WO2024032105A1 - 排布方案生成方法、装置、电子设备及存储介质 - Google Patents

排布方案生成方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2024032105A1
WO2024032105A1 PCT/CN2023/097431 CN2023097431W WO2024032105A1 WO 2024032105 A1 WO2024032105 A1 WO 2024032105A1 CN 2023097431 W CN2023097431 W CN 2023097431W WO 2024032105 A1 WO2024032105 A1 WO 2024032105A1
Authority
WO
WIPO (PCT)
Prior art keywords
available
inverter
positions
locations
location
Prior art date
Application number
PCT/CN2023/097431
Other languages
English (en)
French (fr)
Inventor
韩秀伟
冯烨
延刚
昌菁
Original Assignee
隆基光伏科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211286461.0A external-priority patent/CN117668948A/zh
Application filed by 隆基光伏科技(上海)有限公司 filed Critical 隆基光伏科技(上海)有限公司
Publication of WO2024032105A1 publication Critical patent/WO2024032105A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD

Definitions

  • the present invention relates to the technical field of crystal preparation, and in particular to an arrangement scheme generating method, an arrangement scheme generating device, an electronic device and a storage medium.
  • embodiments of the present invention are proposed to provide a method for generating an arrangement plan that overcomes the above problems or at least partially solves the above problems, so as to solve the problem of being time-consuming and labor-intensive and being unable to apply to specially shaped field areas.
  • embodiments of the present invention also provide an arrangement plan generating device, an electronic device, and a storage medium to ensure the implementation and application of the above method.
  • embodiments of the present invention disclose a method for generating an arrangement plan, which includes:
  • the available locations are clustered to obtain the Available location groups corresponding to each inverter respectively; wherein the available location group includes a plurality of available locations;
  • the available position grouping corresponding to each inverter is adjusted to obtain the actual position grouping corresponding to each inverter; wherein, the actual position grouping Include positions corresponding to the number of grouped positions;
  • a layout plan of the photovoltaic power station is generated; wherein the layout plan includes the actual position of placing each photovoltaic bracket and each inverter.
  • determining the number of photovoltaic brackets corresponding to each inverter in the photovoltaic power station and the available locations for placing each photovoltaic bracket and each inverter include:
  • the number of inverters and the number of photovoltaic brackets corresponding to each inverter are determined.
  • clustering the available locations based on the distance between available locations to obtain available location groups corresponding to each inverter includes:
  • the last calculated cluster centroid and the available positions assigned to the cluster centroid are grouped as the available positions.
  • the available position grouping corresponding to each inverter is adjusted according to the number of grouping positions corresponding to each inverter, so as to obtain the actual position grouping corresponding to each inverter.
  • International location groupings include:
  • delete the redundant available positions in the corresponding available position group, and determine the Physical location groupings include:
  • the actual location grouping is such that the number of grouped locations corresponding to the inverter is equal to the number of available locations in the corresponding actual location grouping
  • the available positions outside the largest inscribed rectangle of the convex set area are combined with the Delete the available positions close to the edge within the largest inscribed rectangle of the convex set area, and determine the actual position grouping so that the number of grouped positions corresponding to the inverter is equal to the number of available positions in the corresponding actual position grouping;
  • the inverter When the number of grouped positions corresponding to the inverter is greater than the number of available positions within the largest inscribed rectangle of the convex set area, the inverter will be in the corresponding available position grouping and in the convex set area. Part of the available locations outside the largest inscribed rectangle is deleted, and the actual location grouping is determined so that the number of grouped locations corresponding to the inverter is equal to the number of available locations in the corresponding actual location grouping.
  • determining the actual location grouping includes:
  • At least one available position in the nearby available position group and within the minimum circumscribed rectangle is re- Allocate to the corresponding available location grouping, and determine the actual location grouping so that the number of grouped locations corresponding to the inverter is equal to the number of available locations in the corresponding actual location grouping;
  • the available locations in the nearby available location group and within the minimum circumscribed rectangle are reallocated to all Among the corresponding available location groups, the available location closest to the corresponding available location group among the nearby available location groups is redistributed to the corresponding available location group, and the actual location group is determined. , making the number of group positions corresponding to the inverter equal to the number of available positions in the corresponding actual position group.
  • the method further includes:
  • the available locations other than the currently determined actual location grouping are re-clustered to obtain the corresponding available location grouping.
  • An embodiment of the present invention also discloses a device for generating an arrangement plan, which includes:
  • a determination module used to determine the number of photovoltaic brackets corresponding to each inverter in the photovoltaic power station, and the available locations for placing each photovoltaic bracket and each inverter;
  • a clustering module is used to cluster the available locations based on the distance between the available locations to obtain available location groups corresponding to each of the inverters; wherein the available location groups include multiple available locations. Location;
  • a quantity determination module configured to determine the number of grouping positions corresponding to each inverter according to the number of photovoltaic brackets corresponding to each inverter;
  • An adjustment module configured to adjust the available position groupings corresponding to each inverter according to the number of grouping positions corresponding to each inverter, to obtain the actual position grouping corresponding to each inverter; wherein, The actual location grouping includes locations corresponding to the number of grouped locations;
  • Generating module used to group the actual positions corresponding to each of the inverters and generate all the The arrangement plan of the photovoltaic power station; wherein the arrangement plan includes the actual positions of placing each photovoltaic bracket and each of the inverters.
  • the determining module includes:
  • Information acquisition submodule used to acquire regional information, array information and equipment information of the photovoltaic power station
  • a location determination submodule used to determine the available location based on the area information, array information and device information
  • a quantity determination sub-module is used to determine the number of the inverters and the number of photovoltaic brackets corresponding to each of the inverters based on the number of available locations and equipment information.
  • the clustering module includes:
  • the allocation submodule is used to use the available positions of the number of inverters as the initial cluster centroid, calculate the Chebyshev distance between each available position and each cluster centroid, and assign each available position to the Chebyshev distance.
  • the iteration module is used to iteratively execute the following process until the preset conditions are met:
  • the last calculated cluster centroid and the available positions assigned to the cluster centroid are grouped as the available positions.
  • the adjustment module includes:
  • a grouping determination submodule configured to determine the corresponding available position grouping as the actual position grouping when the number of grouped positions corresponding to one inverter is equal to the number of available positions in the corresponding available position group;
  • the deletion submodule is used to delete the redundant available positions in the corresponding available position group when the number of group positions corresponding to an inverter is less than the number of available positions in the corresponding available position group, and determine the Actual location grouping;
  • Allocation sub-module configured to reallocate at least one available location in the nearby available location group to the corresponding location when the number of group locations corresponding to an inverter is greater than the number of available locations in the corresponding available location group.
  • the actual location grouping is determined.
  • deletion sub-module includes:
  • a region generation unit configured to generate a corresponding convex set region according to the available positions in the corresponding available position group
  • a first deletion unit configured to delete the maximum inscribed rectangle of the convex set region outside the maximum inscribed rectangle of the convex set region when the number of grouping positions corresponding to the inverter is equal to the number of available positions within the maximum inscribed rectangle of the convex set region. Delete the available locations and determine the actual location grouping so that the number of grouped locations corresponding to the inverter is equal to the number of available locations in the corresponding actual location grouping;
  • the second deletion unit is configured to delete the maximum inscribed rectangle of the convex set region outside the maximum inscribed rectangle of the convex set region when the number of grouping positions corresponding to the inverter is less than the number of available positions within the maximum inscribed rectangle of the convex set region. available positions, and delete the available positions close to the edge within the largest inscribed rectangle of the convex set area, determine the actual position grouping, so that the number of grouped positions corresponding to the inverter is equal to the corresponding actual position grouping the number of available positions;
  • a third deletion unit configured to group the corresponding available positions in the corresponding available position group when the number of grouped positions corresponding to the inverter is greater than the number of available positions within the largest inscribed rectangle of the convex set area, and Part of the available positions outside the largest inscribed rectangle of the convex set area is deleted, and the actual position grouping is determined so that the number of grouped positions corresponding to the inverter is equal to the number of available positions in the corresponding actual position grouping.
  • the allocation submodule includes:
  • a rectangle generation unit configured to generate a corresponding minimum circumscribed rectangle according to the available positions in the corresponding available position group
  • a first allocation unit configured to group the available locations in the vicinity and within the minimum circumscribed rectangle when the number of grouped locations corresponding to the inverter is not greater than the number of available locations within the minimum circumscribed rectangle. At least one available location within the inverter is redistributed to the corresponding available location group, and the actual location grouping is determined so that the number of group locations corresponding to the inverter is equal to the number of available locations in the corresponding actual location group;
  • a second allocation unit configured to group the nearby available locations within the minimum circumscribed rectangle when the number of grouped locations corresponding to the inverter is greater than the number of available locations within the minimum circumscribed rectangle.
  • the available locations are redistributed to the corresponding available location group, and then the available location closest to the corresponding available location group among the nearby available location groups is reassigned to the corresponding available location group. , determine the actual position grouping, so that the inverse
  • the number of grouped positions corresponding to the transformer is equal to the number of available positions in the corresponding actual position grouping.
  • the device also includes:
  • determining module for determining the nearby available location grouping after redistributing at least one available location in the nearby available location grouping to the corresponding available location grouping and determining the actual location grouping. There is no available location in ;
  • a re-clustering module configured to re-cluster available locations other than the currently determined actual location grouping based on the distance between available locations to obtain the corresponding available location grouping.
  • An embodiment of the present invention also discloses an electronic device, which is characterized in that it includes a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory complete communication with each other through the communication bus;
  • Memory used to store computer programs
  • the processor is used to implement the above method steps when executing the program stored in the memory.
  • An embodiment of the present invention also discloses a readable storage medium.
  • the instructions in the storage medium are executed by a processor of an electronic device, the electronic device can execute one or more of the arrangements described in the embodiment of the present invention. Scheme generation method.
  • the The available locations are clustered to obtain available location groups corresponding to each of the inverters; wherein the available location groups include multiple available locations, and each of the available locations is determined according to the number of photovoltaic brackets corresponding to each inverter.
  • the number of grouped positions corresponding to the inverter is adjusted according to the number of grouped positions corresponding to each inverter, and the available position groups corresponding to each inverter are adjusted to obtain the actual positions corresponding to each inverter.
  • the actual location grouping includes locations corresponding to the number of grouping locations, and based on the actual location grouping corresponding to each inverter, an arrangement plan of the photovoltaic power station is generated; wherein the arrangement plan includes placement
  • the actual location of each photovoltaic bracket and each inverter enables the use of a clustering algorithm to automatically group equipment, and does not limit the shape of the area within the photovoltaic power station, realizing the automatic generation of the arrangement plan and avoiding time-consuming equipment grouping. Effortless problem and suitable for areas of various shapes.
  • Figure 1 is a step flow chart of an embodiment of a method for generating an arrangement plan according to the present invention
  • Figure 3 is a step flow chart of an embodiment of a method for generating an arrangement plan according to the present invention
  • Figure 4 is a schematic diagram of the actual grouping process
  • Figure 5 is a structural block diagram of an embodiment of an arrangement plan generating device of the present invention.
  • FIG. 6 is a structural block diagram of a computing device for generating an arrangement plan according to an exemplary embodiment.
  • FIG. 1 a flow chart of steps of an embodiment of a method for generating an arrangement plan of the present invention is shown. Specifically, it may include the following steps:
  • Step 101 Determine the number of photovoltaic brackets corresponding to each inverter in the photovoltaic power station, and the available locations for placing each photovoltaic bracket and each inverter.
  • Photovoltaic brackets are used to install photovoltaic modules, etc.
  • multiple inverters are also required. each inverter Distributed to multiple photovoltaic racks.
  • some types of inverters need to be placed separately, that is, occupying an exclusive position like photovoltaic brackets, such as centralized inverters, while some types of inverters can Attached to a photovoltaic rack, that is, sharing a location with the photovoltaic rack, for example, a string inverter.
  • the number of photovoltaic supports corresponding to the inverters may be the same and/or different.
  • an available location can be used to place a photovoltaic rack, or an inverter, or a photovoltaic rack with an inverter attached. The number of available locations is determined, and therefore the number of inverters and the number of PV racks.
  • the embodiment of the present invention there are many specific implementation methods for determining the number of photovoltaic brackets corresponding to each inverter in the photovoltaic power station, and the available locations for placing each photovoltaic bracket and each inverter. For example, based on the relevant basic parameters input by the designer, the number of photovoltaic brackets corresponding to each inverter in the photovoltaic power station is automatically generated, as well as the available locations for placing each photovoltaic bracket and each inverter. For another example, the number of photovoltaic brackets corresponding to each inverter in the photovoltaic power station is directly obtained, as well as the available locations for placing each photovoltaic bracket and each inverter. Specifically, any applicable implementation method may be included, and the embodiment of the present invention does not limit this.
  • Step 102 Based on the distance between available locations, cluster the available locations to obtain available location groups corresponding to each inverter; wherein the available location groups include multiple available locations.
  • the clustering algorithm divides a data set into different clusters according to a certain standard (such as distance), so that the similarity of data objects in the same cluster is as large as possible, and at the same time, they are not in the same cluster.
  • the data objects in the cluster are also as diverse as possible. That is, after clustering, data of the same type are gathered together as much as possible, and data of different types are separated as much as possible.
  • step 101 it is equivalent to determining the number of inverters.
  • the available positions of the number of inverters are initially generated.
  • the available positions of the number of inverters may change until the end of the clustering process.
  • An available location and the corresponding available locations assigned to the available location are regarded as a cluster, that is, a corresponding available location group, thereby obtaining the available location groups corresponding to each inverter.
  • clustering can specifically adopt k-means (k-means clustering) algorithm, and its variants include k-medoids (k-center clustering) algorithm, k-medians (k-median) Clustering Algorithm, Kernel k-means (kernel k-means clustering) algorithm, etc., or any other applicable algorithm, the embodiment of the present invention does not limit this.
  • Step 103 Determine the number of grouping positions corresponding to each inverter according to the number of photovoltaic brackets corresponding to each inverter.
  • the type of inverter determines the number of available positions in the group corresponding to each inverter, recorded as the number of group positions. If the inverter occupies an available position exclusively, the number of group positions corresponding to the inverter is equal to the number of photovoltaic brackets corresponding to the inverter plus one. If the inverter and the photovoltaic bracket share an available position, the number of grouping positions corresponding to the inverter is equal to the number of photovoltaic brackets corresponding to the inverter.
  • Step 104 Adjust the available position groupings corresponding to each inverter according to the number of grouping positions corresponding to each inverter to obtain the actual position grouping corresponding to each inverter; wherein, the The actual location grouping includes locations corresponding to the number of grouped locations.
  • the number of available locations in the available location groups generated by clustering may not meet the requirements for the number of group locations corresponding to each inverter, it is necessary to calculate the number of available locations according to the number of group locations corresponding to each inverter.
  • the available position grouping corresponding to each of the inverters is adjusted, and the adjusted position grouping becomes the actual position grouping, so that the number of grouped positions corresponding to the inverter is equal to the number of available positions in the corresponding actual position grouping, that is,
  • the actual location grouping includes the locations corresponding to the number of grouped locations of the inverter.
  • the available position grouping corresponding to each inverter is adjusted to obtain the actual position grouping corresponding to each inverter.
  • the corresponding available location group is determined as the actual location group;
  • the number of grouped positions is less than the number of available positions in the corresponding available position group, delete the excess available positions in the corresponding available position group to determine the actual position group; in the grouped position corresponding to an inverter If the number is less than the number of available locations in the corresponding available location group, redistribute at least one available location in the nearby available location group to the corresponding available location group to determine the actual location group.
  • any other applicable adjustment method which is not limited by the embodiment of the present invention.
  • Step 105 Generate a layout plan for the photovoltaic power station according to the actual position groups corresponding to the respective inverters; wherein the layout plan includes the actual positions of placing each photovoltaic bracket and each inverter.
  • the arrangement plan of the photovoltaic power station is automatically generated according to the actual position grouping corresponding to each inverter. Since each actual location grouping requires one inverter, after the actual location of the inverter is determined, the other locations are the actual locations of the photovoltaic racks.
  • the arrangement plan includes the actual location of each photovoltaic bracket and each inverter, and may also include main roads and auxiliary roads in the photovoltaic power station, or any other applicable information, which is not limited in the embodiment of the present invention.
  • the roads in the photovoltaic power station are divided into main roads and auxiliary roads, and photovoltaic brackets and inverters are arranged between the roads.
  • the location of the inverter is usually selected in the location closest to the main circuit
  • the location of the combiner box is selected in the location closest to the auxiliary circuit.
  • the combiner box can be installed at the position used by a photovoltaic bracket, and there is no need to allocate a separate available position for it. For example, 1,000 photovoltaic racks require 10 inverters and 100 combiner boxes.
  • the specific implementation method of generating the arrangement plan of the photovoltaic power station may include multiple ways, and the embodiment of the present invention does not limit this.
  • the xy coordinate system For example, use the xy coordinate system to describe each location and the location of the main and auxiliary roads. After completing the grouping, equipment needs to be allocated. Taking the centralized inverter as an example, inverters and combiner boxes need to be allocated. For the inverter, first generate the coordinate list of the main road, and for each actual location group, find the main road that intersects it. If there are multiple intersecting main roads, the main road closest to the substation will be selected first. If there are no intersecting main roads, the main road closest to the actual location grouping will be selected.
  • the x-coordinate of the available location next to the selected main road is the x-coordinate of the inverter
  • the y-coordinate of the available location of the center point of the actual location group is the y-coordinate of the inverter.
  • the inverter occupies a Available positions, get the actual position of the inverter.
  • the x-coordinates of the available positions of the center point and the available positions next to the main road need to be compared to generate the actual positions of the inverters on different sides.
  • the coordinate list of the auxiliary roads is first generated. For each actual location group, a Z-shaped bracket group is obtained based on the main road and the auxiliary road.
  • the set of all main roads is used to intersect with the area of the photovoltaic power station, and then the difference is made with the area occupied by obstacles, and finally the specific coordinates of the main road are obtained.
  • the same is true for the auxiliary roads.
  • the CAD (Computer Aided Design) drawing of the arrangement plan shown in Figure 2 takes the polygonal area of four photovoltaic power stations as an example to show the CAD drawing exported after the photovoltaic bracket arrangement and equipment grouping. Color blocks with different grayscales in the figure are used to represent actual location groups.
  • the The available locations are clustered to obtain available location groups corresponding to each of the inverters; wherein the available location groups include multiple available locations, and each of the available locations is determined according to the number of photovoltaic brackets corresponding to each inverter.
  • the number of grouped positions corresponding to the inverter is adjusted according to the number of grouped positions corresponding to each inverter, and the available position groups corresponding to each inverter are adjusted to obtain the actual positions corresponding to each inverter.
  • the actual location grouping includes locations corresponding to the number of grouping locations, and based on the actual location grouping corresponding to each inverter, an arrangement plan of the photovoltaic power station is generated; wherein the arrangement plan includes placement
  • the actual location of each photovoltaic bracket and each inverter enables the use of a clustering algorithm to automatically group equipment, and does not limit the shape of the area within the photovoltaic power station, realizing the automatic generation of the arrangement plan and avoiding time-consuming equipment grouping. Effortless problem and suitable for areas of various shapes.
  • the available locations are clustered based on the distance between the available locations to obtain a specific implementation method of grouping the available locations corresponding to each of the inverters. , including: taking the available positions of the number of inverters as the initial cluster centroid, calculating the Chebyshev distance between each available position and each cluster centroid, and assigning each available position to Chebyshev The nearest cluster centroid; perform the following process iteratively until the preset conditions are met: taking the cluster centroid and the available positions assigned to the cluster centroid as a cluster, according to each available position in the cluster Position recalculates the cluster centroid; calculates the Chebyshev distance between each available position and each recalculated cluster centroid, and assigns each available position to the nearest cluster centroid; the preset conditions are met in the current iteration process When , the last calculated cluster centroid and the available positions assigned to the cluster centroid are grouped as the available positions.
  • the shape of the area formed by each available location grouping It needs to be as regular as possible.
  • the shape is preferably rectangular. If it cannot be a rectangle, it should be as close to a rectangle as possible.
  • the embodiment of the present invention proposes to improve the k-means algorithm.
  • the traditional k-means algorithm uses Euclidean distance, which is the formula:
  • the Euclidean distance can be interpreted as the length of the line segment connecting two points, with each cluster shaped approximately as a circle.
  • Chebyshev distance is defined as the maximum difference between two vectors in any coordinate dimension. In other words, it is the maximum distance along an axis where the shape of each cluster is approximately square.
  • x i and y i represent a pair of points when calculating distance.
  • the available positions of the number of inverters are used as the initial cluster centroid.
  • the Chebyshev distance between each available position and each cluster centroid is calculated, and each available position is assigned to Chebyshev The nearest inverse cluster centroid.
  • available location a is assigned to the location of cluster centroid b.
  • each available position is assigned to the nearest cluster centroid, and a cluster centroid and all available positions assigned to the cluster centroid are regarded as a cluster obtained after one clustering. After all available positions are assigned, all clusters are obtained.
  • the cluster centroid and the available positions assigned to the cluster centroid are used as a cluster.
  • the cluster centroids are then recalculated individually based on all available positions in each cluster.
  • the method of calculating the cluster centroid can be obtained based on the objective function. For example, use the Sum of the Squared Error (SSE) as the objective function of clustering, and select the position with the smallest sum of squared errors as the new cluster centroid.
  • SSE Sum of the Squared Error
  • the preset condition can be any of the following:
  • the improved k-means algorithm uses Chebyshev distance, so that the area shape formed by the available location grouping formed by clustering can be close to a rectangle, reducing the irregularity of the shape, and meeting the business needs of photovoltaic power plants.
  • FIG. 3 there is shown a step flow chart of an embodiment of a method for generating an arrangement plan of the present invention, which may specifically include the following steps:
  • Step 201 Obtain the area information, array information and equipment information of the photovoltaic power station.
  • the area information includes the area of the photovoltaic power station, the obstacle area, etc., or any other applicable information, which is not limited in the embodiment of the present invention.
  • the obstacle areas usually drawn on the front-end page by the designer. If there are obstacles in the photovoltaic power plant, the obstacle areas also need to be mapped.
  • the array information includes the number of array columns, the number of sub-array columns, main road width, auxiliary road width, clear space, bracket row spacing, bracket column spacing, etc., or any other applicable information.
  • An array is an array composed of photovoltaic brackets and inverters, and the array is divided into multiple sub-arrays. A main path is set between the arrays, and a auxiliary path is set between the sub-arrays in the array. There is also clearance, an empty area, between the array and the main road.
  • the equipment information includes the maximum number of photovoltaic brackets that the inverter used can correspond to, information about photovoltaic modules, etc., or any other applicable information, which is not limited in the embodiment of the present invention. For example, create an inverter library, select a relevant model of inverter of a certain brand, query the maximum number of corresponding photovoltaic brackets, and set the layout position of the inverter and combiner box (the inverter occupies an available position, The combiner box does not occupy available space and is located in the lower right corner of the PV rack).
  • the relevant information of the photovoltaic module includes the installation direction, installation inclination angle, module azimuth angle, etc.
  • the designer selects the photovoltaic components to be used, sets the photovoltaic bracket type (fixed single pile, fixed double pile, tracking), installation direction (horizontal installation, vertical installation), installation inclination angle, module azimuth angle, etc.
  • Step 202 Determine the available location based on the area information, array information and device information.
  • the available area of the photovoltaic power station is determined based on the area information.
  • the area information For example, to calculate the shadow area of an obstacle, specifically take the shadow area of the obstacle at the vernal equinox, autumnal equinox, summer solstice, and winter solstice and then remove the shadow area from the area of the photovoltaic power station to obtain the available area of the photovoltaic power station for placing photovoltaic brackets. Area.
  • the array area is divided according to the available area, array information and device information, and the divided array area is obtained. For example, based on the array information, calculate the width of the sub-array, the width of the array and other information, establish a coordinate system with the north-south direction as the y-axis and the east-west direction as the x-axis, and determine the limit values of the coordinates of the photovoltaic power station area in this coordinate system. , that is, taking the circumscribed rectangle of the photovoltaic power station area, one side of the circumscribed rectangle is parallel to the x-axis of the coordinate system, and one side is parallel to the y-axis of the coordinate system. Then according to the width of the sub-array and the width of the array, the circumscribed rectangle is divided into multiple arrays and sub-arrays, that is, the x-coordinates of the main road and the auxiliary road in the area are determined.
  • the bracket size of the photovoltaic bracket can be calculated based on the relevant information of the photovoltaic module.
  • the available positions are arranged in the available area according to the available area, the array area and the bracket size. For example, during the arrangement process, available positions are arranged in the array within the above-mentioned circumscribed rectangle, and available positions that are not within the available area are filtered out.
  • Step 203 Determine the number of inverters and the number of photovoltaic brackets corresponding to each inverter based on the number of available locations and equipment information.
  • the number of inverters and the configuration plan are calculated based on the number of available locations and setting information. Specifically, based on the number of brackets, the number of photovoltaic modules on all photovoltaic brackets can be calculated. Based on the number of photovoltaic modules on all photovoltaic racks and the module power, the total power of all photovoltaic modules can be calculated. The number of inverters is then calculated based on the total power of all PV modules, the target capacity ratio, and the rated power of the selected inverter. In actual application, other factors may need to be considered, which are not limited by the embodiments of the present invention.
  • the available locations are 1,000. Since one inverter supports up to 100 photovoltaic racks, 10 inverters are needed, and there are 990 available locations for placement. Photovoltaic bracket. Then 990 photovoltaic brackets are evenly distributed to 10 inverters, or 9 inverters are assigned 100 photovoltaic brackets, and one inverter is assigned 90 photovoltaic brackets. Since one combiner box supports up to 10 photovoltaic brackets, 99 combiner boxes are needed, and each combiner box corresponds to 10 photovoltaic brackets.
  • Step 204 Based on the distance between available locations, the available locations are clustered to obtain available location groups corresponding to each of the inverters; wherein the available location groups include multiple available locations.
  • Step 205 Determine the number of grouping positions corresponding to each inverter according to the number of photovoltaic brackets corresponding to each inverter.
  • Step 206 When the number of group locations corresponding to an inverter is equal to the number of available locations in the corresponding available location group, determine the corresponding available location group as the actual location group.
  • FIG. 4 a schematic diagram of the actual grouping process is shown in Figure 4.
  • the number of standards in each cluster is [n 1 ,n 2 ,...,n k ].
  • Establish a coordinate system with the lower left corner of the photovoltaic power station area as the coordinate origin select the first cluster (i.e., available location grouping) based on the distance from the center of the k clusters to the origin, and obtain the data points of the first cluster (i.e., available location)
  • the number can be divided into three situations by comparing with n 1.
  • the first situation: the number of data points in the first cluster is equal to n 1.
  • all the data points in the first cluster are grouped as the first actual position.
  • Step 207 When the number of grouped positions corresponding to an inverter is less than the number of available positions in the corresponding available position group, delete the redundant available positions in the corresponding available position group and determine the actual position grouping. .
  • the number of grouped positions corresponding to one inverter is less than the number of available positions in the corresponding available position group, that is, the number of available positions in the available position group is too many, it is necessary to replace the excess positions in the corresponding available position group.
  • the available locations are deleted, and the remaining available locations after deletion are grouped as actual locations. There may be multiple ways of deleting redundant available locations in the corresponding available location group. Specifically, any number of group positions corresponding to the inverter can be used. The amount is equal to the number of available positions in the corresponding actual position group. This embodiment of the present invention does not limit this.
  • a specific implementation of deleting and determining the actual location grouping includes: generating a corresponding convex set area according to the available locations in the corresponding available location grouping; When equal to the number of available positions within the maximum inscribed rectangle of the convex set area, delete the available positions outside the maximum inscribed rectangle of the convex set area, determine the actual position grouping, and make the inverter
  • the corresponding number of grouped positions is equal to the number of available positions in the corresponding actual position group; when the number of corresponding grouped positions of the inverter is less than the number of available positions within the largest inscribed rectangle of the convex set area, Delete the available positions outside the maximum inscribed rectangle of the convex set area and the available positions close to the edge within the maximum inscribed rectangle of the convex set area, determine the actual position grouping, and make the
  • a convex set is a subset of an affine space closed under a convex combination. More specifically, in Euclidean space, a convex set is such that for every pair of points in the set, every point on the straight line segment connecting the pair of points is also in the set. For example, a cube is a convex set, but anything that is hollow or has indentations such as a crescent is not a convex set.
  • the convex set region is generated based on the available positions in the corresponding available position grouping.
  • the number of group positions corresponding to the inverter In order to make the number of group positions corresponding to the inverter equal to the number of available positions in the corresponding actual position group, when the number of group positions corresponding to the inverter is less than the number of available positions within the largest inscribed rectangle of the convex set area, Convert the available positions outside the largest inscribed rectangle of the convex set region, and the convex set By deleting the available positions close to the edge within the largest inscribed rectangle of the area, the actual position grouping can be obtained. Available positions near the edges can be deleted sequentially by the excess amount.
  • the number of group positions corresponding to the inverter In order to make the number of group positions corresponding to the inverter equal to the number of available positions in the corresponding actual position group, when the number of group positions corresponding to the inverter is greater than the number of available positions within the largest inscribed rectangle of the convex set area, the actual position grouping can be obtained.
  • the available positions outside the largest inscribed rectangle can be deleted in order, and the number of deleted positions is determined by the excess number.
  • the number of data points in the first cluster is greater than n 1 , in this case some available positions need to be deleted.
  • a convex set area is generated based on the data points of the first cluster, and the maximum inscribed rectangle of the convex set area is obtained.
  • the data points within the maximum inscribed rectangle are stored in the first group of the position group. If the first If the number of groups is equal to n 1 , the grouping is completed and the actual position grouping is obtained. If the number of the first grouping is greater than n 1 , the redundant data points are deleted in order. If the number of the first grouping is less than n 1 , the difference between the data points of the first cluster and the data points of the largest inscribed matrix is Focus on selection. The selection method is to try to select data points with as many available positions in the same column as possible.
  • Step 208 If the number of group locations corresponding to an inverter is greater than the number of available locations in the corresponding available location group, reallocate at least one available location in the nearby available location group to the corresponding available location group. , determine the actual location grouping.
  • the number of group locations corresponding to an inverter is greater than the number of available locations in the corresponding available location group, that is, the number of available locations in the available location group is too small, it is necessary to have at least An available location is reallocated into the corresponding available location group as an actual location group.
  • Ways of reallocating at least one available location in nearby available location groups to the corresponding available location group may include multiple ways. Specifically, any method may be used to make the number of group positions corresponding to the inverter equal to the number of available positions in the corresponding actual position group. The embodiment of the present invention does not limit this.
  • the specific implementation manner of redistributing the positions to the corresponding available position grouping and determining the actual position grouping includes: generating the corresponding minimum circumscribed rectangle according to the available positions in the corresponding available position grouping; in the inverse The number of grouping positions corresponding to the transformer is not large.
  • the number of available locations within the minimum circumscribed rectangle redistribute at least one available location in the nearby available location group and within the minimum circumscribed rectangle to the corresponding available location group, and determine The actual location grouping is such that the number of grouping locations corresponding to the inverter is equal to the number of available locations in the corresponding actual location grouping; the number of grouping locations corresponding to the inverter is greater than the number of grouping locations within the minimum circumscribed rectangle.
  • the available positions in the nearby available position group and within the minimum circumscribed rectangle will be reallocated to the corresponding available position group, and then the available positions in the nearby available position group will be , the available locations closest to the corresponding available location group are reassigned to the corresponding available location group, and the actual location grouping is determined so that the number of group locations corresponding to the inverter is equal to the corresponding actual location The number of available positions in the group.
  • the minimum enclosing rectangle is the minimum enclosing rectangle of the area occupied by the available location group, which can be generated based on the available locations in the available location group.
  • the actual position grouping can be obtained. Reassign at least one available position to the corresponding available position group in order from the intersection of other available position groups and the smallest enclosing rectangle. The amount reallocated is determined by the missing amount in the grouping of available positions.
  • the nearby in the available position group, and the available positions within the minimum enclosing rectangle are redistributed to the corresponding available position group. Then, among the nearby available location groups, the available locations closest to the available location group are redistributed to the corresponding available location group, and the actual location grouping can be obtained.
  • the amount reallocated is determined by the missing amount in the grouping of available positions.
  • the number of data points in the first cluster is less than n 1 , in this case, data points need to be borrowed from nearby clusters.
  • First generate the minimum circumscribed matrix based on the data points of the first cluster, and then find the intersection of other clusters and the minimum circumscribed matrix. If there is an intersection, add the data points in the intersection to the first cluster. After the addition, the first The number of clusters does not exceed n 1 , and borrowing points from other clusters are also deleted. After completing the preliminary borrowing, determine whether the number of data points in the first cluster is equal to n 1 , and if so, follow The first case is executed, otherwise it is borrowed from the second cluster.
  • the nearby available location group after redistributing at least one available location in the nearby available location group to the corresponding available location group and determining the actual location group, it may also include: : Determine that there is no available location in the nearby available location group; based on the distance between available locations, re-cluster the available locations outside the currently determined actual location group to obtain the correspondence grouping of available locations.
  • clustering is performed again for the available locations outside the currently determined actual location grouping.
  • the clustering method is the same as above, and the number of clusters is the number of inverters minus the number of currently determined actual location groupings.
  • Step 209 Generate a layout plan for the photovoltaic power station according to the actual position groups corresponding to the respective inverters; wherein the layout plan includes the actual positions of placing each photovoltaic bracket and each inverter.
  • the available locations are determined based on the area information, array information and equipment information, and the available locations are determined based on the number of available locations and the equipment information. , determine the number of the inverters and the number of photovoltaic brackets corresponding to each inverter, cluster the available locations based on the distance between the available locations, and obtain the corresponding corresponding to each inverter. available location grouping; wherein, the available location grouping includes multiple available locations, and the number of grouping locations corresponding to each inverter is determined according to the number of photovoltaic brackets corresponding to each inverter. When one inverter corresponds to The number of grouping positions, etc.
  • the number of grouped positions corresponding to one inverter is less than the number of available positions in the corresponding available position group.
  • the number of grouped locations corresponding to an inverter is greater than the number of available locations in the corresponding available location group.
  • the arrangement plan of the photovoltaic power station wherein the arrangement plan includes placing the actual positions of each photovoltaic bracket and each of the inverters, so that the equipment can be automatically grouped using a clustering algorithm, and the area within the photovoltaic power station is not limited.
  • the shape realizes the automatic generation of arrangement plans, avoiding the time-consuming and labor-intensive problem of equipment grouping, and is suitable for areas of various shapes.
  • FIG. 5 there is shown a structural block diagram of an embodiment of an arrangement scheme generating device of the present invention, which may specifically include the following modules:
  • the determination module 301 is used to determine the number of photovoltaic brackets corresponding to each inverter in the photovoltaic power station, and the available locations for placing each photovoltaic bracket and each inverter;
  • the clustering module 302 is configured to cluster the available locations based on the distance between them to obtain available location groups corresponding to each inverter; wherein the available location groups include multiple Available locations;
  • the quantity determination module 303 is used to determine the number of grouping positions corresponding to each inverter according to the number of photovoltaic brackets corresponding to each inverter;
  • the adjustment module 304 is used to adjust the available position groupings corresponding to each inverter according to the number of grouping positions corresponding to each inverter, and obtain the actual position grouping corresponding to each inverter; wherein , the actual location grouping includes locations corresponding to the number of grouped locations;
  • the generation module 305 is used to generate a layout plan of the photovoltaic power station according to the actual position grouping corresponding to each inverter; wherein the layout plan includes placing each photovoltaic bracket and all Describe the actual location of each inverter.
  • the determining module includes:
  • Information acquisition submodule used to acquire regional information, array information and equipment information of the photovoltaic power station
  • a location determination submodule used to determine the available location based on the area information, array information and device information
  • a quantity determination sub-module is used to determine the number of the inverters and the number of photovoltaic brackets corresponding to each of the inverters based on the number of available locations and equipment information.
  • the clustering module includes:
  • the allocation submodule is used to use the available positions of the number of inverters as the initial cluster centroid, calculate the Chebyshev distance between each available position and each cluster centroid, and assign each available position to the Chebyshev distance.
  • the iteration module is used to iteratively execute the following process until the preset conditions are met:
  • the last calculated cluster centroid and the available positions assigned to the cluster centroid are grouped as the available positions.
  • the adjustment module includes:
  • a grouping determination submodule configured to determine the corresponding available position grouping as the actual position grouping when the number of grouped positions corresponding to one inverter is equal to the number of available positions in the corresponding available position group;
  • the deletion submodule is used to delete the redundant available positions in the corresponding available position group when the number of group positions corresponding to an inverter is less than the number of available positions in the corresponding available position group, and determine the Actual location grouping;
  • Allocation sub-module configured to reallocate at least one available location in the nearby available location group to the corresponding location when the number of group locations corresponding to an inverter is greater than the number of available locations in the corresponding available location group.
  • the actual location grouping is determined.
  • deletion sub-module includes:
  • a region generation unit configured to generate a corresponding convex set region according to the available positions in the corresponding available position group
  • a first deletion unit configured to delete the maximum inscribed rectangle of the convex set region outside the maximum inscribed rectangle of the convex set region when the number of grouping positions corresponding to the inverter is equal to the number of available positions within the maximum inscribed rectangle of the convex set region. Delete the available locations and determine the actual location grouping so that the number of grouped locations corresponding to the inverter is equal to the number of available locations in the corresponding actual location grouping;
  • the second deletion unit is configured to delete the maximum inscribed rectangle of the convex set region outside the maximum inscribed rectangle of the convex set region when the number of grouping positions corresponding to the inverter is less than the number of available positions within the maximum inscribed rectangle of the convex set region. available positions, and delete the available positions close to the edge within the largest inscribed rectangle of the convex set area, determine the actual position grouping, so that the number of grouped positions corresponding to the inverter is equal to the corresponding actual position grouping the number of available positions;
  • a third deletion unit configured to group the corresponding available positions in the corresponding available position group when the number of grouped positions corresponding to the inverter is greater than the number of available positions within the largest inscribed rectangle of the convex set area, and Part of the available positions outside the largest inscribed rectangle of the convex set area is deleted, and the actual position grouping is determined so that the number of grouped positions corresponding to the inverter is equal to the number of available positions in the corresponding actual position grouping.
  • the allocation submodule includes:
  • a rectangle generation unit configured to generate a corresponding minimum circumscribed rectangle according to the available positions in the corresponding available position group
  • a first allocation unit configured to group the available locations in the vicinity and within the minimum circumscribed rectangle when the number of grouped locations corresponding to the inverter is not greater than the number of available locations within the minimum circumscribed rectangle. At least one available location within the inverter is redistributed to the corresponding available location group, and the actual location grouping is determined so that the number of group locations corresponding to the inverter is equal to the number of available locations in the corresponding actual location group;
  • a second allocation unit configured to group the nearby available locations within the minimum circumscribed rectangle when the number of grouped locations corresponding to the inverter is greater than the number of available locations within the minimum circumscribed rectangle.
  • the available locations are redistributed to the corresponding available location group, and then the available location closest to the corresponding available location group among the nearby available location groups is reassigned to the corresponding available location group. , determine the actual location grouping so that the number of grouped locations corresponding to the inverter is equal to the number of available locations in the corresponding actual location grouping.
  • the device also includes:
  • determining module for determining the nearby available location grouping after redistributing at least one available location in the nearby available location grouping to the corresponding available location grouping and determining the actual location grouping. There is no available location in ;
  • a re-clustering module configured to re-cluster available locations other than the currently determined actual location grouping based on the distance between available locations to obtain the corresponding available location grouping.
  • the The available locations are clustered to obtain available location groups corresponding to each of the inverters; wherein the available location groups include multiple available locations, and each of the available locations is determined according to the number of photovoltaic brackets corresponding to each inverter.
  • the number of grouped positions corresponding to the inverter is adjusted according to the number of grouped positions corresponding to each inverter, and the available position groups corresponding to each inverter are adjusted to obtain the actual positions corresponding to each inverter.
  • the actual location grouping includes locations corresponding to the number of grouping locations, and based on the actual location grouping corresponding to each inverter, an arrangement plan of the photovoltaic power station is generated; wherein the arrangement plan includes placement
  • the actual location of each photovoltaic bracket and each inverter enables the use of a clustering algorithm to automatically group equipment, and does not limit the shape of the area within the photovoltaic power station, realizing the automatic generation of the arrangement plan and avoiding time-consuming equipment grouping. Effortless problem and suitable for areas of various shapes.
  • the description is relatively simple. For relevant details, please refer to the partial description of the method embodiment.
  • FIG. 6 is a structural block diagram of an electronic device 400 for arrangement plan generation according to an exemplary embodiment.
  • the electronic device 400 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the electronic device 400 may include one or more of the following components: a processing component 402 , a memory 404 , a power supply component 406 , a multimedia component 408 , an audio component 410 , an input/output (I/O) interface 412 , and a sensor component 414 , and communication component 416.
  • Processing component 402 generally controls the overall operations of electronic device 400, such as operations associated with display, phone calls, data communications, camera operations, and recording operations. Processing component 402 may include One or more processors 420 execute instructions to complete all or part of the steps of the above arrangement plan generation method. Additionally, processing component 402 may include one or more modules that facilitate interaction between processing component 402 and other components. For example, processing component 402 may include a multimedia module to facilitate interaction between multimedia component 408 and processing component 402.
  • Memory 404 is configured to store various types of data to support operations at device 400 . Examples of such data include instructions for any application or method operating on the electronic device 400, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 404 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power component 404 provides power to various components of electronic device 400 .
  • Power components 404 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to electronic device 400 .
  • Multimedia component 408 includes a screen that provides an output interface between the electronic device 400 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 408 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 410 is configured to output and/or input audio signals.
  • audio component 410 includes a microphone (MIC) configured to receive external audio signals when electronic device 400 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signals may be further stored in memory 404 or sent via communication component 416 .
  • audio component 410 also includes a speaker for outputting audio signals.
  • the I/O interface 412 provides an interface between the processing component 402 and the peripheral interface module.
  • Port modules can be keyboards, click wheels, buttons, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 414 includes one or more sensors for providing various aspects of status assessment for electronic device 400 .
  • the sensor component 414 can detect the open/closed state of the device 400, the relative positioning of components, such as the display and keypad of the electronic device 400, the sensor component 414 can also detect the electronic device 400 or a component of the electronic device 400. position changes, the presence or absence of user contact with the electronic device 400 , the orientation or acceleration/deceleration of the electronic device 400 and temperature changes of the electronic device 400 .
  • Sensor assembly 414 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 414 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 414 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 416 is configured to facilitate wired or wireless communication between electronic device 400 and other devices.
  • the electronic device 400 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 414 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 414 also includes a near field communication (NFC) module to facilitate short-range communications.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • electronic device 400 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Programming gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above arrangement scheme generation method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Programming gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above arrangement scheme generation method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 404 including instructions.
  • the instructions can be executed by the processor 420 of the electronic device 400 to complete the above arrangement scheme generation method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • a non-transitory computer-readable storage medium that, when instructions in the storage medium are executed by a processor of a terminal, enables the terminal to execute a method for generating an arrangement scheme, the method comprising:
  • the available locations are clustered to obtain available location groups corresponding to each of the inverters; wherein the available location groups include multiple available locations;
  • the available position grouping corresponding to each inverter is adjusted to obtain the actual position grouping corresponding to each inverter; wherein, the actual position grouping Include positions corresponding to the number of grouped positions;
  • a layout plan of the photovoltaic power station is generated; wherein the layout plan includes the actual position of placing each photovoltaic bracket and each inverter.
  • determining the number of photovoltaic brackets corresponding to each inverter in the photovoltaic power station and the available locations for placing each photovoltaic bracket and each inverter include:
  • the number of inverters and the number of photovoltaic brackets corresponding to each inverter are determined.
  • clustering the available locations based on the distance between available locations to obtain available location groups corresponding to each inverter includes:
  • the last calculated cluster centroid and distribution The available positions of the cluster centroids are grouped as the available positions.
  • adjusting the available position groupings corresponding to each inverter according to the number of grouping positions corresponding to each inverter to obtain the actual position grouping corresponding to each inverter includes:
  • delete the redundant available positions in the corresponding available position group, and determine the Physical location groupings include:
  • the actual location grouping is such that the number of grouped locations corresponding to the inverter is equal to the number of available locations in the corresponding actual location grouping
  • the available positions outside the maximum inscribed rectangle of the convex set area are combined with the Delete the available positions close to the edge within the largest inscribed rectangle of the convex set area, and determine the actual position grouping so that the number of grouped positions corresponding to the inverter is equal to the number of available positions in the corresponding actual position grouping;
  • the inverter When the number of grouped positions corresponding to the inverter is greater than the number of available positions within the largest inscribed rectangle of the convex set area, the inverter will be in the corresponding available position grouping and in the convex set area. Part of the available locations outside the largest inscribed rectangle is deleted, and the actual location grouping is determined so that the number of grouped locations corresponding to the inverter is equal to the number of available locations in the corresponding actual location grouping.
  • determining the actual location grouping includes:
  • At least one available position in the nearby available position group and within the minimum circumscribed rectangle is re- Allocate to the corresponding available location grouping, and determine the actual location grouping so that the number of grouped locations corresponding to the inverter is equal to the number of available locations in the corresponding actual location grouping;
  • the available locations in the nearby available location group and within the minimum circumscribed rectangle are reallocated to all Among the corresponding available location groups, the available location closest to the corresponding available location group among the nearby available location groups is redistributed to the corresponding available location group, and the actual location group is determined. , making the number of group positions corresponding to the inverter equal to the number of available positions in the corresponding actual position group.
  • the method further includes:
  • the available locations other than the currently determined actual location grouping are re-clustered to obtain the corresponding available location grouping.
  • embodiments of the present invention may be provided as methods, devices, or computer program products.
  • embodiments of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects.
  • embodiments of the invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • Embodiments of the invention are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the invention. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing terminal device to produce a machine such that the instructions are executed by the processor of the computer or other programmable data processing terminal device. Means are generated for implementing the functions specified in the process or processes of the flowchart diagrams and/or the block or blocks of the block diagrams.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing terminal equipment to operate in a predictive manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the The instruction means implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing terminal equipment, so that a series of operating steps are performed on the computer or other programmable terminal equipment to produce computer-implemented processing, thereby causing the computer or other programmable terminal equipment to perform a computer-implemented process.
  • the instructions executed on provide steps for implementing the functions specified in a process or processes of the flow diagrams and/or a block or blocks of the block diagrams.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明实施例提供了一种排布方案生成方法、装置、设备及介质。该方法包括:确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置,以可用位置之间的距离为依据,对可用位置进行聚类,得到各个逆变器对应的可用位置分组;根据各个逆变器对应的光伏支架数量,确定对应的分组位置数量,根据各个逆变器对应的分组位置数量,对各个可用位置分组进行调整,得到各个实际位置分组;根据各个逆变器分别对应的实际位置分组,生成光伏电站的排布方案,使得利用聚类算法自动对设备进行分组,而且不限制光伏电站内区域的形状,实现了排布方案的自动生成,避免设备分组时耗时费力的问题,而且适用于各种形状的区域。

Description

排布方案生成方法、装置、电子设备及存储介质
相关申请的交叉引用
本公开要求在2022年8月12日提交中国专利局、申请号为202210969624.9、名称为“排布方案生成方法、装置、电子设备及存储介质”的中国专利申请的优先权,以及在2022年10月20日提交中国专利局、申请号为202211286461.0、名称为“排布方案生成方法、装置、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本发明涉及晶体制备技术领域,特别是涉及一种排布方案生成方法、一种排布方案生成装置、一种电子设备以及一种存储介质。
背景技术
在进行光伏电站的设计工作时,影响设计结果的因素众多。传统的工作方式中,工程师需要手工利用AutoCAD(Autodesk Computer Aided Design,自动计算机辅助设计)等软件进行相关设计。
在传统的设备分组中,利用多种规则及其组合完成分组,但是对于不同形状的光伏电站场区适用的规则不同,要找到适用于各种场区的规则集合需要耗费大量时间与精力,而且对于一些特殊形状的场区,无法单纯利用规则完成分组。综上,设备分组时存在耗时费力,无法适用特殊形状的场区的问题。
发明内容
鉴于上述问题,提出了本发明实施例以便提供一种克服上述问题或者至少部分地解决上述问题的一种排布方案生成方法,以解决耗时费力,无法适用特殊形状的场区的问题。
相应的,本发明实施例还提供了一种排布方案生成装置、一种电子设备以及一种存储介质,用以保证上述方法的实现及应用。
为了解决上述问题,本发明实施例公开了一种排布方案生成方法,包括:
确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置;
以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各 个逆变器分别对应的可用位置分组;其中,所述可用位置分组包括多个可用位置;
根据所述各个逆变器对应的光伏支架数量,确定所述各个逆变器对应的分组位置数量;
根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组;其中,所述实际位置分组包括对应分组位置数量的位置;
根据所述各个逆变器分别对应的实际位置分组,生成所述光伏电站的排布方案;其中,所述排布方案包括放置各个光伏支架和所述各个逆变器的实际位置。
可选地,所述确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置包括:
获取所述光伏电站的区域信息、阵列信息和设备信息;
根据所述区域信息、阵列信息和设备信息,确定所述可用位置;
根据所述可用位置的数量和设备信息,确定所述逆变器的数量和所述各个逆变器对应的光伏支架数量。
可选地,所述以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组包括:
以所述逆变器的数量的可用位置作为初始的聚类质心,计算每个可用位置与各个聚类质心之间的切比雪夫距离,把每个可用位置分配给切比雪夫距离最近的聚类质心;
迭代执行下述过程,直至满足预设条件:
以所述聚类质心以及分配给所述聚类质心的可用位置作为一个聚类,根据所述聚类中的各个可用位置重新计算聚类质心;
计算每个可用位置与各个重新计算的聚类质心之间的切比雪夫距离,把每个可用位置分配给距离最近的聚类质心;
在当前迭代过程满足预设条件时,将最后一次计算的聚类质心以及分配给所述聚类质心的可用位置,作为所述可用位置分组。
可选地,所述根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实 际位置分组包括:
在一个逆变器对应的分组位置数量等于对应的可用位置分组中的可用位置数量的情况下,将所述对应的可用位置分组确定为所述实际位置分组;
在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,对所述对应的可用位置分组中多余的可用位置进行删除,确定所述实际位置分组;
在一个逆变器对应的分组位置数量大于对应的可用位置分组中的可用位置数量的情况下,将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组。
可选地,所述在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,对所述对应的可用位置分组中多余的可用位置进行删除,确定所述实际位置分组包括:
根据所述对应的可用位置分组中的可用位置,生成对应的凸集区域;
在所述逆变器对应的分组位置数量等于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将所述凸集区域的最大内接矩形外的可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
在所述逆变器对应的分组位置数量小于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将所述凸集区域的最大内接矩形外的可用位置,和所述凸集区域的最大内接矩形内靠近边缘的可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
在所述逆变器对应的分组位置数量大于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将在所述对应的可用位置分组中,且在所述凸集区域的最大内接矩形外的部分可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量。
可选地,所述在一个逆变器对应的分组位置数量大于对应的可用位置分组中的可用位置数量的情况下,将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组包括:
根据所述对应的可用位置分组中的可用位置,生成对应的最小外接矩形;
在所述逆变器对应的分组位置数量不大于所述最小外接矩形内的可用位置数量的情况下,将在所述附近的可用位置分组中,且在最小外接矩形内的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
在所述逆变器对应的分组位置数量大于所述最小外接矩形内的可用位置数量的情况下,将在所述附近的可用位置分组中,且在最小外接矩形内的可用位置重新分配到所述对应的可用位置分组中,再将在所述附近的可用位置分组中,距离所述对应的可用位置分组最近的可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量。
可选地,在所述将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组之后,所述方法还包括:
确定所述附近的可用位置分组中不存在可用位置;
以可用位置之间的距离为依据,对针对当前已确定的所述实际位置分组之外的可用位置重新进行聚类,得到所述对应的可用位置分组。
本发明实施例还公开了一种排布方案生成装置,包括:
确定模块,用于确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置;
聚类模块,用于以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组;其中,所述可用位置分组包括多个可用位置;
数量确定模块,用于根据所述各个逆变器对应的光伏支架数量,确定所述各个逆变器对应的分组位置数量;
调整模块,用于根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组;其中,所述实际位置分组包括对应分组位置数量的位置;
生成模块,用于根据所述各个逆变器分别对应的实际位置分组,生成所 述光伏电站的排布方案;其中,所述排布方案包括放置各个光伏支架和所述各个逆变器的实际位置。
可选地,所述确定模块包括:
信息获取子模块,用于获取所述光伏电站的区域信息、阵列信息和设备信息;
位置确定子模块,用于根据所述区域信息、阵列信息和设备信息,确定所述可用位置;
数量确定子模块,用于根据所述可用位置的数量和设备信息,确定所述逆变器的数量和所述各个逆变器对应的光伏支架数量。
可选地,所述聚类模块包括:
分配子模块,用于以所述逆变器的数量的可用位置作为初始的聚类质心,计算每个可用位置与各个聚类质心之间的切比雪夫距离,把每个可用位置分配给切比雪夫距离最近的聚类质心;
迭代模块,用于迭代执行下述过程,直至满足预设条件:
以所述聚类质心以及分配给所述聚类质心的可用位置作为一个聚类,根据所述聚类中的各个可用位置重新计算聚类质心;
计算每个可用位置与各个重新计算的聚类质心之间的切比雪夫距离,把每个可用位置分配给距离最近的聚类质心;
在当前迭代过程满足预设条件时,将最后一次计算的聚类质心以及分配给所述聚类质心的可用位置,作为所述可用位置分组。
可选地,所述调整模块包括:
分组确定子模块,用于在一个逆变器对应的分组位置数量等于对应的可用位置分组中的可用位置数量的情况下,将所述对应的可用位置分组确定为所述实际位置分组;
删除子模块,用于在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,对所述对应的可用位置分组中多余的可用位置进行删除,确定所述实际位置分组;
分配子模块,用于在一个逆变器对应的分组位置数量大于对应的可用位置分组中的可用位置数量的情况下,将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组。
可选地,所述删除子模块包括:
区域生成单元,用于根据所述对应的可用位置分组中的可用位置,生成对应的凸集区域;
第一删除单元,用于在所述逆变器对应的分组位置数量等于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将所述凸集区域的最大内接矩形外的可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
第二删除单元,用于在所述逆变器对应的分组位置数量小于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将所述凸集区域的最大内接矩形外的可用位置,和所述凸集区域的最大内接矩形内靠近边缘的可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
第三删除单元,用于在所述逆变器对应的分组位置数量大于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将在所述对应的可用位置分组中,且在所述凸集区域的最大内接矩形外的部分可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量。
可选地,所述分配子模块包括:
矩形生成单元,用于根据所述对应的可用位置分组中的可用位置,生成对应的最小外接矩形;
第一分配单元,用于在所述逆变器对应的分组位置数量不大于所述最小外接矩形内的可用位置数量的情况下,将在所述附近的可用位置分组中,且在最小外接矩形内的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
第二分配单元,用于在所述逆变器对应的分组位置数量大于所述最小外接矩形内的可用位置数量的情况下,将在所述附近的可用位置分组中,且在最小外接矩形内的可用位置重新分配到所述对应的可用位置分组中,再将在所述附近的可用位置分组中,距离所述对应的可用位置分组最近的可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,使所述逆 变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量。
可选地,所述装置还包括:
不存在确定模块,用于在所述将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组之后,确定所述附近的可用位置分组中不存在可用位置;
重新聚类模块,用于以可用位置之间的距离为依据,对针对当前已确定的所述实际位置分组之外的可用位置重新进行聚类,得到所述对应的可用位置分组。
本发明实施例还公开了一种电子设备,其特征在于,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
存储器,用于存放计算机程序;
处理器,用于执行存储器上所存放的程序时,实现如上所述的方法步骤。
本发明实施例还公开了一种可读存储介质,当所述存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行本发明实施例中一个或多个所述的排布方案生成方法。
本发明实施例包括以下优点:
依据本发明实施例,通过确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置,以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组;其中,所述可用位置分组包括多个可用位置,根据所述各个逆变器对应的光伏支架数量,确定所述各个逆变器对应的分组位置数量,根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组;其中,所述实际位置分组包括对应分组位置数量的位置,根据所述各个逆变器分别对应的实际位置分组,生成所述光伏电站的排布方案;其中,所述排布方案包括放置各个光伏支架和所述各个逆变器的实际位置,使得利用聚类算法自动对设备进行分组,而且不限制光伏电站内区域的形状,实现了排布方案的自动生成,避免设备分组时耗时费力的问题,而且适用于各种形状的区域。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技 术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
附图用于更好地理解本申请,不构成对本申请的不当限定。其中:
图1是本发明的一种排布方案生成方法实施例的步骤流程图;
图2排布方案的CAD(Computer Aided Design,计算机辅助设计)图纸;
图3是本发明的一种排布方案生成方法实施例的步骤流程图;
图4是实际分组流程的示意图;
图5是本发明的一种排布方案生成装置实施例的结构框图;
图6是根据一示例性实施例示出的一种用于排布方案生成的计算设备的结构框图。
具体实施例
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参照图1,示出了本发明的一种排布方案生成方法实施例的步骤流程图,具体可以包括如下步骤:
步骤101,确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置。
在本发明实施例中,在光伏电站中,主要需要排布多个光伏支架。光伏支架用于安装光伏组件等。在光伏电站中,还需要多个逆变器。每个逆变器 分配给多个光伏支架使用。通常,在排布逆变器和光伏支架时,有的类型的逆变器需要单独放置,即像光伏支架一样独占一个位置,例如,集中式逆变器,有的类型的逆变器则可以附接于某一光伏支架之上,即与该光伏支架共享了一个位置,例如,组串式逆变器。
在本发明实施例中,逆变器对应的光伏支架数量可以相同和/或不同。在光伏电站内,一个可用位置可用于放置一个光伏支架、或一个逆变器、或一个光伏支架并附接一个逆变器。可用位置的数量是确定的,因此逆变器的数量和光伏支架的数量也是确定的。
在本发明实施例中,确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置的具体实现方式包括多种。例如,根据设计人员输入的相关的基本参数,自动生成光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置。又例如,直接获取光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置。具体可以包括任意适用的实现方式,本发明实施例对此不做限制。
步骤102,以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组;其中,所述可用位置分组包括多个可用位置。
在本发明实施例中,聚类算法是按照某个特定的标准(比如距离)把一个数据集分割成不同的簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。也即聚类后同一类的数据尽可能聚集到一起,不同类数据尽量分离。
在本发明实施例中,提出利用改进的聚类算法,以完成可用位置的分组。聚类的依据是可用位置之间的距离。在步骤101,相当于已经确定了逆变器的数量。在聚类开始时,逆变器的数量的可用位置是初始生成的,在聚类过程中,逆变器的数量的可用位置(即聚类质心)可能会发生改变,直至聚类过程结束,将一个可用位置和对应分配给该可用位置的可用位置作为一个聚类,即对应的一个可用位置分组,从而得到各个逆变器分别对应的可用位置分组。
在本发明实施例中,聚类具体可以采用k-means(k-均值聚类)算法、及其变体包括k-medoids(k-中心聚类)算法、k-medians(k-中位数聚类)算法、 kernel k-means(核k-均值聚类)算法等,或者其他任意适用的算法,本发明实施例对此不做限制。
步骤103,根据所述各个逆变器对应的光伏支架数量,确定所述各个逆变器对应的分组位置数量。
在本发明实施例中,由于有的类型的逆变器是像光伏支架一样独占一个可用位置,而有的类型的逆变器是与某一光伏支架共享一个可用位置,因此,需要根据逆变器的类型,确定各个逆变器对应的分组中可用位置的数量,记为分组位置数量。若逆变器独占一个可用位置,则逆变器对应的分组位置数量等于该逆变器对应的光伏支架数量加一。若逆变器和光伏支架共享一个可用位置,则逆变器对应的分组位置数量等于该逆变器对应的光伏支架数量。
步骤104,根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组;其中,所述实际位置分组包括对应分组位置数量的位置。
在本发明实施例中,由于聚类产生的可用位置分组中可用位置的数量可能不符合各个逆变器对应的分组位置数量的要求,因此,需要根据各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,调整后的位置分组成为实际位置分组,使逆变器对应的分组位置数量等于对应的实际位置分组中的可用位置数量,也就是说,实际位置分组包括该逆变器对应的分组位置数量的位置。
在本发明实施例中,根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组的具体实现方式包括多种。例如,在一个逆变器对应的分组位置数量等于对应的可用位置分组中的可用位置数量的情况下,将所述对应的可用位置分组确定为所述实际位置分组;在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,对所述对应的可用位置分组中多余的可用位置进行删除,确定所述实际位置分组;在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组。或者其他任意适用的调整方式,本发明实施例对此不做限制。
步骤105,根据所述各个逆变器分别对应的实际位置分组,生成所述光伏电站的排布方案;其中,所述排布方案包括放置各个光伏支架和所述各个逆变器的实际位置。
在本发明实施例中,根据各个逆变器分别对应的实际位置分组,自动生成光伏电站的排布方案。由于每个实际位置分组需要有一个逆变器,因此在确定逆变器的实际位置后,其他位置就是光伏支架的实际位置。排布方案包括放置各个光伏支架和所述各个逆变器的实际位置,还可以包括光伏电站内的主路和辅路等,或者其他任意适用的信息,本发明实施例对此不做限制。
在本发明实施例中,光伏电站内的路分为主路和辅路,路和路之间排布光伏支架和逆变器。在一个实际位置分组中,通常在离主路最近的位置中选择逆变器的位置,在离辅路最近的位置中选择汇流箱的位置。其中,汇流箱可以安装在一个光伏支架所用的位置上,不需要单独为其分配一个可用位置。例如,1000个光伏支架对应需要10个逆变器,对应需要100个汇流箱。
在本发明实施例中,根据各个逆变器分别对应的实际位置分组,生成所述光伏电站的排布方案的具体实现方式可以包括多种,本发明实施例对此不做限制。
例如,使用xy坐标系描述各个位置以及主路和辅路的位置,在完成分组后,接下来需要分配设备,以集中式逆变器为例,需要分配逆变器和汇流箱。对于逆变器来说,首先生成主路的坐标列表,对于每一个实际位置分组,都查找与其相交的主路。如果有多条相交的主路,则优先选择距离变电站距离近的主路,如果没有相交的主路,则选择距离该实际位置分组最近的主路。此时,选择的主路的旁边的可用位置的x坐标就是逆变器的x坐标,该实际位置分组的中心点的可用位置的y坐标就是逆变器的y坐标,这样逆变器占据一个可用位置,得到逆变器的实际位置。值得注意的是,需要将中心点的可用位置和主路的旁边的可用位置的x坐标进行比较,生成不同侧的逆变器的实际位置。对于汇流箱来说,首先生成辅路的坐标列表,对于每一个实际位置分组,根据主路和辅路,得到Z型走位的支架组。根据汇流箱连接组串数量,计算连接的光伏支架的数量。从Z型支架组中得到第i个汇流箱连接的所有支架,记为支架组i。然后得到支架组i中每个支架的中心点和支架组i的中心点,计算每个支架的中心点的最近辅路n,计算距离辅路n最近支架, 如果该支架数量唯一,则该支架右下角放置汇流箱;否则,计算距离支架组i的中心点最近的支架,其右下角放置汇流箱。对于主路来说,利用所有主路的集合与光伏电站的区域做交集,再与障碍物所占区域做差集,最后得到主路的具体坐标,辅路同理。最后,导出排布方案的图纸。如图2所示的排布方案的CAD(Computer Aided Design,计算机辅助设计)图纸,以四个光伏电站的多边形区域为例,展示了光伏支架排布与设备分组后导出的CAD图纸。图中不同灰度的色块用来代表实际位置分组。
依据本发明实施例,通过确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置,以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组;其中,所述可用位置分组包括多个可用位置,根据所述各个逆变器对应的光伏支架数量,确定所述各个逆变器对应的分组位置数量,根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组;其中,所述实际位置分组包括对应分组位置数量的位置,根据所述各个逆变器分别对应的实际位置分组,生成所述光伏电站的排布方案;其中,所述排布方案包括放置各个光伏支架和所述各个逆变器的实际位置,使得利用聚类算法自动对设备进行分组,而且不限制光伏电站内区域的形状,实现了排布方案的自动生成,避免设备分组时耗时费力的问题,而且适用于各种形状的区域。
在本发明的一种可选实施例中,以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组的一种具体实现方式中,包括:以所述逆变器的数量的可用位置作为初始的聚类质心,计算每个可用位置与各个聚类质心之间的切比雪夫距离,把每个可用位置分配给切比雪夫距离最近的聚类质心;迭代执行下述过程,直至满足预设条件:以所述聚类质心以及分配给所述聚类质心的可用位置作为一个聚类,根据所述聚类中的各个可用位置重新计算聚类质心;计算每个可用位置与各个重新计算的聚类质心之间的切比雪夫距离,把每个可用位置分配给距离最近的聚类质心;在当前迭代过程满足预设条件时,将最后一次计算的聚类质心以及分配给所述聚类质心的可用位置,作为所述可用位置分组。
结合光伏电站的业务场景需要,每个可用位置分组所形成的区域的形状 需要尽可能保持是规则的,形状以矩形为佳,如果无法是矩形,也应尽可能接近矩形。本发明实施例提出对k-means算法进行改进。传统的k-means算法使用的是欧式距离,即公式:
欧式距离可解释为连接两个点的线段的长度,每簇形状近似于圆形。针对这种情况,将欧式距离改用切比雪夫距离,即公式:
D(x,y)=maxi(|xi-yi|)
切比雪夫距离定义为两个向量在任意坐标维度上的最大差值。换句话说,它就是沿着一个轴的最大距离,每簇形状近似于方形。上述xi和yi代表计算距离时的一对点。
在聚类时,以逆变器的数量的可用位置作为初始的聚类质心,首先计算每个可用位置与各个聚类质心之间的切比雪夫距离,把每个可用位置分配给切比雪夫距离最近的逆聚类质心。
例如,可用位置a与聚类质心b之间的距离为10米,与其他可用位置之间的距离都超过10米,则把可用位置a分配给聚类质心b的位置。以此方式,将每一个可用位置分配给距离最近的聚类质心,将一个聚类质心和分配给该聚类质心的所有的可用位置,作为一次聚类后得到的一个聚类。所有的可用位置都分配后,得到所有的聚类。
迭代执行下述过程,直至满足预设条件:
将所有的可用位置分配给聚类质心后,以聚类质心以及分配给聚类质心的可用位置作为一个聚类。然后根据各个聚类中的所有可用位置分别重新计算聚类质心。计算聚类质心的方式可以根据目标函数得到,例如,使用误差平方和(Sum of the Squared Error,SSE)作为聚类的目标函数,选择让误差平方和最小的位置作为新的聚类质心。
计算每个可用位置与各个重新计算的聚类质心之间的切比雪夫距离,把每个可用位置分配给切比雪夫距离最近的聚类质心,以聚类质心以及分配给聚类质心的可用位置作为一个聚类,根据各个聚类中的所有可用位置分别重新计算聚类质心,上述过程将不断重复直到满足某个预设条件。
预设条件可以是以下任何一种:
没有(或最小数目)可用位置被重新分配给不同的聚类;
没有(或最小数目)聚类质心再发生变化;
误差平方和达到局部最优;或者,
其他任意适用的条件。
改进的k-means算法采用切比雪夫距离,从而使得聚类形成的可用位置分组所形成的区域形状能够接近矩形,减少了形状的不规则程度,符合光伏电站的业务需要。
参照图3,示出了本发明的一种排布方案生成方法实施例的步骤流程图,具体可以包括如下步骤:
步骤201,获取所述光伏电站的区域信息、阵列信息和设备信息。
在本发明实施例中,区域信息包括光伏电站的区域、障碍物区域等,或者其他任意适用的信息,本发明实施例对此不做限制。通常由设计人员在前端页面上绘制。如果光伏电站中有障碍物,则还需要绘制障碍物区域。
在本发明实施例中,阵列信息包括阵列列数、子阵列列数、主路宽度、辅路宽度、净空间距、支架行间距、支架列间距等,或者其他任意适用的信息,本发明实施例对此不做限制。阵列就是光伏支架和逆变器组成的阵列,阵列还分为多个子阵列。阵列之间设置主路,在阵列中子阵列之间设置辅路。阵列和主路之间还留有净空,即空置的区域。
在本发明实施例中,设备信息包括使用的逆变器能对应的光伏支架的最大数量,光伏组件的相关信息等,或者其他任意适用的信息,本发明实施例对此不做限制。例如,建立逆变器库,选择某个品牌的相关型号的逆变器,查询出对应的光伏支架的最大数量,设定逆变器和汇流箱的布置位置(逆变器占用一个可用位置,汇流箱不占用可用位置,位于光伏支架的右下角)。光伏组件的相关信息包括光伏组件的安装方向、安装倾角、组件方位角等,或者其他任意适用的信息,本发明实施例对此不做限制。例如,建立组件库,设计人员选择使用的光伏组件,设定光伏支架类型(固定单桩、固定双桩、跟踪),安装方向(横装、竖装),安装倾角,组件方位角等。
步骤202,根据所述区域信息、阵列信息和设备信息,确定所述可用位置。
在本发明实施例中,根据所述区域信息,确定光伏电站的可用区域。例 如,计算障碍物的阴影区域,具体取障碍物在春分,秋分,夏至,冬至的阴影并集,然后光伏电站的区域中去掉阴影区域,就得到了光伏电站的可用区域,用于放置光伏支架的区域。
在本发明实施例中,根据可用区域,阵列信息和设备信息,划分阵列区域,得到划分的阵列区域。例如,根据阵列信息,计算子阵列的宽度、阵列的宽度等信息,建立以南北方向为y轴,东西方向为x轴的坐标系,确定光伏电站的区域在该坐标系中的坐标的极限值,即取光伏电站的区域的外接矩形,该外接矩形的一个边与坐标系的x轴平行,一个边与坐标系的y轴平行。然后根据子阵列的宽度、阵列的宽度,将该外接矩形划分成多个阵列,以及子阵列,即确定了主路和辅路在区域内的x坐标。
在本发明实施例中,根据光伏组件的相关信息,可以计算出光伏支架的支架尺寸。
在本发明实施例中,根据可用区域、阵列区域和支架尺寸,在可用区域中排布可用位置。例如,在排布过程中,在上述外接矩形内的阵列中排布可用位置,并且过滤掉不在可用区域内的可用位置。
步骤203,根据所述可用位置的数量和设备信息,确定所述逆变器的数量和所述各个逆变器对应的光伏支架数量。
在本发明实施例中,根据可用位置的数量和设置信息,计算出逆变器的数量,以及配置方案,即各个逆变器对应的光伏支架数量。具体来说,根据支架数量,可以计算出所有光伏支架上光伏组件的数量。根据所有光伏支架上光伏组件的数量,以及组件功率,可以计算出所有光伏组件的总功率。然后根据所有光伏组件的总功率,目标容配比,以及所选的逆变器的额定功率,计算出逆变器的数量。实际应用时,可能还需要参考其他因素,本发明实施例对此不做限制。
例如,对于集中式逆变器来说,可用位置为1000个,由于1个逆变器最多支持100个光伏支架,因此,需要10个逆变器,那么可用位置还有990个可以用于放置光伏支架。再将990个光伏支架平均分配给10个逆变器,或者9个逆变器分配100个光伏支架,1个逆变器分配90个光伏支架。由于1个汇流箱最多支持10个光伏支架,因此,需要99个汇流箱,每个汇流箱对应10个光伏支架。
步骤204,以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组;其中,所述可用位置分组包括多个可用位置。
在本发明实施例中,此步骤的具体实现方式可以参见前述实施例中的描述,此处不另赘述。
步骤205,根据所述各个逆变器对应的光伏支架数量,确定所述各个逆变器对应的分组位置数量。
在本发明实施例中,此步骤的具体实现方式可以参见前述实施例中的描述,此处不另赘述。
步骤206,在一个逆变器对应的分组位置数量等于对应的可用位置分组中的可用位置数量的情况下,将所述对应的可用位置分组确定为所述实际位置分组。
在本发明实施例中,考虑到聚类产生的可用位置分组中可用位置的数量不可控,但是逆变器对应的分组位置数量是有要求的,因此需要对可用位置分组中可用位置机型调整。
例如,如图4所示的实际分组流程的示意图。首先进行初次的聚类,得到k个簇中心(即各个逆变器对应的可用位置分组的中心的可用位置)及所含数据点(其他可用位置),假设每簇标准的数量为[n1,n2,…,nk]。以光伏电站的区域的左下角为坐标原点建立坐标系,根据k个簇中心到原点的距离选择第一个簇(即可用位置分组),并得到第一个簇的数据点(即可用位置)数量,通过与n1比较可以分为三种情况,第一种情况:第一个簇的数据点数量等于n1,此时第一个簇的数据点全部作为第一个实际位置分组。
步骤207,在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,对所述对应的可用位置分组中多余的可用位置进行删除,确定所述实际位置分组。
在本发明实施例中,由于一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量,即可用位置分组中的可用位置数量过多,需要对对应的可用位置分组中多余的可用位置进行删除,删除后的剩下的可用位置,作为实际位置分组。对所述对应的可用位置分组中多余的可用位置进行删除的方式可以包括多种。具体可以采用任意让逆变器对应的分组位置数 量等于所对应的实际位置分组中的可用位置数量的方式,本发明实施例对此不做限制
在本发明的一种可选实施例中,在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,对所述对应的可用位置分组中多余的可用位置进行删除,确定所述实际位置分组的一种具体实现方式中,包括:根据所述对应的可用位置分组中的可用位置,生成对应的凸集区域;在所述逆变器对应的分组位置数量等于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将所述凸集区域的最大内接矩形外的可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;在所述逆变器对应的分组位置数量小于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将所述凸集区域的最大内接矩形外的可用位置,和所述凸集区域的最大内接矩形内靠近边缘的可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;在所述逆变器对应的分组位置数量大于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将在所述对应的可用位置分组中,且在所述凸集区域的最大内接矩形外的部分可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量。
在凸几何中,凸集是在凸组合下闭合的仿射空间的子集。更具体地说,在欧氏空间中,凸集是对于集合内的每一对点,连接该对点的直线段上的每个点也在该集合内。例如,立方体是凸集,但是任何中空的或具有凹痕的例如月牙形都不是凸集。凸集区域是根据对应的可用位置分组中的可用位置生成的。
为了让逆变器对应的分组位置数量等于所对应的实际位置分组中的可用位置数量,在逆变器对应的分组位置数量等于凸集区域的最大内接矩形内的可用位置数量的情况下,将凸集区域的最大内接矩形外的可用位置删除,就可以得到实际位置分组。
为了让逆变器对应的分组位置数量等于所对应的实际位置分组中的可用位置数量,在逆变器对应的分组位置数量小于凸集区域的最大内接矩形内的可用位置数量的情况下,将凸集区域的最大内接矩形外的可用位置,和凸集 区域的最大内接矩形内靠近边缘的可用位置删除,就可以得到实际位置分组。靠近边缘的可用位置可以按顺序删除,删除的数量以多余的数量来定。
为了让逆变器对应的分组位置数量等于所对应的实际位置分组中的可用位置数量,在逆变器对应的分组位置数量大于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将在所述对应的可用位置分组中,且在所述凸集区域的最大内接矩形外的部分可用位置删除,就可以得到实际位置分组。最大内接矩形外的部分可用位置可以按顺序删除,删除的数量以多余的数量来定。
例如,如图4所示,第二种情况:第一个簇的数据点数量大于n1,此时需要删除部分可用位置。首先根据第一个簇的数据点生成凸集区域,并获取该凸集区域的最大内接矩形,在最大内接矩形内的数据点存储到位置分组的第一个分组中,如果第一个分组的数量等于n1,则完成分组,得到实际位置分组。如果第一个分组的数量大于n1,则按照顺序删除多余的数据点,如果第一个分组的数量小于n1,则在第一个簇的数据点和最大内接矩阵的数据点的差集中选择。选择方式是尽量选择同列可用位置多的数据点。
步骤208,在一个逆变器对应的分组位置数量大于对应的可用位置分组中的可用位置数量的情况下,将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组。
在本发明实施例中,由于一个逆变器对应的分组位置数量大于对应的可用位置分组中的可用位置数量,即可用位置分组中的可用位置数量过少,需要附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,作为实际位置分组。将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中的方式可以包括多种。具体可以采用任意让逆变器对应的分组位置数量等于所对应的实际位置分组中的可用位置数量的方式,本发明实施例对此不做限制
在本发明的一种可选实施例中,所述在一个逆变器对应的分组位置数量大于对应的可用位置分组中的可用位置数量的情况下,将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组的具体实现方式,包括:根据所述对应的可用位置分组中的可用位置,生成对应的最小外接矩形;在所述逆变器对应的分组位置数量不大 于所述最小外接矩形内的可用位置数量的情况下,将在所述附近的可用位置分组中,且在最小外接矩形内的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;在所述逆变器对应的分组位置数量大于所述最小外接矩形内的可用位置数量的情况下,将在所述附近的可用位置分组中,且在最小外接矩形内的可用位置重新分配到所述对应的可用位置分组中,再将在所述附近的可用位置分组中,距离所述对应的可用位置分组最近的可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量。
最小外接矩形是可用位置分组所占的区域的最小外接矩形,具体可以根据可用位置分组中的可用位置生成。
为了让逆变器对应的分组位置数量等于所对应的实际位置分组中的可用位置数量,在逆变器对应的分组位置数量不大于最小外接矩形内的可用位置数量的情况下,将在附近的可用位置分组中,且在最小外接矩形内的至少一个可用位置重新分配到对应的可用位置分组中,就可以得到实际位置分组。将其他可用位置分组和最小外接矩形的交集中,按顺序将至少一个可用位置重新分配到对应的可用位置分组。重新分配的数量由可用位置分组中缺少的数量来定。
为了让逆变器对应的分组位置数量等于所对应的实际位置分组中的可用位置数量,在逆变器对应的分组位置数量大于所述最小外接矩形内的可用位置数量的情况下,将在附近的可用位置分组中,且在最小外接矩形内的可用位置重新分配到对应的可用位置分组中。再将在附近的可用位置分组中,距离可用位置分组最近的可用位置重新分配到对应的可用位置分组中,就可以得到实际位置分组。重新分配的数量由可用位置分组中缺少的数量来定。
例如,如图4所示,第三种情况:第一个簇的数据点数量小于n1,此时需要从附近簇借用数据点。首先根据第一个簇的数据点生成最小外接矩阵,再求其他簇与该最小外接矩阵的交集,如果有交集,则将交集中的数据点补充到第一簇中,补充结束后第一个簇的数量不超过n1,另外删除其他簇的借用点。完成初步借用后,判断第一个簇的数据点数量是否等于n1,如果等于,则按照 第一种情况执行,否则向第二个簇借用。向第二个簇借用数据点时,按照距离升序,选择若干个距离最小的数据点,并删除第二个簇的借用点,完成借用后,判断第一个簇的数据点数据是否等于n1,如果等于,则按照第一种情况执行,否则向第三个簇借用,直到第一个簇的数据点数据等于n1,此时第一个簇的数据点全部作为第一个实际位置分组。
在本发明的一种可选实施例中,在所述将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组之后,还可以包括:确定所述附近的可用位置分组中不存在可用位置;以可用位置之间的距离为依据,对针对当前已确定的所述实际位置分组之外的可用位置重新进行聚类,得到所述对应的可用位置分组。
由于重新分配,若某个可用位置分组中所有可用位置被分配到其他分组,即该可用位置分组中不存在可用位置。则针对当前已确定的实际位置分组之外的可用位置,重新进行聚类。聚类的方式与上述方式相同,聚类的数量为逆变器的数量减去当前已确定的实际位置分组的数量。
例如,如图4所示,完成第一个实际位置分组后,如果执行了第三种情况,并且导致某簇的数据点都被借用,则需要重新进行聚类。否则,更新每个簇的中心点,继续迭代,直到完成第k组的分组。具体过程可参考以下流程图。
步骤209,根据所述各个逆变器分别对应的实际位置分组,生成所述光伏电站的排布方案;其中,所述排布方案包括放置各个光伏支架和所述各个逆变器的实际位置。
在本发明实施例中,此步骤的具体实现方式可以参见前述实施例中的描述,此处不另赘述。
依据本发明实施例,通过获取所述光伏电站的区域信息、阵列信息和设备信息,根据所述区域信息、阵列信息和设备信息,确定所述可用位置,根据所述可用位置的数量和设备信息,确定所述逆变器的数量和所述各个逆变器对应的光伏支架数量,以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组;其中,所述可用位置分组包括多个可用位置,根据所述各个逆变器对应的光伏支架数量,确定所述各个逆变器对应的分组位置数量,在一个逆变器对应的分组位置数量等 于对应的可用位置分组中的可用位置数量的情况下,将所述对应的可用位置分组确定为所述实际位置分组,在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,对所述对应的可用位置分组中多余的可用位置进行删除,确定所述实际位置分组,在一个逆变器对应的分组位置数量大于对应的可用位置分组中的可用位置数量的情况下,将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,根据所述各个逆变器分别对应的实际位置分组,生成所述光伏电站的排布方案;其中,所述排布方案包括放置各个光伏支架和所述各个逆变器的实际位置,使得利用聚类算法自动对设备进行分组,而且不限制光伏电站内区域的形状,实现了排布方案的自动生成,避免设备分组时耗时费力的问题,而且适用于各种形状的区域。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
参照图5,示出了本发明的一种排布方案生成装置实施例的结构框图,具体可以包括如下模块:
确定模块301,用于确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置;
聚类模块302,用于以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组;其中,所述可用位置分组包括多个可用位置;
数量确定模块303,用于根据所述各个逆变器对应的光伏支架数量,确定所述各个逆变器对应的分组位置数量;
调整模块304,用于根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组;其中,所述实际位置分组包括对应分组位置数量的位置;
生成模块305,用于根据所述各个逆变器分别对应的实际位置分组,生成所述光伏电站的排布方案;其中,所述排布方案包括放置各个光伏支架和所 述各个逆变器的实际位置。
可选地,所述确定模块包括:
信息获取子模块,用于获取所述光伏电站的区域信息、阵列信息和设备信息;
位置确定子模块,用于根据所述区域信息、阵列信息和设备信息,确定所述可用位置;
数量确定子模块,用于根据所述可用位置的数量和设备信息,确定所述逆变器的数量和所述各个逆变器对应的光伏支架数量。
可选地,所述聚类模块包括:
分配子模块,用于以所述逆变器的数量的可用位置作为初始的聚类质心,计算每个可用位置与各个聚类质心之间的切比雪夫距离,把每个可用位置分配给切比雪夫距离最近的聚类质心;
迭代模块,用于迭代执行下述过程,直至满足预设条件:
以所述聚类质心以及分配给所述聚类质心的可用位置作为一个聚类,根据所述聚类中的各个可用位置重新计算聚类质心;
计算每个可用位置与各个重新计算的聚类质心之间的切比雪夫距离,把每个可用位置分配给距离最近的聚类质心;
在当前迭代过程满足预设条件时,将最后一次计算的聚类质心以及分配给所述聚类质心的可用位置,作为所述可用位置分组。
可选地,所述调整模块包括:
分组确定子模块,用于在一个逆变器对应的分组位置数量等于对应的可用位置分组中的可用位置数量的情况下,将所述对应的可用位置分组确定为所述实际位置分组;
删除子模块,用于在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,对所述对应的可用位置分组中多余的可用位置进行删除,确定所述实际位置分组;
分配子模块,用于在一个逆变器对应的分组位置数量大于对应的可用位置分组中的可用位置数量的情况下,将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组。
可选地,所述删除子模块包括:
区域生成单元,用于根据所述对应的可用位置分组中的可用位置,生成对应的凸集区域;
第一删除单元,用于在所述逆变器对应的分组位置数量等于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将所述凸集区域的最大内接矩形外的可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
第二删除单元,用于在所述逆变器对应的分组位置数量小于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将所述凸集区域的最大内接矩形外的可用位置,和所述凸集区域的最大内接矩形内靠近边缘的可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
第三删除单元,用于在所述逆变器对应的分组位置数量大于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将在所述对应的可用位置分组中,且在所述凸集区域的最大内接矩形外的部分可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量。
可选地,所述分配子模块包括:
矩形生成单元,用于根据所述对应的可用位置分组中的可用位置,生成对应的最小外接矩形;
第一分配单元,用于在所述逆变器对应的分组位置数量不大于所述最小外接矩形内的可用位置数量的情况下,将在所述附近的可用位置分组中,且在最小外接矩形内的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
第二分配单元,用于在所述逆变器对应的分组位置数量大于所述最小外接矩形内的可用位置数量的情况下,将在所述附近的可用位置分组中,且在最小外接矩形内的可用位置重新分配到所述对应的可用位置分组中,再将在所述附近的可用位置分组中,距离所述对应的可用位置分组最近的可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量。
可选地,所述装置还包括:
不存在确定模块,用于在所述将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组之后,确定所述附近的可用位置分组中不存在可用位置;
重新聚类模块,用于以可用位置之间的距离为依据,对针对当前已确定的所述实际位置分组之外的可用位置重新进行聚类,得到所述对应的可用位置分组。
依据本发明实施例,通过确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置,以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组;其中,所述可用位置分组包括多个可用位置,根据所述各个逆变器对应的光伏支架数量,确定所述各个逆变器对应的分组位置数量,根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组;其中,所述实际位置分组包括对应分组位置数量的位置,根据所述各个逆变器分别对应的实际位置分组,生成所述光伏电站的排布方案;其中,所述排布方案包括放置各个光伏支架和所述各个逆变器的实际位置,使得利用聚类算法自动对设备进行分组,而且不限制光伏电站内区域的形状,实现了排布方案的自动生成,避免设备分组时耗时费力的问题,而且适用于各种形状的区域。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
图6是根据一示例性实施例示出的一种用于排布方案生成的电子设备400的结构框图。例如,电子设备400可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,电子设备400可以包括以下一个或多个组件:处理组件402,存储器404,电源组件406,多媒体组件408,音频组件410,输入/输出(I/O)的接口412,传感器组件414,以及通信组件416。
处理组件402通常控制电子设备400的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件402可以包括 一个或多个处理器420来执行指令,以完成上述的排布方案生成方法的全部或部分步骤。此外,处理组件402可以包括一个或多个模块,便于处理组件402和其他组件之间的交互。例如,处理部件402可以包括多媒体模块,以方便多媒体组件408和处理组件402之间的交互。
存储器404被配置为存储各种类型的数据以支持在设备400的操作。这些数据的示例包括用于在电子设备400上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件404为电子设备400的各种组件提供电力。电力组件404可以包括电源管理系统,一个或多个电源,及其他与为电子设备400生成、管理和分配电力相关联的组件。
多媒体组件408包括在所述电子设备400和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件408包括一个前置摄像头和/或后置摄像头。当电子设备400处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件410被配置为输出和/或输入音频信号。例如,音频组件410包括一个麦克风(MIC),当电子设备400处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器404或经由通信组件416发送。在一些实施例中,音频组件410还包括一个扬声器,用于输出音频信号。
I/O接口412为处理组件402和外围接口模块之间提供接口,上述外围接 口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件414包括一个或多个传感器,用于为电子设备400提供各个方面的状态评估。例如,传感器组件414可以检测到设备400的打开/关闭状态,组件的相对定位,例如所述组件为电子设备400的显示器和小键盘,传感器组件414还可以检测电子设备400或电子设备400一个组件的位置改变,用户与电子设备400接触的存在或不存在,电子设备400方位或加速/减速和电子设备400的温度变化。传感器组件414可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件414还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件414还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件416被配置为便于电子设备400和其他设备之间有线或无线方式的通信。电子设备400可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件414经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信部件414还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备400可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述排布方案生成方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器404,上述指令可由电子设备400的处理器420执行以完成上述排布方案生成方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行一种排布方案生成方法,所述方法包括:
确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置;
以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组;其中,所述可用位置分组包括多个可用位置;
根据所述各个逆变器对应的光伏支架数量,确定所述各个逆变器对应的分组位置数量;
根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组;其中,所述实际位置分组包括对应分组位置数量的位置;
根据所述各个逆变器分别对应的实际位置分组,生成所述光伏电站的排布方案;其中,所述排布方案包括放置各个光伏支架和所述各个逆变器的实际位置。
可选地,所述确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置包括:
获取所述光伏电站的区域信息、阵列信息和设备信息;
根据所述区域信息、阵列信息和设备信息,确定所述可用位置;
根据所述可用位置的数量和设备信息,确定所述逆变器的数量和所述各个逆变器对应的光伏支架数量。
可选地,所述以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组包括:
以所述逆变器的数量的可用位置作为初始的聚类质心,计算每个可用位置与各个聚类质心之间的切比雪夫距离,把每个可用位置分配给切比雪夫距离最近的聚类质心;
迭代执行下述过程,直至满足预设条件:
以所述聚类质心以及分配给所述聚类质心的可用位置作为一个聚类,根据所述聚类中的各个可用位置重新计算聚类质心;
计算每个可用位置与各个重新计算的聚类质心之间的切比雪夫距离,把每个可用位置分配给距离最近的聚类质心;
在当前迭代过程满足预设条件时,将最后一次计算的聚类质心以及分配 给所述聚类质心的可用位置,作为所述可用位置分组。
可选地,所述根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组包括:
在一个逆变器对应的分组位置数量等于对应的可用位置分组中的可用位置数量的情况下,将所述对应的可用位置分组确定为所述实际位置分组;
在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,对所述对应的可用位置分组中多余的可用位置进行删除,确定所述实际位置分组;
在一个逆变器对应的分组位置数量大于对应的可用位置分组中的可用位置数量的情况下,将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组。
可选地,所述在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,对所述对应的可用位置分组中多余的可用位置进行删除,确定所述实际位置分组包括:
根据所述对应的可用位置分组中的可用位置,生成对应的凸集区域;
在所述逆变器对应的分组位置数量等于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将所述凸集区域的最大内接矩形外的可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
在所述逆变器对应的分组位置数量小于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将所述凸集区域的最大内接矩形外的可用位置,和所述凸集区域的最大内接矩形内靠近边缘的可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
在所述逆变器对应的分组位置数量大于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将在所述对应的可用位置分组中,且在所述凸集区域的最大内接矩形外的部分可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量。
可选地,所述在一个逆变器对应的分组位置数量大于对应的可用位置分组中的可用位置数量的情况下,将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组包括:
根据所述对应的可用位置分组中的可用位置,生成对应的最小外接矩形;
在所述逆变器对应的分组位置数量不大于所述最小外接矩形内的可用位置数量的情况下,将在所述附近的可用位置分组中,且在最小外接矩形内的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
在所述逆变器对应的分组位置数量大于所述最小外接矩形内的可用位置数量的情况下,将在所述附近的可用位置分组中,且在最小外接矩形内的可用位置重新分配到所述对应的可用位置分组中,再将在所述附近的可用位置分组中,距离所述对应的可用位置分组最近的可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量。
可选地,在所述将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组之后,所述方法还包括:
确定所述附近的可用位置分组中不存在可用位置;
以可用位置之间的距离为依据,对针对当前已确定的所述实际位置分组之外的可用位置重新进行聚类,得到所述对应的可用位置分组。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本发明实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本发明实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明实施例是参照根据本发明实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以预测方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本发明所提供的一种排布方案生成方法和装置、一种电子设备以及一种可读储存介质,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种排布方案生成方法,其特征在于,包括:
    确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置;
    以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组;其中,所述可用位置分组包括多个可用位置;
    根据所述各个逆变器对应的光伏支架数量,确定所述各个逆变器对应的分组位置数量;
    根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组;其中,所述实际位置分组包括对应分组位置数量的位置;
    根据所述各个逆变器分别对应的实际位置分组,生成所述光伏电站的排布方案;其中,所述排布方案包括放置各个光伏支架和所述各个逆变器的实际位置。
  2. 根据权利要求1所述的方法,其特征在于,所述确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置包括:
    获取所述光伏电站的区域信息、阵列信息和设备信息;
    根据所述区域信息、阵列信息和设备信息,确定所述可用位置;
    根据所述可用位置的数量和设备信息,确定所述逆变器的数量和所述各个逆变器对应的光伏支架数量。
  3. 根据权利要求1所述的方法,其特征在于,所述以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组包括:
    以所述逆变器的数量的可用位置作为初始的聚类质心,计算每个可用位置与各个聚类质心之间的切比雪夫距离,把每个可用位置分配给切比雪夫距离最近的聚类质心;
    迭代执行下述过程,直至满足预设条件:
    以所述聚类质心以及分配给所述聚类质心的可用位置作为一个聚类,根据所述聚类中的各个可用位置重新计算聚类质心;
    计算每个可用位置与各个重新计算的聚类质心之间的切比雪夫距离,把 每个可用位置分配给距离最近的聚类质心;
    在当前迭代过程满足预设条件时,将最后一次计算的聚类质心以及分配给所述聚类质心的可用位置,作为所述可用位置分组。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组包括:
    在一个逆变器对应的分组位置数量等于对应的可用位置分组中的可用位置数量的情况下,将所述对应的可用位置分组确定为所述实际位置分组;
    在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,对所述对应的可用位置分组中多余的可用位置进行删除,确定所述实际位置分组;
    在一个逆变器对应的分组位置数量大于对应的可用位置分组中的可用位置数量的情况下,将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组。
  5. 根据权利要求4所述的方法,其特征在于,所述在一个逆变器对应的分组位置数量小于对应的可用位置分组中的可用位置数量的情况下,对所述对应的可用位置分组中多余的可用位置进行删除,确定所述实际位置分组包括:
    根据所述对应的可用位置分组中的可用位置,生成对应的凸集区域;
    在所述逆变器对应的分组位置数量等于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将所述凸集区域的最大内接矩形外的可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
    在所述逆变器对应的分组位置数量小于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将所述凸集区域的最大内接矩形外的可用位置,和所述凸集区域的最大内接矩形内靠近边缘的可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
    在所述逆变器对应的分组位置数量大于所述凸集区域的最大内接矩形内的可用位置数量的情况下,将在所述对应的可用位置分组中,且在所述凸集区域的最大内接矩形外的部分可用位置删除,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数 量。
  6. 根据权利要求4所述的方法,其特征在于,所述在一个逆变器对应的分组位置数量大于对应的可用位置分组中的可用位置数量的情况下,将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组包括:
    根据所述对应的可用位置分组中的可用位置,生成对应的最小外接矩形;
    在所述逆变器对应的分组位置数量不大于所述最小外接矩形内的可用位置数量的情况下,将在所述附近的可用位置分组中,且在最小外接矩形内的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量;
    在所述逆变器对应的分组位置数量大于所述最小外接矩形内的可用位置数量的情况下,将在所述附近的可用位置分组中,且在最小外接矩形内的可用位置重新分配到所述对应的可用位置分组中,再将在所述附近的可用位置分组中,距离所述对应的可用位置分组最近的可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组,使所述逆变器对应的分组位置数量等于所述对应的实际位置分组中的可用位置数量。
  7. 根据权利要求4所述的方法,其特征在于,在所述将附近的可用位置分组中的至少一个可用位置重新分配到所述对应的可用位置分组中,确定所述实际位置分组之后,所述方法还包括:
    确定所述附近的可用位置分组中不存在可用位置;
    以可用位置之间的距离为依据,对针对当前已确定的所述实际位置分组之外的可用位置重新进行聚类,得到所述对应的可用位置分组。
  8. 一种排布方案生成装置,其特征在于,包括:
    确定模块,用于确定光伏电站内各个逆变器对应的光伏支架数量,以及放置各个光伏支架和所述各个逆变器的可用位置;
    聚类模块,用于以可用位置之间的距离为依据,对所述可用位置进行聚类,得到所述各个逆变器分别对应的可用位置分组;其中,所述可用位置分组包括多个可用位置;
    数量确定模块,用于根据所述各个逆变器对应的光伏支架数量,确定所述各个逆变器对应的分组位置数量;
    调整模块,用于根据所述各个逆变器对应的分组位置数量,对所述各个逆变器分别对应的可用位置分组进行调整,得到所述各个逆变器分别对应的实际位置分组;其中,所述实际位置分组包括对应分组位置数量的位置;
    生成模块,用于根据所述各个逆变器分别对应的实际位置分组,生成所述光伏电站的排布方案;其中,所述排布方案包括放置各个光伏支架和所述各个逆变器的实际位置。
  9. 一种电子设备,其特征在于,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
    存储器,用于存放计算机程序;
    处理器,用于执行存储器上所存放的程序时,实现权利要求1-7任一所述的方法步骤。
  10. 一种可读存储介质,其特征在于,当所述存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行如方法权利要求1-7中一个或多个所述的排布方案生成方法。
PCT/CN2023/097431 2022-08-12 2023-05-31 排布方案生成方法、装置、电子设备及存储介质 WO2024032105A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210969624.9 2022-08-12
CN202210969624 2022-08-12
CN202211286461.0 2022-10-20
CN202211286461.0A CN117668948A (zh) 2022-08-12 2022-10-20 排布方案生成方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024032105A1 true WO2024032105A1 (zh) 2024-02-15

Family

ID=89850548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097431 WO2024032105A1 (zh) 2022-08-12 2023-05-31 排布方案生成方法、装置、电子设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024032105A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180322363A1 (en) * 2015-03-26 2018-11-08 Oracle International Corporation Multi-distance clustering
CN111371402A (zh) * 2019-12-31 2020-07-03 远景智能国际私人投资有限公司 光伏电站中汇流设备的布局方法、装置、设备及存储介质
CN113098054A (zh) * 2021-03-31 2021-07-09 天津大学 一种光伏系统直流侧布局及路由优化方法
CN113935138A (zh) * 2021-08-31 2022-01-14 隆基光伏科技(上海)有限公司 光伏电站排布方法、装置和电子设备
CN114722547A (zh) * 2022-04-14 2022-07-08 阳光新能源开发股份有限公司 光伏组件串线排布确定方法、装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180322363A1 (en) * 2015-03-26 2018-11-08 Oracle International Corporation Multi-distance clustering
CN111371402A (zh) * 2019-12-31 2020-07-03 远景智能国际私人投资有限公司 光伏电站中汇流设备的布局方法、装置、设备及存储介质
CN113098054A (zh) * 2021-03-31 2021-07-09 天津大学 一种光伏系统直流侧布局及路由优化方法
CN113935138A (zh) * 2021-08-31 2022-01-14 隆基光伏科技(上海)有限公司 光伏电站排布方法、装置和电子设备
CN114722547A (zh) * 2022-04-14 2022-07-08 阳光新能源开发股份有限公司 光伏组件串线排布确定方法、装置、电子设备及存储介质

Similar Documents

Publication Publication Date Title
CN110069204B (zh) 基于书写轨迹的图形处理方法、装置、设备及存储介质
US11226996B2 (en) Identifying and graphically representing multiple parent nodes of a child node
KR101994317B1 (ko) 네비게이션 장치, 고도 좌표를 결정하는 방법 및 데이터베이스를 생성하는 방법
CN111445566B (zh) 一种信息处理方法、装置及计算机可读存储介质
CN107895031B (zh) 建筑信息模型在三维数字城市场景中自适应动态调度方法
CN102855132B (zh) 一种图形对象的选取方法及系统
CN102368259A (zh) 电子地图数据存储和查询方法、装置及系统
US11372540B2 (en) Table processing method, device, interactive white board and storage medium
US10816989B2 (en) Methods and systems of distributing task areas for cleaning devices, and cleaning devices
CN102710900A (zh) 一种视频矩阵输出显示实现装置、方法及视频矩阵设备
CN104050709A (zh) 一种三维图像处理方法及电子设备
CN102999922A (zh) 一种基于多任务蚂蚁系统的多细胞自动跟踪方法及其系统
KR20230145197A (ko) 공간 관계 결정 방법, 장치, 컴퓨터 기기 및 저장 매체
WO2024032105A1 (zh) 排布方案生成方法、装置、电子设备及存储介质
CN105957148A (zh) 一种复杂三维建筑物模型的粒度均衡数据组织方法
CN104777999B (zh) 触摸位置显示方法及触摸位置显示系统
WO2022007105A1 (zh) 栅电极驱动设计方法、装置及电子设备
CN108986034B (zh) 一种栅格数据坐标转换方法、系统、终端设备及存储介质
CN117668948A (zh) 排布方案生成方法、装置、电子设备及存储介质
CN104598678B (zh) 输电网逻辑地理图生成方法
WO2022127225A1 (zh) 图像拼接方法、装置、设备和存储介质
CN115393530A (zh) 海量三维模型的单体化渲染方法、存储介质及电子设备
CN106375648A (zh) 图像采集控制方法和装置
CN108363736B (zh) 一种线实体的存储方法、装置及存储系统
WO2004081743A2 (en) Visual simulation of dynamic moving bodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851333

Country of ref document: EP

Kind code of ref document: A1