WO2024031657A1 - 电池及其钎焊工艺 - Google Patents

电池及其钎焊工艺 Download PDF

Info

Publication number
WO2024031657A1
WO2024031657A1 PCT/CN2022/112181 CN2022112181W WO2024031657A1 WO 2024031657 A1 WO2024031657 A1 WO 2024031657A1 CN 2022112181 W CN2022112181 W CN 2022112181W WO 2024031657 A1 WO2024031657 A1 WO 2024031657A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
soldering
battery
area
soldering area
Prior art date
Application number
PCT/CN2022/112181
Other languages
English (en)
French (fr)
Inventor
麻昊
梅志强
石宏博
方路峻
Original Assignee
东莞新能德科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能德科技有限公司 filed Critical 东莞新能德科技有限公司
Priority to CN202280006024.0A priority Critical patent/CN116134656A/zh
Priority to PCT/CN2022/112181 priority patent/WO2024031657A1/zh
Publication of WO2024031657A1 publication Critical patent/WO2024031657A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, specifically, to a battery and its brazing process.
  • the connection between the battery core and the battery protection plate is mainly achieved by welding the L-shaped nickel sheet mounted on the battery protection plate and the tabs of the battery core.
  • the main problem of the connection method between the battery core and the battery protection plate is: the cost of the L-shaped nickel sheet itself is high and the cost of the processing technology is high.
  • the L-shaped nickel sheet needs to be welded to the battery tab after welding.
  • the nickel sheet is bent, which increases the assembly process, making the current connection method more expensive.
  • there is a problem of high strain which may damage the components installed on the battery protection board. risk.
  • Embodiments of the present application provide a battery and a soldering process thereof, which have lower costs.
  • embodiments of the present application provide a battery soldering process, which includes the following steps:
  • the first solder After the first solder is melted by heating the positive tab, the first solder is cooled and solidified to connect the first soldering area and the positive tab; and the third solder is heated by heating the negative tab. After the second solder is melted, the second solder is cooled and solidified to connect the second soldering area and the negative electrode tab.
  • the laser acts on the side of the positive tab away from the first solder to heat the positive tab and make it The first solder melts, and the first solder is cooled and solidified to form a first soldered connection.
  • the connection between the positive tab and the battery protection plate can be realized without the need for an L-shaped nickel sheet.
  • the material fills the gap between the positive electrode lug and the first soldering area
  • the first soldering connector fills the gap between the positive electrode lug and the first soldering area, which can significantly reduce problems such as weak welding and missing soldering, and
  • the L-shaped nickel sheet and the positive electrode lug or battery protection plate are welded through multiple laser welding spots, and the area of the welding spot is small.
  • the brazing process of the embodiment of the present application significantly increases the first
  • the welding area between the soldering connector, the positive electrode lug, and the battery protection plate increases the contact area between the first soldering connector, the positive electrode lug, and the battery protection plate, thereby enhancing the connection between the first soldering connector and the positive electrode lug.
  • the connection strength between the positive electrode lug and the battery protection plate is enhanced, and the overcurrent capacity between the positive electrode lug and the battery protection plate is enhanced; similarly, after the negative electrode lug and the battery protection plate are soldered using the same soldering process, the negative electrode lug and the battery protection plate are protected There is no need for L-shaped nickel sheets to achieve soldering connection between the plates.
  • the second soldering connection can fill the gap between the negative electrode lug and the second soldering area, strengthening the connection between the second soldering connecting member and the negative electrode lug. As well as the connection strength of the battery protection board, and the overcurrent capability between the negative ear and the battery protection board is enhanced.
  • embodiments of the present application provide a battery soldering process, which includes the following steps:
  • the positive electrode tab is arranged on the battery protection plate so that the positive electrode tab is adjacent to the first soldering area or partially covers the first soldering area
  • the negative electrode tab is arranged on the battery protection plate so that the positive electrode tab is adjacent to the first soldering area or partially covers the first soldering area.
  • the negative electrode tab is adjacent to or partially covers the second soldering area; the first soldering area and the second soldering area are spaced apart;
  • the first solder is arranged in the area of the first soldering area that is not covered by the positive tab. After the first solder is heated to melt the first solder, the first solder is cooled and solidified. Connect the first soldering area to the side wall of the positive tab;
  • the second solder is arranged in the area of the second soldering area that is not covered by the negative electrode tab. After the second solder is heated to melt the second solder, the second solder is cooled and solidified. The second soldering area is connected to the side wall of the negative electrode tab.
  • the first solder is arranged in the area of the first soldering area that is not covered by the positive tab. After the first solder melts, the partially melted first solder will penetrate into the positive tab and the first solder. Between the zones, the remaining molten first solder will be at the junction of the positive lug and the first soldering zone.
  • the first solder connection formed after the first solder is cooled and solidified realizes the positive lug and the first soldering zone. The connection improves the connection strength between the positive ear and the battery protection plate. Similarly, it also improves the connection strength between the negative ear and the battery protection plate.
  • a battery including:
  • the battery core includes positive and negative terminal lugs arranged at intervals;
  • the battery protection plate includes a first soldering area and a second soldering area arranged at intervals;
  • a first soldering connection member, the positive electrode lug and the first soldering area are connected by soldering through the first soldering connection member;
  • the second soldering connection member, the negative electrode lug and the second soldering area are solderingly connected through the second soldering connection member.
  • the battery protection plate and the positive electrode ear of the battery core are connected at the first soldering area through the first soldering connector, and the battery protection plate and the negative electrode ear of the battery core are connected at the first soldering area through the second soldering connector.
  • the connection is made at the second soldering area, that is, the battery in the embodiment of the present application omits the L-shaped nickel sheet, which reduces the material cost of the battery; in addition, the battery in the embodiment of the present application also eliminates the need to bend the L-shaped nickel sheet. The process not only reduces the process cost of the battery, but also simplifies the soldering assembly process of the battery.
  • the battery of the embodiment of the present application eliminates the process of bending the L-shaped nickel sheet, it can avoid bending the L-shaped nickel sheet. It will cause damage to the battery protection plate during the chip, thus reducing the cost, process difficulty and risks in the assembly process of manufacturing the battery.
  • the laser acts on the side of the positive tab away from the first solder.
  • the positive electrode lug is heated and the first solder is melted, and the first solder is cooled and solidified to form a first soldered connection. In this way, the connection between the positive electrode lug and the battery protection plate can be realized without the need for an L-shaped nickel piece.
  • the first solder fills the gap between the positive electrode lug and the first soldering area, and the first soldering connector fills the gap between the positive electrode lug and the first soldering area, it can significantly reduce welding defects and There are problems such as leakage welding, and in the traditional laser spot welding process, the L-shaped nickel sheet and the positive electrode lug or battery protection plate are welded through multiple laser welding spots, and the solder spot area is small.
  • the brazing process in the embodiment of the present application The welding area between the first soldering connection member, the positive electrode lug and the battery protection plate is significantly increased, that is, the contact area between the first soldering connection member, the positive electrode lug and the battery protection plate is increased, thereby enhancing the The connection strength between a brazed connector and the positive lug and the battery protection plate is enhanced, and the overcurrent capacity between the positive lug and the battery protection plate is enhanced; similarly, the negative lug and the battery protection plate are brazed using the same soldering process. , the soldering connection between the negative electrode lug and the battery protection plate does not require an L-shaped nickel piece.
  • the second soldering connection piece can fill the gap between the negative electrode lug and the second soldering area, enhancing the second soldering area.
  • the connection strength between the welded connector, the negative electrode lug and the battery protection plate is enhanced, and the overcurrent capability between the negative electrode lug and the battery protection plate is enhanced.
  • Figure 1 is a schematic structural diagram of a battery in an embodiment of the present application.
  • FIG 2 is a schematic structural diagram of the battery cell and battery protection plate shown in Figure 1 after being separated;
  • FIG. 3 is a schematic structural diagram of a battery protection plate in an embodiment of the present application.
  • Figure 4 is a process flow chart of the battery soldering process in an embodiment of the present application.
  • Figure 5 is a process flow chart of a battery soldering process in another embodiment of the present application.
  • the connection between the battery core and the battery protection plate is mainly achieved by welding the L-shaped nickel sheet mounted on the battery protection plate 20 and the tabs of the battery core.
  • the first aspect of the present application proposes a battery that can have a lower cost and reduce the risks during assembly of the battery.
  • the battery includes a battery core 10, a battery protection plate 20, a first soldered connection 30 and a second soldered connection 40.
  • the battery core 10 includes spaced apart positive electrode tabs 11 and negative electrode tabs 12.
  • the battery protection plate 20 includes a first soldering area 21 and a second soldering area 22 arranged at intervals; the positive electrode ear 11 and the first soldering area 21 are connected by soldering through the first soldering connector 30; the negative electrode ear 12 and the first soldering area 21 are connected by soldering.
  • the two soldering areas 22 are soldered together by a second soldering connection 40 .
  • the battery in the embodiment of the present application may be a storage battery, such as a lead-acid battery, a nickel-based battery, a sodium-sulfur battery, a secondary lithium battery or an air battery, etc.; it may also be a fuel cell, such as an alkaline fuel cell or a phosphoric acid fuel cell. , molten carbonate fuel cells, solid oxide fuel cells, proton exchange membrane fuel cells, direct methanol fuel cells, etc., the embodiments of the present application are not limited to this, as long as the battery includes interconnected battery protection plates 20 and battery cells. 10.
  • the technical solutions in the embodiments of the present application can be used to reduce the cost of the battery; in the embodiments of the present application, the size, purpose, shape, etc. of the battery are not limited.
  • the battery can It is a mobile phone battery; in other embodiments, the battery may be an electric car battery.
  • the battery protection board 20 is an integrated circuit board that protects rechargeable batteries. It is composed of electronic circuits and can accurately monitor the voltage of the battery cell 10 and the current of the battery charging circuit at all times in an environment of -40°C to +85°C. Instantly control the on and off of the battery current loop. Since the material of the battery itself determines that the battery cell 10 cannot be overcharged, overdischarged, overcurrent, short-circuited, or charged and discharged at ultra-high temperatures, therefore, the battery cell 10 is always accompanied by a protection board with a sampling resistor and a current fuse. The battery protection board 20 is formed.
  • the battery protection plate 20 includes a substrate layer, a circuit layer and a protective layer.
  • the substrate layer and the protective layer are respectively provided on opposite sides of the circuit layer.
  • the protective layer has two gaps to expose part of the circuit layer.
  • a first soldering area 21 and a second soldering area 22 are formed which are solderedly connected to the positive electrode tab and the negative electrode tab respectively.
  • the first soldering area 21 is used to arrange the first soldering connection member 30 on the battery protection plate 20, and the first solder is coated or attached in the first soldering area 21 (the first solder covering part of the first soldering area 21). Welding area 21), and solidifies after melting to form the first soldering connector 30 covering the first soldering area 21, and the first soldering material is coated or attached to the first soldering material provided at the position corresponding to the positive electrode lug 11 In area 21, after the positive electrode lug 11 is aligned with the first soldering area 21 and arranged, the first solder will be between the positive electrode lug 11 and the first soldering area 21. In this way, it is convenient to align the positive electrode lug 11 and the battery protection plate 20. The soldered connection between the two parts shortens the assembly time of the battery.
  • the second soldering area 22 is used to arrange the second soldering connection member 40 on the battery protection plate 20, and the second soldering material is coated or attached in the second soldering area 22 (the second soldering material covers part of the second soldering area 22), and solidifies after melting to form a second soldering connector 40 covering the second soldering area 22, and the second soldering material is coated or attached to the second soldering material disposed corresponding to the position of the negative electrode lug.
  • the soldering area 22 after the negative electrode lug 12 is aligned with the second soldering area 22 and arranged, the second solder material will be between the negative electrode lug 12 and the second soldering area 22. In this way, it is convenient to align the negative electrode lug 12 with the battery.
  • the soldered connection between the protective plates 20 shortens the assembly time of the battery.
  • the battery core 10 is the smallest unit of the power battery and is also an electric energy storage unit. It is used to store electric energy and is generally not used directly. It is used together with the battery protection plate 20 to form a battery. In the embodiment of this application, the type, size and shape of the battery core 10 are There are no restrictions, as long as the battery core 10 can be charged and discharged.
  • the positive electrode tab 11 and the negative electrode tab 12 are used to connect the battery core 10 to the battery protection plate 20 to form a battery.
  • the size, shape, thickness and material of the positive electrode tab 11 and the negative electrode tab 12 are not limited.
  • the size, shape and thickness of the positive electrode tab 11 and the negative electrode tab 12 can be set according to the size of the battery.
  • the positive electrode tab 11 is an aluminum tab.
  • the negative electrode tab 12 is a nickel tab or a copper-plated nickel tab.
  • the first soldered connector 30 is used to connect the positive electrode lug 11 of the battery core 10 and the battery protection plate 20.
  • the size, thickness and material of the first soldered connector 30 are not limited; for the third
  • the size of the soldering connector 30 can be set according to the size of the first soldering area 21 and/or the size of the positive electrode lug 11 to ensure sufficient connection between the positive electrode lug 11 of the battery core 10 and the battery protection plate 20 area, thereby ensuring the connection strength between the positive tab 11 and the battery protection plate 20 and the conductivity between them.
  • the first solder is a zinc alloy solder or a tin alloy solder, a zinc alloy solder and a tin alloy solder. Compared with nickel sheets, it has a lower price and a lower melting point, which further reduces the assembly material cost and welding energy consumption of the battery, and the lower melting point makes it easier to form the first solder connection 30 by first soldering. It is easier to realize the connection between the positive lug 11 and the battery protection plate 20 .
  • the second soldered connector 40 is used to connect the negative electrode lug 12 of the battery core 10 and the battery protection plate 20.
  • the size, thickness and material of the second soldered connector 40 are not limited; The size and thickness of the second soldered connection member 40 can be the same as that of the first soldered connection member 30.
  • the second solder is zinc alloy solder. Or tin alloy solder.
  • the first solder is a zinc alloy solder
  • the second solder is a tin alloy solder.
  • the battery protection plate 20 and the positive electrode lug 11 of the battery core 10 are connected in the first soldering area 21 through the first soldering connector 30 , and the battery protection plate 20 and the negative electrode lug 12 of the battery core 10 are connected.
  • the second soldering connection 40 is connected in the second soldering area 22 , that is, the battery in the embodiment of the present application eliminates the L-shaped nickel sheet, which reduces the material cost of the battery; at the same time, there is no need to bend the L-shaped nickel sheet.
  • the process reduces the process cost of the battery, simplifies the soldering assembly process of the battery, and avoids possible damage to the battery protection plate 20 when the L-shaped nickel sheet is bent, thus reducing the cost of manufacturing the battery. Process difficulty and risks during assembly.
  • the length of the first soldering area 21 is greater than or equal to twice the length of the positive electrode tab 11 ; the length of the second soldering area 22 is greater than or equal to the length of the negative electrode tab 12 twice the length, thus ensuring the contact area between the positive electrode lug 11 of the battery core 10 and the first soldered connector 30, and ensuring the contact area between the negative electrode lug 12 of the battery core 10 and the second soldered connector 40, This not only enhances the connection strength between the tabs and the battery protection plate 20 , but also improves the overcurrent capability between the tabs and the battery protection plate 20 .
  • inventions of the present application provide a battery soldering process, which includes the following steps:
  • the laser acts on the positive electrode lug away from the first solder material.
  • the positive electrode lug 11 is heated to melt the first solder, and the first solder is cooled and solidified to form the first soldered connection 30.
  • the positive electrode lug 11 and the battery can be realized without the need for an L-shaped nickel piece.
  • the first soldering connection member 30 fills the gap between the positive electrode lug 11 and the first soldering area 21.
  • the gap between the welding areas 21 can significantly reduce problems such as false welding and missing welding, and since only the first solder and the second solder are melted during the brazing process, when poor welding occurs, such as false welding or false welding, etc. , can be welded again by supplementing the solder to achieve welding rework of the battery core 10 and the battery protection plate 20; and in the traditional laser spot welding process, the L-shaped nickel sheet and the positive electrode lug 11 or the battery protection plate 20 are connected through multiple Laser solder joints are used for welding, and the solder joint area is small.
  • the welding area between the first soldered connector 30, the positive electrode lug 11 and the battery protection plate 20 is significantly increased, that is, the welding area is increased.
  • the contact area between the first soldering connector 30 and the positive electrode lug 11 and the battery protection plate 20 is increased, thereby enhancing the connection strength between the first soldering connector 30 and the positive electrode lug 11 and the battery protection plate 20; similarly, After the negative electrode tab 12 and the battery protection plate 20 are soldered using the same soldering process, the soldering connection between the negative electrode tab 12 and the battery protection plate 20 can be achieved without the need for an L-shaped nickel piece.
  • the second soldered connection member 40 The gap between the negative electrode tab 12 and the second soldering area 22 can be filled, thereby enhancing the connection strength between the second soldered connection member 40 and the negative electrode tab 12 and the battery protection plate 20 .
  • the first solder connection member 30 is formed by melting and solidifying the first solder material
  • the second solder connection member 40 is formed by melting and solidifying the second solder material
  • connects the positive electrode tab of the battery core 10 11 and the negative electrode tab 12 are respectively aligned and attached to the first solder and the second solder coated on the battery protection plate 20.
  • the melted first solder and the second solder are in a liquid state
  • the melted third solder is in a liquid state.
  • the first solder material can fill the gap between the positive electrode lug 11 and the battery protection plate 20 due to its fluidity.
  • the melted second solder material can fill the gap between the negative electrode lug 12 and the battery protection plate 20.
  • the first soldered connector 30 will fill the gap between the positive electrode lug 11 and the battery protection plate 20, and the second soldered connector 40 will fill the gap between the negative electrode lug 12 and the battery protection plate 20.
  • the gap between the plates 20 increases the connection area between the first soldered connection member 30 and the positive electrode lug 11 and the battery protection plate 20, and increases the connection area between the second soldered connection member 40 and the negative electrode lug 12 and the battery.
  • the connection area between the protective plates 20 is such that the first solder connection part 30 has sufficient contact area with the positive electrode lug 11 and the battery protection plate 20, and the second solder connection part 40 has sufficient contact area with the negative electrode lug 12 and the battery protection plate. There is sufficient contact area between the tabs 20 , which enhances the connection strength between the tabs and the battery protection plate 20 .
  • both the first solder material and the second solder material are paste-like solder materials.
  • the first solder material in paste form is applied to the first brazing area 21
  • the second solder material in paste form is applied to the first soldering area 21 .
  • the solder is coated on the second soldering area 22, so that the first solder and the second solder in paste form have low fluidity, and the assembler arranges the first solder and the second solder into the required shape or After the thickness is determined, the first solder material and the second solder material will maintain the prototype without being subjected to external force, which facilitates the construction personnel to arrange and adjust the thickness and shape of the first solder material and the second solder material.
  • the coating thickness of the first solder and the second solder is less than or equal to 0.5mm. Within this range, the first solder and the second solder are The coating thickness of the second solder is thin, which can prevent the thickness of the end of the battery core 10 connected to the battery protection plate 20 through the tab from exceeding the specified value, that is, preventing the battery head from being overly thick; further, in some implementations of the present application In this example, the coating thickness of the first solder and the second solder is less than or equal to 0.1 mm.
  • first solder and second solder can form a thinner first solder connection 30 and the second soldered connection member 40, not only can the battery head be prevented from being overly thick, but also the thinner thickness makes the first soldered connection member 30 and the second soldered connection member 40 occupy a smaller volume of the battery, which is beneficial to improving the performance of the battery.
  • energy density and can provide better overcurrent capability between the positive tab 11 and the battery protection plate 20; specifically, in some embodiments of the present application, the thickness of the first solder and the second solder is 0.1 mm. .
  • the first solder material and the second solder material are solid solder materials
  • the solid first solder material is attached to the first soldering area 21
  • the solid second solder material is attached to the first soldering area 21 .
  • the solid first solder material and the second solder material can be directly attached to the first soldering area 21 and the second soldering area 22 on the battery protection plate 20 respectively, which can improve the assembly efficiency of the battery.
  • the thickness of the first solder material and the second solder material is the same as the above-mentioned limitation on the coating thickness of the first solder material and the second solder material.
  • the first solder is a paste solder
  • the second solder is a solid solder.
  • the first solder is a solid solder
  • the second solder is a paste solder.
  • the first solder and/or the second solder is solid solder
  • the first solder and the second solder adopt SMT (Surface Mounted Technology, surface mount technology).
  • SMT Surface Mounted Technology, surface mount technology
  • the advantages of SMT patch processing are high assembly density, small size and light weight of electronic products.
  • the volume and weight of patch components are only about 1/10 of traditional plug-in components.
  • the size of electronic products is reduced by 40% to 60%, the weight is reduced by 60% to 80%, and the cost is reduced by 30% to 50%.
  • Electrical devices assembled using SMT patches have high reliability and strong vibration resistance. , low solder joint defect rate, good high-frequency characteristics, reduced electromagnetic and radio frequency interference, easy to realize automation and improve production efficiency.
  • the melting point of the positive electrode tab 11 is higher than the melting point of the first solder, and the melting point of the negative electrode tab 12 is higher than the melting point of the second solder.
  • the positive electrode tab 11 can be heated to make the second solder.
  • the first solder is melted, and the negative electrode lug 12 is heated to melt the second solder, so as to realize the soldering connection between the positive electrode lug 11 and the battery protection plate 20, and to realize the soldering of the negative electrode lug 12 and the battery protection plate 20. connect.
  • the melting point of the first solder and the melting point of the second solder are both greater than or equal to 200°C and less than or equal to 400°C; combined with the above-mentioned positive electrode tab 11 being an aluminum tab, due to the surface of aluminum Aluminum trioxide films are often formed.
  • the melting point of aluminum trioxide is 2054°C, which is much higher than the melting point of aluminum. Therefore, in the embodiment of this application, the melting point of the aluminum tab is greater than or equal to 680°C and less than or equal to 740°C.
  • the negative electrode tab 12 They are nickel tabs or copper-plated nickel tabs. The melting points of the two are 1400°C and 1050°C respectively.
  • the melting points of the positive tab 11 and the melting points of the negative tab 12 are both much greater than the melting points of the first solder and the second solder, so that
  • the heating temperature of the brazing process used when the positive electrode lug 11 and the battery protection plate 20 are soldered has a large control range
  • the heating temperature of the brazing process used when the negative electrode lug 12 and the battery protection plate 20 are soldered has a large control range.
  • the control range reduces the difficulty of the brazing process.
  • the melting point of the first solder material and the melting point of the second solder material are both greater than or equal to 280°C and less than or equal to 400°C or the melting point of the first solder material.
  • the melting point and the melting point of the second solder are both greater than or equal to 250°C and less than or equal to 350°C.
  • the first solder or the second solder is a zinc alloy solder
  • the zinc alloy solder is a Zn-Al-Cu-Ag alloy.
  • the Zn-Al-Cu-Ag alloy is The percentage contains Zn: 55% ⁇ 94.8%, Al: 5% ⁇ 44.8%, Cu: 0.1% ⁇ 7.5%, Ag: 0.1% ⁇ 7.5%; through the above technical solution, aluminum can refine the grains and improve the strength of zinc and impact toughness, and can significantly reduce the corrosion of iron products by molten zinc to ensure the service life of iron electrical components. Adding silver elements to zinc-aluminum solder can improve the microstructure of the solder.
  • the spreading performance is significantly improved, the strength of the brazing head is improved, and the corrosion resistance is enhanced.
  • the silver element is added to 3.5%, the silver element has a better solid solution strengthening effect on the structure, and the mechanical properties of the solder are the best;
  • Adding copper element to the zinc-aluminum material can improve the strength, hardness and corrosion resistance of the zinc alloy, and can improve the microstructure of the solder.
  • the melting temperature of the solder is slightly lowered to facilitate the melting of the solder.
  • the spreading performance is significantly improved, the strength of the brazing head is improved, and the corrosion resistance is enhanced; at the same time, the spreading area of the solder is affected by the saturation of the copper element in the aluminum element.
  • the copper element content is lower than its content in the aluminum element At medium solubility, as the Cu content increases, the spreading area increases; among which, spreadingability is the ability of liquid solder to flow and spread on the surface of the base metal.
  • the first solder or the second solder is a tin alloy solder
  • the tin alloy solder is a Sn-Ag-Ni alloy
  • the Sn-Ag-Ni alloy contains Sn: 80% to 99.8%, Ag: 0.1% to 10%, Ni: 0.1% to 10%.
  • Adding silver element to tin element can enhance the conductivity of the second solder material and improve the electrical performance of the battery.
  • the silver element has a good solid solution strengthening effect on the structure and can improve the mechanical properties of the solder material.
  • tin Adding nickel to the silver alloy can greatly reduce the melting point of the second solder. Specifically, for every 5% increase in nickel content, the temperature of the alloy solder drops by about 65°C on average.
  • both the first solder material and the second solder material can be Zn-Al-Cu-Ag alloy, and the Zn-Al-Cu-Ag alloy contains Zn in mass percentage: 55% to 95%.
  • Al 5% to 45%
  • Cu 0% to 7.5%
  • Ag 0% to 7.5%
  • both the first solder and the second solder can be Sn-Ag. -Ni alloy, Sn-Ag-Ni alloy contains Sn: 80% to 99.8%, Ag: 0.1% to 10%, Ni: 0.1% to 10% in mass percentage, and the effect is the same as above.
  • the melted first solder material, the first soldering area 21 and the positive electrode are all less than or equal to 45°, and the wetting angles between the melted second solder and the second brazing zone 22 and the negative electrode ears 12 are all less than or equal to 45°, where the wetting angle refers to the liquid phase.
  • the second solder material is melted and has good soldering effect with the positive electrode lug 11 and the negative electrode.
  • the wetting angle of the lug 12 and the battery protection plate 20 is within the range of less than or equal to 45°, which ensures a good soldering effect between the second solder material and the positive electrode lug 11 and the battery protection plate 20 after being melted.
  • embodiments of the present application provide another battery soldering process.
  • the melting point and material of the solder are closely related to the relationship between the tabs and the battery protection plate 20 .
  • the wetting angle between , the thickness of the soldered connection, etc. can also be applied to the soldering process of the battery in this embodiment.
  • the battery soldering process in the embodiment of the present application includes the following steps:
  • the first solder is arranged in the area of the first soldering area 21 that is not covered by the positive electrode lug 11 . After the first solder is melted, the partially melted first solder will penetrate into the positive electrode lug 11 and the first solder. Between the two soldering areas 21, the remaining molten first solder will be at the junction of the positive electrode lug 11 and the first soldering area 21.
  • the first soldering connector 30 formed after the first solder is cooled and solidified is connected to the positive electrode.
  • the lug 11 is located in the side wall of the first soldering area 21 and the first soldering area 21, and connects the side walls of the positive electrode lug 11 and the first soldering area 21 close to each other, thereby improving the resistance between the positive electrode lug 11 and the battery protection plate 20.
  • the connection strength also improves the connection strength between the negative electrode lug 12 and the battery protection plate 20.
  • since the melting point of the positive electrode lug 11 is higher than the melting point of the first solder damage to the positive electrode lug when heating the first solder can be avoided. 11. The reliability of the soldering process is improved.
  • the soldering connection between the negative electrode ear 12 and the battery protection plate 20 can be realized; in some embodiments of the present application, the steps S50 and S60 can be executed in an interchangeable order. .
  • both the first solder material and the second solder material are welding wires.
  • the first solder material can be easily filled into the junction of the positive electrode lug 11 and the battery protection plate 20
  • the second solder material can be easily filled.
  • the welding wire The wire feeding speed is greater than or equal to 50mm/s and less than or equal to 500mm/s. Within this range, defects such as virtual welding and missing welding caused by too slow wire feeding speed can be avoided, and the first soldering caused by too fast wire feeding speed can be avoided.
  • the welded connection 30 and the second soldered connection 40 are too large.
  • the speed of soldering the positive electrode tab 11 and the battery protection plate 20 and the negative electrode tab 12 and the battery protection plate 20 is greater than or equal to 200 mm/s and less than or equal to 800 mm/s, that is, the first solder material
  • the speed of moving along the circumferential direction of the positive electrode tab 11, the speed of the second solder moving along the circumferential direction of the negative electrode tab 12, and the moving speed of the laser spot during laser heating are greater than or equal to 200mm/s and less than or equal to 800mm/s. Within this range It can ensure that the laser spot fully heats the welding wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种电池的钎焊工艺,包括以下步骤:将第一钎料布置于电池保护板上的第一钎焊区,以及将第二钎料布置于电池保护板上的与第一钎焊区间隔设置的第二钎焊区;将电芯的正极耳贴附于所述第一钎料,以及将电芯的负极耳贴附于所述第二钎料;通过加热所述正极耳使所述第一钎料熔化后,第一钎料冷却固化以使所述第一钎焊区与所述正极耳实现连接;以及通过加热所述负极耳使所述第二钎料熔化后,第二钎料冷却固化以使所述第二钎焊区与所述负极耳实现连接;本申请中的电池省去了L型镍片,降低了该电池的材料成本以及加工成本。

Description

电池及其钎焊工艺 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池及其钎焊工艺。
背景技术
在相关的电池领域中,主要通过贴装于电池保护板上的L型镍片与电芯的极耳进行焊接实现电芯与电池保护板之间的连接。该电芯与电池保护板之间的连接方法的主要问题为:L型镍片自身的成本较高以及加工工艺的成本较高,一般L型镍片与电芯极耳焊接后需要对L型镍片进行弯折,增加了组装工序,导致目前的连接方式成本较高,且在弯折L型镍片过程中,存在应变较高的问题,有损伤设置在电池保护板上的元器件的风险。
发明内容
本申请实施例提供一种电池及其钎焊工艺,其具有更低的成本。
第一方面,本申请实施例提供了一种电池的钎焊工艺,包括以下步骤:
将第一钎料布置于电池保护板上的第一钎焊区,以及将第二钎料布置于电池保护板上的与第一钎焊区间隔设置的第二钎焊区;
将电芯的正极耳贴附于所述第一钎料,以及将电芯的负极耳贴附于所述第二钎料;
通过加热所述正极耳使所述第一钎料熔化后,第一钎料冷却固化以使所述第一钎焊区与所述正极耳实现连接;以及通过加热所述负极耳使所述第二钎料熔化后,第二钎料冷却固化以使所述第二钎焊区与所述负极耳实现连接。
基于上述实施例,将第一钎料布置在第一钎焊区且将正极耳贴附于第一钎料后,激光作用于正极耳远离第一钎料的一侧,以加热正极耳并使第一钎料熔化,第一钎料冷却固化后形成第一钎焊连接件,如此,无需再设置L型镍片即可实现正极耳和电池保护板之间的连接,同时,由于第一钎料填充了正极耳和第一钎焊区之间的间隙,第一钎焊连接件则填充正极耳和第一钎焊区之间的间隙,能够明显减少焊虚焊、漏焊等问题,且传统的激光点焊工艺中L型镍片与正极耳或电池保护板之间通过多个激光焊点进行焊接,焊点面积较小,而本申请实施例的钎焊工艺明显增大了第一钎焊连接件与正极耳以及电池保护板之间的焊接面积,即增大了第一钎焊连接件与正极耳以及电池保护板之间的接触面积,进而增强了第一钎焊连接件与正极耳以及电池保护板的连接强度,以及增强了正极耳和电池保护板之间的过流能力;同理,负极耳和电池保护板采用同样的钎焊工艺钎焊后,负极耳和电池保护板之间也无需L型镍片即可实现钎焊连接,同时,第二钎焊连接件可填充负极耳和第二钎焊区之间的间隙,增强了第二钎焊连接件与负极耳以及电池保护板的连接强度,以及增强了负极耳以及电池保护板之间的过流能力。
第二方面,本申请实施例提供了一种电池的钎焊工艺,包括以下步骤:
将正极耳布置于电池保护板上以使所述正极耳与第一钎焊区邻接或者使所述正极耳部分覆盖所述第一钎焊区,以及将负极耳布置于电池保护板上以使所述负极耳与第二钎焊区邻接或者部分覆盖所述第二钎焊区;所述第一钎焊区与所述第二钎焊区间隔设置;
将所述第一钎料布置于所述第一钎焊区未被所述正极耳覆盖的区域,加热所述第一钎料使所述第一钎料熔化后,第一钎料冷却固化以使所述第一钎焊区与所述正极耳的侧壁实现连接;
将所述第二钎料布置于所述第二钎焊区未被所述负极耳覆盖的区域,加热所述第二钎料使所述第二钎料熔化后,第二钎料冷却固化以使所述第二钎焊区与所述负极耳的侧壁实现连接。
基于上述实施例,将第一钎料布置于第一钎焊区未被正极耳覆盖的区域,在第一钎料熔化后,部分熔化的第一钎料将渗入至正极耳和第一钎焊区之间,剩余的熔化的第一钎料将处于正极耳和第一钎焊区的交界处,第一钎料冷却固化后形成的第一钎焊连接件实现正极耳和第一钎焊区的连接,提高了正极耳和电池保护板的连接强度,同理,也提高了负极耳和电池保护板的连接强度。
第三方面,本申请实施例提供了一种电池,包括:
电芯,包括间隔设置的正极耳以及负极耳;
电池保护板,包括间隔设置的第一钎焊区以及第二钎焊区;
第一钎焊连接件,所述正极耳与所述第一钎焊区通过所述第一钎焊连接件钎焊连接;以及
第二钎焊连接件,所述负极耳与所述第二钎焊区通过所述第二钎焊连接件钎焊连接。
基于本申请实施例的电池,电池保护板与电芯的正极耳通过第一钎焊连接件在第一钎焊区处连接,电池保护板与电芯的负极耳通过第二钎焊连接件在第二钎焊区处连接,即本申请实施例中的电池省去了L型镍片,降低了该电池的材料成本;另外,本申请实施例的电池也取消了弯折L型镍片的工序,不仅降低了该电池的工艺成本,而且简化了该电池的钎焊组装的工艺,以及,由于本申请实施例的电池取消了弯折L型镍片的工序,能够避免弯折L型镍片时对电池保护板造成损伤,如此,降低了制造该电池的成本、工艺难度以及组装过程中的风险。
基于本申请实施例的电池钎焊工艺,将第一钎料布置在第一钎焊区且将正极耳贴附于第一钎料后,激光作用于正极耳远离第一钎料的一侧,以加热正极耳并使第一钎料熔化,第一钎料冷却固化后形成第一钎焊连接件,如此,无需再设置L型镍片即可实现正极耳和电池保护板之间的连接,同时,由于第一钎料填充了正极耳和第一钎焊区之间的间隙,第一钎焊连接件则填充正极耳和第一钎焊区之间的间隙,能够明显减少焊虚焊、漏焊等问题,且传统的激光点焊工艺中L型镍片与正极耳或电池保护板之间通过多个激光焊点进行焊接,焊点面积较小,而本申请实施例的钎焊工艺明显增大了第一钎焊连接件与正极耳以及电池保护板之间的焊接面积,即增大了第一钎焊连接件与正极耳以及电池保护板之间的接触面积,进而增强了第一钎焊连接件与正极耳以及电池保护板的连接强度,以及增强了正极耳和电池保护板之间的过流能力;同理,负极耳和电池保护板采用同样的钎焊工艺钎焊后,负极耳和电池保护板之间也无需L型镍片即可实现钎焊连接,同时,第二钎焊连接件可填充负极耳和第二钎焊区之间的间隙,增强了第二钎焊连接件与负极耳以及电池保护板的连接强度,以及增强了负极耳以及电池保护板之间的过流能力。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中的电池的结构示意图;
图2为图1中所示的电池的电芯与电池保护板拆分后的结构示意图;
图3本申请一实施例中的电池保护板的结构示意图;
图4为本申请一实施例中的电池的钎焊工艺的工艺流程图;
图5为本申请另一实施例中的电池的钎焊工艺的工艺流程图。
附图标记:10、电芯;11、正极耳;12、负极耳;20、电池保护板;21、第一钎焊区;22、第二钎焊区;30、第一钎焊连接件;40、第二钎焊连接件;a、电池保护板的长度方向。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在相关的技术领域中,主要通过贴装于电池保护板20上的L型镍片与电芯的极耳进行焊接实现电芯与电池保护板之间的连接。发明人发现:该电芯与电池保护板之间的连接方法存在的主要问题为:L型镍片自身的成本较高以及加工工艺的成本较高,一般L型镍片与电芯极耳焊接后需要对L型镍片进行弯折,增加了组装工序,导致目前的连接方式成本较高,且在弯折L型镍片过程中,存在应变较高的问题,有损伤设置在电池保护板20上的元器件的风险。
为了解决上述技术问题,请参照图1所示,本申请的第一方面提出了一种电池,其能具有较低的成 本,并且降低了该电池组装时的风险。
请参照图1-3所示,电池包括电芯10、电池保护板20、第一钎焊连接件30和第二钎焊连接件40,电芯10包括间隔设置的正极耳11以及负极耳12;电池保护板20包括间隔设置的第一钎焊区21以及第二钎焊区22;正极耳11与第一钎焊区21通过第一钎焊连接件30钎焊连接;负极耳12与第二钎焊区22通过第二钎焊连接件40钎焊连接。
本申请实施例中的电池可以是蓄电池,例如,铅酸蓄电池、镍基电池、钠硫电池、二次锂电池或空气电池等;也可以是燃料电池,例如,碱性燃料电池、磷酸燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池、质子交换膜燃料电池、直接甲醇燃料电池等,本申请实施例对此不做限定,只要该电池包括相互连接的电池保护板20和电芯10,即可采用本申请实施例中的技术方案以降低电池的成本;本申请实施例中对电池的大小、用途以及形状等也均不做限定,在本申请的一些实施例中,电池可以是手机电池;在另一些实施例中,电池可以是电动汽车电池。
电池保护板20是针对可充电电池起保护作用的集成电路板,由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯10的电压和电池充放回路的电流,即时控制电池电流回路的通断。由于电池本身的材料决定了电芯10不能被过充、过放、过流、短路及超高温充放电,因此,电池内电芯10总会跟着一块带采样电阻的保护板和一片电流保险器构成的电池保护板20出现。
在本申请的一些实施例中,电池保护板20包括基板层、线路层和保护层,基板层和保护层分别设于所述线路层相对两侧,保护层具有两个缺口以暴露部分线路层形成分别与正极耳和负极耳钎焊连接的第一钎焊区21和第二钎焊区22。
第一钎焊区21用于在电池保护板20上布置第一钎焊连接件30,第一钎料涂布或贴附于第一钎焊区21内(第一钎料覆盖部分第一钎焊区21),并在熔融后固化形成覆盖第一钎焊区21的第一钎焊连接件30,将第一钎料涂布或贴附于对应正极耳11的位置设置的第一钎焊区21内,正极耳11对正第一钎焊区21后布置后,第一钎料将处于正极耳11和第一钎焊区21之间,如此,便于对正极耳11与电池保护板20之间的钎焊连接,可缩短该电池的组装时间。
同理,第二钎焊区22用于在电池保护板20上布置第二钎焊连接件40,将第二钎料涂布或贴附于第二钎焊区22内(第二钎料覆盖部分第二钎焊区22),并在熔融后固化形成覆盖第二钎焊区22的第二钎焊连接件40,将第二钎料涂布或贴附于对应负极耳位置设置的第二钎焊区22内时,负极耳12对正第二钎焊区22后布置后,第二钎料将处于负极耳12和第二钎焊区22之间,如此,便于对负极耳12与电池保护板20之间的钎焊连接,可缩短该电池的组装时间。
电芯10是动力电池的最小单位,也是电能存储单元,用于存储电能,一般不直接使用,与电池保护板20构成电池进行使用,本申请实施例中对电芯10的类型、大小以及形状等均不做限定,只要电芯10能够充放电即可。
正极耳11和负极耳12用于将电芯10连接至电池保护板20以构成电池,本申请实施例中对正极耳11和负极耳12的大小、形状、厚度以及材质等均不做限定,对于正极耳11和负极耳12的大小、形状以及厚度可按照电池的大小进行设置,对于正极耳11和负极耳12的材质,在本申请的一些实施例中,正极耳11为铝极耳,负极耳12为镍极耳或铜镀镍极耳。
第一钎焊连接件30用于连接电芯10的正极耳11和电池保护板20,本申请实施例中对第一钎焊连接件30的大小、厚度以及材料等均不做限定;对于第一钎焊连接件30的大小,可根据第一钎焊区21的大小和/或正极耳11的大小进行设置,以保证电芯10的正极耳11与电池保护板20之间具有足够的连接面积,进而保证正极耳11与电池保护板20之间的连接强度以及两者之间的导电性。
对于第一钎料的材料,只要第一钎料熔融后固化形成的第一钎焊连接件30能够实现正极耳11和电池保护板20相互连接以及实现两者之间可导电即可,但是为了降低电池成本以及提高正极耳11和电池保护板20的焊接性能,在本申请的一些实施例中,第一钎料为锌合金钎料或锡合金钎料,锌合金钎料以及锡合金钎料相比镍片具有更低的价格以及更低的熔点,进一步降低了该电池的组装材料成本和焊接耗能,且更低的熔点使第一钎焊更容易形成第一钎焊连接件30,更便于实现正极耳11和电池保护板20 的连接。
第二钎焊连接件40用于连接电芯10的负极耳12和电池保护板20,本申请实施例中对第二钎焊连接件40的大小、厚度以及材料等均不做限定;对于第二钎焊连接件40的大小以及厚度可与第一钎焊连接件30相同,对于第二钎焊连接件40的材料,在本申请的一些实施例中,第二钎料为锌合金钎料或锡合金钎料,进一步地,在本申请的一具体实施例中,第一钎料为锌合金钎料,第二钎料为锡合金钎料。
基于本申请实施例的电池,电池保护板20与电芯10的正极耳11通过第一钎焊连接件30在第一钎焊区21内连接,电池保护板20与电芯10的负极耳12通过第二钎焊连接件40在第二钎焊区22连接,即本申请实施例中的电池取消了L型镍片,降低了该电池的材料成本;同时,也无需弯折L型镍片的工序,降低了该电池的工序成本,简化了该电池的钎焊组装的工艺,以及,避免了L型镍片弯折时可能损伤电池保护板20,如此,降低了制造该电池的成本、工艺难度以及组装过程中的风险。
在本申请的一些实施例中,沿电池保护板20的长度方向a,第一钎焊区21的长度大于等于正极耳11长度的两倍;第二钎焊区22的长度大于等于负极耳12长度的两倍,如此,保证了电芯10的正极耳11与第一钎焊连接件30的接触面积,以及保证了电芯10的负极耳12与第二钎焊连接件40的接触面积,不仅增强了极耳与电池保护板20之间的连接强度,也提高了极耳与电池保护板20之间的过流能力。
请参照图4所示,第二方面,本申请实施例提供了一种电池的钎焊工艺,包括以下步骤:
S10,将第一钎料布置于电池保护板20上的第一钎焊区21,以及将第二钎料布置于电池保护板20上的与第一钎焊区21间隔设置的第二钎焊区22;
S20,将电芯10的正极耳11贴附于第一钎料,以及将电芯10的负极耳12贴附于第二钎料;
S30,通过加热正极耳11使第一钎料熔化后,第一钎料冷却固化以使第一钎焊区21与正极耳11实现连接;以及通过加热负极耳12使第二钎料熔化后,第二钎料冷却固化以使第二钎焊区22与负极耳12实现连接。
基于本申请实施例中的电池的钎焊工艺,将第一钎料布置在第一钎焊区21且将正极耳11贴附于第一钎料后,激光作用于正极耳远离第一钎料的一侧,以加热正极耳11使第一钎料熔化,且第一钎料冷却固化后形成第一钎焊连接件30,如此,无需再设置L型镍片即可实现正极耳11和电池保护板20之间的连接,同时,由于第一钎料填满了正极耳11和第一钎焊区21之间的间隙,第一钎焊连接件30则填满正极耳11和第一钎焊区21之间的间隙,能够明显减少虚焊、漏焊等问题,且由于钎焊过程中仅第一钎料和第二钎料熔化,在出现焊接不良时,如虚焊或假焊等,可以通过补充钎料再次焊接,以实现电芯10和电池保护板20的焊接返工;且传统的激光点焊工艺中,L型镍片与正极耳11或电池保护板20之间通过多个激光焊点进行焊接,焊点面积较小,采用本申请实施例的钎焊工艺,明显增大了第一钎焊连接件30与正极耳11以及电池保护板20之间的焊接面积,即增大了第一钎焊连接件30与正极耳11和电池保护板20之间的接触面积,进而增强了第一钎焊连接件30与正极耳11和电池保护板20的连接强度;同理,负极耳12和电池保护板20采用同样的钎焊工艺钎焊后,负极耳12和电池保护板20之间也无需L型镍片即可实现钎焊连接,同时,第二钎焊连接件40可填满负极耳12和第二钎焊区22之间的间隙,增强了第二钎焊连接件40与负极耳12和电池保护板20的连接强度。
在本申请的一些实施例中,第一钎焊连接件30由第一钎料熔融后固化形成,第二钎料连接件40由第二钎料熔融后固化形成,将电芯10的正极耳11和负极耳12分别对正且贴附至涂布在电池保护板20上的第一钎料和第二钎料,熔融后的第一钎料和第二钎料为液态,熔融后的第一钎料因具有流动性可填满正极耳11和电池保护板20之间的间隙,同理,熔融后的第二钎料可填充负极耳12和电池保护板20之间的间隙,在第一钎料和第二钎料固化后,第一钎焊连接件30将填满正极耳11和电池保护板20之间的间隙,第二钎焊连接件40将填满负极耳12和电池保护板20之间的间隙,即增大了第一钎焊连接件30与正极耳11以及电池保护板20之间的连接面积,以及增大了第二钎焊连接件40与负极耳12以及电池保护板20之间的连接面积,如此,第一钎料连接件30与正极耳11和电池保护板20之间具有足够的接触面积,第二钎焊连接件40与负极耳12和电池保护板20之间具有足够的接触面积,增强了极 耳和电池保护板20之间的连接强度。
进一步地,在本申请的一些实施例中,第一钎料和第二钎料均为膏状钎料,膏状的第一钎料涂布于第一钎焊区21,膏状的第二钎料涂布于第二钎焊区22,如此,膏状的第一钎料和第二钎料的流动性小,组装人员将第一钎料和第二钎料布置为所需的形状或厚度后,第一钎料和第二钎料在未受到外力的情况下将保持原型不变,便于施工人员对第一钎料和第二钎料的厚度以及形状等进行布置以及调整,对于第一钎料和第二钎料的涂布厚度,在本申请的一些实施例中,第一钎料和第二钎料的涂布厚度小于等于0.5mm,在此范围内,第一钎料和第二钎料的涂布厚度较薄,能够避免电芯10通过极耳与电池保护板20连接的一端的厚度超出规定值,即避免电池头部超厚;进一步地,在本申请的一些实施例中,第一钎料和第二钎料的涂布厚度小于等于0.1mm,在此范围内,更少的第一钎料和第二钎料可形成较薄的第一钎焊连接件30和第二钎焊连接件40,不仅能够避免电池头部超厚,而且更薄的厚度使第一钎焊连接件30和第二钎焊连接件40占用电池的体积更小,利于提高电池的能量密度,并且能够使正极耳11与电池保护板20之间具有更好的过流能力;具体地,在本申请的一些实施例中,第一钎料和第二钎料的厚度为0.1mm。
在本申请的另一些实施例中,第一钎料和第二钎料为固态钎料,固态的第一钎料贴附于第一钎焊区21,固态的第二钎料贴附于第二钎焊区22,固态的第一钎料和第二钎料可分别直接贴附于电池保护板20上的第一钎焊区21和第二钎焊区22,可提高该电池的组装效率,在第一钎料和第二钎料为固态时,对于第一钎料和第二钎料的厚度与上述对第一钎料和第二钎料的涂布厚度的限定相同。
可以理解的是,在本申请的又一些实施例中,第一钎料为膏状钎料,第二钎料为固态钎料。在本申请的再一些实施例中,第一钎料为固态钎料,第二钎料为膏状钎料。
具体地,在第一钎料和/或第二钎料为固态钎料时,在本申请的一些实施例中,第一钎料和第二钎料采用SMT(Surface Mounted Technology,表面贴装技术)贴片工艺贴附于电池保护板20上,SMT贴片加工的优点为组装密度高、电子产品体积小、重量轻,贴片元件的体积和重量只有传统插装元件的1/10左右,一般采用SMT工艺之后,电子产品体积缩小40%~60%,重量减轻60%~80%,降低成本达30%~50%,且采用SMT贴片组装的电器件可靠性高、抗振能力强、焊点缺陷率低、高频特性好、减少了电磁和射频干扰、易于实现自动化和提高生产效率。
在本申请的一些实施例中,正极耳11的熔点高于第一钎料的熔点,负极耳12的熔点高于第二钎料的熔点,如此,可通过对正极耳11进行加热以使第一钎料熔化,以及通过对负极耳12进行加热以使第二钎料熔化,以实现对正极耳11和电池保护板20的钎焊连接,以及实现负极耳12和电池保护板20的钎焊连接。
进一步地,在本申请的一些实施例中,第一钎料的熔点和第二钎料的熔点均大于等于200℃且小于等于400℃;结合上述正极耳11为铝极耳,由于铝的表面常形成三氧化二铝薄膜,三氧化二铝的熔点为2054℃远高于铝熔点,因此,在本申请实施例中,铝极耳的熔点大于等于680℃且小于等于740℃,负极耳12为镍极耳或铜镀镍极耳,两者熔点分别为1400℃和1050℃,即正极耳11的熔点和负极耳12的熔点均远大于第一钎料和第二钎料的熔点,使正极耳11和电池保护板20钎焊时采用的钎焊工艺的加热温度具有较大的调控范围,以及负极耳12与电池保护板20钎焊时采用的钎焊工艺的加热温度具有较大的调控范围,降低了钎焊的工艺难度。
进一步地,为进一步降低钎焊的工艺难度,在本申请的一些实施例中,第一钎料的熔点和第二钎料的熔点均大于等于280℃且小于等于400℃或第一钎料的熔点和第二钎料的熔点均大于等于250℃且小于等于350℃。
在本申请的一些实施例中,第一钎料或第二钎料为锌合金钎料,所述锌合金钎料为Zn-Al-Cu-Ag合金,Zn-Al-Cu-Ag合金按质量百分比含Zn:55%~94.8%、Al:5%~44.8%、Cu:0.1%~7.5%、Ag:0.1%~7.5%;通过上述技术方案,铝能细化晶粒,提高锌的强度和冲击韧性,并能明显地减轻熔融锌对铁制品的腐蚀,以保证铁质电器元件的寿命,在锌铝钎料中添加银元素可以改善钎料的微观组织,锌铝钎料在极耳上的铺展性能明显提升,钎焊焊头强度得到提高,耐腐蚀性得到增强,在银元素添加至3.5%时, 银元素对组织有较好固溶强化作用,钎料的力学性能最佳;在锌铝材料中添加铜元素,铜元素能提高锌合金的强度、硬度和耐蚀性,可以改善钎料的微观组织,钎料的熔化温度略有下降以便于钎料熔化,在极耳上的铺展性能明显提升,钎焊焊头的强度得到提升,耐腐蚀性得到增强;同时,钎料的铺展面积受铜元素在铝元素中饱和度的影响,当铜元素含量低于其在铝元素中溶解度时,随着Cu含量的增加,铺展面积增大;其中,铺展性是液态钎料在母材表面上流动展开的能力。
在本申请的另一些实施例中,第一钎料或第二钎料为锡合金钎料,所述锡合金钎料为Sn-Ag-Ni合金,Sn-Ag-Ni合金按按质量百分比含Sn:80%~99.8%、Ag:0.1%~10%、Ni:0.1%~10%。在锡元素中添加银元素,银元素可增强第二钎料的导电性提升该电池的电学性能,同时,银元素对组织有较好固溶强化作用,可提升钎料的力学性能,在锡银合金中添加镍可大大降低第二钎料的熔点,具体地,镍元素的含量每增加5%,合金钎料的温度平均下降约65℃。
在本申请的另一些实施例中,第一钎料和第二钎料均可为Zn-Al-Cu-Ag合金,Zn-Al-Cu-Ag合金按质量百分比含Zn:55%~95%、Al:5%~45%、Cu:0%~7.5%、Ag:0%~7.5%;在本申请的又一些实施例中,第一钎料和第二钎料均可为Sn-Ag-Ni合金,Sn-Ag-Ni合金按质量百分比含Sn:80%~99.8%、Ag:0.1%~10%、Ni:0.1%~10%,效果与上述相同。
在本申请的一些实施例中,在正极耳和负极耳分别与第一钎焊区和第二钎焊区钎焊的过程中,熔化后的第一钎料与第一钎焊区21以及正极耳11之间的湿润角均小于等于45°,熔化后的第二钎料与第二钎焊区22以及负极耳12之间的湿润角均小于等于45°,其中,湿润角是指液相与固相的接触点处液固界面和液态表面切线的夹角,根据湿润角的大小湿润分为以下情况,湿润角为0°时铺展;0°<湿润角<90°时浸湿;90°<湿润角<180°粘湿;θ=180°完全不润湿;湿润角越小意味着材料表面湿润良好,使第一钎料熔化后与正极耳11以及电池保护板20的湿润角处在小于等于45°范围内,保证了第一钎料熔化后与正极耳11以及电池保护板20之间具有良好的钎焊效果,同理,使第二钎料熔化后与正极耳11、负极耳12以及电池保护板20的湿润角处在小于等于45°范围内,保证了第二钎料熔化后与正极耳11以及电池保护板20之间具有良好的钎焊效果。
请参照图5所示,第三方面,在本申请实施例提供了另一种电池的钎焊工艺,上述电池的钎焊工艺中钎料的熔点、材料、与极耳和电池保护板20之间的湿润角、钎焊连接件的厚度等也可应用于此实施例中的电池的钎焊工艺,本申请实施例中的电池钎焊工艺包括以下步骤:
S40,将正极耳11布置于电池保护板20上以使正极耳11与第一钎焊区21邻接或者使正极耳11部分覆盖第一钎焊区21,以及将负极耳12布置于电池保护板20上以使负极耳12与第二钎焊区22邻接或者部分覆盖第二钎焊区22;第一钎焊区21与第二钎焊区22间隔设置;
S50,将第一钎料布置于第一钎焊区21未被正极耳11覆盖的区域,加热第一钎料使第一钎料熔化,第一钎料冷却固化以使第一钎焊区21与正极耳11的侧壁实现连接;
S60,将第二钎料布置于第二钎焊区22未被负极耳12覆盖的区域,加热第二钎料使第二钎料熔化,第二钎料冷却固化以使第二钎焊区22与正极耳11的侧壁实现连接。
基于上述实施例,将第一钎料布置于第一钎焊区21未被正极耳11覆盖的区域,在第一钎料熔化后,部分熔化的第一钎料将渗入至正极耳11和第一钎焊区21之间,剩余的熔化的第一钎料将处于正极耳11和第一钎焊区21的交界处,第一钎料冷却固化后形成的第一钎焊连接件30连接正极耳11处于第一钎焊区21内的侧壁和第一钎焊区21,且连接正极耳11和第一钎焊区21相互靠近的侧壁,提高了正极耳11和电池保护板20的连接强度,同理,也提高了负极耳12和电池保护板20的连接强度,同时,由于正极耳11的熔点高于第一钎料的熔点,可避免对第一钎料加热时损伤正极耳11,提高了钎焊工艺的可靠性,同理,可实现负极耳12和电池保护板20的钎焊连接;在本申请的一些实施例中,S50和S60的步骤可以互换先后执行的顺序。
在本申请的一些实施例中,第一钎料和第二钎料均为焊丝,如此,第一钎料便于填充至正极耳11和电池保护板20的交界处,以及第二钎料便于填充至负极耳12和电池保护板20的交界处,在第一钎 料和第二钎料设置为焊丝后,由于送丝速度对钎焊过程有影响,在本申请的一些实施例中,焊丝的送丝速度为大于等于50mm/s,且小于等于500mm/s,在此范围内,可避免送丝速度过慢造成虚焊、漏焊等缺陷,且可避免送丝速度过快造成第一钎焊连接件30和第二钎焊连接件40的体积过大。
在本申请的一些实施例中,对正极耳11和电池保护板20,以及负极耳12和电池保护板20钎焊的速度大于等于200mm/s,且小于等于800mm/s,即第一钎料沿正极耳11周向移动的速度,以及第二钎料沿负极耳12周向移动的速度,以及激光加热时激光斑点的移动速度大于等于200mm/s,且小于等于800mm/s,在此范围内能够保证激光斑点对焊丝充分进行加热。
本实施例的附图中相同或相似的标号对应相同或相似的部件;在本申请的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种电池的钎焊工艺,其特征在于,包括以下步骤:
    将第一钎料布置于电池保护板上的第一钎焊区,以及将第二钎料布置于电池保护板上的与第一钎焊区间隔设置的第二钎焊区;
    将电芯的正极耳贴附于所述第一钎料,以及将电芯的负极耳贴附于所述第二钎料;
    通过加热所述正极耳使所述第一钎料熔化后,第一钎料冷却固化以使所述第一钎焊区与所述正极耳实现连接;以及通过加热所述负极耳使所述第二钎料熔化后,第二钎料冷却固化以使所述第二钎焊区与所述负极耳实现连接。
  2. 如权利要求1所述的电池的钎焊工艺,其特征在于,所述第一钎料和所述第二钎料均为膏状钎料或固态钎料中的一种,所述第一钎料和所述第二钎料均为膏状时分别涂布于所述第一钎焊区和所述第二钎焊区;所述第一钎料和所述第二钎料均为固态时分别贴附于所述第一钎焊区和所述第二钎焊区。
  3. 如权利要求1所述的电池的钎焊工艺,其特征在于,所述正极耳的熔点高于所述第一钎料的熔点,所述负极耳的熔点高于所述第二钎料的熔点。
  4. 如权利要求3所述的电池的钎焊工艺,其特征在于,所述第一钎料的熔点和所述第二钎料的熔点均大于等于200℃且小于等于400℃。
  5. 如权利要求4所述的电池的钎焊工艺,其特征在于,所述第一钎料的熔点和所述第二钎料的熔点均大于等于280℃且小于等于400℃或所述第一钎料的熔点和所述第二钎料的熔点均大于等于250℃且小于等于350℃。
  6. 如权利要求1所述的电池的钎焊工艺,其特征在于,所述第一钎料和/或第二钎料为锌合金钎料或锡合金钎料,及/或,所述正极耳为铝极耳,所述负极耳为镍极耳或铜镀镍极耳。
  7. 如权利要求6所述的电池的钎焊工艺,其特征在于,所述锌合金钎料为Zn-Al-Cu-Ag合金,所述锡合金钎料为Sn-Ag-Ni合金,所述Zn-Al-Cu-Ag合金按质量百分比含Zn:55%~94.8%、Al:5%~44.8%、Cu:0.1%~7.5%、Ag:0.1%~7.5%;所述Sn-Ag-Ni合金按质量百分比含Sn:80%~99.8%、Ag:0.1%~10%、Ni:0.1%~10%。
  8. 如权利要求1所述的电池,其特征在于,所述第一钎料和所述第二钎料的厚度或涂布厚度均小于等于0.5mm。
  9. 如权利要求8所述的电池,其特征在于,述第一钎料和所述第二钎料的厚度或涂布厚度均小于等于0.1mm。
  10. 如权利要求1-9任一项所述的电池的钎焊工艺,其特征在于,在所述正极耳和所述负极耳分别与所述第一钎焊区和所述第二钎焊区钎焊过程中,熔化后的所述第一钎料与第一钎焊区以及正极耳之间的湿润角均小于等于45°,熔化后的所述第二钎料与第二钎焊区以及负极耳之间的湿润角均小于等于45°。
  11. 一种电池的钎焊工艺,其特征在于,包括以下步骤:
    将正极耳布置于电池保护板上以使所述正极耳与第一钎焊区邻接或者使所述正极耳部分覆盖所述 第一钎焊区,以及将负极耳布置于电池保护板上以使所述负极耳与第二钎焊区邻接或者部分覆盖所述第二钎焊区;所述第一钎焊区与所述第二钎焊区间隔设置;
    将所述第一钎料布置于所述第一钎焊区未被所述正极耳覆盖的区域,加热所述第一钎料使所述第一钎料熔化后,第一钎料冷却固化以使所述第一钎焊区与所述正极耳实现连接;
    将所述第二钎料布置于所述第二钎焊区未被所述负极耳覆盖的区域,加热所述第二钎料使所述第二钎料熔化后,第二钎料冷却固化以使所述第二钎焊区与所述负极耳实现连接。
  12. 一种电池,其特征在于,包括:
    电芯,包括间隔设置的正极耳以及负极耳;
    电池保护板,所述电池保护板暴露部分线路层形成用于与所述正极耳和所述负极耳连接的第一钎焊区和第二钎焊区;
    第一钎焊连接件,所述正极耳与所述第一钎焊区通过所述第一钎焊连接件钎焊连接;以及
    第二钎焊连接件,所述负极耳与所述第二钎焊区通过所述第二钎焊连接件钎焊连接。
PCT/CN2022/112181 2022-08-12 2022-08-12 电池及其钎焊工艺 WO2024031657A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280006024.0A CN116134656A (zh) 2022-08-12 2022-08-12 电池及其钎焊工艺
PCT/CN2022/112181 WO2024031657A1 (zh) 2022-08-12 2022-08-12 电池及其钎焊工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112181 WO2024031657A1 (zh) 2022-08-12 2022-08-12 电池及其钎焊工艺

Publications (1)

Publication Number Publication Date
WO2024031657A1 true WO2024031657A1 (zh) 2024-02-15

Family

ID=86299521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112181 WO2024031657A1 (zh) 2022-08-12 2022-08-12 电池及其钎焊工艺

Country Status (2)

Country Link
CN (1) CN116134656A (zh)
WO (1) WO2024031657A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203839448U (zh) * 2014-02-17 2014-09-17 惠州亿纬锂能股份有限公司 一种侧面引出单极耳的圆柱形电芯
CN111687525A (zh) * 2020-06-12 2020-09-22 深圳市拓邦锂电池有限公司 一种用于软包锂离子电池的极耳焊接方法
CN113410584A (zh) * 2021-07-12 2021-09-17 深圳市神通天下科技有限公司 一种电池
CN217114700U (zh) * 2021-12-06 2022-08-02 深圳市优维尔科技有限公司 一种极耳焊接结构及电子雾化装置主机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203839448U (zh) * 2014-02-17 2014-09-17 惠州亿纬锂能股份有限公司 一种侧面引出单极耳的圆柱形电芯
CN111687525A (zh) * 2020-06-12 2020-09-22 深圳市拓邦锂电池有限公司 一种用于软包锂离子电池的极耳焊接方法
CN113410584A (zh) * 2021-07-12 2021-09-17 深圳市神通天下科技有限公司 一种电池
CN217114700U (zh) * 2021-12-06 2022-08-02 深圳市优维尔科技有限公司 一种极耳焊接结构及电子雾化装置主机

Also Published As

Publication number Publication date
CN116134656A8 (zh) 2024-05-14
CN116134656A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN206961919U (zh) 采用锡料焊接的电池模组
CN100421302C (zh) 导线端子及电源装置
KR101361631B1 (ko) 전지
KR100846956B1 (ko) 보호회로 모듈을 갖는 이차전지
US20140079984A1 (en) Non-aqueous secondary battery, mounted unit, and method for manufacturing non-aqueous secondary battery
EP2273588A1 (en) Battery pack and manufacturing method for the same
CN216354301U (zh) 极片及电池
CN216488280U (zh) 一种具有新型电池盖板连接结构的电芯
KR101274832B1 (ko) 이차전지
CN101373680A (zh) 带电阻基板型温度保险丝以及二次电池保护电路
JP2015170575A (ja) 基板ユニット、電気化学セルユニットおよび電気化学セルユニット製造方法
CN103875120A (zh) 电池收纳结构体
WO2024031657A1 (zh) 电池及其钎焊工艺
CN107658423B (zh) 液态金属合金极片及制作方法、锂离子电池及制作方法
CN102136402A (zh) 热敏元件及封装电池
US11302977B2 (en) Secondary battery pack having connection slot
CN101373681B (zh) 温度保险丝
JP4606066B2 (ja) 電池用ケースおよび電池
KR20120131914A (ko) 이차 전지 및 그 제조 방법
JP6097637B2 (ja) 保護回路を有する二次電池パック
CN207781722U (zh) 一种散热性能好的极耳
CN219498112U (zh) 极耳及电芯
CN109244347A (zh) 一种电池、电容的焊接方法
CN220821859U (zh) 一种电池
CN217158564U (zh) 一种负极耳及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954616

Country of ref document: EP

Kind code of ref document: A1