WO2024031308A1 - 传输方法、定位参考信号的配置方法、装置、设备及介质 - Google Patents

传输方法、定位参考信号的配置方法、装置、设备及介质 Download PDF

Info

Publication number
WO2024031308A1
WO2024031308A1 PCT/CN2022/111065 CN2022111065W WO2024031308A1 WO 2024031308 A1 WO2024031308 A1 WO 2024031308A1 CN 2022111065 W CN2022111065 W CN 2022111065W WO 2024031308 A1 WO2024031308 A1 WO 2024031308A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
time domain
terminal device
information
frequency domain
Prior art date
Application number
PCT/CN2022/111065
Other languages
English (en)
French (fr)
Inventor
赵振山
张世昌
马腾
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/111065 priority Critical patent/WO2024031308A1/zh
Publication of WO2024031308A1 publication Critical patent/WO2024031308A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of mobile communications, and in particular to a transmission method, a positioning reference signal configuration method, a device, equipment and a medium.
  • messages can be directly transmitted between terminal devices through a sidelink (SL).
  • SL sidelink
  • Positioning Reference Signal can be sent between different terminal devices through side links. By measuring the PRS, the positioning of the terminal device can be achieved.
  • PRS Positioning Reference Signal
  • the specific implementation of PRS transmission between terminal devices requires further discussion and research.
  • This application provides a transmission method, a positioning reference signal configuration method, a device, equipment and a medium.
  • the technical solutions are as follows:
  • a sidelink-based transmission method is provided, the method is performed by a first terminal device, and the method includes:
  • a method for configuring a sidelink-based positioning reference signal is provided.
  • the method is performed by a first terminal device, and the method includes:
  • the first frequency domain unit includes frequency domain resources of n consecutive REs in the frequency domain, where n is a positive integer greater than 1.
  • a method for configuring a sidelink-based positioning reference signal is provided.
  • the method is executed by a network device, and the method includes:
  • the PRS configuration information includes at least one PRS configuration
  • the at least one PRS configuration is used for the first terminal device to determine a first PRS configuration according to the first information
  • the first PRS configuration is used for the first terminal device to send a request to a third PRS configuration according to the first PRS configuration.
  • the second terminal device sends a PRS or receives the PRS sent by the second terminal device.
  • a method for configuring a sidelink-based positioning reference signal is provided.
  • the method is performed by a first terminal device, and the method includes:
  • the PRS has a comb-like structure with the first frequency domain unit as a comb-tooth granularity
  • the first frequency domain unit includes frequency domain resources of n consecutive REs in the frequency domain, where n is a positive integer greater than 1.
  • a sidelink-based transmission device includes:
  • Determining module configured to determine the first PRS configuration according to the first information
  • a transceiver module configured to send a PRS to a second terminal device based on the first PRS configuration or receive the PRS sent by the second terminal device.
  • a device for configuring a sidelink-based positioning reference signal includes:
  • An acquisition module used to acquire the configuration information of the PRS, which has a comb-like structure with the first frequency domain unit as the comb-tooth granularity;
  • the first frequency domain unit includes frequency domain resources of n consecutive REs in the frequency domain, where n is a positive integer greater than 1.
  • a device for configuring a sidelink-based positioning reference signal includes:
  • a sending module configured to send PRS configuration information to the first terminal device, where the PRS configuration information includes at least one PRS configuration
  • the at least one PRS configuration is used for the first terminal device to determine a first PRS configuration according to the first information
  • the first PRS configuration is used for the first terminal device to send a request to a third PRS configuration according to the first PRS configuration.
  • the second terminal device sends a PRS or receives the PRS sent by the second terminal device.
  • a device for configuring a sidelink-based positioning reference signal includes:
  • a sending module configured to send the configuration information of the PRS to the first terminal device, where the PRS has a comb-like structure with the first frequency domain unit as the comb-tooth granularity;
  • the first frequency domain unit includes frequency domain resources of n consecutive REs in the frequency domain, where n is a positive integer greater than 1.
  • a terminal device which terminal device includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein, The processor is configured to load and execute the executable instructions to implement the sidelink-based transmission method or the sidelink-based positioning reference signal configuration method as described in the above aspect.
  • a network device includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein, The processor is configured to load and execute the executable instructions to implement the sidelink-based positioning reference signal configuration method as described in the above aspect.
  • a computer-readable storage medium in which executable instructions are stored, and the executable instructions are loaded and executed by a processor to implement the above aspects.
  • a chip including programmable logic circuits and/or program instructions, when the chip is run on a computer device, for performing operations based on the programmable logic circuits and/or programs.
  • a computer program product or computer program includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • a processor reads the computer instructions from the computer program.
  • the readable storage medium reads and executes the computer instructions, so that the computer device performs the sidelink-based transmission method or the sidelink-based positioning reference signal configuration method described in the above aspects.
  • the first terminal device By having the first terminal device determine the first PRS configuration based on the first information, the first terminal device can transmit PRS to the second terminal device based on the first PRS configuration, thereby realizing PRS transmission between terminal devices. On the basis of transmitting PRS, the terminal equipment can be positioned through PRS.
  • Figure 1 is a schematic diagram of intranet communication provided by an exemplary embodiment of the present application.
  • Figure 2 is a schematic diagram of partial network coverage sidelink communication provided by an exemplary embodiment of the present application.
  • Figure 3 is a schematic diagram of network coverage outer row communication provided by an exemplary embodiment of the present application.
  • Figure 4 is a schematic diagram of unicast transmission provided by an exemplary embodiment of the present application.
  • Figure 5 is a schematic diagram of multicast transmission provided by an exemplary embodiment of the present application.
  • Figure 6 is a schematic diagram of another multicast transmission provided by an exemplary embodiment of the present application.
  • Figure 7 is a schematic diagram of the transmission resources of PSSCH and PSCCH provided by an exemplary embodiment of the present application.
  • Figure 8 is a schematic diagram of a sidelink time slot with PSFCH provided by an exemplary embodiment of the present application.
  • Figure 9 is a schematic diagram of the time domain positions of 4 DMRS time domain symbols when the PSSCH has 13 time domain symbols provided by an exemplary embodiment of the present application;
  • Figure 10 is a schematic diagram of the DMRS frequency domain location provided by an exemplary embodiment of the present application.
  • Figure 11 is a schematic diagram of resource mapping of PRS for downlink positioning provided by an exemplary embodiment of the present application.
  • Figure 12 is a schematic diagram of the system architecture of a communication system provided by an exemplary embodiment of the present application.
  • Figure 13 is a flow chart of a sidelink-based transmission method provided by an exemplary embodiment of the present application.
  • Figure 14 is a flow chart of a configuration method for sidelink-based positioning reference signals provided by an exemplary embodiment of the present application.
  • Figure 15 is a flowchart of a method for configuring sidelink-based positioning reference signals provided by an exemplary embodiment of the present application
  • Figure 16 is a flow chart of a method for configuring sidelink-based positioning reference signals provided by an exemplary embodiment of the present application
  • Figure 17 is a schematic diagram of the time-frequency resources of PRS with PRB as the frequency domain granularity provided by an exemplary embodiment of the present application;
  • Figure 18 is a schematic diagram of the time-frequency resources of PRS with sub-channels as frequency domain granularity provided by an exemplary embodiment of the present application;
  • Figure 19 is a schematic diagram of the time-frequency resources of PRS with REG as the frequency domain granularity provided by an exemplary embodiment of the present application;
  • Figure 20 is a schematic diagram of the time-frequency resources of a PRS with a comb tooth size of 1 provided by an exemplary embodiment of the present application;
  • Figure 21 is a schematic diagram of the time-frequency resources of a PRS with a comb tooth size of 2 provided by an exemplary embodiment of the present application;
  • Figure 22 is a schematic diagram of the time-frequency resources of a PRS with a comb tooth size of 4 provided by an exemplary embodiment of the present application;
  • Figure 23 is a schematic diagram of the time-frequency resources of a PRS with a comb tooth size of 12 provided by an exemplary embodiment of the present application;
  • Figure 24 is a schematic diagram of time-frequency resources carrying PSCCH provided by an exemplary embodiment of the present application.
  • Figure 25 is a schematic diagram of time-frequency resources carrying PSCCH and PSFCH provided by an exemplary embodiment of the present application.
  • Figure 26 is a schematic diagram of frequency resources in different time slots provided by an exemplary embodiment of the present application.
  • Figure 27 is a flow chart of a sidelink-based transmission method provided by an exemplary embodiment of the present application.
  • Figure 28 is a flow chart of a sidelink-based transmission method provided by an exemplary embodiment of the present application.
  • Figure 29 is a flow chart of a sidelink-based transmission method provided by an exemplary embodiment of the present application.
  • Figure 30 is a block diagram of a sidelink-based transmission device provided by an exemplary embodiment of the present application.
  • Figure 31 is a block diagram of a sidelink-based positioning reference signal configuration device provided by an exemplary embodiment of the present application.
  • Figure 32 is a block diagram of a sidelink-based transmission device provided by an exemplary embodiment of the present application.
  • Figure 33 is a block diagram of a sidelink-based transmission device provided by an exemplary embodiment of the present application.
  • Figure 34 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • side-link communication communication based on side-links
  • it can be divided into side-link communication within network coverage, side-link communication with partial network coverage, and side-link communication outside network coverage. three conditions.
  • Figure 1 is a schematic diagram of side-line communication with network coverage provided by an exemplary embodiment of the present application.
  • Figure 2 is a schematic diagram of side-line communication with partial network coverage provided by an exemplary embodiment of the present application.
  • Figure 3 is a schematic diagram of side-line communication with partial network coverage provided by an exemplary embodiment of the present application. Exemplary embodiments provide a schematic diagram of network coverage outer row communications.
  • the network when the network covers side-link communication, all terminal devices performing side-link communication are within the coverage of the same base station. Therefore, the above-mentioned terminal devices can all perform side-link communication based on the same side-link configuration by receiving configuration signaling from the base station.
  • the side-link configuration includes time-frequency resources for side-link communication.
  • the first part of the terminal equipment performing side-link communication is located within the coverage of the base station, and the first part of the terminal equipment can receive the configuration signaling of the base station, thereby according to the base station configuration for sideline communication.
  • the second part of terminal equipment performing side-link communication is located outside the network coverage, and the second part of terminal equipment cannot receive the configuration signaling of the base station.
  • the terminal equipment outside the network coverage will use the pre-configuration information and the information carried in the Physical Sidelink Broadcast Channel (PSBCH) sent by the terminal equipment located within the network coverage.
  • PSBCH Physical Sidelink Broadcast Channel
  • All terminal devices performing side-line communication are located outside the network coverage. All terminal devices that perform side-line communication determine the side-line configuration based on the preconfiguration information to perform side-line communication.
  • Device-to-device communication is a side link transmission technology based on D2D. It is different from the way communication data is received or sent through the base station in traditional cellular systems, so it has higher spectrum efficiency and lower transmission delay.
  • the Internet of Vehicles system uses direct communication from terminal device to terminal device. In the 3rd Generation Partnership Project (3GPP), two side communication transmission modes are defined: the first mode and the second mode.
  • 3GPP 3rd Generation Partnership Project
  • the transmission resources of the terminal equipment are allocated by the base station, and the terminal equipment transmits data on the sidelink according to the resources allocated by the base station.
  • the base station can allocate resources for a single transmission to the terminal device, or allocate resources for semi-static transmission to the terminal device.
  • the terminal device is located within the network coverage, and the network allocates transmission resources for sidelink transmission to the terminal device.
  • the terminal device selects a resource in the resource pool for data transmission. As shown in Figure 3, the terminal device is located outside the coverage of the cell, and the terminal device independently selects transmission resources from the preconfigured resource pool for side transmission; or in Figure 1, the terminal device independently selects transmission resources from the network configured resource pool. Perform lateral transmission.
  • the resource selection of the terminal device in the second mode is carried out according to the following two steps:
  • Step 1 The terminal device uses all available resources in the resource selection window as resource set A.
  • the terminal device If the terminal device sends data in certain time slots within the listening window, the terminal device will not listen to these time slots, resulting in all resources in the corresponding time slots in the selection window being terminated. The device is excluded. The terminal device uses the value set of the resource reservation period field in the resource pool configuration used to determine the time slot corresponding to the listening window within the selection window.
  • the terminal equipment listens to the Physical Sidelink Control Channel (PSCCH) within the listening window, the terminal equipment will measure the Reference Signal Received Power (RSRP) of the PSCCH or measure the PSCCH scheduling. RSRP of the Physical Sidelink Shared Channel (PSSCH). If the measured RSRP is greater than the SL-RSRP threshold, and the reserved resources are determined to be within the resource selection window based on the resource reservation information in the sidelink control information transmitted in the PSCCH, the terminal device will exclude the corresponding resources from set A. . If the remaining resources in resource set A are less than X% of all resources in resource set A before resource exclusion, the terminal device will raise the SL-RSRP threshold by 3dB and perform step 1 again.
  • RSRP Reference Signal Received Power
  • PSSCH Physical Sidelink Shared Channel
  • the possible values of the above X are ⁇ 20, 35, 50 ⁇ .
  • the terminal device determines parameter X from the value set according to the priority of the data to be sent.
  • the above-mentioned SL-RSRP threshold is also related to the priority carried in the PSCCH heard by the terminal device and the priority of the data to be sent by the terminal device.
  • the terminal device will use the remaining resources after resource exclusion in resource set A as a candidate resource set.
  • Step 2 The terminal device randomly selects several resources from the candidate resource set as its sending resources for initial transmission and retransmission.
  • unicast, multicast and broadcast transmission modes are supported.
  • the receiving end is only one terminal device; for multicast transmission, the receiving end is all terminal devices in a communication group, or all terminal devices within a certain transmission distance.
  • Figure 4 is a schematic diagram of unicast transmission provided by an exemplary embodiment of the present application.
  • Figure 5 is a schematic diagram of multicast transmission provided by an exemplary embodiment of the present application.
  • Figure 6 is an exemplary implementation of the present application. The example provides a schematic diagram of another multicast transmission.
  • terminal device 1 As shown in Figure 4, unicast transmission is performed between terminal device 1 and terminal device 2. As shown in Figure 5, terminal device 1, terminal device 2, terminal device 3 and terminal device 4 form a communication group. Among them, terminal device 1 sends data, and other terminal devices in the group are receiving terminal devices. As shown in Figure 6, for broadcast transmission mode, the receiving end is any terminal device around the sending end terminal device. For example, terminal device 1 is a sending terminal device, and other terminal devices around it, namely terminal device 2 to terminal device 6, are receiving terminal devices.
  • the PSSCH and its associated PSCCH are transmitted in the same time slot, and the PSCCH occupies 2 or 3 time domain symbols.
  • the time domain resource allocation of NR SL is based on time slot as the allocation granularity.
  • One time slot includes multiple time domain symbols, for example, 14 time domain symbols.
  • the starting point and length of the time domain symbols used for sideline transmission in a time slot are configured through the parameters sideline start symbol (sl-startSLsymbols) and sideline length symbol (sl-lengthSLsymbols).
  • the last symbol in the time domain symbols of the time slot is used as the guard interval (Guard Period, GP), and PSSCH and PSCCH can only use the remaining time domain symbols.
  • PSFCH physical sidelink feedback channel
  • PSSCH and PSCCH cannot occupy the time domain symbols used for PSFCH transmission, and the automatic gain control (Automatic Gain Control) before the symbol , AGC) and GP symbols.
  • AGC Automatic Gain Control
  • FIG. 7 is a schematic diagram of transmission resources of PSSCH and PSCCH provided by an exemplary embodiment of the present application.
  • the PSFCH occupies time domain symbol 11 and time domain symbol 12.
  • Time domain symbol 11 is used as the AGC symbol of PSFCH, and time domain symbols 10 and 13 are used as GP respectively, which can be used
  • the time domain symbols transmitted by PSSCH are time domain symbol 3 to time domain symbol 9.
  • PSCCH occupies 3 time domain symbols, time domain symbols 3, 4, and 5. Time domain symbol 3 is usually used as an AGC symbol.
  • a sidelink time slot in NRSL may also contain PSFCH.
  • Figure 8 is a schematic diagram of a sidelink time slot in which PSFCH exists, provided by an exemplary embodiment of the present application.
  • the first Orthogonal Frequency Division Multiplexing (OFDM) symbol (time domain symbol) is fixed for AGC.
  • the terminal device copies the second information sent on OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the PSCCH can occupy two or three OFDM symbols starting from the second OFDM symbol.
  • the number of Physical Resource Blocks (PRBs) occupied by PSCCH is within the sub-band range of one PSSCH. If the number of PRBs occupied by PSCCH is less than the size of one sub-channel of PSSCH, or the frequency of PSSCH If the domain resource includes multiple sub-channels, the PSCCH can be frequency division multiplexed with the PSSCH on the OFDM symbol where the PSCCH is located.
  • PRBs Physical Resource Blocks
  • the Demodulation Reference Signal (DMRS) of PSSCH in NRSL draws on the design of the NR Uu interface and uses multiple time domain PSSCH DMRS patterns.
  • the number of DMRS patterns that can be used is related to the number of PSSCH time domain symbols in the resource pool.
  • the available DMRS The pattern and the position of each DMRS time domain symbol within the pattern are shown in Table 1.
  • FIG. 9 is a schematic diagram of the time domain positions of 4 DMRS time domain symbols when the PSSCH has 13 time domain symbols provided by an exemplary embodiment of the present application.
  • the specific time-domain DMRS pattern used is selected by the sending terminal device and indicated in the first-level sidelink control information (Sidelink Control Information, SCI).
  • SCI Servicelink Control Information
  • PSSCH DMRS sequence is almost the same as that of PSCCH DMRS sequence.
  • CRC Cyclic Redundancy Check
  • NR PDSCH and PUSCH support two frequency domain DMRS patterns, including DMRS frequency domain type 1 and DMRS frequency domain type 2, and for each frequency domain type, there are single DMRS time domain symbols and dual DMRS time domain symbols.
  • Different Types Single time domain symbol DMRS frequency domain type 1 supports 4 DMRS ports, single time domain symbol DMRS frequency domain type 2 can support 6 DMRS ports, and in the case of dual DMRS time domain symbols, the number of ports supported is doubled.
  • PSSCH since PSSCH only needs to support up to two DMRS ports, only DMRS frequency domain type 1 of a single time domain symbol is supported.
  • Figure 10 is a schematic diagram of the DMRS frequency domain location provided by an exemplary embodiment of the present application.
  • RE in Figure 10 refers to Resource Element (RE).
  • Positioning based on sidelinks is one of the enhancement solutions of version 18 (Release18, R18) positioning technology.
  • Sidelink-based positioning needs to consider scenarios and requirements that support NR positioning use cases within cellular network coverage, partial coverage, and out-of-coverage coverage, and will consider V2X use cases, public safety use cases, commercial use cases, and Industrial Internet of Things (IIOT). ) use case positioning requirements, and consider supporting the following features:
  • ⁇ Study sidelink positioning reference signals including signal design, physical layer control signaling, resource allocation, physical layer measurements, and related physical layer processes, etc.;
  • the terminal device can directly determine its own absolute geographical location based on the measurement results. This method can be called absolute positioning based on the terminal device.
  • the terminal device can report the measurement results to the positioning server, such as the Location Management Function (LMF), and then the LMF calculates the absolute position of the terminal device and notifies the terminal device. This method can be called terminal device-assisted absolute positioning. position.
  • LMF Location Management Function
  • the terminal device can estimate the round trip time (RTT), angle of arrival, signal reception strength and other information based on the received positioning reference signal, and estimate the relative distance and relative direction.
  • RTT round trip time
  • angle of arrival angle of arrival
  • signal reception strength other information based on the received positioning reference signal
  • the positioning reference signal pattern is usually based on a comb-like structure with sub-carrier or RE as comb-tooth granularity. That is, on an OFDM symbol, a comb structure is used to map the PRS to the frequency domain.
  • the comb structure can support PRS from different transmission and reception points (Transmission Reception Point, TRP) to be frequency-division multiplexed onto the same OFDM symbol.
  • TRP Transmission Reception Point
  • the PRS of different TRPs can be configured with different frequency offset values.
  • a PRS resource can occupy multiple consecutive OFDM symbols, and the PRS uses a staggered structure to map to these multiple OFDM symbols.
  • FIG. 11 is a schematic diagram of resource mapping of downlink positioning PRS provided by an exemplary embodiment of the present application.
  • two PRSs are configured, including PRS#1 and PRS#2.
  • Time-frequency resources are resources within a time slot.
  • Pass parameters L and The time and frequency resources of PRS can be configured, including:
  • the time-frequency resource occupied by PRS#1 shown in FIG. 11 may be called the PRS pattern of PRS#1.
  • the time-frequency resource occupied by PRS#2 shown in Figure 11 can be called the PRS pattern of PRS#2. That is, the parameters used to configure the PRS can be used to characterize the PRS pattern of the PRS.
  • Different terminal devices can send PRS through side links, and by measuring the PRS, the positioning of the terminal device can be achieved.
  • sidelink positioning positioning based on sidelink links
  • IBE Severe in-band leakage
  • the specific implementation of PRS transmission between terminal devices such as how to design the mapping method of PRS time-frequency resources in sideline positioning, requires further discussion and research.
  • the method provided by the embodiment of the present application allows the first terminal device to determine the first PRS configuration based on the first information, so that the first terminal device can transmit PRS between the first terminal device and the second terminal device based on the first PRS configuration.
  • PRS transmission between terminal devices is realized, and on the basis of realizing the transmission of PRS, the terminal device can be positioned through PRS.
  • the method provided by the embodiment of the present application also configures the first terminal device with a PRS having a comb structure with a first frequency domain unit as a comb tooth granularity.
  • the first frequency domain unit includes n consecutive n in the frequency domain. RE.
  • the size of the first frequency domain unit in the frequency domain is greater than 1 RE, compared with the resource mapping method of PRS in downlink positioning, frequency resources can be more fully utilized.
  • PRS in the above resource mapping method to locate terminal equipment reduces the impact of in-band leakage on the performance of positioning terminal equipment.
  • Figure 12 shows a schematic diagram of the system architecture of a communication system 1200 provided by an embodiment of the present application.
  • the system architecture may include: terminal equipment 10, access network equipment 20 and core network equipment 30.
  • the terminal equipment 10 may refer to UE (User Equipment), access terminal equipment, user unit, user station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, wireless communication equipment, user agent or user device .
  • the terminal device can also be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), Handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5GS (5th Generation System, fifth-generation mobile communication system) or future evolved PLMN ( Terminal equipment in Public Land Mobile Network (public land mobile communication network), etc., the embodiments of the present application are not limited to this.
  • 5GS Fifth Generation System, fifth-generation mobile communication system
  • future evolved PLMN Terminal equipment in Public Land Mobile Network (public land mobile communication network), etc.
  • the devices mentioned above are collectively referred to as terminal devices.
  • the number of terminal devices 10 is usually multiple, and one or more terminal devices 10 may be distributed in the cell managed by each access network device 20 . Furthermore, one or more terminal devices 10 may also be distributed outside the cell managed by the access network device 20. Different terminal devices 10 can communicate with each other based on side links. Communication between terminal devices 10 via side links can be divided into three situations as shown in Figures 1 to 3 .
  • the access network device 20 is a device deployed in the access network to provide wireless communication functions for the terminal device 10 .
  • the access network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, etc.
  • the names of devices with access network device functions may be different. For example, in 5G NR systems, they are called gNodeB or gNB. As communication technology evolves, the name "access network equipment" may change.
  • access network devices For convenience of description, in the embodiment of the present application, the above-mentioned devices that provide wireless communication functions for the terminal device 10 are collectively referred to as access network devices.
  • a communication relationship can be established between the terminal device 10 and the core network device 30.
  • the access network device 20 may be EUTRAN (Evolved Universal Terrestrial Radio Access Network) or one or more eNodeBs in EUTRAN;
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • the access network device 20 may be the RAN or one or more gNBs in the RAN.
  • the functions of the core network equipment 30 are mainly to provide user connections, manage users and carry services, and serve as a bearer network to provide an interface to the external network.
  • the core network equipment in the 5G NR system can include AMF (Access and Mobility Management Function, access and mobility management function) entities, UPF (User Plane Function, user plane function) entities and SMF (Session Management Function, session management Function) entity and other equipment.
  • AMF Access and Mobility Management Function, access and mobility management function
  • UPF User Plane Function, user plane function
  • SMF Session Management Function, session management Function
  • the access network equipment 20 and the core network equipment 30 may be collectively referred to as network equipment.
  • the access network device 20 and the core network device 30 communicate with each other through some over-the-air technology, such as the NG interface in the 5G NR system.
  • the access network device 20 and the terminal device 10 communicate with each other through some air technology, such as the Uu interface.
  • the terminal device 10 communicates with each other through some air technology, such as PC5 interface.
  • Figure 13 is a flow chart of a sidelink-based transmission method provided by an exemplary embodiment of the present application. The method can be executed by the first terminal device, and the method includes:
  • Step 1302 Determine the first PRS configuration according to the first information.
  • the first terminal device obtains at least one PRS configuration, and the first terminal device can determine a first PRS configuration in the at least one PRS configuration according to the first information.
  • the at least one PRS configuration obtained by the first terminal device is obtained by the first terminal device according to preconfiguration information, network configuration information or first signaling.
  • the preconfiguration information is information preconfigured in the first terminal device
  • the network configuration information is information configured by the network device and sent to the first terminal device
  • the first signaling is information sent by a terminal device other than the first terminal device to the first terminal device. Sent by the terminal device, for example, sent by the second terminal device to the first terminal device.
  • the first PRS configuration is a PRS configuration used by the terminal device when receiving or transmitting PRS.
  • the first PRS configuration is used to configure or determine the time-frequency resource of the PRS sent or received by the first terminal device, that is, the PRS pattern of the PRS.
  • the first information includes at least one of the following:
  • the identification information of the first terminal device is information used to identify the first terminal device.
  • the time domain resource information of the PRS is information used to reflect the resources occupied by the PRS in the time domain.
  • the frequency domain resource information of the PRS is information used to reflect the resources occupied by the PRS in the frequency domain.
  • the positioning frequency layer is a concept introduced by NR on the basis of PRS.
  • the positioning frequency layer refers to a set of PRS under a group of TRPs. These PRS Have the same subcarrier spacing, cyclic prefix (CP) type, reference point A (pointA), bandwidth, and comb tooth size.
  • a positioning frequency layer can contain multiple TRPs, each TRP can contain multiple PRS resource sets, and each PRS resource set can contain multiple PRS time-frequency resources.
  • the above positioning frequency layer information of the PRS refers to the information of the positioning frequency layer to which the TRP corresponding to the PRS belongs.
  • the resource pool information is information used to reflect the resource pool in which the time-frequency resources of the PRS are located.
  • Each second time domain unit includes at least one first time domain unit, and each second time domain unit may also include at least two first time domain units.
  • the first time domain unit is a basic unit that constitutes the time domain of the time-frequency resource, and the granularity of the second time domain unit in the time domain is larger than that of the first time domain unit, that is, the second time domain unit is composed of the first time domain unit. It is composed of a time domain unit.
  • the first time domain unit refers to a time domain symbol, such as an OFDM symbol
  • the second time domain unit refers to a time slot (slot) or a mini-slot (mini-slot).
  • the first time domain unit in the second time domain unit may be entirely used for sideline transmission, or part of it may be used for sideline transmission. Therefore, when determining the first PRS configuration, the first terminal device may consider the number of first time domain units used for sidelink transmission in the second time domain unit.
  • the first time domain unit in the second time domain unit may be entirely used to transmit the PRS, or part of it may be used to transmit the PRS. Therefore, when determining the first PRS configuration, the first terminal device may consider the number of first time domain units used to transmit PRS in the second time domain unit.
  • the first time domain unit used to transmit PSFCH cannot be used to transmit PRS. Therefore, when determining the first PRS configuration, the first terminal device may consider whether the second time domain unit Includes PSFCH resources.
  • the first terminal equipment may consider whether to support PRS mapping to the first time domain unit carrying the PSCCH.
  • the first terminal device group is the terminal device group in which the first terminal device participates in cooperative positioning. Since a terminal device needs to transmit PRS to other terminal devices in the terminal device group it belongs to when performing cooperative positioning, the first terminal device may consider the first terminal device to perform cooperative positioning with the first terminal device when determining the first PRS configuration. PRS configuration of other terminal devices in the terminal device group.
  • the protocol predefined information refers to information predefined in the first terminal device based on the mobile communication network protocol supported by the first terminal device.
  • the preconfigured information refers to information preconfigured in the first terminal device.
  • the network configuration information refers to information configured by the network device for the first terminal device.
  • the first information is sent to the first terminal device by a terminal device other than the first terminal device, for example, the second terminal device is sent to the first terminal device; or, the first information is sent by a network device to the first terminal device. Sent by the terminal device; or, it is information preconfigured in the first terminal device.
  • the first terminal device can determine the first PRS configuration according to one type of information or a combination of multiple types of information in the above-mentioned first information.
  • Step 1304 Send a PRS to the second terminal device based on the first PRS configuration or receive a PRS sent by the second terminal device.
  • the first terminal device may send a PRS to the second terminal device based on the time-frequency resource of the PRS configured by the first PRS.
  • the first terminal device may receive the PRS sent by the second terminal device in the time-frequency resource configured by the first PRS.
  • the positioning of the terminal device (the first terminal device or the second terminal device) through the PRS can be achieved.
  • the above-mentioned second terminal device generally refers to a terminal device that is different from the first terminal device, and does not specifically refer to a specific terminal device. Furthermore, the second terminal device may include one or more terminal devices.
  • the method provided by this embodiment allows the first terminal device to determine the first PRS configuration based on the first information, so that the first terminal device can transmit PRS between the first terminal device and the second terminal device based on the first PRS configuration, thereby The PRS transmission between terminal devices is realized. On the basis of realizing the transmission of PRS, the positioning of the terminal device through PRS can be realized.
  • Figure 14 is a flowchart of a method for configuring a sidelink-based positioning reference signal provided by an exemplary embodiment of the present application.
  • the method can be executed by the first terminal device, and the method includes:
  • Step 1402 Obtain the configuration information of the PRS.
  • the PRS has a comb structure with the first frequency domain unit as the comb tooth granularity.
  • the first frequency domain unit includes frequency domain resources of n consecutive REs in the frequency domain, where n is a positive integer greater than 1. Continuous REs in the frequency domain refer to n REs that are adjacent to each other in the frequency domain on the same first time domain unit.
  • each second time domain unit includes at least one first time domain unit, and each second time domain unit may also include at least two first time domain units.
  • the first time domain unit refers to a time domain symbol, such as an OFDM symbol
  • the second time domain unit refers to a time slot or a mini-slot.
  • RE is the minimum granularity of the physical layer resource of NR, which corresponds to one time domain symbol (OFDM symbol) in the time domain and one subcarrier in the frequency domain, that is, the first frequency domain unit includes the n consecutive subcarriers on the domain.
  • OFDM symbol time domain symbol
  • subcarriers and REs can be interchanged.
  • the comb structure means that two adjacent first frequency domain units configured with PRS are arranged at fixed intervals on the same first time domain unit.
  • Comb tooth granularity refers to the granularity of frequency resources occupied by each comb tooth in the frequency domain in the comb structure.
  • the first frequency domain unit includes frequency domain resources of any one of the following resources:
  • the PRB includes multiple consecutive REs in the frequency domain, for example, 12 REs.
  • a subchannel includes multiple consecutive PRBs in the frequency domain.
  • REG includes multiple consecutive subcarriers in the frequency domain. Therefore, the size of one first frequency domain unit in the frequency domain is larger than 1 subcarrier or 1 RE.
  • the first terminal device may obtain the configuration information of the PRS according to the preconfiguration information or network configuration information.
  • the preconfiguration information is information preconfigured in the first terminal device
  • the network configuration information is information configured by the network device and sent to the first terminal device.
  • the first terminal device can also receive the first signaling sent by the second terminal device, where the first signaling includes the configuration information of the PRS, so that the first terminal device can obtain the configuration information of the PRS.
  • the second terminal device is different from the first terminal device and includes one or more terminal devices other than the first terminal device.
  • the PRS configuration information includes one or more PRS configurations, and the PRS configuration is used to configure or determine the time-frequency resources of the PRS.
  • the first terminal device may determine the first PRS configuration it uses in the PRS configuration information, for example, determine the first PRS configuration according to the first information.
  • the first terminal device may send the PRS to terminal devices other than the first terminal device according to the time-frequency resources of the PRS configured in the information, or receive messages other than the first terminal device based on the time-frequency resources of the PRS configured in the information.
  • the method provided by this embodiment configures the first terminal device with a PRS having a comb structure with the first frequency domain unit as the comb granularity.
  • the first frequency domain unit includes continuous ones in the frequency domain. n REs. Since the size of the first frequency domain unit in the frequency domain is larger than one RE, compared with the resource mapping method of PRS in downlink positioning, frequency resources can be fully utilized. Using the PRS in the above resource mapping method to locate terminal equipment reduces the impact of in-band leakage on the performance of positioning terminal equipment.
  • Figure 15 is a flowchart of a method for configuring a sidelink-based positioning reference signal provided by an exemplary embodiment of the present application.
  • the method can be executed by the network device and includes:
  • Step 1502 Send PRS configuration information to the first terminal device, where the PRS configuration information includes at least one PRS configuration.
  • the at least one PRS configuration is used by the first terminal device to determine the first PRS configuration according to the first information.
  • the first PRS configuration is used for the first terminal device to send a PRS to the second terminal device according to the first PRS configuration, or to receive a PRS sent by the second terminal device based on the first PRS configuration.
  • the configuration information of the PRS is carried in at least one of the following information:
  • SL Segment (SL) part bandwidth (Bandwidth Part, BWP) configuration information.
  • BWP Bandwidth Part
  • the first PRS configuration is a PRS configuration used by the terminal device when receiving or transmitting PRS.
  • the first PRS configuration is used to configure or determine the time-frequency resource of the PRS sent or received by the first terminal device, that is, the PRS pattern of the PRS.
  • the first information includes at least one of the following:
  • each second time domain unit includes at least one first time domain unit, and each second time domain unit may also include at least two first time domain units.
  • the first time domain unit refers to a time domain symbol, such as an OFDM symbol
  • the second time domain unit refers to a time slot or a mini-slot.
  • the first information is sent to the first terminal device by a terminal device other than the first terminal device, for example, the second terminal device is sent to the first terminal device; or, the first information is sent by a network device to the first terminal device. Sent by the terminal device; or, it is information preconfigured in the first terminal device.
  • the first terminal device can determine the first PRS configuration according to one type of information or a combination of multiple types of information in the above-mentioned first information.
  • the first terminal device may send a PRS to the second terminal device based on the time-frequency resource of the PRS configured in the first PRS.
  • the first terminal device receives the PRS sent by the second terminal device in the time-frequency resource configured by the first PRS.
  • the method provided by this embodiment can enable the first terminal device to configure the first PRS based on the first PRS configuration by sending the PRS configuration information to the first terminal device and having the first terminal device determine the first PRS configuration based on the first information.
  • the PRS is transmitted to and from the second terminal device, thereby realizing PRS transmission between the terminal devices.
  • the positioning of the terminal device through the PRS can be realized.
  • Figure 16 is a flowchart of a method for configuring a sidelink-based positioning reference signal provided by an exemplary embodiment of the present application. The method can be executed by the network device and includes:
  • Step 1602 Send the configuration information of the PRS to the first terminal device.
  • the PRS has a comb-like structure with the first frequency domain unit as the comb-tooth granularity.
  • the first frequency domain unit includes frequency domain resources of n consecutive REs in the frequency domain, where n is a positive integer greater than 1. Continuous REs in the frequency domain refer to n REs that are adjacent to each other in the frequency domain on the same first time domain unit.
  • each second time domain unit includes at least one first time domain unit, and each second time domain unit may also include at least two first time domain units.
  • the first time domain unit refers to a time domain symbol, such as an OFDM symbol
  • the second time domain unit refers to a time slot or a mini-slot.
  • RE is the minimum granularity of the physical layer resource of NR, which corresponds to one time domain symbol (OFDM symbol) in the time domain and one subcarrier in the frequency domain, that is, the first frequency domain unit includes the n consecutive subcarriers on the domain.
  • the comb structure means that two adjacent first frequency domain units configured with PRS are arranged at fixed intervals on the same first time domain unit.
  • Comb tooth granularity refers to the granularity of frequency resources occupied by each comb tooth in the frequency domain in the comb structure.
  • the first frequency domain unit includes frequency domain resources of any one of the following resources:
  • the PRB includes multiple consecutive REs in the frequency domain, for example, 12 REs.
  • a subchannel includes multiple consecutive PRBs in the frequency domain.
  • REG includes multiple consecutive subcarriers in the frequency domain. Therefore, the size of one first frequency domain unit in the frequency domain is larger than 1 subcarrier or 1 RE.
  • the configuration information of the PRS is carried in at least one of the following information:
  • the PRS configuration information includes one or more PRS configurations, and the PRS configuration is used to configure or determine the time-frequency resources of the PRS.
  • the first terminal device may determine the first PRS configuration it uses in the PRS configuration information, for example, determine the first PRS configuration according to the first information.
  • the first terminal device may send the PRS to terminal devices other than the first terminal device according to the time-frequency resources of the PRS configured in the information, or receive messages other than the first terminal device based on the time-frequency resources of the PRS configured in the information.
  • the method provided by this embodiment configures the first terminal device with a PRS having a comb structure with the first frequency domain unit as the comb granularity.
  • the first frequency domain unit includes continuous ones in the frequency domain. n REs. Since the size of the first frequency domain unit in the frequency domain is greater than 1 RE, compared with the resource mapping method of PRS in downlink positioning, frequency resources can be more fully utilized. Using the PRS in the above resource mapping method to locate terminal equipment reduces the impact of in-band leakage on the performance of positioning terminal equipment.
  • the method provided by the embodiment of the present application configures the first terminal device with a PRS with a comb structure in which the comb granularity in the frequency domain is larger than the RE (subcarrier). Compared with the method of resource mapping of the PRS in downlink positioning, it can be achieved Make fuller use of frequency resources. Using the PRS of this resource mapping method to locate terminal equipment reduces the impact of in-band leakage on the performance of positioning terminal equipment.
  • the PRS has a comb-like structure with the first frequency domain unit as the comb-tooth granularity.
  • the first frequency domain unit includes frequency domain resources of n consecutive REs in the frequency domain, where n is a positive integer greater than 1.
  • Continuous REs in the frequency domain refer to n REs that are adjacent to each other in the frequency domain on the same first time domain unit.
  • each second time domain unit includes at least one first time domain unit, and each second time domain unit may also include at least two first time domain units.
  • the first time domain unit refers to a time domain symbol, such as an OFDM symbol
  • the second time domain unit refers to a time slot or a mini-slot.
  • RE is the minimum granularity of the physical layer resource of NR, which corresponds to one time domain symbol (OFDM symbol) in the time domain and one subcarrier in the frequency domain, that is, the first frequency domain unit includes the n consecutive subcarriers on the domain.
  • the first frequency domain unit includes frequency domain resources of any one of the following resources:
  • the PRB includes multiple consecutive REs in the frequency domain, for example, 12 REs.
  • a subchannel includes multiple consecutive PRBs in the frequency domain.
  • REG includes multiple consecutive subcarriers in the frequency domain. Therefore, the size of one first frequency domain unit in the frequency domain is larger than 1 subcarrier or 1 RE.
  • Configuring the PRS is implemented through the configuration information of the PRS.
  • the configuration information of the PRS includes at least one of comb tooth size, time domain length and signal offset value, where:
  • the comb tooth size includes the interval between two adjacent first frequency domain units of the PRS on the same first time domain unit.
  • the comb tooth size is Indicates that the interval between two adjacent first frequency domain units of PRS is
  • the time domain length includes the number of first time domain units occupied by the PRS within a second time domain unit.
  • the time domain length is L, which means that within a second time domain unit (time slot), the number of first time domain units (OFDM symbols) occupied by the PRS is L.
  • the L first time domain units are consecutive time domain units among the second time domain units.
  • the signal offset value includes the offset value of the first first frequency domain unit of the PRS on the first first time domain unit used to transmit the PRS in a second time domain unit, and each second time domain unit
  • the units include at least one first time domain unit.
  • the signal offset value is Indicates that on the first first time domain unit carrying the PRS in a second time domain unit, the first first frequency domain unit of the PRS is compared with the first first frequency domain unit on the first time domain unit.
  • the offset value of the unit is The position of the first first frequency domain unit of PRS in the frequency domain can also be regarded as Optionally, the signal offset value is in the first frequency domain unit as the granularity or unit.
  • the first frequency domain unit includes a PRB
  • the offset value indicated by the signal offset value is an offset value relative to a first frequency domain position
  • the first frequency domain position is determined according to any one of the following: The frequency domain position corresponding to the first PRB of the resource pool, the frequency domain position corresponding to the first PRB of the side row BWP, the frequency domain position corresponding to the first PRB of the sub-channel, the first one of the resource block set (RBset) The frequency domain position corresponding to PRB, pointA.
  • the first frequency domain unit includes a sub-channel
  • the offset value indicated by the signal offset value is an offset value relative to a second frequency domain position, wherein the second frequency domain position is determined according to any of the following : The frequency domain starting position of the resource pool, the frequency domain starting position of the sideline BWP, the frequency domain starting position of the resource block set (RBset), pointA.
  • the first frequency domain unit includes a REG
  • the offset value indicated by the signal offset value is an offset value relative to a third frequency domain position
  • the third frequency domain position is determined according to any one of the following: The starting position of the PRB, the starting position of the first PRB of the resource pool, the starting position of the first PRB of the side row BWP, the starting position of the first PRB of the sub-channel, the starting position of the resource block set (RBset) The starting position of the first PRB, pointA.
  • FIG. 17 is a schematic diagram of the time-frequency resources of the PRS with PRB as the frequency domain granularity (first frequency domain unit) provided by an exemplary embodiment of the present application.
  • the granularity in the frequency domain is PRB
  • the granularity in the time domain is OFDM symbols.
  • the PRS uses a staggered structure between multiple OFDM symbols to map to the PRBs corresponding to the multiple OFDM symbols, so that a PRS In the frequency domain, it can be mapped to all subcarriers within the frequency domain range occupied by the PRS.
  • Figure 17 shows the resources of two PRSs, among which, PRS#1 is 0 PRBs, that is, on the first OFDM symbol carrying PRS#1 in a time slot, the frequency domain offset of the first PRB of PRS#1 is 0 PRBs.
  • PRS#2 is 2 PRBs, that is, on the first OFDM symbol carrying PRS#2 in a time slot, the frequency domain offset of the first PRB of PRS#1 is 2 PRBs.
  • FIG. 18 is a schematic diagram of the time-frequency resources of a PRS with sub-channels as frequency domain granularity (first frequency domain unit) provided by an exemplary embodiment of the present application.
  • the granularity in the frequency domain is a sub-channel
  • the granularity in the time domain is an OFDM symbol.
  • the frequency domain mapping of PRS adopts a comb structure.
  • the comb structure takes sub-channel as the granularity.
  • a sub-channel includes 4 consecutive PRBs, that is, the PRS is mapped to all PRBs included in a sub-channel and will also be mapped to the On all subcarriers of each PRB included in the subchannel, a comb structure is used to map PRS between subchannels.
  • the PRS adopts a staggered structure between multiple OFDM symbols to map to the sub-channels corresponding to the multiple OFDM symbols, thus making a A PRS can be mapped in the frequency domain to all subcarriers within the frequency domain range occupied by the PRS.
  • Figure 18 shows the resources of two PRSs, among which, PRS#1 is 0 subchannels, that is, on the first OFDM symbol carrying PRS#1 in a time slot, the frequency domain offset of the first subchannel of PRS#1 is 0 subchannels.
  • PRS#2 is 2 sub-channels, that is, on the first OFDM symbol carrying PRS#2 in a time slot, the frequency domain offset of the first sub-channel of PRS#1 is 2 sub-channels.
  • a sub-channel may also be called a resource block group (RBG).
  • FIG. 19 is a schematic diagram of the time-frequency resources of the PRS with REG as the frequency domain granularity (first frequency domain unit) provided by an exemplary embodiment of the present application.
  • the granularity in the frequency domain is multiple consecutive subcarriers, and the granularity in the time domain is OFDM symbols.
  • the granularity of multiple consecutive subcarriers can be regarded as the granularity of REG.
  • One REG includes M consecutive subcarriers or REs, and M is a positive integer greater than 1.
  • the frequency domain mapping of PRS adopts a comb structure.
  • the comb structure takes REG as the granularity.
  • a REG includes 4 consecutive subcarriers, that is, PRS is mapped to all (4) subcarriers of a REG.
  • the PRS uses a staggered structure between multiple OFDM symbols to map to the REGs corresponding to the multiple OFDM symbols, so that a PRS In the frequency domain, it can be mapped to all subcarriers within the frequency domain range occupied by the PRS.
  • Figure 19 shows the resources of two PRSs, among which, PRS#1 is 0 REG, that is, on the first OFDM symbol carrying PRS#1 in a time slot, the frequency domain offset of the first REG of PRS#1 is 0 REG.
  • PRS#2 is 2 REGs, that is, on the first OFDM symbol carrying PRS#2 in a time slot, the frequency domain offset of the first REG of PRS#1 is 2 REGs.
  • PRB, sub-channel and REG are respectively used as examples to illustrate the mapping pattern of the side row PRS in the frequency domain, and the comb tooth size is 6 for illustration.
  • the above description of the side row PRS pattern, taking the first frequency domain unit as PRB, sub-channel and REG as an example, is also applicable to other comb tooth sizes, time domain lengths and signal offset values, such as case, where S is an integer greater than or equal to 1.
  • the first frequency domain unit is used as PRB, and the PRS in different
  • An example of the mapping pattern in the frequency domain is introduced below:
  • FIG. 20 is a schematic diagram of the time-frequency resources of a PRS with a comb tooth size of 1 provided by an exemplary embodiment of the present application.
  • the granularity in the frequency domain is PRB
  • Figure 20 shows the resources of a PRS, where the PRS is 0 PRBs, that is, on the OFDM symbol carrying the PRS in a time slot, the frequency domain offset of the first PRB of the PRS is 0 PRBs. It should be noted that in in the case of,
  • FIG. 21 is a schematic diagram of the time-frequency resources of a PRS with a comb tooth size of 2 provided by an exemplary embodiment of the present application.
  • Figure 21 shows the resources of two PRSs, among which, PRS#1 is 0 PRBs, that is, on the first OFDM symbol carrying PRS#1 in a time slot, the frequency domain offset of the first PRB of PRS#1 is 0 PRBs.
  • PRS#2 is 1 PRB, that is, on the first OFDM symbol carrying PRS#2 in a time slot, the frequency domain offset of the first PRB of PRS#2 is 1 PRB.
  • FIG. 22 is a schematic diagram of the time-frequency resources of a PRS with a comb tooth size of 4 provided by an exemplary embodiment of the present application.
  • Figure 22 shows the resources of two PRSs, where PRS#1 is 0 PRBs, that is, on the first OFDM symbol carrying PRS#1 in a time slot, the frequency domain offset of the first PRB of PRS#1 is 0 PRBs.
  • PRS#2 is 2 PRBs, that is, on the first OFDM symbol carrying PRS#2 in a time slot, the frequency domain offset of the first PRB of PRS#2 is 2 PRBs.
  • FIG. 23 is a schematic diagram of the time-frequency resources of a PRS with a comb tooth size of 12 provided by an exemplary embodiment of the present application.
  • the granularity in the frequency domain is PRB
  • the granularity in the time domain is OFDM symbols.
  • Figure 23 shows the resources of two PRSs, among which, PRS#1 is 1 PRB, that is, on the first OFDM symbol carrying PRS#1 in a time slot, the frequency domain offset of the first PRB of PRS#1 is 1 PRB.
  • PRS#2 is 0 PRBs, that is, on the first OFDM symbol carrying PRS#2 in a time slot, the frequency domain offset of the first PRB of PRS#2 is 0 PRBs.
  • the PRS pattern in the embodiment of the present application uses PRB, sub-channel or REG as the first frequency domain unit granularity and is based on a comb tooth structure.
  • the comb tooth size It is less than or equal to the number of OFDM symbols occupied by the PRS pattern (i.e., domain length L), so that the PRS on L OFDM symbols can occupy all subcarriers.
  • the embodiment of the present application does not limit the mapping method of PRS on each OFDM symbol.
  • the PRBs mapped by PRS#1 on 4 OFDM symbols are the first PRB, the third PRB, the second PRB and the fourth PRB respectively.
  • PRS The PRBs mapped to #1 on the four OFDM symbols are the first PRB, the second PRB, the third PRB and the fourth PRB respectively; that is, the embodiment of this application does not limit the mapping method of PRS on each OFDM symbol. .
  • part of the first time domain unit may carry PSCCH.
  • time domain symbols 1 to 3 carry PSCCH.
  • PRS is frequency division multiplexed with PSCCH; or, PRS is not frequency division multiplexed with PSCCH.
  • FIG. 24 is a schematic diagram of time-frequency resources carrying PSCCH provided by an exemplary embodiment of the present application.
  • time domain symbols 1 to 3 carry PSCCH
  • time domain symbol 0 is used as AGC
  • time domain symbol 13 is used as GP
  • the sideline PRS sent by the first terminal device can be frequency-division multiplexed with the PSCCH sent by the first terminal device, since time domain symbol 0 and time domain symbol 13 are not used to carry the PRS, the time domain symbol can be used to transmit the PRS.
  • time domain symbols 1 to 12 are time domain symbols 1 to 12.
  • time domain symbols that can be used to transmit PRS are time domain symbols 4 to 12.
  • some of the first time domain units may carry PSFCH.
  • time domain symbols 11 and 12 carry PSFCH.
  • the first time domain unit used to transmit PSFCH is not used to transmit PRS.
  • FIG. 25 is a schematic diagram of time-frequency resources carrying PSCCH and PSFCH provided by an exemplary embodiment of the present application. As shown in (a) of Figure 25, in one time slot (including time domain symbols 0 to 13), time domain symbols 1 to 3 carry PSCCH, time domain symbols 11 and 12 carry PSFCH, and time domain symbol 0 Time domain symbol 10 and time domain symbol 13 are used as GP.
  • the sideline PRS sent by the first terminal device can be frequency-division multiplexed with the PSCCH sent by the first terminal device, and the time domain symbols used to transmit the PSFCH are not used to transmit the PRS, since the time domain symbol 0 and the time domain symbols 10 and 13 If it is not used to carry PRS, the time domain symbols that can be used to transmit PRS are time domain symbols 1 to 9.
  • P1 is the repetition period of PRS
  • P2 is the period of PSFCH
  • L is a positive integer greater than or equal to 1.
  • the resource pool includes PSFCH resources, and its period value is P2, that is, there is a time slot including PSFCH resources in every P2 time slots, because the time slots including PSFCH and the time slots not including PSFCH can be used to transmit PRS.
  • the number of time domain symbols is different (the time domain symbols used to transmit PSFCH are not used to transmit PRS).
  • All time slots include PSFCH resources or none include PSFCH resources. Therefore, if the period of PRS is P1, then P1 is an integer multiple of P2.
  • FIG. 26 is a schematic diagram of frequency resources in different time slots provided by an exemplary embodiment of the present application.
  • time slot x is used to send PRS, and the period of PRS is P1. Therefore, time slot x+P1 is also used to send PRS, and the period of PSFCH is P2. If P1 is not an integer multiple of P2, it may happen that time slot x does not include PSFCH resources and time slot x+P1 includes PSFCH resources. In this case, the number of time domain symbols that can be used to transmit PRS in the two time slots is different. If the comb tooth size of the PRS transmitted in time slot ), the PRS cannot be sent in time slot x+P1. Therefore, it is necessary to ensure that the repetition period of the PRS is an integer multiple of the period of the PSFCH to achieve normal repeated transmission of the PRS.
  • the comb tooth size of the comb structure of the PRS or the number of first time domain units occupied by the PRS in a second time domain unit is less than or equal to the first time domain unit in a second time domain unit that can be used to transmit the PRS.
  • the number of time domain units is less than or equal to the first terminal device.
  • the number of first time domain units that can be used to transmit PRS in a second time domain unit is determined based on at least one of the following information:
  • the number of OFDM symbols that can be used to transmit PRS in one time slot of the resource pool is determined according to the resource pool.
  • the minimum number of OFDM symbols available for transmitting PRS in each included time slot is determined.
  • PSFCH resources are configured in the time slot, and the number of OFDM symbols that can be used to transmit PRS in the time slot that does not include PSFCH resources is greater than the number of OFDM symbols that can be used to transmit PRS in the time slot that includes PSFCH resources.
  • the minimum number of OFDM symbols that can be used to transmit PRS in each time slot included in the resource pool can be determined based on the number of OFDM symbols that can be used to transmit PRS in the time slot that includes PSFCH in the resource pool. On this basis, it can be determined that the resource pool includes The number of OFDM symbols used to transmit PRS in each time slot of . For example, as shown in Figure 26, the number of OFDM symbols that can be used to transmit PRS in the time slot (time slot n) excluding PSFCH is 9, and the number of OFDM symbols that can be used to transmit PRS in the time slot (time slot n+P1) including PSFCH The number of symbols is 6. Therefore, the minimum number of OFDM symbols that can be used to transmit PRS in each time slot included in the resource pool is 6. When PRS is repeatedly transmitted in the time slots of this resource pool, the number of OFDM symbols used to transmit PRS in each time slot is 6.
  • the configuration information of the PRS (including one or more PRS configurations) can be obtained.
  • the first terminal device can determine the first PRS configuration by obtaining the configuration information of the PRS, for example, based on the first information, so that the first terminal device can send a PRS to the second terminal device or receive a PRS sent by the second terminal device based on the first PRS configuration.
  • PRS on this basis, the positioning of terminal equipment based on PRS can be realized.
  • the second terminal device generally refers to a terminal device that is different from the first terminal device and is not limited to a specific device.
  • the method provided by the embodiment of the present application allows the first terminal device to determine the first PRS configuration based on the first information, so that the first terminal device can transmit PRS between the first terminal device and the second terminal device based on the first PRS configuration.
  • PRS transmission between terminal devices is realized, and on the basis of realizing the transmission of PRS, the terminal device can be positioned through PRS.
  • the method for the first terminal device to determine the first PRS configuration is introduced:
  • Figure 27 is a flow chart of a sidelink-based transmission method provided by an exemplary embodiment of the present application. The method includes:
  • Step 2702 The first terminal device obtains the configuration information of the PRS according to the preconfiguration information.
  • the preconfigured information is information preconfigured in the first terminal device.
  • the configuration information of the PRS is obtained by performing resource mapping on the PRS as shown in Figures 17 to 26; or, the configuration information of the PRS is obtained by performing resource mapping on the PRS in other ways.
  • the PRS configuration information includes at least one PRS configuration.
  • Step 2704 The first terminal device determines the first PRS configuration in the PRS configuration information according to the first information.
  • the first terminal device determines the first PRS configuration from the at least one PRS configuration according to the first information. Determining the first PRS configuration by the first terminal device may also be referred to as determining a PRS pattern of the first terminal device.
  • the first information includes at least one of the following:
  • each second time domain unit includes at least one first time domain unit, and each second time domain unit may also include at least two first time domain units.
  • the first time domain unit includes orthogonal frequency division multiplexing OFDM symbols
  • the second time domain unit includes time slots or mini-slots.
  • the identification information of the first terminal device includes at least one of the following:
  • C-RNTI Cell-Radio Network Temporary Identifier
  • Layer 2 in NR includes the following sub-layers: Medium Access Control (MAC), Radio Link Control (RLC), Packet Data Convergence Protocol (PDCP) and services Data Adaptation Protocol (Service Data Adaptation Protocol, SDAP).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP services Data Adaptation Protocol
  • the source target identifier can be understood as a source identifier.
  • the identification information of the first terminal device may be all or part of the above identification information.
  • the identification information of the first terminal device includes a partial bit sequence of the terminal identification.
  • the time domain resource information of the PRS includes at least one of the following:
  • the repetition period information of the PRS is used to reflect the repetition of the PRS in different second time domain units of the resource pool.
  • the repetition number information of the PRS is used to reflect the number of times the PRS appears repeatedly in different second time domain units of the resource pool.
  • the time domain interval information of two adjacent repeated PRSs is information with the first time domain unit or the second time domain unit as the granularity.
  • the frequency domain resource information of the PRS includes at least one of the following:
  • the positioning frequency layer information of the PRS includes at least one of the following:
  • pointA ⁇ Frequency domain reference point
  • the second time domain unit includes PSFCH resources: Since PRS cannot occupy the first time domain unit where PSFCH is located, when the second time domain unit contains PSFCH resources, the number of first time domain units that can be used to transmit PRS is less than The second time domain unit does not include PSFCH resources.
  • the PRS supports mapping to the first time domain unit carrying the PSCCH: If the PRS can be mapped to the first time domain unit where the PSCCH is located, the number of first time domain units that can be used to transmit the PRS is greater than the number of first time domain units where the PRS cannot be mapped to the first time domain unit where the PSCCH is located. time domain unit.
  • the first terminal device group for collaborative positioning includes: target terminal device (i.e., the terminal device to be positioned), anchor terminal device or supporting terminal device (i.e., terminal device that supports positioning the target terminal device, the terminal device sends or Receive PRS and provide positioning related information).
  • target terminal device i.e., the terminal device to be positioned
  • anchor terminal device or supporting terminal device i.e., terminal device that supports positioning the target terminal device, the terminal device sends or Receive PRS and provide positioning related information.
  • the first terminal device determines its own PRS pattern (first PRS configuration) based on the PRS patterns (PRS configuration) of other terminal devices in the first terminal device group. For example, the first terminal device adopts the same PRS pattern as other terminal devices.
  • the first information is sent to the first terminal device by a terminal device other than the first terminal device; or is sent by a network device to the first terminal device; or is preset in the first terminal device.
  • Configuration or protocol predefined information The first terminal device can determine the first PRS configuration according to one type of information or a combination of multiple types of information in the above-mentioned first information.
  • the first terminal device obtains the second signaling from the second terminal device, and the second signaling includes the first information, so that the first terminal device obtains the first information.
  • the second signaling includes at least one of the following:
  • MAC Control Element MAC Control Element, MAC CE
  • SCI ⁇ Sidelink Control Information
  • Step 2706 The first terminal device sends third signaling to the second terminal device, where the third signaling is used to indicate the first PRS configuration.
  • the first terminal device determines the PRS pattern (first PRS configuration)
  • the first terminal device indicates the PRS pattern to the second terminal device through third signaling.
  • the third signaling includes at least one of the following:
  • the second terminal device generally refers to a terminal device that is different from the first terminal device and is not limited to a specific terminal device.
  • the first terminal device indicates the first PRS configuration to the second terminal device through third signaling, for example, the first terminal device indicates through MAC CE and/or SCI.
  • Step 2708 The first terminal device sends a PRS to the second terminal device or receives a PRS sent by the second terminal device based on the first PRS configuration.
  • the first terminal device may send a PRS to the second terminal device based on the time-frequency resource of the PRS configured by the first PRS.
  • the first terminal device may receive the PRS sent by the second terminal device in the time-frequency resource configured by the first PRS.
  • the positioning of the terminal device (the first terminal device or the second terminal device) through the PRS can be achieved.
  • the above-mentioned second terminal device generally refers to a terminal device that is different from the first terminal device, and does not specifically refer to a specific terminal device. Furthermore, the second terminal device may include one or more terminal devices.
  • the method provided by this embodiment allows the first terminal device to determine the first PRS configuration based on the first information, so that the first terminal device can transmit PRS between the first terminal device and the second terminal device based on the first PRS configuration, thereby The PRS transmission between terminal devices is realized. On the basis of realizing the transmission of PRS, the positioning of the terminal device through PRS can be realized.
  • Figure 28 is a flow chart of a sidelink-based transmission method provided by an exemplary embodiment of the present application. The method includes:
  • Step 2802 The first terminal device obtains the configuration information of the PRS according to the network configuration information.
  • the network configuration information is information configured by the network device and sent to the first terminal device.
  • the configuration information of the PRS is obtained by performing resource mapping on the PRS as shown in Figures 17 to 26; or, the configuration information of the PRS is obtained by performing resource mapping on the PRS in other ways.
  • the PRS configuration information includes at least one PRS configuration.
  • the network configuration information includes at least one of the following:
  • Step 2804 The first terminal device determines the first PRS configuration in the PRS configuration information according to the first information.
  • the first terminal device determines the first PRS configuration from the at least one PRS configuration according to the first information. Determining the first PRS configuration by the first terminal device may also be referred to as determining a PRS pattern of the first terminal device.
  • the first information includes at least one of the following:
  • each second time domain unit includes at least one first time domain unit, and each second time domain unit may also include at least two first time domain units.
  • the first time domain unit includes orthogonal frequency division multiplexing OFDM symbols
  • the second time domain unit includes time slots or mini-slots.
  • the identification information of the first terminal device includes at least one of the following:
  • the first terminal device is identified in the group of the communication group
  • the time domain resource information of the PRS includes at least one of the following:
  • the frequency domain resource information of the PRS includes at least one of the following:
  • the positioning frequency layer information of the PRS includes at least one of the following:
  • the first information is sent to the first terminal device by a terminal device other than the first terminal device; or is sent by a network device to the first terminal device; or is preset in the first terminal device.
  • Configuration or protocol predefined information The first terminal device can determine the first PRS configuration according to one type of information or a combination of multiple types of information in the above-mentioned first information.
  • the first terminal device obtains the second signaling from the second terminal device, and the second signaling includes the first information, so that the first terminal device obtains the first information.
  • the second signaling includes at least one of the following:
  • Step 2806 The first terminal device sends third signaling to the second terminal device, where the third signaling is used to indicate the first PRS configuration.
  • the first terminal device determines the PRS pattern (first PRS configuration)
  • the first terminal device indicates the PRS pattern to the second terminal device through third signaling.
  • the third signaling includes at least one of the following:
  • the second terminal device generally refers to a terminal device that is different from the first terminal device and is not limited to a specific terminal device.
  • the first terminal device indicates the first PRS configuration to the second terminal device through third signaling, for example, the first terminal device indicates through MAC CE and/or SCI.
  • Step 2808 The first terminal device sends a PRS to the second terminal device based on the first PRS configuration or receives a PRS sent by the second terminal device.
  • the first terminal device may send a PRS to the second terminal device based on the time-frequency resource of the PRS configured by the first PRS.
  • the first terminal device may receive the PRS sent by the second terminal device in the time-frequency resource configured by the first PRS.
  • the positioning of the terminal device (the first terminal device or the second terminal device) through the PRS can be achieved.
  • the above-mentioned second terminal device generally refers to a terminal device that is different from the first terminal device, and does not specifically refer to a specific terminal device. Furthermore, the second terminal device may include one or more terminal devices.
  • the method provided by this embodiment allows the first terminal device to determine the first PRS configuration based on the first information, so that the first terminal device can transmit PRS between the first terminal device and the second terminal device based on the first PRS configuration, thereby The PRS transmission between terminal devices is realized. On the basis of realizing the transmission of PRS, the positioning of the terminal device through PRS can be realized.
  • Figure 29 is a flow chart of a sidelink-based transmission method provided by an exemplary embodiment of the present application. The method includes:
  • Step 2902 The first terminal device receives the first signaling sent by the second terminal device.
  • the first signaling includes PRS configuration information.
  • the first signaling includes at least one of the following:
  • the configuration information of the PRS is obtained by performing resource mapping on the PRS as shown in Figures 17 to 26; or, the configuration information of the PRS is obtained by performing resource mapping on the PRS in other ways.
  • the PRS configuration information includes at least one PRS configuration.
  • Step 2904 The first terminal device determines the first PRS configuration in the PRS configuration information according to the first information.
  • the first terminal device determines the first PRS configuration from the at least one PRS configuration according to the first information. Determining the first PRS configuration by the first terminal device may also be referred to as determining a PRS pattern of the first terminal device.
  • the first information includes at least one of the following:
  • each second time domain unit includes at least one first time domain unit, and each second time domain unit may also include at least two first time domain units.
  • the first time domain unit includes orthogonal frequency division multiplexing OFDM symbols
  • the second time domain unit includes time slots or mini-slots.
  • the identification information of the first terminal device includes at least one of the following:
  • the first terminal device is identified in the group of the communication group
  • the time domain resource information of the PRS includes at least one of the following:
  • the frequency domain resource information of the PRS includes at least one of the following:
  • the positioning frequency layer information of the PRS includes at least one of the following:
  • the first information is sent to the first terminal device by a terminal device other than the first terminal device; or is sent by a network device to the first terminal device; or is preset in the first terminal device.
  • Configuration or protocol predefined information The first terminal device can determine the first PRS configuration according to one type of information or a combination of multiple types of information in the above-mentioned first information.
  • the first terminal device obtains the second signaling from the second terminal device, and the second signaling includes the first information, so that the first terminal device obtains the first information.
  • the second signaling includes at least one of the following:
  • Step 2906 The first terminal device sends third signaling to the second terminal device, where the third signaling is used to indicate the first PRS configuration.
  • the first terminal device determines the PRS pattern (first PRS configuration)
  • the first terminal device indicates the PRS pattern to the second terminal device through third signaling.
  • the third signaling includes at least one of the following:
  • the second terminal device generally refers to a terminal device that is different from the first terminal device and is not limited to a specific terminal device.
  • the first terminal device indicates the first PRS configuration to the second terminal device through third signaling, for example, the first terminal device indicates through MAC CE and/or SCI.
  • Step 2908 The first terminal device sends a PRS to the second terminal device or receives a PRS sent by the second terminal device based on the first PRS configuration.
  • the first terminal device may send a PRS to the second terminal device based on the time-frequency resource of the PRS configured by the first PRS.
  • the first terminal device may receive the PRS sent by the second terminal device in the time-frequency resource configured by the first PRS.
  • the positioning of the terminal device (the first terminal device or the second terminal device) through the PRS can be achieved.
  • the above-mentioned second terminal device generally refers to a terminal device that is different from the first terminal device, and does not specifically refer to a specific terminal device. Furthermore, the second terminal device may include one or more terminal devices.
  • the method provided by this embodiment allows the first terminal device to determine the first PRS configuration based on the first information, so that the first terminal device can transmit PRS between the first terminal device and the second terminal device based on the first PRS configuration, thereby The PRS transmission between terminal devices is realized. On the basis of realizing the transmission of PRS, the positioning of the terminal device through PRS can be realized.
  • the above-mentioned second terminal device generally refers to a terminal device that is different from the first terminal device, and does not specifically refer to a specific terminal device.
  • the second terminal device may include one or more terminal devices.
  • a second terminal device sends the first signaling to the first terminal device
  • a second terminal device sends the second signaling to the first terminal device
  • a second terminal device receives the third signaling sent by the first terminal device.
  • the second terminal equipment that transmits the PRS with the first terminal equipment are all the same, or are all different, or are partially the same.
  • the steps performed between the first terminal device and the second terminal device can be interchanged, that is, the first terminal device performs the steps of the second terminal device, and the steps performed by the second terminal device are performed by the first terminal device.
  • the second terminal device performs the steps of the first terminal device.
  • the first terminal device and the second terminal device are only used to distinguish the two terminal devices as different terminal devices, and are not used to specifically refer to a specific terminal device.
  • Figure 30 is a block diagram of a sidelink-based transmission device provided by an exemplary embodiment of the present application. As shown in Figure 30, the device includes:
  • Determining module 3001 configured to determine the first PRS configuration according to the first information
  • Transceiver module 3002 configured to send a PRS to a second terminal device based on the first PRS configuration or receive the PRS sent by the second terminal device.
  • the first information includes at least one of the following:
  • the time domain resource information of the PRS is the time domain resource information of the PRS.
  • the frequency domain resource information of the PRS is the frequency domain resource information of the PRS.
  • the positioning frequency layer information of the PRS is the positioning frequency layer information of the PRS.
  • the number of first time domain units used for sidelink transmission in the second time domain unit is the number of first time domain units used for sidelink transmission in the second time domain unit
  • the number of the first time domain units used to transmit the PRS in the second time domain unit is the number of the first time domain units used to transmit the PRS in the second time domain unit
  • the second time domain unit includes PSFCH resources
  • PRS configurations of other terminal devices in the device group that perform cooperative positioning with the device
  • each second time domain unit includes at least one first time domain unit.
  • the identification information of the device includes at least one of the following:
  • the group identifier of the communication group in which the device is located
  • the device is identified within the group of the communication group
  • the time domain resource information of the PRS includes at least one of the following:
  • the second time domain unit information where the PRS is located is located;
  • the repetition period information of the PRS is the repetition period information of the PRS.
  • the repetition number information of the PRS is the repetition number information of the PRS.
  • the first time domain unit offset information The first time domain unit offset information.
  • the frequency domain resource information of the PRS includes at least one of the following:
  • the frequency domain resource bandwidth of the PRS is the frequency domain resource bandwidth of the PRS
  • the starting frequency domain position information of the PRS is the starting frequency domain position information of the PRS.
  • the starting frequency domain offset information of the PRS is the starting frequency domain offset information of the PRS.
  • the positioning frequency layer information of the PRS includes at least one of the following:
  • the frequency domain resource bandwidth of the PRS is the frequency domain resource bandwidth of the PRS
  • the starting frequency domain position information of the PRS is the starting frequency domain position information of the PRS.
  • the starting frequency domain offset information of the PRS is the starting frequency domain offset information of the PRS.
  • the device also includes:
  • the acquisition module 3003 is used to acquire the configuration information of the PRS, where the PRS configuration information includes at least one PRS configuration;
  • the determination module 3001 is used for:
  • the first PRS configuration is determined from the at least one PRS configuration according to the first information.
  • the acquisition module 3003 is used for:
  • the network configuration information includes at least one of the following:
  • the transceiver module 3002 is used for:
  • the first signaling includes at least one of the following:
  • the device also includes:
  • Acquisition module 3003 configured to acquire second signaling from the second terminal device, where the second signaling includes the first information
  • the second signaling includes at least one of the following:
  • the transceiver module 3002 is used for:
  • the third signaling includes at least one of the following:
  • the PRS has a comb-like structure with a first frequency domain unit as a comb-tooth granularity, and the first frequency domain unit includes frequency domain resources of n consecutive resource units RE in the frequency domain.
  • n is a positive integer greater than 1.
  • the first frequency domain unit includes frequency domain resources of any one of the following resources:
  • the sub-channel includes multiple continuous PRBs in the frequency domain
  • the REG includes multiple continuous sub-carriers in the frequency domain.
  • the first PRS configuration includes at least one of comb tooth size, time domain length and signal offset value
  • the comb tooth size includes the interval between two adjacent first frequency domain units of the PRS on the same first time domain unit;
  • the time domain length includes the number of the first time domain unit occupied by the PRS within a second time domain unit
  • the signal offset value is included in the first first time domain unit in one of the second time domain units, and the offset value of the first first frequency domain unit of the PRS, each Each of the second time domain units includes at least one of the first time domain units.
  • the PRS is frequency division multiplexed with the PSCCH; or, the PRS is not frequency division multiplexed with the PSCCH.
  • the first time domain unit used to transmit the PSFCH is not used to transmit the PRS.
  • the repetition period of the PRS is an integer multiple of the period of the PSFCH.
  • the comb tooth size of the comb structure or the number of the first time domain units occupied by the PRS in one of the second time domain units is less than or equal to one of the first time domain units.
  • the number of the first time domain units that can be used to transmit the PRS in one of the second time domain units is determined based on at least one of the following information:
  • one of the second time domain units includes PSFCH resources
  • PRS configurations of other terminal devices in the device group that coordinate positioning with the device.
  • the first time domain unit includes OFDM symbols
  • the second time domain unit includes time slots or mini-slots.
  • Figure 31 is a block diagram of a sidelink-based positioning reference signal configuration device provided by an exemplary embodiment of the present application. As shown in Figure 31, the device includes:
  • the acquisition module 3101 is used to acquire the configuration information of the PRS, which has a comb-like structure with the first frequency domain unit as the comb-tooth granularity;
  • the first frequency domain unit includes frequency domain resources of n consecutive REs in the frequency domain, where n is a positive integer greater than 1.
  • the first frequency domain unit includes frequency domain resources of any one of the following resources:
  • the sub-channel includes multiple continuous PRBs in the frequency domain
  • the REG includes multiple continuous sub-carriers in the frequency domain.
  • the configuration information of the PRS includes at least one of comb tooth size, time domain length and signal offset value;
  • the comb tooth size includes the interval between two adjacent first frequency domain units of the PRS on the same first time domain unit;
  • the time domain length includes the number of the first time domain unit occupied by the PRS within a second time domain unit
  • the signal offset value is included in the first first time domain unit in one of the second time domain units, and the offset value of the first first frequency domain unit of the PRS, each Each of the second time domain units includes at least one of the first time domain units.
  • the PRS is frequency division multiplexed with the PSCCH; or, the PRS is not frequency division multiplexed with the PSCCH.
  • the first time domain unit used to transmit the PSFCH is not used to transmit the PRS.
  • the repetition period of the PRS is an integer multiple of the period of the PSFCH.
  • the comb tooth size of the comb structure or the number of the first time domain units occupied by the PRS in one of the second time domain units is less than or equal to one of the first time domain units.
  • the number of the first time domain units that can be used to transmit the PRS in one of the second time domain units is determined based on at least one of the following information:
  • one of the second time domain units includes PSFCH resources
  • PRS configurations of other terminal devices in the device group that coordinate positioning with the device.
  • the acquisition module 3101 is used to:
  • the network configuration information includes at least one of the following:
  • the device also includes:
  • the receiving module 3102 is configured to receive the first signaling sent by the second terminal device, where the first signaling includes the configuration information of the PRS.
  • the first signaling includes at least one of the following:
  • the first time domain unit includes OFDM symbols
  • the second time domain unit includes time slots or mini-slots.
  • Figure 32 is a block diagram of a sidelink-based transmission device provided by an exemplary embodiment of the present application. As shown in Figure 32, the device includes:
  • Sending module 3201 configured to send PRS configuration information to the first terminal device, where the PRS configuration information includes at least one PRS configuration;
  • the at least one PRS configuration is used for the first terminal device to determine a first PRS configuration according to the first information
  • the first PRS configuration is used for the first terminal device to send a request to a third PRS configuration according to the first PRS configuration.
  • the second terminal device sends a PRS or receives the PRS sent by the second terminal device.
  • the first information includes at least one of the following:
  • the identification information of the first terminal device is the identification information of the first terminal device
  • the time domain resource information of the PRS is the time domain resource information of the PRS.
  • the frequency domain resource information of the PRS is the frequency domain resource information of the PRS.
  • the positioning frequency layer information of the PRS is the positioning frequency layer information of the PRS.
  • the number of first time domain units used for sidelink transmission in the second time domain unit is the number of first time domain units used for sidelink transmission in the second time domain unit
  • the number of the first time domain units used to transmit the PRS in the second time domain unit is the number of the first time domain units used to transmit the PRS in the second time domain unit
  • the second time domain unit includes PSFCH resources
  • PRS configurations of other terminal devices in the first terminal device group that perform cooperative positioning with the first terminal device
  • each second time domain unit includes at least one first time domain unit.
  • the configuration information of the PRS is carried in at least one of the following information:
  • the PRS has a comb-like structure with a first frequency domain unit as a comb-tooth granularity, and the first frequency domain unit includes frequency domain resources of n consecutive REs in the frequency domain, n is a positive integer greater than 1.
  • the first frequency domain unit includes frequency domain resources of any one of the following resources:
  • the sub-channel includes multiple continuous PRBs in the frequency domain
  • the REG includes multiple continuous sub-carriers in the frequency domain.
  • the first PRS configuration includes at least one of comb tooth size, time domain length and signal offset value
  • the comb tooth size includes the interval between two adjacent first frequency domain units of the PRS on the same first time domain unit;
  • the time domain length includes the number of the first time domain unit occupied by the PRS within a second time domain unit
  • the signal offset value is included in the first first time domain unit in one of the second time domain units, and the offset value of the first first frequency domain unit of the PRS, each Each of the second time domain units includes at least one of the first time domain units.
  • the PRS is frequency division multiplexed with the PSCCH; or, the PRS is not frequency division multiplexed with the PSCCH.
  • the first time domain unit used to transmit the PSFCH is not used to transmit the PRS.
  • the repetition period of the PRS is an integer multiple of the period of the PSFCH.
  • the comb tooth size of the comb structure or the number of the first time domain units occupied by the PRS in one of the second time domain units is less than or equal to one of the first time domain units.
  • the number of the first time domain units that can be used to transmit the PRS in one of the second time domain units is determined based on at least one of the following information:
  • one of the second time domain units includes PSFCH resources
  • PRS configurations of other terminal devices in the first terminal device group that perform cooperative positioning with the first terminal device.
  • the first time domain unit includes OFDM symbols
  • the second time domain unit includes time slots or mini-slots.
  • Figure 33 is a block diagram of a sidelink-based transmission device provided by an exemplary embodiment of the present application. As shown in Figure 33, the device includes:
  • the sending module 3301 is configured to send the configuration information of the PRS to the first terminal device, where the PRS has a comb-like structure with the first frequency domain unit as the comb-tooth granularity;
  • the first frequency domain unit includes frequency domain resources of n consecutive REs in the frequency domain, where n is a positive integer greater than 1.
  • the first frequency domain unit includes frequency domain resources of any one of the following resources:
  • the sub-channel includes multiple continuous PRBs in the frequency domain
  • the REG includes multiple continuous sub-carriers in the frequency domain.
  • the configuration information of the PRS includes at least one of comb tooth size, time domain length and signal offset value;
  • the comb tooth size includes the interval between two adjacent first frequency domain units of the PRS on the same first time domain unit;
  • the time domain length includes the number of the first time domain unit occupied by the PRS within a second time domain unit
  • the signal offset value is included in the first first time domain unit in one of the second time domain units, and the offset value of the first first frequency domain unit of the PRS, each Each of the second time domain units includes at least one of the first time domain units.
  • the PRS is frequency division multiplexed with the PSCCH; or, the PRS is not frequency division multiplexed with the PSCCH.
  • the first time domain unit used to transmit the PSFCH is not used to transmit the PRS.
  • the repetition period of the PRS is an integer multiple of the period of the PSFCH.
  • the comb tooth size of the comb structure or the number of the first time domain units occupied by the PRS in one of the second time domain units is less than or equal to one of the first time domain units.
  • the number of the first time domain units that can be used to transmit the PRS in one of the second time domain units is determined based on at least one of the following information:
  • one of the second time domain units includes PSFCH resources
  • PRS configurations of other terminal devices in the first terminal device group that perform cooperative positioning with the first terminal device.
  • the configuration information of the PRS is carried in at least one of the following information:
  • the first time domain unit includes OFDM symbols
  • the second time domain unit includes time slots or mini-slots.
  • the device provided in the above embodiment implements its functions, only the division of the above functional modules is used as an example. In practical applications, the above functions can be allocated to different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • Figure 34 is a schematic structural diagram of a communication device (terminal device and/or network device) provided by an exemplary embodiment of the present application.
  • the communication device 3400 includes: a processor 3401, a receiver 3402, a transmitter 3403, a memory 3404 and a bus 3405. .
  • the processor 3401 includes one or more processing cores.
  • the processor 3401 executes various functional applications and information processing by running software programs and modules.
  • the receiver 3402 and the transmitter 3403 can be implemented as a communication component, and the communication component can be a communication chip.
  • the memory 3404 is connected to the processor 3401 through a bus 3405.
  • the memory 3404 can be used to store at least one instruction, and the processor 3401 is used to execute the at least one instruction to implement each step in the above method embodiment.
  • memory 3404 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory (Electrically Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read-Only Memory (EPROM), Static Random-Access Memory (SRAM), read-only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • magnetic or optical disks electrically erasable programmable Read-only memory (Electrically Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read-Only Memory (EPROM), Static Random-Access Memory (SRAM), read-only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • PROM Programmable Read-Only Memory
  • the processor and transceiver in the communication device involved in the embodiment of the present application can be implemented together as a communication chip, or the transceiver alone forms a communication chip.
  • the transmitter in the transceiver performs the sending step performed by the terminal device in any of the above methods
  • the receiver in the transceiver performs the receiving step performed by the terminal device in any of the above methods
  • the processor Perform steps other than sending and receiving steps, which will not be described here.
  • the processor and transceiver in the communication device involved in the embodiment of the present application can be implemented together as a communication chip, or the transceiver alone forms a communication chip.
  • the transmitter in the transceiver performs the sending step performed by the network device in any of the above methods
  • the receiver in the transceiver performs the receiving step performed by the network device in any of the above methods
  • the processor Perform steps other than sending and receiving steps, which will not be described here.
  • a computer-readable storage medium in which at least one instruction, at least a program, a code set or an instruction set is stored, and the at least one instruction, the At least one program, the code set or the instruction set is loaded and executed by the processor to implement the sidelink-based transmission method or the sidelink-based positioning reference signal configuration method provided by each of the above method embodiments.
  • a chip is also provided, the chip including programmable logic circuits and/or program instructions, when the chip is run on a communication device, for performing operations based on the programmable logic circuits and/or program instructions.
  • the program implements the sidelink-based transmission method or the sidelink-based positioning reference signal configuration method provided by each of the above method embodiments.
  • a computer program product is also provided.
  • the computer program product When the computer program product is run on a processor of a computer device, the computer device performs the above-mentioned sidelink-based transmission method or sidelink-based transmission method. Configuration method of positioning reference signal.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • Storage media can be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输方法、定位参考信号的配置方法、装置、设备及介质,属于移动通信领域。所述方法包括:根据第一信息确定第一PRS配置;基于第一PRS配置向第二终端设备发送PRS或接收第二终端设备发送的PRS。通过由第一终端设备根据第一信息确定第一PRS配置,可以使得第一终端设备基于第一PRS配置与第二终端设备之间传输PRS,从而实现了终端设备之间的PRS传输,在实现传输PRS的基础上可实现通过PRS对终端设备的定位。

Description

传输方法、定位参考信号的配置方法、装置、设备及介质 技术领域
本申请涉及移动通信领域,特别涉及一种传输方法、定位参考信号的配置方法、装置、设备及介质。
背景技术
在移动通信网络中,终端设备与终端设备之间能够通过侧行链路(Sidelink,SL)直接传输消息。
基于侧行链路的定位技术是针对移动通信网络的定位技术的增强方案之一。不同终端设备之间可通过侧行链路发送定位参考信号(Positioning Reference Signal,PRS),通过对PRS进行测量,可实现对终端设备的定位。对于终端设备之间传输PRS的具体实现,需要进一步讨论研究。
发明内容
本申请提供了一种传输方法、定位参考信号的配置方法、装置、设备及介质。所述技术方案如下:
根据本申请的一方面,提供了一种基于侧行链路的传输方法,所述方法由第一终端设备执行,所述方法包括:
根据第一信息确定第一PRS配置;
基于所述第一PRS配置向第二终端设备发送PRS或接收所述第二终端设备发送的所述PRS。
根据本申请的另一方面,提供了一种基于侧行链路的定位参考信号的配置方法,所述方法由第一终端设备执行,所述方法包括:
获取PRS的配置信息,所述PRS具有以第一频域单元为梳齿粒度的梳状结构;
其中,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
根据本申请的另一方面,提供了一种基于侧行链路的定位参考信号的配置方法,所述方法由网络设备执行,所述方法包括:
向第一终端设备发送PRS的配置信息,所述PRS的配置信息包括至少一种PRS配置;
其中,所述至少一种PRS配置用于所述第一终端设备根据第一信息确定第一PRS配置,所述第一PRS配置用于所述第一终端设备根据所述第一PRS配置向第二终端设备发送PRS或接收所述第二终端设备发送的所述PRS。
根据本申请的另一方面,提供了一种基于侧行链路的定位参考信号的配置方法,所述方法由第一终端设备执行,所述方法包括:
向第一终端设备发送PRS的配置信息,所述PRS具有以第一频域单元为梳齿粒度的梳状结构;
其中,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
根据本申请的另一方面,提供了一种基于侧行链路的传输装置,所述装置包括:
确定模块,用于根据第一信息确定第一PRS配置;
收发模块,用于基于所述第一PRS配置向第二终端设备发送PRS或接收所述第二终端设备发送的所述PRS。
根据本申请的另一方面,提供了一种基于侧行链路的定位参考信号的配置装置,所述装置包括:
获取模块,用于获取PRS的配置信息,所述PRS具有以第一频域单元为梳齿粒度的梳状结构;
其中,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
根据本申请的另一方面,提供了一种基于侧行链路的定位参考信号的配置装置,所述装置包括:
发送模块,用于向第一终端设备发送PRS的配置信息,所述PRS的配置信息包括至少一种PRS配置;
其中,所述至少一种PRS配置用于所述第一终端设备根据第一信息确定第一PRS配置,所述第一PRS配置用于所述第一终端设备根据所述第一PRS配置向第二终端设备发送PRS或接收所述第二终端设备发送的所述PRS。
根据本申请的另一方面,提供了一种基于侧行链路的定位参考信号的配置装置,所述装置包括:
发送模块,用于向第一终端设备发送PRS的配置信息,所述PRS具有以第一频域单元为梳齿粒度的梳状结构;
其中,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
根据本申请的另一方面,提供了一种终端设备,所述终端设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的基于侧行链路的传输方法或基于侧行链路的定位参考信号的配置方法。
根据本申请的另一方面,提供了一种网络设备,所述网络设备包括:处理器;与所述处理器相连的收 发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的基于侧行链路的定位参考信号的配置方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如上述方面所述的基于侧行链路的传输方法或基于侧行链路的定位参考信号的配置方法。
根据本申请的另一方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在计算机设备上运行时,用于基于可编程逻辑电路和/或程序实现上述方面所述的基于侧行链路的传输方法或基于侧行链路的定位参考信号的配置方法。
根据本申请的另一方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,使得计算机设备执行上述方面所述的基于侧行链路的传输方法或基于侧行链路的定位参考信号的配置方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过由第一终端设备根据第一信息确定第一PRS配置,可以使得第一终端设备基于第一PRS配置与第二终端设备之间传输PRS,从而实现了终端设备之间的PRS传输,在实现传输PRS的基础上可实现通过PRS对终端设备的定位。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的网络覆盖内侧行通信的示意图;
图2是本申请一个示例性实施例提供的部分网络覆盖侧行通信的示意图;
图3是本申请一个示例性实施例提供的网络覆盖外侧行通信的示意图;
图4是本申请一个示例性实施例提供的单播传输的示意图;
图5是本申请一个示例性实施例提供的一种组播传输的示意图;
图6是本申请一个示例性实施例提供的另一种组播传输的示意图;
图7是本申请一个示例性实施例提供的PSSCH和PSCCH的传输资源的示意图;
图8是本申请一个示例性实施例提供的存在PSFCH的侧行时隙的示意图;
图9是本申请一个示例性实施例提供的PSSCH为13个时域符号数时4个DMRS时域符号的时域位置的示意图;
图10是本申请一个示例性实施例提供的DMRS频域位置的示意图;
图11是本申请一个示例性实施例提供的下行定位的PRS的资源映射示意图;
图12是本申请一个示例性实施例提供的通信系统的系统架构的示意图;
图13是本申请一个示例性实施例提供的基于侧行链路的传输方法的流程图;
图14是本申请一个示例性实施例提供的基于侧行链路的定位参考信号的配置方法的流程图;
图15是本申请一个示例性实施例提供的基于侧行链路的定位参考信号的配置方法的流程图;
图16是本申请一个示例性实施例提供的基于侧行链路的定位参考信号的配置方法的流程图;
图17是本申请一个示例性实施例提供的以PRB为频域粒度的PRS的时频资源的示意图;
图18是本申请一个示例性实施例提供的以子信道为频域粒度的PRS的时频资源的示意图;
图19是本申请一个示例性实施例提供的以REG为频域粒度的PRS的时频资源的示意图;
图20是本申请一个示例性实施例提供的梳齿尺寸为1的PRS的时频资源的示意图;
图21是本申请一个示例性实施例提供的梳齿尺寸为2的PRS的时频资源的示意图;
图22是本申请一个示例性实施例提供的梳齿尺寸为4的PRS的时频资源的示意图;
图23是本申请一个示例性实施例提供的梳齿尺寸为12的PRS的时频资源的示意图;
图24是本申请一个示例性实施例提供的承载有PSCCH的时频资源的示意图;
图25是本申请一个示例性实施例提供的承载有PSCCH和PSFCH的时频资源的示意图;
图26是本申请一个示例性实施例提供的不同时隙的频率资源的示意图;
图27是本申请一个示例性实施例提供的基于侧行链路的传输方法的流程图;
图28是本申请一个示例性实施例提供的基于侧行链路的传输方法的流程图;
图29是本申请一个示例性实施例提供的基于侧行链路的传输方法的流程图;
图30是本申请一个示例性实施例提供的基于侧行链路的传输装置的框图;
图31是本申请一个示例性实施例提供的基于侧行链路的定位参考信号的配置装置的框图;
图32是本申请一个示例性实施例提供的基于侧行链路的传输装置的框图;
图33是本申请一个示例性实施例提供的基于侧行链路的传输装置的框图;
图34是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
首先,对本申请实施例涉及的一些名词作如下介绍:
对侧行通信进行介绍:
在侧行通信(基于侧行链路的通信)中,根据进行通信的终端设备所处的网络覆盖情况,可以分为网络覆盖内侧行通信,部分网络覆盖侧行通信,及网络覆盖外侧行通信三种情况。
示例地,图1是本申请一个示例性实施例提供的网络覆盖内侧行通信的示意图,图2是本申请一个示例性实施例提供的部分网络覆盖侧行通信的示意图,图3是本申请一个示例性实施例提供的网络覆盖外侧行通信的示意图。
如图1所示,在网络覆盖内侧行通信的情况下,所有进行侧行通信的终端设备均处于同一基站的覆盖范围内。从而,上述终端设备均可以通过接收基站的配置信令,基于相同的侧行配置进行侧行通信,该侧行配置包括侧行通信的时频资源。
如图2所示,在部分网络覆盖侧行通信的情况下,进行侧行通信的第一部分终端设备位于基站的覆盖范围内,第一部分的终端设备能够接收到基站的配置信令,从而根据基站的配置进行侧行通信。而进行侧行通信的第二部分终端设备位于网络覆盖范围外,第二部分的终端设备无法接收基站的配置信令。在这种情况下,网络覆盖范围外的终端设备将根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端设备发送的物理侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息确定侧行配置,从而进行侧行通信。
如图3所示,在网络覆盖外侧行通信的情况下,所有进行侧行通信的终端设备均位于网络覆盖范围外。进行侧行通信的所有终端设备均根据预配置信息确定侧行配置从而进行侧行通信。
对终端设备到终端设备(Device to Device,D2D)/车辆到其他设备(Vehicle to Everything,V2X)进行介绍:
设备到设备通信是基于D2D的一种侧行链路传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,因此具有更高的频谱效率以及更低的传输时延。车联网系统采用终端设备到终端设备直接通信的方式,在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)中定义了两种侧行通信的传输模式:第一模式和第二模式。
第一模式:终端设备的传输资源是由基站分配的,终端设备根据基站分配的资源在侧行链路上进行数据的发送。基站可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。如图1中,终端设备位于网络覆盖范围内,网络为终端设备分配侧行传输使用的传输资源。
第二模式:终端设备在资源池中选取一个资源进行数据的传输。如图3中,终端设备位于小区覆盖范围外,终端设备在预配置的资源池中自主选取传输资源进行侧行传输;或者在图1中,终端设备在网络配置的资源池中自主选取传输资源进行侧行传输。
终端设备在第二模式下的资源选择按照以下两个步骤进行:
步骤1:终端设备将资源选择窗内所有的可用资源作为资源集合A。
如果终端设备在侦听窗内某些时隙(slot)发送数据,会导致终端设备对这些时隙没有进行侦听,从 而导致这些时隙在选择窗内对应的时隙上的全部资源被终端设备排除掉。终端设备利用所用资源池配置中的资源预留周期(resource reservation period)域的取值集合确定选择窗内与侦听窗对应的时隙。
如果终端设备在侦听窗内侦听到物理侧行控制信道(Physical Sidelink Control Channel,PSCCH),终端设备会测量该PSCCH的参考信号接收功率(Reference Signal Received Power,RSRP),或者测量该PSCCH调度的物理侧行控制信道(Physical Sidelink Shared Channel,PSSCH)的RSRP。如果测量的RSRP大于SL-RSRP阈值,并且根据该PSCCH中传输的侧行控制信息中的资源预留信息确定其预留的资源在资源选择窗内,则终端设备会从集合A中排除对应资源。如果资源集合A中剩余资源不足资源集合A进行资源排除前全部资源的X%,则终端设备会将SL-RSRP阈值抬升3dB,重新执行步骤1。其中,上述X可能的取值为{20,35,50}。终端设备根据待发送数据的优先级从该取值集合中确定参数X。同时,上述SL-RSRP阈值与终端设备侦听到的PSCCH中携带的优先级以及终端设备待发送数据的优先级也有关。终端设备会将资源集合A中经资源排除后的剩余资源作为候选资源集合。
步骤2:终端设备从候选资源集合中随机选择若干资源,作为其初次传输以及重传的发送资源。
对新空口(New Radio,NR)侧行链路(Sidelink,SL)进行介绍:
在NRSL中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在NRSL中,支持单播、组播和广播的传输方式。对于单播传输,其接收端只有一个终端设备;对于组播传输,其接收端是一个通信组内的所有终端设备,或者是在一定传输距离内的所有终端设备。
示例地,图4是本申请一个示例性实施例提供的单播传输的示意图,图5是本申请一个示例性实施例提供的一种组播传输的示意图,图6是本申请一个示例性实施例提供的另一种组播传输的示意图。
如图4所示,终端设备1和终端设备2之间进行单播传输。如图5所示,终端设备1、终端设备2、终端设备3和终端设备4构成一个通信组。其中,终端设备1发送数据,该组内的其他终端设备都是接收端终端设备。如图6所示,对于广播传输方式,接收端是发送端终端设备周围的任意一个终端设备。例如,终端设备1是发送端终端设备,其周围的其他终端设备,即终端设备2-终端设备6都是接收端终端设备。
对NR SL中的时隙结构进行介绍:
在NRSL中,PSSCH和其关联的PSCCH在相同的时隙中传输,PSCCH占据2个或3个时域符号。NR SL的时域资源分配以时隙为分配粒度,一个时隙包括多个时域符号,例如包括14个时域符号。通过参数侧行起始符号(sl-startSLsymbols)和侧行长度符号(sl-lengthSLsymbols)配置一个时隙中用于侧行传输的时域符号的起点和长度。时隙的时域符号中的最后一个符号用作保护间隔(Guard Period,GP),PSSCH和PSCCH只能使用其余的时域符号。但是如果一个时隙中配置了物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)传输资源,PSSCH和PSCCH不能占用用于PSFCH传输的时域符号,以及该符号之前的自动增益控制(Automatic Gain Control,AGC)和GP符号。
图7是本申请一个示例性实施例提供的PSSCH和PSCCH的传输资源的示意图。如图7所示,网络配置sl-StartSymbol(sl-startSLsymbols)=3,sl-LengthSymbols(sl-lengthSLsymbols)=11,即一个时隙中从时域符号索引3开始的11个时域符号可用于侧行传输,该时隙中有PSFCH传输资源,该PSFCH占据时域符号11和时域符号12,其中时域符号11作为PSFCH的AGC符号,时域符号10、13分别用作GP,可用于PSSCH传输的时域符号为时域符号3至时域符号9,PSCCH占据3个时域符号,即时域符号3、4、5,时域符号3通常用作AGC符号。
NRSL中一个侧行时隙内除存在PSCCH、PSSCH,还可能存在PSFCH。图8是本申请一个示例性实施例提供的存在PSFCH的侧行时隙的示意图。如图8所示,在一个时隙内,第一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号(时域符号)固定用于AGC,在AGC符号上,终端设备复制第二个OFDM符号上发送的信息。而时隙的最后留有一个OFDM符号用于收发转换,可用于终端设备从发送(或接收)状态转换到接收(或发送)状态。在剩余的OFDM符号中,PSCCH可以占用从第二个OFDM符号开始的两个或三个OFDM符号。在频域上,PSCCH占据的物理资源块(Physical Resource Block,PRB)个数在一个PSSCH的子带范围内,如果PSCCH占用的PRB个数小于PSSCH的一个子信道的大小,或者,PSSCH的频域资源包括多个子信道,则在PSCCH所在的OFDM符号上,PSCCH可以和PSSCH频分复用。
NRSL中PSSCH的解调参考信号(Demodulation Reference Signal,DMRS)借鉴了NR Uu接口中的设计,采用了多个时域PSSCH DMRS图案。在一个资源池内,可采用的DMRS图案的个数和资源池内PSSCH的时域符号数有关,对于特定的PSSCH时域符号数(包括第一个AGC符号)和PSCCH时域符号数,可用的DMRS图案以及图案内每个DMRS时域符号的位置如表1所示。另外,图9是本申请一个示例性实施例提供的PSSCH为13个时域符号数时4个DMRS时域符号的时域位置的示意图。
表1
Figure PCTCN2022111065-appb-000001
如果资源池内配置了多个时域DMRS图案,则具体采用的时域DMRS图案由发送终端设备选择,并在第一阶侧行链路控制信息(Sidelink Control Information,SCI)中予以指示。这样的设计允许高速运动的终端设备选择高密度的DMRS图案,从而保证信道估计的精度。而对于低速运动的终端设备,则可以采用低密度的DMRS图案,从而提高频谱效率。
PSSCH DMRS序列的生成方式和PSCCH DMRS序列的生成方式几乎完全相同,唯一的区别在于伪随机序列c(m)的初始化公式cinit中,
Figure PCTCN2022111065-appb-000002
pi为调度该PSSCH的PSCCH的第i位循环冗余校验(Cyclic Redundancy Check,CRC),L=24,为PSCCH CRC的比特位数。
NR PDSCH和PUSCH中支持两种频域DMRS图案,包括DMRS频域类型1和DMRS频域类型2,而且对于每一种频域类型,均存在单DMRS时域符号和双DMRS时域符号两种不同类型。单时域符号DMRS频域类型1支持4个DMRS端口,单时域符号DMRS频域类型2可以支持6个DMRS端口,双DMRS时域符号情况下,支持的端口数均翻倍。然而,在NRSL中,由于PSSCH最多只需要支持两个DMRS端口,所以仅支持单时域符号的DMRS频域类型1。图10是本申请一个示例性实施例提供的DMRS频域位置的示意图。图10中的RE是指资源单元(Resource Element,RE)。
对基于侧行链路的定位进行介绍:
基于侧行链路的定位为版本18(Release18,R18)定位技术的增强方案之一。基于侧行链路的定位需要考虑支持蜂窝网络覆盖内、部分覆盖和覆盖外NR定位用例的场景和要求,并且将考虑V2X用例,公共安全用例,商业用例和工业互联网(Industrial Internet Of Things,IIOT)用例的定位要求,以及考虑支持以下功能:
·绝对定位,测距/测向,及相对定位;
·研究侧行测量量和Uu接口测量量相结合的定位方法;
·研究侧行定位参考信号,包括信号设计,物理层控制信令,资源分配,物理层测量量,及相关的物理层过程,等;
·研究定位系统架构及信令过程,例如配置,测量上报等。
对于绝对定位,终端设备可以根据测量结果直接确定自身的绝对地理位置,该方式可称为基于终端设备的绝对定位。或者,终端设备可以将测量结果上报给定位服务器,例如位置管理功能(Location Management Function,LMF),然后由LMF计算终端设备的绝对位置并通知该终端设备,该方式可称为终端设备辅助的绝对定位。
对于测距、测向或相对定位,终端设备可以根据接收到的定位参考信号估计信号的往返时间(Round Trip Time,RTT)、到达角、信号接收强度等信息,对相对距离和相对方向进行估计。
对下行定位中的PRS的资源配置方式进行介绍:
在基于网络的下行定位方法中,定位参考信号图案通常是基于子载波(sub-carrier)或RE为梳齿粒度的梳状结构。即在一个OFDM符号上,采用梳状(comb)的结构把PRS映射到频域上。梳状结构可以支持来自不同发送接收点(Transmission Reception Point,TRP)的PRS能够频分复用到同一个OFDM符号 上。不同TRP的PRS可以配置不同的频率偏移值。在一个时隙内,一个PRS资源可以占用多个连续的OFDM符号,PRS采用交错(staggered)的结构来映射到这多个OFDM符号上。
示例地,图11是本申请一个示例性实施例提供的下行定位的PRS的资源映射示意图。如图11所示,在时域以一个OFMD符号为粒度,频域以一个子载波(或RE)为粒度的时频资源中,配置了2个PRS,包括PRS#1以及PRS#2,该时频资源为一个时隙内的资源。通过参数
Figure PCTCN2022111065-appb-000003
L和
Figure PCTCN2022111065-appb-000004
可实现配置PRS的时频资源,其中:
Figure PCTCN2022111065-appb-000005
是配置的梳齿尺寸,图11中所示的梳齿尺寸
Figure PCTCN2022111065-appb-000006
个子载波;
L是PRS在一个时隙内占据的OFDM符号数,图11中所示L=6;
Figure PCTCN2022111065-appb-000007
是在一个时隙内的第一个用于传输PRS的OFDM符号上的频域资源单元偏移值,由网络配置,它的取值范围是
Figure PCTCN2022111065-appb-000008
图11中所示,配置了2个PRS资源,即PRS#1和PRS#2。PRS#1对应
Figure PCTCN2022111065-appb-000009
表示PRS#1在一个时隙内的第一个用于传输PRS的OFDM符号上的频域资源单元索引为0。PRS#2对应
Figure PCTCN2022111065-appb-000010
表示PRS#2在一个时隙内的第一个用于传输PRS的OFDM符号上的频域资源单元索引为2。
需要说明的是,图11中示出的PRS#1占据的时频资源,可称为PRS#1的PRS图案。图11中示出的PRS#2占据的时频资源,可称为PRS#2的PRS图案。也即是用于配置PRS的参数能够用于表征PRS的PRS图案。
不同终端设备之间可通过侧行链路发送PRS,通过对PRS进行测量,可实现对终端设备的定位。对于侧行定位(基于侧行链路的定位),如果采用和下行定位中相同的配置PRS图案的方式,即以子载波或RE为梳齿粒度基于梳状结构对PRS进行资源映射,会导致严重的带内泄露(In-BandEmission,IBE),影响定位性能。对于终端设备之间传输PRS的具体实现,例如如何设计侧行定位中的PRS的时频资源的映射方式,需要进一步讨论研究。
本申请实施例提供的方法,通过由第一终端设备根据第一信息确定第一PRS配置,可以使得第一终端设备基于第一PRS配置与第二终端设备之间传输PRS。从而实现了终端设备之间的PRS传输,在实现传输PRS的基础上可实现通过PRS对终端设备的定位。另外,本申请实施例提供的方法,还通过为第一终端设备配置具有以第一频域单元为梳齿粒度的梳状结构的PRS,该第一频域单元包括在频域上连续的n个RE。由于第一频域单元在频域上的大小大于1个RE,因此相较于下行定位中对PRS进行资源映射的方式,可实现更充分的利用频率资源。使用上述资源映射方式的PRS进行终端设备的定位,降低了带内泄露对定位终端设备的性能的影响。
图12示出了本申请一个实施例提供的通信系统1200的系统架构的示意图。该系统架构可以包括:终端设备10、接入网设备20和核心网设备30。
终端设备10可以指UE(User Equipment,用户设备)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、无线通信设备、用户代理或用户装置。可选地,终端设备还可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digita1Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5GS(5th Generation System,第五代移动通信系统)中的终端设备或者未来演进的PLMN(Pub1ic Land Mobi1e Network,公用陆地移动通信网络)中的终端设备等,本申请实施例对此并不限定。为方便描述,上面提到的设备统称为终端设备。
需要说明的是,终端设备10的数量通常为多个,每一个接入网设备20所管理的小区内可以分布一个或多个终端设备10。并且,接入网设备20所管理的小区外也可以分布一个或多个终端设备10。其中,不同终端设备10之间可基于侧行链路进行通信,终端设备10之间通过侧行链路的通信可分为如图1至3所示的三种情况。
接入网设备20是一种部署在接入网中用以为终端设备10提供无线通信功能的设备。接入网设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“接入网设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为接入网设备。可选地,通过接入网设备20,终端设备10和核心网设备30之间可以建立通信关系。示例性地,在长期演进(Long Term Evolution,LTE)系统中,接入网设备20可以是EUTRAN(Evolved Universal Terrestrial Radio Access Network,演进的通用陆地无线网)或者EUTRAN中的一个或者多个eNodeB;在5G NR系统中,接入网设备20可以是RAN或者RAN中的一个或者多个gNB。
核心网设备30的功能主要是提供用户连接、对用户的管理以及对业务完成承载,作为承载网络提供 到外部网络的接口。例如,5G NR系统中的核心网设备可以包括AMF(Access and Mobility Management Function,接入和移动性管理功能)实体、UPF(User Plane Function,用户平面功能)实体和SMF(Session Management Function,会话管理功能)实体等设备。接入网设备20和核心网设备30可统称为网络设备。
在一个示例中,接入网设备20与核心网设备30之间通过某种空中技术相互通信,例如5G NR系统中的NG接口。接入网设备20与终端设备10之间通过某种空中技术互相通信,例如Uu接口。终端设备10与终端设备10之间通过某种空中技术互相通信,例如PC5接口。
图13是本申请一个示例性实施例提供的基于侧行链路的传输方法的流程图。该方法可由第一终端设备执行,该方法包括:
步骤1302:根据第一信息确定第一PRS配置。
第一终端设备获取至少一种PRS配置,第一终端设备根据第一信息可在该至少一种PRS配置中确定第一PRS配置。
可选地,第一终端设备获取的至少一种PRS配置,是第一终端设备根据预配置信息、网络配置信息或第一信令获取的。其中,预配置信息是预配置在第一终端设备中的信息,网络配置信息是网络设备配置并向第一终端设备发送的信息,第一信令是第一终端设备以外的终端设备向第一终端设备发送的,例如为第二终端设备向第一终端设备发送的。
第一PRS配置是终端设备在接收或发送PRS时使用的PRS配置,第一PRS配置用于配置或确定第一终端设备发送或接收的PRS的时频资源,也即是PRS的PRS图案。可选地,该第一信息包括如下至少一种:
·第一终端设备的标识信息;
·PRS的时域资源信息;
·PRS的频域资源信息;
·PRS的定位频率层(Positioning Frequency Layer)信息;
·资源池信息;
·第二时域单元中用于侧行传输的第一时域单元的数量;
·第二时域单元中用于传输PRS的第一时域单元的数量;
·第二时域单元中是否包括PSFCH资源;
·PRS是否支持映射到承载PSCCH的第一时域单元;
·与第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置;
·协议预定义信息;
·预配置信息;
·网络配置信息。
其中,第一终端设备的标识信息是用于标识第一终端设备的信息。PRS的时域资源信息是用于反映PRS在时域中占用的资源的信息。PRS的频域资源信息是用于反映PRS在频域中占用的资源的信息。
定位频率层是NR在PRS的基础上引入的概念,终端设备在通过PRS定位时,需要测量多个发送接收点TRP发送的PRS,定位频率层是指一组TRP下的PRS的集合,这些PRS具有相同的子载波间隔、循环前缀(Cyclic Prefix,CP)类型、参考点A(pointA)、带宽、梳齿尺寸。一个定位频率层可以包含多个TRP,每个TRP中可以包含多个PRS资源集,每个PRS资源集中可以包含多个PRS的时频资源。上述PRS的定位频率层信息是指PRS对应的TRP所属的定位频率层的信息。
资源池信息是用于反映PRS的时频资源所在的资源池的信息。
每个第二时域单元包括至少一个第一时域单元,每个第二时域单元也可以包括至少两个第一时域单元。可选地,第一时域单元是组成时频资源的时域的基本单元,第二时域单元在时域上的粒度大于第一时域单元,也即是第二时域单元是由第一时域单元组成的。例如,第一时域单元指一个时域符号,例如为OFDM符号,第二时域单元指一个时隙(slot)或一个微时隙(mini-slot)。
可选地,第二时域单元中的第一时域单元可全部用于侧行传输,或部分用于侧行传输。因此第一终端设备在确定第一PRS配置时,可能考虑第二时域单元中用于侧行传输的第一时域单元的数量。
可选地,第二时域单元中的第一时域单元可全部用于传输PRS,或部分用于传输PRS。因此第一终端设备在确定第一PRS配置时,可能考虑第二时域单元中用于传输PRS的第一时域单元的数量。
可选地,在第二时域单元中,用于传输PSFCH的第一时域单元不能用于传输PRS,因此第一终端设备在确定第一PRS配置时,可能考虑第二时域单元中是否包括PSFCH资源。
可选地,在第二时域单元中,若PRS不支持映射到承载PSCCH的第一时域单元,则在第二时域单元中可用于映射PRS的第一时域单元的数量会减少。因此第一终端设备在确定第一PRS配置时,可能考虑 是否支持PRS映射到承载PSCCH的第一时域单元。
在多个终端设备协作进行定位时,该多个终端设备会组成终端设备组。第一终端设备组是第一终端设备参与协作定位时所在的终端设备组。由于终端设备在协作定位时,需要与其所在的终端设备组中的其他终端设备互相传输PRS,因此第一终端设备在确定第一PRS配置时,可能考虑与第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置。
该协议预定义信息是指基于第一终端设备所支持的移动通信网络协议,在第一终端设备中预定义的信息。该预配置信息是指预先配置在第一终端设备中的信息。该网络配置信息是指网络设备为第一终端设备配置的信息。
可选地,该第一信息是除第一终端设备以外的其他终端设备向第一终端设备发送的,例如为第二终端设备向第一终端设备发送的;或者,是由网络设备向第一终端设备发送的;或者,是第一终端设备中预配置的信息。第一终端设备根据上述第一信息中的一种信息或多种信息的组合,能够确定第一PRS配置。
步骤1304:基于第一PRS配置向第二终端设备发送PRS或接收第二终端设备发送的PRS。
第一终端设备基于第一PRS配置的PRS的时频资源,可向第二终端设备发送PRS。或者,第一终端设备可在第一PRS配置的时频资源中,接收第二终端设备发送的PRS。通过测量终端设备之间发送的PRS,可实现通过PRS对终端设备(第一终端设备或第二终端设备)的定位。
需要说明的是,上述第二终端设备泛指与第一终端设备不同的终端设备,不特指某一具体的终端设备。并且,第二终端设备可包括一个或多个终端设备。
综上所述,本实施例提供的方法,通过由第一终端设备根据第一信息确定第一PRS配置,可以使得第一终端设备基于第一PRS配置与第二终端设备之间传输PRS,从而实现了终端设备之间的PRS传输,在实现传输PRS的基础上可实现通过PRS对终端设备的定位。
图14是本申请一个示例性实施例提供的基于侧行链路的定位参考信号的配置方法的流程图。该方法可由第一终端设备执行,该方法包括:
步骤1402:获取PRS的配置信息,PRS具有以第一频域单元为梳齿粒度的梳状结构。
第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。在频域上连续的RE是指在同一个第一时域单元上,在频域上互相相邻的n个RE。可选地,每个第二时域单元包括至少一个第一时域单元,每个第二时域单元也可以包括至少两个第一时域单元。例如,第一时域单元指一个时域符号,例如为OFDM符号,第二时域单元指一个时隙或一个微时隙。
示例性的,RE是NR的物理层资源的最小粒度,其在时域上对应一个时域符号(OFDM符号),在频域上对应一个子载波,也即是第一频域单元包括在频域上连续的n个子载波。需要说明的是,在本申请实施例中,如无特殊说明,在描述频域资源时,子载波和RE两者可以互换。
梳状结构指在同一个第一时域单元上,配置PRS的相邻两个第一频域单元以固定的间隔设置。梳齿粒度指在梳状结构中,每个梳齿在频域中占据的频率资源的粒度。
可选地,第一频域单元包括如下任意一种资源的频域资源:
·PRB;
·子信道;
·资源单元组(Resource Element Group,REG);
其中,PRB在频域上包括连续的多个RE,例如包括12个RE。子信道在频域上包括连续的多个PRB。REG在频域上包括连续的多个子载波。因此,一个第一频域单元在频域上的大小大于1个子载波或1个RE。
可选地,第一终端设备根据预配置信息或网络配置信息可获取到PRS的配置信息。其中,预配置信息是预配置在第一终端设备中的信息,网络配置信息是网络设备配置并向第一终端设备发送的信息。或者,第一终端设备也能够接收第二终端设备发送的第一信令,该第一信令包括PRS的配置信息,从而使得第一终端设备可获取到PRS的配置信息。该第二终端设备与第一终端设备不同,包括除第一终端设备以外的一个或多个终端设备。
可选地,PRS的配置信息包括一种或多种PRS配置,PRS配置用于配置或确定PRS的时频资源。第一终端设备可在PRS的配置信息中确定其使用的第一PRS配置,例如根据第一信息确定第一PRS配置。
第一终端设备在获取到PRS的配置信息后,可根据该信息配置的PRS的时频资源向除第一终端设备以外的终端设备发送PRS,或根据该信息配置的PRS的时频资源接收除第一终端设备以外的终端设备向第一终端设备发送的PRS,从而可实现通过PRS对终端设备进行定位。
综上所述,本实施例提供的方法,通过为第一终端设备配置具有以第一频域单元为梳齿粒度的梳状结构的PRS,该第一频域单元包括在频域上连续的n个RE。由于第一频域单元在频域上的大小大于1个RE, 因此相较于下行定位中对PRS进行资源映射的方式,可实现更充分的利用频率资源。使用上述资源映射方式的PRS进行终端设备的定位,降低了带内泄露对定位终端设备的性能的影响。
图15是本申请一个示例性实施例提供的基于侧行链路的定位参考信号的配置方法的流程图。该方法可由网络设备执行,该方法包括:
步骤1502:向第一终端设备发送PRS的配置信息,PRS的配置信息包括至少一种PRS配置。
该至少一种PRS配置用于第一终端设备根据第一信息确定第一PRS配置。第一PRS配置用于第一终端设备根据第一PRS配置向第二终端设备发送PRS,或基于第一PRS配置接收第二终端设备发送的PRS。
可选地,该PRS的配置信息携带在以下至少一种信息中:
·资源池配置信息;
·侧行(SL)部分带宽(Bandwidth Part,BWP)配置信息。
第一PRS配置是终端设备在接收或发送PRS时使用的PRS配置,第一PRS配置用于配置或确定第一终端设备发送或接收的PRS的时频资源,也即是PRS的PRS图案。可选地,该第一信息包括如下至少一种:
·第一终端设备的标识信息;
·PRS的时域资源信息;
·PRS的频域资源信息;
·PRS的定位频率层信息;
·资源池信息;
·第二时域单元中用于侧行传输的第一时域单元的数量;
·第二时域单元中用于传输PRS的第一时域单元的数量;
·第二时域单元中是否包括PSFCH资源;
·PRS是否支持映射到承载PSCCH的第一时域单元;
·与第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置;
·协议预定义信息;
·预配置信息;
·网络配置信息。
可选地,每个第二时域单元包括至少一个第一时域单元,每个第二时域单元也可以包括至少两个第一时域单元。例如,第一时域单元指一个时域符号,例如为OFDM符号,第二时域单元指一个时隙或一个微时隙。
可选地,该第一信息是除第一终端设备以外的其他终端设备向第一终端设备发送的,例如为第二终端设备向第一终端设备发送的;或者,是由网络设备向第一终端设备发送的;或者,是第一终端设备中预配置的信息。第一终端设备根据上述第一信息中的一种信息或多种信息的组合,能够确定第一PRS配置。
第一终端设备在确定第一PRS配置后,可基于第一PRS配置的PRS的时频资源,向第二终端设备发送PRS。或者,第一终端设备在第一PRS配置的时频资源中,接收第二终端设备发送的PRS。通过测量终端设备之间发送的PRS,可实现通过PRS对终端设备(第一终端设备或第二终端设备)的定位。
综上所述,本实施例提供的方法,通过向第一终端设备发送PRS的配置信息并由第一终端设备根据第一信息确定第一PRS配置,可以使得第一终端设备基于第一PRS配置与第二终端设备之间传输PRS,从而实现了终端设备之间的PRS传输,在实现传输PRS的基础上可实现通过PRS对终端设备的定位。
图16是本申请一个示例性实施例提供的基于侧行链路的定位参考信号的配置方法的流程图。该方法可由网络设备执行,该方法包括:
步骤1602:向第一终端设备发送PRS的配置信息,PRS具有以第一频域单元为梳齿粒度的梳状结构。
第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。在频域上连续的RE是指在同一个第一时域单元上,在频域上互相相邻的n个RE。可选地,每个第二时域单元包括至少一个第一时域单元,每个第二时域单元也可以包括至少两个第一时域单元。例如,第一时域单元指一个时域符号,例如为OFDM符号,第二时域单元指一个时隙或一个微时隙。
示例性的,RE是NR的物理层资源的最小粒度,其在时域上对应一个时域符号(OFDM符号),在频域上对应一个子载波,也即是第一频域单元包括在频域上连续的n个子载波。
梳状结构指在同一个第一时域单元上,配置PRS的相邻两个第一频域单元以固定的间隔设置。梳齿粒度指在梳状结构中,每个梳齿在频域中占据的频率资源的粒度。
可选地,第一频域单元包括如下任意一种资源的频域资源:
·PRB;
·子信道;
·REG;
其中,PRB在频域上包括连续的多个RE,例如包括12个RE。子信道在频域上包括连续的多个PRB。REG在频域上包括连续的多个子载波。因此,一个第一频域单元在频域上的大小大于1个子载波或1个RE。
可选地,该PRS的配置信息携带在以下至少一种信息中:
·资源池配置信息;
·侧行BWP配置信息。
可选地,PRS的配置信息包括一种或多种PRS配置,PRS配置用于配置或确定PRS的时频资源。第一终端设备可在PRS的配置信息中确定其使用的第一PRS配置,例如根据第一信息确定第一PRS配置。
第一终端设备在获取到PRS的配置信息后,可根据该信息配置的PRS的时频资源向除第一终端设备以外的终端设备发送PRS,或根据该信息配置的PRS的时频资源接收除第一终端设备以外的终端设备向第一终端设备发送的PRS,从而可实现通过PRS对终端设备进行定位。
综上所述,本实施例提供的方法,通过为第一终端设备配置具有以第一频域单元为梳齿粒度的梳状结构的PRS,该第一频域单元包括在频域上连续的n个RE。由于第一频域单元在频域上的大小大于1个RE,因此相较于下行定位中对PRS进行资源映射的方式,可实现更充分的利用频率资源。使用上述资源映射方式的PRS进行终端设备的定位,降低了带内泄露对定位终端设备的性能的影响。
本申请实施例提供的方法,通过为第一终端设备配置频域的梳齿粒度大于RE(子载波)的梳状结构的PRS,相较于下行定位中对PRS进行资源映射的方式,可实现更充分的利用频率资源。使用该资源映射方式的PRS进行终端设备的定位,降低了带内泄露对定位终端设备的性能的影响。
对PRS的资源映射方式进行介绍:
在本申请实施例提供的PRS的资源映射方式中,PRS具有以第一频域单元为梳齿粒度的梳状结构。其中,第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
在频域上连续的RE是指在同一个第一时域单元上,在频域上互相相邻的n个RE。可选地,每个第二时域单元包括至少一个第一时域单元,每个第二时域单元也可以包括至少两个第一时域单元。例如,第一时域单元指一个时域符号,例如为OFDM符号,第二时域单元指一个时隙或一个微时隙。
示例性的,RE是NR的物理层资源的最小粒度,其在时域上对应一个时域符号(OFDM符号),在频域上对应一个子载波,也即是第一频域单元包括在频域上连续的n个子载波。
可选地,第一频域单元包括如下任意一种资源的频域资源:
·PRB;
·子信道;
·REG;
其中,PRB在频域上包括连续的多个RE,例如包括12个RE。子信道在频域上包括连续的多个PRB。REG在频域上包括连续的多个子载波。因此,一个第一频域单元在频域上的大小大于1个子载波或1个RE。
配置PRS是通过PRS的配置信息实现的,可选地,PRS的配置信息包括梳齿尺寸、时域长度和信号偏移值中的至少一种,其中:
梳齿尺寸包括在同一个第一时域单元上,PRS的相邻两个第一频域单元之间的间隔。示例地,梳齿尺寸为
Figure PCTCN2022111065-appb-000011
表示PRS的相邻两个第一频域单元之间的间隔为
Figure PCTCN2022111065-appb-000012
时域长度包括在一个第二时域单元内PRS占据的第一时域单元的数量。示例地,时域长度为L,表示在一个第二时域单元(时隙)内,PRS占据的第一时域单元(OFDM符号)的数量为L。可选地,该L个第一时域单元是第二时域单元中连续的时域单元。
信号偏移值包括在一个第二时域单元中的第一个用于传输PRS的第一时域单元上,PRS的第一个第一频域单元的偏移值,每个第二时域单元包括至少一个第一时域单元。示例地,信号偏移值为
Figure PCTCN2022111065-appb-000013
表示在一个第二时域单元中承载PRS的第一个第一时域单元上,PRS的第一个第一频域单元相较于该第一时域单元上的第一个第一频域单元的偏移值为
Figure PCTCN2022111065-appb-000014
也可视为PRS的第一个第一频域单元在频域上的位置为
Figure PCTCN2022111065-appb-000015
可选地,信号偏移值以第一频域单元为粒度或单位。
在一些实施方式中,第一频域单元包括PRB,信号偏移值指示的偏移值是相对于第一频域位置的偏移值,其中,第一频域位置根据以下任意一种确定:资源池的第一个PRB对应的频域位置、侧行BWP的第一个PRB对应的频域位置、子信道的第一个PRB对应的频域位置、资源块集合(RBset)的第一个PRB 对应的频域位置、pointA。
在一些实施方式中,第一频域单元包括子信道,信号偏移值指示的偏移值是相对于第二频域位置的偏移值,其中,第二频域位置根据以下任意一种确定:资源池的频域起始位置、侧行BWP的频域起始位置、资源块集合(RBset)的频域起始位置、pointA。
在一些实施方式中,第一频域单元包括REG,信号偏移值指示的偏移值是相对于第三频域位置的偏移值,其中,第三频域位置根据以下任意一种确定:PRB的起始位置、资源池的第一个PRB的起始位置、侧行BWP的第一个PRB的起始位置、子信道的第一个PRB的起始位置、资源块集合(RBset)的第一个PRB的起始位置、pointA。
示例地,图17是本申请一个示例性实施例提供的以PRB为频域粒度(第一频域单元)的PRS的时频资源的示意图。如图17所示,频域的粒度为PRB,时域的粒度为OFDM符号。PRS的频域映射采用梳状结构,该梳状结构以PRB为粒度,即PRS映射到一个PRB的所有子载波上,在PRB之间是采用梳状结构映射PRS。
Figure PCTCN2022111065-appb-000016
表示在一个OFDM符号上,PRS的相邻两个PRB之间的间隔为6-1=5。L=6表示PRS在一个时隙内占据连续的6个OFDM符号,在多个OFDM符号之间PRS采用交错(staggered)的结构来映射到这多个OFDM符号对应的PRB上,从而使得一个PRS在频域上可以映射到该PRS占据的频域范围内的所有子载波上。图17中示出了两个PRS的资源,其中,PRS#1的
Figure PCTCN2022111065-appb-000017
为0个PRB,即在一个时隙中承载PRS#1的第一个OFDM符号上,PRS#1的第一个PRB的频域偏移量为0个PRB。PRS#2的
Figure PCTCN2022111065-appb-000018
为2个PRB,即在一个时隙中承载PRS#2的第一个OFDM符号上,PRS#1的第一个PRB的频域偏移量为2个PRB。
示例地,图18是本申请一个示例性实施例提供的以子信道为频域粒度(第一频域单元)的PRS的时频资源的示意图。如图18所示,频域的粒度为子信道,时域的粒度为OFDM符号。PRS的频域映射采用梳状结构,该梳状结构以子信道为粒度,一个子信道包括连续的4个PRB,即PRS映射到一个子信道所包括的所有PRB上,同时也会映射到该子信道包括的各PRB的所有子载波上,在子信道之间是采用梳状结构映射PRS。
Figure PCTCN2022111065-appb-000019
表示在一个OFDM符号上,PRS的相邻两个子信道之间的间隔为6-1=5。L=6表示PRS在一个时隙内占据连续的6个OFDM符号,在多个OFDM符号之间PRS采用交错(staggered)的结构来映射到这多个OFDM符号对应的子信道上,从而使得一个PRS在频域上可以映射到该PRS占据的频域范围内的所有子载波上。图18中示出了两个PRS的资源,其中,PRS#1的
Figure PCTCN2022111065-appb-000020
为0个子信道,即在一个时隙中承载PRS#1的第一个OFDM符号上,PRS#1的第一个子信道的频域偏移量为0个子信道。PRS#2的
Figure PCTCN2022111065-appb-000021
为2个子信道,即在一个时隙中承载PRS#2的第一个OFDM符号上,PRS#1的第一个子信道的频域偏移量为2个子信道。在一些实施例中,子信道又可以称为资源块组(Resource Block Group,RBG)。
示例地,图19是本申请一个示例性实施例提供的以REG为频域粒度(第一频域单元)的PRS的时频资源的示意图。如图19所示,频域的粒度为连续的多个子载波,时域的粒度为OFDM符号。可选地,以连续的多个子载波为粒度可视为以REG为粒度,一个REG包括连续的M个子载波或RE,M为大于1的正整数。PRS的频域映射采用梳状结构,该梳状结构以REG为粒度,一个REG包括连续的4个子载波,即PRS映射到一个REG的所有(4个)子载波上,在REG之间是采用梳状结构映射PRS。
Figure PCTCN2022111065-appb-000022
表示在一个OFDM符号上,PRS的相邻两个REG之间的间隔为6-1=5。L=6表示PRS在一个时隙内占据连续的6个OFDM符号,在多个OFDM符号之间PRS采用交错(staggered)的结构来映射到这多个OFDM符号对应的REG上,从而使得一个PRS在频域上可以映射到该PRS占据的频域范围内的所有子载波上。图19中示出了两个PRS的资源,其中,PRS#1的
Figure PCTCN2022111065-appb-000023
为0个REG,即在一个时隙中承载PRS#1的第一个OFDM符号上,PRS#1的第一个REG的频域偏移量为0个REG。PRS#2的
Figure PCTCN2022111065-appb-000024
为2个REG,即在一个时隙中承载PRS#2的第一个OFDM符号上,PRS#1的第一个REG的频域偏移量为2个REG。
在上述图17至19中,分别以PRB、子信道和REG为例说明侧行PRS在频域上的映射图案,并且以梳齿尺寸为6进行说明。上述以第一频域单元为PRB、子信道和REG为例对侧行PRS的图案的说明,同样适用于其他梳齿尺寸、时域长度和信号偏移值的情况,例如
Figure PCTCN2022111065-appb-000025
的情况,其中S为大于或等于1的整数。以下以第一频域单元为PRB,对PRS在不同
Figure PCTCN2022111065-appb-000026
情况下的频域上的映射图案进行举例介绍:
示例地,图20是本申请一个示例性实施例提供的梳齿尺寸为1的PRS的时频资源的示意图。如图20所示,频域的粒度为PRB,时域的粒度为OFDM符号。
Figure PCTCN2022111065-appb-000027
表示在一个OFDM符号上,PRS的相邻两个PRB之间的间隔为1-1=0,即PRB被映射到一个OFDM符号上的全部PRB。L=1表示PRS在一个时隙内占据1个OFDM符号。图20中示出了一个PRS的资源,其中,该PRS的
Figure PCTCN2022111065-appb-000028
为0个PRB,即在一个时隙中承载PRS的OFDM符号上,PRS的第一个PRB的频域偏移量为0个PRB。需要说明的是,在
Figure PCTCN2022111065-appb-000029
的情况下,
Figure PCTCN2022111065-appb-000030
示例地,图21是本申请一个示例性实施例提供的梳齿尺寸为2的PRS的时频资源的示意图。如图21 所示,频域的粒度为PRB,时域的粒度为OFDM符号。
Figure PCTCN2022111065-appb-000031
表示在一个OFDM符号上,PRS的相邻两个PRB之间的间隔为2-1=1。L=2表示PRS在一个时隙内占据2个OFDM符号。图21中示出了两个PRS的资源,其中,PRS#1的
Figure PCTCN2022111065-appb-000032
为0个PRB,即在一个时隙中承载PRS#1的第一个OFDM符号上,PRS#1的第一个PRB的频域偏移量为0个PRB。PRS#2的
Figure PCTCN2022111065-appb-000033
为1个PRB,即在一个时隙中承载PRS#2的第一个OFDM符号上,PRS#2的第一个PRB的频域偏移量为1个PRB。
示例地,图22是本申请一个示例性实施例提供的梳齿尺寸为4的PRS的时频资源的示意图。如图22所示,频域的粒度为PRB,时域的粒度为OFDM符号。
Figure PCTCN2022111065-appb-000034
表示在一个OFDM符号上,PRS的相邻两个PRB之间的间隔为4-1=3。L=4表示PRS在一个时隙内占据4个OFDM符号。图22中示出了两个PRS的资源,其中,PRS#1的
Figure PCTCN2022111065-appb-000035
为0个PRB,即在一个时隙中承载PRS#1的第一个OFDM符号上,PRS#1的第一个PRB的频域偏移量为0个PRB。PRS#2的
Figure PCTCN2022111065-appb-000036
为2个PRB,即在一个时隙中承载PRS#2的第一个OFDM符号上,PRS#2的第一个PRB的频域偏移量为2个PRB。
示例地,图23是本申请一个示例性实施例提供的梳齿尺寸为12的PRS的时频资源的示意图。如图23所示,频域的粒度为PRB,时域的粒度为OFDM符号。
Figure PCTCN2022111065-appb-000037
表示在一个OFDM符号上,PRS的相邻两个PRB之间的间隔为12-1=11,由于一个OFDM符号上仅包括12个PRB,因此每个OFDM符号上仅一个PRB映射了PRS。L=12表示PRS在一个时隙内占据12个OFDM符号。图23中示出了两个PRS的资源,其中,PRS#1的
Figure PCTCN2022111065-appb-000038
为1个PRB,即在一个时隙中承载PRS#1的第一个OFDM符号上,PRS#1的第一个PRB的频域偏移量为1个PRB。PRS#2的
Figure PCTCN2022111065-appb-000039
为0个PRB,即在一个时隙中承载PRS#2的第一个OFDM符号上,PRS#2的第一个PRB的频域偏移量为0个PRB。
需要说明的是,本申请实施例中的PRS图案是以PRB、子信道或REG为第一频域单元粒度并且基于梳齿结构的,梳齿尺寸
Figure PCTCN2022111065-appb-000040
小于或等于该PRS图案占据的OFDM符号数量(即时域长度L),从而使得L个OFDM符号上的PRS可以占据所有的子载波。但是本申请实施例对PRS在各个OFDM符号上映射方式不做限定。例如,在图22中,PRS#1在4个OFDM符号上映射的PRB分别为第一个PRB、第三个PRB、第二个PRB和第四个PRB,在另一种实施方式中,PRS#1在4个OFDM符号上映射的PRB分别为第一个PRB、第二个PRB、第三个PRB和第四个PRB;即本申请实施例对PRS在各个OFDM符号上映射方式不做限定。
对PRS与PSCCH的频分复用进行介绍:
在第二时域单元中,部分第一时域单元可能承载有PSCCH。例如图8中,时域符号1至3中承载有PSCCH。可选地,PRS与PSCCH频分复用;或,PRS不与PSCCH频分复用。
示例地,图24是本申请一个示例性实施例提供的承载有PSCCH的时频资源的示意图。如图24的(a)所示,在一个时隙(包括时域符号0至13)中,时域符号1至3承载了PSCCH,且时域符号0用作AGC,时域符号13用作GP,若第一终端设备发送的侧行PRS可以和第一终端设备发送的PSCCH频分复用,由于时域符号0和时域符号13不用于承载PRS,则可用于传输PRS的时域符号为时域符号1至12。如图24的(b)所示,若第一终端设备发送的侧行PRS不能和第一终端设备发送的PSCCH频分复用,由于时域符号0和时域符号13不用于承载PRS,则可用于传输PRS的时域符号为时域符号4至12。
对第二时域单元(时隙)同时承载PRS与PSFCH的情况进行介绍:
在第二时域单元中,部分第一时域单元可能承载有PSFCH。例如图7中,时域符号11和12中承载有PSFCH。可选地,在一个第二时域单元中,用于传输PSFCH的第一时域单元不用于传输PRS。
示例地,图25是本申请一个示例性实施例提供的承载有PSCCH和PSFCH的时频资源的示意图。如图25的(a)所示,在一个时隙(包括时域符号0至13)中,时域符号1至3承载了PSCCH,时域符号11和12承载了PSFCH,且时域符号0用作AGC,时域符号10和时域符号13用作GP。若第一终端设备发送的侧行PRS可以和第一终端设备发送的PSCCH频分复用,且用于传输PSFCH的时域符号不用于传输PRS,由于时域符号0和时域符号10、13不用于承载PRS,则可用于传输PRS的时域符号为时域符号1至9。如图25的(b)所示,若第一终端设备发送的侧行PRS不能和第一终端设备发送的PSCCH频分复用,且用于传输PSFCH的时域符号不用于传输PRS,由于时域符号0和时域符号10、13不用于承载PRS,则可用于传输PRS的时域符号为时域符号4至9。
在一个第二时域单元中,用于传输PSFCH的第一时域单元不用于传输PRS的前提下,可选地,PRS的重复周期为PSFCH的周期的整数倍,即P1=L*P2。其中,P1为PRS的重复周期,P2为PSFCH的周期,L为大于等于1的正整数。
若资源池中包括PSFCH资源,并且其周期值为P2,即每P2个时隙中有一个包括PSFCH资源的时隙,由于包括PSFCH的时隙与不包括PSFCH的时隙中可用于传输PRS的时域符号数量不相同(用于传输PSFCH的时域符号不用于传输PRS),为了保证重复发送的PRS所在的时隙中具有相同数量的可用于传输PRS的时域符号数,即PRS所在的时隙均包括PSFCH资源或均不包括PSFCH资源,因此,若PRS的周 期为P1,则P1是P2的整数倍。
示例地,图26是本申请一个示例性实施例提供的不同时隙的频率资源的示意图。如图26所示,时隙x用于发送PRS,PRS的周期为P1,因此,时隙x+P1也用于发送PRS,PSFCH的周期为P2。若P1不是P2的整数倍,则可能出现时隙x不包括PSFCH资源,时隙x+P1包括PSFCH资源的情况,该情况下这两个时隙中可用于传输PRS的时域符号数不同,若在时隙x传输的PRS的梳齿尺寸为8,由于时隙x+P1中可用于传输PRS的时域符号数(6个)小于8(PRS的梳齿尺寸需小于PRS的时域长度),会导致不能在时隙x+P1中发送该PRS。因此,需要保证PRS的重复周期为PSFCH的周期的整数倍,才能够实现PRS正常的重复发送。
可选地,PRS的梳状结构的梳齿尺寸或PRS在一个第二时域单元中占据的第一时域单元的数量,小于或等于一个第二时域单元中可用于传输PRS的第一时域单元的数量。可选地,第一终端设备在包括多个PRS配置的PRS的配置信息中,确定其使用的第一PRS配置时,需使得第一PRS配置所配置的PRS满足上述条件。
可选地,一个第二时域单元中可用于传输PRS的第一时域单元的数量是根据如下至少一种信息确定的:
·一个第二时域单元中是否包括PSFCH资源;
·PRS是否支持映射到PSCCH的第一时域单元;
·与第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置。
示例性的,在需要满足资源池的不同时隙中用于传输PRS的OFDM符号的数量均相等的条件的情况下,资源池的一个时隙中可用于传输PRS的OFDM符号数量根据该资源池包括的各时隙中可用于传输PRS的OFDM符号的最小数量确定。例如,时隙中配置了PSFCH资源,由于不包括PSFCH资源的时隙中可用于传输PRS的OFDM符号数量,大于包括PSFCH资源的时隙中可用于传输PRS的OFDM符号数量。因此,资源池包括的各时隙中可用于传输PRS的OFDM符号最小数量可以根据资源池中包括PSFCH的时隙中可用于传输PRS的OFDM符号数量确定,在此基础上可确定该资源池包括的各时隙中用于传输PRS的OFDM符号数量。例如,如图26所示,不包括PSFCH的时隙(时隙n)中可用于传输PRS的OFDM符号数量为9,包括PSFCH的时隙(时隙n+P1)中可用于传输PRS的OFDM符号数量为6,因此,该资源池包括的各时隙中可用于传输PRS的OFDM符号最小数量为6。在该资源池的时隙中重复传输PRS时,各时隙中用于传输PRS的OFDM符号数量为6。
通过上述方式对PRS进行资源映射,能够得到PRS的配置信息(包括一种或多种PRS配置)。第一终端设备通过获取PRS的配置信息,能够确定第一PRS配置,例如根据第一信息确定,从而第一终端设备可基于第一PRS配置向第二终端设备发送PRS或接收第二终端设备发送的PRS,在该基础上可实现基于PRS对终端设备的定位。第二终端设备泛指与第一终端设备不同的终端设备,不限定为具体的设备。
本申请实施例提供的方法,通过由第一终端设备根据第一信息确定第一PRS配置,可以使得第一终端设备基于第一PRS配置与第二终端设备之间传输PRS。从而实现了终端设备之间的PRS传输,在实现传输PRS的基础上可实现通过PRS对终端设备的定位。
对第一终端设备确定第一PRS配置的方式进行介绍:
(1)针对第一终端设备根据第一信息,在预配置的PRS的配置信息中确定第一PRS配置的情况:
图27是本申请一个示例性实施例提供的基于侧行链路的传输方法的流程图,该方法包括:
步骤2702:第一终端设备根据预配置信息获取PRS的配置信息。
该预配置信息是预配置在第一终端设备中的信息。可选地,PRS的配置信息是通过如图17至26所示的方式对PRS进行资源映射从而得到的;或者,PRS的配置信息是通过其他方式对PRS进行资源映射从而得到的。PRS的配置信息包括至少一种PRS配置。
步骤2704:第一终端设备根据第一信息在PRS的配置信息中确定第一PRS配置。
在PRS的配置信息包括至少一种PRS配置的情况下,第一终端设备根据第一信息从至少一种PRS配置中确定第一PRS配置。第一终端设备确定第一PRS配置也可称为确定第一终端设备的PRS图案。
可选地,第一信息包括如下至少一种:
·第一终端设备的标识信息;
·PRS的时域资源信息;
·PRS的频域资源信息;
·PRS的定位频率层信息;
·资源池信息;
·第二时域单元中用于侧行传输的第一时域单元的数量;
·第二时域单元中用于传输PRS的第一时域单元的数量;
·第二时域单元中是否包括PSFCH资源;
·PRS是否支持映射到承载PSCCH的第一时域单元;
·与第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置;
·协议预定义信息;
·预配置信息;
·网络配置信息。
可选地,每个第二时域单元包括至少一个第一时域单元,每个第二时域单元也可以包括至少两个第一时域单元。例如,第一时域单元包括正交频分复用OFDM符号,第二时域单元包括时隙或微时隙。
可选地,第一终端设备的标识信息包括如下至少一种:
·小区无线网络临时标识符(Cell-Radio Network Temporary Identifier,C-RNTI);
·第一终端设备所在的通信组的组标识;
·第一终端设备在通信组的组内标识(member ID);
·层2(layer 2)源目标标识(source ID);
·层2目的标识(Destination ID)。
其中,NR中的层2包括以下子层:媒体接入控制(Medium Access Control,MAC),无线链路控制(Radio Link Control,RLC),分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)和服务数据适配协议(Service Data Adaptation Protocol,SDAP)。使用层二(MAC层)的源目标标识或目的标识,能够实现对不同终端设备进行区分。该源目标标识可以理解为源标识。可选的,第一终端设备的标识信息可以是上述全部或部分标识信息。例如,第一终端设备的标识信息包括终端标识的部分比特序列。
可选地,PRS的时域资源信息包括如下至少一种:
·PRS所在的第二时域单元信息;
·PRS在第二时域单元中占据的第一个第一时域单元的位置信息;
·PRS占据的第一时域单元的个数信息;
·PRS的重复周期信息;
·PRS的重复次数信息;
·相邻两个重复的PRS的时域间隔信息;
·第二时域单元偏移信息;
·第一时域单元偏移信息。
其中,PRS的重复周期信息用于反映PRS在资源池的不同第二时域单元的重复情况。PRS的重复次数信息用于反映PRS在资源池的不同第二时域单元中重复出现的次数。相邻两个重复的PRS的时域间隔信息是以第一时域单元或第二时域单元为粒度的信息。
可选地,PRS的频域资源信息包括如下至少一种:
·PRS的频域资源带宽;
·PRS的起始频域位置信息;
·PRS的起始频域偏移信息。
可选地,PRS的定位频率层信息包括如下至少一种:
·用于指示PRS的子载波间隔的信息;
·PRS的循环前缀;
·PRS的频域资源带宽;
·PRS的起始频域位置信息;
·PRS的起始频域偏移信息;
·频域参考点(pointA)信息;
·梳齿尺寸;
·RE间隔(resource element spacing)。
第二时域单元中是否包括PSFCH资源:由于PRS不能占用PSFCH所在的第一时域单元,因此,当第二时域单元中包含PSFCH资源时,可用于传输PRS的第一时域单元数量小于不包含PSFCH资源的第二时域单元。
PRS是否支持映射到承载PSCCH的第一时域单元:若PRS可以映射到PSCCH所在的第一时域单元,则可用于传输PRS的第一时域单元数量大于PRS不能映射到PSCCH所在的第一时域单元的情况。
与第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置:若一组终端设备(包括第一终端设备)协作进行定位,则这组终端设备构成第一终端设备组,进行协作定位的第一终端设备组包括:目标终端设备(即被定位的终端设备),锚定终端设备或支持终端设备(即支持对目标终端设备进 行定位的终端设备,该终端设备发送或接收PRS,提供定位相关信息)。第一终端设备根据该第一终端设备组中其他终端设备的PRS图案(PRS配置)确定其自身的PRS图案(第一PRS配置),如第一终端设备采用和其他终端设备相同的PRS图案。
可选地,该第一信息是除第一终端设备以外的其他终端设备向第一终端设备发送的;或者,是由网络设备向第一终端设备发送的;或者,是第一终端设备中预配置或协议预定义的信息。第一终端设备根据上述第一信息中的一种信息或多种信息的组合,能够确定第一PRS配置。
可选地,第一终端设备从第二终端设备获取第二信令,第二信令中包括第一信息,从而使得第一终端设备获取到第一信息。其中,第二信令包括如下至少一种:
·PC5-无线资源控制(Radio Resource Control,RRC)信令;
·媒体接入层控制单元(MAC Control Element,MAC CE);
·侧行链路控制信息(Sidelink Control Information,SCI)。
步骤2706:第一终端设备向第二终端设备发送第三信令,第三信令用于指示第一PRS配置。
可选地,若第一终端设备确定了PRS图案(第一PRS配置),第一终端设备会通过第三信令向第二终端设备指示该PRS图案。可选地,第三信令包括如下至少一种:
·PC5-RRC信令;
·MAC CE;
·SCI。
第二终端设备泛指与第一终端设备不同的终端设备,不限定为具体的终端设备。可选地,第一终端设备通过第三信令向第二终端设备指示第一PRS配置,例如第一终端设备通过MAC CE和/或SCI进行指示。
步骤2708:第一终端设备基于第一PRS配置向第二终端设备发送PRS或接收第二终端设备发送的PRS。
第一终端设备基于第一PRS配置的PRS的时频资源,可向第二终端设备发送PRS。或者,第一终端设备可在第一PRS配置的时频资源中,接收第二终端设备发送的PRS。通过测量终端设备之间发送的PRS,可实现通过PRS对终端设备(第一终端设备或第二终端设备)的定位。
需要说明的是,上述第二终端设备泛指与第一终端设备不同的终端设备,不特指某一具体的终端设备。并且,第二终端设备可包括一个或多个终端设备。
综上所述,本实施例提供的方法,通过由第一终端设备根据第一信息确定第一PRS配置,可以使得第一终端设备基于第一PRS配置与第二终端设备之间传输PRS,从而实现了终端设备之间的PRS传输,在实现传输PRS的基础上可实现通过PRS对终端设备的定位。
(2)针对第一终端设备根据第一信息,在网络配置的PRS的配置信息中确定第一PRS配置的情况:
图28是本申请一个示例性实施例提供的基于侧行链路的传输方法的流程图,该方法包括:
步骤2802:第一终端设备根据网络配置信息获取PRS的配置信息。
该网络配置信息是网络设备配置并向第一终端设备发送的信息。可选地,PRS的配置信息是通过如图17至26所示的方式对PRS进行资源映射从而得到的;或者,PRS的配置信息是通过其他方式对PRS进行资源映射从而得到的。PRS的配置信息包括至少一种PRS配置。
可选地,网络配置信息包括如下至少一种:
·资源池配置信息;
·侧行(SL)BWP配置信息。
步骤2804:第一终端设备根据第一信息在PRS的配置信息中确定第一PRS配置。
在PRS的配置信息包括至少一种PRS配置的情况下,第一终端设备根据第一信息从至少一种PRS配置中确定第一PRS配置。第一终端设备确定第一PRS配置也可称为确定第一终端设备的PRS图案。
可选地,第一信息包括如下至少一种:
·第一终端设备的标识信息;
·PRS的时域资源信息;
·PRS的频域资源信息;
·PRS的定位频率层信息;
·资源池信息;
·第二时域单元中用于侧行传输的第一时域单元的数量;
·第二时域单元中用于传输PRS的第一时域单元的数量;
·第二时域单元中是否包括PSFCH资源;
·PRS是否支持映射到承载PSCCH的第一时域单元;
·与第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置;
·协议预定义信息;
·预配置信息;
·网络配置信息。
可选地,每个第二时域单元包括至少一个第一时域单元,每个第二时域单元也可以包括至少两个第一时域单元。例如,第一时域单元包括正交频分复用OFDM符号,第二时域单元包括时隙或微时隙。
可选地,第一终端设备的标识信息包括如下至少一种:
·C-RNTI;
·第一终端设备所在的通信组的组标识;
·第一终端设备在通信组的组内标识;
·层2源目标标识;
·层2目的标识。
可选地,PRS的时域资源信息包括如下至少一种:
·PRS所在的第二时域单元信息;
·PRS在第二时域单元中占据的第一个第一时域单元的位置信息;
·PRS占据的第一时域单元的个数信息;
·PRS的重复周期信息;
·PRS的重复次数信息;
·相邻两个重复的PRS的时域间隔信息;
·第二时域单元偏移信息;
·第一时域单元偏移信息。
可选地,PRS的频域资源信息包括如下至少一种:
·PRS的频域资源带宽;
·PRS的起始频域位置信息;
·PRS的起始频域偏移信息。
可选地,PRS的定位频率层信息包括如下至少一种:
·用于指示PRS的子载波间隔的信息;
·PRS的循环前缀;
·PRS的频域资源带宽;
·PRS的起始频域位置信息;
·PRS的起始频域偏移信息;
·频域参考点信息;
·梳齿尺寸;
·RE间隔。
可选地,该第一信息是除第一终端设备以外的其他终端设备向第一终端设备发送的;或者,是由网络设备向第一终端设备发送的;或者,是第一终端设备中预配置或协议预定义的信息。第一终端设备根据上述第一信息中的一种信息或多种信息的组合,能够确定第一PRS配置。
可选地,第一终端设备从第二终端设备获取第二信令,第二信令中包括第一信息,从而使得第一终端设备获取到第一信息。其中,第二信令包括如下至少一种:
·PC5-RRC信令;
·MAC CE;
·SCI。
步骤2806:第一终端设备向第二终端设备发送第三信令,第三信令用于指示第一PRS配置。
可选地,若第一终端设备确定了PRS图案(第一PRS配置),第一终端设备会通过第三信令向第二终端设备指示该PRS图案。可选地,第三信令包括如下至少一种:
·PC5-RRC信令;
·MAC CE;
·SCI。
第二终端设备泛指与第一终端设备不同的终端设备,不限定为具体的终端设备。可选地,第一终端设备通过第三信令向第二终端设备指示第一PRS配置,例如第一终端设备通过MAC CE和/或SCI进行指示。
步骤2808:第一终端设备基于第一PRS配置向第二终端设备发送PRS或接收第二终端设备发送的PRS。
第一终端设备基于第一PRS配置的PRS的时频资源,可向第二终端设备发送PRS。或者,第一终端设备可在第一PRS配置的时频资源中,接收第二终端设备发送的PRS。通过测量终端设备之间发送的PRS, 可实现通过PRS对终端设备(第一终端设备或第二终端设备)的定位。
需要说明的是,上述第二终端设备泛指与第一终端设备不同的终端设备,不特指某一具体的终端设备。并且,第二终端设备可包括一个或多个终端设备。
综上所述,本实施例提供的方法,通过由第一终端设备根据第一信息确定第一PRS配置,可以使得第一终端设备基于第一PRS配置与第二终端设备之间传输PRS,从而实现了终端设备之间的PRS传输,在实现传输PRS的基础上可实现通过PRS对终端设备的定位。
(3)针对第一终端设备根据第一信息,在其他终端设备发送的PRS的配置信息中确定第一PRS配置的情况:
图29是本申请一个示例性实施例提供的基于侧行链路的传输方法的流程图,该方法包括:
步骤2902:第一终端设备接收第二终端设备发送的第一信令。
该第一信令中包括PRS的配置信息。可选地,第一信令包括如下至少一种:
·PC5-RRC信令;
·MAC CE;
·SCI。
可选地,PRS的配置信息是通过如图17至26所示的方式对PRS进行资源映射从而得到的;或者,PRS的配置信息是通过其他方式对PRS进行资源映射从而得到的。PRS的配置信息包括至少一种PRS配置。
步骤2904:第一终端设备根据第一信息在PRS的配置信息中确定第一PRS配置。
在PRS的配置信息包括至少一种PRS配置的情况下,第一终端设备根据第一信息从至少一种PRS配置中确定第一PRS配置。第一终端设备确定第一PRS配置也可称为确定第一终端设备的PRS图案。
可选地,第一信息包括如下至少一种:
·第一终端设备的标识信息;
·PRS的时域资源信息;
·PRS的频域资源信息;
·PRS的定位频率层信息;
·资源池信息;
·第二时域单元中用于侧行传输的第一时域单元的数量;
·第二时域单元中用于传输PRS的第一时域单元的数量;
·第二时域单元中是否包括PSFCH资源;
·PRS是否支持映射到承载PSCCH的第一时域单元;
·与第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置;
·协议预定义信息;
·预配置信息;
·网络配置信息。
可选地,每个第二时域单元包括至少一个第一时域单元,每个第二时域单元也可以包括至少两个第一时域单元。例如,第一时域单元包括正交频分复用OFDM符号,第二时域单元包括时隙或微时隙。
可选地,第一终端设备的标识信息包括如下至少一种:
·C-RNTI;
·第一终端设备所在的通信组的组标识;
·第一终端设备在通信组的组内标识;
·层2源目标标识;
·层2目的标识。
可选地,PRS的时域资源信息包括如下至少一种:
·PRS所在的第二时域单元信息;
·PRS在第二时域单元中占据的第一个第一时域单元的位置信息;
·PRS占据的第一时域单元的个数信息;
·PRS的重复周期信息;
·PRS的重复次数信息;
·相邻两个重复的PRS的时域间隔信息;
·第二时域单元偏移信息;
·第一时域单元偏移信息。
可选地,PRS的频域资源信息包括如下至少一种:
·PRS的频域资源带宽;
·PRS的起始频域位置信息;
·PRS的起始频域偏移信息。
可选地,PRS的定位频率层信息包括如下至少一种:
·用于指示PRS的子载波间隔的信息;
·PRS的循环前缀;
·PRS的频域资源带宽;
·PRS的起始频域位置信息;
·PRS的起始频域偏移信息;
·频域参考点信息;
·梳齿尺寸;
·RE间隔。
可选地,该第一信息是除第一终端设备以外的其他终端设备向第一终端设备发送的;或者,是由网络设备向第一终端设备发送的;或者,是第一终端设备中预配置或协议预定义的信息。第一终端设备根据上述第一信息中的一种信息或多种信息的组合,能够确定第一PRS配置。
可选地,第一终端设备从第二终端设备获取第二信令,第二信令中包括第一信息,从而使得第一终端设备获取到第一信息。其中,第二信令包括如下至少一种:
·PC5-RRC信令;
·MAC CE;
·SCI。
步骤2906:第一终端设备向第二终端设备发送第三信令,第三信令用于指示第一PRS配置。
可选地,若第一终端设备确定了PRS图案(第一PRS配置),第一终端设备会通过第三信令向第二终端设备指示该PRS图案。可选地,第三信令包括如下至少一种:
·PC5-RRC信令;
·MAC CE;
·SCI。
第二终端设备泛指与第一终端设备不同的终端设备,不限定为具体的终端设备。可选地,第一终端设备通过第三信令向第二终端设备指示第一PRS配置,例如第一终端设备通过MAC CE和/或SCI进行指示。
步骤2908:第一终端设备基于第一PRS配置向第二终端设备发送PRS或接收第二终端设备发送的PRS。
第一终端设备基于第一PRS配置的PRS的时频资源,可向第二终端设备发送PRS。或者,第一终端设备可在第一PRS配置的时频资源中,接收第二终端设备发送的PRS。通过测量终端设备之间发送的PRS,可实现通过PRS对终端设备(第一终端设备或第二终端设备)的定位。
需要说明的是,上述第二终端设备泛指与第一终端设备不同的终端设备,不特指某一具体的终端设备。并且,第二终端设备可包括一个或多个终端设备。
综上所述,本实施例提供的方法,通过由第一终端设备根据第一信息确定第一PRS配置,可以使得第一终端设备基于第一PRS配置与第二终端设备之间传输PRS,从而实现了终端设备之间的PRS传输,在实现传输PRS的基础上可实现通过PRS对终端设备的定位。
需要说明的是,上述第二终端设备泛指与第一终端设备不同的终端设备,不特指某一具体的终端设备。并且,第二终端设备可包括一个或多个终端设备。另外,向第一终端设备发送第一信令的第二终端设备、向第一终端设备发送第二信令的第二终端设备、接收第一终端设备发送的第三信令的第二终端设备、以及和第一终端设备传输PRS的第二终端设备,全部相同,或全部不同,或部分相同。
需要说明的是,上述图27至29所示的方法中,第一终端设备和第二终端设备之间执行的步骤可以互换,即由第一终端设备执行第二终端设备的步骤,并由第二终端设备执行第一终端设备的步骤。第一终端设备和第二终端设备仅用于区分两个终端设备是不同的终端设备,并不用于特指具体的终端设备。
需要说明的是,本申请实施例提供的方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,并且不同步骤之间可以自由组合形成新的实施例。任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。另外,上述不同情况的先后顺序,不具有优选含义,只是为了方便表述。
图30是本申请一个示例性实施例提供的基于侧行链路的传输装置的框图。如图30所示,该装置包括:
确定模块3001,用于根据第一信息确定第一PRS配置;
收发模块3002,用于基于所述第一PRS配置向第二终端设备发送PRS或接收所述第二终端设备发送 的所述PRS。
在一个可选的设计中,所述第一信息包括如下至少一种:
所述装置的标识信息;
所述PRS的时域资源信息;
所述PRS的频域资源信息;
所述PRS的定位频率层信息;
资源池信息;
第二时域单元中用于侧行传输的第一时域单元的数量;
所述第二时域单元中用于传输所述PRS的所述第一时域单元的数量;
所述第二时域单元中是否包括PSFCH资源;
所述PRS是否支持映射到承载PSCCH的第一时域单元;
与所述装置进行协作定位的装置组中的其他终端设备的PRS配置;
协议预定义信息;
预配置信息;
网络配置信息;
其中,每个所述第二时域单元包括至少一个所述第一时域单元。
在一个可选的设计中,所述装置的标识信息包括如下至少一种:
C-RNTI;
所述装置所在的通信组的组标识;
所述装置在通信组的组内标识;
层2源目标标识;
层2目的标识。
在一个可选的设计中,所述PRS的时域资源信息包括如下至少一种:
所述PRS所在的所述第二时域单元信息;
所述PRS在所述第二时域单元中占据的第一个所述第一时域单元的位置信息;
所述PRS占据的所述第一时域单元的个数信息;
所述PRS的重复周期信息;
所述PRS的重复次数信息;
相邻两个重复的所述PRS的时域间隔信息;
第二时域单元偏移信息;
第一时域单元偏移信息。
在一个可选的设计中,所述PRS的频域资源信息包括如下至少一种:
所述PRS的频域资源带宽;
所述PRS的起始频域位置信息;
所述PRS的起始频域偏移信息。
在一个可选的设计中,所述PRS的定位频率层信息包括如下至少一种:
用于指示所述PRS的子载波间隔的信息;
所述PRS的循环前缀;
所述PRS的频域资源带宽;
所述PRS的起始频域位置信息;
所述PRS的起始频域偏移信息;
频域参考点信息;
梳齿尺寸;
RE间隔。
在一个可选的设计中,所述装置还包括:
获取模块3003,用于获取PRS的配置信息,所述PRS的配置信息包括至少一种PRS配置;
所述确定模块3001,用于:
根据所述第一信息从所述至少一种PRS配置中确定所述第一PRS配置。
在一个可选的设计中,所述获取模块3003,用于:
根据预配置信息或网络配置信息获取所述PRS的配置信息。
在一个可选的设计中,所述网络配置信息包括如下至少一种:
资源池配置信息;
侧行BWP配置信息。
在一个可选的设计中,所述收发模块3002,用于:
接收所述第二终端设备发送的第一信令,所述第一信令中包括所述PRS的配置信息。
在一个可选的设计中,所述第一信令包括如下至少一种:
PC5-RRC信令;
MAC CE;
SCI。
在一个可选的设计中,所述装置还包括:
获取模块3003,用于从所述第二终端设备获取第二信令,所述第二信令中包括所述第一信息;
其中,所述第二信令包括如下至少一种:
PC5-RRC信令;
MAC CE;
SCI。
在一个可选的设计中,所述收发模块3002,用于:
向所述第二终端设备发送第三信令,所述第三信令用于指示所述第一PRS配置;
其中,所述第三信令包括如下至少一种:
PC5-RRC信令;
MAC CE;
SCI。
在一个可选的设计中,所述PRS具有以第一频域单元为梳齿粒度的梳状结构,所述第一频域单元包括在频域上连续的n个资源单元RE的频域资源,n为大于1的正整数。
在一个可选的设计中,所述第一频域单元包括如下任意一种资源的频域资源:
PRB;
子信道;
REG;
其中,所述子信道在频域上包括连续的多个PRB,所述REG在频域上包括连续的多个子载波。
在一个可选的设计中,所述第一PRS配置包括梳齿尺寸、时域长度和信号偏移值中的至少一种;
所述梳齿尺寸包括在同一个第一时域单元上,所述PRS的相邻两个所述第一频域单元之间的间隔;
所述时域长度包括在一个第二时域单元内所述PRS占据的所述第一时域单元的数量;
所述信号偏移值包括在一个所述第二时域单元中的第一个所述第一时域单元上,所述PRS的第一个所述第一频域单元的偏移值,每个所述第二时域单元包括至少一个所述第一时域单元。
在一个可选的设计中,所述PRS与PSCCH频分复用;或,所述PRS不与PSCCH频分复用。
在一个可选的设计中,在一个第二时域单元中,用于传输PSFCH的第一时域单元不用于传输所述PRS。
在一个可选的设计中,所述的PRS的重复周期为所述PSFCH的周期的整数倍。
在一个可选的设计中,所述梳状结构的梳齿尺寸或所述PRS在一个所述第二时域单元中占据的所述第一时域单元的数量,小于或等于一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量。
在一个可选的设计中,一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量是根据如下至少一种信息确定的:
一个所述第二时域单元中是否包括PSFCH资源;
所述PRS是否支持映射到PSCCH的所述第一时域单元;
与所述装置进行协作定位的装置组中的其他终端设备的PRS配置。
在一个可选的设计中,所述第一时域单元包括OFDM符号,所述第二时域单元包括时隙或微时隙。
图31是本申请一个示例性实施例提供的基于侧行链路的定位参考信号的配置装置的框图。如图31所示,该装置包括:
获取模块3101,用于获取PRS的配置信息,所述PRS具有以第一频域单元为梳齿粒度的梳状结构;
其中,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
在一个可选的设计中,所述第一频域单元包括如下任意一种资源的频域资源:
PRB;
子信道;
REG;
其中,所述子信道在频域上包括连续的多个PRB,所述REG在频域上包括连续的多个子载波。
在一个可选的设计中,所述PRS的配置信息包括梳齿尺寸、时域长度和信号偏移值中的至少一种;
所述梳齿尺寸包括在同一个第一时域单元上,所述PRS的相邻两个所述第一频域单元之间的间隔;
所述时域长度包括在一个第二时域单元内所述PRS占据的所述第一时域单元的数量;
所述信号偏移值包括在一个所述第二时域单元中的第一个所述第一时域单元上,所述PRS的第一个所述第一频域单元的偏移值,每个所述第二时域单元包括至少一个所述第一时域单元。
在一个可选的设计中,所述PRS与PSCCH频分复用;或,所述PRS不与PSCCH频分复用。
在一个可选的设计中,在一个第二时域单元中,用于传输PSFCH的第一时域单元不用于传输所述PRS。
在一个可选的设计中,所述的PRS的重复周期为所述PSFCH的周期的整数倍。
在一个可选的设计中,所述梳状结构的梳齿尺寸或所述PRS在一个所述第二时域单元中占据的所述第一时域单元的数量,小于或等于一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量。
在一个可选的设计中,一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量是根据如下至少一种信息确定的:
一个所述第二时域单元中是否包括PSFCH资源;
所述PRS是否支持映射到PSCCH的所述第一时域单元;
与所述装置进行协作定位的装置组中的其他终端设备的PRS配置。
在一个可选的设计中,所述获取模块3101,用于:
根据预配置信息或网络配置信息获取所述PRS的配置信息。
在一个可选的设计中,所述网络配置信息包括如下至少一种:
资源池配置信息;
侧行BWP配置信息。
在一个可选的设计中,所述装置还包括:
接收模块3102,用于接收第二终端设备发送的第一信令,所述第一信令中包括所述PRS的配置信息。
在一个可选的设计中,所述第一信令包括如下至少一种:
PC5-RRC信令;
MAC CE;
SCI。
在一个可选的设计中,所述第一时域单元包括OFDM符号,所述第二时域单元包括时隙或微时隙。
图32是本申请一个示例性实施例提供的基于侧行链路的传输装置的框图。如图32所示,该装置包括:
发送模块3201,用于向第一终端设备发送PRS的配置信息,所述PRS的配置信息包括至少一种PRS配置;
其中,所述至少一种PRS配置用于所述第一终端设备根据第一信息确定第一PRS配置,所述第一PRS配置用于所述第一终端设备根据所述第一PRS配置向第二终端设备发送PRS或接收所述第二终端设备发送的所述PRS。
在一个可选的设计中,所述第一信息包括如下至少一种:
所述第一终端设备的标识信息;
所述PRS的时域资源信息;
所述PRS的频域资源信息;
所述PRS的定位频率层信息;
资源池信息;
第二时域单元中用于侧行传输的第一时域单元的数量;
所述第二时域单元中用于传输所述PRS的所述第一时域单元的数量;
所述第二时域单元中是否包括PSFCH资源;
所述PRS是否支持映射到承载PSCCH的第一时域单元;
与所述第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置;
协议预定义信息;
预配置信息;
网络配置信息;
其中,每个所述第二时域单元包括至少一个所述第一时域单元。
在一个可选的设计中,所述PRS的配置信息携带在以下至少一种信息中:
资源池配置信息;
侧行BWP配置信息。
在一个可选的设计中,所述PRS具有以第一频域单元为梳齿粒度的梳状结构,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
在一个可选的设计中,所述第一频域单元包括如下任意一种资源的频域资源:
PRB;
子信道;
REG;
其中,所述子信道在频域上包括连续的多个PRB,所述REG在频域上包括连续的多个子载波。
在一个可选的设计中,所述第一PRS配置包括梳齿尺寸、时域长度和信号偏移值中的至少一种;
所述梳齿尺寸包括在同一个第一时域单元上,所述PRS的相邻两个所述第一频域单元之间的间隔;
所述时域长度包括在一个第二时域单元内所述PRS占据的所述第一时域单元的数量;
所述信号偏移值包括在一个所述第二时域单元中的第一个所述第一时域单元上,所述PRS的第一个所述第一频域单元的偏移值,每个所述第二时域单元包括至少一个所述第一时域单元。
在一个可选的设计中,所述PRS与PSCCH频分复用;或,所述PRS不与PSCCH频分复用。
在一个可选的设计中,在一个第二时域单元中,用于传输PSFCH的第一时域单元不用于传输所述PRS。
在一个可选的设计中,所述的PRS的重复周期为所述PSFCH的周期的整数倍。
在一个可选的设计中,所述梳状结构的梳齿尺寸或所述PRS在一个所述第二时域单元中占据的所述第一时域单元的数量,小于或等于一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量。
在一个可选的设计中,一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量是根据如下至少一种信息确定的:
一个所述第二时域单元中是否包括PSFCH资源;
所述PRS是否支持映射到PSCCH的所述第一时域单元;
与所述第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置。
在一个可选的设计中,所述第一时域单元包括OFDM符号,所述第二时域单元包括时隙或微时隙。
图33是本申请一个示例性实施例提供的基于侧行链路的传输装置的框图。如图33所示,该装置包括:
发送模块3301,用于向第一终端设备发送PRS的配置信息,所述PRS具有以第一频域单元为梳齿粒度的梳状结构;
其中,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
在一个可选的设计中,所述第一频域单元包括如下任意一种资源的频域资源:
PRB;
子信道;
REG;
其中,所述子信道在频域上包括连续的多个PRB,所述REG在频域上包括连续的多个子载波。
在一个可选的设计中,所述PRS的配置信息包括梳齿尺寸、时域长度和信号偏移值中的至少一种;
所述梳齿尺寸包括在同一个第一时域单元上,所述PRS的相邻两个所述第一频域单元之间的间隔;
所述时域长度包括在一个第二时域单元内所述PRS占据的所述第一时域单元的数量;
所述信号偏移值包括在一个所述第二时域单元中的第一个所述第一时域单元上,所述PRS的第一个所述第一频域单元的偏移值,每个所述第二时域单元包括至少一个所述第一时域单元。
在一个可选的设计中,所述PRS与PSCCH频分复用;或,所述PRS不与PSCCH频分复用。
在一个可选的设计中,在一个第二时域单元中,用于传输PSFCH的第一时域单元不用于传输所述PRS。
在一个可选的设计中,所述的PRS的重复周期为所述PSFCH的周期的整数倍。
在一个可选的设计中,所述梳状结构的梳齿尺寸或所述PRS在一个所述第二时域单元中占据的所述第一时域单元的数量,小于或等于一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量。
在一个可选的设计中,一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量是根据如下至少一种信息确定的:
一个所述第二时域单元中是否包括PSFCH资源;
所述PRS是否支持映射到PSCCH的所述第一时域单元;
与所述第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置。
在一个可选的设计中,所述PRS的配置信息携带在以下至少一种信息中:
资源池配置信息;
侧行BWP配置信息。
在一个可选的设计中,所述第一时域单元包括OFDM符号,所述第二时域单元包括时隙或微时隙。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图34是本申请一个示例性实施例提供的通信设备(终端设备和/或网络设备)的结构示意图,该通信设备3400包括:处理器3401、接收器3402、发射器3403、存储器3404和总线3405。
处理器3401包括一个或者一个以上处理核心,处理器3401通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器3402和发射器3403可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器3404通过总线3405与处理器3401相连。存储器3404可用于存储至少一个指令,处理器3401用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器3404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM),静态随时存取存储器(Static Random-Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
其中,当通信设备实现为终端设备时,本申请实施例涉及的通信设备中的处理器和收发器,可以一起实现成为一个通信芯片,或者收发器单独形成通信芯片。其中,收发器中的发射器执行上述任一所示的方法中由终端设备执行的发送步骤,收发器中的接收器执行上述任一所示的方法中由终端设备执行的接收步骤,处理器执行发送和接收步骤之外的步骤,此处不再赘述。
其中,当通信设备实现为网络设备时,本申请实施例涉及的通信设备中的处理器和收发器,可以一起实现成为一个通信芯片,或者收发器单独形成通信芯片。其中,收发器中的发射器执行上述任一所示的方法中由网络设备执行的发送步骤,收发器中的接收器执行上述任一所示的方法中由网络设备执行的接收步骤,处理器执行发送和接收步骤之外的步骤,此处不再赘述。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的基于侧行链路的传输方法或基于侧行链路的定位参考信号的配置方法。
在示例性实施例中,还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在通信设备上运行时,用于基于所述可编程逻辑电路和/或程序实现上述各个方法实施例提供的基于侧行链路的传输方法或基于侧行链路的定位参考信号的配置方法。
在示例性实施例中,还提供了一种计算机程序产品,该计算机程序产品在计算机设备的处理器上运行时,使得计算机设备执行上述基于侧行链路的传输方法或基于侧行链路的定位参考信号的配置方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (66)

  1. 一种基于侧行链路的传输方法,其特征在于,所述方法由第一终端设备执行,所述方法包括:
    根据第一信息确定第一定位参考信号PRS配置;
    基于所述第一PRS配置向第二终端设备发送PRS或接收所述第二终端设备发送的所述PRS。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括如下至少一种:
    所述第一终端设备的标识信息;
    所述PRS的时域资源信息;
    所述PRS的频域资源信息;
    所述PRS的定位频率层信息;
    资源池信息;
    第二时域单元中用于侧行传输的第一时域单元的数量;
    所述第二时域单元中用于传输所述PRS的所述第一时域单元的数量;
    所述第二时域单元中是否包括物理侧行反馈信道PSFCH资源;
    所述PRS是否支持映射到承载物理侧行控制信道PSCCH的第一时域单元;
    与所述第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置;
    协议预定义信息;
    预配置信息;
    网络配置信息;
    其中,每个所述第二时域单元包括至少一个所述第一时域单元。
  3. 根据权利要求2所述的方法,其特征在于,所述第一终端设备的标识信息包括如下至少一种:
    小区无线网络临时标识符C-RNTI;
    所述第一终端设备所在的通信组的组标识;
    所述第一终端设备在通信组的组内标识;
    层2源目标标识;
    层2目的标识。
  4. 根据权利要求2所述的方法,其特征在于,所述PRS的时域资源信息包括如下至少一种:
    所述PRS所在的所述第二时域单元信息;
    所述PRS在所述第二时域单元中占据的第一个所述第一时域单元的位置信息;
    所述PRS占据的所述第一时域单元的个数信息;
    所述PRS的重复周期信息;
    所述PRS的重复次数信息;
    相邻两个重复的所述PRS的时域间隔信息;
    第二时域单元偏移信息;
    第一时域单元偏移信息。
  5. 根据权利要求2所述的方法,其特征在于,所述PRS的频域资源信息包括如下至少一种:
    所述PRS的频域资源带宽;
    所述PRS的起始频域位置信息;
    所述PRS的起始频域偏移信息。
  6. 根据权利要求2所述的方法,其特征在于,所述PRS的定位频率层信息包括如下至少一种:
    用于指示所述PRS的子载波间隔的信息;
    所述PRS的循环前缀;
    所述PRS的频域资源带宽;
    所述PRS的起始频域位置信息;
    所述PRS的起始频域偏移信息;
    频域参考点信息;
    梳齿尺寸;
    资源单元RE间隔。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述方法还包括:
    获取PRS的配置信息,所述PRS的配置信息包括至少一种PRS配置;
    所述根据第一信息确定第一PRS配置,包括:
    根据所述第一信息从所述至少一种PRS配置中确定所述第一PRS配置。
  8. 根据权利要求7所述的方法,其特征在于,所述获取PRS的配置信息,包括:
    根据预配置信息或网络配置信息获取所述PRS的配置信息。
  9. 根据权利要求8所述的方法,其特征在于,所述网络配置信息包括如下至少一种:
    资源池配置信息;
    侧行部分带宽BWP配置信息。
  10. 根据权利要求7所述的方法,其特征在于,所述获取PRS的配置信息,包括:
    接收所述第二终端设备发送的第一信令,所述第一信令中包括所述PRS的配置信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信令包括如下至少一种:
    PC5-无线资源控制RRC信令;
    媒体接入层控制单元MAC CE;
    侧行链路控制信息SCI。
  12. 根据权利要求1至11任一所述的方法,其特征在于,所述方法还包括:
    从所述第二终端设备获取第二信令,所述第二信令中包括所述第一信息;
    其中,所述第二信令包括如下至少一种:
    PC5-RRC信令;
    MAC CE;
    SCI。
  13. 根据权利要求1至11任一所述的方法,其特征在于,所述方法还包括:
    向所述第二终端设备发送第三信令,所述第三信令用于指示所述第一PRS配置;
    其中,所述第三信令包括如下至少一种:
    PC5-RRC信令;
    MAC CE;
    SCI。
  14. 根据权利要求1至13任一所述的方法,其特征在于,
    所述PRS具有以第一频域单元为梳齿粒度的梳状结构,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
  15. 根据权利要求14所述的方法,其特征在于,所述第一频域单元包括如下任意一种资源的频域资源:
    物理资源块PRB;
    子信道;
    资源单元组REG;
    其中,所述子信道在频域上包括连续的多个PRB,所述REG在频域上包括连续的多个子载波。
  16. 根据权利要求14所述的方法,其特征在于,所述第一PRS配置包括梳齿尺寸、时域长度和信号偏移值中的至少一种;
    所述梳齿尺寸包括在同一个第一时域单元上,所述PRS的相邻两个所述第一频域单元之间的间隔;
    所述时域长度包括在一个第二时域单元内所述PRS占据的所述第一时域单元的数量;
    所述信号偏移值包括在一个所述第二时域单元中的第一个所述第一时域单元上,所述PRS的第一个所述第一频域单元的偏移值,每个所述第二时域单元包括至少一个所述第一时域单元。
  17. 根据权利要求14所述的方法,其特征在于,
    所述PRS与PSCCH频分复用;或,所述PRS不与PSCCH频分复用。
  18. 根据权利要求14所述的方法,其特征在于,在一个第二时域单元中,用于传输PSFCH的第一时域单元不用于传输所述PRS。
  19. 根据权利要求18所述的方法,其特征在于,所述的PRS的重复周期为所述PSFCH的周期的整数倍。
  20. 根据权利要求18所述的方法,其特征在于,所述梳状结构的梳齿尺寸或所述PRS在一个所述第二时域单元中占据的所述第一时域单元的数量,小于或等于一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量。
  21. 根据权利要求20所述的方法,其特征在于,一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量是根据如下至少一种信息确定的:
    一个所述第二时域单元中是否包括PSFCH资源;
    所述PRS是否支持映射到PSCCH的所述第一时域单元;
    与所述第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置。
  22. 根据权利要求2或16或18所述的方法,其特征在于,所述第一时域单元包括正交频分复用OFDM符号,所述第二时域单元包括时隙或微时隙。
  23. 一种基于侧行链路的定位参考信号的配置方法,其特征在于,所述方法由第一终端设备执行,所述方法包括:
    获取PRS的配置信息,所述PRS具有以第一频域单元为梳齿粒度的梳状结构;
    其中,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
  24. 根据权利要求23所述的方法,其特征在于,所述第一频域单元包括如下任意一种资源的频域资源:
    PRB;
    子信道;
    REG;
    其中,所述子信道在频域上包括连续的多个PRB,所述REG在频域上包括连续的多个子载波。
  25. 根据权利要求23所述的方法,其特征在于,所述PRS的配置信息包括梳齿尺寸、时域长度和信号偏移值中的至少一种;
    所述梳齿尺寸包括在同一个第一时域单元上,所述PRS的相邻两个所述第一频域单元之间的间隔;
    所述时域长度包括在一个第二时域单元内所述PRS占据的所述第一时域单元的数量;
    所述信号偏移值包括在一个所述第二时域单元中的第一个所述第一时域单元上,所述PRS的第一个所述第一频域单元的偏移值,每个所述第二时域单元包括至少一个所述第一时域单元。
  26. 根据权利要求23至25任一所述的方法,其特征在于,
    所述PRS与PSCCH频分复用;或,所述PRS不与PSCCH频分复用。
  27. 根据权利要求23至25任一所述的方法,其特征在于,在一个第二时域单元中,用于传输PSFCH的第一时域单元不用于传输所述PRS。
  28. 根据权利要求27所述的方法,其特征在于,所述的PRS的重复周期为所述PSFCH的周期的整数倍。
  29. 根据权利要求27所述的方法,其特征在于,所述梳状结构的梳齿尺寸或所述PRS在一个所述第二时域单元中占据的所述第一时域单元的数量,小于或等于一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量。
  30. 根据权利要求29所述的方法,其特征在于,一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量是根据如下至少一种信息确定的:
    一个所述第二时域单元中是否包括PSFCH资源;
    所述PRS是否支持映射到PSCCH的所述第一时域单元;
    与所述第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置。
  31. 根据权利要求23至30任一所述的方法,其特征在于,所述获取PRS的配置信息,包括:
    根据预配置信息或网络配置信息获取所述PRS的配置信息。
  32. 根据权利要求31所述的方法,其特征在于,所述网络配置信息包括如下至少一种:
    资源池配置信息;
    侧行BWP配置信息。
  33. 根据权利要求23至30任一所述的方法,其特征在于,所述获取PRS的配置信息,包括:
    接收第二终端设备发送的第一信令,所述第一信令中包括所述PRS的配置信息。
  34. 根据权利要求33所述的方法,其特征在于,所述第一信令包括如下至少一种:
    PC5-RRC信令;
    MAC CE;
    SCI。
  35. 根据权利要求25或27所述的方法,其特征在于,所述第一时域单元包括OFDM符号,所述第二时域单元包括时隙或微时隙。
  36. 一种基于侧行链路的定位参考信号的配置方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    向第一终端设备发送PRS的配置信息,所述PRS的配置信息包括至少一种PRS配置;
    其中,所述至少一种PRS配置用于所述第一终端设备根据第一信息确定第一PRS配置,所述第一PRS配置用于所述第一终端设备根据所述第一PRS配置向第二终端设备发送PRS或接收所述第二终端设备发送的所述PRS。
  37. 根据权利要求36所述的方法,其特征在于,所述第一信息包括如下至少一种:
    所述第一终端设备的标识信息;
    所述PRS的时域资源信息;
    所述PRS的频域资源信息;
    所述PRS的定位频率层信息;
    资源池信息;
    第二时域单元中用于侧行传输的第一时域单元的数量;
    所述第二时域单元中用于传输所述PRS的第一时域单元的数量;
    所述第二时域单元中是否包括PSFCH资源;
    所述PRS是否支持映射到承载PSCCH的第一时域单元;
    与所述第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置;
    协议预定义信息;
    预配置信息;
    网络配置信息;
    其中,每个所述第二时域单元包括至少一个所述第一时域单元。
  38. 根据权利要求36或37所述的方法,其特征在于,所述PRS的配置信息携带在以下至少一种信息中:
    资源池配置信息;
    侧行BWP配置信息。
  39. 根据权利要求36至38任一所述的方法,其特征在于,
    所述PRS具有以第一频域单元为梳齿粒度的梳状结构,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
  40. 根据权利要求39所述的方法,其特征在于,所述第一频域单元包括如下任意一种资源的频域资源:
    PRB;
    子信道;
    REG;
    其中,所述子信道在频域上包括连续的多个PRB,所述REG在频域上包括连续的多个子载波。
  41. 根据权利要求39所述的方法,其特征在于,所述第一PRS配置包括梳齿尺寸、时域长度和信号偏移值中的至少一种;
    所述梳齿尺寸包括在同一个第一时域单元上,所述PRS的相邻两个所述第一频域单元之间的间隔;
    所述时域长度包括在一个第二时域单元内所述PRS占据的所述第一时域单元的数量;
    所述信号偏移值包括在一个所述第二时域单元中的第一个所述第一时域单元上,所述PRS的第一个所述第一频域单元的偏移值,每个所述第二时域单元包括至少一个所述第一时域单元。
  42. 根据权利要求39所述的方法,其特征在于,
    所述PRS与PSCCH频分复用;或,所述PRS不与PSCCH频分复用。
  43. 根据权利要求39所述的方法,其特征在于,在一个第二时域单元中,用于传输PSFCH的第一时域单元不用于传输所述PRS。
  44. 根据权利要求43所述的方法,其特征在于,所述的PRS的重复周期为所述PSFCH的周期的整数倍。
  45. 根据权利要求43所述的方法,其特征在于,所述梳状结构的梳齿尺寸或所述PRS在一个所述第二时域单元中占据的所述第一时域单元的数量,小于或等于一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量。
  46. 根据权利要求45所述的方法,其特征在于,一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量是根据如下至少一种信息确定的:
    一个所述第二时域单元中是否包括PSFCH资源;
    所述PRS是否支持映射到PSCCH的所述第一时域单元;
    与所述第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置。
  47. 根据权利要求37或41或43所述的方法,其特征在于,所述第一时域单元包括OFDM符号,所述第二时域单元包括时隙或微时隙。
  48. 一种基于侧行链路的定位参考信号的配置方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    向第一终端设备发送PRS的配置信息,所述PRS具有以第一频域单元为梳齿粒度的梳状结构;
    其中,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
  49. 根据权利要求48所述的方法,其特征在于,所述第一频域单元包括如下任意一种资源的频域资源:
    PRB;
    子信道;
    REG;
    其中,所述子信道在频域上包括连续的多个PRB,所述REG在频域上包括连续的多个子载波。
  50. 根据权利要求48所述的方法,其特征在于,所述PRS的配置信息包括梳齿尺寸、时域长度和信号偏移值中的至少一种;
    所述梳齿尺寸包括在同一个第一时域单元上,所述PRS的相邻两个所述第一频域单元之间的间隔;
    所述时域长度包括在一个第二时域单元内所述PRS占据的所述第一时域单元的数量;
    所述信号偏移值包括在一个所述第二时域单元中的第一个所述第一时域单元上,所述PRS的第一个所述第一频域单元的偏移值,每个所述第二时域单元包括至少一个所述第一时域单元。
  51. 根据权利要求48至50任一所述的方法,其特征在于,
    所述PRS与PSCCH频分复用;或,所述PRS不与PSCCH频分复用。
  52. 根据权利要求48至50任一所述的方法,其特征在于,在一个第二时域单元中,用于传输PSFCH的第一时域单元不用于传输所述PRS。
  53. 根据权利要求52所述的方法,其特征在于,所述的PRS的重复周期为所述PSFCH的周期的整数倍。
  54. 根据权利要求52所述的方法,其特征在于,所述梳状结构的梳齿尺寸或所述PRS在一个所述第二时域单元中占据的所述第一时域单元的数量,小于或等于一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量。
  55. 根据权利要求54所述的方法,其特征在于,一个所述第二时域单元中可用于传输所述PRS的所述第一时域单元的数量是根据如下至少一种信息确定的:
    一个所述第二时域单元中是否包括PSFCH资源;
    所述PRS是否支持映射到PSCCH的所述第一时域单元;
    与所述第一终端设备进行协作定位的第一终端设备组中的其他终端设备的PRS配置。
  56. 根据权利要求48至55任一所述的方法,其特征在于,所述PRS的配置信息携带在以下至少一种信息中:
    资源池配置信息;
    侧行BWP配置信息。
  57. 根据权利要求50或52所述的方法,其特征在于,所述第一时域单元包括OFDM符号,所述第二时域单元包括时隙或微时隙。
  58. 一种基于侧行链路的传输装置,其特征在于,所述装置包括:
    确定模块,用于根据第一信息确定第一PRS配置;
    收发模块,用于基于所述第一PRS配置向第二终端设备发送PRS或接收所述第二终端设备发送的所述PRS。
  59. 一种基于侧行链路的定位参考信号的配置装置,其特征在于,所述装置包括:
    获取模块,用于获取PRS的配置信息,所述PRS具有以第一频域单元为梳齿粒度的梳状结构;
    其中,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
  60. 一种基于侧行链路的定位参考信号的配置装置,其特征在于,所述装置包括:
    发送模块,用于向第一终端设备发送PRS的配置信息,所述PRS的配置信息包括至少一种PRS配置;
    其中,所述至少一种PRS配置用于所述第一终端设备根据第一信息确定第一PRS配置,所述第一PRS配置用于所述第一终端设备根据所述第一PRS配置向第二终端设备发送PRS或接收所述第二终端设备发送的所述PRS。
  61. 一种基于侧行链路的定位参考信号的配置装置,其特征在于,所述装置包括:
    发送模块,用于向第一终端设备发送PRS的配置信息,所述PRS具有以第一频域单元为梳齿粒度的梳状结构;
    其中,所述第一频域单元包括在频域上连续的n个RE的频域资源,n为大于1的正整数。
  62. 一种终端设备,其特征在于,所述设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载所述可执行指令以使得所述终端设备实现如权利要求1至22中任一 所述的基于侧行链路的传输方法,或权利要求23至35中任一所述的基于侧行链路的定位参考信号的配置方法。
  63. 一种网络设备,其特征在于,所述设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载所述可执行指令以使得所述网络设备实现如权利要求36至57中任一所述的基于侧行链路的定位参考信号的配置方法。
  64. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如权利要求1至22中任一所述的基于侧行链路的传输方法,或权利要求23至57中任一所述的基于侧行链路的定位参考信号的配置方法。
  65. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路或程序,所述芯片用于基于所述可编程逻辑电路或程序实现如权利要求1至22中任一所述的基于侧行链路的传输方法,或权利要求23至57中任一所述的基于侧行链路的定位参考信号的配置方法。
  66. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,计算机设备的处理器从所述计算机可读存储介质读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如权利要求1至22中任一所述的基于侧行链路的传输方法,或权利要求23至57中任一所述的基于侧行链路的定位参考信号的配置方法。
PCT/CN2022/111065 2022-08-09 2022-08-09 传输方法、定位参考信号的配置方法、装置、设备及介质 WO2024031308A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111065 WO2024031308A1 (zh) 2022-08-09 2022-08-09 传输方法、定位参考信号的配置方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111065 WO2024031308A1 (zh) 2022-08-09 2022-08-09 传输方法、定位参考信号的配置方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2024031308A1 true WO2024031308A1 (zh) 2024-02-15

Family

ID=89849996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111065 WO2024031308A1 (zh) 2022-08-09 2022-08-09 传输方法、定位参考信号的配置方法、装置、设备及介质

Country Status (1)

Country Link
WO (1) WO2024031308A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583553A (zh) * 2019-09-29 2021-03-30 大唐移动通信设备有限公司 信号传输方法及装置
CN112584487A (zh) * 2019-09-29 2021-03-30 大唐移动通信设备有限公司 信号传输方法及装置
CN112789915A (zh) * 2019-01-11 2021-05-11 Oppo广东移动通信有限公司 侧行通信的方法和终端设备
CN113055136A (zh) * 2019-12-26 2021-06-29 大唐移动通信设备有限公司 一种定位参考信号的传输资源的配置、接收方法及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112789915A (zh) * 2019-01-11 2021-05-11 Oppo广东移动通信有限公司 侧行通信的方法和终端设备
CN112583553A (zh) * 2019-09-29 2021-03-30 大唐移动通信设备有限公司 信号传输方法及装置
CN112584487A (zh) * 2019-09-29 2021-03-30 大唐移动通信设备有限公司 信号传输方法及装置
CN113055136A (zh) * 2019-12-26 2021-06-29 大唐移动通信设备有限公司 一种定位参考信号的传输资源的配置、接收方法及终端

Similar Documents

Publication Publication Date Title
WO2021063002A1 (zh) 数据传输的方法和设备
JP7511004B2 (ja) 複数のpdsch送信機会における開始シンボルをシグナリングするためのシステム及び方法
JP7237862B2 (ja) 端末、無線通信方法、基地局及びシステム
CN108347778B (zh) 通信方法及装置
WO2017119460A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017054633A1 (zh) 一种资源分配方法、装置及无线接入系统
WO2020143804A1 (zh) 一种旁链路资源的配置方法及装置
JPWO2017130993A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016155113A1 (zh) 一种群组通信的方法、用户设备、基站设备及系统
WO2018028565A1 (zh) 通信方法和设备
WO2021191874A1 (en) Mixed signal dci and multi-dci for pdsch scheduling
TW202008828A (zh) 資源配置的方法和終端設備
TW202008829A (zh) 資源配置的方法和終端設備
JP6532932B2 (ja) ユーザ端末、無線基地局及び無線通信方法
AU2017403798B2 (en) Uplink transmission method, apparatus, terminal device, access network device and system
CN113330709B (zh) 终端设备、网络设备及其中的方法
WO2018228537A1 (zh) 信息发送、接收方法及装置
US11678239B2 (en) Communication method, base station, and terminal
WO2021070160A1 (en) Systems and methods for updating active tci state for multi-pdcch based multi-trp
KR20220071247A (ko) 반복을 통한 구성 ul
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
US20240031092A1 (en) Terminal device and network device
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954288

Country of ref document: EP

Kind code of ref document: A1