WO2024032147A1 - 砂浆内衬壁厚设计方法、管道修复方法及装置 - Google Patents
砂浆内衬壁厚设计方法、管道修复方法及装置 Download PDFInfo
- Publication number
- WO2024032147A1 WO2024032147A1 PCT/CN2023/100475 CN2023100475W WO2024032147A1 WO 2024032147 A1 WO2024032147 A1 WO 2024032147A1 CN 2023100475 W CN2023100475 W CN 2023100475W WO 2024032147 A1 WO2024032147 A1 WO 2024032147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- existing pipeline
- wall thickness
- equivalent
- mortar lining
- repair
- Prior art date
Links
- 239000004570 mortar (masonry) Substances 0.000 title claims abstract description 274
- 238000013461 design Methods 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 title claims abstract description 74
- 230000008439 repair process Effects 0.000 claims abstract description 161
- 230000007547 defect Effects 0.000 claims abstract description 144
- 230000007797 corrosion Effects 0.000 claims description 45
- 238000005260 corrosion Methods 0.000 claims description 45
- 238000005452 bending Methods 0.000 claims description 33
- 230000015654 memory Effects 0.000 claims description 28
- 239000002689 soil Substances 0.000 claims description 23
- 238000005507 spraying Methods 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 13
- 238000005336 cracking Methods 0.000 claims description 11
- 230000007935 neutral effect Effects 0.000 claims description 10
- 239000007921 spray Substances 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 4
- 108010001267 Protein Subunits Proteins 0.000 claims 1
- 238000012938 design process Methods 0.000 abstract 1
- 230000035882 stress Effects 0.000 description 106
- 238000010586 diagram Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 102100037978 InaD-like protein Human genes 0.000 description 1
- 101150003018 Patj gene Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/16—Devices for covering leaks in pipes or hoses, e.g. hose-menders
- F16L55/162—Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/14—Pipes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Definitions
- the present invention relates to the field of trenchless pipeline renewal and repair, and specifically relates to a mortar lining wall thickness design method suitable for pipeline spray repair, a pipeline repair method and a device.
- Mortar spraying is a commonly used trenchless pipeline repair technology. Due to its advantages such as high flexibility and not being restricted by the shape and specifications of pipeline structures, it has been gradually used in the repair of drainage pipelines, box culverts and inspection wells.
- This method can spray cement mortar onto the inner wall of the existing pipeline through manual spraying, centrifugal spraying or high-pressure gas jet spraying, thereby forming a mortar lining.
- wall thickness design is the key to the lining structure design.
- Timoshenko free ring buckling model uses the Timoshenko free ring buckling model as a theoretical basis to predict the wall thickness of the mortar lining.
- this model is only applicable to flexible linings (including lining pipes such as CIPP and PE) and is difficult to apply to linings made of brittle materials such as mortar. Therefore, there is an urgent need for a lining wall thickness design method suitable for mortar spray repair. .
- the technical problem to be solved by the present invention is to overcome the shortcomings of the existing technology that are difficult to apply to mortar spray repair, thereby providing a mortar lining wall thickness design method, pipeline repair method and device.
- the present invention provides a mortar lining wall thickness design method.
- the method includes: based on the defect data of the existing pipeline, determining the first equivalent elastic modulus of the existing pipeline in its current state and achieving the designed use after repair.
- the second equivalent elastic modulus at age. Based on the pipe top line load and the second equivalent elastic modulus of the existing pipeline per unit length, the vertical deformation of the pipe top when the existing pipeline reaches the design service life after repair is determined. Based on the first equivalent elastic modulus, the second equivalent elastic modulus and the pipe top line load, determine the equivalent additional load that needs to be applied when the existing pipeline reaches the vertical deformation of the pipe top in the current state.
- the stress state parameters of the existing pipeline after repair are determined based on the assumed value of the mortar lining wall thickness. Compare the stress state parameters and standard strength parameters, and determine whether to use the assumed value of the mortar lining wall thickness as the target wall thickness value of the mortar lining based on the comparison results.
- This design method uses additional equivalent loads to characterize the objective fact that the deformation resistance of existing pipelines continues to degrade with the increase of pipe age.
- the cracking damage of the mortar lining under the additional load is used as the basis for the design of the lining wall thickness
- the mortar lining is used as the basis for the design of the lining wall thickness.
- the slip failure of the lining-existing pipeline interface is used as the basis for checking the lining wall thickness, thereby ensuring that the repaired existing pipeline can effectively resist external loads and reduce the risk of secondary damage to the existing pipeline.
- the present invention also provides a pipeline repair method.
- the method includes: obtaining a target wall thickness value of the mortar lining when performing mortar spray repair on an existing pipeline, wherein the target wall thickness value of the mortar lining adopts the first aspect.
- the mortar lining wall thickness design method of any one of its optional embodiments is determined. Carry out mortar spraying repair on existing pipelines based on the target wall thickness of the mortar lining.
- mortar spraying is used to repair existing pipelines based on the target mortar lining wall thickness value, which can effectively reduce the mortar lining wall thickness while ensuring that the structural strength of the repaired pipeline meets the requirements, thereby reducing the cost of engineering materials. .
- the present invention also provides a mortar lining wall thickness design device, which includes:
- the first determination unit is used to determine the first equivalent elastic modulus of the existing pipeline in its current state and the second equivalent elastic modulus when it reaches the design service life after repair based on the defect data of the existing pipeline;
- the second determination unit is used to determine the vertical deformation of the pipe top when the existing pipeline reaches the design service life after repair based on the pipe top line load per unit length of the existing pipeline and the second equivalent elastic modulus;
- the third determination unit is used to determine, based on the first equivalent elastic modulus, the second equivalent elastic modulus and the pipe top line load, the equal force that needs to be applied when the existing pipeline reaches the vertical deformation of the pipe top in the current state. Effective additional load;
- the fourth determination unit is used to determine the existing pipeline based on the equivalent additional load and the assumed value of the mortar lining wall thickness.
- the stress state parameters after repair based on the assumed value of the mortar lining wall thickness;
- the judgment unit is used to compare stress state parameters and standard strength parameters, and determine whether to use the assumed value of the mortar lining wall thickness as the target wall thickness value of the mortar lining based on the comparison results.
- the present invention also provides a pipeline repair device, which includes:
- the acquisition unit is used to obtain the target wall thickness value of the mortar lining when performing mortar spraying repair on the existing pipeline, wherein the target wall thickness value of the mortar lining adopts the mortar internal thickness value of any one of the first aspect and its optional implementation.
- the lining wall thickness design method is determined;
- the repair unit is used to repair existing pipelines with mortar spraying based on the target wall thickness value of the mortar lining.
- an embodiment of the present invention further provides a computer device, including a memory and a processor.
- the memory and the processor are connected to each other for communication.
- Computer instructions are stored in the memory, and the processor executes the computer instructions to execute the first aspect.
- embodiments of the present invention also provide a computer-readable storage medium, which stores computer instructions, and the computer instructions are used to cause the computer to execute any one of the first aspect and its optional implementations.
- Figure 1 is a flow chart of a mortar lining wall thickness design method proposed according to an exemplary embodiment.
- Figure 2 is a schematic cross-sectional view of a pipeline according to an exemplary embodiment.
- Figure 3 is a flow chart of another mortar lining wall thickness design method proposed according to an exemplary embodiment.
- Figure 4 is a flow chart of yet another mortar lining wall thickness design method proposed according to an exemplary embodiment.
- Figure 5 is a flow chart of yet another mortar lining wall thickness design method proposed according to an exemplary embodiment.
- Figure 6 is a flow chart of a pipeline repair method proposed according to an exemplary embodiment.
- Figure 7 is a structural block diagram of a mortar lining wall thickness design device proposed according to an exemplary embodiment.
- Figure 8 is a structural block diagram of a pipeline repair device proposed according to an exemplary embodiment.
- FIG. 9 is a schematic diagram of the hardware structure of a computer device according to an exemplary embodiment.
- Timoshenko free ring buckling model uses the Timoshenko free ring buckling model as the theoretical basis to design the mortar lining wall thickness.
- this model is only applicable to flexible linings and is difficult to apply to linings made of brittle materials such as mortar.
- the related technology fails to consider the impact of secondary stress caused by the degradation of the bending stiffness of the existing pipeline with the increase of pipe age and the interface slip between the mortar lining and the existing pipeline.
- the migration failure is inconsistent with the actual loading conditions and failure mode of the mortar lining, thus affecting the effectiveness of repairing existing pipelines.
- an embodiment of the present invention provides a mortar lining wall thickness design method for use in computer equipment.
- its execution subject can be a mortar lining wall thickness design device, and the device can be configured through software , hardware or a combination of software and hardware to become part or all of a computer device, where the computer device can be a terminal or a client or a server, and the server can be a server or a server cluster composed of multiple servers.
- the terminal in the embodiment of this application may be a smartphone, a personal computer, a tablet, a wearable device, an intelligent robot and other intelligent hardware devices.
- the execution subject is a computer device as an example for description.
- the computer equipment in this embodiment is used in the application scenario of lining wall thickness design when repairing existing pipelines by mortar spraying.
- the equivalent elastic modulus of the existing pipeline in its current state and its equivalent elastic modulus when it reaches the designed service life after repair can be determined based on the defect data of the existing pipeline. quantity.
- the vertical deformation of the pipe top when the existing pipeline reaches the design service life after repair is predicted, and then the existing pipeline is predicted The equivalent additional load required to reach the vertical deformation of the pipe top.
- the stress state of the existing pipeline after repair is determined based on the assumed value of the mortar lining wall thickness. parameter. Based on the comparison results between stress state parameters and standard strength parameters, the rationality of the assumed value of the mortar lining wall thickness is verified, thereby ensuring that the existing pipeline can effectively resist external loads after repair and reduce the risk of secondary damage to the existing pipeline.
- the equivalent elastic modulus of the existing pipeline in its current state will be expressed as the first equivalent elastic modulus below, and the equivalent elastic modulus of the existing pipeline when it reaches the design service life after repair will be expressed as the second equivalent elastic modulus.
- the effective elastic modulus is expressed.
- FIG 1 is a flow chart of a mortar lining wall thickness design method proposed according to an exemplary embodiment. As shown in Figure 1, the mortar lining wall thickness design method includes the following steps S101 to S105.
- step S101 based on the defect data of the existing pipeline, the first equivalent elastic modulus of the existing pipeline in its current state and the second equivalent elastic modulus when it reaches the designed service life after repair are determined.
- the use status of the existing pipeline in its current state can be determined through the defect data of the existing pipeline, and then combined with the service life of the existing pipeline, the first equivalent value of the existing pipeline in its current state can be determined. elastic modulus, and predict the second equivalent elastic modulus when the design service life after repair is reached.
- step S102 based on the pipe top line load per unit length of the existing pipeline and the second equivalent elastic modulus, the vertical deformation of the pipe top when the existing pipeline reaches the designed service life after repair is determined.
- the stress on the unit length of the existing pipeline in its current state can be determined, and then the deformation of the pipeline structure during the service of the existing pipeline can be determined.
- the deformation of the pipeline structure is related to its service life. Therefore, in order to determine the changes in the pipeline structure when the existing pipeline reaches the design service life after repair, based on the pipe top line load and the second equivalent elastic modulus on the unit length of the existing pipeline, it is determined that the existing pipeline reaches the design service life after repair The vertical deformation of the pipe top at the end of the year.
- the vertical deformation of the pipe top can be determined by the following formula:
- D represents the outer diameter of the existing pipeline
- E 2 represents the second equivalent elastic modulus
- I 2 represents the second equivalent section moment of inertia when the existing pipeline reaches the design service life after repair.
- the product of the second equivalent elastic modulus E 2 and the second equivalent section moment of inertia I 2 when the existing pipeline reaches the design service life after repair is the equivalent resistance of the existing pipeline when it reaches the design service life after repair. Bending stiffness.
- the pipe top line load on the unit length of the existing pipeline can be calculated based on the "Pipeline Structural Design Code for Water Supply and Drainage Engineering", which will not be described in detail in this disclosure.
- step S103 based on the first equivalent elastic modulus, the second equivalent elastic modulus and the pipe top line load, the equivalent additional force that needs to be applied when the existing pipeline reaches the vertical deformation of the pipe top in the current state is determined. load.
- the equivalent additional load can be determined using the following formula:
- ⁇ q soil is the equivalent additional load
- E 1 is the first equivalent elastic modulus
- E 2 is the second equivalent elastic modulus
- q soil is the pipe top line load
- the first equivalent cross-sectional moment of inertia and the first equivalent moment of the existing pipeline in its current state can be combined.
- the elastic modulus determines the first equivalent bending stiffness of the existing pipeline in its current state.
- the second equivalent section moment of inertia and the second equivalent elastic modulus when the existing pipeline reaches the design service life after repair determine the second equivalent bending stiffness when the existing pipeline reaches the design service life after repair. Then the following formula is used to determine the equivalent additional load:
- ⁇ q soil is the equivalent additional load
- E 1 is the first equivalent elastic modulus
- I 1 is the first equivalent section moment of inertia
- E 2 is the second equivalent elastic modulus
- I 2 is the second equivalent Sectional moment of inertia
- q soil is the pipe top line load.
- step S104 based on the equivalent additional load and the assumed value of the mortar lining wall thickness, the stress state parameters of the existing pipeline after repairing based on the assumed value of the mortar lining wall thickness are determined.
- the assumed value of the mortar lining wall thickness can be understood as an estimate of the spraying thickness of the existing pipeline using brittle repair materials for mortar spray repair.
- step S105 the stress state parameter and the standard strength parameter are compared, and based on the comparison result, it is determined whether to use the assumed value of the mortar lining wall thickness as the target wall thickness value of the mortar lining.
- the standard strength parameter can be understood as the maximum stress state parameter that the existing pipeline can withstand after the existing pipeline is repaired based on the assumed value of the mortar lining wall thickness.
- the stress state parameters exceed the standard strength parameters, the pipeline structure of the existing pipeline will be damaged, thereby affecting the structural stability of the existing pipeline.
- the stress state parameters are compared with the standard strength parameters, and then based on the comparison results, it is judged whether to use the assumed value of the mortar lining wall thickness as the target wall thickness value of the mortar lining.
- the target wall thickness value of the mortar lining can be understood as the final wall thickness of the mortar lining used in the mortar spraying repair of the existing pipeline.
- the comparison result is that the stress state parameter is consistent with the standard strength parameter, it means that when the existing pipeline is repaired using the assumed value of the mortar lining wall thickness, the repaired existing pipeline has sufficient structural strength. to resist external loads. Therefore, the assumed value of the mortar lining wall thickness can be used as the target value of the mortar lining wall thickness.
- the comparison result of the assumed value of the mortar lining wall thickness is that the stress state parameter is inconsistent with the standard strength parameter, it means that when the existing pipeline is repaired using the assumed value of the mortar lining wall thickness, the repaired existing pipeline does not have an adequate structure. Strength to resist external loads. Therefore, in order to ensure the structural stability of the existing pipeline after repair, the assumed value of the mortar lining wall thickness is re-determined, and the stress state parameters are re-determined based on the re-determined assumed value of the mortar lining wall thickness.
- the additional equivalent load is used to represent the objective fact that the deformation resistance of the existing pipeline continues to degrade with the increase of pipe age.
- the cracking damage of the mortar lining under the additional load is used as the basis for the design of the lining wall thickness
- the slip failure of the mortar lining-existing pipeline interface is used as the basis for calibrating the lining wall thickness to ensure that the repaired existing pipeline can effectively resist external stresses.
- the internal force of the pipe top section of the existing pipeline after repair can be determined based on the equivalent additional load, and then based on the assumed value of the mortar lining wall thickness and the internal force of the pipe top section, the internal force of the pipe top section can be determined.
- the stress state parameters of the existing pipeline after repair based on the assumed value of the mortar lining wall thickness.
- the internal force of the pipe top section can include the pipe top section bending moment and the pipe top section shear force.
- the pipe top section bending moment can be determined using the following formula:
- M represents the bending moment of the pipe top section
- ⁇ q soil represents the equivalent additional load
- D represents the outer diameter of the existing pipeline.
- the shear force at the top of the pipe can be determined using the following formula:
- F Q is the pipe top section shear force
- ⁇ q soil is the equivalent additional load
- D is the outer diameter of the existing pipeline.
- the stress state parameters of the existing pipeline after repair include: the tensile stress of the inner wall of the pipe top, the interface tensile stress between the existing pipeline and the mortar lining, and the stress between the existing pipeline and the mortar lining. Interface shear stress.
- the tensile stress of the inner wall of the pipe top is used to characterize the cross-sectional stress state of the existing pipeline after repair, and the interface tensile stress and interface shear stress are used to characterize the relationship between the existing pipeline and the mortar lining. interface stress state.
- the tensile stress of the inner wall of the pipe top is determined using the following formula:
- ⁇ s is the tensile stress of the inner wall of the pipe top
- R is the radius of the equivalent neutral axis of the existing pipeline after repair
- y' is the distance between the equivalent neutral axis of the existing pipeline after repair and the inner wall of the mortar lining
- E 1 is the first equivalent elastic modulus
- E 3 is the elastic modulus of the mortar lining
- t 1 is the first average residual wall thickness of the existing pipeline in its current state
- a a is the cross-section of the existing pipeline within unit length Area
- a b is the cross-sectional area of the mortar lining per unit length.
- the attribute data of the existing pipeline includes: the radius of the equivalent neutral axis of the existing pipeline after repair, the distance between the equivalent neutral axis of the existing pipeline after repair and the inner wall of the mortar lining, and the radius of the existing pipeline within unit length. Sectional area.
- the interface tensile stress between the existing pipeline and the mortar lining is determined using the following formula:
- ⁇ r is the interface tensile stress between the existing pipeline and the mortar lining.
- the relevant meanings of the other parameters are the same as above and will not be described again here.
- the interface shear stress between the existing pipeline and the mortar lining is determined using the following formula:
- ⁇ r is the interface shear stress between the existing pipeline and the mortar lining.
- the relevant meanings of the other parameters are the same as above and will not be described again here.
- Figure 2 is a schematic cross-sectional view of a pipeline according to an exemplary embodiment. Combined with Figure 2, y′, R, A a and A b involved in the above stress state parameters are determined using the following formula:
- a a t 1 ⁇ b
- a b t 3 ⁇ b
- b represents the unit length.
- the comparison result is that the stress state parameters are consistent with the standard strength parameters including: the tensile stress of the inner wall of the pipe top is equal to the tensile strength of the mortar lining, the interface tensile stress between the existing pipeline and the mortar lining is less than or It is equal to the interface tensile strength between the existing pipeline and the mortar lining, and the interface shear stress between the existing pipeline and the mortar lining is less than or equal to the interface shear strength between the existing pipeline and the mortar lining.
- the tensile strength is the standard strength parameter corresponding to the tensile stress
- the interface tensile strength is the standard strength parameter corresponding to the interface tensile stress. number
- the interface shear strength is the standard strength parameter corresponding to the interface shear stress.
- the tensile strength can be determined based on maximum tensile stress theory.
- the tensile strength is: K ⁇ t , where K is the comprehensive safety factor, K ⁇ 1.5 ⁇ 2; ⁇ t is the tensile strength of the repair material.
- the interface tensile strength is determined to be K ⁇ b and the interface shear strength is K ⁇ b respectively.
- ⁇ b is the interface tensile strength between the existing pipeline and the mortar lining
- ⁇ b is the interface shear strength between the existing pipeline and the mortar lining.
- the brittle repair material is mainly mortar. Therefore, ⁇ t , ⁇ b and ⁇ b can be based on the concrete splitting tensile strength test, concrete bond strength test and concrete shear resistance in the "Hydraulic Concrete Test Procedures" Strength test measurement obtained.
- the comparison results indicating that the stress state parameters are inconsistent with the standard strength parameters include: the tensile stress of the inner wall of the pipe top is not equal to the tensile strength of the mortar lining; the interface tensile stress is greater than that between the existing pipe and the mortar lining. The interface tensile strength; or the interface shear stress is greater than the interface shear strength between the existing pipe and the mortar lining. That is, if at least one of the tensile stress, interfacial tensile stress or interfacial shear stress is different from the corresponding standard strength parameter, it is determined that the stress state parameter is inconsistent with the standard strength parameter.
- FIG 3 is a flow chart of another mortar lining wall thickness design method proposed according to an exemplary embodiment. As shown in Figure 3, the mortar lining wall thickness design method includes the following steps.
- step S301 defect detection is performed on the existing pipeline to obtain defect data of specified defect types.
- the inner wall of the existing pipeline is pretreated by hydraulic or mechanical means, and then periscope inspection (QV), closed circuit television inspection (CCTV), sonar inspection or three-dimensional laser scanning inspection is used according to the type of defect.
- QV periscope inspection
- CCTV closed circuit television inspection
- sonar inspection or three-dimensional laser scanning inspection is used according to the type of defect.
- Use other methods to detect defects in existing pipelines identify defect types and count the quantitative parameters of each defect to obtain defect data on existing pipelines.
- the specified defect types include corrosion defects and crack defects.
- the equivalent additional load is also determined separately. That is, the equivalent additional load corresponding to the corrosion defect is determined based on the defect data of the corrosion defect, and the equivalent additional load corresponding to the crack defect is determined based on the defect data of the crack defect.
- step S302 based on the defect data of the existing pipeline, determine the first equivalent elastic modulus of the existing pipeline in its current state and the second equivalent elastic modulus when it reaches the designed service life after repair.
- step S303 based on the pipe top line load per unit length of the existing pipeline and the second equivalent elastic modulus, the vertical deformation of the pipe top when the existing pipeline reaches the designed service life after repair is determined.
- step S304 based on the first equivalent elastic modulus, the second equivalent elastic modulus and the pipe top line load, the equivalent additional force that needs to be applied when the existing pipeline reaches the vertical deformation of the pipe top in the current state is determined. load.
- step S305 based on the equivalent additional load and the assumed value of the mortar lining wall thickness, the stress state parameters of the existing pipeline after repairing based on the assumed value of the mortar lining wall thickness are determined.
- step S306 the stress state parameter and the standard strength parameter are compared, and based on the comparison result, it is determined whether to use the assumed value of the mortar lining wall thickness as the target wall thickness value of the mortar lining.
- the defect data includes the number of corrosion defects, the defect area of each corrosion defect, and the defect depth of each corrosion defect, and then the first equivalent elastic modulus and the second elastic modulus.
- the effective elastic modulus can be determined in the following way:
- the first average volume loss rate of the existing pipeline in its current state is determined. Based on the first average volume loss rate, the first equivalent elastic modulus of the existing pipeline in its current state is obtained. Based on the first average volume loss rate, the first pipe age of the existing pipeline in its current state, and the existing pipeline The second pipe age when the design service life after repair is reached is used to obtain the second average volume loss rate of the existing pipeline when the design service life after repair is reached. Based on the second average volume loss rate, the second equivalent elastic modulus is obtained when the existing pipeline reaches the designed service life after repair.
- the defect data of the existing pipeline the number N of corrosion defects in the existing pipeline, the defect area S of each corrosion defect, and the defect depth h of each corrosion defect are determined.
- Statistics of each defect are carried out through the following formula to determine the first average volume loss rate f 1 :
- D is the outer diameter of the existing pipeline
- t 0 is the initial wall thickness of the existing pipeline
- L is the length of the detection section of the existing pipeline
- N is the number of corrosion defects in the detection section of the existing pipeline
- S i is The defect area of each corrosion defect
- h i is the defect depth of each corrosion defect.
- v 0 is the initial Poisson's ratio of the existing pipeline
- G 0 is the initial shear modulus of the pipe
- K 0 is the initial bulk modulus of the pipe.
- Second average volume loss rate f 2 during service life is used to obtain the post-repair design service life of the existing pipeline.
- Y 1 is the first pipe age of the existing pipeline in its current state
- Y 2 is the second pipe age when the existing pipeline reaches the design service life after repair.
- the vertical deformation of the pipe top when the existing pipeline reaches the designed service life after repair is determined in the following way:
- the second average residual wall thickness t 2 of the existing pipeline in its current state is obtained.
- t 2 f 2 ⁇ t 0 .
- the following formula is used to determine the second equivalent section moment of inertia I 2 when the existing pipeline reaches the design service life after repair.
- Figure 4 is a flow chart of yet another mortar lining wall thickness design method proposed according to an exemplary embodiment.
- step S401 defect detection is performed on the existing pipeline, corrosion defects of the existing pipeline are identified, and defect data of the existing pipeline is obtained.
- step S402 based on the defect data of the existing pipeline, the first pipe age in the current state, and the second pipe age when the existing pipeline reaches the designed service life after repair, the first residual value of the existing pipeline in the current state is determined respectively.
- the equivalent bending stiffness, and the second residual equivalent bending stiffness when the design service life after repair is reached.
- the number N of corrosion defects in the existing pipeline, the defect area S of each corrosion defect, and the defect depth h of each corrosion defect are determined. Then, statistics of each defect are carried out through the following formula, and the first average volume loss rate f 1 and the first average residual wall thickness t 1 are determined:
- D is the outer diameter of the existing pipeline
- t 0 is the initial wall thickness of the existing pipeline
- L is the length of the detection section of the existing pipeline
- N is the number of corrosion defects in the detection section of the existing pipeline
- S i is The defect area of each corrosion defect
- h i is the defect depth of each corrosion defect.
- the time-limited second average volume loss rate f 2 and the second average residual wall thickness t 2 are used to obtain the design service life after repair of the existing pipeline.
- Y 1 is the first pipe age of the existing pipeline in its current state
- Y 2 is the second pipe age when the existing pipeline reaches the designed service life after repair.
- v 0 is the initial Poisson's ratio of the existing pipeline
- G 0 is the initial shear modulus of the pipe
- K 0 is the initial bulk modulus of the pipe
- the first residual equivalent bending stiffness of the existing pipeline in its current state is E 1 I 1
- the second residual equivalent bending stiffness of the existing pipeline when it reaches the design service life after repair is E 2 I 2 .
- step S403 based on the pipe top line load per unit length of the existing pipeline and the second residual equivalent bending stiffness, the vertical deformation of the pipe top of the existing pipeline when the existing pipeline reaches the designed service life after repair is determined.
- the following formula is used to determine the vertical deformation amount ⁇ of the pipe top of the existing pipeline when the existing pipeline reaches the designed service life after repair:
- q soil is the pipe top line load.
- step S404 based on the first residual equivalent bending stiffness, the second residual equivalent bending stiffness and the pipe top line load, the equivalent additional load required to be applied to the existing pipeline to achieve the vertical deformation of the pipe top is determined.
- step S405 based on the equivalent additional load and the assumed value of the mortar lining wall thickness, the stress state parameters for repairing the existing pipeline according to the assumed value of the mortar lining wall thickness are determined.
- the internal force of the pipe top section after repair of the existing pipeline can be determined through the equivalent additional load, and then based on the assumed value of the mortar lining wall thickness and the internal force of the pipe top section, the existing pipeline can be determined according to the internal force of the mortar. Lining wall thickness assumes values to repair stress state parameters.
- the internal force of the pipe top section can include the pipe top section bending moment M and the pipe top section shear force FQ .
- the bending moment can be determined using the following formula:
- the shear force at the top of the pipe can be determined using the following formula:
- ⁇ q soil represents the equivalent additional load
- D represents the outer diameter of the existing pipeline.
- the stress state parameters of the existing pipeline after repair based on the assumed value of the mortar lining wall thickness include: the tensile stress ⁇ s of the inner wall of the pipe top, the interface tensile stress ⁇ r between the existing pipeline and the mortar lining, and the internal tension stress ⁇ r of the existing pipeline and the mortar lining. Interface shear stress ⁇ r between linings.
- the tensile stress ⁇ s of the inner wall of the pipe top, the interface tensile stress ⁇ r between the existing pipe and the mortar lining, and the interface shear stress ⁇ r between the existing pipe and the mortar lining are determined using the following formulas:
- y′, R, A a and A b in the above formula can be determined using the following formula:
- a a t 1 ⁇ b
- a b t 3 ⁇ b
- b represents the unit length.
- step S406 the stress state parameter and the standard strength parameter are compared, and based on the comparison result, it is determined whether to use the assumed value of the mortar lining wall thickness as the target wall thickness value of the mortar lining.
- the tensile strength (K ⁇ t ) is the standard strength parameter corresponding to the tensile stress ⁇ s ;
- the interface tensile strength (K ⁇ b ) is the standard strength parameter corresponding to the interface tensile stress ⁇ r ;
- the interface shear strength (K ⁇ b ) is the standard strength parameter corresponding to the interface shear stress ⁇ r number.
- K is the comprehensive safety factor, K ⁇ 1.5 ⁇ 2
- ⁇ b is the interface tensile strength between the existing pipeline and the mortar lining
- ⁇ b is the interface shear strength between the existing pipeline and the mortar lining.
- the tensile strength can be determined based on the maximum tensile stress theory, and the interface tensile strength and interface shear strength can be determined based on the mortar lining-existing pipeline coordinated deformation judgment criteria.
- the assumed value of the mortar lining wall thickness is re-determined based on The redetermined mortar lining wall thickness assumptions redetermine the stress state parameters.
- the defect data includes crack length, crack depth and cracking angle
- the first equivalent elastic modulus and the second equivalent elastic modulus can be determined in the following manner. :
- the axial crack factor ⁇ 1 and circumferential crack factor ⁇ 2 of the crack defect in the existing pipeline can be determined.
- the splitting tensile strength data ⁇ 1 of the existing pipeline in its current state can be determined.
- the first equivalent elastic modulus E 1 of the existing pipeline in the current state is determined.
- the second equivalent elastic modulus E 2 is determined when the existing pipeline reaches the design service life after repair. . in,
- ⁇ 1 ⁇ 0 ⁇ 1 ⁇ 2 ,
- Figure 5 is a flow chart of yet another mortar lining wall thickness design method proposed according to an exemplary embodiment.
- step S501 defect detection is performed on the existing pipeline, crack defects of the existing pipeline are identified, and defect data of the existing pipeline is obtained.
- step S502 based on the defect data of the existing pipeline, the first pipe age in the current state, and the second pipe age when the existing pipeline reaches the design service life after repair, the first grade of the existing pipeline in the current state is determined respectively.
- the crack length, crack depth and cracking angle of the existing pipeline are respectively determined, and then the axial crack factor ⁇ 1 and the circumferential crack factor ⁇ 2 of the crack defect are determined.
- the axial crack factor ⁇ 1 , the circumferential crack factor ⁇ 2 and the initial splitting tensile strength data ⁇ 0 of the existing pipeline determine the splitting tensile strength data ⁇ 1 of the existing pipeline in its current state.
- the first equivalent elastic modulus E 1 of the existing pipeline in the current state is determined.
- the second equivalent elastic modulus E 1 of the existing pipeline determine the second equivalent elastic modulus E 2 when the existing pipeline reaches the design service life after repair. . in,
- ⁇ 1 ⁇ 0 ⁇ 1 ⁇ 2 ,
- step S503 based on the pipe top line load per unit length of the existing pipeline and the second equivalent elastic modulus, the vertical deformation of the pipe top when the existing pipeline reaches the designed service life after repair is determined.
- the following formula is used to determine the vertical deformation amount ⁇ of the pipe top when the existing pipeline reaches the designed service life after repair:
- I 0 is the initial cross-sectional moment of inertia of the existing pipeline.
- step S504 based on the first equivalent elastic modulus, the second equivalent elastic modulus and the pipe top line load, the equivalent additional load required to be applied to the existing pipeline to achieve the vertical deformation of the pipe top is determined.
- ⁇ q soil is the equivalent additional load
- E 1 is the first equivalent elastic modulus
- I 1 is the first equivalent section moment of inertia
- E 2 is the second equivalent elastic modulus
- I 2 is the second equivalent Sectional moment of inertia
- q soil is the pipe top line load.
- step S505 based on the equivalent additional load and the assumed value of the mortar lining wall thickness, the stress state parameters of the existing pipeline after repairing based on the assumed value of the mortar lining wall thickness are determined.
- the specific implementation of this step is the same as step S405, and will not be described again here.
- step S506 the stress state parameter and the standard strength parameter are compared, and based on the comparison result, it is determined whether to use the assumed value of the mortar lining wall thickness as the target wall thickness value of the mortar lining.
- the specific implementation of this step is the same as step S406, and will not be described again here.
- the present invention also provides a pipeline repair method.
- Figure 6 is a flow chart of a pipeline repair method proposed according to an exemplary embodiment. As shown in Figure 6, the pipeline repair method includes the following steps S601 to S602.
- step S601 the target wall thickness value of the mortar lining when repairing the existing pipeline by mortar spraying is obtained.
- the target wall thickness value of the mortar lining is determined using any of the mortar lining wall thickness design methods provided by the present invention.
- step S602 the lining of the existing pipeline is repaired by mortar spraying according to the target wall thickness value of the mortar lining.
- the existing pipeline is repaired by spraying mortar according to the target wall thickness value of the mortar lining, so that the obtained target wall thickness value of the mortar lining is more in line with the actual situation of the project, and can ensure that the structural strength of the repaired pipeline meets the requirements.
- the thickness of the lining wall can be effectively reduced, thereby reducing the cost of engineering materials.
- the present invention also provides a mortar lining wall thickness design device.
- FIG. 7 is a structural block diagram of a mortar lining wall thickness design device proposed according to an exemplary embodiment.
- the mortar lining wall thickness design device includes a first determination unit 701 , a second determination unit 702 , a third determination unit 703 , a fourth determination unit 704 and a judgment unit 705 .
- the first determination unit 701 is used to determine the first equivalent elastic modulus of the existing pipeline in its current state and the second equivalent elastic modulus when it reaches the designed service life after repair based on the defect data of the existing pipeline;
- the second determination unit 702 is used to determine the existing pipeline based on the pipe top line load on the unit length of the existing pipeline and the second equivalent elastic modulus. The vertical deformation of the pipe top when the design service life after repair is reached;
- the third determination unit 703 is used to determine, based on the first equivalent elastic modulus, the second equivalent elastic modulus and the pipe top line load, the deformation force that needs to be applied when the existing pipeline reaches the vertical deformation of the pipe top in the current state. Equivalent additional load;
- the fourth determination unit 704 is used to determine the stress state parameters of the existing pipeline after repair based on the equivalent additional load and the assumed value of the mortar lining wall thickness;
- the judgment unit 705 is used to compare the stress state parameter and the standard strength parameter, and judge whether to use the assumed value of the mortar lining wall thickness as the target wall thickness value of the mortar lining based on the comparison result.
- the judgment unit 705 includes: a first judgment unit, configured to determine the assumed value of the mortar lining wall thickness as the target wall thickness value of the mortar lining if the comparison result is that the stress state parameter is consistent with the standard strength parameter. .
- the second judgment unit is used to redetermine the assumed value of the mortar lining wall thickness if the comparison result is that the stress state parameter is inconsistent with the standard strength parameter, so as to redetermine the stress state parameter based on the redetermined assumed value of the mortar lining wall thickness.
- the fourth determination unit 704 includes: a pipe top section internal force determination unit, configured to determine the pipe top section internal force of the existing pipeline after repair under the equivalent load based on the equivalent additional load.
- the stress state parameter determination unit is used to determine the stress state parameters of the existing pipeline after repair based on the assumed value of the mortar lining wall thickness and the internal force of the pipe top section.
- the internal force of the pipe top section includes the pipe top section bending moment and the pipe top section shear force.
- the stress state parameter determination unit includes: a first stress state parameter determination subunit, which is used to determine the mortar lining wall thickness of the existing pipeline based on the assumed value of the mortar lining wall thickness, the bending moment of the pipe top section and the attribute data of the existing pipeline. Assumed values for the tensile stress on the inner wall of the mortar-lined pipe roof after repair.
- the second stress state parameter determination subunit is used to determine the existing pipeline after repair based on the assumed value of the mortar lining wall thickness, the bending moment of the pipe top section and the attribute data of the existing pipeline. Interfacial tensile stress with mortar lining.
- the third stress state parameter determination subunit is used to determine the existing pipeline after repair based on the assumed value of the mortar lining wall thickness, the pipe top section shear force and the attribute data of the existing pipeline.
- Interface shear stress with mortar lining are all stress state parameters.
- the stress state parameters consistent with the standard strength parameters include: the tensile stress of the inner wall of the pipe top is equal to the tensile strength of the mortar lining, and the interface tensile stress between the existing pipe and the mortar lining is less than or equal to the existing pipe. There is an interface tensile strength between the pipe and the mortar lining, and the interface shear stress between the existing pipe and the mortar lining is less than or equal to the interface shear strength between the existing pipe and the mortar lining.
- the tensile strength is the standard strength parameter corresponding to the tensile stress
- the interface tensile strength is the standard strength parameter corresponding to the interface tensile stress
- the interface shear strength is the standard strength parameter corresponding to the interface shear stress.
- the inconsistency between the stress state parameter and the standard strength parameter includes: the tensile stress of the inner wall of the pipe top is not equal to the tensile strength of the mortar lining.
- the interface tensile stress is greater than the interface tensile strength between the existing pipe and the mortar lining.
- the interface shear stress is greater than the interface shear strength between the existing pipeline and the mortar lining.
- the device further includes: a detection unit, configured to perform defect detection on the existing pipeline to obtain defect data of specified defect types.
- the defect types include corrosion defects and/or crack defects.
- the first determination unit 701 includes: a first loss rate
- the determination unit is used to determine the first average volume loss rate of the existing pipeline in its current state based on the attribute data of the existing pipeline, the number of corrosion defects, the defect area of each corrosion defect, and the defect depth of each corrosion defect.
- the first elastic modulus determination unit is used to obtain the first equivalent elastic modulus of the existing pipeline in the current state based on the first average volume loss rate.
- the second loss rate determination unit is used to obtain the reach of the existing pipeline based on the first average volume loss rate, the first pipe age of the existing pipeline in its current state, and the second pipe age when the existing pipeline reaches the designed service life after repair.
- the second average volume loss rate over the design service life after repair.
- the second elastic modulus determination unit is used to determine the second elastic modulus based on the second average volume loss. rate, and obtain the second equivalent elastic modulus when the existing pipeline reaches the design service life after repair.
- the second determination unit 702 includes: a first residual wall thickness determination unit, configured to obtain the first residual wall thickness of the existing pipeline in its current state based on the first average volume loss rate and the initial wall thickness of the existing pipeline. Average residual wall thickness.
- the first section moment of inertia determination unit is used to determine the first equivalent section moment of inertia in the current state of the existing pipeline based on the first average residual wall thickness.
- the second residual wall thickness determination unit is used to obtain the second average residual wall thickness of the existing pipeline in its current state based on the second average volume loss rate and the initial wall thickness of the existing pipeline.
- the second section moment of inertia determination unit is used to determine the second equivalent section moment of inertia when the existing pipeline reaches the designed service life after repair based on the second average residual wall thickness.
- the second determination subunit is used to determine the vertical deformation of the pipe top when the existing pipeline reaches the design service life after repair based on the second equivalent elastic modulus, the second equivalent section moment of inertia and the pipe top line load.
- the defect data includes crack length, crack depth and cracking angle.
- the first determination unit 701 includes: a splitting tensile strength data determining unit for determining splitting of the existing pipeline in its current state based on crack length, crack depth, cracking angle, and initial splitting tensile strength data of the existing pipeline. tensile strength.
- the third elastic modulus determination unit is used to determine the first equivalent elastic modulus of the existing pipeline in its current state based on the splitting tensile strength data of the existing pipeline in its current state.
- the fourth elastic modulus determination unit is used to determine the second equivalent elasticity of the existing pipeline when it reaches the designed service life after repair based on the first pipe age, the second pipe age and the first equivalent elastic modulus of the existing pipeline. modulus.
- Each of the above modules can be implemented in whole or in part through software, hardware and combinations thereof.
- Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
- Figure 8 is a structural block diagram of a pipeline repair device proposed according to an exemplary embodiment. As shown in FIG. 8 , the pipeline repair device includes an acquisition unit 801 and a repair unit 802 .
- the acquisition unit 801 is used to obtain the target wall thickness value of the mortar lining when performing mortar spraying repair on the existing pipeline, wherein the target wall thickness value of the mortar lining is carried out using any of the mortar lining wall thickness design methods provided by the present invention. Sure;
- the repair unit 802 is used to perform mortar spray repair on the lining of the existing pipeline according to the target wall thickness value of the mortar lining.
- Each of the above modules can be implemented in whole or in part through software, hardware and combinations thereof.
- Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
- FIG. 9 is a schematic diagram of the hardware structure of a computer device according to an exemplary embodiment.
- the device includes one or more processors 910 and memory 920.
- the memory 920 includes persistent memory, volatile memory and a hard disk.
- one processor 910 is taken as an example.
- the device may also include: an input device 930 and an output device 940.
- the processor 910, the memory 920, the input device 930, and the output device 940 may be connected through a bus or other means. In FIG. 9, connection through a bus is taken as an example.
- the processor 910 may be a central processing unit (Central Processing Unit, CPU).
- the processor 910 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), field programmable gate arrays (Field-Programmable Gate Array, FPGA) or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components and other chips, or combinations of the above types of chips.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- FPGA Field-Programmable Gate Array
- a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
- the memory 920 includes persistent memory, volatile memory and hard disk, and can be used to store non-transitory software programs, non-transitory computer executable programs and modules, such as in the embodiment of the present application.
- the processor 910 executes various functional applications and data processing of the server by running non-transient software programs, instructions and modules stored in the memory 920, that is, implementing any of the above-mentioned mortar lining wall thickness design methods or pipeline repair methods. .
- the memory 920 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required for at least one function; the storage data area may store basis, data that needs to be used, etc.
- memory 920 may include high-speed random access memory and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
- the memory 920 optionally includes memory located remotely relative to the processor 910, and these remote memories may be connected to the data processing device through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
- the input device 930 may receive input numeric or character information and generate key signal input related to user settings and function control.
- the output device 940 may include a display device such as a display screen.
- One or more modules are stored in the memory 920, and when executed by one or more processors 910, the methods shown in Figures 1-6 are performed.
- Embodiments of the present invention also provide a non-transitory computer storage medium.
- the computer storage medium stores computer-executable instructions.
- the computer-executable instructions can execute the authentication method in any of the above method embodiments.
- the storage medium can be a magnetic disk, an optical disk, a read-only memory (ROM), a random access memory (RAM), a flash memory (Flash Memory), a hard disk (Hard Disk Drive). , abbreviation: HDD) or solid-state drive (Solid-State Drive, SSD), etc.; the storage medium may also include a combination of the above types of memories.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Mechanical Engineering (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
本发明提供一种砂浆内衬壁厚设计方法、管道修复方法及装置。砂浆内衬壁厚设计方法包括:基于既有管道的缺陷数据,分别确定既有管道达到修复后设计使用年限时的管顶竖向变形量和既有管道达到该管顶竖向变形量所需施加的等效附加荷载。基于该等效附加荷载以及砂浆内衬壁厚假设值,确定既有管道修复后的截面及界面应力状态参数。比较应力状态参数和标准强度参数,依据比较结果判断是否以砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值。通过本发明提供的砂浆内衬壁厚设计方法,可使砂浆内衬壁厚设计过程更加科学合理,在保证修复后的既有管道能够有效抵抗外部荷载的同时,降低既有管道被二次破坏的风险。
Description
本发明涉及非开挖管道更新与修复领域,具体涉及一种适用于管道喷涂修复的砂浆内衬壁厚设计方法、管道修复方法及装置。
砂浆喷涂法是一种常用的非开挖管道修复技术,由于其具有灵活性强、不受管道结构形状和规格限制等优势,逐步应用于排水管道、箱涵和检查井的修复。该方法可通过人工喷涂、离心喷涂或者高压气体旋喷等方式,将水泥砂浆喷涂到既有管道内壁,进而形成砂浆内衬。采用砂浆喷涂法对既有管道进行修复时,壁厚设计是内衬结构设计的关键。
相关技术以铁摩辛柯自由环屈曲模型为理论基础对砂浆内衬壁厚进行预测。但该模型仅适用于柔性内衬(包括CIPP、PE等内衬管),难以适用于砂浆等脆性材料所形成的内衬,进而亟需一种适用于砂浆喷涂修复的内衬壁厚设计方法。
发明内容
因此,本发明要解决的技术问题在于克服现有技术难以适用于砂浆喷涂修复的缺陷,从而提供一种砂浆内衬壁厚设计方法、管道修复方法及装置。
根据第一方面,本发明提供一种砂浆内衬壁厚设计方法,方法包括:基于既有管道的缺陷数据,确定既有管道当前状态下的第一等效弹性模量和达到修复后设计使用年限时的第二等效弹性模量。基于既有管道单位长度上的管顶线荷载和第二等效弹性模量,确定既有管道达到修复后设计使用年限时的管顶竖向变形量。依据第一等效弹性模量、第二等效弹性模量以及管顶线荷载,确定既有管道在当前状态下达到该管顶竖向变形量时所需施加的等效附加荷载。基于等效附加荷载以及砂浆内衬壁厚假设值,确定既有管道依据砂浆内衬壁厚假设值修复后的应力状态参数。比较应力状态参数和标准强度参数,依据比较结果判断是否以砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值。
该设计方法采用附加等效荷载表征既有管道变形抵抗能力随管龄增加而持续退化这一客观事实,以砂浆内衬在附加荷载作用下的开裂破坏作为内衬壁厚设计依据,并以砂浆内衬-既有管道界面滑移失效作为内衬壁厚校核依据,进而保障修复后的既有管道能够有效抵抗外部荷载,降低既有管道被二次破坏的风险。
根据第二方面,本发明还提供一种管道修复方法,方法包括:获取对既有管道进行砂浆喷涂修复时的砂浆内衬目标壁厚值,其中,砂浆内衬目标壁厚值采用第一方面及其可选实施方式中任一项的砂浆内衬壁厚设计方法进行确定。依据砂浆内衬目标壁厚值对既有管道进行砂浆喷涂修复。
在该方法中,依据砂浆内衬目标壁厚值对既有管道进行砂浆喷涂修复,能够在确保修复后的管道结构强度满足要求的前提下,有效减少砂浆内衬壁厚,进而降低工程材料成本。
根据第三方面,本发明还提供一种砂浆内衬壁厚设计装置,装置包括:
第一确定单元,用于基于既有管道的缺陷数据,确定既有管道当前状态下的状态下第一等效弹性模量和达到修复后设计使用年限时的第二等效弹性模量;
第二确定单元,用于基于既有管道单位长度上的管顶线荷载和第二等效弹性模量,确定既有管道达到修复后设计使用年限时的管顶竖向变形量;
第三确定单元,用于依据第一等效弹性模量、第二等效弹性模量以及管顶线荷载,确定既有管道在当前状态下达到管顶竖向变形量时所需施加的等效附加荷载;
第四确定单元,用于基于等效附加荷载以及砂浆内衬壁厚的砂浆内衬壁厚假设值,确定既有管道依
据砂浆内衬壁厚假设值修复后的应力状态参数;
判断单元,用于比较应力状态参数和标准强度参数,依据比较结果判断是否以砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值。
根据第四方面,本发明还提供一种管道修复装置,装置包括:
获取单元,用于获取对既有管道进行砂浆喷涂修复时的砂浆内衬目标壁厚值,其中,砂浆内衬目标壁厚值采用第一方面及其可选实施方式中任一项的砂浆内衬壁厚设计方法进行确定;
修复单元,用于依据砂浆内衬目标壁厚值对既有管道进行砂浆喷涂修复。
根据第五方面,本发明实施方式还提供一种计算机设备,包括存储器和处理器,存储器和处理器间互相通信连接,存储器中存储有计算机指令,处理器通过执行计算机指令,从而执行第一方面及其可选实施方式中任一项的砂浆内衬壁厚设计方法或者第二方面的管道修复方法。
根据第六方面,本发明实施方式还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,计算机指令用于使计算机执行第一方面及其可选实施方式中任一项的砂浆内衬壁厚设计方法或者第二方面的管道修复方法。
图1是根据一示例性实施例提出的一种砂浆内衬壁厚设计方法的流程图。
图2是根据一示例性实施例提出的一种管道截面示意图。
图3是根据一示例性实施例提出的另一种砂浆内衬壁厚设计方法的流程图。
图4是根据一示例性实施例提出的又一种砂浆内衬壁厚设计方法的流程图。
图5是根据一示例性实施例提出的又一种砂浆内衬壁厚设计方法的流程图。
图6是根据一示例性实施例提出的一种管道修复方法的流程图。
图7是根据一示例性实施例提出的一种砂浆内衬壁厚设计装置的结构框图。
图8是根据一示例性实施例提出的一种管道修复装置的结构框图。
图9是根据一示例性实施例提出的一种计算机设备的硬件结构示意图。
下面将结合附图对本发明的技术方案进行清楚、完整地描述。
相关技术以铁摩辛柯自由环屈曲模型为理论基础对砂浆内衬壁厚进行设计。但该模型仅适用于柔性内衬,难以适用于砂浆等脆性材料所形成的内衬。此外,相关技术在设计内衬壁厚时,未能考虑由于既有管道的抗弯刚度随管龄增加而退化所导致的二次受力的影响以及砂浆内衬与既有管道间的界面滑移失效,与砂浆内衬的实际受载情况和失效破坏模式不符,从而影响对既有管道进行修复的有效性。
为解决上述问题,本发明实施例中提供一种砂浆内衬壁厚设计方法,用于计算机设备中,需要说明的是,其执行主体可以是砂浆内衬壁厚设计装置,该装置可以通过软件、硬件或者软硬件结合的方式实现成为计算机设备的部分或者全部,其中,该计算机设备可以是终端或客户端或服务器,服务器可以是一台服务器,也可以为由多台服务器组成的服务器集群,本申请实施例中的终端可以是智能手机、个人电脑、平板电脑、可穿戴设备以及智能机器人等其他智能硬件设备。下述方法实施例中,均以执行主体是计算机设备为例来进行说明。
本实施例中的计算机设备应用于对既有管道进行砂浆喷涂修复时的内衬壁厚设计的应用场景。依据本发明提供的砂浆内衬壁厚设计方法,能够依据既有管道的缺陷数据,分别确定既有管道当前状态下的等效弹性模量及其达到修复后设计使用年限时的等效弹性模量。基于既有管道单位长度上的管顶线荷载和第二等效弹性模量,预测既有管道达到修复后设计使用年限时的管顶竖向变形量,进而预测既有管道
达到管顶竖向变形量时所需施加的等效附加荷载。为提高砂浆内衬壁厚的合理性,避免对既有管道进行无效修复,则依据砂浆内衬壁厚假设值,确定既有管道依据该砂浆内衬壁厚假设值进行管道修复后的应力状态参数。依据应力状态参数与标准强度参数间的比较结果,验证该砂浆内衬壁厚假设值的合理性,进而保障既有管道修复后能够有效抵抗外部荷载,降低既有管道被二次破坏的风险。
为便于区分,以下将既有管道当前状态下的等效弹性模量采用第一等效弹性模量进行表述,将既有管道达到修复后设计使用年限时的等效弹性模量采用第二等效弹性模量进行表述。
图1是根据一示例性实施例提出的一种砂浆内衬壁厚设计方法的流程图。如图1所示,砂浆内衬壁厚设计方法包括如下步骤S101至步骤S105。
在步骤S101中,基于既有管道的缺陷数据,确定既有管道当前状态下的第一等效弹性模量和达到修复后设计使用年限时的第二等效弹性模量。
在本发明实施例中,通过既有管道的缺陷数据,能够确定既有管道当前状态下的使用情况,进而结合既有管道的使用年限,便可以确定既有管道当前状态下的第一等效弹性模量,并预测达到修复后设计使用年限时的第二等效弹性模量。
在步骤S102中,基于既有管道单位长度上的管顶线荷载和第二等效弹性模量,确定既有管道达到修复后设计使用年限时的管顶竖向变形量。
在本发明实施例中,通过既有管道单位长度上的管顶线荷载,能够确定既有管道当前状态下在单位长度上的受力情况,进而确定既有管道在服役过程中管道结构的形变情况。由于管道结构的形变情况与使用年限有关。因此,为确定既有管道达到修复后设计使用年限时管道结构的变化,则基于既有管道单位长度上的管顶线荷载和第二等效弹性模量,确定既有管道达到修复后设计使用年限时的管顶竖向变形量。
在一实际场景中,管顶竖向变形量可以通过如下公式进行确定:
其中,D表示既有管道的管道外径;E2表示第二等效弹性模量,I2表示既有管道达到修复后设计使用年限时的第二等效截面惯性矩。
其中,第二等效弹性模量E2与既有管道达到修复后设计使用年限时的第二等效截面惯性矩I2之积,为既有管道达到修复后设计使用年限时的等效抗弯刚度。
在一示例中,既有管道单位长度上的管顶线荷载可以基于《给水排水工程管道结构设计规范》进行计算,在本公开中不进行赘述。
在步骤S103中,依据第一等效弹性模量、第二等效弹性模量以及管顶线荷载,确定既有管道在当前状态下达到管顶竖向变形量时所需施加的等效附加荷载。
在一示例中,若既有管道在服役过程中等效截面惯性矩未发生改变,则等效附加荷载可以采用下述公式进行确定:
其中,Δqsoil为等效附加荷载,E1为第一等效弹性模量,E2为第二等效弹性模量,qsoil为管顶线荷载。
在一示例中,若既有管道在服役过程中等效截面惯性矩会随着使用年限的增加而发生改变,则可以结合既有管道当前状态下的第一等效截面惯性矩和第一等效弹性模量,确定既有管道当前状态下的第一等效抗弯刚度。结合既有管道达到修复后设计使用年限时的第二等效截面惯性矩和第二等效弹性模量,确定既有管道达到修复后设计使用年限时的第二等效抗弯刚度。进而采用如下公式确定等效附加荷载:
其中,Δqsoil为等效附加荷载,E1为第一等效弹性模量,I1为第一等效截面惯性矩,E2为第二等效弹性模量,I2为第二等效截面惯性矩,qsoil为管顶线荷载。
在步骤S104中,基于等效附加荷载以及砂浆内衬壁厚假设值,确定既有管道依据砂浆内衬壁厚假设值修复后的应力状态参数。
在本发明实施例中,砂浆内衬壁厚假设值可以理解为是预估计采用脆性修复材料对既有管道进行砂浆喷涂修复的喷涂厚度。
在步骤S105中,比较应力状态参数和标准强度参数,依据比较结果判断是否以砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值。
在本发明实施例中,标准强度参数可以理解为依据砂浆内衬壁厚假设值对既有管道进行修复后,既有管道最大可承受的应力状态参数。当应力状态参数超过标准强度参数时,则会导致既有管道的管道结构发生破坏,进而影响既有管道的结构稳定性。
因此,为确定砂浆内衬壁厚假设值是否合理,将应力状态参数与标准强度参数进行比较,进而依据比较结果判断是否以砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值。其中,砂浆内衬目标壁厚值可以理解为是最终对既有管道进行砂浆喷涂修复时所采用的砂浆内衬壁厚。
在一实施例中,如果比较结果为应力状态参数与标准强度参数相一致,则表明采用该砂浆内衬壁厚假设值对既有管道进行修复时,修复后的既有管道具有足够的结构强度以抵抗外部荷载。因此,可以采用该砂浆内衬壁厚假设值作为砂浆内衬壁厚目标值。
砂浆内衬壁厚假设值如果比较结果为应力状态参数与标准强度参数不一致,则表明采用该砂浆内衬壁厚假设值对既有管道进行修复时,修复后的既有管道不具有足够的结构强度以抵抗外部荷载。因此,为保障修复后既有管道的结构稳定性,则重新确定砂浆内衬壁厚假设值,以基于重新确定的砂浆内衬壁厚假设值重新确定应力状态参数。
通过上述实施例,采用附加等效荷载表征既有管道变形抵抗能力随管龄增加而持续退化这一客观事实,以砂浆内衬在附加荷载作用下的开裂破坏作为内衬壁厚设计依据,并以砂浆内衬-既有管道界面滑移失效作为内衬壁厚校核依据,进而保障修复后的既有管道能够有效抵抗外
以下实施例将说明确定应力状态参数的具体过程。
在本发明实施例中,可以基于等效附加荷载,确定在等效附加荷载作用下,修复后既有管道的管顶截面内力,进而基于砂浆内衬壁厚假设值以及管顶截面内力,确定既有管道依据砂浆内衬壁厚假设值修复后的应力状态参数。
其中,管顶截面内力可以包括管顶截面弯矩和管顶截面剪力,管顶截面弯矩可以采用下述公式进行确定:
其中,M表示管顶截面弯矩,Δqsoil表示等效附加荷载,D表示既有管道的管道外径。
管顶截面剪力可以采用下述公式进行确定:
其中,FQ为管顶截面剪力,Δqsoil为等效附加荷载,D为既有管道的管道外径。
依据砂浆内衬壁厚假设值对修复后既有管道的应力状态参数包括:管顶内壁张拉应力、既有管道与砂浆内衬间的界面张拉应力以及既有管道与砂浆内衬间的界面剪切应力。其中,管顶内壁张拉应力用于表征修复后既有管道的截面应力状态,界面张拉应力和界面剪切应力用于表征既有管道与砂浆内衬间的
界面应力状态。
其中,依据砂浆内衬壁厚假设值对既有管道进行修复后,管顶内壁张拉应力采用下述公式进行确定:
其中,σs为管顶内壁张拉应力,R为修复后既有管道等效中性轴的半径;y'为修复后既有管道等效中性轴与砂浆内衬内壁间的距离;E1为第一等效弹性模量;E3为砂浆内衬的弹性模量;t1为既有管道当前状态下的第一平均残余壁厚;Aa为既有管道在单位长度内的截面面积;Ab为单位长度砂浆内衬的截面面积。其中,既有管道的属性数据包括:修复后既有管道等效中性轴的半径、修复后既有管道等效中性轴与砂浆内衬内壁间的距离以及既有管道在单位长度内的截面面积。
依据砂浆内衬壁厚假设值对既有管道进行修复后,既有管道与砂浆内衬间的界面张拉应力采用下述公式进行确定:
其中,σr为既有管道与砂浆内衬间的界面张拉应力,其余参数的相关含义同上,在此不再进行赘述。
依据砂浆内衬壁厚假设值对既有管道进行修复后,既有管道与砂浆内衬间的界面剪切应力采用下述公式进行确定:
其中,τr为既有管道与砂浆内衬间的界面剪切应力,其余参数的相关含义同上,在此不再进行赘述。
在一实施场景中,修复后的既有管道截面示意图可以如图2所示。图2是根据一示例性实施例提出的一种管道截面示意图。结合如图2,上述应力状态参数中所涉及的y′、R、Aa和Ab,采用如下公式进行确定:
Aa=t1·b,Ab=t3·b,
其中,b表示单位长度。
在一实施例中,比较结果为应力状态参数与标准强度参数相一致包括:管顶内壁张拉应力等于砂浆内衬的抗拉强度、既有管道与砂浆内衬间的界面张拉应力小于或者等于既有管道与砂浆内衬间的界面张拉强度,且既有管道与砂浆内衬间的界面剪切应力小于或者等于既有管道与砂浆内衬间的界面剪切强度。其中,抗拉强度为张拉应力对应的标准强度参数;界面张拉强度为界面张拉应力对应的标准强度参
数;以及界面剪切强度为界面剪切应力对应的标准强度参数。
在一示例中,可以基于最大拉应力理论,确定抗拉强度。抗拉强度为:K·σt,其中,K为综合安全系数,K∈1.5~2;σt为修复材料的抗拉强度。基于砂浆内衬-既有管道协调变形判断准则,分别确定界面张拉强度为K·σb,界面剪切强度为K·τb。其中,σb为既有管道与砂浆内衬间的界面张拉强度,τb为既有管道与砂浆内衬间的界面剪切强度。在一实施场景中,脆性修复材料主要为砂浆,因此,σt、σb和τb可以基于《水工混凝土试验规程》中的混凝土劈裂抗拉强度试验、混凝土黏结强度试验以及混凝土抗剪强度试验测定获取。
在一实施场景中,若σs=K·σt、σr≤K·σb且τr≤K·τb,则确定比较结果为应力状态参数与标准强度参数相一致。
在另一实施例中,比较结果为应力状态参数与标准强度参数不一致包括:管顶内壁张拉应力不等于砂浆内衬的抗拉强度;界面张拉应力大于既有管道与砂浆内衬间的界面张拉强度;或界面剪切应力大于既有管道与砂浆内衬间的界面剪切强度。即,张拉应力、界面张拉应力或者界面剪切应力中存在至少一个与对应的标准强度参数不同,则确定应力状态参数与标准强度参数不一致。
图3是根据一示例性实施例提出的另一种砂浆内衬壁厚设计方法的流程图。如图3所示,砂浆内衬壁厚设计方法包括如下步骤。
在步骤S301中,对既有管道进行缺陷检测,以获取指定缺陷类型的缺陷数据。
在本发明实施例中,通过水力或机械等方式对既有管道的内壁进行预处理,进而依据缺陷类型,采用潜望镜检测(QV)、闭路电视检测(CCTV)、声呐检测或三位激光扫描检测等手段对既有管道进行缺陷检测,识别缺陷类型并统计各缺陷的量化参数,以获取既有管道的缺陷数据。其中,指定缺陷类型包括腐蚀缺陷和裂纹缺陷。依据缺陷类型对既有管道进行针对性的缺陷检测,以便后续确定砂浆内衬目标壁厚值时能够进行针对性分析。在一示例中,若是同时获取腐蚀缺陷和裂纹缺陷的缺陷数据时,则在确定等效附加荷载时也分开进行确定。即,分别基于腐蚀缺陷的缺陷数据确定腐蚀缺陷对应的等效附加荷载,基于裂纹缺陷的缺陷数据确定裂纹缺陷对应的等效附加荷载。
在步骤S302中,基于既有管道的缺陷数据,确定既有管道当前状态下的第一等效弹性模量和达到修复后设计使用年限时的第二等效弹性模量。
在步骤S303中,基于既有管道单位长度上的管顶线荷载和第二等效弹性模量,确定既有管道达到修复后设计使用年限时的管顶竖向变形量。
在步骤S304中,依据第一等效弹性模量、第二等效弹性模量以及管顶线荷载,确定既有管道在当前状态下达到管顶竖向变形量时所需施加的等效附加荷载。
在步骤S305中,基于等效附加荷载以及砂浆内衬壁厚假设值,确定既有管道依据砂浆内衬壁厚假设值修复后的应力状态参数。
在步骤S306中,比较应力状态参数和标准强度参数,依据比较结果判断是否以砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值。
在一实施例中,若指定类型缺陷为腐蚀缺陷,则缺陷数据包括腐蚀缺陷数量、每一个腐蚀缺陷的缺陷面积以及每一个腐蚀缺陷的缺陷深度,进而第一等效弹性模量和第二等效弹性模量可以采用下述方式进行确定:
基于既有管道的属性数据、腐蚀缺陷数量、每一个腐蚀缺陷的缺陷面积以及每一个腐蚀缺陷的缺陷深度,确定既有管道当前状态下的第一平均体积损失率。依据第一平均体积损失率,得到既有管道当前状态下的第一等效弹性模量。依据第一平均体积损失率、既有管道当前状态下的第一管龄以及既有管道
达到修复后设计使用年限时的第二管龄,得到既有管道达到修复后设计使用年限时的第二平均体积损失率。依据第二平均体积损失率,得到既有管道达到修复后设计使用年限时的第二等效弹性模量。
具体的,通过既有管道的缺陷数据,分别确定既有管道内的腐蚀缺陷数量N、每一个腐蚀缺陷的缺陷面积S以及每一个腐蚀缺陷的缺陷深度h。通过下述公式对各缺陷进行统计,确定第一平均体积损失率f1:
其中,D为既有管道的管道外径;t0为既有管道的初始壁厚;L为既有管道的检测管段长度;N为既有管道的检测管段内的腐蚀缺陷数量;Si为各腐蚀缺陷的缺陷面积;hi为各腐蚀缺陷的缺陷深度。
采用下述公式依据第一平均体积损失率f1,得到既有管道当前状态下的第一等效弹性模量E1:
其中,v0为既有管道的管材的初始泊松比;G0为管材的初始剪切模量;K0为管材的初始体积模量。
依据第一平均体积损失率f1,既有管道当前状态下的第一管龄和既有管道达到修复后设计使用年限时的第二管龄,采用下述公式得到既有管道达到修复后设计使用年限时的第二平均体积损失率f2:
其中,Y1为既有管道当前状态下的第一管龄,Y2为既有管道达到修复后设计使用年限时的第二管龄。
依据第二平均体积损失率,采用下述公式得到既有管道达到修复后设计使用年限时的第二等效弹性模量E2:
其中,各参数定义同上,在此不再进行赘述。
在另一实施例中,针对腐蚀缺陷,既有管道达到修复后设计使用年限时的管顶竖向变形量采用下述方式进行确定:
依据第一平均体积损失率f1和既有管道的初始壁厚t0,得到既有管道当前状态下的第一平均残余壁厚t1,其中,t1=f1·t0。
依据第一平均残余壁厚t1,采用下述公式确定既有管道当前状态下的第一等效截面惯性矩I1:
其中,各参数定义同上,在此不再进行赘述。
依据第二平均体积损失率f2和既有管道的初始壁厚t0,得到既有管道当前状态下的第二平均残余壁厚t2。其中,t2=f2·t0。
依据第二平均残余壁厚t2,采用如下公式确定既有管道达到修复后设计使用年限时的第二等效截面惯性矩I2。
依据第二等效弹性模量、第二等效截面惯性矩和管顶线荷载qsoil,采用下述公式确定既有管道达到修复后设计使用年限时的管顶竖向变形量Δ:
在一实施场景中,针对腐蚀缺陷进行砂浆内衬壁厚设计的过程可以如图4所示。图4是根据一示例性实施例提出的又一种砂浆内衬壁厚设计方法的流程图。
在步骤S401中,对既有管道进行缺陷检测,识别既有管道的腐蚀缺陷,得到既有管道的缺陷数据。
在步骤S402中,基于既有管道的缺陷数据、当前状态下的第一管龄以及既有管道达到修复后设计使用年限时的第二管龄,分别确定既有管道当前状态下的第一剩余等效抗弯刚度,以及达到修复后设计使用年限时的第二剩余等效抗弯刚度。
在本发明实施例中,依据既有管道的缺陷数据,分别确定既有管道内腐蚀缺陷的腐蚀缺陷数量N、每一个腐蚀缺陷的缺陷面积S以及每一个腐蚀缺陷的缺陷深度h。进而通过下述公式对各缺陷进行统计,确定第一平均体积损失率f1以及第一平均残余壁厚t1:
t1=f1·t0,
其中,D为既有管道的管道外径;t0为既有管道的初始壁厚;L为既有管道的检测管段长度;N为既有管道的检测管段内的腐蚀缺陷数量;Si为各腐蚀缺陷的缺陷面积;hi为各腐蚀缺陷的缺陷深度。
依据第一平均体积损失率,既有管道当前状态下的第一管龄和既有管道达到修复后设计使用年限时的第二管龄,采用下述公式得到既有管道达到修复后设计使用年限时的第二平均体积损失率f2以及第二平均残余壁厚t2:
t2=f2·t0,其中,Y1为既有管道当前状态下的第一管龄,Y2为既有管道达到修复后设计使用年限时的第二管龄。
采用下述公式分别计算既有管道当前状态下的第一等效弹性模量E1和达到修复后设计使用年限时的第二等效弹性模量E2:
其中,v0为既有管道的管材的初始泊松比;G0为管材的初始剪切模量;K0为管材的初始体积模量;i=1对应既有管道的当前状态下状态,i=2对应既有管道达到修复后设计使用年限Y2时的状态。
采用下述公式分别计算既有管道当前状态下的第一等效截面惯性矩I1和达到修复后设计使用年限时的第二等效截面惯性矩I2:
既有管道当前状态下的第一剩余等效抗弯刚度为E1I1,既有管道达到修复后设计使用年限时的第二剩余等效抗弯刚度为E2I2。
在步骤S403中,基于既有管道单位长度上的管顶线荷载和第二剩余等效抗弯刚度,确定既有管道达到修复后设计使用年限时的既有管道的管顶竖向变形量。
在本发明实施例中,采用下述公式确定既有管道达到修复后设计使用年限时的既有管道的管顶竖向变形量Δ:
其中,qsoil为管顶线荷载。
在步骤S404中,依据第一剩余等效抗弯刚度、第二剩余等效抗弯刚度以及管顶线荷载,确定既有管道达到管顶竖向变形量所需施加的等效附加荷载。
在本发明实施例中,采用下述公式确定既有管道达到管顶竖向变形量所需施加的等效附加荷载Δqsoil:
在步骤S405中,基于等效附加荷载以及砂浆内衬壁厚假设值,确定既有管道依据砂浆内衬壁厚假设值修复的应力状态参数。
在本发明实施例中,可以通过等效附加荷载,能够确定既有管道修复后的管顶截面内力,进而基于砂浆内衬壁厚假设值和管顶截面内力,可以确定既有管道依据砂浆内衬壁厚假设值修复的应力状态参数。
其中,管顶截面内力可以包括管顶截面弯矩M和管顶截面剪力FQ,弯矩可以采用下述公式进行确定:
管顶截面剪力可以采用下述公式进行确定:
其中,Δqsoil表示等效附加荷载,D表示既有管道的管道外径。
既有管道依据砂浆内衬壁厚假设值修复后的应力状态参数包括:管顶内壁张拉应力σs、既有管道与砂浆内衬间的界面张拉应力σr以及既有管道与砂浆内衬间的界面剪切应力τr。
其中,管顶内壁张拉应力σs、既有管道与砂浆内衬间的界面张拉应力σr以及既有管道与砂浆内衬间的界面剪切应力τr分别采用下述公式进行确定:
其中,R为既有管道修复后等效中性轴的半径;y'为既有管道修复后等效中性轴与砂浆内衬内壁的距离;E1为第一等效弹性模量;E3为砂浆内衬的弹性模量;t1为既有管道当前状态下的第一平均残余壁厚;Aa为既有管道在单位长度内的截面面积;Ab为单位长度砂浆内衬的截面面积。
在一例中,上述公式中的y′、R、Aa和Ab,可以采用如下公式进行确定:
Aa=t1·b,Ab=t3·b,
其中,b表示单位长度。
在步骤S406中,比较应力状态参数和标准强度参数,依据比较结果判断是否以砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值。
在本发明实施例中,抗拉强度(K·σt)为张拉应力σs对应的标准强度参数;界面张拉强度(K·σb)为界面张拉应力σr对应的标准强度参数;以及界面剪切强度(K·τb)为界面剪切应力τr对应的标准强度参
数。其中,K为综合安全系数,K∈1.5~2,σb为既有管道与砂浆内衬间的界面张拉强度,τb为既有管道与砂浆内衬间的界面剪切强度。抗拉强度可以基于最大拉应力理论进行确定,界面张拉强度和界面剪切强度可以基于砂浆内衬-既有管道协调变形判断准则进行确定,
若σs=K·σt、σr≤K·σb且τr≤K·τb,则确定比较结果为应力状态参数与标准强度参数相一致,进而将砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值。
若张拉应力、界面张拉应力或者界面剪切应力中存在至少一个与对应的标准强度参数不同,则确定应力状态参数与标准强度参数不一致,进而重新确定砂浆内衬壁厚假设值,以基于重新确定的砂浆内衬壁厚假设值重新确定应力状态参数。
在一实施例中,若指定缺陷类型为裂纹缺陷,则缺陷数据包括裂纹长度、裂纹深度以及开裂角度,进而第一等效弹性模量和第二等效弹性模量可以采用下述方式进行确定:
基于裂纹长度l、裂纹深度h以及开裂角度θ,能够确定既有管道内裂纹缺陷的轴向裂纹因子ρ1以及环向裂纹因子ρ2。基于轴向裂纹因子ρ1、环向裂纹因子ρ2和既有管道的初始劈裂抗拉强度数据σ0,可以确定既有管道的当前状态下劈裂抗拉强度数据σ1。依据当前状态下劈裂抗拉强度数据σ1,确定既有管道当前状态下的第一等效弹性模量E1。基于既有管道的第一管龄Y1、第二管龄Y2以及第一等效弹性模量E1,确定既有管道达到修复后设计使用年限时的第二等效弹性模量E2。其中,
σ1=σ0·ρ1·ρ2,
l为轴向裂纹长度;θ为环向裂纹的开裂角度;h1为轴线裂纹缺陷的深度;h2为环向裂纹缺陷的深度。
在一实施场景中,针对裂痕缺陷进行砂浆内衬壁厚设计的过程可以如图5所示。图5是根据一示例性实施例提出的又一种砂浆内衬壁厚设计方法的流程图。
在步骤S501中,对既有管道进行缺陷检测,识别既有管道的裂痕缺陷,得到既有管道的缺陷数据。
在步骤S502中,基于既有管道的缺陷数据、当前状态下的第一管龄以及既有管道达到修复后设计使用年限时的第二管龄,分别确定既有管道当前状态下的第一等效弹性模量和达到修复后设计使用年限时的第二等效弹性模量。
在本发明实施例中,依据缺陷数据,分别确定既有管道的裂纹长度、裂纹深度以及开裂角度,进而确定纹缺陷的轴向裂纹因子ρ1以及环向裂纹因子ρ2。基于轴向裂纹因子ρ1、环向裂纹因子ρ2和既有管道的初始劈裂抗拉强度数据σ0,确定既有管道的当前状态下劈裂抗拉强度数据σ1。依据当前状态下劈裂抗拉强度数据σ1,确定既有管道当前状态下的第一等效弹性模量E1。基于既有管道的第一管龄Y1、第二管龄Y2以及第一等效弹性模量E1,确定既有管道达到修复后设计使用年限时的第二等效弹性模量E2。其中,
σ1=σ0·ρ1·ρ2,
l为轴向裂纹长度;θ为环向裂纹的开裂角度;h1为轴线裂纹缺陷的深度;h2为环向裂纹缺陷的深度。
在步骤S503中,基于既有管道单位长度上的管顶线荷载和第二等效弹性模量,确定既有管道达到修复后设计使用年限时的管顶竖向变形量。
在本发明实施例中,采用下述公式确定既有管道达到修复后设计使用年限时的管顶竖向变形量Δ:
其中,I0为既有管道的初始截面惯性矩。
在一示例中,针对裂纹缺陷进行砂浆喷涂修复时,默认既有管道的截面惯性矩不随时间而变化。
在步骤S504中,依据第一等效弹性模量、第二等效弹性模量以及管顶线荷载,确定既有管道达到管顶竖向变形量所需施加的等效附加荷载。
在本发明实施例中,采用如下公式确定等效附加荷载:
其中,Δqsoil为等效附加荷载,E1为第一等效弹性模量,I1为第一等效截面惯性矩,E2为第二等效弹性模量,I2为第二等效截面惯性矩,qsoil为管顶线荷载。
在步骤S505中,基于等效附加荷载以及砂浆内衬壁厚假设值,确定既有管道依据砂浆内衬壁厚假设值修复后的应力状态参数。该步骤的具体实施方式与步骤S405相同,在此不在进行赘述。
在步骤S506中,比较应力状态参数和标准强度参数,依据比较结果判断是否以砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值。该步骤的具体实施方式与步骤S406相同,在此不在进行赘述。
基于相同发明构思,本发明还提供一种管道修复方法。
图6是根据一示例性实施例提出的一种管道修复方法的流程图。如图6所示,管道修复方法包括如下步骤S601至步骤S602。
在步骤S601中,获取对既有管道进行砂浆喷涂修复时的砂浆内衬目标壁厚值。
在本发明实施例中,砂浆内衬目标壁厚值采用本发明提供的任意一种砂浆内衬壁厚设计方法进行确定。
在步骤S602中,依据砂浆内衬目标壁厚值对既有管道的内衬进行砂浆喷涂修复。
通过上述实施例,依据砂浆内衬目标壁厚值对既有管道进行砂浆喷涂修复,使得到的砂浆内衬目标壁厚值更符合工程实际情况,能够在确保修复后的管道结构强度满足要求的前提下,有效减少内衬壁厚,进而降低工程材料成本。
基于相同发明构思,本发明还提供一种砂浆内衬壁厚设计装置。
图7是根据一示例性实施例提出的一种砂浆内衬壁厚设计装置的结构框图。如图7所示,砂浆内衬壁厚设计装置包括第一确定单元701、第二确定单元702、第三确定单元703、第四确定单元704和判断单元705。
第一确定单元701,用于基于既有管道的缺陷数据,确定既有管道当前状态下的第一等效弹性模量和达到修复后设计使用年限时的第二等效弹性模量;
第二确定单元702,用于基于既有管道单位长度上的管顶线荷载和第二等效弹性模量,确定既有管道
达到修复后设计使用年限时的管顶竖向变形量;
第三确定单元703,用于依据第一等效弹性模量、第二等效弹性模量以及管顶线荷载,确定既有管道在当前状态下达到管顶竖向变形量时所需施加的等效附加荷载;
第四确定单元704,用于基于等效附加荷载以及砂浆内衬壁厚假设值,确定既有管道依据砂浆内衬壁厚假设值修复后的应力状态参数;
判断单元705,用于比较应力状态参数和标准强度参数,依据比较结果判断是否以砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值。
在一实施例中,判断单元705包括:第一判断单元,用于如果比较结果为应力状态参数与标准强度参数相一致,则确定以砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值。第二判断单元,用于如果比较结果为应力状态参数与标准强度参数不一致,则重新确定砂浆内衬壁厚假设值,以基于重新确定的砂浆内衬壁厚假设值重新确定应力状态参数。
在另一实施例中,第四确定单元704包括:管顶截面内力确定单元,用于基于等效附加荷载,确定在等效荷载作用下,既有管道修复后的管顶截面内力。应力状态参数确定单元,用于基于砂浆内衬壁厚假设值和管顶截面内力,确定既有管道依据砂浆内衬壁厚假设值修复后的应力状态参数。
在又一实施例中,管顶截面内力包括管顶截面弯矩和管顶截面剪力。应力状态参数确定单元包括:第一应力状态参数确定子单元,用于基于砂浆内衬壁厚假设值、管顶截面弯矩和既有管道的属性数据,确定既有管道依据砂浆内衬壁厚假设值修复后砂浆内衬的管顶内壁张拉应力。第二应力状态参数确定子单元,用于基于砂浆内衬壁厚假设值、管顶截面弯矩和既有管道的属性数据,确定既有管道依据砂浆内衬壁厚假设值修复后既有管道与砂浆内衬间的界面张拉应力。第三应力状态参数确定子单元,用于基于砂浆内衬壁厚假设值、管顶截面剪力和既有管道的属性数据,确定既有管道依据砂浆内衬壁厚假设值修复后既有管道与砂浆内衬间的界面剪切应力。其中,管顶内壁张拉应力、界面张拉应力和界面剪切应力均属于应力状态参数。
在又一实施例中,应力状态参数与标准强度参数相一致包括:管顶内壁张拉应力等于砂浆内衬的抗拉强度、既有管道与砂浆内衬间的界面张拉应力小于或者等于既有管道与砂浆内衬间的界面张拉强度,且既有管道与砂浆内衬间的界面剪切应力小于或者等于既有管道与砂浆内衬间的界面剪切强度。其中,抗拉强度为张拉应力对应的标准强度参数;界面张拉强度为界面张拉应力对应的标准强度参数;以及界面剪切强度为界面剪切应力对应的标准强度参数。
在又一实施例中,应力状态参数与标准强度参数不一致包括:管顶内壁张拉应力不等于砂浆内衬的抗拉强度。界面张拉应力大于既有管道与砂浆内衬间的界面张拉强度。或界面剪切应力大于既有管道与砂浆内衬间的界面剪切强度。
在又一实施例中,装置还包括:检测单元,用于对既有管道进行缺陷检测,以获取指定缺陷类型的缺陷数据。其中,缺陷类型包括腐蚀缺陷和/或裂纹缺陷。
在又一实施例中,若指定类型缺陷为腐蚀缺陷,则缺陷数据包括腐蚀缺陷数量、每一个腐蚀缺陷的缺陷面积以及每一个腐蚀缺陷的缺陷深度;第一确定单元701包括:第一损失率确定单元,用于基于既有管道的属性数据、腐蚀缺陷数量、每一个腐蚀缺陷的缺陷面积以及每一个腐蚀缺陷的缺陷深度,确定既有管道当前状态下的第一平均体积损失率。第一弹性模量确定单元,用于依据第一平均体积损失率,得到既有管道当前状态下的第一等效弹性模量。第二损失率确定单元,用于依据第一平均体积损失率、既有管道当前状态下的第一管龄和既有管道达到修复后设计使用年限时的第二管龄,得到既有管道达到修复后设计使用年限时的第二平均体积损失率。第二弹性模量确定单元,用于依据第二平均体积损失
率,得到既有管道达到修复后设计使用年限时的第二等效弹性模量。
在又一实施例中,第二确定单元702包括:第一残余壁厚确定单元,用于根据第一平均体积损失率和既有管道的初始壁厚,得到既有管道当前状态下的第一平均残余壁厚。第一截面惯性矩确定单元,用于依据第一平均残余壁厚,确定既有管道当前状态下的第一等效截面惯性矩。第二残余壁厚确定单元,用于依据第二平均体积损失率和既有管道的初始壁厚,得到既有管道当前状态下的第二平均残余壁厚。第二截面惯性矩确定单元,用于依据第二平均残余壁厚,确定既有管道达到修复后设计使用年限时的第二等效截面惯性矩。第二确定子单元,用于依据第二等效弹性模量、第二等效截面惯性矩和管顶线荷载,确定既有管道达到修复后设计使用年限时的管顶竖向变形量。
在又一实施例中,若指定缺陷类型为裂纹缺陷,则缺陷数据包括裂纹长度、裂纹深度以及开裂角度。第一确定单元701包括:劈裂抗拉强度数据确定单元,用于基于裂纹长度、裂纹深度、开裂角度以及既有管道的初始劈裂抗拉强度数据,确定既有管道当前状态下的劈裂抗拉强度。第三弹性模量确定单元,用于依据既有管道当前状态下劈裂抗拉强度数据,确定既有管道当前状态下的第一等效弹性模量。第四弹性模量确定单元,用于基于既有管道的第一管龄、第二管龄以及第一等效弹性模量,确定既有管道达到修复后设计使用年限时的第二等效弹性模量。
上述砂浆内衬壁厚设计装置的具体限定以及有益效果可以参见上文中对于砂浆内衬壁厚设计方法的限定,在此不再赘述。上述各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图8是根据一示例性实施例提出的一种管道修复装置的结构框图。如图8所示,管道修复装置包括获取单元801和修复单元802。
获取单元801,用于获取对既有管道进行砂浆喷涂修复时的砂浆内衬目标壁厚值,其中,砂浆内衬目标壁厚值采用本发明提供的任意一种砂浆内衬壁厚设计方法进行确定;
修复单元802,用于依据砂浆内衬目标壁厚值对既有管道的内衬进行砂浆喷涂修复。
上述管道修复装置的具体限定以及有益效果可以参见上文中对于管道修复方法的限定,在此不再赘述。上述各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图9是根据一示例性实施例提出的一种计算机设备的硬件结构示意图。如图9所示,该设备包括一个或多个处理器910以及存储器920,存储器920包括持久内存、易失内存和硬盘,图9中以一个处理器910为例。该设备还可以包括:输入装置930和输出装置940。
处理器910、存储器920、输入装置930和输出装置940可以通过总线或者其他方式连接,图9中以通过总线连接为例。
处理器910可以为中央处理器(Central Processing Unit,CPU)。处理器910还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器920作为一种非暂态计算机可读存储介质,包括持久内存、易失内存和硬盘,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本申请实施例中的业务管理方法对应的程序指令/
模块。处理器910通过运行存储在存储器920中的非暂态软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述任意一种砂浆内衬壁厚设计方法或者管道修复方法。
存储器920可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储依据、需要使用的数据等。此外,存储器920可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器920可选包括相对于处理器910远程设置的存储器,这些远程存储器可以通过网络连接至数据处理装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置930可接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键信号输入。输出装置940可包括显示屏等显示设备。
一个或者多个模块存储在存储器920中,当被一个或者多个处理器910执行时,执行如图1-图6所示的方法。
上述产品可执行本发明实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,具体可参见如图1-图6所示的实施例中的相关描述。
本发明实施例还提供了一种非暂态计算机存储介质,计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的认证方法。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;存储介质还可以包括上述种类的存储器的组合。
Claims (13)
- 一种砂浆内衬壁厚设计方法,其特征在于,所述方法包括:基于既有管道的缺陷数据,确定所述既有管道当前状态下的第一等效弹性模量和达到修复后设计使用年限时的第二等效弹性模量;基于既有管道单位长度上的管顶线荷载和所述第二等效弹性模量,确定所述既有管道达到修复后设计使用年限时的管顶竖向变形量;依据所述第一等效弹性模量、所述第二等效弹性模量以及所述管顶线荷载,确定所述既有管道在当前状态下达到所述管顶竖向变形量时所需施加的等效附加荷载;基于所述等效附加荷载以及砂浆内衬壁厚假设值,确定所述既有管道依据所述砂浆内衬壁厚假设值修复后的应力状态参数;比较所述应力状态参数和标准强度参数,依据比较结果判断是否以所述砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值;所述基于所述等效附加荷载以及砂浆内衬壁厚假设值,确定所述既有管道依据所述砂浆内衬壁厚假设值修复后的应力状态参数,包括:基于所述等效附加荷载,确定在所述等效附加荷载作用下,所述既有管道修复后的管顶截面内力;基于所述砂浆内衬壁厚假设值和所述管顶截面内力,确定所述既有管道依据所述砂浆内衬壁厚假设值修复后的应力状态参数;所述管顶截面内力包括管顶截面弯矩和管顶截面剪力;所述基于所述砂浆内衬壁厚假设值和所述管顶截面内力,确定所述既有管道依据所述砂浆内衬壁厚假设值修复后的应力状态参数,包括:基于所述砂浆内衬壁厚假设值、所述管顶截面弯矩和所述既有管道的属性数据,确定所述既有管道依据所述砂浆内衬壁厚假设值修复后所述砂浆内衬的管顶内壁张拉应力;基于所述砂浆内衬壁厚假设值、所述管顶截面弯矩和所述既有管道的属性数据,确定所述既有管道依据所述砂浆内衬壁厚假设值修复后所述既有管道与所述砂浆内衬间的界面张拉应力;基于砂浆内衬壁厚假设值、所述管顶截面剪力和所述既有管道的属性数据,确定所述既有管道依据所述砂浆内衬壁厚假设值修复后所述既有管道与所述砂浆内衬间的界面剪切应力;其中,所述管顶内壁张拉应力、所述界面张拉应力和所述界面剪切应力均属于应力状态参数;其中,所述管顶截面弯矩通过下述公式进行确定:
其中,M表示所述管顶截面弯矩,Δqsoil表示所述等效附加荷载,D表示所述既有管道的管道外径;所述管顶截面剪力通过下述公式进行确定:
其中,FQ为所述管顶截面剪力;若所述既有管道在服役过程中等效截面惯性矩未发生改变,则所述等效附加荷载通过下述公式进行确定:
Δqsoil为所述等效附加荷载,E1为所述第一等效弹性模量,E2为所述第二等效弹性模量,qsoil为所述管顶线荷载;若所述既有管道在服役过程中等效截面惯性矩随着使用年限的增加而发生改变,则结合所述既有管道当前状态下的第一等效截面惯性矩和所述第一等效弹性模量,确定所述既有管道当前状态下的第一等效抗弯刚度;结合所述既有管道达到修复后设计使用年限时的第二等效截面惯性矩和所述第二等效弹性模量,确定所述既有管道达到修复后设计使用年限时的第二等效抗弯刚度;采用如下公式确定等效附加荷载:
Δqsoil为所述等效附加荷载,E1为所述第一等效弹性模量,I1为所述第一等效截面惯性矩,E2为所述第二等效弹性模量,I2为所述第二等效截面惯性矩,qsoil为所述管顶线荷载;所述管顶内壁张拉应力通过下述公式进行确定:
其中,σs为所述管顶内壁张拉应力,R为修复后所述既有管道等效中性轴的半径;y'为修复后所述既有管道等效中性轴与砂浆内衬内壁间的距离;E1为所述第一等效弹性模量;E3为所述砂浆内衬的弹性模量;t1为所述既有管道当前状态下的第一平均残余壁厚;t3为所述砂浆内衬壁厚假设值;Aa为所述既有管道在单位长度内的截面面积;Ab为单位长度砂浆内衬的截面面积;所述既有管道与所述砂浆内衬间的界面张拉应力通过下述公式进行确定:
其中,σr为所述既有管道与所述砂浆内衬间的界面张拉应力;所述既有管道与所述砂浆内衬间的界面剪切应力通过下述公式进行确定:
其中,τr为所述既有管道与所述砂浆内衬间的界面剪切应力;所述y′、R、Aa和Ab,采用如下公式进行确定:Aa=t1·b,Ab=t3·b,其中,b表示单位长度。 - 根据权利要求1所述的方法,其特征在于,所述依据比较结果判断是否以所述砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值,包括:如果所述比较结果为所述应力状态参数与所述标准强度参数相一致,则以所述砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值;如果所述比较结果为所述应力状态参数与所述标准强度参数不一致,则重新确定所述砂浆内衬壁厚假设值,以基于重新确定的砂浆内衬壁厚假设值重新确定应力状态参数。
- 根据权利要求2所述的方法,其特征在于,所述应力状态参数与所述标准强度参数相一致,包括:所述管顶内壁张拉应力等于所述砂浆内衬的抗拉强度、所述既有管道与所述砂浆内衬间的界面张拉应力小于或者等于所述既有管道与所述砂浆内衬间的界面张拉强度,且所述既有管道与所述砂浆内衬间的界面剪切应力小于或者等于所述既有管道与所述砂浆内衬间的界面剪切强度;其中,所述抗拉强度为所述张拉应力对应的标准强度参数;所述界面张拉强度为所述界面张拉应力对应的标准强度参数;以及所述界面剪切强度为所述界面剪切应力对应的标准强度参数。
- 根据权利要求2所述的方法,其特征在于,所述应力状态参数与所述标准强度参数不一致,包括:所述管顶内壁张拉应力不等于所述砂浆内衬的抗拉强度;所述界面张拉应力大于所述既有管道与所述砂浆内衬间的界面张拉强度;或所述界面剪切应力大于所述既有管道与所述砂浆内衬间的界面剪切强度。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:对所述既有管道进行缺陷检测,以获取指定缺陷类型的缺陷数据;其中,所述指定缺陷类型包括腐蚀缺陷和/或裂纹缺陷。
- 根据权利要求5所述的方法,其特征在于,若所述指定缺陷类型为腐蚀缺陷,则所述缺陷数据包括腐蚀缺陷数量、每一个腐蚀缺陷的缺陷面积以及每一个腐蚀缺陷的缺陷深度;所述基于既有管道的缺陷数据,确定既有管道当前状态下的第一等效弹性模量和达到修复后设计使用年限时的第二等效弹性模量,包括:基于所述既有管道的属性数据、所述腐蚀缺陷数量、每一个腐蚀缺陷的缺陷面积以及每一个腐蚀缺陷的缺陷深度,确定所述既有管道当前状态下的第一平均体积损失率;依据所述第一平均体积损失率,得到所述既有管道当前状态下的第一等效弹性模量;依据所述第一平均体积损失率、所述既有管道当前状态下的第一管龄以及所述既有管 道达到修复后设计使用年限时的第二管龄,得到所述既有管道达到修复后设计使用年限时的第二平均体积损失率;依据所述第二平均体积损失率,得到所述既有管道达到修复后设计使用年限时的第二等效弹性模量;所述第一平均体积损失率f1的确定公式如下:
其中,D为所述既有管道的管道外径;t0为所述既有管道的初始壁厚;L为所述既有管道的检测管段长度;N为所述既有管道的检测管段内的腐蚀缺陷数量;Si为各腐蚀缺陷的缺陷面积;hi为各腐蚀缺陷的缺陷深度;采用下述公式依据所述第一平均体积损失率f1,得到所述既有管道当前状态下的第一等效弹性模量E1:
其中,v0为所述既有管道的管材的初始泊松比;G0为管材的初始剪切模量;K0为管材的初始体积模量;依据所述第一平均体积损失率f1、所述既有管道当前状态下的第一管龄和所述既有管道达到修复后设计使用年限时的第二管龄,采用下述公式得到所述既有管道达到修复后设计使用年限时的第二平均体积损失率f2:
其中,Y1为所述既有管道当前状态下的第一管龄,Y2为所述既有管道达到修复后设计使用年限时的第二管龄;依据所述第二平均体积损失率f2,采用下述公式得到既有管道达到修复后设计使用年限时的第二等效弹性模量E2:
其中,v0为所述既有管道的管材的初始泊松比;G0为管材的初始剪切模量;K0为管材的初始体积模量。 - 根据权利要求6所述的方法,其特征在于,所述依据既有管道单位长度上的管顶线荷载和所述第二等效弹性模量,确定所述既有管道达到修复后设计使用年限时的管顶竖向变形量,包括:依据所述第一平均体积损失率和所述既有管道的初始壁厚,得到所述既有管道当前状态下的第一平均残余壁厚;依据所述第一平均残余壁厚,确定所述既有管道当前状态下的第一等效截面惯性矩;依据所述第二平均体积损失率和所述既有管道的初始壁厚,得到所述既有管道达到修 复后设计使用年限时的第二平均残余壁厚;依据所述第二平均残余壁厚,确定所述既有管道达到修复后设计使用年限时的第二等效截面惯性矩;依据所述第二等效弹性模量、所述第二等效截面惯性矩和所述管顶线荷载,确定所述既有管道达到修复后设计使用年限时的管顶竖向变形量;其中,所述既有管道当前状态下的第一平均残余壁厚t1=f1·t0;f1为所述第一平均体积损失率,t0为所述既有管道的初始壁厚;依据所述第一平均残余壁厚t1,采用下述公式确定所述既有管道当前状态下的第一等效截面惯性矩I1:其中,D表示所述既有管道的管道外径;所述既有管道当前状态下的第二平均残余壁厚t2=f2·t0,f2为所述第二平均体积损失率,t0为所述既有管道的初始壁厚;依据所述第二平均残余壁厚t2,采用如下公式确定所述既有管道达到修复后设计使用年限时的第二等效截面惯性矩I2;其中,D表示所述既有管道的管道外径;依据所述第二等效弹性模量E2、所述第二等效截面惯性矩I2和所述管顶线荷载qsoil,采用下述公式确定所述既有管道达到修复后设计使用年限时的管顶竖向变形量Δ:其中,D表示所述既有管道的管道外径。
- 根据权利要求5所述的方法,其特征在于,若所述指定缺陷类型为裂纹缺陷,则所述缺陷数据包括裂纹长度、裂纹深度以及开裂角度;所述基于既有管道的缺陷数据,确定既有管道当前状态下的第一等效弹性模量和达到修复后设计使用年限时的第二等效弹性模量,包括:基于所述裂纹长度、所述裂纹深度、所述开裂角度以及所述既有管道的初始劈裂抗拉强度数据,确定所述既有管道当前状态下的劈裂抗拉强度;依据所述既有管道当前状态下的劈裂抗拉强度,确定所述既有管道当前状态下的第一等效弹性模量;基于所述既有管道的第一管龄、第二管龄以及所述第一等效弹性模量,确定所述既有管道达到修复后设计使用年限时的第二等效弹性模量;其中,所述既有管道的当前状态下劈裂抗拉强度数据σ1=σ0·ρ1·ρ2;σ0为所述既有管道的初始劈裂抗拉强度数据;ρ1为所述裂纹缺陷的轴向裂纹因子;ρ2为所述裂纹缺陷的环向裂纹因子;所述既有管道当前状态下的第一等效弹性模量所述既有管道达到修复后设计使用年限时的第二等效弹性模量其中,Y1为所述既有管道当前状态下的第一管龄,Y2为所述既有管道达到修复后设计使用年限时的第二管龄。
- 一种管道修复方法,其特征在于,所述方法包括:获取对既有管道进行砂浆喷涂修复时的砂浆内衬目标壁厚值,其中,所述砂浆内衬目标壁厚值采用权利要求1-8中任一项所述的砂浆内衬壁厚设计方法进行确定;依据所述砂浆内衬目标壁厚值对所述既有管道进行砂浆喷涂修复。
- 一种砂浆内衬壁厚设计装置,其特征在于,所述装置包括:第一确定单元,用于基于既有管道的缺陷数据,确定所述既有管道当前状态下的第一等效弹性模量和达到修复后设计使用年限时的第二等效弹性模量;第二确定单元,用于基于所述既有管道单位长度上的管顶线荷载和所述第二等效弹性模量,确定所述既有管道达到修复后设计使用年限时的管顶竖向变形量;第三确定单元,用于依据所述第一等效弹性模量、所述第二等效弹性模量以及所述管顶线荷载,确定所述既有管道在当前状态下达到所述管顶竖向变形量时所需施加的等效附加荷载;第四确定单元,用于基于所述等效附加荷载以及砂浆内衬壁厚假设值,确定所述既有管道依据所述砂浆内衬壁厚假设值修复后的应力状态参数;判断单元,用于比较所述应力状态参数和标准强度参数,依据比较结果判断是否以所述砂浆内衬壁厚假设值作为砂浆内衬目标壁厚值;所述第四确定单元包括:管顶截面内力确定单元,用于基于所述等效附加荷载,确定在所述等效附加荷载作用下,所述既有管道修复后的管顶截面内力;应力状态参数确定单元,用于基于所述砂浆内衬壁厚假设值和所述管顶截面内力,确定所述既有管道依据所述砂浆内衬壁厚假设值修复后的应力状态参数;所述管顶截面内力包括管顶截面弯矩和管顶截面剪力;所述应力状态参数确定单元包括:第一应力状态参数确定子单元,用于基于所述砂浆内衬壁厚假设值、所述管顶截面弯矩和所述既有管道的属性数据,确定所述既有管道依据所述砂浆内衬壁厚假设值修复后所述砂浆内衬的管顶内壁张拉应力;第二应力状态参数确定子单元,用于基于所述砂浆内衬壁厚假设值、所述管顶截面弯矩和所述既有管道的属性数据,确定所述既有管道依据所述砂浆内衬壁厚假设值修复后所述既有管道与所述砂浆内衬间的界面张拉应力;第三应力状态参数确定子单元,用于基于砂浆内衬壁厚假设值、所述管顶截面剪力和所述既有管道的属性数据,确定所述既有管道依据所述砂浆内衬壁厚假设值修复后所述既有管道与所述砂浆内衬间的界面剪切应力;其中,所述管顶内壁张拉应力、所述界面张拉应力和所述界面剪切应力均属于应力状态参数其中,所述管顶截面弯矩通过下述公式进行确定:
其中,M表示所述管顶截面弯矩,Δqsoil表示所述等效附加荷载,D表示所述既有管道的管道外径;所述管顶截面剪力通过下述公式进行确定:
其中,FQ为所述管顶截面剪力;若所述既有管道在服役过程中等效截面惯性矩未发生改变,则所述等效附加荷载通过下述公式进行确定:
Δqsoil为所述等效附加荷载,E1为所述第一等效弹性模量,E2为所述第二等效弹性模量,qsoil为所述管顶线荷载;若所述既有管道在服役过程中等效截面惯性矩随着使用年限的增加而发生改变,则结合所述既有管道当前状态下的第一等效截面惯性矩和所述第一等效弹性模量,确定所述既有管道当前状态下的第一等效抗弯刚度;结合所述既有管道达到修复后设计使用年限时的第二等效截面惯性矩和所述第二等效弹性模量,确定所述既有管道达到修复后设计使用年限时的第二等效抗弯刚度;采用如下公式确定等效附加荷载:
Δqsoil为所述等效附加荷载,E1为所述第一等效弹性模量,I1为所述第一等效截面惯性矩,E2为所述第二等效弹性模量,I2为所述第二等效截面惯性矩,qsoil为所述管顶线荷载;所述管顶内壁张拉应力通过下述公式进行确定:
其中,σs为所述管顶内壁张拉应力,R为修复后所述既有管道等效中性轴的半径;y'为修复后所述既有管道等效中性轴与砂浆内衬内壁间的距离;E1为所述第一等效弹性模量;E3为所述砂浆内衬的弹性模量;t1为所述既有管道当前状态下的第一平均残余壁厚;t3为所述砂浆内衬壁厚假设值;Aa为所述既有管道在单位长度内的截面面积;Ab为单位长度砂浆内衬的截面面积;所述既有管道与所述砂浆内衬间的界面张拉应力通过下述公式进行确定:
其中,σr为所述既有管道与所述砂浆内衬间的界面张拉应力;所述既有管道与所述砂浆内衬间的界面剪切应力通过下述公式进行确定:
其中,τr为所述既有管道与所述砂浆内衬间的界面剪切应力;所述y′、R、Aa和Ab,采用如下公式进行确定:Aa=t1·b,Ab=t3·b,其中,b表示单位长度。 - 一种管道修复装置,其特征在于,所述装置包括:获取单元,用于获取对既有管道进行砂浆喷涂修复时的砂浆内衬目标壁厚值,其中,所述砂浆内衬目标壁厚值采用权利要求1-8中任一项所述的砂浆内衬壁厚设计方法进行确定;修复单元,用于依据所述砂浆内衬目标壁厚值对所述既有管道进行砂浆喷涂修复。
- 一种计算机设备,其特征在于,包括存储器和处理器,所述存储器和所述处理器间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行权利要求1-8中任一项所述的砂浆内衬壁厚设计方法或执行权利要求9所述的管道修复方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行权利要求1-8中任一项所述的砂浆内衬壁厚设计方法或执行权利要求9所述的管道修复方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210953851.2A CN115033942B (zh) | 2022-08-10 | 2022-08-10 | 砂浆内衬壁厚设计方法、管道修复方法及装置 |
CN202210953851.2 | 2022-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024032147A1 true WO2024032147A1 (zh) | 2024-02-15 |
Family
ID=83129976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/100475 WO2024032147A1 (zh) | 2022-08-10 | 2023-06-15 | 砂浆内衬壁厚设计方法、管道修复方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115033942B (zh) |
WO (1) | WO2024032147A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115033942B (zh) * | 2022-08-10 | 2022-11-04 | 中国长江三峡集团有限公司 | 砂浆内衬壁厚设计方法、管道修复方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008230058A (ja) * | 2007-03-20 | 2008-10-02 | Yoshika Kk | 既設管補修工法 |
CN103982748A (zh) * | 2014-06-10 | 2014-08-13 | 武汉中地管通非开挖科技有限公司 | 一种改进型管道不锈钢内衬修复方法 |
CN113158489A (zh) * | 2021-05-13 | 2021-07-23 | 中国石油大学(华东) | 一种基于等效载荷的抗爆管道壁厚的计算方法 |
CN113935204A (zh) * | 2020-07-13 | 2022-01-14 | 中国石油化工股份有限公司 | 管道腐蚀缺陷评价方法和装置 |
CN115033942A (zh) * | 2022-08-10 | 2022-09-09 | 中国长江三峡集团有限公司 | 砂浆内衬壁厚设计方法、管道修复方法及装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9404893B2 (en) * | 2008-03-14 | 2016-08-02 | Cidra Corporate Services Inc. | Flow and pipe management using velocity profile measurement and/or pipe wall thickness and wear monitoring |
CN114636046B (zh) * | 2022-04-02 | 2024-01-23 | 中山大学 | 一种大断面管涵异形玻璃钢内衬带水非开挖穿插修复方法 |
-
2022
- 2022-08-10 CN CN202210953851.2A patent/CN115033942B/zh active Active
-
2023
- 2023-06-15 WO PCT/CN2023/100475 patent/WO2024032147A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008230058A (ja) * | 2007-03-20 | 2008-10-02 | Yoshika Kk | 既設管補修工法 |
CN103982748A (zh) * | 2014-06-10 | 2014-08-13 | 武汉中地管通非开挖科技有限公司 | 一种改进型管道不锈钢内衬修复方法 |
CN113935204A (zh) * | 2020-07-13 | 2022-01-14 | 中国石油化工股份有限公司 | 管道腐蚀缺陷评价方法和装置 |
CN113158489A (zh) * | 2021-05-13 | 2021-07-23 | 中国石油大学(华东) | 一种基于等效载荷的抗爆管道壁厚的计算方法 |
CN115033942A (zh) * | 2022-08-10 | 2022-09-09 | 中国长江三峡集团有限公司 | 砂浆内衬壁厚设计方法、管道修复方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115033942A (zh) | 2022-09-09 |
CN115033942B (zh) | 2022-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024032147A1 (zh) | 砂浆内衬壁厚设计方法、管道修复方法及装置 | |
US7043373B2 (en) | System and method for pipeline reliability management | |
Hu et al. | Full-scale test and numerical simulation study on load-carrying capacity of prestressed concrete cylinder pipe (PCCP) with broken wires under internal water pressure | |
CN106017401B (zh) | 超高泵送混凝土输送管堵塞的监测装置及监测与评判方法 | |
CN111539142A (zh) | 一种管道裂纹扩展驱动力计算方法及系统 | |
CN111914220A (zh) | 城市燃气管网泄漏风险因素失效概率计算方法及装置 | |
CN206002086U (zh) | 超高泵送混凝土输送管堵塞的监测装置 | |
KR101607118B1 (ko) | 고층건물의 횡변위 보정방법 | |
Ojdrovic et al. | Verification of PCCP failure margin and risk curves | |
Kodikara et al. | Lessons learned from large-diameter pipe failure case studies | |
CN106404260A (zh) | 一种基于管道轴向监测应力的预警方法 | |
Fu et al. | Numerical study on the effect of defects on the performance of spray lined cast iron pipes | |
CN114778301A (zh) | 一种岩体稳定性的判定方法、装置及电子设备 | |
JP5505280B2 (ja) | 鋼構造物の使用限界予測手法 | |
Li et al. | Leakage model of water distribution network | |
Acosta et al. | Tucson Water's Strengthening Approach to Address Thrust Restraint for PCCP | |
RU2699320C1 (ru) | Способ центровки труб при их сварке встык | |
CN113792447B (zh) | 一种基于点荷载作用的大口径海底管道局部屈曲设计方法 | |
Wang et al. | Simplified equations for predicting secondary stress around pipe’s circumference | |
Engindeniz et al. | A Repair Program to Minimize Failure Risk of Highly Distressed PCCP Circulating Water Lines | |
CN107679258B (zh) | 输电钢管塔主材强度级差锻造法兰选配方法及装置 | |
CN107313792A (zh) | 一种用于暗挖空间建造的新型顶管及其施工方法 | |
Yu et al. | Study of Failure Rate Model for a Large-Scale Water Supply Network in Southern China Based on Different Diameters | |
Coghill | A Drive to Confidence—Managing the Reliability of San Diego County Water Authority’s Large Diameter Pipelines | |
Ivanković et al. | Introduction: Forensic Structural Engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23851374 Country of ref document: EP Kind code of ref document: A1 |