.
- the length of the RMTC window is the total number of time domain symbols in the RMTC window; or, the length of the RMTC window is the duration occupied by the RMTC window.
- the processing module 1501 is configured to determine the RMTC configuration of the first terminal device, and the RMTC configuration is used for RSSI measurement and/or channel occupancy CO measurement.
- the processing module 1501 is also configured to determine the transmission resources that can be used for the downlink signal of the first terminal device according to the scheduling rules.
- the scheduling rule includes: not allowing the network device to send downlink signals to the first terminal device within the second time domain symbol group on the first carrier.
- the first carrier is the carrier where the measurement bandwidth of RSSI measurement and/or CO measurement is located;
- the second time domain symbol group includes the first N time domain symbols and/or the last M time domain within the RMTC window of the first terminal device. Symbols, N and M are positive integers.
- the second time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols of the RMTC window.
- the first subcarrier spacing is the subcarrier spacing of the activated bandwidth part BWP of the first carrier, or the first subcarrier spacing is the subcarrier spacing of RSSI measurement or CO measurement.
- the second time domain symbol group includes the first N time domain symbols of the RMTC window; the first downlink signal is the first one before the RMTC window.
- the downlink signal on the time domain symbol, or the first downlink signal is the downlink signal closest to the RMTC window before the RMTC window; RSSI measurement resources are used for RSSI measurement or CO measurement.
- the second time domain symbol group includes the last M time domain symbols of the RMTC window; the second downlink signal is the first time domain symbol after the RMTC window.
- the upper downlink signal, or the second downlink signal is the downlink signal closest to the RMTC window after the RMTC window.
- the scheduling rule also includes: not allowing the network device to send downlink signals that are not QCL-ed with RSSI measurement resources to the first terminal device in the first time domain symbol group on the first carrier.
- the first time domain symbol group includes time domain symbols in the RMTC window except the second time domain symbol group.
- the scheduling rule further includes: allowing the network device to send a QCL-ed downlink signal related to the RSSI measurement resource to the first terminal device within the first time domain symbol group on the first carrier.
- the first time domain symbol group includes time domain symbols in the RMTC window except the second time domain symbol group.
- the scheduling rule also includes: not allowing the network device to send downlink signals to the first terminal device within the third time domain symbol group on the second carrier.
- the second carrier and the first carrier are located in the same frequency band; the time domain symbols in the third time domain symbol group partially or completely overlap with the time domain symbols in the second time domain symbol group.
- the scheduling rule also includes: not allowing the network device to send downlink signals with RSSI measurement resources that are not QCL-ed to the first terminal device in the fourth time domain symbol group on the second carrier.
- the time domain position of the fourth time domain symbol group includes the time domain position in the time domain position of the RMTC window except the time domain position of the third time domain symbol group.
- the scheduling rule also includes: allowing the network device to send a QCL-ed downlink signal related to the RSSI measurement resource to the first terminal device in the fourth time domain symbol group on the second carrier.
- the time domain position of the fourth time domain symbol group includes the time domain position in the time domain position of the RMTC window except the time domain position of the third time domain symbol group.
- the transceiving module 1502 is used to receive capability information from the first terminal device.
- the capability information indicates whether the first terminal device supports simultaneous RSSI/CO measurement and downlink reception when the RSSI measurement resource and downlink signal are QCL-ed.
- the processing module 1501 is configured to determine the RMTC configuration of the first terminal device, and the RMTC configuration is used for RSSI measurement and/or channel occupancy CO measurement.
- the processing module 1501 is also configured to determine the transmission resources that can be used for the downlink signal of the first terminal device according to the scheduling rules.
- the scheduling rules include: not allowing the network device to send downlink signals that are not QCL-ed with RSSI measurement resources to the first terminal device in the first time domain symbol group on the first carrier.
- the first time domain symbol group includes time domain symbols in the RMTC window except the second time domain symbol group.
- the second time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols within the RMTC window of the first terminal device, where N and M are positive integers.
- the processing module 1501 is configured to determine the RMTC configuration of the first terminal device, and the RMTC configuration is used for RSSI measurement and/or channel occupancy CO measurement.
- the processing module 1501 is also configured to determine the transmission resources that can be used for the downlink signal of the first terminal device according to the scheduling rules.
- the scheduling rules include: not allowing the network device to transmit to the first terminal device in the fifth time domain symbol group on the first carrier. Send downlink signal.
- the first carrier is the carrier where the measurement bandwidth of RSSI measurement and/or CO measurement is located;
- the fifth time domain symbol group includes X time domain symbols before the RMTC window of the first terminal device and/or Y after the RMTC window. Time domain symbols, X and Y are positive integers.
- the fifth time domain symbol group includes X time domain symbols before the RMTC window and/or Y time domain symbols after the RMTC window.
- the first subcarrier spacing is the subcarrier spacing of the activated bandwidth part BWP of the first carrier, Alternatively, the first subcarrier interval is the subcarrier interval of RSSI measurement or CO measurement.
- the fifth time domain symbol group includes X time domain symbols before the RMTC window; the third downlink signal is the downlink signal on the X time domain symbols , or the third downlink signal is the downlink signal closest to X time domain symbols before X time domain symbols; the RSSI measurement resource is used for RSSI measurement or CO measurement.
- the fifth time domain symbol group includes Y time domain symbols after the RMTC window; the fourth downlink signal is the downlink signal on Y time domain symbols, or, the fourth The downlink signal is the downlink signal closest to the Y time domain symbols after the Y time domain symbols.
- the scheduling rule also includes: not allowing the network device to send downlink signals with RSSI measurement resources that are not QCL-ed to the first terminal device within the RMTC window on the first carrier.
- the scheduling rule also includes: allowing the network device to send a QCL-ed downlink signal related to the RSSI measurement resource to the first terminal device within the RMTC window on the first carrier.
- the scheduling rule also includes: not allowing the network device to send downlink signals to the first terminal device within the sixth time domain symbol group on the second carrier.
- the second carrier and the first carrier are located in the same frequency band; the time domain symbols in the sixth time domain symbol group partially or completely overlap with the time domain symbols in the fifth time domain symbol group.
- the scheduling rule also includes: not allowing the network device to send downlink signals that are not QCL-ed with RSSI measurement resources to the first terminal device in the seventh time domain symbol group on the second carrier.
- the time domain position of the seventh time domain symbol group includes the time domain position in the time domain position of the RMTC window except the time domain position of the sixth time domain symbol group.
- the scheduling rule also includes: allowing the network device to send a QCL-ed downlink signal related to the RSSI measurement resource to the first terminal device in the seventh time domain symbol group on the second carrier.
- the time domain position of the seventh time domain symbol group includes the time domain position in the time domain position of the RMTC window except the time domain position of the sixth time domain symbol group.
- the transceiving module 1502 is used to receive capability information from the first terminal device.
- the capability information indicates whether the first terminal device supports simultaneous RSSI/CO measurement and downlink reception when the RSSI measurement resource and downlink signal are QCL-ed.
- the processing module 1501 is configured to determine the RMTC configuration of the first terminal device, and the RMTC configuration is used for RSSI measurement and/or channel occupancy CO measurement.
- the processing module 1501 is also configured to determine transmission resources that can be used for downlink signals of the first terminal device according to scheduling rules.
- the scheduling rules include: not allowing the network device to send RSSI measurements to the first terminal device within the RMTC window on the first carrier.
- the resource is not QCL-ed downstream signal.
- the first carrier is the carrier in which the measurement bandwidth of RSSI measurement and/or CO measurement is located.
- the transceiving module 1502 is used to receive capability information from the first terminal device.
- the processing module 1501 is configured to determine transmission resources that can be used for downlink signals of the first terminal device according to the capability information.
- the capability information indicates whether the first terminal device supports simultaneous RSSI/channel occupancy CO measurement and downlink reception when the received signal power indication RSSI measurement resource and the downlink signal are QCL-ed.
- the transmission resources that can be used for the downlink signals of the first terminal device Excludes the RMTC window on the first carrier.
- the processing module 1501 is configured to determine the RMTC configuration of the first terminal device, and the RMTC configuration is used for RSSI measurement and/or channel occupancy CO measurement.
- the processing module 1501 is also configured to determine the transmission resources that can be used for the downlink signal of the first terminal device according to the scheduling rules.
- the scheduling rule includes: the network device is not allowed to send downlink signals to the first terminal device within the tenth time domain symbol group on the first carrier.
- the tenth time domain symbol group includes the first N time domain symbols and/or the last M time domain symbols within the RMTC window, and N and M are positive integers.
- the tenth time domain symbol group includes X time domain symbols before the RMTC window and/or Y time domain symbols after the RMTC window, and X and Y are positive integers.
- the length of the RMTC window is the total number of time domain symbols in the RMTC window; or, the length of the RMTC window is the duration occupied by the RMTC window.
- the communication device 150 may be presented in the form of dividing various functional modules in an integrated manner.
- a “module” here may refer to an application-specific integrated circuit (ASIC), a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or others that may provide the above functions. device.
- ASIC application-specific integrated circuit
- the function/implementation process of the transceiver module 1502 can be implemented through the input and output interface (or communication interface) of the chip or chip system, and the processing module 1501 Function/implementation process can be implemented through core The processor (or processing circuit) of the chip or chip system is implemented.
- the communication device 150 provided in this embodiment can perform the above method, the technical effects it can obtain can be referred to the above method embodiment, which will not be described again here.
- the network equipment or terminal equipment described in the embodiments of this application can also be implemented using the following: one or more field programmable gate arrays (FPGA), programmable logic A programmable logic device (PLD), controller, state machine, gate logic, discrete hardware component, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
- FPGA field programmable gate arrays
- PLD programmable logic A programmable logic device
- state machine gate logic
- discrete hardware component any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
- the network device or the first terminal device in the embodiment of the present application can be implemented by a general bus architecture.
- FIG. 16 is a schematic structural diagram of a communication device 1600 provided by an embodiment of the present application.
- the communication device 1600 includes a processor 1601 and a transceiver 1602 .
- the communication device 1600 may be a first terminal device, or a chip or chip system thereof; or, the communication device 1600 may be a network device, or a chip or module thereof.
- Figure 16 shows only the main components of the communication device 1600.
- the communication device may further include a memory 1603 and an input and output device (not shown).
- the processor 1601 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
- Memory 1603 is mainly used to store software programs and data.
- the transceiver 1602 may include a radio frequency circuit and an antenna.
- the radio frequency circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
- Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- Input and output devices, such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
- the processor 1601, the transceiver 1602, and the memory 1603 can be connected through a communication bus.
- the processor 1601 can read the software program in the memory 1603, interpret and execute the instructions of the software program, and process the data of the software program.
- the processor 1601 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
- the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1601.
- the processor 1601 converts the baseband signal into data and performs processing on the data. deal with.
- the radio frequency circuit and antenna can be arranged independently of the processor that performs baseband processing.
- the radio frequency circuit and antenna can be arranged remotely and independently of the communication device. .
- the above-mentioned communication device 150 may take the form of the communication device 1600 shown in FIG. 16 .
- the function/implementation process of the processing module 1501 in Figure 15 can be implemented by the processor 1601 in the communication device 1600 shown in Figure 16 calling the computer execution instructions stored in the memory 1603.
- the function/implementation process of the transceiver module 1502 in Figure 15 can be implemented by the transceiver 1602 in the communication device 1600 shown in Figure 16 .
- the network device or the first terminal device in this application may adopt the composition structure shown in FIG. 17 , or include the components shown in FIG. 17 .
- Figure 17 is a schematic diagram of the composition of a communication device 1700 provided by this application.
- the communication device 1700 can be a first terminal device or a chip or a system on a chip in the first terminal device; or it can be a network device or a module in the network device. Or a chip or system on a chip.
- the communication device 1700 includes at least one processor 1701 and at least one communication interface (Figure 17 is only an example of including a communication interface 1704 and a processor 1701 for illustration).
- the communication device 1700 may also include a communication bus 1702 and a memory 1703.
- the processor 1701 can be a general central processing unit (CPU), a general processor, a network processor (NP), a digital signal processor (DSP), a microprocessor, or a microcontroller device, programmable logic device (PLD), or any combination thereof.
- the processor 1701 can also be other devices with processing functions, such as circuits, devices or software modules, without limitation.
- the communication bus 1702 is used to connect different components in the communication device 1700 so that different components can communicate.
- the communication bus 1702 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
- PCI peripheral component interconnect
- EISA extended industry standard architecture
- the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 17, but it does not mean that there is only one bus or one type of bus.
- Communication interface 1704 used to communicate with other devices or communication networks.
- the communication interface 1704 may be a module, a circuit, a transceiver, or any device capable of realizing communication.
- the communication interface 1704 may also be an input and output interface located within the processor 1701 to implement signal input and signal output of the processor.
- Memory 1703 may be a device with a storage function, used to store instructions and/or data. Wherein, the instructions may be computer programs.
- the memory 1703 may be a read-only memory (ROM) or other types of static storage devices that can store static information and/or instructions, or may be a random access memory (RAM). or other types of dynamic storage devices that can store information and/or instructions, and can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory, CD-ROM) or other optical disc storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, etc., are not restricted.
- ROM read-only memory
- RAM random access memory
- EEPROM electrically erasable programmable read-only memory
- CD-ROM compact disc read-only memory
- optical disc storage including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
- magnetic disk storage media or other magnetic storage devices, etc. are not restricted.
- the memory 1703 may exist independently of the processor 1701 or may be integrated with the processor 1701 .
- the memory 1703 may be located within the communication device 1700 or outside the communication device 1700, without limitation.
- the processor 1701 can be used to execute instructions stored in the memory 1703 to implement the methods provided by the following embodiments of the application.
- the communication device 1700 may also include an output device 1705 and an input device 1706.
- Output device 1705 communicates with processor 1701 and can display information in a variety of ways.
- the output device 1705 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector), etc.
- Input device 1706 communicates with processor 1701 and may receive user input in a variety of ways.
- the input device 1706 may be a mouse, a keyboard, a touch screen device, a sensing device, or the like.
- the above communication device 150 may take the form of the communication device 1700 shown in FIG. 17 .
- the function/implementation process of the processing module 1501 in Figure 15 can be implemented by the processor 1701 in the communication device 1700 shown in Figure 17 calling the computer execution instructions stored in the memory 1703.
- the function/implementation process of the transceiver module 1502 in Figure 15 can be implemented through the communication interface 1704 in the communication device 1700 shown in Figure 17 .
- the structure shown in Figure 17 does not constitute a specific limitation on the network device or the first terminal device.
- the network device or the first terminal device may include more or less components than shown in the figures, or some components may be combined, or some components may be separated, or may be arranged differently.
- the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
- embodiments of the present application further provide a communication device, which includes a processor and is configured to implement the method in any of the above method embodiments.
- the communication device further includes a memory.
- This memory is used to store necessary computer programs and data.
- the computer program may include instructions, and the processor may call the instructions in the computer program stored in the memory to instruct the communication device to perform the method in any of the above method embodiments.
- the memory may not be in the communication device.
- the communication device further includes an interface circuit, which is a code/data reading and writing interface circuit.
- the interface circuit is used to receive computer execution instructions (computer execution instructions are stored in the memory and may be directly read from memory, or possibly through other devices) and transferred to the processor.
- the communication device further includes a communication interface, which is used to communicate with modules external to the communication device.
- the communication device may be a chip or a chip system.
- the communication device may be composed of a chip or may include a chip and other discrete devices. This is not specifically limited in the embodiments of the present application.
- This application also provides a computer-readable storage medium on which a computer program or instructions are stored.
- a computer program or instructions are stored.
- the functions of any of the above method embodiments are realized.
- This application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
- the systems, devices and methods described in this application can also be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
- the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Components shown as units may or may not be physical units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
- the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
- a software program it may be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions.
- computer program instructions When computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
- the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
- the computer-readable storage medium can be any available medium that can be accessed by a computer or include one or more data storage devices such as servers and data centers that can be integrated with the medium.
- the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
- the computer may include the aforementioned device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种测量、调度方法及装置,可以应用于接收信号功率指示RSSI测量或信道占用测量CO的场景下。该方法包括:第一终端设备确定第一时域符号组,并确定第一时域符号组内RSSI测量和/或CO测量的测量结果。该第一时域符号组包括RMTC窗口内除第二时域符号组外的时域符号,第二时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号。网络设备根据调度规则确定能够用于第一终端设备的下行信号的传输资源。该调度规则包括:不允许网络设备在第一载波上的第二时域符号组内向第一终端设备发送下行信号。基于终端设备的处理,可以降低波束切换对测量结果的影响,从而降低测量误差。基于网络设备的处理,可以避免波束切换导致的下行传输失败,减少资源浪费。
Description
本申请要求于2022年08月08日提交国家知识产权局、申请号为202210945494.5、申请名称为“一种测量、调度方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及通信领域,尤其涉及一种测量、调度方法及装置。
无线通信系统中,定义了接收信号功率指示(received signal strength indicator,RSSI)测量以及信道占用(channel occupancy,CO)测量。其中,RSSI表示测量带宽内,每个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的功率平均值。CO测量用于确定测量带宽内功率超过一定阈值的OFDM符号的比例。
在低频频段,若RSSI/CO的测量带宽位于终端设备的服务小区的激活带宽部分(bandwidth part,BWP)内,终端设备可以同时进行RSSI/CO测量以及下行接收。
然而,在高频频段,由于频率较高,终端设备的下行接收和RSSI/CO测量需要针对特定波束方向进行。此时,低频频段中RSSI/CO测量的部分实现可能不再适用。
发明内容
本申请提供一种测量、调度方法及装置,可以降低波束切换对测量结果的影响,从而降低测量误差。
第一方面,提供了一种测量方法,该方法可以由第一终端设备执行,也可以由第一终端设备的部件,例如第一终端设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一终端设备功能的逻辑模块或软件实现。该方法包括:确定第一时域符号组,并确定第一时域符号组内RSSI测量和/或信道占用CO测量的测量结果。其中,第一时域符号组包括RMTC窗口内除第二时域符号组外的时域符号。第二时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。
基于该方案,终端设备在确定RSSI测量和/或CO测量的测量结果时,排除RMTC窗口内的前N个时域符号和/或后M个时域符号。在该前N个和/或后M个时域符号中发生波束切换的情况下,由于该前N个和/或后M个时域符号不参与测量结果的计算,因此可以降低波束切换对测量结果的影响,从而降低测量误差。
在一种可能的设计中,若第一子载波间隔大于或等于第一阈值,第二时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号。其中,第一子载波间隔为第一载波的激活带宽部分BWP的子载波间隔,第一载波为RSSI测量或CO测量的测量带宽所在的载波;或者,第一子载波间隔为RSSI测量或CO测量的子载波间隔。
基于该可能的设计,在子载波间隔较大时,时域符号的长度较小。此时,波束切换在时域符号内占用的时长不可忽略。将RMTC窗口内可能发生波束切换的时域符号排除,使得该前N个和/或后M个时域符号不参与测量结果的计算,因此可以降低波束切换对测量结果的影响,从而降低测量误差。
在一种可能的设计中,若RSSI测量资源和第一下行信号不是准共址QCL的,第二时域符号组包括RMTC窗口内的前N个时域符号;第一下行信号为RMTC窗口前第一个时域符号上的下行信号,或者,第一下行信号为RMTC窗口前距离RMTC窗口最近的下行信号;RSSI测量资源用于RSSI测量或CO测量。和/或,若RSSI测量资源和第二下行信号不是QCL的,第二时域符号组包括RMTC窗口内的后M个时域符号;第二下行信号为RMTC窗口后的第一个时域符号上的下行信号,或者,第二下行信号为RMTC窗口后距离RMTC窗口最近的下行信号。
基于该可能的设计,RSSI测量资源和第一下行信号不是QCL的时,在接收第一下行信号后,第一终端设备需要进行波束切换以进行RSSI/CO测量。此时,若该波束切换在RMTC窗口内的前N个时域符号中进行,将对该前N个时域符号内的测量结果造成影响,从而第一时域符号组中可以排除RMTC窗口内的前N个时域符号,以降低波束切换对测量结果的影响,进而降低测量误差。
RSSI测量资源和第二下行信号不是QCL的时,在RSSI/CO测量后,第一终端设备需要进行波束切换以接收第二下行信号。此时,若该波束切换在RMTC窗口内的后M个时域符号中进行,将对该后M个时域符号内的测量结果造成影响,从而第一时域符号组中可以排除RMTC窗口内的后M个时域符号,以降
低波束切换对测量结果的影响,进而降低测量误差。
在一种可能的设计中,该方法还包括:向网络设备发送能力信息。该能力信息指示RSSI测量资源和下行信号是QCL的时,第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
第二方面,提供了一种调度方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:确定第一终端设备的RMTC配置,该RMTC配置用于RSSI测量和/或信道占用CO测量。根据调度规则确定能够用于第一终端设备的下行信号的传输资源,调度规则包括:不允许网络设备在第一载波上的第二时域符号组内向第一终端设备发送下行信号。其中,第一载波为RSSI测量和/或CO测量的测量带宽所在的载波;第二时域符号组包括第一终端设备的RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。
在第一终端设备可能在第二时域符号组内进行波束切换的场景下,若网络设备在第一载波上的第二时域符号组内向第一终端设备发送下行信号,第一终端设备可能无法进行下行接收,从而导致传输失败,造成资源浪费。基于该方案,网络设备不被允许在第一载波上的第二时域符号组内向第一终端设备发送下行信号,因此网络设备可能不会在第一载波上的第二时域符号组内向第一终端设备发送下行信号,从而减少资源浪费。
在一种可能的设计中,若第一子载波间隔大于或等于第一阈值,第二时域符号组包括RMTC窗口的前N个时域符号和/或后M个时域符号。其中,第一子载波间隔为第一载波的激活带宽部分BWP的子载波间隔,或者,第一子载波间隔为RSSI测量或CO测量的子载波间隔。
在一种可能的设计中,若RSSI测量资源和第一下行信号不是准共址QCL的,第二时域符号组包括RMTC窗口的前N个时域符号;第一下行信号为RMTC窗口前第一个时域符号上的下行信号,或者,第一下行信号为RMTC窗口前距离RMTC窗口最近的下行信号;RSSI测量资源用于RSSI测量或CO测量。和/或,若RSSI测量资源和第二下行信号不是QCL的,第二时域符号组包括RMTC窗口的后M个时域符号;第二下行信号为RMTC窗口后的第一个时域符号上的下行信号,或者,第二下行信号为RMTC窗口后距离RMTC窗口最近的下行信号。
在一种可能的设计中,该调度规则还包括:不允许网络设备在第一载波上的第一时域符号组内向第一终端设备发送与RSSI测量资源不是QCL的下行信号。其中,第一时域符号组包括RMTC窗口内除第二时域符号组外的时域符号。
在一种可能的设计中,该调度规则还包括:允许网络设备在第一载波上的第一时域符号组内向第一终端设备发送与RSSI测量资源是QCL的下行信号。其中,第一时域符号组包括RMTC窗口内除第二时域符号组外的时域符号。
基于上述两种可能的设计,网络设备能够在第一载波上的第一时域符号组内向第一终端设备发送与RSSI测量资源是QCL的下行信号。在下行信号与RSSI测量资源是QCL的时,第一终端设备可以使用相同的波束进行RSSI/CO测量和下行接收,即第一终端设备可以在进行RSSI/CO测量的同时进行下行接收,使得资源得到充分利用,从而提高资源利用率和网络吞吐量。
在一种可能的设计中,该调度规则还包括:不允许网络设备在第二载波上的第三时域符号组内向第一终端设备发送下行信号。其中,第二载波和第一载波位于同一频段;第三时域符号组内的时域符号与第二时域符号组内的时域符号部分或全部重叠。
基于该可能的设计,网络设备不被允许在第二载波上的第三时域符号组内向第一终端设备发送下行信号,因此网络设备可能不会在第二载波上的第三时域符号组内向第一终端设备发送下行信号,从而减少资源浪费。
在一种可能的设计中,该调度规则还包括:不允许网络设备在第二载波上的第四时域符号组内向第一终端设备发送与RSSI测量资源不是QCL的下行信号。其中,第四时域符号组的时域位置包括RMTC窗口的时域位置中,除第三时域符号组的时域位置外的时域位置。
在一种可能的设计中,该调度规则还包括:允许网络设备在第二载波上的第四时域符号组内向第一终端设备发送与RSSI测量资源是QCL的下行信号。其中,第四时域符号组的时域位置包括RMTC窗口的时域位置中,除第三时域符号组的时域位置外的时域位置。
基于上述两种可能的设计,网络设备能够在第二载波上的第四时域符号组内向第一终端设备发送与RSSI测量资源是QCL的下行信号。在下行信号与RSSI测量资源是QCL的时,第一终端设备可以使用相同的波束进行RSSI/CO测量和下行接收,即第一终端设备可以在进行RSSI/CO测量的同时进行下行接收,
使得资源得到充分利用,从而提高资源利用率和网络吞吐量。
在一种可能的设计中,该方法还包括:接收来自第一终端设备的能力信息。该能力信息指示RSSI测量资源和下行信号是QCL的时,第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
第三方面,提供了一种调度方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:确定第一终端设备的RMTC配置,该RMTC配置用于RSSI测量和/或信道占用CO测量。根据调度规则确定能够用于第一终端设备的下行信号的传输资源,调度规则包括:不允许网络设备在第一载波上的第一时域符号组内向第一终端设备发送与RSSI测量资源不是QCL的下行信号。其中,第一时域符号组包括RMTC窗口内除第二时域符号组外的时域符号。第二时域符号组包括第一终端设备的RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。
基于该方案,网络设备能够在第一载波上的第一时域符号组内向第一终端设备发送与RSSI测量资源是QCL的下行信号。在下行信号与RSSI测量资源是QCL的时,第一终端设备可以使用相同的波束进行RSSI/CO测量和下行接收,即第一终端设备可以在进行RSSI/CO测量的同时进行下行接收,使得资源得到充分利用,从而提高资源利用率和网络吞吐量。
第四方面,提供了一种调度方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:确定第一终端设备的RMTC配置,该RMTC配置用于RSSI测量和/或信道占用CO测量。根据调度规则确定能够用于第一终端设备的下行信号的传输资源,调度规则包括:不允许网络设备在第一载波上的第五时域符号组内向第一终端设备发送下行信号。其中,第一载波为RSSI测量和/或CO测量的测量带宽所在的载波;第五时域符号组包括第一终端设备的RMTC窗口前的X个时域符号和/或RMTC窗口后的Y个时域符号,X、Y为正整数。
波束切换在RMTC窗口前的X个时域符号中进行的情况下,该X个时域符号内第一终端设备可能无法进行下行接收。此时,若网络设备仍然在第一载波上的该X个时域符号内向第一终端设备发送下行信号,将出现由于第一终端设备无法进行下行接收导致的传输失败,造成资源浪费。基于该方案,网络设备不被允许在第一载波上的该X个时域符号内向第一终端设备发送下行信号,从而可以减少网络设备发送了下行信号但第一终端设备无法接收而造成的资源浪费。
类似的,波束切换在RMTC窗口后的Y个时域符号中进行的情况下,基于该方案,网络设备不被允许在第一载波上的该Y个时域符号内向第一终端设备发送下行信号,从而可以减少网络设备发送了下行信号但第一终端设备无法接收而造成的资源浪费。
在一种可能的设计中,若第一子载波间隔大于或等于第一阈值,第五时域符号组包括RMTC窗口前的X个时域符号和/或RMTC窗口后的Y个时域符号。第一子载波间隔为第一载波的激活带宽部分BWP的子载波间隔,或者,第一子载波间隔为RSSI测量或CO测量的子载波间隔。
在一种可能的设计中,若RSSI测量资源和第三下行信号不是准共址QCL的,第五时域符号组包括RMTC窗口前的X个时域符号;第三下行信号为该X个时域符号上的下行信号,或者,第三下行信号为X个时域符号前距离X个时域符号最近的下行信号;RSSI测量资源用于RSSI测量或CO测量。若RSSI测量资源和第四下行信号不是QCL的,第五时域符号组包括RMTC窗口后的Y个时域符号;第四下行信号为Y个时域符号上的下行信号,或者,第四下行信号为该Y个时域符号后距离该Y个时域符号最近的下行信号。
在一种可能的设计中,该调度规则还包括:不允许网络设备在第一载波上的RMTC窗口内向第一终端设备发送与RSSI测量资源不是QCL的下行信号。
在一种可能的设计中,该调度规则还包括:允许网络设备在第一载波上的RMTC窗口内向第一终端设备发送与RSSI测量资源是QCL的下行信号。
基于上述两种可能的设计,网络设备能够在第一载波上的RMTC窗口内向第一终端设备发送与RSSI测量资源是QCL的下行信号。在下行信号与RSSI测量资源是QCL的时,第一终端设备可以使用相同的波束进行RSSI/CO测量和下行接收,即第一终端设备可以在进行RSSI/CO测量的同时进行下行接收,使得资源得到充分利用,从而提高资源利用率和网络吞吐量。
在一种可能的设计中,该调度规则还包括:不允许网络设备在第二载波上的第六时域符号组内向第一终端设备发送下行信号。其中,第二载波和第一载波位于同一频段;第六时域符号组内的时域符号与第五时域符号组内的时域符号部分或全部重叠。
在一种可能的设计中,该调度规则还包括:不允许网络设备在第二载波上的第七时域符号组内向第一终端设备发送与RSSI测量资源不是QCL的下行信号。其中,第七时域符号组的时域位置包括RMTC窗口的时域位置中,除第六时域符号组的时域位置外的时域位置。
在一种可能的设计中,该调度规则还包括:允许网络设备在第二载波上的第七时域符号组内向第一终端设备发送与RSSI测量资源是QCL的下行信号。其中,第七时域符号组的时域位置包括RMTC窗口的时域位置中,除第六时域符号组的时域位置外的时域位置。
在一种可能的设计中,该方法还包括:接收来自第一终端设备的能力信息。该能力信息指示RSSI测量资源和下行信号是QCL的时,第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
第五方面,提供了一种调度方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:确定第一终端设备的RMTC配置,该RMTC配置用于RSSI测量和/或信道占用CO测量。根据调度规则确定能够用于第一终端设备的下行信号的传输资源,调度规则包括:不允许网络设备在第一载波上的RMTC窗口内向第一终端设备发送与RSSI测量资源不是QCL的下行信号。其中,第一载波为RSSI测量和/或CO测量的测量带宽所在的载波。
基于该方案,网络设备能够在第一载波上的RMTC窗口内向第一终端设备发送与RSSI测量资源是QCL的下行信号。在下行信号与RSSI测量资源是QCL的时,第一终端设备可以使用相同的波束进行RSSI/CO测量和下行接收,即第一终端设备可以在进行RSSI/CO测量的同时进行下行接收,使得资源得到充分利用,从而提高资源利用率和网络吞吐量。
第六方面,提供了一种通信方法,该方法可以由第一终端设备执行,也可以由第一终端设备的部件,例如第一终端设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一终端设备功能的逻辑模块或软件实现。该方法包括:确定能力信息;并向网络设备发送该能力信息。其中,能力信息指示接收信号功率指示RSSI测量资源和下行信号是准共址QCL的时,第一终端设备是否支持同时进行RSSI/信道占用CO测量和下行接收。
基于该方案,第一终端设备向网络设备上报其能力信息,有助于网络设备更准确地基于该能力信息进行调度,提高调度效率。
在一种可能的设计中,能力信息指示RSSI测量资源和下行信号是QCL的时,第一终端设备不支持同时进行RSSI/CO测量和下行接收;该方法还包括:网络设备配置第一终端设备在RSSI测量资源上进行RSSI/CO测量,且同时接收下行信号时,第一终端设备进行RSSI/CO测量,不接收下行信号。
第七方面,提供了一种通信方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:接收来自第一终端设备的能力信息,并根据能力信息确定能够用于第一终端设备的下行信号的传输资源。其中,该能力信息指示接收信号功率指示RSSI测量资源和下行信号是准共址QCL的时,第一终端设备是否支持同时进行RSSI/信道占用CO测量和下行接收。其中,第七方面所带来的技术效果可参考上述第六方面所带来的技术效果,在此不再赘述。
在一种可能的设计中,若能力信息指示RSSI测量资源和下行信号是QCL的时,第一终端设备不支持同时进行RSSI/CO测量和下行接收,则能够用于第一终端设备的下行信号的传输资源不包括第一载波上的RMTC窗口。
第八方面,提供了一种测量方法,该方法可以由第一终端设备执行,也可以由第一终端设备的部件,例如第一终端设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一终端设备功能的逻辑模块或软件实现。该方法包括:确定第八时域符号组,并确定第八时域符号组内接收信号功率指示RSSI测量和/或信道占用CO测量的测量结果。
其中,若RSSI测量时间配置RMTC窗口的长度大于或等于第二阈值,第八时域符号组包括RMTC窗口内除第九时域符号组外的时域符号,第九时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。或者,若RMTC窗口的长度小于第二阈值,第八时域符号组包括RMTC窗口内的全部时域符号。
基于该方案,终端设备可以基于RMTC窗口的长度选择在RMTC窗口内或RMTC窗口外执行波束切换。在RMTC窗口的长度较长的情况下,在RMTC窗口内进行波束切换,从而可以在RMTC窗口前后进行下行传输,提高资源利用率和网络吞吐量。在RMTC窗口的长度较短的情况下,在RMTC窗口外进行波束切换,从而降低对RSSI/CO测量的影响,提高测量结果的准确性。
在一种可能的设计中,RMTC窗口的长度为RMTC窗口内的时域符号总数;或者,RMTC窗口的长度为RMTC窗口占用的时长。
第九方面,提供了一种调度方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:确定第一终端设备的RMTC配置,RMTC配置用于RSSI测量和/或信道占用CO测量;根据调度规则确定能够用于第一终端设备的下行信号的传输资源。调度规则包括:不允许网络设备在第一载波上的第十时域符号组内向第一终端设备发送下行信号。
其中,若RMTC窗口的长度大于或等于第二阈值,第十时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。或者,若RMTC窗口的长度小于第二阈值,第十时域符号组包括RMTC窗口前的X个时域符号和/或RMTC窗口后的Y个时域符号,X、Y为正整数。
基于该方案,网络设备基于RMTC窗口长度确定不允许向第一终端设备发送下行信号的传输资源,在这些传输资源上进行波束切换的场景下,网络设备不在这些传输资源上向第一终端设备发送下行信号,从而减少资源浪费。
在一种可能的设计中,RMTC窗口的长度为RMTC窗口内的时域符号总数;或者,RMTC窗口的长度为RMTC窗口占用的时长。
第十方面,提供了一种通信装置用于实现各种方法。该通信装置可以为第一方面或第六方面或第八方面中的第一终端设备,或者第一终端设备中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第二方面至第五方面、第七方面、或第九方面中的网络设备,或者网络设备中包含的装置,比如芯片或芯片系统。所述通信装置包括实现方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与功能相对应的模块或单元。
在一些可能的设计中,该通信装置可以包括处理模块。进一步的,该通信装置还可以包括收发模块。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。收发模块可以包括接收模块和发送模块,分别用以实现上述任一方面及其任意可能的实现方式中的接收功能和发送功能。
在一些可能的设计中,收发模块可以由收发电路,收发机,收发器或者通信接口构成。
第十一方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行任一方面所述的方法。该通信装置可以为第一方面或第六方面或第八方面中的第一终端设备,或者第一终端设备中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第二方面至第五方面、第七方面、或第九方面中的网络设备,或者网络设备中包含的装置,比如芯片或芯片系统。
第十二方面,提供一种通信装置,包括:处理器和通信接口;该通信接口,用于与该通信装置之外的模块通信;所述处理器用于执行计算机程序或指令,以使该通信装置执行任一方面所述的方法。该通信装置可以为第一方面或第六方面或第八方面中的第一终端设备,或者第一终端设备中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第二方面至第五方面、第七方面、或第九方面中的网络设备,或者网络设备中包含的装置,比如芯片或芯片系统。
第十三方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行任一方面所述的方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为第一方面或第六方面或第八方面中的第一终端设备,或者第一终端设备中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第二方面至第五方面、第七方面、或第九方面中的网络设备,或者网络设备中包含的装置,比如芯片或芯片系统。
第十四方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当其在通信装置上运行时,使得通信装置可以执行任一方面所述的方法。
第十五方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得该通信装置可以执行任一方面所述的方法。
第十六方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现任一方面中所涉及的功能。
在一些可能的设计中,该通信装置包括存储器,该存储器,用于保存必要的程序指令和数据。
在一些可能的设计中,该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
可以理解的是,第十方面至第十六方面中任一方面提供的通信装置是芯片时,通信装置的发送动作/功
能可以理解为输出信息,通信装置的接收动作/功能可以理解为输入信息。
其中,第十方面至第十六方面中任一种设计方式所带来的技术效果可参见第一方面至第九方面中不同设计方式所带来的技术效果,在此不再赘述。
图1为本申请提供的一种无法同时测量和接收的示意图;
图2a为本申请提供的一种不同子载波间隔下时域符号的长度示意图;
图2b为本申请提供的一种波束切换在RMTC窗口内进行的示意图;
图3为本申请提供的一种通信系统的结构示意图;
图4为本申请提供的一种测量、调度方法的流程示意图;
图5为本申请提供的一种第一时域符号组的示意图;
图6为本申请提供的一种第二时域符号组的示意图;
图7a为本申请提供的一种RMTC窗口和第一时域符号组的关系示意图;
图7b为本申请提供的一种RMTC窗口和第一时域符号组、第二时域符号组的关系示意图;
图7c为本申请提供的另一种RMTC窗口和第一时域符号组的关系示意图;
图7d为本申请提供的又一种RMTC窗口和第一时域符号组的关系示意图;
图8为本申请提供的一种同频段内调度限制的示意图;
图9为本申请提供的另一种测量、调度方法的流程示意图;
图10为本申请提供的一种第五时域符号组的示意图;
图11为本申请提供的另一种第五时域符号组的示意图;
图12a为本申请提供的一种无需波束切换的场景示意图;
图12b为本申请提供的又一种第五时域符号组的示意图;
图13为本申请提供的另一种同频段内调度限制的示意图;
图14为本申请提供的又一种测量、调度方法的流程示意图;
图15为本申请提供的一种通信装置的结构示意图;
图16为本申请提供的另一种通信装置的结构示意图;
图17为本申请提供的又一种通信装置的结构示意图。
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“…时”以及“若”均指在某种客观情况下会做出相应的处理,并非是限定时间,且也不要求实现时要有判断的动作,也不意味着存在其它限定。
可以理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
无线通信系统中,可能存在不同的网络使用相同的非授权频段,因此,终端设备工作在非授权频谱时,可能会受到干扰,从而影响数据传输及吞吐量。为了降低非授权频谱中的干扰,引入了接收信号功率指示(received signal strength indicator,RSSI)测量以及信道占用(channel occupancy,CO)测量。
在频率范围1(frequency range 1,FR1)的低频非授权频段,终端设备可以使用全向天线进行接收,无需将波束对准特定方向。因此,在低频非授权频段,若RSSI/CO的测量带宽位于终端设备的服务小区的激活(active)带宽部分(bandwidth part,BWP)内,终端设备可以同时进行RSSI/CO测量以及下行接收。
在频率范围2(frequency range 2,FR2)的高频非授权频段,由于频率较高,需要使用较细的波束来提高覆盖。因此,终端设备需要使用波束赋形技术,在某个波束方向上进行下行接收。此外,终端设备需要在某个波束方向上进行RSSI/CO测量。
网络设备可以向终端设备发送RSSI测量时间配置(RSSI measurement timing configuration,RMTC)以配置终端设备进行RSSI/CO测量。示例性的,RMTC配置可以包括以下至少一项:
RMTC周期(RMTC-Periodicity):指示RSSI/CO测量的周期。
RMTC子帧偏移(RMTC-SubFameOffset):指示RMTC窗口的起始时域位置。其中,RMTC窗口可以理解为RSSI/CO测量的时域资源。
测量持续符号(measDurationsymbols):指示RMTC窗口占用的时长。
RMTC频率(rmtc-Frequency):指示RSSI/CO测量的测量带宽的中心频率。示例性的,该指示可以为绝对频点,例如绝对无线频率信道号(absolute radio frequency channel number,ARFCN)。根据该绝对频点可以获知RSSI/CO测量所在的载波。
参考子载波间隔(ref-SCS-CP):指示用于RSSI测量的参考子载波间隔(sub-carrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
对于高频频段,除上述至少一项外,RMTC配置还可以包括以下至少一项:
RMTC带宽(rmtc-Bandwidth):指示RSSI/CO测量的测量带宽。
传输配置指示(transmission configuration indicator,TCI)-状态信息(tci-StateInfo):指示用于RSSI测量的TCI状态(TCI-state),该TCI状态指示某个下行(downlink,DL)参考信号(reference signal,RS)。RSSI测量资源和该下行参考信号(对应的参考信号资源)是准共址(quasi Co-location,QCL)的(QCL-ed)。其中,RSSI测量资源用于RSSI/CO测量。示例性的,该RSSI测量资源可以是时频资源。
通常情况下,本申请中的QCL-ed是类型D(typeD)的QCL(即QCL-ed with typeD)。当然,在本申请实施例提供的各种操作的变形中,该QCL-ed也可以是其他类型(例如typeA、typeB、或typeC)的QCL,对此不予限制。
多个资源是QCL-ed可以表示多个资源之间具有一个或多个相同或者类似的通信特征。对于是QCL-ed多个资源,可以采用相同或者类似的通信配置。例如,可以在该多个资源上使用相同的波束进行接收,此时,可以认为TCI状态信息指示用于RSSI/CO测量的波束。
波束在协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter),或称空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),或QCL信息,QCL假设,QCL指示等。波束可以通过传输配置指示(transmission configuration indication,TCI)状态(TCI-state)参数来指示,或通过空间关系(spatial relation)参数来指示。因此,本申请中,波束可以替换为空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示,TCI-state,或空间关系等。上述术语之间也相互等效。本申请中的波束也可以替换为其他表示波束的术语,本申请不作限定。
在RMTC配置中不包括TCI状态信息的情况下,终端设备可以假设RSSI测量资源与在当前载波的激活BWP(active BWP)上最近接收的物理下行共享信道(physical downlink shared channel,PDSCH)或最近监测的控制资源集合(control resource set,CORESET)是QCL-ed。其中,某个资源与信道是QCL-ed,可以理解为该资源与该信道所在的时频资源是QCL-ed。
如上所述,低频频段和高频频段的RSSI/CO测量机制、RMTC配置存在差异,因此,低频频段中RSSI/CO测量的部分实现可能不再适用于高频频段。
一方面,在低频频段,终端设备可以同时进行RSSI/CO测量和下行接收,因此,网络设备可以配置终端设备同时进行RSSI/CO测量和下行接收。然而,在高频频段,终端设备可能无法同时进行RSSI/CO测量和下行接收。
示例性的,假设网络设备在载波1上配置的用于RSSI/CO测量的波束为波束1,在载波1上的RMTC窗口内配置的用于下行发送的波束为波束2,那么由于终端设备在同一时刻只能将波束对准一个方向,因此,终端设备无法在载波1上的RMTC窗口内同时进行RSSI/CO测量和下行接收。
此外,在载波聚合(carrier aggregation,CA)场景下,上述限制同样存在于与载波1属于同一频段的载波2上。在CA中,为了提升终端设备的峰值速率,可以将多个小区的载波进行聚合后提供给终端设备。从而,载波1和载波2可以为不同小区的载波。此外,载波1和载波2中的一个可以为主载波,另一个可以为辅载波;或者,载波1和载波2可以均为辅载波。
如图1所示,终端设备在载波1上进行波束1上的RSSI/CO测量的同时,无法在载波2上的与RMTC窗口重合的时域符号内接收波束2上的下行信号。在上述场景下,若网络设备仍然配置终端设备同时进行RSSI/CO测量和下行接收,可能导致下行接收失败或RSSI/CO测量失败。
另一方面,在高频频段,可能引入新的较大的子载波间隔,例如480千赫兹(KHz)或960KHz。在480/960KHz下,时域符号的长度相较于较小的子载波间隔(例如120KHz)大大缩短,CP也很短。因此,终端设备的波束切换所占用的时间无法忽略。该场景下,若仍然按照目前的方案进行RSSI/CO测量,测量结果可能存在较大的误差。
示例性的,如图2a所示,在波束切换所用的时长相同的情况下,子载波间隔为120KHz时,波束切换在一个时域符号内所占的比例很小,此时,波束切换所占用的时间可以忽略。然而,子载波间隔为480KHz或960KHz时,由于时域符号的长度缩短,波束切换在一个时域符号内所占的比例大幅增加,无法再将波束切换所占用的时间忽略。
其中,波束切换可以指调整波束方向,或调整空间接收参数等。时域符号可以是时域资源的最小粒度。示例性的,时域符号可以为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号等。
示例性的,如图2b所示,假设网络设备配置终端设备在载波1上使用波束1进行RSSI/CO测量,且在RMTC窗口前用于下行信号的波束与波束1不同,那么在测量之前,终端设备需要进行波束切换以切换至波束1。若波束切换在RMTC窗口内进行,例如图2b所示在RMTC窗口内的第一个时域符号进行,即第一个时域符号的部分时长被波束切换占用,那么,终端设备在该第一个时域符号上测量的功率可能小于该时域符号上的实际功率,导致最终的测量结果存在较大误差。
例如,该第一个时域符号中的部分时间被波束切换占用,终端设备无法测得整个时域符号上的全部功率(例如只测得该时域符号上70%的功率),因此,可能出现下述情况:该时域符号上的实际功率大于CO测量的阈值,但由于只测得70%的功率,从而判定该时域符号上的功率小于CO测量的阈值,影响CO测量的测量结果。此外,由于只测得该时域符号上70%的功率,也会导致RSSI测量的测量结果偏小。
类似的,若RMTC窗口后的第一个时域符号上用于下行信号的波束与波束1不同,终端设备在RMTC窗口内的最后一个时域符号上进行的波束切换也会对测量结果造成影响。
综上,本申请提供一种测量、调度方法,可以降低测量误差,或者降低下行接收失败或RSSI/CO测量失败导致的资源浪费。
本申请提供的技术方案可用于各种通信系统,该通信系统可以为第三代合作伙伴计划(3rd generation partnership project,3GPP)通信系统,例如,第四代(4th generation,4G)长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)新无线(new radio,NR)系统、车联网(vehicle to everything,V2X)系统、LTE和NR混合组网的系统、或者设备到设备(device-to-device,D2D)系统、机器到机器(machine to machine,M2M)通信系统、物联网(Internet of Things,IoT),以及其他下一代通信系统等。或者,该通信系统也可以为非3GPP通信系统,不予限制。
其中,上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,
以下不再赘述。
本申请提供的技术方案可以用于各种场景下RSSI/CO测量。例如可以用于非授权频谱RSSI/CO测量,或者,可以用于跨链路干扰(cross link interference,CLI)-RSSI测量。当然还可以用于其他场景下的RSSI/CO测量,本申请对此不作具体限定。
参见图3,为本申请提供的一种示例性的通信系统。该通信系统包括网络设备和至少一个终端设备。可选的,不同终端设备之间可以相互通信。
可选的,网络设备是一种将终端设备接入到无线网络的设备,可以是LTE或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(evolutional Node B,eNB或eNodeB),如传统的宏基站eNB和异构网络场景下的微基站eNB;或者可以是5G系统中的下一代节点B(next generation node B,gNodeB或gNB);或者可以是传输接收点(transmission reception point,TRP);或者可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站;或者可以是宽带网络业务网关(broadband network gateway,BNG)、汇聚交换机或非3GPP接入设备;或者可以是云无线接入网络(cloud radio access network,CRAN)中的无线控制器;或者可以是WiFi系统中的接入节点(access point,AP);或者可以是无线中继节点或无线回传节点;或者可以是IoT中实现基站功能的设备、V2X中实现基站功能的设备、D2D中实现基站功能的设备、或者M2M中实现基站功能的设备,本申请实施例对此不作具体限定。
示例性的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
可选的,终端设备可以是指一种具有无线收发功能的用户侧设备。终端设备也可以称为用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal,MT)、用户终端、无线通信设备、用户代理或用户装置等。终端例如可以是IoT、V2X、D2D、M2M、5G网络、或者未来演进的PLMN中的无线终端。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
示例性的,终端设备可以是无人机、IoT设备(例如,传感器,电表,水表等)、V2X设备、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)、平板电脑或带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有车对车(vehicle-to-vehicle,V2V)通信能力的车辆、智能网联车、具有无人机对无人机(UAV to UAV,U2U)通信能力的无人机等等。终端可以是移动的,也可以是固定的,本申请对此不作具体限定。
下面将结合附图,以终端设备和网络设备之间的交互为例,对本申请实施例提供的方法进行展开说明。
可以理解的,本申请实施例中,执行主体可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
如图4所示,为本申请实施例提供的一种测量、调度方法,该测量、调度方法包括如下步骤:
S401、网络设备确定第一终端设备的RMTC配置。
其中,该RMTC配置用于RSSI和/或CO测量。示例性的,该RMTC配置可以配置第一终端设备在第一载波上的RMTC窗口内进行RSSI和/或CO测量。
可选的,该RMTC配置可以配置RSSI测量资源,例如,配置RMTC窗口的长度及时域位置、RSSI和/或CO测量的测量带宽、RSSI和/或CO测量的测量带宽所在的载波(本申请下述实施例中称为“第一载波”)等。可以理解的,该RMTC测量资源用于RSSI/CO测量。
进一步的,该RMTC配置还可以包括TCI状态信息,该TCI状态信息可以指示与RSSI测量资源是QCL-ed参考信号。终端设备根据该TCI状态信息可以确定用于RSSI和/或CO测量的波束。当然,该RMTC配置也可以不包括TCI状态信息。可参考前述关于RMTC配置的相关说明,在此不再赘述。
S402、网络设备向第一终端设备发送该第一终端设备的RMTC配置。相应的,第一终端设备接收来自
网络设备的该RMTC配置。
可选的,第一终端设备收到该RMTC配置后,可以根据该RMTC配置确定RSSI测量资源,例如RMTC窗口、第一载波等。在RMTC配置包括TCI状态信息的情况下,还可以根据RMTC配置确定用于RSSI和/或CO测量的波束。在RMTC配置不包括TCI状态信息的情况下,第一终端设备可以确定RSSI测量资源与在第一载波的激活BWP上最近接收的PDSCH或最近监测的CORESET是QCL-ed,从而确定用于RSSI和/或CO测量的波束。
S403、第一终端设备确定第一时域符号组。
S404、第一终端设备确定第一时域符号组内的RSSI测量和/或CO测量的测量结果。即,实际上用于计算测量结果的时域资源不是RMTC窗口,而是第一时域符号组。
可选的,第一终端设备可以在RMTC窗口内进行RSSI/CO测量,确定第一时域符号组内的测量结果。或者,第一终端设备可以在第一时域符号组内进行RSSI/CO测量,并确定第一时域符号组内的测量结果。本申请对此不作具体限定。
其中,第一时域符号组包括RMTC窗口内除第二时域符号组外的时域符号。该第二时域符号组包括该RMTC窗口内的前N个时域符号和/或后M个时域符号。N、M为正整数。也就是说,第一时域符号组位于RMTC窗口内,且第一时域符号组不包括该RMTC窗口内的前N个和/或后M个时域符号。
示例性的,如图5所示,以RMTC配置所配置的RMTC窗口包括索引为0-9的10个时域符号为例,假设N和M等于1,即第二时域符号组由该RMTC窗口内的第一个和最后一个构成,那么第一时域符号组包括该RMTC窗口内索引为1-8的时域符号。
关于第二时域符号组,作为第一种可能的实现,若第一子载波间隔大于或等于第一阈值,第二时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号。示例性的,第一阈值可以为480KHz。可选的,若第一子载波间隔小于第一阈值,第一时域符号组由RMTC窗口内的全部时域符号构成,即第一时域符号组和RMTC窗口相同(此时可以认为第二时域符号组不存在)。
其中,第一子载波间隔为第一载波的激活BWP的子载波间隔,或者,第一子载波间隔为RSSI/CO测量的子载波间隔。示例性的,RSSI/CO测量的子载波间隔可以在RMTC配置中指示。
作为第二种可能的实现,若第一子载波间隔为480KHz或960KHz,第二时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号。可选的,若第一子载波间隔为120KHz,第一时域符号组由RMTC窗口内的全部时域符号构成。
作为第三种可能的实现,若RSSI测量资源和第一下行信号不是QCL的(QCL-ed),第二时域符号组包括RMTC窗口内的前N个时域符号。和/或,若RSSI测量资源和第二下行信号不是QCL-ed,第二时域符号组包括RMTC窗口内的后M个时域符号。
其中,某个资源和信号是(或不是)QCL-ed,可以理解为该资源和承载该信号的资源是(或不是)QCL-ed。此外,本申请中,A和B不是QCL-ed,也可以描述为A和B不具备QCL关系。类似的,A和B是QCL-ed,也可以描述为A和B具备QCL关系。
可选的,第一下行信号为RMTC窗口前第一个时域符号上的下行信号。示例性的,该RMTC窗口前的第一个时域符号指:RMTC窗口前与RMTC窗口内的第一个时域符号相邻的时域符号。或者,第一下行信号为RMTC窗口前距离RMTC窗口最近的下行信号。RSSI测量资源和第一下行信号不是QCL-ed时,用于RSSI/CO测量的波束和用于第一下行信号的波束(例如第一下行信号的发送波束)不同,第一终端设备不能使用相同的波束进行RSSI/CO测量和第一下行信号的接收。因此,在接收第一下行信号后,第一终端设备需要进行波束切换以进行RSSI/CO测量。从而,若RSSI测量资源和第一下行信号不是QCL-ed,也可以描述为:若RSSI/CO测量前需要进行波束切换。
此时,若该波束切换在RMTC窗口内的前N个时域符号中进行,将对该前N个时域符号内的测量结果造成影响,从而第一时域符号组中可以排除RMTC窗口内的前N个时域符号,以降低波束切换对测量结果的影响,进而降低测量误差。
示例性的,如图6所示,以RMTC窗口包括索引为10-19的时域符号,RMTC窗口前的下行信号包括在索引为4-6的时域符号上传输的下行信号,以及在索引为8和9的时域符号上传输的下行信号为例,那么第一下行信号为在索引为8和9的时域符号上传输的下行信号。假设RSSI/CO测量的波束为波束1,用于第一下行信号的波束为波束2,那么第二时域符号组包括RMTC窗口内的前N个时域符号。以N等于1为例,第二时域符号组包括索引为10的时域符号。
可选的,第二下行信号为RMTC窗口后的第一个时域符号上的下行信号,或者,第二下行信号为RMTC
窗口后距离该RMTC窗口最近的下行信号。也就是说,若RSSI测量资源和承载第二下行信号的资源不是QCL-ed,第二时域符号组包括RMTC窗口内的后M个时域符号。RSSI测量资源和承载第二下行信号的资源的QCL关系可以是网络设备预先配置的。
RSSI测量资源和第二下行信号不是QCL-ed时,用于RSSI/CO测量的波束和用于第二下行信号的波束(例如第二下行信号的发送波束)不同,第一终端设备不能使用相同的波束进行RSSI/CO测量和第二下行信号的接收。因此,在RSSI/CO测量后,第一终端设备需要进行波束切换以接收第二下行信号。从而,若RSSI测量资源和第二下行信号不是QCL-ed,也可以描述为:若RSSI/CO测量后需要进行波束切换。
此时,若该波束切换在RMTC窗口内的后M个时域符号中进行,将对该后M个时域符号内的测量结果造成影响,从而第一时域符号组中可以排除RMTC窗口内的后M个时域符号,以降低波束切换对测量结果的影响,进而降低测量误差。
示例性的,如图6所示,以RMTC窗口包括索引为10-19的时域符号,索引为20-22的时域符号用于承载下行信号为例,假设RSSI/CO测量的波束为波束1,用于下行信号的波束为波束2,那么第二时域符号组包括RMTC窗口内的后M个时域符号。以M等于1为例,第二时域符号组包括索引为19的时域符号。
可选的,若RSSI测量资源和第一下行信号是QCL-ed,第二时域符号组不包括RMTC窗口内的前N个时域符号,或者说,第一时域符号组还包括RMTC窗口内的前N个时域符号。和/或,若RSSI测量资源和第二下行信号是QCL-ed,第二时域符号组不包括RMTC窗口内的后M个时域符号,或者说,第一时域符号组还包括RMTC窗口内的后M个时域符号。和/或,若RMTC窗口后的第一个时域符号不用于承载下行信号,第二时域符号组不包括RMTC窗口内的后M个时域符号。
示例性的,如图7a所示,RSSI测量资源和第一下行信号是QCL-ed,且RSSI测量资源和第二下行信号是QCL-ed,则第一时域符号组和RMTC窗口相同,第二时域符号组不存在。如图7b所示,RSSI测量资源和第一下行信号是QCL-ed,且RSSI测量资源和第二下行信号不是QCL-ed,第二时域符号组包括RMTC窗口内的后M个时域符号,图7b中以M等于1为例进行说明。如图7c所示,RSSI测量资源和第一下行信号是QCL-ed,且RMTC窗口后的第一个时域符号不用于承载下行信号,则第一时域符号组和RMTC窗口相同,第二时域符号组不存在。如图7d所示,RSSI测量资源和第一下行信号不是QCL-ed,且RMTC窗口后的第一个时域符号不用于承载下行信号,则第二时域符号组包括RMTC窗口内的前N个时域符号,图7d中以N等于1为例进行说明。
可选的,本申请中的下行信号可以指PDSCH、物理下行控制信道(physical downlink shared channel,PDCCH)、参考信号等中的至少一项。参考信号例如可以为信道状态信息参考信号(channel state information-reference signal,CSI-RS)、解调参考信号(demodulation reference signal,DMRS)等,本申请对此不作具体限定。
基于上述步骤S403-S404,终端设备在确定RSSI测量和/或CO测量的测量结果时,排除RMTC窗口内的前N个时域符号和/或后M个时域符号。在该前N个和/或后M个时域符号中发生波束切换的情况下,由于该前N个和/或后M个时域符号不参与测量结果的计算,因此可以降低波束切换对测量结果的影响,从而降低测量误差。
S405、网络设备根据调度规则确定能够用于第一终端设备的下行信号的传输资源。
作为第一种可能的实现,该调度规则包括规则1):不允许网络设备在第一载波上的第二时域符号组内向第一终端设备发送下行信号,或者说,网络设备不在第一载波上的第二时域符号组内向第一终端设备发送下行信号。也就是说,能够用于第一终端设备的下行信号的传输资源中不包括第一载波上的第二时域符号组。第一载波和第二时域符号组可参考前述步骤S403-S404中的相关说明,在此不再赘述。
由上述分析可知,第一终端设备可能在第二时域符号组内进行波束切换。该场景下,若网络设备在第一载波上的第二时域符号组内向第一终端设备发送下行信号,第一终端设备可能无法进行下行接收,从而导致传输失败,造成资源浪费。基于该规则1),网络设备不被允许在第一载波上的第二时域符号组内向第一终端设备发送下行信号,因此网络设备可能不会在第一载波上的第二时域符号组内向第一终端设备发送下行信号,从而减少资源浪费。
作为第二种可能的实现,该调度规则可以包括规则2):不允许网络设备在第一载波上的第一时域符号组内向第一终端设备发送与RSSI测量资源不是QCL-ed下行信号。换句话说,该规则2)可以描述为:允许网络在第一载波上的第一时域符号组内向第一终端设备发送与RSSI测量资源是QCL-ed下行信号。第一时域符号组可参考前述步骤S403-S404中的相关说明,在此不再赘述。
也就是说,能够用于第一终端设备的下行信号的传输资源中可以包括第一载波上的第一时域符号组,且该下行信号与RSSI测量资源是QCL-ed。
可选的,能够用于第一终端设备的下行信号的传输资源中最终是否包括第一载波上的第一时域符号组,可以根据终端设备的能力确定。该场景下,本申请实施例提供的方法还可以包括如下步骤:
第一终端设备确定能力信息,并向网络设备发送该能力信息。相应的,网络设备接收来自终端设备的能力信息。其中,该能力信息指示RSSI测量资源和下行信号是QCL-ed时,第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
可选的,网络设备收到该能力信息后,若能力信息指示RSSI测量资源和下行信号是QCL-ed时,第一终端设备支持同时进行RSSI/CO测量和下行接收,则能够用于第一终端设备的下行信号的传输资源中可以包括第一载波上的第一时域符号组。若能力信息指示RSSI测量资源和下行信号是QCL-ed时,第一终端设备不支持同时进行RSSI/CO测量和下行接收,则能够用于第一终端设备的下行信号的传输资源中不包括第一载波上的第一时域符号组。
可选的,在RSSI测量资源和下行信号是QCL-ed时,第一终端设备不支持同时进行RSSI/CO测量和下行接收的情况下,若网络设备仍然配置第一终端设备在RSSI测量资源上进行RSSI/CO测量,且同时接收该下行信号,那么第一终端设备可以在该RSSI资源上进行RSSI/CO测量,不接收下行信号。即第一终端设备优先进行RSSI/CO测量,或者说,RSSI/CO测量的优先级高于下行接收的优先级。
可选的,在RSSI测量资源和下行信号是QCL-ed时,第一终端设备支持同时进行RSSI/CO测量和下行接收的情况下,若网络设备配置第一终端设备在RSSI测量资源上进行RSSI/CO测量,且同时接收该下行信号,那么第一终端设备可以在该RSSI资源上进行RSSI/CO测量的同时接收下行信号。
基于该规则2),网络设备能够在第一载波上的第一时域符号组内向第一终端设备发送与RSSI测量资源是QCL-ed下行信号。在下行信号与RSSI测量资源是QCL-ed时,第一终端设备可以使用相同的波束进行RSSI/CO测量和下行接收,即第一终端设备可以在进行RSSI/CO测量的同时进行下行接收,使得资源得到充分利用,从而提高资源利用率和网络吞吐量。
需要说明的是,本申请中的调度规则也可以称为调度限制,二者可以相互替换。当然,调度规则也可以有其他名称,例如第一规则等,本申请对此不作具体限定。
需要说明的是,上述规则1)和规则2)可以独立使用,即规则1)和规则2)之间不存在相互依赖关系。当然,规则1)和规则2)也可以结合使用,例如,调度规则可以同时包括规则1)和规则2)。
可选的,上述规则1)和规则2)可以认为是第一载波或第一载波上的服务小区的调度限制。此外,该调度限制同样适用于与第一载波属于同一频段的其他载波上,与受限时域符号完全或部分重叠的时域符号。其中,规则1)中的受限时域符号可以为第二时域符号组中的时域符号。规则2)中的受限时域符号可以为第一时域符号组中的时域符号。也就是说,上述调度规则还可以包括下述规则3)和/或规则4)。
规则3):不允许网络设备在第二载波上的第三时域符号组内向第一终端设备发送下行信号。或者说,网络设备不在第二载波上的第三时域符号组内向第一终端设备发送下行信号。
可选的,第二载波和第一载波位于同一频段。进一步的,第二载波和第一载波为载波聚合场景下为第一终端设备提供服务的载波。
可选的,第三时域符号组内的时域符号与第二时域符号组内的时域符号部分或完全重叠。示例性的,第三时域符号组内的每个时域符号可以和第二时域符号组内的至少一个时域符号部分或完全重叠;或者,第三时域符号组内的每个时域符号的时域位置与第二时域符号组内的至少一个时域符号的部分或全部时域位置重叠。其中,时域位置可以指绝对的时域位置。
示例性的,如图8所示,以第一载波为载波1,第二载波为载波2为例,假设载波1上RMTC窗口包括索引为10-19的时域符号,第二时域符号组包括索引为10和19的时域符号。那么,载波2上的第三时域符号组包括载波2上索引为10、11、19、和20的时域符号。其中,载波2上索引为10和11的时域符号与载波1上索引为10的时域符号部分重叠,或者说,载波2上索引为10的时域符号的时域位置(t3至t4)与载波1上索引为10的时域符号的时域位置(t1至t2)部分重叠;载波2上索引为11的时域符号的时域位置(t4至t5)与载波1上索引为10的时域符号的时域位置(t1至t2)部分重叠。
基于该规则3),网络设备不被允许在第二载波上的第三时域符号组内向第一终端设备发送下行信号,因此网络设备可能不会在第二载波上的第三时域符号组内向第一终端设备发送下行信号,从而减少资源浪费。
规则4):不允许网络设备在第二载波上的第四时域符号组内向第一终端设备发送与RSSI测量资源不
是QCL-ed下行信号。换句话说,该规则4)可以描述为:允许网络设备在第二载波上的第四时域符号组内向第一终端设备发送与RSSI测量资源是QCL-ed下行信号。第二载波可参考上述规则3)中的相关说明,在此不再赘述。
也就是说,能够用于第一终端设备的下行信号的传输资源中可以包括第二载波上的第四时域符号组,且该下行信号与RSSI测量资源是QCL-ed。
可选的,第四时域符号组内的时域符号与第一时域符号组内的时域符号部分或完全重叠。示例性的,第四时域符号组的时域位置包括RMTC窗口的时域位置中,除第三时域符号组的时域位置外的时域位置。其中,时域位置可以指绝对时域位置。
示例性的,基于图8所示的示例,第四时域符号组可以包括载波2上索引为12-18的时域符号。
可选的,能够用于第一终端设备的下行信号的传输资源中最终是否包括第二载波上的第四时域符号组,可以根据终端设备的能力确定。可参考上述规则2)中的相关描述,在此不再赘述。
基于该规则4),网络设备能够在第二载波上的第四时域符号组内向第一终端设备发送与RSSI测量资源是QCL-ed下行信号。在下行信号与RSSI测量资源是QCL-ed时,第一终端设备可以使用相同的波束进行RSSI/CO测量和下行接收,即第一终端设备可以在进行RSSI/CO测量的同时进行下行接收,使得资源得到充分利用,从而提高资源利用率和网络吞吐量。
需要说明的是,上述步骤S405和步骤S402没有严格的执行顺序。可以先执行步骤S402,再执行步骤S405;或者,可以先执行步骤S405,再执行步骤S402;或者,可以同时执行步骤S402和步骤S405,本申请对此不做具体限定。
可选的,步骤S405之后,本申请实施例提供的方法还可以包括如下步骤S406:
S406、网络设备在第一资源上向第一终端设备发送下行信号。相应的,第一终端设备在第一资源上接收来自网络设备的该下行信号。
其中,第一资源为上述能够用于第一终端设备的下行信号的传输资源中的部分或全部资源。在第一资源包括第一载波上的第一时域符号组和/或第二载波上的第四时域符号组的情况下,该第一资源(或者说该下行信号)和RSSI测量资源是QCL-ed。
基于上述方案,终端设备在确定RSSI测量和/或CO测量的测量结果时,可以排除RMTC窗口内的前N个时域符号和/或后M个时域符号。在该前N个和/或后M个时域符号中发生波束切换的情况下,可以降低波束切换对测量结果的影响,从而降低测量误差。此外,网络设备不会在发生波束切换的时域符号内发送下行信号,从而可以避免由于终端设备的波束切换导致的下行传输失败,进而减少资源浪费。
以上图4所示方法可以适用于波束切换在RMTC窗口内执行的场景。此外,本申请还提供一种适用于波束切换在RMTC窗口外执行时的测量、调度方法。如图9所示,该测量、调度方法包括如下步骤:
S901、网络设备确定第一终端设备的RMTC配置。
S902、网络设备向第一终端设备发送该第一终端设备的RMTC配置。相应的,第一终端设备接收来自网络设备的该RMTC配置。
其中,步骤S901-S902与上述步骤S401-S402相同,可参考上述步骤S401-S402的相关说明,在此不再赘述。
S903、第一终端设备确定RMTC窗口内的RSSI/CO测量的测量结果。即在图9所示方法中,实际上用于计算测量结构的时域资源是RMTC窗口。
可选的,第一终端设备可以在RMTC窗口内进行RSSI/CO测量,从而确定该RMTC窗口内RSSI/CO测量的测量结果。
S904、网络设备根据调度规则确定能够用于第一终端设备的下行信号的传输资源。
作为第一种可能的实现,该调度规则包括规则5):不允许网络设备在第一载波上的第五时域符号组内向第一终端设备发送下行信号,或者说,网络设备不在第一载波上的第五时域符号组内向第一终端设备发送下行信号。也就是说,能够用于第一终端设备的下行信号的传输资源中不包括第一载波上的第五时域符号组。第一载波可参考前述步骤S403-S404中的相关说明,在此不再赘述。
其中,第五时域符号组包括第一终端设备的RMTC窗口前的X个时域符号和/或该RMTC窗口后的Y个时域符号。X、Y为正整数。可选的,该第五时域符号组内的时域符号可以用于第一终端设备进行波束切换,即第一终端设备可能在第五时域符号组内进行波束切换。
在X等于1,Y等于1时,该第五时域符号组包括RMTC窗口前的1个时域符号和/或该RMTC窗口后的1个时域符号。该RMTC窗口前的1个时域符号和RMTC窗口内的第一个时域符号相邻。该RMTC
窗口后的1个时域符号为RMTC窗口后的第一个时域符号。示例性的,如图10所示,以RMTC窗口包括索引为10-19的时域符号,在X等于1,Y等于1时,第五时域符号组包括索引为9和20的时域符号。
在X大于1,Y大于1时,RMTC窗口前的X个时域符号为连续的X个时域符号,且该X个时域符号中的最后一个时域符号和RMTC窗口内的第一个时域符号相邻。RMTC窗口后的Y个时域符号为连续的Y的时域符号,且该Y个时域符号中的第一个时域符号和RMTC窗口内的最后一个时域符号相邻。示例性的,如图11所示,以RMTC窗口包括索引为10-19的时域符号,在X等于2,Y等于2时,第五时域符号组包括索引为8、9、20、和21的时域符号。
关于第五时域符号组,在一种可能的实现方式中,若第一子载波间隔大于或等于第一阈值,第五时域符号组包括RMTC窗口前的X个时域符号和/或RMTC窗口后的Y个时域符号。第一子载波间隔和第一阈值可参考图4所示方法中的相关说明,在此不再赘述。可选的,若第一子载波间隔小于第一阈值,该规则5)可以不生效或不存在。
在另一种可能的实现方式中,若第一子载波间隔为480KHz或960KHz,第五时域符号组包括RMTC窗口前的X个时域符号和/或RMTC窗口后的Y个时域符号。可选的,若第一子载波间隔为120KHz,该规则5)可以不生效或不存在。
在又一种可能的实现方式中,若RSSI测量资源和第三下行信号不是QCL-ed,第五时域符号组包括RMTC窗口前的X个时域符号。和/或,若RSSI测量资源和第四下行信号不是QCL-ed,第五时域符号组包括RMTC窗口后的Y个时域符号。其中,某个资源和信号是(或不是)QCL-ed,可参考图4所示方法中的相关说明,在此不再赘述。
可选的,第三下行信号为上述X个时域符号上的下行信号,或者,第三下行信号为上述X个时域符号前,距离该X个时域符号最近的下行信号。RSSI测量资源和第三下行信号不是QCL-ed时,用于RSSI/CO测量的波束和用于第三下行信号的波束(例如第三下行信号的发送波束)不同,第一终端设备不能使用相同的波束进行RSSI/CO测量和第三下行信号的接收。因此,在接收第三下行信号后,第一终端设备需要进行波束切换以进行RSSI/CO测量。从而,若RSSI测量资源和第三下行信号不是QCL-ed,也可以描述为:若RSSI/CO测量前需要进行波束切换。
此时,若该波束切换在RMTC窗口前的X个时域符号中进行,该X个时域符号内第一终端设备可能无法进行下行接收。该场景下,若网络设备仍然在第一载波上的该X个时域符号内向第一终端设备发送下行信号,将出现由于第一终端设备无法进行下行接收导致的传输失败,造成资源浪费。基于该规则5),网络设备不被允许在第一载波上的该X个时域符号内向第一终端设备发送下行信号,从而可以减少网络设备发送了下行信号但第一终端设备无法接收而造成的资源浪费。
示例性的,如图11所示,以RMTC窗口包括索引为10-19的时域符号,X等于1为例,假设RMTC窗口前的下行信号包括在索引为4-5的时域符号上传输的下行信号,以及在索引为7-8的时域符号上传输的下行信号为例,那么第三下行信号为在索引为7-8的时域符号上传输的下行信号。假设RSSI/CO测量的波束为波束1,用于第三下行信号的波束为波束2,那么第五时域符号组包括RMTC窗口前的1个时域符号。
可选的,第四下行信号为上述Y个时域符号上的下行信号,或者,第四下行信号为上述Y个时域符号后距离该Y个时域符号最近的下行信号。也就是说,若RSSI测量资源和承载第四下行信号的资源不是QCL-ed,第五时域符号组包括RMTC窗口后的Y个时域符号。RSSI测量资源和承载第四下行信号的资源的QCL关系可以是网络设备预先配置的。
RSSI测量资源和第四下行信号不是QCL-ed时,用于RSSI/CO测量的波束和用于第四下行信号的波束(例如第四下行信号的发送波束)不同,第一终端设备不能使用相同的波束进行RSSI/CO测量和第四下行信号的接收。因此,在RSSI/CO测量后,第一终端设备需要进行波束切换以接收第四下行信号。从而,若RSSI测量资源和第四下行信号不是QCL-ed,也可以描述为:若RSSI/CO测量后需要进行波束切换。
此时,若该波束切换在RMTC窗口后的Y个时域符号中进行,该Y个时域符号内第一终端设备可能无法进行下行接收。该场景下,若网络设备仍然在第一载波上的该Y个时域符号内向第一终端设备发送下行信号,将出现由于第一终端设备无法进行下行接收导致的传输失败,造成资源浪费。基于该规则5),网络设备不被允许在第一载波上的该Y个时域符号内向第一终端设备发送下行信号,从而可以减少网络设备发送了下行信号但第一终端设备无法接收而造成的资源浪费。
示例性的,如图11所示,以RMTC窗口包括索引为10-19的时域符号,索引为20-22的时域符号用于承载下行信号为例,假设RSSI/CO测量的波束为波束1,用于下行信号的波束为波束2,那么第五时域
符号组包括索引为20-22的时域符号。
可选的,若RSSI测量资源和第三下行信号是QCL-ed,第五时域符号组不包括RMTC窗口前的X个时域符号。和/或,若RSSI测量资源和第四下行信号是QCL-ed,第五时域符号组不包括RMTC窗口内后的Y个时域符号。和/或,若RMTC窗口后的Y个时域符号不用于承载下行信号,第五时域符号组不包括RMTC窗口后的Y个时域符号。
示例性的,如图12a所示,RSSI测量资源和第三下行信号是QCL-ed,且RSSI测量资源和第四下行信号是QCL-ed,则第五时域符号组不存在。如图12b所示,RSSI测量资源和第三下行信号不是QCL-ed,且RSSI测量资源和第四下行信号是QCL-ed,第五时域符号组包括RMTC窗口前的X个时域符号,图12b中以X等于1为例进行说明。
作为第二种可能的实现,该调度规则可以包括规则6):不允许网络设备在第一载波上的RMTC窗口内向第一终端设备发送与RSSI测量资源不是QCL-ed下行信号。换句话说,该规则6)可以描述为:允许网络设备在第一载波上的该RMTC窗口内向第一终端设备发送与RSSI测量资源是QCL-ed下行信号。
也就是说,能够用于第一终端设备的下行信号的传输资源中可以包括第一载波上的该RMTC窗口,且该下行信号与RSSI测量资源是QCL-ed。
可选的,能够用于第一终端设备的下行信号的传输资源中最终是否包括第一载波上的第一时域符号组,可以根据终端设备的能力确定。可参考上述步骤S405中的相关说明,在此不再赘述。
基于该规则6),网络设备能够在第一载波上的RMTC窗口内向第一终端设备发送与RSSI测量资源是QCL-ed下行信号。在下行信号与RSSI测量资源是QCL-ed时,第一终端设备可以使用相同的波束进行RSSI/CO测量和下行接收,即第一终端设备可以在进行RSSI/CO测量的同时进行下行接收,使得资源得到充分利用,从而提高资源利用率和网络吞吐量。
需要说明的是,上述规则5)和规则6)可以独立使用,即规则5)和规则6)之间不存在相互依赖关系。当然,规则5)和规则6)也可以结合使用,例如,调度规则可以同时包括规则5)和规则6)。
可选的,上述规则5)和规则6)同样适用于与第一载波属于同一频段的其他载波上,与受限时域符号完全或部分重叠的时域符号。其中,规则5)中的受限时域符号可以为第五时域符号组中的时域符号。规则6)中的受限时域符号可以为RMTC窗口内的时域符号。也就是说,上述调度规则还可以包括下述规则7)和/或规则8)。
规则7):不允许网络设备在第二载波上的第六时域符号组内向第一终端设备发送下行信号,或者说,网络设备不在第二载波上的第六时域符号组内向第一终端设备发送下行信号。第二载波可参考上述规则3)中的相关说明,在此不再赘述。
可选的,第六时域符号组内的时域符号与第五时域符号组内的时域符号部分或全部重叠。示例性的,第六时域符号组内的每个时域符号可以和第五时域符号组内的至少一个时域符号部分或完全重叠。
示例性的,如图13所示,以第一载波为载波1,第二载波为载波2为例,假设载波1上RMTC窗口包括索引为10-19的时域符号,第五时域符号组包括索引为9和20的时域符号。那么,载波2上的第六时域符号组包括载波2上索引为9、10、20、和21的时域符号。规则8):不允许网络设备在第二载波上的第七时域符号组内向第一终端设备发送与RSSI测量资源不是QCL-ed下行信号。换句话说,该规则8)可以描述为:允许网络设备在第二载波上的第七时域符号组内向第一终端设备发送与RSSI测量资源是QCL-ed下行信号。
也就是说,能够用于第一终端设备的下行信号的传输资源中可以包括第二载波上的第七时域符号组,且该下行信号与RSSI测量资源是QCL-ed。
可选的,第七时域符号组内的时域符号与RMTC窗口内的时域符号部分或完全重叠。示例性的,第七时域符号组的时域位置包括RMTC窗口的时域位置中,除第六时域符号组的时域位置外的时域位置。其中,时域位置可以指绝对时域位置。
示例性的,基于图13所示的示例,第七时域符号组可以包括载波2上索引为11-19的时域符号。
可选的,能够用于第一终端设备的下行信号的传输资源中最终是否包括第二载波上的第七时域符号组,可以根据终端设备的能力确定。可参考上述步骤S405中的相关说明,在此不再赘述。
需要说明的是,上述步骤S904和步骤S902没有严格的执行顺序。可以先执行步骤S902,再执行步骤S904;或者,可以先执行步骤S904,再执行步骤S902;或者,可以同时执行步骤S902和步骤S904,本申请对此不做具体限定。
可选的,步骤S904之后,本申请实施例提供的方法还可以包括如下步骤S905:
S905、网络设备在第二资源上向第一终端设备发送下行信号。相应的,第一终端设备在第二资源上接收来自网络设备的该下行信号。
其中,第二资源为上述能够用于第一终端设备的下行信号的传输资源中的部分或全部资源。在第二资源包括第一载波上的RMTC窗口内的时域符号和/或第二载波上的第七时域符号组的情况下,该第二资源(或者说该下行信号)和RSSI测量资源是QCL-ed。
基于上述方案,网络设备不会在发生波束切换的时域符号内发送下行信号,从而可以避免由于终端设备的波束切换导致的下行传输失败,进而减少资源浪费。
上述图4和图9所示的方法可以分别适用于终端设备在RMTC窗口内和RMTC窗口外进行波束切换的场景。该两种方法可以单独使用,也可以结合使用。如图14所示,为本申请提供的一种示例性的结合使用的方法,该方法可以包括如下步骤:
S1401-S1402、与上述步骤S401-S402相同,可参考上述步骤S401-S402的相关说明,在此不再赘述。
S1403、第一终端设备确定第八时域符号组。
其中,若RMTC窗口的长度大于或等于第二阈值,第八时域符号组包括RMTC窗口内除第九时域符号组外的时域符号。第九时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。换句话说,RMTC窗口的长度大于或等于第二阈值的情况下,第八时域符号组可以为上述第一时域符号组,第九时域符号组可以为上述第二时域符号组,终端设备可以执行上述图4所示方法中第一终端设备的相关步骤,即终端设备可以在RMTC窗口内执行波束切换。可参考图4所示方法中的相关说明,在此不再赘述。
若RMTC窗口的长度小于第二阈值,第八时域符号组包括RMTC窗口内的全部时域符号。换句话说,RMTC窗口的长度小于第二阈值的情况下,终端设备可以执行上述图9所示方法中第一终端设备的相关步骤,即终端设备可以在RMTC窗口外执行波束切换。可参考上述图9所示方法中的相关说明。
可选的,RMTC窗口的长度可以为该RMTC窗口内的时域符号总数。或者,可以为该RMTC窗口占用的时长。
S1404、第一终端设备确定第八时域符号组内的RSSI测量和/或CO测量的测量结果。
S1405、网络设备根据调度规则确定能够用于第一终端设备的下行信号的传输资源。
其中,该调度规则包括:不允许网络设备在第一载波上的第十时域符号组内向第一终端设备发送下行信号。
若RMTC窗口的长度大于或等于第二阈值,该第十时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。换句话说,RMTC窗口的长度大于或等于第二阈值的情况下,第十时域符号组可以为上述第二时域符号组,网络设备可以执行上述图4所示方法中网络设备的相关步骤。该调度规则包括上述规则1)至规则4)中的至少一项。可参考图4所示方法中的相关说明,在此不再赘述。
若RMTC窗口的长度小于第二阈值,第十时域符号组包括RMTC窗口前的X个时域符号和/或RMTC窗口后的Y个时域符号,X、Y为正整数。换句话说,RMTC窗口的长度小于第二阈值的情况下,第十时域符号组可以为上述第五时域符号组,网络设备可以执行上述图9所示方法中网络设备的相关步骤。该调度规则包括上述规则5)至规则8)中的至少一项。可参考图9所示方法中的相关说明,在此不再赘述。
可选的,该步骤S1405之后,本申请实施例提供的方法还可以包括如下步骤S1406:
S1406、网络设备在第三资源上向第一终端设备发送下行信号。相应的,第一终端设备在第三资源上接收来自网络设备的该下行信号。
可选的,在网络设备和第一终端设备执行上述图4所示方法中的相关步骤时,第三资源可以和第一资源相同;在网络设备和第一终端设备执行上述图9所示方法中的相关步骤时,第三资源可以和第二资源相同。可参考前述相关说明,在此不再赘述。
基于该方案,终端设备可以基于RMTC窗口的长度选择在RMTC窗口内或RMTC窗口外执行波束切换。在RMTC窗口的长度较长的情况下,在RMTC窗口内进行波束切换,从而可以在RMTC窗口前后进行下行传输,提高资源利用率和网络吞吐量。在RMTC窗口的长度较短的情况下,在RMTC窗口外进行波束切换,从而降低对RSSI/CO测量的影响,提高测量结果的准确性。
可以理解的是,以上各个实施例中,由网络设备实现的方法和/或步骤,也可以由可用于该网络设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、或软件例如芯片或者电路)实现;由终端设备实现的方法和/或步骤,也可以由可用于该终端设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、
或软件例如芯片或者电路)实现。
上述主要对本申请提供的方案进行了介绍。相应的,本申请还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一终端设备,或者包含上述第一终端设备的装置,或者为可用于第一终端设备的部件,例如芯片或芯片系统;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件,例如芯片或芯片系统。
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
通信装置图15示出了一种通信装置150的结构示意图。该通信装置150包括处理模块1501和收发模块1502。该通信装置150可以用于实现上述网络设备或第一终端设备的功能。
在一些实施例中,该通信装置150还可以包括存储模块(图15中未示出),用于存储程序指令和数据。
在一些实施例中,收发模块1502,也可以称为收发单元用以实现发送和/或接收功能。该收发模块1502可以由收发电路、收发机、收发器或者通信接口构成。
在一些实施例中,收发模块1502,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由网络设备或第一终端设备执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块1501,可以用于执行上述方法实施例中由网络设备或第一终端设备执行的处理类(例如确定、生成等)的步骤,和/或用于支持本文所描述的技术的其它过程。
该通信装置150用于实现上述第一终端设备的功能时:
作为第一种可能的实现,处理模块1501,用于确定第一时域符号组。处理模块1501,还用于确定第一时域符号组内RSSI测量和/或信道占用CO测量的测量结果。其中,第一时域符号组包括RMTC窗口内除第二时域符号组外的时域符号。第二时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。
可选的,若第一子载波间隔大于或等于第一阈值,第二时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号。其中,第一子载波间隔为第一载波的激活带宽部分BWP的子载波间隔,第一载波为RSSI测量或CO测量的测量带宽所在的载波;或者,第一子载波间隔为RSSI测量或CO测量的子载波间隔。
可选的,若RSSI测量资源和第一下行信号不是QCL-ed,第二时域符号组包括RMTC窗口内的前N个时域符号;第一下行信号为RMTC窗口前第一个时域符号上的下行信号,或者,第一下行信号为RMTC窗口前,距离RMTC窗口最近的下行信号;RSSI测量资源用于RSSI测量或CO测量。和/或,若RSSI测量资源和第二下行信号不是QCL-ed,第二时域符号组包括RMTC窗口内的后M个时域符号;第二下行信号为RMTC窗口后的第一个时域符号上的下行信号,或者,第二下行信号为RMTC窗口后距离RMTC窗口最近的下行信号。
可选的,收发模块1502,用于向网络设备发送能力信息。该能力信息指示RSSI测量资源和下行信号是QCL-ed时,第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
作为第二种可能的实现,处理模块1501,用于确定能力信息。收发模块1502,用于向网络设备发送该能力信息。其中,能力信息指示接收信号功率指示RSSI测量资源和下行信号是QCL-ed时,第一终端设备是否支持同时进行RSSI/信道占用CO测量和下行接收。
可选的,能力信息指示RSSI测量资源和下行信号是QCL-ed时,第一终端设备不支持同时进行RSSI/CO测量和下行接收的情况下,若网络设备配置第一终端设备在RSSI测量资源上进行RSSI/CO测量,且同时接收下行信号,处理模块1501,还用于确定进行RSSI/CO测量,不接收下行信号。
作为第三种可能的实现,处理模块1501,用于确定第八时域符号组。处理模块1501,还用于确定第八时域符号组内接收信号功率指示RSSI测量和/或信道占用CO测量的测量结果。其中,若RSSI测量时间配置RMTC窗口的长度大于或等于第二阈值,第八时域符号组包括RMTC窗口内除第九时域符号组外的
时域符号,第九时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。或者,若RMTC窗口的长度小于第二阈值,第八时域符号组包括RMTC窗口内的全部时域符号。
可选的,RMTC窗口的长度为RMTC窗口内的时域符号总数;或者,RMTC窗口的长度为RMTC窗口占用的时长。
该通信装置150用于实现上述网络设备的功能时:
作为第一种可能的实现,处理模块1501,用于确定第一终端设备的RMTC配置,该RMTC配置用于RSSI测量和/或信道占用CO测量。处理模块1501,还用于根据调度规则确定能够用于第一终端设备的下行信号的传输资源。调度规则包括:不允许网络设备在第一载波上的第二时域符号组内向第一终端设备发送下行信号。其中,第一载波为RSSI测量和/或CO测量的测量带宽所在的载波;第二时域符号组包括第一终端设备的RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。
可选的,若第一子载波间隔大于或等于第一阈值,第二时域符号组包括RMTC窗口的前N个时域符号和/或后M个时域符号。其中,第一子载波间隔为第一载波的激活带宽部分BWP的子载波间隔,或者,第一子载波间隔为RSSI测量或CO测量的子载波间隔。
可选的,若RSSI测量资源和第一下行信号不是QCL-ed,第二时域符号组包括RMTC窗口的前N个时域符号;第一下行信号为所述RMTC窗口前第一个时域符号上的下行信号,或者,第一下行信号为RMTC窗口前距离RMTC窗口最近的下行信号;RSSI测量资源用于RSSI测量或CO测量。和/或,若RSSI测量资源和第二下行信号不是QCL-ed,第二时域符号组包括RMTC窗口的后M个时域符号;第二下行信号为RMTC窗口后的第一个时域符号上的下行信号,或者,第二下行信号为RMTC窗口后距离RMTC窗口最近的下行信号。
可选的,该调度规则还包括:不允许网络设备在第一载波上的第一时域符号组内向第一终端设备发送与RSSI测量资源不是QCL-ed下行信号。其中,第一时域符号组包括RMTC窗口内除第二时域符号组外的时域符号。
可选的,该调度规则还包括:允许网络设备在第一载波上的第一时域符号组内向第一终端设备发送与RSSI测量资源是QCL-ed下行信号。其中,第一时域符号组包括RMTC窗口内除第二时域符号组外的时域符号。
可选的,该调度规则还包括:不允许网络设备在第二载波上的第三时域符号组内向第一终端设备发送下行信号。其中,第二载波和第一载波位于同一频段;第三时域符号组内的时域符号与第二时域符号组内的时域符号部分或全部重叠。
可选的,该调度规则还包括:不允许网络设备在第二载波上的第四时域符号组内向第一终端设备发送与RSSI测量资源不是QCL-ed下行信号。其中,第四时域符号组的时域位置包括RMTC窗口的时域位置中,除第三时域符号组的时域位置外的时域位置。
可选的,该调度规则还包括:允许网络设备在第二载波上的第四时域符号组内向第一终端设备发送与RSSI测量资源是QCL-ed下行信号。其中,第四时域符号组的时域位置包括RMTC窗口的时域位置中,除第三时域符号组的时域位置外的时域位置。
可选的,收发模块1502,用于接收来自第一终端设备的能力信息。该能力信息指示RSSI测量资源和下行信号是QCL-ed时,第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
作为第二种可能的实现,处理模块1501,用于确定第一终端设备的RMTC配置,该RMTC配置用于RSSI测量和/或信道占用CO测量。处理模块1501,还用于根据调度规则确定能够用于第一终端设备的下行信号的传输资源。调度规则包括:不允许网络设备在第一载波上的第一时域符号组内向第一终端设备发送与RSSI测量资源不是QCL-ed下行信号。其中,第一时域符号组包括RMTC窗口内除第二时域符号组外的时域符号。第二时域符号组包括第一终端设备的RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。
作为第三种可能的实现,处理模块1501,用于确定第一终端设备的RMTC配置,该RMTC配置用于RSSI测量和/或信道占用CO测量。处理模块1501,还用于根据调度规则确定能够用于第一终端设备的下行信号的传输资源,调度规则包括:不允许网络设备在第一载波上的第五时域符号组内向第一终端设备发送下行信号。其中,第一载波为RSSI测量和/或CO测量的测量带宽所在的载波;第五时域符号组包括第一终端设备的RMTC窗口前的X个时域符号和/或RMTC窗口后的Y个时域符号,X、Y为正整数。
可选的,若第一子载波间隔大于或等于第一阈值,第五时域符号组包括RMTC窗口前的X个时域符号和/或RMTC窗口后的Y个时域符号。第一子载波间隔为第一载波的激活带宽部分BWP的子载波间隔,
或者,第一子载波间隔为RSSI测量或CO测量的子载波间隔。
可选的,若RSSI测量资源和第三下行信号不是QCL-ed,第五时域符号组包括RMTC窗口前的X个时域符号;第三下行信号为该X个时域符号上的下行信号,或者,第三下行信号为X个时域符号前距离X个时域符号最近的下行信号;RSSI测量资源用于RSSI测量或CO测量。若RSSI测量资源和第四下行信号不是QCL-ed,第五时域符号组包括RMTC窗口后的Y个时域符号;第四下行信号为Y个时域符号上的下行信号,或者,第四下行信号为该Y个时域符号后距离该Y个时域符号最近的下行信号。
可选的,该调度规则还包括:不允许网络设备在第一载波上的RMTC窗口内向第一终端设备发送与RSSI测量资源不是QCL-ed下行信号。
可选的,该调度规则还包括:允许网络设备在第一载波上的RMTC窗口内向第一终端设备发送与RSSI测量资源是QCL-ed下行信号。
可选的,该调度规则还包括:不允许网络设备在第二载波上的第六时域符号组内向第一终端设备发送下行信号。其中,第二载波和第一载波位于同一频段;第六时域符号组内的时域符号与第五时域符号组内的时域符号部分或全部重叠。
可选的,该调度规则还包括:不允许网络设备在第二载波上的第七时域符号组内向第一终端设备发送与RSSI测量资源不是QCL-ed下行信号。其中,第七时域符号组的时域位置包括RMTC窗口的时域位置中,除第六时域符号组的时域位置外的时域位置。
可选的,该调度规则还包括:允许网络设备在第二载波上的第七时域符号组内向第一终端设备发送与RSSI测量资源是QCL-ed下行信号。其中,第七时域符号组的时域位置包括RMTC窗口的时域位置中,除第六时域符号组的时域位置外的时域位置。
可选的,收发模块1502,用于接收来自第一终端设备的能力信息。该能力信息指示RSSI测量资源和下行信号是QCL-ed时,第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
作为第四种可能的实现,处理模块1501,用于确定第一终端设备的RMTC配置,该RMTC配置用于RSSI测量和/或信道占用CO测量。处理模块1501,还用于根据调度规则确定能够用于第一终端设备的下行信号的传输资源,调度规则包括:不允许网络设备在第一载波上的RMTC窗口内向第一终端设备发送与RSSI测量资源不是QCL-ed下行信号。其中,第一载波为RSSI测量和/或CO测量的测量带宽所在的载波。
作为第五种可能的实现,收发模块1502,用于接收来自第一终端设备的能力信息。处理模块1501,用于根据能力信息确定能够用于第一终端设备的下行信号的传输资源。其中,该能力信息指示接收信号功率指示RSSI测量资源和下行信号是QCL-ed时,第一终端设备是否支持同时进行RSSI/信道占用CO测量和下行接收。
可选的,若能力信息指示RSSI测量资源和下行信号是QCL-ed时,第一终端设备不支持同时进行RSSI/CO测量和下行接收,则能够用于第一终端设备的下行信号的传输资源不包括第一载波上的RMTC窗口。
作为第六种可能的实现,处理模块1501,用于确定第一终端设备的RMTC配置,RMTC配置用于RSSI测量和/或信道占用CO测量。处理模块1501,还用于根据调度规则确定能够用于第一终端设备的下行信号的传输资源。调度规则包括:不允许网络设备在第一载波上的第十时域符号组内向第一终端设备发送下行信号。
其中,若RMTC窗口的长度大于或等于第二阈值,第十时域符号组包括RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。或者,若RMTC窗口的长度小于第二阈值,第十时域符号组包括RMTC窗口前的X个时域符号和/或RMTC窗口后的Y个时域符号,X、Y为正整数。
可选的,RMTC窗口的长度为RMTC窗口内的时域符号总数;或者,RMTC窗口的长度为RMTC窗口占用的时长。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请中,该通信装置150可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定专用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一些实施例中,当图15中的通信装置150是芯片或芯片系统时,收发模块1502的功能/实现过程可以通过芯片或芯片系统的输入输出接口(或通信接口)实现,处理模块1501的功能/实现过程可以通过芯
片或芯片系统的处理器(或者处理电路)实现。
由于本实施例提供的通信装置150可执行上述方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
作为一种可能的产品形态,本申请实施例所述的网络设备或终端设备,还可以使用下述来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
作为另一种可能的产品形态,本申请实施例的网络设备或第一终端设备,可以由一般性的总线体系结构来实现。为了便于说明,参见图16,图16是本申请实施例提供的通信装置1600的结构示意图,该通信装置1600包括处理器1601和收发器1602。该通信装置1600可以为第一终端设备,或其中的芯片或芯片系统;或者,该通信装置1600可以为网络设备,或其中的芯片或模块。图16仅示出了通信装置1600的主要部件。除处理器1601和收发器1602之外,所述通信装置还可以进一步包括存储器1603、以及输入输出装置(图未示意)。
可选的,处理器1601主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1603主要用于存储软件程序和数据。收发器1602可以包括射频电路和天线,射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
可选的,处理器1601、收发器1602、以及存储器1603可以通过通信总线连接。
当通信装置开机后,处理器1601可以读取存储器1603中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1601对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1601,处理器1601将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到上述通信装置150可以采用图16所示的通信装置1600的形式。
作为一种示例,图15中的处理模块1501的功能/实现过程可以通过图16所示的通信装置1600中的处理器1601调用存储器1603中存储的计算机执行指令来实现。图15中的收发模块1502的功能/实现过程可以通过图16所示的通信装置1600中的收发器1602来实现。
作为又一种可能的产品形态,本申请中的网络设备或第一终端设备可以采用图17所示的组成结构,或者包括图17所示的部件。图17为本申请提供的一种通信装置1700的组成示意图,该通信装置1700可以为第一终端设备或者第一终端设备中的芯片或者片上系统;或者,可以为网络设备或者网络设备中的模块或芯片或片上系统。
如图17所示,该通信装置1700包括至少一个处理器1701,以及至少一个通信接口(图17中仅是示例性的以包括一个通信接口1704,以及一个处理器1701为例进行说明)。可选的,该通信装置1700还可以包括通信总线1702和存储器1703。
处理器1701可以是一个通用中央处理器(central processing unit,CPU)、通用处理器、网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器1701还可以是其它具有处理功能的装置,例如电路、器件或软件模块,不予限制。
通信总线1702用于连接通信装置1700中的不同组件,使得不同组件可以通信。通信总线1702可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口1704,用于与其他设备或通信网络通信。示例性的,通信接口1704可以模块、电路、收发器或者任何能够实现通信的装置。可选的,所述通信接口1704也可以是位于处理器1701内的输入输出接口,用以实现处理器的信号输入和信号输出。
存储器1703,可以是具有存储功能的装置,用于存储指令和/或数据。其中,指令可以是计算机程序。
示例性的,存储器1703可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或其他磁存储设备等,不予限制。
需要指出的是,存储器1703可以独立于处理器1701存在,也可以和处理器1701集成在一起。存储器1703可以位于通信装置1700内,也可以位于通信装置1700外,不予限制。处理器1701,可以用于执行存储器1703中存储的指令,以实现本申请下述实施例提供的方法。
作为一种可选的实现方式,通信装置1700还可以包括输出设备1705和输入设备1706。输出设备1705和处理器1701通信,可以以多种方式来显示信息。例如,输出设备1705可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备1706和处理器1701通信,可以以多种方式接收用户的输入。例如,输入设备1706可以是鼠标、键盘、触摸屏设备或传感设备等。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到上述通信装置150可以采用图17所示的通信装置1700的形式。
作为一种示例,图15中的处理模块1501的功能/实现过程可以通过图17所示的通信装置1700中的处理器1701调用存储器1703中存储的计算机执行指令来实现。图15中的收发模块1502的功能/实现过程可以通过图17所示的通信装置1700中的通信接口1704来实现。
需要说明的是,图17所示的结构并不构成对网络设备或第一终端设备的具体限定。比如,在本申请另一些实施例中,网络设备或第一终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
在一些实施例中,本申请实施例还提供一种通信装置,该通信装置包括处理器,用于实现上述任一方法实施例中的方法。
作为一种可能的实现方式,该通信装置还包括存储器。该存储器,用于保存必要的计算机程序和数据。该计算机程序可以包括指令,处理器可以调用存储器中存储的计算机程序中的指令以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。
作为另一种可能的实现方式,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。
作为又一种可能的实现方式,该通信装置还包括通信接口,该通信接口用于与该通信装置之外的模块通信。
可以理解的是,该通信装置可以是芯片或芯片系统,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序或指令,该计算机程序或指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。作为单元显示的部件可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (65)
- 一种测量方法,其特征在于,所述方法包括:确定第一时域符号组,所述第一时域符号组包括接收信号功率指示RSSI测量时间配置RMTC窗口内除第二时域符号组外的时域符号,所述第二时域符号组包括所述RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数;确定所述第一时域符号组内RSSI测量和/或信道占用CO测量的测量结果。
- 根据权利要求1所述的方法,其特征在于,若第一子载波间隔大于或等于第一阈值,所述第二时域符号组包括所述RMTC窗口内的前N个时域符号和/或后M个时域符号;所述第一子载波间隔为第一载波的激活带宽部分BWP的子载波间隔,所述第一载波为所述RSSI测量或CO测量的测量带宽所在的载波;或者,所述第一子载波间隔为所述RSSI测量或CO测量的子载波间隔。
- 根据权利要求2所述的方法,其特征在于,所述第一子载波间隔为480千赫兹KHz或960KHz。
- 根据权利要求1所述的方法,其特征在于,若RSSI测量资源和第一下行信号不是准共址QCL的,所述第二时域符号组包括所述RMTC窗口内的前N个时域符号;所述第一下行信号为所述RMTC窗口前第一个时域符号上的下行信号,或者,所述第一下行信号为所述RMTC窗口前距离所述RMTC窗口最近的下行信号;所述RSSI测量资源用于所述RSSI测量或所述CO测量;和/或,若所述RSSI测量资源和第二下行信号不是QCL的,所述第二时域符号组包括所述RMTC窗口内的后M个时域符号;所述第二下行信号为所述RMTC窗口后的第一个时域符号上的下行信号,或者,所述第二下行信号为所述RMTC窗口后距离所述RMTC窗口最近的下行信号。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:向网络设备发送能力信息,所述能力信息指示RSSI测量资源和下行信号是QCL的时,第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
- 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:接收来自网络设备的RMTC配置,所述RMTC配置用于RSSI测量和/或信道占用CO测量;根据所述RMTC配置确定所述RSSI测量资源。
- 一种调度方法,其特征在于,所述方法包括:确定第一终端设备的接收信号功率指示RSSI测量时间配置RMTC配置,所述RMTC配置用于RSSI测量和/或信道占用CO测量;根据调度规则确定能够用于所述第一终端设备的下行信号的传输资源,所述调度规则包括:网络设备不在第一载波上的第二时域符号组内向所述第一终端设备发送下行信号,或者,所述能够用于所述第一终端设备的下行信号的传输资源中不包括第一载波上的第二时域符号组;其中,所述第一载波为所述RSSI测量和/或CO测量的测量带宽所在的载波;所述第二时域符号组包括所述第一终端设备的RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。
- 根据权利要求7所述的方法,其特征在于,若第一子载波间隔大于或等于第一阈值,所述第二时域符号组包括所述RMTC窗口的前N个时域符号和/或后M个时域符号;所述第一子载波间隔为所述第一载波的激活带宽部分BWP的子载波间隔,或者,所述第一子载波间隔为所述RSSI测量或CO测量的子载波间隔。
- 根据权利要求7所述的方法,其特征在于,若RSSI测量资源和第一下行信号不是准共址QCL的,所述第二时域符号组包括所述RMTC窗口的前N个时域符号;所述第一下行信号为所述RMTC窗口前第一个时域符号上的下行信号,或者,所述第一下行信号为所述RMTC窗口前距离所述RMTC窗口最近的下行信号;所述RSSI测量资源用于所述RSSI测量或所述CO测量;和/或,若所述RSSI测量资源和第二下行信号不是QCL的,所述第二时域符号组包括所述RMTC窗口的后M个时域符号;所述第二下行信号为所述RMTC窗口后的第一个时域符号上的下行信号,或者,所述第二下行信号为所述RMTC窗口后距离所述RMTC窗口最近的下行信号。
- 根据权利要求7-9任一项所述的方法,其特征在于,所述调度规则还包括:不允许所述网络设备在所述第一载波上的第一时域符号组内向所述第一终端设备发送与RSSI测量资源不是QCL的下行信号,或者,允许网络在所述第一载波上的第一时域符号组内向所述第一终端设备发送与RSSI测量资源是QCL的下行信号;其中,所述第一时域符号组包括所述RMTC窗口内除所述第二时域符号组外的时域符号。
- 根据权利要求7-10任一项所述的方法,其特征在于,所述调度规则还包括:允许所述网络设备在所述第一载波上的第一时域符号组内向所述第一终端设备发送与RSSI测量资源是QCL的下行信号;其中,所述第一时域符号组包括所述RMTC窗口内除所述第二时域符号组外的时域符号。
- 根据权利要求7-11任一项所述的方法,其特征在于,所述调度规则还包括:不允许所述网络设备在第二载波上的第三时域符号组内向所述第一终端设备发送下行信号;所述第二载波和所述第一载波位于同一频段;所述第三时域符号组内的时域符号与所述第二时域符号组内的时域符号部分或全部重叠。
- 根据权利要求12所述的方法,其特征在于,所述调度规则还包括:不允许所述网络设备在所述第二载波上的第四时域符号组内向所述第一终端设备发送与RSSI测量资源不是QCL的下行信号;其中,所述第四时域符号组的时域位置包括所述RMTC窗口的时域位置中,除所述第三时域符号组的时域位置外的时域位置。
- 根据权利要求12所述的方法,其特征在于,所述调度规则还包括:允许所述网络设备在所述第二载波上的第四时域符号组内向所述第一终端设备发送与RSSI测量资源是QCL的下行信号;其中,所述第四时域符号组的时域位置包括所述RMTC窗口的时域位置中,除所述第三时域符号组的时域位置外的时域位置。
- 根据权利要求7-14任一项所述的方法,其特征在于,所述方法还包括:接收来自所述第一终端设备的能力信息,所述能力信息指示RSSI测量资源和下行信号是QCL的时,所述第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
- 一种调度方法,其特征在于,所述方法包括:确定第一终端设备的接收信号功率指示RSSI测量时间配置RMTC配置,所述RMTC配置用于RSSI测量和/或信道占用CO测量;根据调度规则确定能够用于所述第一终端设备的下行信号的传输资源,所述调度规则包括:不允许网络设备在第一载波上的第五时域符号组内向所述第一终端设备发送下行信号;其中,所述第一载波为所述RSSI测量和/或CO测量的测量带宽所在的载波;所述第五时域符号组包括所述第一终端设备的RMTC窗口前的X个时域符号和/或所述RMTC窗口后的Y个时域符号,X、Y为正整数。
- 根据权利要求16所述的方法,其特征在于,若第一子载波间隔大于或等于第一阈值,所述第五时域符号组包括所述RMTC窗口前的X个时域符号和/或所述RMTC窗口后的Y个时域符号;所述第一子载波间隔为所述第一载波的激活带宽部分BWP的子载波间隔,或者,所述第一子载波间隔为所述RSSI测量或CO测量的子载波间隔。
- 根据权利要求16所述的方法,其特征在于,若RSSI测量资源和第三下行信号不是准共址QCL的,所述第五时域符号组包括所述RMTC窗口前的X个时域符号;所述第三下行信号为所述X个时域符号上的下行信号,或者,所述第三下行信号为所述X个时域符号前距离所述X个时域符号最近的下行信号;所述RSSI测量资源用于所述RSSI测量或所述CO测量;若所述RSSI测量资源和第四下行信号不是QCL的,所述第五时域符号组包括所述RMTC窗口后的Y个时域符号;所述第四下行信号为所述Y个时域符号上的下行信号,或者,所述第四下行信号为所述Y个时域符号后距离所述Y个时域符号最近的下行信号。
- 根据权利要求16-18任一项所述的方法,其特征在于,所述调度规则还包括:不允许所述网络设备在所述第一载波上的所述RMTC窗口内向所述第一终端设备发送与RSSI测量资源不是QCL的下行信号。
- 根据权利要求16-19任一项所述的方法,其特征在于,所述调度规则还包括:允许所述网络设备在所述第一载波上的所述RMTC窗口内向所述第一终端设备发送与RSSI测量资源是QCL的下行信号。
- 根据权利要求16-20任一项所述的方法,其特征在于,所述调度规则还包括:不允许所述网络设备在第二载波上的第六时域符号组内向所述第一终端设备发送下行信号;所述第二载波和所述第一载波位于同一频段;所述第六时域符号组内的时域符号与所述第五时域符号组内的时域符号部分或全部重叠。
- 根据权利要求21所述的方法,其特征在于,所述调度规则还包括:不允许所述网络设备在所述第二载波上的第七时域符号组内向所述第一终端设备发送与RSSI测量资源不是QCL的下行信号;其中,所述第七时域符号组的时域位置包括所述RMTC窗口的时域位置中,除所述第六时域符号组的 时域位置外的时域位置。
- 根据权利要求21所述的方法,其特征在于,所述调度规则还包括:允许所述网络设备在所述第二载波上的第七时域符号组内向所述第一终端设备发送与RSSI测量资源是QCL的下行信号;其中,所述第七时域符号组的时域位置包括所述RMTC窗口的时域位置中,除所述第六时域符号组的时域位置外的时域位置。
- 根据权利要求16-23任一项所述的方法,其特征在于,所述方法还包括:接收来自所述第一终端设备的能力信息,所述能力信息指示RSSI测量资源和下行信号是QCL的时,所述第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
- 一种通信方法,其特征在于,所述方法包括:确定能力信息;向网络设备发送所述能力信息,所述能力信息指示接收信号功率指示RSSI测量资源和下行信号是准共址QCL的时,第一终端设备是否支持同时进行RSSI/信道占用CO测量和下行接收。
- 根据权利要求25所述的方法,其特征在于,所述能力信息指示RSSI测量资源和下行信号是QCL的时,所述第一终端设备不支持同时进行RSSI/CO测量和下行接收;所述方法还包括:所述网络设备配置所述第一终端设备在所述RSSI测量资源上进行RSSI/CO测量,且同时接收所述下行信号时,所述第一终端设备进行所述RSSI/CO测量,不接收所述下行信号。
- 一种通信方法,其特征在于,所述方法包括:接收来自第一终端设备的能力信息,所述能力信息指示接收信号功率指示RSSI测量资源和下行信号是准共址QCL的时,所述第一终端设备是否支持同时进行RSSI/信道占用CO测量和下行接收;根据所述能力信息确定能够用于所述第一终端设备的下行信号的传输资源。
- 根据权利要求27所述的方法,其特征在于,若所述能力信息指示RSSI测量资源和下行信号是QCL的时,所述第一终端设备不支持同时进行RSSI/CO测量和下行接收,则所述能够用于所述第一终端设备的下行信号的传输资源不包括所述第一载波上的RMTC窗口。
- 一种通信装置,其特征在于,所述装置包括:处理模块;所述处理模块,用于确定第一时域符号组,所述第一时域符号组包括接收信号功率指示RSSI测量时间配置RMTC窗口内除第二时域符号组外的时域符号,所述第二时域符号组包括所述RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数;所述处理模块,还用于确定所述第一时域符号组内RSSI测量和/或信道占用CO测量的测量结果。
- 根据权利要求29所述的装置,其特征在于,若第一子载波间隔大于或等于第一阈值,所述第二时域符号组包括所述RMTC窗口内的前N个时域符号和/或后M个时域符号;所述第一子载波间隔为第一载波的激活带宽部分BWP的子载波间隔,所述第一载波为所述RSSI测量或CO测量的测量带宽所在的载波;或者,所述第一子载波间隔为所述RSSI测量或CO测量的子载波间隔。
- 根据权利要求30所述的装置,其特征在于,所述第一子载波间隔为480千赫兹KHz或960KHz。
- 根据权利要求29所述的装置,其特征在于,若RSSI测量资源和第一下行信号不是准共址QCL的,所述第二时域符号组包括所述RMTC窗口内的前N个时域符号;所述第一下行信号为所述RMTC窗口前第一个时域符号上的下行信号,或者,所述第一下行信号为所述RMTC窗口前距离所述RMTC窗口最近的下行信号;所述RSSI测量资源用于所述RSSI测量或所述CO测量;和/或,若所述RSSI测量资源和第二下行信号不是QCL的,所述第二时域符号组包括所述RMTC窗口内的后M个时域符号;所述第二下行信号为所述RMTC窗口后的第一个时域符号上的下行信号,或者,所述第二下行信号为所述RMTC窗口后距离所述RMTC窗口最近的下行信号。
- 根据权利要求29-31任一项所述的装置,其特征在于,所述装置还包括:收发模块;所述收发模块,用于向网络设备发送能力信息,所述能力信息指示RSSI测量资源和下行信号是QCL的时,第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
- 根据权利要求32或33所述的装置,其特征在于,所述装置还包括:收发模块;所述收发模块,用于接收来自网络设备的RMTC配置,所述RMTC配置用于RSSI测量和/或信道占用CO测量;所述处理模块,还用于根据所述RMTC配置确定所述RSSI测量资源。
- 一种调度装置,其特征在于,所述装置包括:处理模块所述处理模块,用于确定第一终端设备的接收信号功率指示RSSI测量时间配置RMTC配置,所述RMTC配置用于RSSI测量和/或信道占用CO测量;所述处理模块,还用于根据调度规则确定能够用于所述第一终端设备的下行信号的传输资源,所述调度规则包括:网络设备不在第一载波上的第二时域符号组内向所述第一终端设备发送下行信号,或者,所述能够用于所述第一终端设备的下行信号的传输资源中不包括第一载波上的第二时域符号组;其中,所述第一载波为所述RSSI测量和/或CO测量的测量带宽所在的载波;所述第二时域符号组包括所述第一终端设备的RMTC窗口内的前N个时域符号和/或后M个时域符号,N、M为正整数。
- 根据权利要求35所述的装置,其特征在于,若第一子载波间隔大于或等于第一阈值,所述第二时域符号组包括所述RMTC窗口的前N个时域符号和/或后M个时域符号;所述第一子载波间隔为所述第一载波的激活带宽部分BWP的子载波间隔,或者,所述第一子载波间隔为所述RSSI测量或CO测量的子载波间隔。
- 根据权利要求35所述的装置,其特征在于,若RSSI测量资源和第一下行信号不是准共址QCL的,所述第二时域符号组包括所述RMTC窗口的前N个时域符号;所述第一下行信号为所述RMTC窗口前第一个时域符号上的下行信号,或者,所述第一下行信号为所述RMTC窗口前距离所述RMTC窗口最近的下行信号;所述RSSI测量资源用于所述RSSI测量或所述CO测量;和/或,若所述RSSI测量资源和第二下行信号不是QCL的,所述第二时域符号组包括所述RMTC窗口的后M个时域符号;所述第二下行信号为所述RMTC窗口后的第一个时域符号上的下行信号,或者,所述第二下行信号为所述RMTC窗口后距离所述RMTC窗口最近的下行信号。
- 根据权利要求35-37任一项所述的装置,其特征在于,所述调度规则还包括:不允许所述网络设备在所述第一载波上的第一时域符号组内向所述第一终端设备发送与RSSI测量资源不是QCL的下行信号,或者,允许网络在所述第一载波上的第一时域符号组内向所述第一终端设备发送与RSSI测量资源是QCL的下行信号;其中,所述第一时域符号组包括所述RMTC窗口内除所述第二时域符号组外的时域符号。
- 根据权利要求35-38任一项所述的装置,其特征在于,所述调度规则还包括:允许所述网络设备在所述第一载波上的第一时域符号组内向所述第一终端设备发送与RSSI测量资源是QCL的下行信号;其中,所述第一时域符号组包括所述RMTC窗口内除所述第二时域符号组外的时域符号。
- 根据权利要求35-39任一项所述的装置,其特征在于,所述调度规则还包括:不允许所述网络设备在第二载波上的第三时域符号组内向所述第一终端设备发送下行信号;所述第二载波和所述第一载波位于同一频段;所述第三时域符号组内的时域符号与所述第二时域符号组内的时域符号部分或全部重叠。
- 根据权利要求40所述的装置,其特征在于,所述调度规则还包括:不允许所述网络设备在所述第二载波上的第四时域符号组内向所述第一终端设备发送与RSSI测量资源不是QCL的下行信号;其中,所述第四时域符号组的时域位置包括所述RMTC窗口的时域位置中,除所述第三时域符号组的时域位置外的时域位置。
- 根据权利要求40所述的装置,其特征在于,所述调度规则还包括:允许所述网络设备在所述第二载波上的第四时域符号组内向所述第一终端设备发送与RSSI测量资源是QCL的下行信号;其中,所述第四时域符号组的时域位置包括所述RMTC窗口的时域位置中,除所述第三时域符号组的时域位置外的时域位置。
- 根据权利要求35-42任一项所述的装置,其特征在于,所述装置还包括:收发模块;所述收发模块,还用于接收来自所述第一终端设备的能力信息,所述能力信息指示RSSI测量资源和下行信号是QCL的时,所述第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
- 一种调度装置,其特征在于,所述装置包括:处理模块;所述处理模块,用于确定第一终端设备的接收信号功率指示RSSI测量时间配置RMTC配置,所述RMTC配置用于RSSI测量和/或信道占用CO测量;所述处理模块,还用于根据调度规则确定能够用于所述第一终端设备的下行信号的传输资源,所述调度规则包括:不允许网络设备在第一载波上的第五时域符号组内向所述第一终端设备发送下行信号;其中,所述第一载波为所述RSSI测量和/或CO测量的测量带宽所在的载波;所述第五时域符号组包括所述第一终端设备的RMTC窗口前的X个时域符号和/或所述RMTC窗口后的Y个时域符号,X、Y为正整数。
- 根据权利要求44所述的装置,其特征在于,若第一子载波间隔大于或等于第一阈值,所述第五时域符号组包括所述RMTC窗口前的X个时域符号和/或所述RMTC窗口后的Y个时域符号;所述第一子载波间隔为所述第一载波的激活带宽部分BWP的子载波间隔,或者,所述第一子载波间隔为所述RSSI测量或CO测量的子载波间隔。
- 根据权利要求44所述的装置,其特征在于,若RSSI测量资源和第三下行信号不是准共址QCL的,所述第五时域符号组包括所述RMTC窗口前的X个时域符号;所述第三下行信号为所述X个时域符号上的下行信号,或者,所述第三下行信号为所述X个时域符号前距离所述X个时域符号最近的下行信号;所述RSSI测量资源用于所述RSSI测量或所述CO测量;若所述RSSI测量资源和第四下行信号不是QCL的,所述第五时域符号组包括所述RMTC窗口后的Y个时域符号;所述第四下行信号为所述Y个时域符号上的下行信号,或者,所述第四下行信号为所述Y个时域符号后距离所述Y个时域符号最近的下行信号。
- 根据权利要求44-46任一项所述的装置,其特征在于,所述调度规则还包括:不允许所述网络设备在所述第一载波上的所述RMTC窗口内向所述第一终端设备发送与RSSI测量资源不是QCL的下行信号。
- 根据权利要求44-47任一项所述的装置,其特征在于,所述调度规则还包括:允许所述网络设备在所述第一载波上的所述RMTC窗口内向所述第一终端设备发送与RSSI测量资源是QCL的下行信号。
- 根据权利要求44-48任一项所述的装置,其特征在于,所述调度规则还包括:不允许所述网络设备在第二载波上的第六时域符号组内向所述第一终端设备发送下行信号;所述第二载波和所述第一载波位于同一频段;所述第六时域符号组内的时域符号与所述第五时域符号组内的时域符号部分或全部重叠。
- 根据权利要求49所述的装置,其特征在于,所述调度规则还包括:不允许所述网络设备在所述第二载波上的第七时域符号组内向所述第一终端设备发送与RSSI测量资源不是QCL的下行信号;其中,所述第七时域符号组的时域位置包括所述RMTC窗口的时域位置中,除所述第六时域符号组的时域位置外的时域位置。
- 根据权利要求49所述的装置,其特征在于,所述调度规则还包括:允许所述网络设备在所述第二载波上的第七时域符号组内向所述第一终端设备发送与RSSI测量资源是QCL的下行信号;其中,所述第七时域符号组的时域位置包括所述RMTC窗口的时域位置中,除所述第六时域符号组的时域位置外的时域位置。
- 根据权利要求44-51任一项所述的装置,其特征在于,所述装置还包括:收发模块;所述收发模块,用于接收来自所述第一终端设备的能力信息,所述能力信息指示RSSI测量资源和下行信号是QCL的时,所述第一终端设备是否支持同时进行RSSI/CO测量和下行接收。
- 一种通信装置,其特征在于,所述装置包括:处理模块和收发模块;所述处理模块,用于确定能力信息;所述收发模块,用于向网络设备发送所述能力信息,所述能力信息指示接收信号功率指示RSSI测量资源和下行信号是准共址QCL的时,第一终端设备是否支持同时进行RSSI/信道占用CO测量和下行接收。
- 根据权利要求53所述的装置,其特征在于,所述能力信息指示RSSI测量资源和下行信号是QCL的时,所述第一终端设备不支持同时进行RSSI/CO测量和下行接收;所述装置还包括:所述网络设备配置所述第一终端设备在所述RSSI测量资源上进行RSSI/CO测量,且同时接收所述下行信号时,所述第一终端设备进行所述RSSI/CO测量,不接收所述下行信号。
- 一种通信装置,其特征在于,所述装置包括:处理模块和收发模块;所述收发模块,用于接收来自第一终端设备的能力信息,所述能力信息指示接收信号功率指示RSSI测量资源和下行信号是准共址QCL的时,所述第一终端设备是否支持同时进行RSSI/信道占用CO测量和下行接收;所述处理模块,用于根据所述能力信息确定能够用于所述第一终端设备的下行信号的传输资源。
- 根据权利要求55所述的装置,其特征在于,若所述能力信息指示RSSI测量资源和下行信号是QCL的时,所述第一终端设备不支持同时进行RSSI/CO测量和下行接收,则所述能够用于所述第一终端设备的下行信号的传输资源不包括所述第一载波上的RMTC窗口。
- 一种通信系统,其特征在于,所述通信系统包括如权利要求29-34、53、54任一项所述的通信装 置,以及如权利要求35-52、55、56任一项所述的通信装置。
- 一种通信装置,其特征在于,所述通信装置包括处理器;所述处理器,用于运行计算机程序或指令,以使所述通信装置执行如权利要求1-6任一项所述的方法,或者,以使所述通信装置执行如权利要求25或26所述的方法。
- 一种通信装置,其特征在于,所述通信装置包括处理器;所述处理器,用于运行计算机程序或指令,以使所述通信装置执行如权利要求7-24任一项所述的方法,或者,以使所述通信装置执行如权利要求27或28所述的方法。
- 一种计算机可读存储介质,其特征在于,计算机可读存储介质存储有计算机指令或程序,当计算机指令或程序在计算机上运行时,使得如权利要求1-6任一项所述的方法被执行,或者,使得如权利要求25或26所述的方法被执行。
- 一种计算机可读存储介质,其特征在于,计算机可读存储介质存储有计算机指令或程序,当计算机指令或程序在计算机上运行时,使得如权利要求7-24任一项所述的方法被执行,或者,使得如权利要求27或28所述的方法被执行。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令;当部分或全部所述计算机指令在计算机上运行时,使得如权利要求1-6任一项所述的方法被执行,或者,使得如权利要求25或26所述的方法被执行。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令;当部分或全部所述计算机指令在计算机上运行时,使得如权利要求7-24任一项所述的方法被执行,或者,使得如权利要求27或28所述的方法被执行。
- 一种芯片,其特征在于,包括处理器;所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述芯片执行如权利要求1-6中任一项所述的方法,或者使得所述芯片执行如权利要求25或26所述的方法。
- 一种芯片,其特征在于,包括处理器;所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述芯片执行如权利要求7-24中任一项所述的方法,或者使得所述芯片执行如权利要求27或28所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210945494.5 | 2022-08-08 | ||
CN202210945494.5A CN117596607A (zh) | 2022-08-08 | 2022-08-08 | 一种测量、调度方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024032248A1 true WO2024032248A1 (zh) | 2024-02-15 |
Family
ID=89850739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/104766 WO2024032248A1 (zh) | 2022-08-08 | 2023-06-30 | 一种测量、调度方法及装置 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN117596607A (zh) |
TW (1) | TW202425677A (zh) |
WO (1) | WO2024032248A1 (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020017928A1 (en) * | 2018-07-19 | 2020-01-23 | Samsung Electronics Co., Ltd. | Method and apparatus for rrm measurement enhancement for nr unlicensed |
CN114868341A (zh) * | 2019-12-31 | 2022-08-05 | 华为技术有限公司 | 一种定向测量方法及设备 |
-
2022
- 2022-08-08 CN CN202210945494.5A patent/CN117596607A/zh active Pending
-
2023
- 2023-06-30 WO PCT/CN2023/104766 patent/WO2024032248A1/zh unknown
- 2023-08-04 TW TW112129434A patent/TW202425677A/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020017928A1 (en) * | 2018-07-19 | 2020-01-23 | Samsung Electronics Co., Ltd. | Method and apparatus for rrm measurement enhancement for nr unlicensed |
CN114868341A (zh) * | 2019-12-31 | 2022-08-05 | 华为技术有限公司 | 一种定向测量方法及设备 |
Non-Patent Citations (3)
Title |
---|
MODERATOR (QUALCOMM INCORPORATED): "FL summary of channel access mechanism for 52.6GHz-71GHz band, ver1", 3GPP DRAFT; R1-2110488, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. 20211011 - 20211019, 14 October 2021 (2021-10-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052061122 * |
NOKIA, NOKIA SHANGHAI BELL: "UE CLI measurement configuration, reporting, and NW signaling", 3GPP DRAFT; R2-1912408_UE_CLI_MEASUREMENT-CONFIGURATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing, China; 20191014 - 20191018, 7 October 2019 (2019-10-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051790453 * |
QUALCOMM INCORPORATED: "On RSSI and channel occupancy measurements in NR-U", 3GPP DRAFT; R4-1915189, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Reno, NV, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051819427 * |
Also Published As
Publication number | Publication date |
---|---|
TW202425677A (zh) | 2024-06-16 |
CN117596607A (zh) | 2024-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7386252B2 (ja) | コンポーネントキャリア上の制御チャネルを取り扱うための技術 | |
WO2020157962A1 (ja) | ユーザ端末及び無線通信方法 | |
CN113853825A (zh) | 用于支持bss边缘用户传输的方法 | |
US20240195440A1 (en) | Communication method and communication apparatus | |
JP2024513409A (ja) | Redcapユーザ機器に対するbwpベースの動作 | |
TW202325056A (zh) | 用於多個用戶標識模組的動態數據機劃分技術 | |
US11784746B2 (en) | Bandwidth puncture and response rules | |
US20240056796A1 (en) | Non-simultaneous transmitting and receiving capability indication method, apparatus, and system | |
WO2024032248A1 (zh) | 一种测量、调度方法及装置 | |
WO2022151214A1 (zh) | 波束失败恢复方法、装置及系统 | |
US12120738B2 (en) | Multi-user-RTS and CTS frames for a sub-channel selective transmission station | |
CN118339879A (zh) | 直接路径转换和侧链路路径转换之间的条件切换 | |
CN114760012A (zh) | 组播反馈方法、装置及系统 | |
WO2020157977A1 (ja) | 端末及び無線通信方法 | |
US20200288437A1 (en) | Forbidden-Resource-Unit Indication for Coexisting Communication | |
WO2024027389A1 (zh) | 一种能力上报方法及装置 | |
WO2024067312A1 (zh) | 一种重复传输方法及装置 | |
WO2023236713A1 (zh) | 一种通信方法及装置 | |
US20240080660A1 (en) | Reconfigured Trigger-Frame Response | |
US20240073794A1 (en) | Repurposed Trigger-Frame Response | |
WO2023151391A1 (zh) | 波束训练方法及通信装置 | |
US20240107584A1 (en) | Frame-Based Channel Access Using Fixed Frame Period | |
US20240365155A1 (en) | Communication method and apparatus | |
US20240107580A1 (en) | Frame-Based Channel Access Technique | |
WO2022188717A1 (zh) | 信息传输方法、装置及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23851475 Country of ref document: EP Kind code of ref document: A1 |