WO2024031204A1 - System and method for separating milling balls, ball scrap and magnetite for mining - Google Patents

System and method for separating milling balls, ball scrap and magnetite for mining Download PDF

Info

Publication number
WO2024031204A1
WO2024031204A1 PCT/CL2022/050081 CL2022050081W WO2024031204A1 WO 2024031204 A1 WO2024031204 A1 WO 2024031204A1 CL 2022050081 W CL2022050081 W CL 2022050081W WO 2024031204 A1 WO2024031204 A1 WO 2024031204A1
Authority
WO
WIPO (PCT)
Prior art keywords
equipment
separation
separator
size
fed
Prior art date
Application number
PCT/CL2022/050081
Other languages
Spanish (es)
French (fr)
Inventor
Lucas PEREYRA MAC NEIGHILL
Patricio José COX CORREA
Original Assignee
Compañía Electro Metalúrgica S.A.
Tecnologia En Transporte De Minerales S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compañía Electro Metalúrgica S.A., Tecnologia En Transporte De Minerales S.A. filed Critical Compañía Electro Metalúrgica S.A.
Priority to PCT/CL2022/050081 priority Critical patent/WO2024031204A1/en
Publication of WO2024031204A1 publication Critical patent/WO2024031204A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/04Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices according to size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B15/00Combinations of apparatus for separating solids from solids by dry methods applicable to bulk material, e.g. loose articles fit to be handled like bulk material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
    • B07B9/02Combinations of similar or different apparatus for separating solids from solids using gas currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/04Sorting according to size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/344Sorting according to other particular properties according to electric or electromagnetic properties

Definitions

  • the present invention belongs to the area of the mining industry.
  • the present invention relates to a system and method for separating grinding balls, scrap balls and ore rocks with high magnetite content, in mining processes.
  • This solution incorporates an arrangement of sensors that allows determining the volume of the transported material, and applying the specific air pressure for said material.
  • the risk of transported parts and the flow of heterogeneous materials being deflected due to weak or too strong air pulses on the wrong path is reduced because compressed air lines are associated with different pressure levels.
  • document DE202007006539 U1 describes an oscillating conveying channel having a feeding area and a delivery area for a material, where the width of the delivery area is greater than the width of the feeding area.
  • a diagonal base area is provided to enlarge a part of a material flow, where the channel divides the material flow into two partial flows.
  • the bucket is formed in such a way that the flow of material is expanded.
  • the base area is attached to a supply base.
  • Document KR100787529 B1 describes a shot ball separation device that uses a magnet to machine the surface of a workpiece cleanly and to prevent foreign materials such as sand from moving into a dust collector.
  • the shot ball separation device uses a magnet and is further composed of: a supply unit that feeds mixed materials, including shot balls and foreign materials, through a shot blasting machine; a first separation unit having a pair of drums and a rubber belt installed on the drum, which first separates shot balls and foreign materials falling from the rubber belt using the magnet; a second separation unit that secondly separates fine foreign materials from the shot balls, first separated from the first separation unit, by vibration; a dust collection unit that removes floating fine dust by blowing air towards the shot balls passing through the first and second separation units; and a ball collection container which collects and feeds the separated shot balls from the second separation unit to the shot blasting machine.
  • the first separation unit comprises the drum rotated by a motor; a magnetic drum separated from the drum by a predetermined distance; the rubber belt installed surrounding a pair of drums; a first foreign material collection container that collects foreign materials falling from the magnetic drum; a first shooting ball collecting container separated from the magnetic drum by a predetermined distance and installed in a part where the shooting ball attached to the rubber tape by a magnetic field of the magnetic drum is dropped to collect the shooting balls.
  • document CN108525835 A describes a method and system for continuously removing worn steel balls from a semi-autogenous mill.
  • the method comprises the stages in which the raw ore is subjected to coarse crushing to be fed to the semi-autogenous mill to obtain mineral pulp; ore pulp is sieved through double-layer vibration sieve to obtain positive sieve steel balls, raw ore on sieve and negative sieve ore pulp, negative sieve ore pulp is fed to the normal flow of grinding and separation, and the raw ore sieve is returned to the semi-autogenous mill and stacked with the positive sieve steel balls.
  • the system comprises semi-autogenous mill, double-layer vibrating screen, coarse core conveying unit and steel ball conveyor; a discharge opening of the semi-autogenous mill is arranged on the feeding end of the double-layer vibrating screen, a negative screen discharge opening of a bottom layer screen.
  • the sieve of the double-layer vibrating screen is connected with a normal grinding and separation device in the flow, a sieve discharge opening in the bottom layer of the double-layer vibrating sieve is arranged above the feeding end of the conveying unit coarse core, the discharge end of the coarse core conveying unit is connected with a feeding opening of the semi-autogenous mill, and a positive sieve discharge opening of an upper layer sieve network of the double-layer vibrating screen is arranged over the feed end of the steel ball conveyor.
  • a proposed solution aimed directly at the separation of matter containing magnetite is that proposed by document W02020051721 A1, which describes a steel/magnetite separation system, comprising at least a feed box for feeding magnetite contaminated with scrap balls. of steel to at least one feeder connected by at least one high slope conveyor belt.
  • the system further comprises at least one particle size separator vibrating screen, which sends particles less than or equal to 60 mm in size to a first separation subsystem of steel v/s magnetite and particles greater than 60 mm to a second subsystem.
  • the first separation subsystem comprises an input chute, a vibrating feeding system, a conveyor belt, a plurality of sensors arranged under the belt for the detection of steel between magnetite, which are mounted in a transverse arrangement to the circulation of the conveyor belt, a plurality of pneumatic cylinders installed transversally to the circulation of the conveyor belt and at the end of the stroke of the same conveyor belt, activated by the signal emitted by each sensor that corresponds to its position within from the transverse line to the conveyor belt, producing mechanical action of a metal plate physically connected to the stem of each pneumatic cylinder, a system for unitary selection of the generated rejection consisting of a channel for unitary displacement of the magnetite particles and scrap of balls of steel or any other metallic element that circulates within this channel, mounted on a vibrating system installed in the area of the feeding end of the V channel and a separation plate installed at the end of the channel path; and where the second separation subsystem comprises an inlet chute, a plurality of channels mounted on a vibrating system installed in the area of the
  • the present invention relates to a system and method for separating grinding balls, scrap balls and rocks with high magnetite content, in mining processes.
  • the system comprises at least one separating device for separating spherical or hemispherical elements, comprising an inclined vibrating table and a separating device for separating material with high magnetic content from non-magnetic material or material with low magnetic content, further comprising a conveyor belt that transports the material, at least one analysis device that receives and analyzes the material in pieces from the conveyor belt and a separator with multiple air nozzles, a set of double-way nozzles can also be used to launch air jets.
  • the method associated with the system described above comprises the following essential steps: a) introducing the material into the inclined vibrating table; b) separate materials by size; c) extract spherical or hemispherical elements; d) introduce the material onto the conveyor belt; e) forming a monolayer of material on the conveyor belt; f) determining the properties of the material by means of a plurality of detection means arranged in the analysis device; and g) selectively separating the magnetic material from the non-magnetic material using air jets from the separator
  • FIGURES Figure 1 represents a side view of the equipment intended for separation by size, according to one embodiment of the invention.
  • Figure 2 represents a top and perspective view of the equipment intended for separation by size, according to one embodiment of the invention.
  • Figure 3 represents a side view of the equipment intended to separate spherical and hemispherical elements, according to one embodiment of the invention.
  • Figure 4 represents a top and perspective view of the equipment intended to separate spherical and hemispherical elements, according to one embodiment of the invention.
  • Figure 5 represents a perspective view of the equipment intended to separate, according to the properties of the scrap material, balls and minerals with high magnetite content, according to one embodiment of the invention.
  • Figure 6 represents a view of the arrangement of the system equipment, according to one embodiment of the invention.
  • Figure 7 represents a view of the arrangement of the equipment for separation by size and for separating spherical and hemispherical elements, according to one embodiment of the invention.
  • Figure 8 represents a view of the arrangement of the equipment for separation by size and for separating spherical and hemispherical elements, according to another embodiment of the invention.
  • the present invention relates to a system (100) and method for separating grinding balls, scrap balls and ore rocks with high magnetite content in mining processes.
  • the system (100) is configured as a modular and semi-mobile separator system for the separation of ball scrap using a set of semi-mobile separation equipment composed of at least three main modules in addition of its auxiliary equipment such as a power and control room, a compressor room, generating equipment, among others.
  • the system aims to carry out different types of separation: separation of material by size; separation of material from spherical elements and other shapes; and separation of composite material from scrap and high magnetite content. These separation stages act independently and can be exchanged according to the characteristics of the material.
  • the system (100) comprises at least one vibrating screen type equipment (10), preferably of a stationary type, made up of a set of parallel bars that are arranged in a frame and located in the direction of flow. of material.
  • the nominal classification capacity using the equipment (10) is up to 100 t/h.
  • the classification of the material is carried out in three sizes: [> 65 mm]; [65 - 35mm]; and [> 35 mm] or, depending on the requirement, the separation can be made at [> 90 mm]; [90 - 70mm]; and [> 70mm].
  • Said equipment (20) For the separation stage by shape, in particular spherical elements, there is equipment (20), which is designed to separate spherical elements and other shapes.
  • Said equipment (20) comprises an inclined vibrating table (21) composed of trays inclined, where the material is fed from a feeder (22).
  • a feeder 212.
  • three important variables must be taken into consideration: drop height, inclination angle, and vibration characteristics.
  • the drop height mainly influences the speed and inertia with which the material enters the inclined trays, while the angle of inclination and vibration will influence the direction in which the objects will move depending on their shape and speed of movement of the material in a certain direction which also affects the necessary inertia which the forces applied to the object must overcome so that it rolls in the direction of the inclined plane. In this way, the passage of spherical elements to the next stage is avoided.
  • at least one piece of equipment (30) is available, which allows separating scrap balls and mineral with a high magnetite content according to the properties of the material.
  • the nominal separation capacity in equipment (30) is up to 100 t/h. Depending on the characteristics of the material, different configurations can be established to maximize the efficiency and capacity of the set of equipment (30).
  • the technology for separating material composed of scrap and high magnetite content allows, through sensors, to characterize each object in a material flow, identifying the objects of interest depending on the application, which are subsequently physically separated by shots of pressurized air up to 10 bar.
  • the technology implemented stands out for its ability to combine multiple sensors in the same equipment, improving its performance for different materials and ensuring flexibility against variations in the composition of the material.
  • Magnetic induction sensors are in principle used to separate magnetite and scrap. Without prejudice to the above, by having a greater number of sensors it could eventually not only separate the magnetite and scrap, but also preconcentrate the concentration of some mineral of interest.
  • the separator equipment (30) for separating the magnetic material from the paramagnetic material comprises a conveyor belt (31), at least one analysis device (32) and a separator with multiple nozzles or at least one two channels (33) to launch air jets.
  • said nozzle (33) has a double air jet connected to two air supply paths, in order to act on spherical elements; however, it is possible for said nozzle (33) to operate with a single air path.
  • the equipment (10, 20, 30) can be available in different configurations, depending on the specific requirement.
  • Configuration 1 The system (100) works fed with grinding media scrap (without magnetite mineral). In this way, the teams operate separators by size (10) and the separator equipment by shape (20), connected in series.
  • Configuration 1.1 First, material is fed to the separator equipment by size (10) and then it is fed to the separator equipment by shape (20) as shown, with a size range in which the spherical elements of interest are found (recyclable in secondary grinding, usually in diameters (70 mm - 90 mm).
  • Configuration 1.2 First, the shape separator equipment (20) is fed and then the size separator equipment (10) is fed, with the size range in which the spherical elements of interest are found.
  • Working with configurations 1.1. o 1.2 will depend mainly on the granulometric distribution of the material and the objective of the plant in terms of generating a certain final product in quality, size, and quantity.
  • the size separator equipment (10) has a greater capacity (nominal up to 100 t/h) versus the shape separator equipment (20) (nominal up to 50 t/h)
  • Configuration 2 The system (100) works fed with grinding media scrap and ore with high magnetite content.
  • the size separator equipment (10) works connected in series, then the shape separator equipment (20) and finally the material property separator equipment (30).
  • Tests were carried out to estimate the optimal fall height and inclination angle in the shape separator equipment (20).
  • the material used in the test corresponds to scrap grinding media including balls, broken balls, pins, plates, and other shapes. Density The approximate size of the mixture of materials is 3 t/m 3 , dry, and with balls smaller than 150 mm. The ratio of balls and other shapes in volume is 4:6.
  • Vibration characteristic values or ranges that optimize the process range between 15 - 5 mm in the direction of material transport, tests are carried out at 9.5 mm.
  • Tests are carried out with a drop height of 250 mm, working correctly (there is no rebound outside the equipment, nor a "jam”); The angle of attack at 30° is correctly allowing desired horizontal movement of the material.
  • An equipment is proposed with a (long) tray path of 1,200 mm and in three trays in order to maximize the possibility of spherical objects rolling back. Furthermore, in feeding it is possible to use special feeding medium that allows the monolayer to be distributed across its width.
  • the special feeding means adjusts the height and speed at which the material falls so that the material enters the equipment with a desired speed
  • Tests were carried out to obtain material particle size distribution for magnetite and grinding ball scrap.
  • the data was the basis for designing the process flow to efficiently classify high-magnetite copper ore rocks and ball scrap.
  • test work generated reference information from terrain information for a real application analyzing a sample of approximately 5,600 kg from which it was observed that over 95% of the representative material corresponded to copper rocks with high magnetite content, and a lower percentage corresponded to steel scrap. In the fraction corresponding to the steel scrap, over 95% corresponded to intact mill balls with a diameter of over 100 mm.
  • INDUCTION > SCRAP / MAGNET Two active coils with a surrounding magnetic field were used to detect conductors and magnetic properties of objects. The main application is the separation of electrically conductive components (metals) according to sensitivity.
  • the inductive sensor was able to detect and the machine was able to shoot and separate the non-spherical scrap content, except the rolling balls. Two initial steps with different sensitivity were performed to evaluate the separation effect. In the operational context, these separations can be performed in a single stage.

Abstract

The present invention relates to a system and method for separating milling balls, ball scrap and rocks with high magnetite content in mining processes. The system comprises at least one separating device for separating spherical and semi-spherical elements that comprises an inclined vibrating table and a separating device for separating the material with high magnetic content from non-magnetic material or material with a low magnetic content. The system further comprises a conveyor belt for transporting the material, at least one analysis device that receives and analyses the material by pieces from the conveyor belt, and a separator with multiple air nozzles, wherein it is also possible to use a set of dual line nozzles to drive jets of air.

Description

SISTEMA Y MÉTODO DE SEPARACIÓN DE BOLAS DE MOLIENDA, CHATARRA DE BOLAS Y MAGNETITA PARA MINERIA SYSTEM AND METHOD FOR SEPARATION OF GRINDING BALLS, SCRAP BALLS AND MAGNETITE FOR MINING
CAMPO DE APLICACIÓN SCOPE
La presente invención pertenece al área de la industria minería. En particular, la presente invención se relaciona con un sistema y método de separación de bolas de molienda, chatarra de bolas y rocas de mineral con alto contenido de magnetita, en procesos de minería. The present invention belongs to the area of the mining industry. In particular, the present invention relates to a system and method for separating grinding balls, scrap balls and ore rocks with high magnetite content, in mining processes.
ANTECEDENTES BACKGROUND
En la actualidad, en la industria minera y en particular en el proceso de molienda, se producen desechos que contienen bolas de molienda usadas, chatarra (scrap) de bolas, material con alto contenido de magnetita y material con bajo o sin contenido de magnetita, donde dichos descartes suelen terminar en botaderos y pilas de material de desperdicio, que corresponde a un residuo y/o pasivo ambiental. Algunas soluciones actuales han intentado realizar la separación de estos componentes, o componentes similares, con el objetivo de aprovechar estos descartes como fuente de nuevos recursos. Es así que el documento DE10201401 1401 B3 describe un soplador para soplar selectivamente piezas transportadas de un flujo de material, mediante una pluralidad de boquillas sopladoras las cuales son al menos parcialmente suministradas con aire comprimido mediante dos pluralidades de líneas de aire comprimido funcionalmente, y donde la fuerza de un pulso de aire es variable. Esta solución incorpora una disposición de sensores que permite determinar el volumen del material transportado, y aplicar la presión específica de aire para dicho material. El riesgo de que piezas transportadas y el flujo de materiales heterogéneos se desvíen debido a pulsos de aire débiles o demasiado fuertes en la trayectoria incorrecta se reduce porque las líneas de aire comprimido están asociadas con diferentes niveles de presión. Currently, in the mining industry and in particular in the grinding process, waste containing used grinding balls, ball scrap, material with high magnetite content and material with low or no magnetite content is produced. where said discards usually end up in dumps and piles of waste material, which corresponds to waste and/or environmental liability. Some current solutions have attempted to separate these components, or similar components, with the aim of taking advantage of these discards as a source of new resources. Thus, document DE10201401 1401 B3 describes a blower for selectively blowing transported parts of a material flow, by means of a plurality of blower nozzles which are at least partially supplied with compressed air by two pluralities of functionally compressed air lines, and where The strength of an air pulse is variable. This solution incorporates an arrangement of sensors that allows determining the volume of the transported material, and applying the specific air pressure for said material. The risk of transported parts and the flow of heterogeneous materials being deflected due to weak or too strong air pulses on the wrong path is reduced because compressed air lines are associated with different pressure levels.
Otra solución es la descrita por el documento US9424635 B2, el cual describe un clasificador de granos individuales a partir de materiales a granel transportados en un dispositivo de transporte y una unidad de descarga accionadle que separa dichos materiales en fracciones. La distribución de altura del objeto y la propagación de una fuente de luz se utilizan como criterio de clasificación, en el que una banda de luz se proyecta transversalmente con respecto a una dirección de transporte del material a granel en un plano del dispositivo de transporte, los objetos moviéndose a través bajo la banda de luz, donde se refleja una primera parte de la luz, y una segunda parte de la luz reflejada entra nuevamente por un punto de entrada, se dispersa y sale nuevamente por un punto de salida. En este punto, una cámara detecta una propagación dispersa y las regiones contiguas se identifican en filas amortiguadas y los valores medidos se someten a una evaluación y se combinan para formar valores característicos, y la unidad de descarga se acciona dependiendo de los parámetros de clasificación preestablecidos. Another solution is that described by document US9424635 B2, which describes a classifier of individual grains from bulk materials transported in a transport device and an actuated discharge unit that separates said materials into fractions. Height distribution of the object and the propagation of a light source are used as a classification criterion, in which a band of light is projected transversely with respect to a transport direction of the bulk material in a plane of the transport device, the objects moving at through under the band of light, where a first part of the light is reflected, and a second part of the reflected light enters again through an entry point, is dispersed and exits again through an exit point. At this point, a camera detects scattered propagation and the adjacent regions are identified into buffered rows and the measured values are subjected to evaluation and combined to form characteristic values, and the discharge unit is actuated depending on the preset classification parameters. .
Por otro lado, el documento DE202007006539 U1 describe un canal de transporte oscilante que tiene un área de alimentación y un área de entrega para un material, donde el ancho del área de entrega es mayor que el ancho del área de alimentación. Se proporciona un área de base diagonal para ampliar una parte de un flujo de material, donde el canal divide el flujo de material en dos flujos parciales. La cubeta está formada de tal manera que se amplía el flujo de material. El área de la base está unida a una base de suministro. On the other hand, document DE202007006539 U1 describes an oscillating conveying channel having a feeding area and a delivery area for a material, where the width of the delivery area is greater than the width of the feeding area. A diagonal base area is provided to enlarge a part of a material flow, where the channel divides the material flow into two partial flows. The bucket is formed in such a way that the flow of material is expanded. The base area is attached to a supply base.
El documento KR100787529 B1 describe un dispositivo de separación de bolas de perdigones que usa un imán para mecanizar la superficie de una pieza de trabajo limpiamente y para evitar que materiales extraños como arena se muevan hacia un colector de polvo. El dispositivo de separación de bolas de perdigones utiliza un imán y está compuesto además de: una unidad de suministro que alimenta materiales mezclados, incluidas bolas de perdigones y materiales extraños, a través de una máquina de granallado; una primera unidad de separación que tiene un par de tambores y una correa de caucho instalados en el tambor, que en primer lugar separa las bolas de perdigones y los materiales extraños que caen de la correa de caucho utilizando el imán; una segunda unidad de separación que separa en segundo lugar materiales extraños finos de las bolas de perdigones, en primer lugar separados de la primera unidad de separación, por vibración; una unidad de recogida de polvo que elimina el polvo fino flotante soplando aire hacia las bolas de perdigones que pasan a través de la primera y segunda unidades de separación; y un recipiente colector de bolas de perdigones que recoge y alimenta las bolas de perdigones separadas de la segunda unidad de separación, a la máquina de granallado. La primera unidad de separación comprende el tambor rotado por un motor; un tambor magnético separado del tambor en una distancia predeterminada; la correa de goma instalada rodeando un par de tambores; un primer recipiente colector de material extraño que recoge materiales extraños que caen del tambor magnético; un primer recipiente colector de bolas de disparo separado del tambor magnético en una distancia predeterminada e instalado en una parte donde se deja caer la bola de disparo unida a la cinta de goma por un campo magnético del tambor magnético, para recoger las bolas de disparo. Document KR100787529 B1 describes a shot ball separation device that uses a magnet to machine the surface of a workpiece cleanly and to prevent foreign materials such as sand from moving into a dust collector. The shot ball separation device uses a magnet and is further composed of: a supply unit that feeds mixed materials, including shot balls and foreign materials, through a shot blasting machine; a first separation unit having a pair of drums and a rubber belt installed on the drum, which first separates shot balls and foreign materials falling from the rubber belt using the magnet; a second separation unit that secondly separates fine foreign materials from the shot balls, first separated from the first separation unit, by vibration; a dust collection unit that removes floating fine dust by blowing air towards the shot balls passing through the first and second separation units; and a ball collection container which collects and feeds the separated shot balls from the second separation unit to the shot blasting machine. The first separation unit comprises the drum rotated by a motor; a magnetic drum separated from the drum by a predetermined distance; the rubber belt installed surrounding a pair of drums; a first foreign material collection container that collects foreign materials falling from the magnetic drum; a first shooting ball collecting container separated from the magnetic drum by a predetermined distance and installed in a part where the shooting ball attached to the rubber tape by a magnetic field of the magnetic drum is dropped to collect the shooting balls.
Finalmente, el documento CN108525835 A describe un método y un sistema para retirar continuamente bolas de acero desgastadas de un molino semiautógeno. El método comprende las etapas en que el mineral crudo se somete a trituración gruesa para ser alimentado al molino semiautógeno para obtener pulpa de mineral; la pulpa de mineral se tamiza a través de un tamiz de vibración de doble capa para obtener bolas de acero de tamiz positivo, mineral crudo en tamiz y pulpa de mineral de tamiz negativo, la pulpa de mineral de tamiz negativo se alimenta al flujo normal de molienda y separación, y el crudo en tamiz del mineral se devuelve al molino semiautógeno y se apila con las bolas de acero de tamiz positivo. El sistema comprende el molino semiautógeno, el tamiz de vibración de doble capa, una unidad de transporte de núcleos gruesos y un transportador de bolas de acero; una abertura de descarga del molino semiautógeno está dispuesta sobre el extremo de alimentación de la criba vibratoria de doble capa, una abertura de descarga de criba negativa de una criba de capa inferior. El tamiz de la criba vibratoria de doble capa está conectado con una molienda y separación normales dispositivo en el flujo, una abertura de descarga de tamiz en la capa inferior del tamiz de vibración de doble capa está dispuesta sobre el extremo de alimentación de la unidad transportadora de núcleo grueso, el extremo de descarga de la unidad transportadora de núcleo grueso está conectado con una abertura de alimentación del molino semiautógeno, y una abertura de descarga de tamiz positivo de una red de tamiz de capa superior del tamiz vibratorio de doble capa está dispuesta sobre el extremo de alimentación del transportador de bolas de acero. El método y el sistema tienen los efectos beneficiosos de ser confiables, con capacidad de aumentar la cantidad de tratamiento del molino y ahorrar energía y reducir el consumo. Finally, document CN108525835 A describes a method and system for continuously removing worn steel balls from a semi-autogenous mill. The method comprises the stages in which the raw ore is subjected to coarse crushing to be fed to the semi-autogenous mill to obtain mineral pulp; ore pulp is sieved through double-layer vibration sieve to obtain positive sieve steel balls, raw ore on sieve and negative sieve ore pulp, negative sieve ore pulp is fed to the normal flow of grinding and separation, and the raw ore sieve is returned to the semi-autogenous mill and stacked with the positive sieve steel balls. The system comprises semi-autogenous mill, double-layer vibrating screen, coarse core conveying unit and steel ball conveyor; a discharge opening of the semi-autogenous mill is arranged on the feeding end of the double-layer vibrating screen, a negative screen discharge opening of a bottom layer screen. The sieve of the double-layer vibrating screen is connected with a normal grinding and separation device in the flow, a sieve discharge opening in the bottom layer of the double-layer vibrating sieve is arranged above the feeding end of the conveying unit coarse core, the discharge end of the coarse core conveying unit is connected with a feeding opening of the semi-autogenous mill, and a positive sieve discharge opening of an upper layer sieve network of the double-layer vibrating screen is arranged over the feed end of the steel ball conveyor. The method and system have the beneficial effects of being reliable, with the ability to increase the mill treatment amount and save energy and reduce consumption.
Una solución propuesta dirigida directamente a la separación de materia con contenido de magnetita es el propuesto por el documento W02020051721 A1 , el cual describe un sistema de separación de acero/magnetita, que comprende al menos buzón de alimentación para alimentar magnetita contaminada con scrap de bolas de acero a al menos un alimentador conectado mediante al menos una cinta transportadora de alta pendiente. El sistema además comprende al menos un harnero vibratorio separador de tamaño de partículas, que envía partículas menores o ¡guales a 60 mm de tamaño a un primer sub sistema de separación de acero v/s magnetita y partículas superiores a 60 mm a un segundo subsistema de separación, donde el primer subsistema de separación comprende un chute de entrada, un sistema de alimentación vibratorio, una cinta transportadora, una pluralidad de sensores dispuestos bajo la cinta para la detección de acero entre magnetita, los cuales están montados en una disposición transversal a la circulación de la cinta transportadora, una pluralidad de cilindros neumático instalados de manera transversal a la circulación de la cinta transportadora y al final de la carrera de la misma cinta transportadora, accionados por la señal emitida por cada sensor que le corresponde en su posición dentro de la línea transversal a la cinta transportadora, produciendo acción mecánica de una placa metálica conectada físicamente al vástago de cada cilindro neumático, un sistema de selección unitaria del rechazo generado constituido por un canal para desplazamiento unitario de las partículas de magnetita y scrap de bolas de acero o cualquier otro elemento metálico que circule dentro de este canal, montado sobre un sistema vibratorio instalado en la zona del extremo de alimentación del canal en V y una placa de separación instalada al final de la trayectoria del canal; y donde el segundo subsistema de separación comprende un chute de entrada, una pluralidad de canales montados sobre un sistema vibratorio instalado en la zona del extremo de alimentación de los canales, donde al final del tramo de la trayectoria de partículas de cada canal se dispone una pieza de recambio de un polímero duro, resistente a la abrasión, el cual permite deslizar de mejor manera el material hacia la zona de separación unitaria, la cual consiste en una placa de separación metálica resistente a la abrasión, una pluralidad de detectores de acero entre mineral de magnetita, montados al final de la línea de transporte de las cuatro canales, donde cada placa de separación, se encuentra fijada físicamente a un vástago de un cilindro neumático. A proposed solution aimed directly at the separation of matter containing magnetite is that proposed by document W02020051721 A1, which describes a steel/magnetite separation system, comprising at least a feed box for feeding magnetite contaminated with scrap balls. of steel to at least one feeder connected by at least one high slope conveyor belt. The system further comprises at least one particle size separator vibrating screen, which sends particles less than or equal to 60 mm in size to a first separation subsystem of steel v/s magnetite and particles greater than 60 mm to a second subsystem. separation, where the first separation subsystem comprises an input chute, a vibrating feeding system, a conveyor belt, a plurality of sensors arranged under the belt for the detection of steel between magnetite, which are mounted in a transverse arrangement to the circulation of the conveyor belt, a plurality of pneumatic cylinders installed transversally to the circulation of the conveyor belt and at the end of the stroke of the same conveyor belt, activated by the signal emitted by each sensor that corresponds to its position within from the transverse line to the conveyor belt, producing mechanical action of a metal plate physically connected to the stem of each pneumatic cylinder, a system for unitary selection of the generated rejection consisting of a channel for unitary displacement of the magnetite particles and scrap of balls of steel or any other metallic element that circulates within this channel, mounted on a vibrating system installed in the area of the feeding end of the V channel and a separation plate installed at the end of the channel path; and where the second separation subsystem comprises an inlet chute, a plurality of channels mounted on a vibrating system installed in the area of the feeding end of the channels, where at the end of the section of the particle path of each channel a replacement part made of a hard polymer, resistant to abrasion, which allows it to slide better the material towards the unitary separation zone, which consists of an abrasion-resistant metal separation plate, a plurality of steel detectors between magnetite ore, mounted at the end of the conveying line of the four channels, where each plate separation, is physically fixed to a rod of a pneumatic cylinder.
RESUMEN DE LA INVENCIÓN SUMMARY OF THE INVENTION
La presente invención se relaciona con un sistema y método de separación de bolas de molienda, chatarra de bolas y rocas con alto contenido de magnetita, en procesos de minería. The present invention relates to a system and method for separating grinding balls, scrap balls and rocks with high magnetite content, in mining processes.
El sistema comprende al menos un dispositivo separador para separar elementos esféricos o semiesféricos que comprende una mesa vibratoria inclinada y un dispositivo separador para separar el material con alto contenido magnético de material no magnético o con bajo contenido magnético, que comprende además una correa transportadora que transporta el material, al menos un dispositivo de análisis que recibe y analiza el material por piezas desde la correa transportadora y un separador con múltiples boquillas de aire pudiendo también utilizarse un conjunto de boquillas de doble vía para lanzar chorros de aire. The system comprises at least one separating device for separating spherical or hemispherical elements, comprising an inclined vibrating table and a separating device for separating material with high magnetic content from non-magnetic material or material with low magnetic content, further comprising a conveyor belt that transports the material, at least one analysis device that receives and analyzes the material in pieces from the conveyor belt and a separator with multiple air nozzles, a set of double-way nozzles can also be used to launch air jets.
Por otro lado, el método asociado al sistema anteriormente descrito comprende los siguientes pasos esenciales: a) introducir el material en la mesa vibratoria inclinada; b) separar los materiales por tamaño; c) extraer elementos esféricos o semiesféricos; d) introducir el material en la correa transportadora; e) formar una monocapa de material sobre la correa transportadora; f) determinar las propiedades del material mediante una pluralidad de medios de detección dispuestos en el dispositivo de análisis; y g) separar selectivamente el material magnético del material no magnético mediante chorros de aire del separador On the other hand, the method associated with the system described above comprises the following essential steps: a) introducing the material into the inclined vibrating table; b) separate materials by size; c) extract spherical or hemispherical elements; d) introduce the material onto the conveyor belt; e) forming a monolayer of material on the conveyor belt; f) determining the properties of the material by means of a plurality of detection means arranged in the analysis device; and g) selectively separating the magnetic material from the non-magnetic material using air jets from the separator
DESCRIPCIÓN DE LAS FIGURAS La Figura 1 representa una vista lateral del equipo destinado para la separación por tamaño, de acuerdo a una modalidad de la invención. DESCRIPTION OF THE FIGURES Figure 1 represents a side view of the equipment intended for separation by size, according to one embodiment of the invention.
La Figura 2 representa una vista superior y en perspectiva del equipo destinado para la separación por tamaño, de acuerdo a una modalidad de la invención. Figure 2 represents a top and perspective view of the equipment intended for separation by size, according to one embodiment of the invention.
La Figura 3 represente una vista lateral del equipo destinado para separar elementos esféricos y semiesféricos, de acuerdo a una modalidad de la invención. Figure 3 represents a side view of the equipment intended to separate spherical and hemispherical elements, according to one embodiment of the invention.
La Figura 4 representa una vista superior y en perspectiva del equipo destinado para separar elementos esféricos y semiesféricos, de acuerdo a una modalidad de la invención. Figure 4 represents a top and perspective view of the equipment intended to separate spherical and hemispherical elements, according to one embodiment of the invention.
La Figura 5 representa una vista en perspectiva del equipo destinado para separar según propiedades del material chatarra de bolas y mineral con alto contenido de magnetita, de acuerdo a una modalidad de la invención. Figure 5 represents a perspective view of the equipment intended to separate, according to the properties of the scrap material, balls and minerals with high magnetite content, according to one embodiment of the invention.
La Figura 6 representa una vista de la disposición de los equipos del sistema, de acuerdo a una modalidad de la invención. Figure 6 represents a view of the arrangement of the system equipment, according to one embodiment of the invention.
La Figura 7 representa una vista de la disposición de los equipos para la separación por tamaño y para separar elementos esféricos y semiesféricos, de acuerdo a una modalidad de la invención. Figure 7 represents a view of the arrangement of the equipment for separation by size and for separating spherical and hemispherical elements, according to one embodiment of the invention.
La Figura 8 representa una vista de la disposición de los equipos para la separación por tamaño y para separar elementos esféricos y semiesféricos, de acuerdo a otra modalidad de la invención. Figure 8 represents a view of the arrangement of the equipment for separation by size and for separating spherical and hemispherical elements, according to another embodiment of the invention.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente invención se relaciona con un sistema (100) y método de separación de bolas de molienda, chatarra de bolas y rocas de mineral con alto contenido de magnetita en procesos de minería. The present invention relates to a system (100) and method for separating grinding balls, scrap balls and ore rocks with high magnetite content in mining processes.
El sistema (100) se configura como un sistema separador modular y semimóvil para la separación de chatarra de bolas mediante un conjunto equipos semi móviles de separación compuesto por al menos tres módulos principales además de sus equipos auxiliares como son una sala de fuerza y control, una sala de compresores, equipos generadores, entre otros. The system (100) is configured as a modular and semi-mobile separator system for the separation of ball scrap using a set of semi-mobile separation equipment composed of at least three main modules in addition of its auxiliary equipment such as a power and control room, a compressor room, generating equipment, among others.
El sistema tiene por objetivo realizar distintos tipos de separación: separación de material por tamaño; separación de material de elementos esféricos y otras formas; y separación de material compuesto de chatarra y alto contenido de magnetita. Estas etapas de separación actúan de forma independiente y pueden ser intercambiadas según las características del material. The system aims to carry out different types of separation: separation of material by size; separation of material from spherical elements and other shapes; and separation of composite material from scrap and high magnetite content. These separation stages act independently and can be exchanged according to the characteristics of the material.
Para la etapa de separación por tamaño, el sistema (100) comprende al menos un equipo (10) tipo harnero vibratorio preferentemente de tipo estacionario, conformado por un conjunto de barras paralelas que se disponen en un marco y se ubica en la dirección del flujo de material. La capacidad nominal de clasificación mediante el equipo (10) es de hasta 100 t/h. Lo anterior, sujeto a las características del material. De acuerdo a una modalidad de la invención, la clasificación del material se realiza en tres tamaños: [> 65 mm]; [65 - 35 mm]; y [> 35 mm] o bien, según sea el requerimiento, la separación puede realizarse en [> 90 mm]; [90 - 70 mm]; y [> 70 mm]. For the size separation stage, the system (100) comprises at least one vibrating screen type equipment (10), preferably of a stationary type, made up of a set of parallel bars that are arranged in a frame and located in the direction of flow. of material. The nominal classification capacity using the equipment (10) is up to 100 t/h. The above, subject to the characteristics of the material. According to one embodiment of the invention, the classification of the material is carried out in three sizes: [> 65 mm]; [65 - 35mm]; and [> 35 mm] or, depending on the requirement, the separation can be made at [> 90 mm]; [90 - 70mm]; and [> 70mm].
Para la etapa de separación por forma, en particular elementos esféricos, se dispone de un equipo (20), el cual está diseñado para separar elementos esféricos y de otras formas Dicho equipo (20) comprende una mesa vibratoria inclinada (21 ) compuesta por bandejas inclinadas, donde el material es alimentado desde un alimentador (22). Para obtener una separación óptima entre elementos esféricos y otras formas se debe tener en consideración tres variables importantes: altura de caída, ángulo inclinación, y características de la vibración. La altura de caída influye principalmente en la velocidad e inercia con que el material ingresa a las bandejas inclinadas, mientras que el ángulo de inclinación y la vibración influirán en la dirección a la cual se desplazarán los objetos según sea su forma y velocidad de desplazamiento del material en una cierta dirección lo que afecta también la inercia necesaria a la cuál deben vencer las fuerzas aplicadas al objeto de manera que ruede en el sentido del plano inclinado. De esta forma, se evita el paso de elementos esféricos a la siguiente etapa. Para la etapa de separación de material compuesto de chatarra y rocas de mineral con alto contenido de magnetita, se dispone al menos un equipo (30), el cual permite separar según propiedades del material chatarra de bolas y mineral con alto contenido de magnetita. La capacidad nominal de separación en equipo (30) es de hasta 100 t/h. Dependiendo de las características del material, se pueden establecer distintas configuraciones para lograr maximizar la eficiencia y capacidad del conjunto de equipos (30). For the separation stage by shape, in particular spherical elements, there is equipment (20), which is designed to separate spherical elements and other shapes. Said equipment (20) comprises an inclined vibrating table (21) composed of trays inclined, where the material is fed from a feeder (22). To obtain an optimal separation between spherical elements and other shapes, three important variables must be taken into consideration: drop height, inclination angle, and vibration characteristics. The drop height mainly influences the speed and inertia with which the material enters the inclined trays, while the angle of inclination and vibration will influence the direction in which the objects will move depending on their shape and speed of movement of the material in a certain direction which also affects the necessary inertia which the forces applied to the object must overcome so that it rolls in the direction of the inclined plane. In this way, the passage of spherical elements to the next stage is avoided. For the stage of separating material composed of scrap and mineral rocks with a high magnetite content, at least one piece of equipment (30) is available, which allows separating scrap balls and mineral with a high magnetite content according to the properties of the material. The nominal separation capacity in equipment (30) is up to 100 t/h. Depending on the characteristics of the material, different configurations can be established to maximize the efficiency and capacity of the set of equipment (30).
La tecnología de separación de material compuesto de chatarra y alto contenido de magnetita permite, mediante sensores caracterizar cada objeto en un flujo de material identificando los objetos de interés según sea la aplicación, los cuales posteriormente son separados físicamente mediante disparos de aire en presión hasta 10 bar. La tecnología implementada destaca por su capacidad para combinar múltiples sensores en un mismo equipo mejorando su performance para distintos materiales y asegurando flexibilidad frente a variaciones en la composición del material. The technology for separating material composed of scrap and high magnetite content allows, through sensors, to characterize each object in a material flow, identifying the objects of interest depending on the application, which are subsequently physically separated by shots of pressurized air up to 10 bar. The technology implemented stands out for its ability to combine multiple sensors in the same equipment, improving its performance for different materials and ensuring flexibility against variations in the composition of the material.
El sistema considera un equipo con 4 sensores: XRT, inducción magnética, color, láser. Para separar magnetita y chatarra en principio se utilizan sensores de inducción magnética. Sin prejuicio de lo anterior, al contar con mayor cantidad de sensores se podría eventualmente no solo separar la magnetita y la chatarra, sino que también preconcentrar la concentración de algún mineral de interés. The system considers a device with 4 sensors: XRT, magnetic induction, color, laser. Magnetic induction sensors are in principle used to separate magnetite and scrap. Without prejudice to the above, by having a greater number of sensors it could eventually not only separate the magnetite and scrap, but also preconcentrate the concentration of some mineral of interest.
En una modalidad de la invención, el equipo separador (30) para separar el material magnético del paramagnético que comprende una correa transportadora (31 ), al menos un dispositivo de análisis (32) y un separador con múltiples boquillas o al menos una boquilla de dos vías (33) para lanzar chorros de aire. De esta forma, dicha boquilla (33) tiene doble chorro de aire conectado a dos vías de suministro de aire, para poder actuar sobre elementos esféricos, sin embargo, es posible que dicha boquilla (33) opere con una sola vía de aire. In one embodiment of the invention, the separator equipment (30) for separating the magnetic material from the paramagnetic material comprises a conveyor belt (31), at least one analysis device (32) and a separator with multiple nozzles or at least one two channels (33) to launch air jets. In this way, said nozzle (33) has a double air jet connected to two air supply paths, in order to act on spherical elements; however, it is possible for said nozzle (33) to operate with a single air path.
De esta forma, los equipos (10, 20, 30) se pueden disponer de distintas configuraciones, dependiendo del requerimiento específico. In this way, the equipment (10, 20, 30) can be available in different configurations, depending on the specific requirement.
Configuración 1 : El sistema (100) trabaja alimentado con chatarras de medios molienda (sin mineral magnetita). De esta forma, operan los equipos separadores por tamaño (10) y el equipo separador por forma (20), conectados en señe. Configuration 1: The system (100) works fed with grinding media scrap (without magnetite mineral). In this way, the teams operate separators by size (10) and the separator equipment by shape (20), connected in series.
Configuración 1.1 : En primer lugar, se alimenta material al equipo separador por tamaño (10) y luego se alimenta al equipo separador por forma (20) en señe, con rango de tamaño en la que se encuentran los elementos esféricos de interés (reciclables en molienda secundaria, usualmente en diámetros (70 mm - 90 mm). Configuration 1.1: First, material is fed to the separator equipment by size (10) and then it is fed to the separator equipment by shape (20) as shown, with a size range in which the spherical elements of interest are found (recyclable in secondary grinding, usually in diameters (70 mm - 90 mm).
Configuración 1.2: En primer lugar, se alimenta el equipo separador por forma (20) y luego se alimenta al equipo separador por tamaño (10) en señe, con rango de tamaño en la que se encuentran los elementos esféricos de interés. Configuration 1.2: First, the shape separator equipment (20) is fed and then the size separator equipment (10) is fed, with the size range in which the spherical elements of interest are found.
El trabajar con las configuraciones 1.1. o 1.2 dependerá principalmente de la distribución granulométñca del material y el objetivo de la planta en términos de generar un determinado producto final en calidad, tamaño, y cantidad. Usualmente, dado que el equipo separador por tamaño (10) posee mayor capacidad (nominal hasta 100 t/h) versus el equipo separador por forma (20) (nominal hasta 50 t/h) se prefiere trabajar con el equipo separador por tamaño (10) antecediendo al equipo separador por forma (20). Working with configurations 1.1. o 1.2 will depend mainly on the granulometric distribution of the material and the objective of the plant in terms of generating a certain final product in quality, size, and quantity. Usually, given that the size separator equipment (10) has a greater capacity (nominal up to 100 t/h) versus the shape separator equipment (20) (nominal up to 50 t/h), it is preferred to work with the size separator equipment ( 10) preceding the separating team by shape (20).
Configuración 2: El sistema (100) trabaja alimentado con chatarra de medios molienda y mineral con alto contenido de magnetita. Para esta configuración, trabajan conectados en señe el equipo separador por tamaño (10), posteriormente el equipo separador por forma (20) y finalmente el equipo separador por propiedades de material (30). Configuration 2: The system (100) works fed with grinding media scrap and ore with high magnetite content. For this configuration, the size separator equipment (10) works connected in series, then the shape separator equipment (20) and finally the material property separator equipment (30).
EJEMPLOS DE APLICACIÓN APPLICATION EXAMPLES
Ejemplo 1 : Example 1 :
Se realizaron pruebas para estimar la altura de caída y ángulo inclinación óptimo en el equipo separador por forma (20) Tests were carried out to estimate the optimal fall height and inclination angle in the shape separator equipment (20).
El material utilizado en la prueba corresponde a chatarra medios de molienda incluyendo bolas, bolas quebradas, pernos, placas, y otras formas. Densidad aproximada de la mezcla de materiales es de 3 t/m3, seco, y con bolas de tamaño menor a 150 mm. La tasa de bolas y otras formas en volumen es de 4:6. The material used in the test corresponds to scrap grinding media including balls, broken balls, pins, plates, and other shapes. Density The approximate size of the mixture of materials is 3 t/m 3 , dry, and with balls smaller than 150 mm. The ratio of balls and other shapes in volume is 4:6.
Valores o rangos de las alturas de caída de material: rango entre 150 mm - 300 mm, pruebas se trabajan con 250 mm Values or ranges of material drop heights: range between 150 mm - 300 mm, tests work with 250 mm
Valores o rangos inclinaciones que optimizan el proceso: rango entre 4,5° - 2,5° Inclination values or ranges that optimize the process: range between 4.5° - 2.5°
Valores o rangos características vibración que optimizan el proceso: rango entre 15 - 5 mm en dirección del transporte del material, pruebas se trabajan en 9,5 mm. Vibration characteristic values or ranges that optimize the process: range between 15 - 5 mm in the direction of material transport, tests are carried out at 9.5 mm.
Resumen de resultados de pruebas iniciales: Summary of initial test results:
- En ángulo inclinación 4.5°, todos los objetos (esféricos y no esféricos) terminan en retorno. - At an inclination angle of 4.5°, all objects (spherical and non-spherical) end in return.
- En ángulo inclinación 3.2°, buena separación de los elementos esféricos y otras formas. - At 3.2° inclination angle, good separation of spherical elements and other shapes.
- En ángulo inclinación 2.5°, se aprecia alta velocidad en material no existiendo una clara separación, los objetos esféricos desplazan objetos no esféricos al retorno. Para un ángulo de 2,5° se alimentan 458 kg de chatarra, se obtiene un tiempo de residencia del material en el equipo de 39 s, extrapoladle a una capacidad de 42 t/h. Se obtienen 276 kg no esféricos y 182 kg esféricos con una pureza del 84% (proporción objetos esféricos versus otras formas). - At an inclination angle of 2.5°, high speed is observed in the material, with no clear separation; spherical objects displace non-spherical objects upon return. For an angle of 2.5°, 458 kg of scrap are fed, a residence time of the material in the equipment of 39 s is obtained, extrapolated to a capacity of 42 t/h. 276 kg non-spherical and 182 kg spherical are obtained with a purity of 84% (proportion of spherical objects versus other shapes).
- En ángulo inclinación 3.25° se realizan pruebas adicionales, buena separación de los elementos esféricos y otras formas. Eventualmente se requiere más de una iteración del material por el equipo para lograr la pureza en el producto de separación buscado. Para un ángulo de 3,25° se alimentan 474 kg de chatarra, se obtiene un tiempo de residencia del material en el equipo de 90 s, extrapoladle a una capacidad de 19 t/h. Se obtienen 255 kg no esféricos y 219 kg esféricos con una pureza del 85% (proporción objetos esféricos versus otras formas). - At an inclination angle of 3.25°, additional tests are carried out, good separation of spherical elements and other shapes. Eventually more than one iteration of the material through the equipment is required to achieve the desired purity in the separation product. For an angle of 3.25°, 474 kg of scrap are fed, a residence time of the material in the equipment of 90 s is obtained, extrapolated to a capacity of 19 t/h. 255 kg non-spherical and 219 kg spherical are obtained with a purity of 85% (proportion of spherical objects versus other shapes).
- Prueba se realiza en ángulo inclinación 3.25°. Se confirma eficiencia en separación para mezcla de chatarra de acero esférico y otras formas con mineral similar a rocas con alto contenido de magnetita en tamaño (30 - 60 mm). - Test is carried out at an inclination angle of 3.25°. Separation efficiency is confirmed for mixing spherical steel scrap and other shapes with mineral similar to rocks with high magnetite content in size (30 - 60mm).
Cómo se puede cuantificar esa mejora u optimización del proceso. How can this improvement or optimization of the process be quantified.
Se realizan pruebas con altura caída 250 mm funcionando correctamente (no existe rebote fuera del equipo tampoco “atollo”); el ángulo de ataque en 30° está correctamente permitiendo movimiento horizontal deseado del material. Tests are carried out with a drop height of 250 mm, working correctly (there is no rebound outside the equipment, nor a "jam"); The angle of attack at 30° is correctly allowing desired horizontal movement of the material.
Se propone un equipo con un recorrido (largo) de bandejas de 1.200 mm y en tres bandejas de manera de maximizar la posibilidad de los objetos esféricos rodando al retorno. Además, en la alimentación es posible utilizar medio de alimentación especial que permita distribuir la monocapa en el ancho de este. El medio de alimentación especial ajusta la altura y la velocidad con la que cae el material para que el material ingrese al equipo con una velocidad deseada An equipment is proposed with a (long) tray path of 1,200 mm and in three trays in order to maximize the possibility of spherical objects rolling back. Furthermore, in feeding it is possible to use special feeding medium that allows the monolayer to be distributed across its width. The special feeding means adjusts the height and speed at which the material falls so that the material enters the equipment with a desired speed
Existen algunos objetos esféricos ovalados que no logran retornar. Esto eventualmente podría ser mejorado colocando una pequeña barra metálica o en goma sobre la bandeja lisa de un par de milímetros que permite disminuir la energía cinética necesaria por estos objetos para iniciar su rodado hacia retorno. There are some oval spherical objects that cannot return. This could eventually be improved by placing a small metal or rubber bar on the smooth tray of a couple of millimeters that allows reducing the kinetic energy necessary for these objects to begin their return roll.
Ejemplo 2: Example 2:
Se realizaron prueba de obtención de distribución de tamaño de partícula de material para magnetita y scrap de bolas de molienda. Tests were carried out to obtain material particle size distribution for magnetite and grinding ball scrap.
Se obtuvieron datos técnicos basados en la prueba de clasificación para evaluar el rendimiento de clasificación y las capacidades para: Technical data based on the classification test was obtained to evaluate the classification performance and capabilities to:
• Clasificación de scrap de bolas de molino y magnetita • Scrap classification of mill balls and magnetite
• Prueba de factibilidad para preconcentrar rocas de mineral cobre con alto contenido de magnetita • Feasibility test to preconcentrate copper mineral rocks with high magnetite content
Los datos fueron la base para diseñar el flujo del proceso para clasificar eficientemente rocas de mineral de cobre con alto contenido de magnetita y scrap de bolas. The data was the basis for designing the process flow to efficiently classify high-magnetite copper ore rocks and ball scrap.
El trabajo de pruebas genero información referencial a partir de información de terreno para una aplicación real analizo una muestra de aproximadamente 5.600 kg a partir de la cual se observó que sobre un 95% del material representativo correspondía a rocas de cobre con alto contenido de magnetita, y un porcentaje menor correspondía a scrap de acero. En la fracción correspondiente al scrap de acero sobre un 95% correspondía a bolas de molino intactas de diámetro sobre 100 mm. The test work generated reference information from terrain information for a real application, analyzing a sample of approximately 5,600 kg from which it was observed that over 95% of the representative material corresponded to copper rocks with high magnetite content, and a lower percentage corresponded to steel scrap. In the fraction corresponding to the steel scrap, over 95% corresponded to intact mill balls with a diameter of over 100 mm.
Como metodología de clasificación se utilizó: The following was used as a classification methodology:
INDUCCIÓN > CHATARRA / IMÁN: Dos bobinas activas con un campo magnético circundante se utilizaron para detectar conductores y propiedades magnéticas de los objetos. La aplicación principal es la separación de componentes conductores de electricidad (metales) según sensibilidad. INDUCTION > SCRAP / MAGNET: Two active coils with a surrounding magnetic field were used to detect conductors and magnetic properties of objects. The main application is the separation of electrically conductive components (metals) according to sensitivity.
RAYOS X > AUMENTAR LA CALIDAD DEL MINERAL DE COBRE CON ALTO CONTENIDO DE MAGNETITA: El material se penetra con rayos X. Detectores en el otro lado de la cinta transportadora detectan la diferencia de energía absorbida. La diferencia de intensidad resultante de absorción da conclusiones sobre la composición atómica, y una bajo una hipótesis de correlación con la mineralización X-RAYS > INCREASE THE QUALITY OF COPPER ORE WITH HIGH MAGNETITE CONTENT: The material is penetrated with The difference in intensity resulting from absorption gives conclusions about the atomic composition, and a hypothesis of correlation with mineralization
A partir de las pruebas realizadas, es posible concluir sobre la clasificación de scrap de bolas y mineral con alto contenido de maqnetia: From the tests carried out, it is possible to conclude about the classification of ball and mineral scrap with high maqnetia content:
- El sensor inductivo pudo detectar y la máquina pudo disparar y separar el contenido de scrap no esférico, excepto las bolas rodantes. Se realizaron dos pasos iniciales con diferente sensibilidad para evaluar el efecto de separación. En el contexto operativo, estas separaciones se pueden realizar en una sola etapa. - The inductive sensor was able to detect and the machine was able to shoot and separate the non-spherical scrap content, except the rolling balls. Two initial steps with different sensitivity were performed to evaluate the separation effect. In the operational context, these separations can be performed in a single stage.
- Debido a la gran cantidad de bolas en diámetro sobre 100 mm, se decidió evaluar la posibilidad de disparar el mineral y dejar caer las bolas. Disparar el mineral resultó en una eficiente recuperación de bolas. - Due to the large number of balls with a diameter of over 100 mm, it was decided to evaluate the possibility of shooting the ore and dropping the balls. Shooting the ore resulted in efficient ball recovery.
- La tecnología complementaria de clasificación por tamaño y forma en preparación a la etapa de clasificación por sensores permitirá recuperar las bolas de molino intactas previamente, y se complementará con un circuito de separación eficiente para los resultados esperados. - The complementary technology of classification by size and shape in preparation for the sensor classification stage will allow the previously intact mill balls to be recovered, and will be complemented with an efficient separation circuit for the expected results.

Claims

REIVINDICACIONES
1 . Un sistema (100) de separación que comprende: a. al menos un equipo (10) tipo harnero vibratorio de tipo estacionario, conformado por un conjunto de barras paralelas que se disponen en un marco y se ubica en la dirección del flujo de material; b. un equipo (20) diseñado para separar elementos de distinta forma, donde dicho equipo (20) comprende una mesa vibratoria inclinada (21 ) compuesta por bandejas inclinadas, donde el material es alimentado desde un alimentador (22); y c. al menos un equipo (30) para separar según propiedades del material chatarra de bolas y mineral con alto contenido de magnetita, que comprende una correa transportadora (31 ), al menos un dispositivo de análisis (32) conformado por una pluralidad de sensores y un separador con al menos una boquilla (33) de dos vías, para lanzar chorros de aire por cada una de las vías; en donde los equipos (10, 20, 30) se configuran modularmente dependiendo del requerimiento específico, de la siguiente forma: 1 . A separation system (100) comprising: a. at least one stationary vibrating screen type equipment (10), made up of a set of parallel bars that are arranged in a frame and located in the direction of the material flow; b. equipment (20) designed to separate elements of different shapes, where said equipment (20) comprises an inclined vibrating table (21) composed of inclined trays, where the material is fed from a feeder (22); and c. at least one piece of equipment (30) to separate, according to material properties, ball scrap and mineral with high magnetite content, which comprises a conveyor belt (31), at least one analysis device (32) made up of a plurality of sensors and a separator with at least one two-way nozzle (33), to launch air jets through each of the paths; where the equipment (10, 20, 30) are configured modularly depending on the specific requirement, as follows:
• se disponen los equipos separadores por tamaño (10) y el equipo separador por forma (20), conectados en señe, cuando el sistema (100) trabaja alimentado con chatarras de medios molienda, sin mineral magnetita; y • the separating equipment by size (10) and the separating equipment by shape (20) are arranged, connected in signal, when the system (100) works fed with grinding media scrap, without magnetite mineral; and
• se disponen el equipo separador por tamaño (10), posteriormente el equipo separador por forma (20) y finalmente el equipo separador por propiedades de material (30) en serie, cuando el sistema (100) trabaja alimentado con chatarra de medios molienda y rocas con alto contenido de magnetita. • the separator equipment by size (10), subsequently the separator equipment by shape (20) and finally the separator equipment by material properties (30) are arranged in series, when the system (100) works fed with grinding media scrap and rocks with high magnetite content.
2. El sistema (100) de separación de acuerdo con la reivindicación 1 , en donde la capacidad nominal de clasificación mediante el equipo (10) es de hasta 100 t/h. El sistema (100) de separación de acuerdo con la reivindicación 2, en donde la clasificación del material mediante el equipo (10) se realiza en tres tamaños: [> 65 mm]; [65 - 35 mm]; y [> 35 mm] o bien, según sea el requerimiento, la separación se realiza en [> 90 mm]; [90 - 70 mm]; y [> 70 mm], El sistema (100) de separación de acuerdo con cualquiera de las reivindicaciones anteriores, en donde las variables que definen la operación del equipo (20) para separar elementos esféricos y semiesféricos, son la altura de caída desde el alimentador (22) y el ángulo inclinación de la mesa vibratoria inclinada (21 ). El sistema (100) de separación de acuerdo con la reivindicación 4, en donde la altura de caída varía entre 150 y 300 mm y el ángulo de inclinación varía entre 2,5° y 4,5°, respecto a la horizontal. El sistema (100) de separación de acuerdo con cualquiera de las reivindicaciones anteriores, en donde la capacidad nominal de separación en equipo (30) es de hasta 100 t/h. El sistema (100) de separación de acuerdo con cualquiera de las reivindicaciones anteriores, en donde la capacidad nominal de separación en equipo (30) es de hasta 100 t/h. El sistema (100) de separación de acuerdo con cualquiera de las reivindicaciones anteriores, en donde la al menos una boquilla (33) de aire a presión inyecta aire a una presión hasta 10 bar, por cada una de las vías. El sistema (100) de separación de acuerdo con cualquiera de las reivindicaciones anteriores, en donde la pluralidad de sensores comprende sensores de tipo XRT, inducción magnética, color, láser. El sistema (100) de separación de acuerdo con la reivindicación 1 , en donde cuando se disponen los equipos separadores por tamaño (10) y el equipo separador por forma (20) en serie, en primer lugar, se alimenta material al equipo separador por tamaño (10) y luego se alimenta al equipo separador por forma (20), con rango de tamaño en la que se encuentran los elementos esféricos de interés, usualmente en diámetros 70 mm - 90 mm. El sistema (100) de separación de acuerdo con la reivindicación 1 , en donde cuando se disponen los equipos separadores por tamaño (10) y el equipo separador por forma (20) en señe, en primer lugar, se alimenta el equipo separador por forma (20) y luego se alimenta al equipo separador por tamaño (10) en señe, con rango de tamaño en la que se encuentran los elementos esféricos de interés. El sistema (100) de separación de acuerdo con la reivindicación 1 , en donde las bandejas comprenden una barra metálica de un par de milímetros de espesor que permite disminuir la energía cinética de unos objetos que caen sobre dichas bandejas. Un método de separación de bolas de molienda que comprende los pasos de: a. disponer al menos un equipo (10) tipo harnero vibratorio para la etapa de separación por tamaño; b. disponer al menos un equipo (20) diseñado para separar elementos esféricos y semiesféñcos; y c. disponer al menos un equipo (30), el cual permite separar según propiedades del material chatarra de bolas y mineral con alto contenido de magnetita; en donde los equipos (10, 20, 30) se configuran modularmente dependiendo del requerimiento específico, de la siguiente forma: 2. The separation system (100) according to claim 1, wherein the nominal classification capacity by the equipment (10) is up to 100 t/h. The separation system (100) according to claim 2, wherein the classification of the material by means of the equipment (10) is carried out in three sizes: [> 65 mm]; [65 - 35mm]; and [> 35 mm] or, depending on the requirement, the separation is made at [> 90 mm]; [90 - 70mm]; and [> 70 mm], The separation system (100) according to any of the preceding claims, wherein the variables that define the operation of the equipment (20) to separate spherical and hemispherical elements are the fall height from the feeder (22) and the inclination angle of the inclined vibrating table (21). The separation system (100) according to claim 4, wherein the fall height varies between 150 and 300 mm and the inclination angle varies between 2.5° and 4.5°, with respect to the horizontal. The separation system (100) according to any of the preceding claims, wherein the nominal separation capacity of the equipment (30) is up to 100 t/h. The separation system (100) according to any of the preceding claims, wherein the nominal separation capacity of the equipment (30) is up to 100 t/h. The separation system (100) according to any of the preceding claims, wherein the at least one pressurized air nozzle (33) injects air at a pressure of up to 10 bar, through each of the paths. The separation system (100) according to any of the preceding claims, wherein the plurality of sensors comprises XRT, magnetic induction, color, laser type sensors. The separation system (100) according to claim 1, in where when the size separator equipment (10) and the shape separator equipment (20) are arranged in series, first of all, material is fed to the size separator equipment (10) and then it is fed to the shape separator equipment (20). ), with a size range in which the spherical elements of interest are found, usually in diameters 70 mm - 90 mm. The separation system (100) according to claim 1, wherein when the size separator equipment (10) and the shape separator equipment (20) are arranged, first of all, the shape separator equipment is fed (20) and then it is fed to the size separator equipment (10), with the size range in which the spherical elements of interest are found. The separation system (100) according to claim 1, wherein the trays comprise a metal bar a couple of millimeters thick that allows the kinetic energy of objects that fall on said trays to be reduced. A grinding ball separation method comprising the steps of: a. provide at least one vibrating screen type equipment (10) for the size separation stage; b. provide at least one piece of equipment (20) designed to separate spherical and semi-spherical elements; and c. provide at least one piece of equipment (30), which allows separating scrap balls and minerals with high magnetite content according to the properties of the material; where the equipment (10, 20, 30) are configured modularly depending on the specific requirement, as follows:
• se disponen los equipos separadores por tamaño (10) y el equipo separador por forma (20), conectados en señe, cuando el sistema (100) trabaja alimentado con chatarras de medios molienda, sin mineral magnetita; y • se disponen el equipo separador por tamaño (10), posteriormente el equipo separador por forma (20) y finalmente el equipo separador por propiedades de material (30) en serie, cuando el sistema (100) trabaja alimentado con chatarra de medios molienda y mineral con alto contenido de magnetita. El método de separación de acuerdo con la reivindicación 13, en donde la capacidad nominal de clasificación mediante el equipo (10) es de hasta 100 t/h. El método de separación de acuerdo con la reivindicación 13, en donde la clasificación del material mediante el equipo (10) se realiza en tres tamaños: [> 65 mm]; [65 - 35 mm]; y [> 35 mm] o bien, según sea el requerimiento, la separación se realiza en [> 90 mm]; [90 - 70 mm]; y [> 70 mm], El método de separación de acuerdo con cualquiera de las reivindicaciones 13 a 15, en donde las variables que definen la operación del equipo (20) para separar elementos esféricos y de otras formas, son la altura de caída desde el alimentador (22) y el ángulo inclinación de la mesa vibratoria inclinada (21 ). El método de separación de acuerdo con la reivindicación 16, en donde la altura de caída varía entre 150 y 300 mm y el ángulo de inclinación varía entre 2,5° y 4,5°, respecto a la horizontal. El método de separación de acuerdo con cualquiera de las reivindicaciones 13 a 17, en donde la capacidad nominal de separación en equipo (30) es de hasta 100 t/h. El método de separación de acuerdo con cualquiera de las reivindicaciones 13 a 18, en donde la capacidad nominal de separación en equipo (30) es de hasta 100 t/h. • the separating equipment by size (10) and the separating equipment by shape (20) are arranged, connected in signal, when the system (100) works fed with grinding media scrap, without magnetite mineral; and • the separator equipment by size (10), subsequently the separator equipment by shape (20) and finally the separator equipment by material properties (30) are arranged in series, when the system (100) works fed with grinding media scrap and mineral with high magnetite content. The separation method according to claim 13, wherein the nominal classification capacity by the equipment (10) is up to 100 t/h. The separation method according to claim 13, wherein the classification of the material by means of the equipment (10) is carried out in three sizes: [> 65 mm]; [65 - 35mm]; and [> 35 mm] or, depending on the requirement, the separation is made at [> 90 mm]; [90 - 70mm]; and [> 70 mm], The separation method according to any of claims 13 to 15, wherein the variables that define the operation of the equipment (20) to separate spherical and other shaped elements are the fall height from the feeder (22) and the inclination angle of the inclined vibrating table (21). The separation method according to claim 16, wherein the fall height varies between 150 and 300 mm and the inclination angle varies between 2.5° and 4.5°, with respect to the horizontal. The separation method according to any of claims 13 to 17, wherein the nominal separation capacity of the equipment (30) is up to 100 t/h. The separation method according to any of claims 13 to 18, wherein the nominal separation capacity of the equipment (30) is up to 100 t/h.
20. El método de separación de acuerdo con cualquiera de las reivindicaciones 13 a 19, en donde la al menos una boquilla de aire a presión inyecta aire a una presión hasta 10 bar, por cada una de las vías. 21. El método de separación de acuerdo con la reivindicación 13, en donde cuando se disponen los equipos separadores por tamaño (10) y el equipo separador por forma (20) en señe, en primer lugar, se alimenta material al equipo separador por tamaño (10) y luego se alimenta al equipo separador por forma (20), con rango de tamaño en la que se encuentran los elementos esféricos de interés, usualmente en diámetros 70 mm - 90 mm. 20. The separation method according to any of claims 13 to 19, wherein the at least one pressurized air nozzle injects air at a pressure of up to 10 bar, through each of the paths. 21. The separation method according to claim 13, wherein when the size separator equipment (10) and the shape separator equipment (20) are arranged, first, material is fed to the size separator equipment. (10) and then it is fed to the shape separator equipment (20), with the size range in which the spherical elements of interest are found, usually in diameters 70 mm - 90 mm.
22. El método de separación de acuerdo con la reivindicación 13, en donde cuando se disponen los equipos separadores por tamaño (10) y el equipo separador por forma (20) en señe, en primer lugar, se alimenta el equipo separador por forma (20) y luego se alimenta al equipo separador por tamaño (10) en señe, con rango de tamaño en la que se encuentran los elementos esféricos de interés. 22. The separation method according to claim 13, wherein when the size separator equipment (10) and the shape separator equipment (20) are arranged, first, the shape separator equipment ( 20) and then it is fed to the size separator equipment (10) as shown, with the size range in which the spherical elements of interest are found.
PCT/CL2022/050081 2022-08-12 2022-08-12 System and method for separating milling balls, ball scrap and magnetite for mining WO2024031204A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050081 WO2024031204A1 (en) 2022-08-12 2022-08-12 System and method for separating milling balls, ball scrap and magnetite for mining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050081 WO2024031204A1 (en) 2022-08-12 2022-08-12 System and method for separating milling balls, ball scrap and magnetite for mining

Publications (1)

Publication Number Publication Date
WO2024031204A1 true WO2024031204A1 (en) 2024-02-15

Family

ID=89850089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2022/050081 WO2024031204A1 (en) 2022-08-12 2022-08-12 System and method for separating milling balls, ball scrap and magnetite for mining

Country Status (1)

Country Link
WO (1) WO2024031204A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516518A (en) * 2005-10-24 2009-08-26 托马斯·A·瓦莱里奥 Dissimilar materials sorting process, system and apparatus
CN102416386A (en) * 2011-10-27 2012-04-18 山东博润工业技术有限公司 Process and system for sorting coal by discharging coal gangue through dry method
US8399790B1 (en) * 2007-08-31 2013-03-19 James Edward Slade Methods and systems for recovering alluvial gold
DE102012112093A1 (en) * 2012-12-11 2014-06-12 Thyssenkrupp Resource Technologies Gmbh Process and installation for the treatment of ore-containing material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516518A (en) * 2005-10-24 2009-08-26 托马斯·A·瓦莱里奥 Dissimilar materials sorting process, system and apparatus
US8399790B1 (en) * 2007-08-31 2013-03-19 James Edward Slade Methods and systems for recovering alluvial gold
CN102416386A (en) * 2011-10-27 2012-04-18 山东博润工业技术有限公司 Process and system for sorting coal by discharging coal gangue through dry method
DE102012112093A1 (en) * 2012-12-11 2014-06-12 Thyssenkrupp Resource Technologies Gmbh Process and installation for the treatment of ore-containing material

Similar Documents

Publication Publication Date Title
ES2634997T3 (en) Method and apparatus for separating particulate matter
CN210159985U (en) Multi-granularity dry coal dressing device based on rays
CN106902980B (en) A kind of mine magnetic separator
CN105057205B (en) Sorting apparatus
PT2198983E (en) Method for separating mineral impurities from calcium carbonate-containing rocks by x-ray sorting
CA2681859C (en) Method and apparatus for separating material
ES2715764T3 (en) Metal recovery system and method
CN111617987A (en) Intelligent automatic sorting system for coal
CN105728185B (en) Serial graded magnetic separator
CN114378725A (en) Screening device
CN108114771A (en) A kind of breaking magnetic separator
WO2024031204A1 (en) System and method for separating milling balls, ball scrap and magnetite for mining
CN105057071B (en) Coarse grain crushes and sorting process
CN214439513U (en) Wet-process final grinding equipment of high-pressure roller mill
CN111774305B (en) Vibration screen lower half concentrated wind power powder selecting machine
ES2237106T3 (en) APPARATUS FOR CLASSIFICATION OF VIRUTES.
CN110882840A (en) Stacked double-classification magnetic separator and magnetic ore dry grinding and sorting system
US3322354A (en) Aggregate processing plant
CN108348923B (en) Pneumatically connected cascade sifter and circulation grinding device with pneumatically connected cascade sifter
CN212576904U (en) Intelligent automatic sorting system for coal
WO2019161515A1 (en) Method for separating ore from worn steel balls or fractured steel balls that come out of a semi-autogenous grinder (sag) with the ground ore
WO2020051721A1 (en) System and method for separating steel and magnetite in order to comprehensively solve the problems associated with large stocks of magnetite mineral mixed with scrap steel balls, from large-scale mining beneficiation processes
US3709359A (en) Ore classifier
US20210198766A1 (en) System and method for dry ablation benefication of ore
CN111266189A (en) Magnetic dry separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954185

Country of ref document: EP

Kind code of ref document: A1