WO2024032118A1 - 过压保护电路、方法及电源系统 - Google Patents

过压保护电路、方法及电源系统 Download PDF

Info

Publication number
WO2024032118A1
WO2024032118A1 PCT/CN2023/098418 CN2023098418W WO2024032118A1 WO 2024032118 A1 WO2024032118 A1 WO 2024032118A1 CN 2023098418 W CN2023098418 W CN 2023098418W WO 2024032118 A1 WO2024032118 A1 WO 2024032118A1
Authority
WO
WIPO (PCT)
Prior art keywords
thyristor
power supply
overvoltage
optocoupler
resistor
Prior art date
Application number
PCT/CN2023/098418
Other languages
English (en)
French (fr)
Inventor
刘洋
刘艳
张筱敏
王卫
王晓伟
Original Assignee
苏州汇川控制技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川控制技术有限公司 filed Critical 苏州汇川控制技术有限公司
Publication of WO2024032118A1 publication Critical patent/WO2024032118A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators

Definitions

  • This application relates to the field of functional safety technology, and in particular to an overvoltage protection circuit, method and power supply system.
  • an overvoltage state occurs in a circuit system
  • the system is usually brought into a safe state through an overvoltage protection circuit.
  • Overvoltage protection circuits generally use comparators and MOS tubes to monitor the relevant voltages of the safety system.
  • the comparator action When the system is overvoltage, the comparator action, triggering safety monitoring links such as MOS tubes, cutting off the system power source, and maintaining the system voltage within a safe voltage range.
  • switching power supplies are mostly flyback power supplies.
  • the flyback power supply control chip is usually cut off.
  • the power supply system will enter a hiccup state, and the hiccup state will cause the circuit system to be powered on repeatedly, causing repeated impact on the components within the circuit system, affecting the service life of the components within the circuit system.
  • the main purpose of this application is to provide an overvoltage protection circuit, which is designed to reliably cut off the power supply output of the circuit system when overvoltage occurs, so as to increase the service life of components within the circuit system.
  • an overvoltage protection circuit which includes:
  • a voltage monitoring circuit configured to output a thyristor gating signal to the thyristor when an overvoltage at the voltage detection point is detected, and the thyristor gating signal is used to control the conduction of the thyristor;
  • a first resistor and a second resistor are connected in series between the DC power supply terminal and the power supply terminal of the power control chip.
  • the DC power supply terminal is used to provide the power supply for the thyristor when the thyristor is turned on.
  • the thyristor provides a maintaining current to ensure reliable conduction of the thyristor;
  • the cathode of the thyristor is grounded, and the anode of the thyristor is connected to the midpoint of the first resistor and the second resistor;
  • the energy storage module the first end of the energy storage module is grounded, the second end of the energy storage module is connected to the midpoint of the first resistor and the second resistor, the energy storage module is used to connect the When the thyristor is turned on, the thyristor is discharged to cut off the power supply output of the power supply terminal of the power control chip.
  • the energy storage module includes a diode and an energy storage unit
  • the first end of the energy storage unit is connected to ground, and the second end of the energy storage unit is connected to the anode of the diode and the power supply end of the power control chip;
  • the cathode of the diode is connected to the midpoint of the first resistor and the second resistor.
  • the energy storage unit when the thyristor is reliably turned on, the energy storage unit is used to discharge through the thyristor and the diode; when the thyristor is not reliably turned on, the energy storage unit is used to discharge Energy storage is based on the power supply output of the power supply end of the power control chip.
  • the voltage monitoring circuit includes an overvoltage detection circuit and an optocoupler
  • the overvoltage detection circuit is configured to output an optocoupler control signal to the optocoupler when an overvoltage is detected at the voltage detection point, wherein the optocoupler control signal is a low-level signal;
  • the optocoupler is configured to be turned on when receiving the optocoupler control signal and output the thyristor gating signal to the thyristor, wherein the thyristor gating signal is a high level signal.
  • the overvoltage detection circuit includes a comparator and a reference power supply
  • the overvoltage detection circuit includes a comparator and a reference power supply,
  • the reference power supply is used to output a reference voltage signal to the comparator
  • the inverting input end of the comparator is connected to the voltage detection point
  • the non-inverting input end of the comparator is connected to the output end of the reference power supply
  • the output end of the comparator is connected to the optocoupler
  • the comparison The device is used to compare the voltage signal of the voltage detection point and the reference voltage signal, and generate the optocoupler control signal when it is determined that the voltage detection point is over-voltage.
  • this application also provides an overvoltage protection circuit method, which is applied to the above overvoltage protection circuit.
  • the overvoltage protection method includes:
  • a thyristor gating signal is output to the thyristor, wherein the thyristor gating signal is used to control the conduction of the thyristor;
  • a sustaining current is provided for the thyristor through a DC power supply terminal, wherein the sustaining current is used to maintain reliable conduction of the thyristor;
  • the energy storage module includes a diode and an energy storage unit
  • the overvoltage protection method further includes:
  • the energy storage unit is stored and charged through the power supply output of the power supply end of the power control chip.
  • the voltage monitoring circuit includes an overvoltage detection circuit and an optocoupler.
  • outputting a thyristor gating signal to the thyristor includes:
  • an optocoupler control signal is output to the optocoupler through the overvoltage detection circuit, where the optocoupler control signal is a low-level signal;
  • the optocoupler is controlled to conduct according to the optocoupler control signal to generate the thyristor gating signal, wherein the thyristor gating signal is a high level signal.
  • the overvoltage detection circuit includes a comparator and a reference power supply. If an overvoltage at the voltage detection point is detected through the overvoltage detection circuit, the overvoltage detection circuit sends a signal to the optocoupler.
  • Output optocoupler control signals including:
  • the comparator compares the voltage signal and the reference voltage signal to generate the optocoupler control signal
  • the comparator outputs an optocoupler control signal to the optocoupler.
  • this application also proposes a power supply system, which includes a switching power supply and the above-mentioned overvoltage protection circuit. Please refer to the above for details, which will not be described again here.
  • the technical solution of this application is to form an overvoltage protection circuit by setting a voltage monitoring circuit, a first resistor, a second resistor, a thyristor and an energy storage module.
  • the first resistor and the second resistor are connected in series.
  • the cathode of the thyristor is grounded, the anode of the thyristor is connected to the midpoint of the first resistor and the second resistor, the first resistor of the energy storage module The second end of the energy storage module is connected to the midpoint of the first resistor and the second resistor, so that when the voltage monitoring circuit detects overvoltage at the voltage detection point, it will output a thyristor gate control signal to the thyristor.
  • the energy storage module will quickly pull down the midpoint of the first resistor and the second resistor when the thyristor will discharge through the thyristor. potential, thereby achieving the purpose of cutting off the power supply output of the power supply terminal of the power control chip, and the DC power supply terminal will provide a sustaining current for the thyristor to maintain reliable and continuous conduction of the thyristor. Therefore, at this time, the power supply of the power control chip The terminal will continue to reliably maintain the cut-off state, and the circuit system will reliably enter a safe state.
  • Figure 1 is a circuit functional block diagram of an embodiment of the overvoltage protection circuit in this application.
  • Figure 2 is a circuit functional block diagram of an embodiment of the overvoltage protection circuit in this application when the energy storage module is composed of a diode and an energy storage unit;
  • Figure 3 is a circuit functional block diagram of an embodiment of the overvoltage protection circuit in this application when the voltage monitoring circuit is composed of an overvoltage detection circuit and an optocoupler;
  • Figure 4 is a schematic circuit structure diagram of a voltage monitoring circuit in an embodiment of the overvoltage protection circuit of the present application
  • Figure 5 is a schematic circuit structure diagram of an overvoltage cut-off circuit in an embodiment of the overvoltage protection circuit of the present application
  • FIG. 6 is a flowchart of an embodiment of the overvoltage protection method in this application.
  • the overvoltage protection circuit includes a voltage monitoring circuit 100, a first resistor R1 and a second resistor R2, a thyristor T1, and an energy storage module 200.
  • the overvoltage protection circuit is composed of a voltage monitoring circuit 100 and an overvoltage cutoff circuit.
  • the overvoltage cutoff circuit includes a first resistor R1 and a second resistor R2, a thyristor T1 and a storage device.
  • Energy module 200 the input end of the voltage monitoring circuit 100 is connected to the voltage detection point, the output end of the voltage monitoring circuit 100 is connected to the gate of the thyristor T1; the first resistor R1 and the second resistor R2 is connected in series.
  • One end of the first resistor R1 is connected to the DC power supply end.
  • the other end of the first resistor R1 is connected to the second resistor R2.
  • One end of the second resistor R2 is connected to the power supply end of the power control chip. , the other end of the second resistor R2 is connected to the first resistor R1; the cathode of the thyristor T1 is grounded, and the anode of the thyristor T1 is connected to the midpoint of the first resistor R1 and the second resistor R2; The first end of the energy storage module 200 is connected to ground, and the second end of the energy storage module 200 is connected to the midpoint of the first resistor R1 and the second resistor R2.
  • the voltage monitoring circuit 100 When the voltage monitoring circuit 100 detects an overvoltage at the voltage detection point, it will generate a thyristor gating signal according to the voltage signal generated at the voltage detection point, and output the thyristor gating signal to the gate of the thyristor T1 to control the thyristor T1
  • the anode and cathode are turned on, where the thyristor gating signal is used to control the thyristor T1 to turn on; when the thyristor T1 is turned on, the energy storage module 200 will discharge through the thyristor T1, so that the thyristor T1 can be turned on.
  • the power supply controls the power supply output of the power supply end of the chip, and at the same time, the DC power supply end provides a sustaining current to the thyristor T1 through the first resistor R1. This sustaining current can maintain the thyristor T1 in a continuous conduction state, thereby ensuring that the thyristor T1 conducts reliably.
  • the power system can be a servo power system.
  • the power supply end of the power control chip will provide power to the energy storage module 200, and the energy storage module 200 will store energy under the power output of the power supply end of the power control chip. .
  • the energy storage module 200 includes a diode D1 and an energy storage unit 201.
  • the first end of the energy storage unit 201 is connected to ground, and the second end of the energy storage unit 201 is connected to the diode.
  • the anode of D1 and the power supply terminal of the power control chip; the cathode of the diode D1 is connected to the midpoint of the first resistor R1 and the second resistor R2.
  • the diode D1 is used to ensure that no path is formed between the DC power supply end and the energy storage unit 201.
  • the energy storage unit 201 and the thyristor T1 are conductive in one direction, and the storage unit 201 is connected to the thyristor T1.
  • the energy unit 201 will discharge through the diode D1 and the thyristor T1, thereby quickly pulling down the potential at the midpoint of the first resistor R1 and the second resistor R2, that is, pulling it down from a high level to a low level.
  • the power supply end of the power control chip can be pulled down to a low potential; before the thyristor T1 is reliably turned on, a path is formed between the power supply end of the power control chip and the energy storage unit 201, and the energy storage unit 201 will Energy is stored under the power output of the power supply end of the power control chip.
  • the voltage monitoring circuit 100 includes an overvoltage detection circuit 101 and an optocoupler U2.
  • the overvoltage detection circuit 101 is used to detect an overvoltage at a voltage detection point according to the voltage at the voltage detection point.
  • voltage signal generates a corresponding optocoupler control signal, and outputs the optocoupler control signal to the optocoupler U2;
  • the optocoupler U2 is used to output the optocoupler control signal to the thyristor T1 when receiving the optocoupler control signal.
  • Thyristor gate control signal wherein the optocoupler control signal is used to control the optocoupler U2 to turn on.
  • the optocoupler control signal may be a low-level signal
  • the thyristor gate control signal may be a high-level signal.
  • the optocoupler control signal may be a low-level signal.
  • the overvoltage detection circuit 101 includes a comparator U1 and a reference power supply VREF. Refer to Figure 4, which is a schematic circuit structure diagram of the voltage monitoring module 100.
  • the reference power supply VREF is used to output a reference voltage signal to the comparator U1; the inverting input end of the comparator U1 is connected to the voltage detection point, and the non-inverting input end of the comparator U1 is connected to the reference power supply VREF.
  • the output end is connected, the output end of the comparator U1 is connected to the cathode of the diode D2, and the anode of the diode D2 is connected to the input end of the optocoupler U2; when it is determined that the voltage detection point is overvoltage, the voltage is detected through the comparator U1 The voltage signal generated at the point is compared with the reference voltage signal, and a high-level signal will be generated. At this time, the diode D2 will not conduct, and the high-level signal will not be transmitted to the optocoupler U2. When the voltage detection point is overvoltage, through comparison The device U1 compares the voltage signal generated by the voltage detection point with the reference voltage signal, and will generate a low-level signal.
  • the diode D2 will conduct, and the low-level signal will be transmitted to the optocoupler U2 as an optocoupler control signal.
  • the optocoupler After U2 receives the low-level signal, it will be turned on. After the optocoupler U2 is turned on, it will output the thyristor gating signal Ug to the thyristor T1.
  • the voltage of the voltage detection point fluctuates between 0 and 5V, and the reference power supply voltage VREF is 1.2V. If the voltage exceeds 5V, the comparator U1 compares the voltage signal generated by the voltage detection point with the reference voltage signal. Since the voltage signal is greater than 5V, comparator U1 will output a low-level signal at point A. This low-level signal will be passed to the optocoupler U2 through the diode D2, controlling the optocoupler U2 to conduct, generating the thyristor gate signal Ug; if the voltage does not exceed 5V, then comparator U1 compares the voltage signal generated by the voltage detection point with the reference voltage signal. Since the normal voltage signal is not greater than 5V, comparator U1 will output a high-level signal at point A, and the high-level signal will Blocked by diode D2, it will not control the conduction of optocoupler U2.
  • FIG. 5 is a schematic structural diagram of an overvoltage cut-off circuit in an embodiment of the present application.
  • the energy storage unit 201 is composed of an energy storage capacitor C1, a diode D3, a resistor R5 and a radiator connected in series.
  • One end of the energy storage capacitor C1 is connected to ground, the other end of the energy storage capacitor C1 is connected to the anode of the diode D1 and the power supply terminal VCC of the power control chip U43, and the cathode of the diode D1 is connected to the middle of the first resistor R1 and the second resistor R2.
  • the anode of the thyristor T1 is connected to the midpoint B of the first resistor R1 and the second resistor R2, the cathode of the thyristor T1 is connected to the ground, and the gate of the thyristor T1 is connected to the output end of the optocoupler U2.
  • the voltage monitoring circuit 100 is in overvoltage state. When the gate of the thyristor T1 is output, the thyristor gating signal Ug is output.
  • One end of the first resistor R1 is connected to the DC power supply terminal VIN 310VDC/540V DC, the other end of the first resistor R1 is connected to one end of the second resistor R2, and the other end of the second resistor R2 is connected to the power control chip U43.
  • the power supply terminal VCC so when the thyristor T1 is turned on, the energy storage capacitor C1 changes from the charging state to the discharge state.
  • the energy storage capacitor C1 will discharge through the diode D1 and the thyristor T1, which can quickly lower the potential of point B, that is, B
  • the point is quickly pulled down from high level to low level, so that the power supply terminal VCC of the power control chip U43 will be at a low level, so that the power supply output of the power supply terminal VCC of the power control chip U43 can be cut off, and at the same time, the thyristor T1 conductor
  • the DC power supply terminal VIN 310VDC/540V DC will provide a sustaining current to the thyristor T1 through the first resistor R1.
  • This sustaining current will maintain the thyristor T1 in a continuous conduction state, achieving reliable conduction of the thyristor T1, thereby ensuring that the power supply control chip U43
  • the power supply terminal VCC will continue to be in a low level state, thereby reliably cutting off the power supply output of the power supply terminal VCC of the power supply control chip U43.
  • the technical solution of the embodiment of this application is to form an overvoltage protection circuit by setting a voltage monitoring circuit, a first resistor and a second resistor, a thyristor and an energy storage module.
  • the first resistor and the second resistor are The resistor is connected in series between the DC power supply terminal and the power supply terminal of the power control chip.
  • the cathode of the thyristor is grounded.
  • the anode of the thyristor is connected to the midpoint of the first resistor and the second resistor.
  • the energy storage module The first end is connected to ground, and the second end of the energy storage module is connected to the midpoint of the first resistor and the second resistor, so that when the voltage monitoring circuit detects overvoltage at the voltage detection point, it will output a thyristor gate to the thyristor.
  • the control signal controls the thyristor to be turned on. After the thyristor is turned on, the energy storage module will quickly pull down the midpoint of the first resistor and the second resistor when the thyristor will discharge through the thyristor.
  • the potential at the power supply terminal of the power control chip can be cut off, and the DC power supply terminal will provide a maintaining current for the thyristor to maintain reliable and continuous conduction of the thyristor.
  • the power supply control chip The power supply end will continue to reliably maintain the cut-off state, and the circuit system will reliably enter a safe state. There will be no hiccup oscillation state in the power supply, which can avoid the hiccup state causing the circuit system to be powered on repeatedly and causing repeated impacts to the components within the circuit system. Therefore, Improves the service life of components within the circuit system.
  • the overvoltage protection method includes:
  • Step S10 when overvoltage at the voltage detection point is detected, output a thyristor gating signal to the thyristor, where the thyristor gating signal is used to control the conduction of the thyristor;
  • Step S20 Provide a sustaining current to the thyristor through the DC power supply terminal, where the sustaining current is used to maintain reliable conduction of the thyristor;
  • Step S30 When the thyristor is reliably turned on, cut off the power supply output of the power supply terminal of the power control chip.
  • the energy storage module includes a diode and an energy storage unit
  • the overvoltage protection method also includes:
  • Step A10 when the thyristor is reliably turned on, control the energy storage unit to discharge through the diode and the thyristor, and cut off the power supply output of the power supply end of the power control chip;
  • Step A20 When the thyristor is not reliably turned on, store and charge the energy storage unit through the power supply output of the power supply terminal of the power control chip.
  • the voltage monitoring circuit includes an overvoltage detection circuit and an optocoupler, and when an overvoltage at the voltage detection point is detected, a thyristor gating signal is output to the thyristor, including:
  • Step S11 if an overvoltage at the voltage detection point is detected through the overvoltage detection circuit, an optocoupler control signal is output to the optocoupler through the overvoltage detection circuit, where the optocoupler control signal is low level. Signal;
  • Step S12 Control the optocoupler to be turned on according to the optocoupler control signal to generate the thyristor gating signal, where the thyristor gating signal is a high level signal.
  • the overvoltage detection circuit includes a comparator and a reference power supply. If an overvoltage at the voltage detection point is detected through the overvoltage detection circuit, the overvoltage detection circuit outputs an optocoupler control signal to the optocoupler. Signals, including:
  • Step S111 obtain the voltage signal generated by the voltage detection point and the reference voltage signal output by the reference power supply
  • Step S112 when it is determined that the voltage detection point is overvoltage, compare the voltage signal and the reference voltage signal through the comparator to generate the optocoupler control signal;
  • Step S113 output an optocoupler control signal to the optocoupler through the comparator.
  • the embodiments of the overvoltage protection method include all technical solutions of all embodiments of the above-mentioned overvoltage protection circuit, and the technical effects achieved are It is also exactly the same and will not be repeated here.
  • the present application also provides a power supply system.
  • the power supply system includes a switching power supply and the above-mentioned overvoltage protection circuit. It can be understood that since the above-mentioned overvoltage protection circuit is used in the power supply system, the power supply system has The embodiments include all the technical solutions of all the embodiments of the above overvoltage protection circuit, and the technical effects achieved are exactly the same, and will not be described again here.

Abstract

本申请公开一种过压保护电路、方法及电源系统,所述过压保护电路包括:电压监控电路,用于在检测到电压检测点过压时,向晶闸管输出晶闸管门控信号,晶闸管门控信号用于控制晶闸管导通;第一电阻和第二电阻串联连接于直流供电端与电源控制芯片的供电端之间,直流供电端用于在晶闸管导通时为晶闸管提供维持电流,以确保晶闸管可靠导通;晶闸管的阴极接地,晶闸管的阳极连接于第一电阻和第二电阻的中点;储能模块的第一端接地,储能模块的第二端连接第一电阻和第二电阻的中点,储能模块用于在晶闸管可靠导通时通过晶闸管放电,切断电源控制芯片的供电输出。

Description

过压保护电路、方法及电源系统
本申请要求于2022年8月12日申请的、申请号为202210971598.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及功能安全技术领域,特别涉及一种过压保护电路、方法及电源系统。
背景技术
目前电路系统中出现过压状态时,通常是通过过压保护电路使系统进入安全状态,常用的过压保护电路一般采用比较器和MOS管监控安全系统相关电压,当系统过压时,比较器动作,触发MOS管等安全监控链路,切断系统电源源头,将系统电压维持在安全电压范围内,但是开关电源多为反激电源,过压保护电路动作后,通常会切断反激电源控制芯片电源,此时电源系统会进入打嗝状态,而打嗝状态会导致电路系统反复上电,对电路系统内部件进行反复冲击,影响电路系统内部件的使用寿命。
技术问题
本申请的主要目的是提供一种过压保护电路,旨在过压时可靠切断电路系统的供电输出,以提升电路系统内部件的使用寿命。
技术解决方案
为实现上述目的,本申请提出一种过压保护电路,该过压保护电路包括:
电压监控电路,用于在检测到电压检测点过压时,向晶闸管输出晶闸管门控信号,所述晶闸管门控信号用于控制所述晶闸管导通;
第一电阻和第二电阻,所述第一电阻和所述第二电阻串联连接于直流供电端与电源控制芯片的供电端之间,所述直流供电端用于在晶闸管导通时为所述晶闸管提供维持电流,以确保所述晶闸管可靠导通;
晶闸管,所述晶闸管的阴极接地,晶闸管的阳极连接于所述第一电阻和所述第二电阻的中点;
储能模块,所述储能模块的第一端接地,所述储能模块的第二端连接所述第一电阻和所述第二电阻的中点,所述储能模块用于在所述晶闸管导通时通过所述晶闸管放电,以切断所述电源控制芯片的供电端的供电输出。
在一实施例中,所述储能模块包括二极管和储能单元,
所述储能单元的第一端接地,所述储能单元的第二端连接所述二极管的正极以及电源控制芯片的供电端;
所述二极管的负极连接于所述第一电阻和所述第二电阻的中点。
在一实施例中,在所述晶闸管可靠导通时,所述储能单元用于通过所述晶闸管和所述二极管进行放电;在所述晶闸管未可靠导通时,所述储能单元用于基于所述电源控制芯片的供电端的供电输出储能。
在一实施例中,所述电压监控电路包括过压检测电路和光耦,
所述过压检测电路用于在检测到电压检测点发生过压时,向所述光耦输出光耦控制信号,其中,所述光耦控制信号为低电平信号;
所述光耦用于在接收到所述光耦控制信号时导通,向所述晶闸管输出所述晶闸管门控信号,其中,所述晶闸管门控信号为高电平信号。
在一实施例中,所述过压检测电路包括比较器和参考电源,
所述过压检测电路包括比较器和参考电源,
所述参考电源用于向所述比较器输出参考电压信号;
所述比较器的反相输入端与电压检测点连接,所述比较器的同相输入端与所述参考电源的输出端连接,所述比较器的输出端与所述光耦连接,所述比较器用于比较所述电压检测点的电压信号和所述参考电压信号,在确定所述电压检测点过压时生成所述光耦控制信号。
为实现上述目的,本申请还提供一种过压保护电路方法,应用于上述的过压保护电路,所述过压保护方法包括:
在检测到电压检测点过压时,向晶闸管输出晶闸管门控信号,其中,所述晶闸管门控信号用于控制所述晶闸管导通;
通过直流供电端为所述晶闸管提供维持电流,其中,所述维持电流用于维持所述晶闸管可靠导通;
在所述晶闸管可靠导通时,切断所述电源控制芯片的供电端的供电输出。
在一实施例中,所述储能模块包括二极管和储能单元,所述过压保护方法还包括:
在所述晶闸管可靠导通时,控制所述储能单元通过所述二极管以及所述晶闸管放电,切断所述电源控制芯片的供电端的供电输出;
在所述晶闸管未可靠导通时,通过所述电源控制芯片的供电端的供电输出为所述储能单元进行储能充电。
在一实施例中,所述电压监控电路包括过压检测电路和光耦,所述在检测到电压检测点过压时,向晶闸管输出晶闸管门控信号,包括:
若通过所述过压检测电路检测到电压检测点过压,则通过所述过压检测电路向所述光耦输出光耦控制信号,其中,所述光耦控制信号为低电平信号;
依据所述光耦控制信号控制所述光耦导通,生成所述晶闸管门控信号,其中,所述晶闸管门控信号为高电平信号。
在一实施例中,所述过压检测电路包括比较器和参考电源,所述若通过所述过压检测电路检测到电压检测点过压,则通过所述过压检测电路向所述光耦输出光耦控制信号,包括:
获取所述电压检测点产生的电压信号和所述参考电源输出的参考电压信号;
在确定所述电压检测点过压时,通过所述比较器比较所述电压信号和所述参考电压信号,生成所述光耦控制信号;
通过所述比较器向所述光耦输出光耦控制信号。
为实现上述目的,本申请还提出一种电源系统,所述电源系统包括开关电源和上述过压保护电路,具体参照上述,此处不再赘述。
有益效果
本申请技术方案,通过设置电压监控电路、第一电阻和第二电阻、晶闸管和储能模块组成了过压保护电路,该过压保护电路中,所述第一电阻和所述第二电阻串联连接于直流供电端与电源控制芯片的供电端之间,所述晶闸管的阴极接地,晶闸管的阳极连接于所述第一电阻和所述第二电阻的中点,所述储能模块的第一端接地,所述储能模块的第二端连接所述第一电阻和所述第二电阻的中点,从而电压监控电路在检测到电压检测点过压时,会向晶闸管输出晶闸管门控信号,控制所述晶闸管导通,而晶闸管导通后,所述储能模块会在所述晶闸管会通过所述晶闸管放电,快速拉低所述第一电阻和所述第二电阻的中点处的电位,从而实现切断所述电源控制芯片的供电端的供电输出的目的,且所述直流供电端会为所述晶闸管提供维持电流,维持所述晶闸管可靠持续导通,因此此时电源控制芯片的供电端会持续可靠地维持切断状态,电路系统可靠进入安全状态,电源无打嗝振荡状态存在,可以避免出现打嗝状态导致电路系统反复上电,对电路系统内部件进行反复冲击的情况发生,因此提升了电路系统内部件的使用寿命。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请中过压保护电路一实施例的电路功能框图;
图2为本申请中储能模块由二极管与储能单元组成时,过压保护电路一实施例的电路功能框图;
图3为本申请中电压监控电路由过压检测电路与光耦组成时,过压保护电路一实施例的电路功能框图;
图4为本申请过压保护电路一实施例中电压监控电路的电路结构示意图;
图5为本申请过压保护电路一实施例中过压切断电路的电路结构示意图;
图6为本申请中过压保护方法一实施例的流程。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
附图标号说明:
标号 名称 标号 名称
100 电压监控电路 VREF 参考电源
200 储能模块 U1 比较器
T1 晶闸管 D2 连接于比较器的二极管
R1 第一电阻 A 比较器的输出端点
R2 第二电阻 Ug 晶闸管门控信号
D1 储能模块中的二极管 B 第一电阻和第二电阻的中点
U2 光耦 U43 电源控制芯片
101 过压检测电路 VIN310VDC /540V DC 直流供电端
201 储能单元    
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种过压保护电路,在本申请一实施例中,过压保护电路包括电压监控电路100、第一电阻R1和第二电阻R2、晶闸管T1以及储能模块200。
参照图1,本实施例中,所述过压保护电路由电压监控电路100和过压切断电路两部分组成,所述过压切断电路包括第一电阻R1和第二电阻R2、晶闸管T1以及储能模块200,所述电压监控电路100的输入端与电压检测点连接,所述电压监控电路100的输出端与所述晶闸管T1的门极连接;所述第一电阻R1和所述第二电阻R2串联连接,所述第一电阻R1的一端与直流供电端连接,所述第一电阻R1的另一端与第二电阻R2连接,所述第二电阻R2的一端与电源控制芯片的供电端连接,所述第二电阻R2的另一端与第一电阻R1连接;所述晶闸管T1的阴极接地,晶闸管T1的阳极连接于所述第一电阻R1和所述第二电阻R2的中点;所述储能模块200的第一端接地,所述储能模块200的第二端连接所述第一电阻R1和所述第二电阻R2的中点。
所述电压监控电路100在检测到电压检测点过压时,会根据电压检测点产生的电压信号,生成晶闸管门控信号,并向所述晶闸管T1的门极输出晶闸管门控信号,控制晶闸管T1的阳极和阴极导通,其中,该晶闸管门控信号用于控制所述晶闸管T1导通;所述晶闸管T1在导通时,所述储能模块200会通过所述晶闸管T1进行放电,从而可以快速拉低第一电阻R1和第二电阻R2的中点处于的电位,也即由高电平拉低至低电平,从而可以将电源控制芯片的供电端拉低至低电平,实现切断所述电源控制芯片的供电端的供电输出,且同时所述直流供电端会通过第一电阻R1向晶闸管T1提供维持电流,该维持电流可以维持晶闸管T1持续处于导通状态,从而保证晶闸管T1可靠导通;其中,由于晶闸管T1可靠导通,因此电源控制芯片的供电端会持续稳定在低电平,可以确保电源系统不会进入打嗝状态,该电源系统可以为伺服电源系统。
作为一种示例,在晶闸管T1未导通之前,电源控制芯片的供电端会向储能模块200进行供电,所述储能模块200会在所述电源控制芯片的供电端的供电输出下进行储能。
作为一种示例,参照图2,所述储能模块200包括二极管D1和储能单元201,所述储能单元201的第一端接地,所述储能单元201的第二端连接所述二极管D1的正极以及电源控制芯片的供电端;所述二极管D1的负极连接于所述第一电阻R1和所述第二电阻R2的中点。所述二极管D1用于保证直流供电端至储能单元201之间不会形成通路,当晶闸管T1可靠导通后,所述储能单元201至所述晶闸管T1之间单向导通,所述储能单元201会通过二极管D1和晶闸管T1放电,从而可以快速拉低所述第一电阻R1和所述第二电阻R2的中点处的电位,也即由高电平拉低至低电平,从而可以将电源控制芯片的供电端拉低至低电位;当晶闸管T1可靠导通之前,所述电源控制芯片的供电端至所述储能单元201之间形成通路,所述储能单元201会在所述电源控制芯片的供电端的供电输出下进行储能。
作为一种示例,参照图3,所述电压监控电路100包括过压检测电路101和光耦U2,所述过压检测电路101用于在检测到电压检测点发生过压时,根据电压检测点的电压信号,生成对应的光耦控制信号,并向所述光耦U2输出光耦控制信号;所述光耦U2用于在接收到所述光耦控制信号时,向所述晶闸管T1输出所述晶闸管门控信号,其中,所述光耦控制信号用于控制所述光耦U2导通。其中,所述光耦控制信号可以为低电平信号,所述晶闸管门控信号可以为高电平信号。
作为一种示例,所述光耦控制信号可以为低电平信号,所述过压检测电路101包括比较器U1和参考电源VREF,参照图4,图4为电压监控模块100的电路结构示意图,所述参考电源VREF用于向所述比较器U1输出参考电压信号;所述比较器U1的反相输入端与电压检测点连接,所述比较器U1的同相输入端与所述参考电源VREF的输出端连接,所述比较器U1的输出端与二极管D2的负极连接,二极管D2的正极与所述光耦U2的输入端连接;在确定电压检测点过压时,通过比较器U1对电压检测点产生的电压信号和参考电压信号进行比较,会产生高电平信号,此时二极管D2不会导通,高电平信号不会传递至光耦U2,在电压检测点过压时,通过比较器U1对电压检测点产生的电压信号和参考电压信号进行比较,会产生低电平信号,此时二极管D2会导通,低电平信号会作为光耦控制信号传递至光耦U2,光耦U2接收到该低电平信号后则会导通,光耦U2导通后则会向晶闸管T1输出晶闸管门控信号Ug。
作为一种示例,所述电压检测点的电压在0至5V波动,参考电源电压VREF为1.2V,若电压超过5V,则比较器U1将电压检测点产生的电压信号和参考电压信号进行比较,由于电压信号大于5V,比较器U1在A点会输出低电平信号,该低电平信号会通过二极管D2传递给光耦U2,控制光耦U2导通,产生晶闸管门控信号Ug;若电压未超过5V,则比较器U1将电压检测点产生的电压信号和参考电压信号进行比较,由于正常电压信号不大于5V,比较器U1会在A点输出高电平信号,该高电平信号会被二极管D2阻挡,不会控制光耦U2导通。
作为一种示例,参照图4以及图5,图5为本申请实施例中过压切断电路的结构示意图,储能单元201由储能电容C1、二极管D3、电阻R5和散热器串联组成,所述储能电容C1的一端接地,所述储能电容C1的另一端与二极管D1的正极以及电源控制芯片U43的供电端VCC连接,二极管D1的负极连接第一电阻R1和第二电阻R2的中点B,晶闸管T1的阳极连接第一电阻R1和第二电阻R2的中点B,晶闸管T1的阴极接地,晶闸管T1的门极与光耦U2的输出端连接,该电压监控电路100在过压时向所述晶闸管T1的门极输出晶闸管门控信号Ug。所述第一电阻R1的一端连接直流供电端VIN 310VDC /540V DC,所述第一电阻R1的另一点连接第二电阻R2的一端,所述第二电阻R2的另一端连接电源控制芯片U43的供电端VCC,所以当晶闸管T1导通后,储能电容C1由充电状态变更为放电状态,储能电容C1会通过二极管D1和晶闸管T1放电,从而可以快速拉低B点的电位,也即将B点由高电平快速拉低至低电平,从而电源控制芯片U43的供电端VCC会处于电平低,从而可以实现切断电源控制芯片U43的供电端VCC的供电输出,而同时在晶闸管T1导通后直流供电端VIN 310VDC /540V DC会通过第一电阻R1向晶闸管T1提供维持电流,该维持电流会维持晶闸管T1持续处于导通状态,实现晶闸管T1地可靠导通,从而电源控制芯片U43的供电端VCC会持续处于低电平状态,实现了对电源控制芯片U43的供电端VCC的供电输出地可靠切断。
本申请实施例技术方案,通过设置电压监控电路、第一电阻和第二电阻、晶闸管和储能模块组成了过压保护电路,该过压保护电路中,所述第一电阻和所述第二电阻串联连接于直流供电端与电源控制芯片的供电端之间,所述晶闸管的阴极接地,晶闸管的阳极连接于所述第一电阻和所述第二电阻的中点,所述储能模块的第一端接地,所述储能模块的第二端连接所述第一电阻和所述第二电阻的中点,从而电压监控电路在检测到电压检测点过压时,会向晶闸管输出晶闸管门控信号,控制所述晶闸管导通,而晶闸管导通后,所述储能模块会在所述晶闸管会通过所述晶闸管放电,快速拉低所述第一电阻和所述第二电阻的中点处的电位,从而实现切断所述电源控制芯片的供电端的供电输出的目的,且所述直流供电端会为所述晶闸管提供维持电流,维持所述晶闸管可靠持续导通,因此此时电源控制芯片的供电端会持续可靠地维持切断状态,电路系统可靠进入安全状态,电源无打嗝振荡状态存在,可以避免出现打嗝状态导致电路系统反复上电,对电路系统内部件进行反复冲击的情况发生,因此提升了电路系统内部件的使用寿命。
本申请还提供一种过压保护电路方法,应用于上述的过压保护电路,参照图6,且结合图1至图5,所述过压保护方法包括:
步骤S10,在检测到电压检测点过压时,向晶闸管输出晶闸管门控信号,其中,所述晶闸管门控信号用于控制所述晶闸管导通;
步骤S20,通过直流供电端为所述晶闸管提供维持电流,其中,所述维持电流用于维持所述晶闸管可靠导通;
步骤S30,在所述晶闸管可靠导通时,切断所述电源控制芯片的供电端的供电输出。
其中,所述储能模块包括二极管和储能单元,所述过压保护方法还包括:
步骤A10,在所述晶闸管可靠导通时,控制所述储能单元通过所述二极管以及所述晶闸管放电,切断所述电源控制芯片的供电端的供电输出;
步骤A20,在所述晶闸管未可靠导通时,通过所述电源控制芯片的供电端的供电输出为所述储能单元进行储能充电。
其中,所述电压监控电路包括过压检测电路和光耦,所述在检测到电压检测点过压时,向晶闸管输出晶闸管门控信号,包括:
步骤S11,若通过所述过压检测电路检测到电压检测点过压,则通过所述过压检测电路向所述光耦输出光耦控制信号,其中,所述光耦控制信号为低电平信号;
步骤S12,依据所述光耦控制信号控制所述光耦导通,生成所述晶闸管门控信号,其中,所述晶闸管门控信号为高电平信号。
其中,所述过压检测电路包括比较器和参考电源,所述若通过所述过压检测电路检测到电压检测点过压,则通过所述过压检测电路向所述光耦输出光耦控制信号,包括:
步骤S111,获取所述电压检测点产生的电压信号和所述参考电源输出的参考电压信号;
步骤S112,在确定所述电压检测点过压时,通过所述比较器比较所述电压信号和所述参考电压信号,生成所述光耦控制信号;
步骤S113,通过所述比较器向所述光耦输出光耦控制信号。
可以理解的是,由于在过压保护方法中使用了上述过压保护电路,因此,该过压保护方法的实施例包括上述过压保护电路全部实施例的全部技术方案,且所达到的技术效果也完全相同,在此不再赘述。
此外,本申请还提供一种电源系统,所述电源系统包括开关电源以及上述的过压保护电路,可以理解的是,由于在电源系统中使用了上述过压保护电路,因此,该电源系统的实施例包括上述过压保护电路全部实施例的全部技术方案,且所达到的技术效果也完全相同,在此不再赘述。
以上所述仅为本申请的一些实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种过压保护电路,其中,所述过压保护电路包括:
    电压监控电路,用于在检测到电压检测点过压时,向晶闸管输出晶闸管门控信号,所述晶闸管门控信号用于控制所述晶闸管导通;
    第一电阻和第二电阻,所述第一电阻和所述第二电阻串联连接于直流供电端与电源控制芯片的供电端之间,所述直流供电端用于在晶闸管导通时为所述晶闸管提供维持电流,以确保所述晶闸管可靠导通;
    晶闸管,所述晶闸管的阴极接地,晶闸管的阳极连接于所述第一电阻和所述第二电阻的中点;
    储能模块,所述储能模块的第一端接地,所述储能模块的第二端连接所述第一电阻和所述第二电阻的中点,所述储能模块用于在所述晶闸管导通时通过所述晶闸管放电,以切断所述电源控制芯片的供电端的供电输出。
  2. 如权利要求1所述过压保护电路,其中,所述储能模块包括二极管和储能单元,
    所述储能单元的第一端接地,所述储能单元的第二端连接所述二极管的正极以及电源控制芯片的供电端;
    所述二极管的负极连接于所述第一电阻和所述第二电阻的中点。
  3. 如权利要求2所述过压保护电路,其中,在所述晶闸管可靠导通时,所述储能单元用于通过所述晶闸管和所述二极管进行放电;在所述晶闸管未可靠导通时,所述储能单元用于基于所述电源控制芯片的供电端的供电输出储能。
  4. 如权利要求1所述过压保护电路,其中,所述电压监控电路包括过压检测电路和光耦,
    所述过压检测电路用于在检测到电压检测点发生过压时,向所述光耦输出光耦控制信号,其中,所述光耦控制信号为低电平信号;
    所述光耦用于在接收到所述光耦控制信号时导通,向所述晶闸管输出所述晶闸管门控信号,其中,所述晶闸管门控信号为高电平信号。
  5. 如权利要求4所述过压保护电路,其中,所述过压检测电路包括比较器和参考电源,
    所述参考电源用于向所述比较器输出参考电压信号;
    所述比较器的反相输入端与电压检测点连接,所述比较器的同相输入端与所述参考电源的输出端连接,所述比较器的输出端与所述光耦连接,所述比较器用于比较所述电压检测点的电压信号和所述参考电压信号,在确定所述电压检测点过压时生成所述光耦控制信号。
  6. 一种过压保护方法,其中,应用于如权利要求1至5中任一项所述的过压保护电路,所述过压保护方法包括:
    在检测到电压检测点过压时,向晶闸管输出晶闸管门控信号,其中,所述晶闸管门控信号用于控制所述晶闸管导通;
    通过直流供电端为所述晶闸管提供维持电流,其中,所述维持电流用于维持所述晶闸管可靠导通;
    在所述晶闸管可靠导通时,切断所述电源控制芯片的供电端的供电输出。
  7. 如权利要求6所述过压保护方法,其中,所述储能模块包括二极管和储能单元,所述过压保护方法还包括:
    在所述晶闸管可靠导通时,控制所述储能单元通过所述二极管以及所述晶闸管放电,切断所述电源控制芯片的供电端的供电输出;
    在所述晶闸管未可靠导通时,通过所述电源控制芯片的供电端的供电输出为所述储能单元进行储能充电。
  8. 如权利要求6所述过压保护方法,其中,所述电压监控电路包括过压检测电路和光耦,所述在检测到电压检测点过压时,向晶闸管输出晶闸管门控信号,包括:
    若通过所述过压检测电路检测到电压检测点过压,则通过所述过压检测电路向所述光耦输出光耦控制信号,其中,所述光耦控制信号为低电平信号;
    依据所述光耦控制信号控制所述光耦导通,生成所述晶闸管门控信号,其中,所述晶闸管门控信号为高电平信号。
  9. 如权利要求8所述过压保护方法,其中,所述过压检测电路包括比较器和参考电源,所述若通过所述过压检测电路检测到电压检测点过压,则通过所述过压检测电路向所述光耦输出光耦控制信号,包括:
    获取所述电压检测点产生的电压信号和所述参考电源输出的参考电压信号;
    在确定所述电压检测点过压时,通过所述比较器比较所述电压信号和所述参考电压信号,生成所述光耦控制信号;
    通过所述比较器向所述光耦输出光耦控制信号。
  10. 一种电源系统,其中,所述电源系统包括:开关电源和如权利要求1至5中任一项所述的过压保护电路。
PCT/CN2023/098418 2022-08-12 2023-06-05 过压保护电路、方法及电源系统 WO2024032118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210971598.3A CN115207876A (zh) 2022-08-12 2022-08-12 过压保护电路、方法及电源系统
CN202210971598.3 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032118A1 true WO2024032118A1 (zh) 2024-02-15

Family

ID=83586739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098418 WO2024032118A1 (zh) 2022-08-12 2023-06-05 过压保护电路、方法及电源系统

Country Status (2)

Country Link
CN (1) CN115207876A (zh)
WO (1) WO2024032118A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207876A (zh) * 2022-08-12 2022-10-18 苏州汇川控制技术有限公司 过压保护电路、方法及电源系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205231714U (zh) * 2015-11-27 2016-05-11 深圳Tcl新技术有限公司 开关电源保护电路及开关电源
CN208849440U (zh) * 2018-10-16 2019-05-10 浙江沃科电子科技有限公司 一种多路输出过压保护电路
US20190372333A1 (en) * 2017-02-16 2019-12-05 Dehn + Söhne Gmbh + Co. Kg Electronic circuit-breaker for a load that can be connected to a low voltage dc-voltage network
CN115207876A (zh) * 2022-08-12 2022-10-18 苏州汇川控制技术有限公司 过压保护电路、方法及电源系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205231714U (zh) * 2015-11-27 2016-05-11 深圳Tcl新技术有限公司 开关电源保护电路及开关电源
US20190372333A1 (en) * 2017-02-16 2019-12-05 Dehn + Söhne Gmbh + Co. Kg Electronic circuit-breaker for a load that can be connected to a low voltage dc-voltage network
CN208849440U (zh) * 2018-10-16 2019-05-10 浙江沃科电子科技有限公司 一种多路输出过压保护电路
CN115207876A (zh) * 2022-08-12 2022-10-18 苏州汇川控制技术有限公司 过压保护电路、方法及电源系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG LANQING, ZU GUOJIAN, CAO SHENGNAN: "The Improvement and Application of the Controlled System of the Constant Current and Constant Voltage", JOURNAL OF TAIYUAN NORMAL UNIVERSITY (NATURAL SCIENCE EDITION), CN, vol. 7, no. 1, 25 March 2008 (2008-03-25), CN, pages 99 - 102, 112, XP009552524, ISSN: 1672-2027 *

Also Published As

Publication number Publication date
CN115207876A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
US10186895B2 (en) Terminal and battery charging control device and method thereof for overcurrent and/or overvoltage protection
US10038437B2 (en) High voltage power system with enable control
US6411483B1 (en) Hiccup-mode current protection circuit for switching regulator
US4685020A (en) Shutdown circuit for blocking oscillator power supply
WO2024032118A1 (zh) 过压保护电路、方法及电源系统
US20110127972A1 (en) Sequential switching shunt regulator cell with non-redundant rectifier
US11955893B2 (en) Switching power supply, power adapter and charger
US6529390B2 (en) Switching power supply circuit
US20230333623A1 (en) Power supply circuit, chip, and electronic device
CN112886541B (zh) 一种变换器及igbt门极驱动的保护电路和方法
CN112350279B (zh) 电源保护电路和电子设备
CN111668807A (zh) 电池测试设备输出端口过压保护电路
US7176657B2 (en) Capacitor charging circuit with a soft-start function
KR100843412B1 (ko) Pdp 전원의 과전류보호 회로 및 pdp 전원장치
JP2013021883A (ja) 電源逆接続保護回路
CN211506286U (zh) 宽输入电压范围的辅助电源供应电路
US20220021230A1 (en) Battery secondary protection circuit and operation method thereof
KR102073697B1 (ko) 플라즈마 펄스 전원 장치
JPH09149631A (ja) 電源装置
CN114172358A (zh) 星载二次电源单粒子瞬态抑制电路
CN212137693U (zh) 一种供电电路
CN217824233U (zh) 电压保护电路及用电设备
CN111293668A (zh) 一种预防单粒子烧毁固态功率控制器的保护电路
CN220492635U (zh) 反激式开关电路及反激式开关电源
CN216751224U (zh) 备用储能供电电路和车载设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851346

Country of ref document: EP

Kind code of ref document: A1