WO2024029983A1 - Battery charging management system and charging control method using same - Google Patents

Battery charging management system and charging control method using same Download PDF

Info

Publication number
WO2024029983A1
WO2024029983A1 PCT/KR2023/011469 KR2023011469W WO2024029983A1 WO 2024029983 A1 WO2024029983 A1 WO 2024029983A1 KR 2023011469 W KR2023011469 W KR 2023011469W WO 2024029983 A1 WO2024029983 A1 WO 2024029983A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery
ess
amount
charger
Prior art date
Application number
PCT/KR2023/011469
Other languages
French (fr)
Korean (ko)
Inventor
이동영
Original Assignee
스탠다드에너지(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스탠다드에너지(주) filed Critical 스탠다드에너지(주)
Publication of WO2024029983A1 publication Critical patent/WO2024029983A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • a battery charging management system including an ESS (Energy Storage System) utilizes a plurality of power meters and uses this to control the charging of an electric mobile device. This is about how to efficiently control charging.
  • ESS Electronicgy Storage System
  • UAV Uncrewed Aerial Vehicle
  • personal mobility are being proposed as mobile devices that require battery charging.
  • an ESS that stabilizes the power supply of the grid by assisting the power use of the charger, and a plurality of power meters considering the characteristics of the ESS are included to stably perform charging.
  • a battery charging management system including an ESS includes: a first watt-hour meter that measures the amount of power provided from a power grid; one or more second power meters configured to measure the amount of power provided from the power grid distributed to a charger, the ESS, and loads other than the ESS through one or more distribution boards; and a controller configured to control power distribution of the power grid based on power amount information of each of the first power meter and the one or more second power meters, wherein the ESS uses a battery that supports a charge/discharge rate higher than a predetermined standard.
  • a method for controlling charging of an electric mobile device including a battery comprising: obtaining first power amount information provided to the battery from a charger; Obtain second power amount information provided to loads other than the battery from the charger;
  • a charging control method for an electric drive mobile device is proposed, which includes displaying warning information on the charger or a user device of the electric drive mobile device when the second power amount information is greater than a predetermined standard.
  • an ESS that stabilizes the power supply of the grid by assisting the power use of the charger is utilized, and a type of ESS capable of high-speed charging and discharging is utilized to utilize data from a plurality of power meters.
  • a type of ESS capable of high-speed charging and discharging is utilized to utilize data from a plurality of power meters.
  • Figure 1 is a diagram for explaining the configuration of a battery charging management system including an ESS to which an embodiment of the present invention will be applied.
  • Figure 2 is a diagram for explaining the concept of utilizing a battery type and a plurality of power meters applied to an ESS according to an embodiment of the present invention.
  • Figure 3 is a diagram for explaining the structure of VIB ESS according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing the structure of a battery charging management system including ESS according to an embodiment of the present invention.
  • Figure 5 is a diagram for explaining the configuration and control method of a charging management system utilizing a plurality of power meters according to an embodiment of the present invention.
  • Figure 6 is a diagram for explaining the concept of determining power error in PCS/power bank according to an embodiment of the present invention.
  • FIG 7 and 8 are diagrams to explain the concept of performing grid separation according to an embodiment of the present invention.
  • Figure 9 is a diagram showing the arrangement of an energy storage device in a space and the configuration of power supply with other electric devices according to an embodiment of the present invention.
  • Figure 10 is a diagram showing the configuration of an ESS according to an embodiment of the present invention.
  • Figure 11 is a diagram showing the configuration of an ESS according to another embodiment of the present invention.
  • Figure 12 is a diagram for explaining the configuration of an electric vehicle charging system according to an embodiment of the present invention.
  • Figure 13 is a diagram for explaining a method of controlling charging of an electric vehicle including a battery according to an embodiment of the present invention.
  • Figure 14 is a block diagram of a charger and a power measurement device disposed inside an electric vehicle according to an embodiment of the present invention.
  • ESS refers to a device that stores energy in various energy storage means and then supplies the stored power back to the grid when necessary.
  • the ESS that uses batteries as a means of energy storage is specifically referred to as BESS (Battery Energy Storage System), but in the following description, unless otherwise specified, it is assumed that the ESS is a BESS.
  • ESS consists of a battery, a battery management system (BMS), a power conversion system (PCS), and an energy management system (EMS).
  • BMS battery management system
  • PCS power conversion system
  • EMS energy management system
  • a battery has one or more cells, a plurality of cells can form one module, and a plurality of modules can form a rack.
  • the ESS configured in this way can be connected to the power grid, electric grid, etc. to receive power.
  • ESS can be used to charge a variety of electric mobility devices, including electric vehicles.
  • electric vehicles including electric vehicles.
  • the 'electrically driven mobility device' is explained as an electric vehicle, but there is no need to be limited thereto.
  • the battery may include a battery applied to an ESS and a battery applied inside an electric vehicle, and the state of the battery can be typically expressed based on the state-of-charge (SoC), The charge/discharge speed of a battery can be explained based on the charge/discharge rate (C-Rate).
  • SoC state-of-charge
  • C-Rate charge/discharge rate
  • the charging rate and/or the discharging rate of the battery can be controlled by the charging/discharging rate (C-Rate).
  • Charge/discharge rate (C-Rate) refers to the measurement of current used to charge and/or discharge a battery.
  • discharging a specific battery at 1C-Rate or 1C means that a battery with a capacity of 10Ah (i.e., the amount of electricity when 10A (ampere) current flows for 1 hour) is fully charged and discharges at 10A for 1 hour. It means that (ampere) can be discharged.
  • SoC state of charge
  • Figure 1 is a diagram for explaining the configuration of a battery charging management system including an ESS to which an embodiment of the present invention will be applied.
  • the battery charging management system 100 to which this embodiment will be applied may include a power grid 110, an ESS 140, a charger 150 for charging an electric vehicle 160, and a load 170 other than the ESS.
  • a power grid 110 an ESS 140
  • a charger 150 for charging an electric vehicle 160 and a load 170 other than the ESS.
  • the VIB ESS (140) utilizing a vanadium ion battery (VIB) can be used as will be described later, but it is not limited thereto, and the ESS (140) according to embodiments of the present invention
  • the standards for batteries that can be used will be described in detail below.
  • a main distribution board 120 that receives power, that is, alternating current (AC), from the power grid 110, and the corresponding power is supplied through a power conversion system (PCS) and a power bank ( It may be provided by being distributed to a power bank) or a corresponding power conversion equipment 130. Meanwhile, the main distribution board 120 can be connected to loads 170 other than the ESS to supply power.
  • power that is, alternating current (AC)
  • PCS power conversion system
  • a power bank It may be provided by being distributed to a power bank
  • the main distribution board 120 can be connected to loads 170 other than the ESS to supply power.
  • the PCS (130) is operatively connected to the ESS (140) and can perform the function of converting AC power to DC by providing necessary control. Additionally, the PCS 130 is connected to the charger 150, and the charger 150 may be connected to the electric vehicle 160 or other objects that require charging.
  • the electric vehicle 160 may selectively receive at least one of power provided by the power grid 110 and power provided by the ESS 140 under the control of the PCS 130.
  • At least one of the main distribution board 120, PCS 130, ESS 140, charger 150, electric vehicle 160, and loads other than ESS 170 is located in a designated location, for example, inside or next to a specific building. can be installed in
  • This battery charging management system 100 supplies grid power to a specific building and is preferably installed and controlled so that it can additionally charge electric vehicles. To this end, it is desirable to efficiently control the amount of power in the portions indicated by A, B, and C in FIG. 1, and to this end, one aspect of the present invention proposes to efficiently control battery charging by utilizing a plurality of power meters. .
  • Figure 2 is a diagram for explaining the concept of utilizing a battery type and a plurality of power meters applied to an ESS according to an embodiment of the present invention.
  • FIG. 1 exemplarily shows a system to which the LIB ESS (210), which is currently receiving the most public attention among these various ESS batteries, is applied.
  • LIB has high energy density and power density, is about 3 times lighter than existing lead acid batteries, and is attracting attention as it can reduce space occupancy by 50-80% with high power density. In addition, it is possible to discharge 1-2% of the charge per month and maintain a long service life, and can be considered to have 5,000 battery cycles depending on the advantages and conditions of about 10 years of use.
  • the vanadium ion battery (VIB) developed by the present applicant refers to a secondary battery that stores/releases energy electrochemically using vanadium ions as an active material.
  • active materials that participate in electrochemical reactions e.g., vanadium ions, H+ cations, water, sulfuric acid, etc.
  • VIB the active material within the cell and/or module changes and moves ions using internal electric fields, osmotic pressure, concentration difference, etc., and the active material releases energy through an electrochemical reaction within the cell and/or module. It performs a storage/release role.
  • VB vanadium ion batteries
  • MAX 10C 0.5 to 5C
  • Figure 2(B) shows a configuration to which the VIB ESS 140 using such a VIB is applied according to an embodiment of the present invention.
  • LIB heat generation and battery life are affected at high output, but in the case of VIB, stable high output is possible.
  • LIB has limitations such as 1C charging and 1C discharging, but VIB is capable of controlling input and output flow with high output.
  • the VIB ESS 140 controls both the grid 110 and the charger. Since assistance is possible with high output, the use of the VIB ESS (140) has the advantage of being able to perform very efficient ESS charging and discharging management.
  • the system of the present invention is a very effective power supply system in that it can be preferably applied while ensuring safety in various auxiliary facilities. You can do it.
  • safe and efficient energy supply is possible through the use of VIB ESS (140), it can be used as a very effective, safe, and eco-friendly energy supply means for energy conservation, energy environment, and carbon neutrality.
  • the high-speed charging and discharging performance of the VIB is utilized as described above to measure the energy measured through a plurality of power meters (211, 212, and 220). Electric power can be used more efficiently. For example, when the measured value of the power meter 212, which measures the amount of power flowing into the charger, decreases sharply, this can be supported by high-speed discharge, and the measured value of the power leveler 220, which measures the amount of power flowing into the charger, can be measured at the load end other than the ESS. If it is below this predetermined standard, the VIB ESS (140) can be charged at high speed.
  • LIB VIB fire hazard height doesn't exist Charge/discharge rate 0.2-0.5C 0.5 - 5 C (Max 10 C) Voltage range Existence of upper and lower limit voltage There is an upper limit voltage, the lower limit voltage is Features when repeating cycle Irreversible reaction due to phase change reversible reaction
  • Figure 3 is a diagram for explaining the structure of VIB ESS according to an embodiment of the present invention.
  • VIB ESS also includes a battery, BMS, PCS, and EMS.
  • the battery consists of a module in which 10-20 cells are grouped starting from the smallest cell unit, multiple modules constitute a pack, and multiple packs may constitute a system level, and in response to this structure, the BMS It may also have a hierarchical structure of cell BMS (not shown), module BMS (31; level 1), pack BMS (32; level 2), and system BMS (33; level 3).
  • each level refers to an operation level including the above-described BMS as well as other control configurations.
  • level 2 defines control with the level 1 control stage of the pack BMS 32 and control operations for the switch gear 34
  • level 3 specifies the system BMS 33 and PMS 35 described above.
  • the final level 4 may define control operations between a plurality of PMSs 35 and EMSs 36.
  • the switch gear 34 can control the battery and power lines (contactor, precharge, fuse), and the linear IC 37 can turn on the switch 38 by receiving a command from the pack BMS 32.
  • the type of battery applied to the ESS is exemplarily described as VIB (FIGS. 2(B) and 3), in contrast to LIB (FIG. 2(A)).
  • the type of battery applied to ESS does not need to be limited to VIB.
  • the ESS may utilize a vanadium redox battery (VRB), a polysulfide bromide battery (PSB), or a zinc-bromine battery (ZBB).
  • VRB vanadium redox battery
  • PSB polysulfide bromide battery
  • ZBB zinc-bromine battery
  • the ESS proposes to use a battery that supports a charge/discharge rate higher than a predetermined standard.
  • a predetermined standard may be 0.5 C-Rate, which can solve the problem of difficulty in responding to high-speed charging and discharging in LIB-based ESS.
  • the predetermined standard can be variably selected and applied depending on the installation situation of the ESS within the range of 0.5 C-Rate to 5 C-Rate. For example, certain standards may be applied variably depending on the safety of the location where the ESS is deployed. In addition, it is desirable to determine the upper limit of the predetermined standard within the range of 5 C-Rate, considering the time in which the ESS is involved among the total time required to charge an electric mobile device such as an electric vehicle.
  • a predetermined standard may be used based on 0.2 C-Rate, which can be used by applying LIB-based batteries to ESS and providing additional means to dynamically respond to measurements of multiple watt-hour meters. there is.
  • FIG. 4 is a diagram showing the structure of a battery charging management system including ESS according to an embodiment of the present invention.
  • FIG 4 shows the arrangement of the VIB ESS (100a), which is an embodiment of the ESS.
  • the process of supplying electricity is in the order of the grid power source 10, the substation room 5, the first power meter 205, and the power distribution device 20a, which uses the main distribution board as an example, and in the power distribution device 20a Electricity can be supplied to the VIB ESS (100a), the charger (50), and loads other than the ESS.
  • the first power meter 205 measures the amount of power provided from the power grid, and the power provided from the power grid is supplied to the charger 50, the ESS 100a, and loads other than the ESS through one or more distribution boards ( It is characterized in that it includes one or more second power meters (211, 212, 220) each configured to measure the amount of power distributed to 40a).
  • FIG. 4 shows an example of arranging power meters (power meters 211, 212, and 220) for each line in each area 30a and 40a. Additionally, FIG. 4 shows how the supportive power area 30a and the primary power area 40a are divided and controlled.
  • the amount of power branched from the power distribution device 20a can be measured by each power meter 211, 212, and 220.
  • the controller disposed within the VIB ESS (100a) can receive the power consumption information measured by each power meter.
  • the VIB ESS (100a) may include a Power Management System (PMS), and in this case, the PMS may provide the function of a controller.
  • PMS Power Management System
  • all or most of the components shown in the drawings of FIG. 5 and below conceptually represent a specific area, that is, the entire system in which the ESS is installed.
  • the system in which the ESS is installed may be a single building, or it may mean a specific area or area in the form of a commercial facility with multiple buildings, a factory complex, etc., where power must be supplied together from the power grid and the ESS.
  • the multiple power meter-based operation system 300 is illustratively described as an example of application to an ESS and electric vehicle charger integrated system, but can also be applied to other types of ESS configurations and commercial applications.
  • watt-hour meters are shown as examples in the drawings, monitoring or monitoring means, devices, sensors, measuring instruments, instruments, watt-hour meters, etc. can be used to confirm and compare various electric wattages, and the corresponding watt-hour information can be used.
  • wired communication such as Ethernet or wireless communication equipment and technology such as Wi-Fi can be used.
  • Figure 5 is a diagram for explaining the configuration and control method of a charging management system utilizing a plurality of power meters according to an embodiment of the present invention.
  • the power provided from the power grid (e.g., AC grid) 310 passes through the substation room 320, undergoes the necessary transformation, and can be transmitted to the main distribution board 330.
  • the main distribution board 330 may be connected to at least one sub-distribution board, and an ESS distribution board 340 is shown as an example in FIG. 5 .
  • the ESS distribution board 340 can largely transmit power for ESS/chargers and power for loads other than the ESS through distribution.
  • Loads 380 other than ESS are diverse and may include electricity/power required for the building's lighting, communication network including servers, cooling and heating systems, and various mechanical facilities such as elevators.
  • Power for the ESS/charger may be provided to the PMS 370, which performs power management, and the PCS 350 and/or power bank 360, which perform power conversion and processing.
  • the PMS 370, PCS 350, and power bank 360 are preferably connected to each other in terms of power and communication.
  • VIB ESS (379) is controlled by PMS (370) and can receive power from PCS (350) through DC distribution board (359).
  • the power bank 360 can charge the electric vehicle 390 by transmitting power to the charger 369.
  • the charger 369 can be controlled by the PMS 370 and can be operatively connected to the VIB ESS 379.
  • the PMS (370), PCS (350), VIB ESS (379), charger (369), etc. are indicated with dotted lines to indicate that they can be connected to each other.
  • the VIB ESS (379) may provide power by discharging batteries charged by the charger (369), loads other than the ESS (380), etc. with some power by assisting the power grid depending on the situation, and this can be provided by the VIB ESS (379).
  • the power lines between the DC distribution board (359), PCS (350), and ESS distribution board (340) are shown in both directions.
  • the controller specifically utilizes the power measurement values of the first watt hour meter 333 and one or more second watt hour meters 353, 363, and 373.
  • the power measurement value of the first power meter 333 which measures the amount of power provided from the power grid 310, as described above.
  • the controller of this system can use this to predict the amount of spare power and insufficient power, and provide power cut information. You can obtain and use it.
  • the second power meters 353, 363, and 373 assume a concept including a plurality of power meters for measuring the amount of power branched for each load, and in this section, these are used to avoid confusion in terminology.
  • the power meter that measures the amount of power distributed to the load 380 other than the ESS will be referred to as the third power meter 373.
  • the controller By additionally utilizing the power measurement value of the third watt hour meter 373 in addition to the power measurement value of the above-described first watt hour meter 333, the controller according to this embodiment measures the power consumption of loads 380 other than the ESS in addition to the entire available power amount of the grid. can be measured.
  • the controller By controlling the power consumption of loads other than the ESS, the controller according to this embodiment can recognize abnormal power consumption situations of loads other than the ESS, thereby preventing system errors or 'electricity thieves' who draw power without permission. It is possible to check.
  • the power meter that measures the amount of power distributed to the charger 369 among the second power meters 353, 363, and 373 will be referred to as the fourth power meter 363.
  • the controller calculates the amount of power consumed by the electric vehicle charger 369 in addition to the entire available power amount of the grid. It can be measured.
  • the measurement of the amount of power consumed by the charger 369 can be used to monitor the amount of charging and power loss of charging objects such as electric vehicles, provide warnings to users, and perform charging interruption, as described later in Figure 12 and below. This will be described in detail later.
  • the above-mentioned problem was solved by using a battery that supports high-speed charging and discharging above a certain standard (e.g., 0.5 C), such as the VIB ESS 379, but in addition, the battery distributed to the charger 369
  • a certain standard e.g., 0.5 C
  • Actual power consumption and PCS are determined through the measured values of the fourth watt-hour meter 363, which measures the amount of power, and the measured values of the watt-hour meter (hereinafter referred to as the 5th watt-hour meter 353 to avoid confusion) for the amount of power distributed to the VIB ESS 379.
  • the recognized power consumption of the PCS (350) can be compared, and if the difference is greater than a predetermined standard, a failure of the PCS (350) can be determined.
  • the controller can manage whether the PCS 350 is operating normally and can manage the precision of the PCS 350.
  • the measured value of the first watt-hour meter 333 in which the failure occurred can be estimated by adding up the measured values of the three second watt-hour meters 353, 363, and 373 shown in FIG. 5.
  • the measured values of the remaining two fourth and fifth watt hour meters (353, 363) are subtracted from the measured value of the first watt hour meter (333) to determine the third watt hour meter (373). The measured value can be estimated.
  • Figure 6 is a diagram for explaining the concept of determining power error in PCS/power bank according to an embodiment of the present invention.
  • FIG. 6 illustrates the concept of utilizing an additional watt hour meter to the second watt hour meters 353, 363, and 373 shown in FIG. 5.
  • the second watt-hour meter is a sixth watt-hour meter that measures the amount of power output from the PCS 350 in addition to the 5th watt-hour meter 353, which measures the amount of power distributed to the ESS 379 and input to the PCS 350. It is proposed to additionally include (355).
  • the controller according to this embodiment can control errors when operating the PCS 350 through comparison of the measured power amount of the fifth power meter 353 and the measured power amount of the sixth power meter 355.
  • the second watt-hour meter measures the amount of power distributed to the charger 369 and input to the power bank 360, in addition to the fourth watt-hour meter 363, which measures the amount of power output from the power bank 360 and supplied to the charger 369.
  • An example is shown that additionally includes a seventh power meter 365 that measures the amount of input power.
  • the controller according to this embodiment can control errors at the start of charging and discharging of the charger 369 by comparing the measured power amount of the fourth watt-hour meter 363 and the measured power amount of the seventh watt-hour meter 365.
  • the controller estimates the battery state of the ESS (379) when the battery management system (BMS) of the ESS (379) is abnormally operated, based on the measured power amount of the sixth power meter (355). can do. For example, if the SoC of the battery of the ESS (379) cannot be estimated due to a failure of the BMS, the power flowing into the ESS (379) through the measured power amount of the sixth watt-hour meter (355) / of the battery in the ESS (379) SoC can be estimated.
  • Figure 6 shows an example of including an additional power meter 357 in the step of passing through the DC distribution board after power output from the PCS 350 for more specific estimation, but it is not limited to this.
  • FIG 8 and 8 are diagrams for explaining the concept of performing grid separation according to an embodiment of the present invention.
  • the controller additionally utilizes the measured power values of the sixth watt hour meter 355 and the seventh watt hour meter 365 to determine the error and/or PCS at the start of charging and discharging of the charger 369.
  • the controller When operating 350, it can be determined whether the error is greater than a predetermined standard.
  • the controller determines that the error when charging and discharging of the charger 369 starts and/or the error when operating the PCS 350 is greater than a predetermined standard, the controller controls the load 380 other than the ESS as shown in FIG. It may be controlled to be separated from the power grid, and/or the power grid may be controlled to be separated from the distribution board 330 as shown in FIG. 8 .
  • Figure 9 is a diagram showing the arrangement of an energy storage device in a space and the configuration of power supply with other electric devices according to an embodiment of the present invention.
  • FIG. 9 shows the ESS 100 and other devices that supply power to the Supportive Power Region 30 and the Primary Power Region 40.
  • the distinction between 'supportive power area' and 'primary power area' is that when additional chargers and ESS are installed at a specific site for purposes such as charging electric vehicles, existing users at the site may face problems with their own power use. Can be sensitive to problems that arise. Therefore, the power use area of these existing users is defined as the primary power use area, and the power use in the supportive power area is defined as a concept that minimizes the impact on the primary power use area.
  • the grid may supply power to the supportive power area 30 and the primary power area 40.
  • ESS (100) may be placed in the supportive power area (30).
  • the power source 10 supplies power to the space and, in one embodiment, includes an AC grid.
  • the power supplied by the power source 10 is distributed to two or more power areas 30 and 40 by a predetermined power distribution device 20.
  • the power distribution device 20 may supply power to the supportive power area 30 and the primary power area 40.
  • the power distribution device 20 uses a switchboard as an example.
  • the primary power area 40 includes areas where power is supplied from the power source 10, excluding the supportive power area 30.
  • the ESS 100 according to an embodiment of the present invention can supply power to the supportive power area 30 and the primary power area 40, and can also be disposed in the supportive power area 30.
  • ESS 100 and one or more chargers 50a, ..., 50n may be placed in the supportive power area 30.
  • a plurality of electric devices 60a, ..., 60n may be disposed in the primary power area 40.
  • a separate ESS that is different from the ESS 100 placed in the supportive power area 30 may be placed in the primary power area 40. That is, a separate ESS that is distinct from the ESS 100 may also be placed as an electric device within the primary power area 40 (for example, 60 m).
  • the power distribution device 20 may distribute power to the supportive power area 30 and the primary power area 40.
  • a configuration without the power distribution device 20 may also be included in an embodiment of the present invention.
  • the power supplied from the power source 10 is connected to the supportive power area 30 and the primary power area 40 by one power line. ) can be provided.
  • the ESS 00 and chargers 50a, ..., 50n that receive some or all of the power from the ESS 100 may be disposed in the supportive power area 30.
  • the energy storage device (ESS, 100) is capable of supplying power to the supportive power area 30 and the primary power area 40 within the maximum range of power supplied by the power source 10. You can.
  • the energy storage device 100 can charge or discharge according to the electricity demand or expected demand used in the two areas 30 and 40.
  • a power meter 210 may be installed connected to the supportive power area 30.
  • the power meter 210 may be disposed within the supportive power area 30.
  • a power meter 220 may be placed connected to the primary power area 40.
  • the power meter 220 may be placed within the primary power area 40.
  • the power meters 210 and 220 are, in one embodiment, a power meter and measure the amount of power being used in the installed area.
  • the power meters (210, 220) can transmit the measured value (amount of power) to the ESS (100).
  • a separate power meter may be placed in the power source 10.
  • the energy storage device 100 can check the amount of power consumed by the power source 10 in real time.
  • the energy storage device 100 is configured to measure the power consumed by the power meter 210 in the supportive power area 30 branched from the power distribution device 20 and the power consumption in the primary power area 40.
  • the total amount of power consumed by the power source 10 can be calculated by adding up the amount of power consumed by the power meter 220. This may vary depending on the implementation method, and the present invention is not limited thereto.
  • Figure 10 is a diagram showing the configuration of an ESS according to an embodiment of the present invention.
  • the ESS 100 may include an energy storage module 110 including a battery and a controller/controller 150.
  • the controller/controller 150 may determine charging or discharging of the energy storage module 110 using the power measurement results of the supportive power area and the power measurement results of the primary power area. Additionally, the controller/controller 150 may determine whether to discharge to one or more chargers arranged in the supportive power area or to one or more of the primary power areas.
  • the ESS (100) may include a Pack BMS (120) that manages charging and discharging of the energy storage module (110). Additionally, the ESS (100) may optionally include a PMS (130) and a PCS (140). If the ESS (100) includes both the PMS (130) and the PCS (140), it may be referred to as an integrated ESS.
  • the PMS (130) and PCS (140) may be physically separated from the ESS (100) and configured as separate devices.
  • the PMS 130 and PCS 140 can be operated independently as separate devices and can control the operation of the ESS 100 by exchanging information through communication with the ESS 100.
  • the energy storage module 110 of the ESS 100 may be composed of one or more battery modules and module BMSs that manage the battery modules.
  • One embodiment of the energy storage module 110 may include a battery module-module BMS as one set and a battery pack composed of one or more sets.
  • the battery of the energy storage module 110 can be charged with electricity via the PCS 140.
  • the PCS 140 can receive electricity and store it in a battery or emit electricity to the system. In this process, the PCS 140 can convert AC/DC or incoming/outgoing voltage or frequency.
  • the PMS 130 exchanges information using communication with the PCS 140 and can provide the PCS 140 with information necessary for charging or discharging or controlling the battery.
  • the module BMS manages the battery by monitoring the charging status, discharge status, temperature, voltage, and current of the battery.
  • the pack BMS 120 is a battery management system for the entire battery pack.
  • the controller/controller 150 uses the power measurement results of the supportive power area and the power measurement results of the primary power area to determine charging or discharging of the energy storage module 110 or one or more of the energy storage modules 110 disposed in the supportive power area. You can decide whether to discharge to the charger or to the primary power area. Additionally, according to one embodiment, the controller/controller 150 may be integrated with the PMS 130 and operate as a single component.
  • the controller/controller 150 may be an independent component. According to another embodiment of the present invention, the controller 150 may be implemented within the PMS 130, and the PMS 130 may provide the controller/controller functions described herein.
  • Figure 11 is a diagram showing the configuration of an ESS according to another embodiment of the present invention.
  • the detailed configuration of the switchgear 125d includes a switched-mode power supply (SMPS) 121d and a pack BMS 120d as an example.
  • SMPS switched-mode power supply
  • the pack BMS (120d) can perform control (128d) and sensing (129d). It can control LEDs and relays, and sense current and voltage.
  • the switch gear 125d and the PMS 130d may constitute the controller/controller 150 in the above-described embodiments.
  • the power supply network includes two or more power sources including a power grid and at least one energy storage system (energy storage device).
  • the ESS (100) receives a power charging request from a power charger used to charge an object containing a rechargeable battery.
  • the ESS compares the sum of the charger power demand (Charging Request) and the amount of power defined for primary use (Primary_Usage) with the maximum amount of power available from the power grid (Grid_Max).
  • the ESS (100) performs an operation for power assistance (first procedure), otherwise, the ESS (100) performs an operation for charging ( Step 2) can be performed.
  • the ESS 100 may selectively perform the first or second procedure to provide power to the power charger through the power grid alone, the ESS 100 alone, or the power grid and the ESS together.
  • the amount of power (Primary_Usage) defined for primary use is related to the power used in the primary power area 40 of the power grid. That is, it includes the load of the building, etc.
  • the first procedure involves the energy storage system 100 determining and discharging the amount of power being discharged from the energy storage system to assist with power exceeding the maximum amount of power available from the power grid (Grid_Max).
  • the ESS (100) determines the charging power amount of the ESS and performs charging, so that the spare power of the power grid is used for charging, and if the spare power amount of the power grid is less than the standard value, In one embodiment, the ESS (100) enters the discharge standby mode.
  • the controller/controller of the battery charging management system described above can not only efficiently control the power flow of the grid by utilizing a plurality of power meters, but can also efficiently control charging between the charger and the electric vehicle. Below, charging control between a charger and an electric vehicle will be described in detail.
  • Figure 12 is a diagram for explaining the configuration of an electric vehicle charging system according to an embodiment of the present invention.
  • the electric vehicle charging system 100 shown in FIG. 12 may include an electric vehicle 120 that receives power by wire (or wirelessly) and a charger 110 that controls transmission of power to the electric vehicle 120.
  • the charger 110 can display the amount of power actually charged to the battery of the electric vehicle 120 and the amount of power consumed due to charging, respectively, through the display unit 165.
  • the charger 110 may be connected to the electric vehicle 120 through a power line 130. Alternatively, the charger 110 may be connected to the electric vehicle 120 wirelessly.
  • the charger 110 may include at least one connector storage box, and each connector storage box may include a connector (eg, power line (RS485)) that supplies power to the electric vehicle 120.
  • the power line 130 may include a power line (eg, RS485) capable of transmitting and receiving signals and power between the charger 110 and the electric vehicle 120.
  • Figure 13 is a diagram for explaining a method of controlling charging of an electric vehicle including a battery according to an embodiment of the present invention.
  • the first power amount information provided to the battery 1210 of the electric vehicle 120 is obtained from the charger 110, and the first power amount information provided to the load 1220 other than the battery 1210 is obtained from the charger 110. It is proposed to obtain second power amount information and display warning information on the charger 110 or the user device (eg, mobile phone) of the electric vehicle 120 when the second power amount information is greater than a predetermined standard. That is, from the perspective of the user of the electric vehicle 120, when charging is made based on the amount of power provided from the charger 110, if the power provided to the load 1220 other than the battery is above a certain standard as described above, unnecessary Charges may apply. In a preferred embodiment of the present invention, it is proposed that in addition to providing the above-described warning, charging the user is carried out by considering both the first power amount information and the second power amount information described above.
  • the second power amount information 1220 consumed by loads other than the battery includes auxiliary power 1220a used in V2L (Vehicle to Load) equipment, power consumed for conditioning of the battery 1220b (e.g., temperature air conditioner for control, etc.), power consumed by the BMS that manages the battery (1220c), etc., and this second power amount information 1220 is displayed in the power meter 1230 of the electric vehicle as shown in FIG. 13. It can be measured by V2L (Vehicle to Load) equipment, power consumed for conditioning of the battery 1220b (e.g., temperature air conditioner for control, etc.), power consumed by the BMS that manages the battery (1220c), etc., and this second power amount information 1220 is displayed in the power meter 1230 of the electric vehicle as shown in FIG. 13. It can be measured by V2L (Vehicle to Load) equipment, power consumed for conditioning of the battery 1220b (e.g., temperature air conditioner for control, etc.), power consumed by the BMS that manage
  • the above-described second power amount information 1220 may additionally include power loss 1220d between the charger 110 and the electric vehicle 120.
  • This power loss 1220d may be calculated by comparing the measured value by the power meter 1230 of the electric vehicle 120 and the measured value at the output terminal of the charger 110.
  • determining whether the second power amount information is greater than or equal to a predetermined standard is determined by determining that the second power amount 1220 is the average of previously measured measurements for the amount of power provided to loads other than the battery. It may be judged by whether it exceeds . In other words, it is desirable to control the system to display a warning message to the user when unusually higher than average power is provided to loads other than the battery.
  • determining whether the second power amount information is greater than or equal to a predetermined standard is performed by dynamically determining the difference between the power amount information provided to the electric drive mobile device from the charger and the power amount information provided to the battery. It can also be calculated to determine whether it exceeds a certain standard.
  • Figure 14 is a block diagram of a charger and a power measurement device disposed inside an electric vehicle according to an embodiment of the present invention.
  • the charger 110 of this embodiment may be equipped with Electric Vehicle Supply Equipment (EVSE) 112 and a power module (Power Module) 114.
  • the power module 114 may be installed in a direct current charger, but may not be installed in an alternating current charger.
  • the charger 110 may be provided with a supply equipment communication controller (SECC) 111, which is a device that controls the charging procedure by communicating with a communication unit (eg, EVCC) 210 of the electric vehicle 120.
  • SECC supply equipment communication controller
  • the power module 114 may include a rectifier, and the rectifier may perform the function of converting external power supplied to the charger 110 into a voltage for supply to the electric vehicle 120.
  • EVCC can correspond to a communication controller that controls communication between the control device inside the electric vehicle and the charging infrastructure for fast and slow charging of the electric vehicle.
  • This EVCC can transmit and receive signals related to charging state control, such as voltage and current, or charge information with the charger 110.
  • the SECC 111 can communicate with the charging management server through wired or wireless communication, and can transmit and receive electric vehicle information and charging information with the communication unit (eg, EVCC) 210 provided in the electric vehicle 120.
  • the communication unit 164 of the charger 110 may provide the amount of charge charged to the electric vehicle 120, the electric vehicle identification symbol, and the charger identification symbol to the charging management server.
  • the charger 110 may receive information about the charging of the electric vehicle 120 (e.g., battery charging voltage, voltage consumed by each device in the electric vehicle, battery 280 status information, etc.) from the electric vehicle 120. And, the charger 110 may transmit this charging-related information to the charging management server.
  • the charging management server is connected to enable communication with the charger 110 and can exchange information related to charging of the electric vehicle 120.
  • the power measurement device of FIG. 14 can provide characteristic information of an electric vehicle. Meanwhile, the charger 110 may receive information related to power from the electric vehicle. Additionally, while the charger 110 supplies power to the electric vehicle, the charger 110 can receive the result of charging the battery from the electric vehicle, and through this, the charging characteristics of the electric vehicle can be confirmed. Additionally, during this process, the charger 110 can check the amount of power used regardless of leaked power or battery charging.
  • the battery charging management system and charging control method using the same according to the embodiments of the present invention as described above can be used not only for charging electric vehicles but also for charging various electric mobile devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present document relates to a battery charging management system and a charging control method using same. The battery charging management system including an energy storage system (ESS) comprises: a first watt-hour meter for measuring the amount of power provided from a power grid; at least one second watt-hour meter for measuring the amount of power distributed to a charger, the ESS, and a load other than the ESS through at least one distribution board, the power being provided from the power grid; and a controller for controlling the distribution of power of the power grid on the basis of power information of the first watt-hour meter and the at least one second watt-hour meter, wherein the ESS uses a battery that supports charge and discharge speeds of a predetermined level or higher.

Description

배터리 충전 관리 시스템 및 이를 이용한 충전 제어 방법Battery charging management system and charging control method using the same
이하의 설명은 배터리 충전 관리 시스템 및 이를 이용한 충전 제어 방법에 대한 것으로서, 구체적으로 ESS(Energy Storage System)를 포함하는 배터리 충전 관리 시스템에서 복수의 전력량계를 활용하는 구성 및 이를 이용하여 전기 구동 이동 장치의 충전을 효율적으로 제어하는 방법에 대한 것이다.The following description is about a battery charging management system and a charging control method using the same. Specifically, a battery charging management system including an ESS (Energy Storage System) utilizes a plurality of power meters and uses this to control the charging of an electric mobile device. This is about how to efficiently control charging.
최근 전기차의 이용이 확대되면서 전기차(EV) 충전기가 다양한 공간에 배치된다. 그런데 전기차 충전기의 사용은 그리드의 전기 사용량을 증가시키며 해당 공간 내의 다른 전기 사용량에 영향을 줄 수 있다. 특히 전기 사용량이 폭증하는 경우, 전기차 충전기의 사용이 제한되는 문제가 있다.Recently, as the use of electric vehicles has expanded, electric vehicle (EV) chargers are being placed in various spaces. However, the use of electric vehicle chargers increases electricity usage on the grid and can affect other electricity usage in the space. In particular, when electricity usage increases rapidly, there is a problem that the use of electric vehicle chargers is limited.
아울러, 배터리 충전이 필요한 이동 장치로는 현재의 전기차뿐만 아니라, UAV (Uncrewed Aerial Vehicle), 퍼스널 모빌리티 등 다양한 전기 구동 이동 장치가 제안되고 있다.In addition, in addition to current electric vehicles, various electrically driven mobile devices such as UAV (Uncrewed Aerial Vehicle) and personal mobility are being proposed as mobile devices that require battery charging.
이에, 충전기가 배치된 공간에서 상술한 다양한 전기 구동 이동 장치를 안정적으로 충전을 수행하고, 이를 지원하기 위한 시스템을 제공하는 방안이 요구된다.Accordingly, there is a need for a method to stably charge the various electric mobile devices described above in a space where a charger is placed and to provide a system to support this.
상술한 바와 같은 문제를 해결하기 위해 본 발명의 일 측면에서는, 충전기의 전력 사용을 보조하여 그리드의 전력 공급을 안정화시키는 ESS, 및 해당 ESS의 특성을 고려한 복수의 전력량계를 포함하여 안정적으로 충전을 수행하기 위한 배터리 충전 관리 시스템을 제안하고자 한다.In order to solve the above-described problem, in one aspect of the present invention, an ESS that stabilizes the power supply of the grid by assisting the power use of the charger, and a plurality of power meters considering the characteristics of the ESS are included to stably perform charging. We would like to propose a battery charging management system to do this.
또한, 본 발명의 다른 일 측면에서는 상술한 배터리 중전 관리 시스템을 이용하여 전기 구동 이동 장치의 충전을 사용자 관점/시스템 관점에서 효율적으로 제어하는 방법을 제안하고자 한다.In addition, in another aspect of the present invention, it is intended to propose a method of efficiently controlling charging of an electric mobile device from a user perspective/system perspective using the above-described battery power management system.
본 발명에서 해결하고자 하는 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. The problems to be solved by the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the description below. You will be able to.
상술한 바와 같은 과제를 해결하기 위한 본 발명의 일 측면에서는, ESS를 포함하는 배터리 충전 관리 시스템에 있어서, 전력 그리드(grid)로부터 제공되는 전력량을 계측하는 제 1 전력량계; 상기 전력 그리드로부터 제공되는 전력이 하나 이상의 분전반을 통해 충전기, 상기 ESS, 및 상기 ESS 외 부하로 분배되는 전력량을 각각 계측하도록 구성되는 하나 이상의 제 2 전력량계; 및 상기 제 1 전력량계 및 상기 하나 이상의 제 2 전력량계 각각의 전력량 정보를 기반으로 상기 전력 그리드의 전력 분배를 제어하도록 구성되는 제어기를 포함하되, 상기 ESS는 소정 기준 이상의 충방전 속도를 지원하는 배터리를 이용하는, 배터리 충전 관리 시스템을 제안한다.In one aspect of the present invention for solving the problems described above, a battery charging management system including an ESS includes: a first watt-hour meter that measures the amount of power provided from a power grid; one or more second power meters configured to measure the amount of power provided from the power grid distributed to a charger, the ESS, and loads other than the ESS through one or more distribution boards; and a controller configured to control power distribution of the power grid based on power amount information of each of the first power meter and the one or more second power meters, wherein the ESS uses a battery that supports a charge/discharge rate higher than a predetermined standard. , propose a battery charging management system.
상술한 바와 같은 과제를 해결하기 위한 본 발명의 다른 일 측면에서는, 배터리를 포함하는 전기 구동 이동 장치의 충전을 제어하는 방법에 있어서, 충전기로부터 상기 배터리에 제공되는 제 1 전력량 정보를 획득하고; 상기 충전기로부터 상기 배터리 이외의 부하에 제공되는 제 2 전력량 정보를 획득하며; 상기 제 2 전력량 정보가 소정 기준 이상인 경우, 상기 충전기 또는 상기 전기 구동 이동 장치의 사용자 장치에 경고 정보를 표시하는 것을 포함하는, 전기 구동 이동 장치 충전 제어 방법을 제안한다.In another aspect of the present invention for solving the above-described problem, there is a method for controlling charging of an electric mobile device including a battery, comprising: obtaining first power amount information provided to the battery from a charger; Obtain second power amount information provided to loads other than the battery from the charger; A charging control method for an electric drive mobile device is proposed, which includes displaying warning information on the charger or a user device of the electric drive mobile device when the second power amount information is greater than a predetermined standard.
상술한 바와 같은 본 발명의 실시예들에 따르면, 충전기의 전력 사용을 보조하여 그리드의 전력 공급을 안정화시키는 ESS를 활용하며, 고속 충방전이 가능한 타입의 ESS를 활용하여 복수의 전력량계의 데이터를 활용하여, 빠르고 다양한 제어 기능을 수행할 수 있다.According to the embodiments of the present invention as described above, an ESS that stabilizes the power supply of the grid by assisting the power use of the charger is utilized, and a type of ESS capable of high-speed charging and discharging is utilized to utilize data from a plurality of power meters. As a result, various control functions can be performed quickly.
또한, 전기 구동 이동 장치의 충전에 있어서 배터리 이외의 부하에서의 소모 전력을 활용하여 사용자에게 비정상적인 상황/과금을 회피하도록 제어할 수 있다.Additionally, when charging an electric mobile device, power consumption from loads other than the battery can be used to control the user to avoid abnormal situations/charges.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects that can be obtained from the present invention are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by those skilled in the art from the description below. will be.
도 1은 본 발명의 일 실시예가 적용될 ESS를 포함하는 배터리 충전 관리 시스템의 구성을 설명하기 위한 도면이다.Figure 1 is a diagram for explaining the configuration of a battery charging management system including an ESS to which an embodiment of the present invention will be applied.
도 2는 본 발명의 일 실시예에 따라 ESS에 적용되는 배터리 타입과 복수의 전력량계를 활용하는 개념에 대해 설명하기 위한 도면이다.Figure 2 is a diagram for explaining the concept of utilizing a battery type and a plurality of power meters applied to an ESS according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 VIB ESS의 구조를 설명하기 위한 도면이다.Figure 3 is a diagram for explaining the structure of VIB ESS according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따라 ESS를 포함하는 배터리 충전 관리 시스템의 구조를 도시한 도면이다.Figure 4 is a diagram showing the structure of a battery charging management system including ESS according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따라 복수의 전력량계를 활용하는 충전 관리 시스템의 구성 및 제어 방법을 설명하기 위한 도면이다.Figure 5 is a diagram for explaining the configuration and control method of a charging management system utilizing a plurality of power meters according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따라 PCS/파위뱅크에서의 전력 오차를 파악하는 개념을 설명하기 위한 도면이다.Figure 6 is a diagram for explaining the concept of determining power error in PCS/power bank according to an embodiment of the present invention.
도 7 및 도 8은 본 발명의 일 실시예에 따라 그리드 분리를 수행하는 개념을 설명하기 위한 도면이다.7 and 8 are diagrams to explain the concept of performing grid separation according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 의한 공간 내에 에너지 저장장치가 배치되는 구성 및 다른 전기장치들과의 전력 공급의 구성을 보여주는 도면이다. Figure 9 is a diagram showing the arrangement of an energy storage device in a space and the configuration of power supply with other electric devices according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 의한 ESS의 구성을 보여주는 도면이다. Figure 10 is a diagram showing the configuration of an ESS according to an embodiment of the present invention.
도 11은 본 발명의 다른 실시예에 의한 ESS 구성을 보여주는 도면이다. Figure 11 is a diagram showing the configuration of an ESS according to another embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 전기차 충전 시스템의 구성을 설명하기 위한 도면이다.Figure 12 is a diagram for explaining the configuration of an electric vehicle charging system according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따라 배터리를 포함하는 전기차의 충전을 제어하는 방법을 설명하기 위한 도면이다.Figure 13 is a diagram for explaining a method of controlling charging of an electric vehicle including a battery according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따라 충전기와 전기차 내부에 배치된 전력 측정 장치의 블록도이다.Figure 14 is a block diagram of a charger and a power measurement device disposed inside an electric vehicle according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the attached drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts that are not related to the description are omitted, and similar parts are given similar reference numerals throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a part is said to “include” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.
일반적으로, ESS는 다양한 에너지 저장 수단에 에너지를 저장한 후, 필요시 그리드에 다시 저장된 전력을 공급할 수 있는 장치를 의미한다. 이러한 ESS 중 배터리를 에너지 저장 수단으로 활용하는 ESS를 특히 BESS (Battery Energy Storage System)으로 지칭하나, 이하의 설명에서 다른 특별한 언급이 없는 한 ESS는 BESS인 것을 가정한다.Generally, ESS refers to a device that stores energy in various energy storage means and then supplies the stored power back to the grid when necessary. Among these ESSs, the ESS that uses batteries as a means of energy storage is specifically referred to as BESS (Battery Energy Storage System), but in the following description, unless otherwise specified, it is assumed that the ESS is a BESS.
일반적으로, ESS는 배터리, 배터리 관리 시스템(BMS), 전력 변환 시스템(Power Conversion System: PCS), 에너지 관리 시스템(EMS) 등으로 구성되어 있다. 배터리는 하나 이상의 셀(cell)이 있으며, 복수 개의 셀들은 하나의 모들(module)을 이루며, 복수 개의 모듈들은 하나의 랙(rack)을 형성할 수 있다. 이렇게 구성된 ESS는 전력망, 전기망, 전력 그리드(grid) 등과 연결되어 전력을 공급받을 수 있다.Generally, ESS consists of a battery, a battery management system (BMS), a power conversion system (PCS), and an energy management system (EMS). A battery has one or more cells, a plurality of cells can form one module, and a plurality of modules can form a rack. The ESS configured in this way can be connected to the power grid, electric grid, etc. to receive power.
ESS는 전기차를 포함한 다양한 전기 구동 이동 장치의 충전에 이용될 수 있다. 이하의 설명에서는 설명의 편의상 '전기 구동 이동 장치'를 전기차로 예시하여 설명하나, 이에 제한될 필요는 없다.ESS can be used to charge a variety of electric mobility devices, including electric vehicles. In the following description, for convenience of explanation, the 'electrically driven mobility device' is explained as an electric vehicle, but there is no need to be limited thereto.
상술한 바와 같이 전기차 충전기의 사용은 그리드의 전기 사용량을 증가시켜 해당 공간 내의 다른 전기 사용량에 영향을 줄 수 있는바, ESS를 전기차 충전기의 전력 사용을 보조하도록 활용하는 경우 보다 안정적으로 전력 사용을 지원할 수 있다. As mentioned above, the use of an electric vehicle charger increases the electricity usage of the grid, which can affect other electricity usage in the space. If ESS is used to assist the electric vehicle charger's power usage, it will support power usage more stably. You can.
이하의 설명에 있어서, 배터리는 ESS에 적용되는 배터리 및 전기차 내부에 적용된 배터리를 포함할 수 있으며, 해당 배터리의 상태는 대표적으로 충전 상태(state-of-charge: SoC)를 기준으로 표현할 수 있으며, 배터리의 충/방전 속도는 충/방전율(C-Rate)를 기준으로 설명할 수 있다.In the following description, the battery may include a battery applied to an ESS and a battery applied inside an electric vehicle, and the state of the battery can be typically expressed based on the state-of-charge (SoC), The charge/discharge speed of a battery can be explained based on the charge/discharge rate (C-Rate).
먼저, 배터리의 충전율 및/또는 배터리의 방전율은 충/방전율(C-Rate)에 의해 제어될 수 있다. 충/방전율(C-Rate)은 배터리의 충전 및/또는 방전에 사용되는 전류의 측정을 의미한다. 일예로, 특정 배터리가 1C-Rate 또는 1C로 방전한다는 의미는, 10Ah (즉, 10A(암페어) 전류가 1시간 동안 흘렀을 때의 전기량)의 용량을 가진 배터리가 완전히 충전된 상태에서 1시간 동안 10A(암페어)를 방전할 수 있다는 것을 의미한다. First, the charging rate and/or the discharging rate of the battery can be controlled by the charging/discharging rate (C-Rate). Charge/discharge rate (C-Rate) refers to the measurement of current used to charge and/or discharge a battery. For example, discharging a specific battery at 1C-Rate or 1C means that a battery with a capacity of 10Ah (i.e., the amount of electricity when 10A (ampere) current flows for 1 hour) is fully charged and discharges at 10A for 1 hour. It means that (ampere) can be discharged.
특정한 C-Rate로 충전되는 배터리를 측정해보면 해당 충전 상태(SoC)를 확인할 수 있다. ESS를 이용하여 전기차를 충전할 때에 ESS 내부 배터리의 SoC, 전기차 내부 배터리의 SoC 등을 확인하여 충전에 대한 각종 제어를 수행할 수 있다.By measuring a battery charged at a specific C-Rate, you can check its state of charge (SoC). When charging an electric vehicle using an ESS, various controls for charging can be performed by checking the SoC of the battery inside the ESS and the SoC of the battery inside the electric vehicle.
이러한 설명을 바탕으로 이하에서는 도면을 참조하여 구체적으로 실시예들에 대해 설명한다.Based on this description, embodiments will be described in detail below with reference to the drawings.
도 1은 본 발명의 일 실시예가 적용될 ESS를 포함하는 배터리 충전 관리 시스템의 구성을 설명하기 위한 도면이다.Figure 1 is a diagram for explaining the configuration of a battery charging management system including an ESS to which an embodiment of the present invention will be applied.
본 실시예가 적용될 배터리 충전 관리 시스템(100)은, 전력 그리드(110), ESS(140), 전기차(160)를 충전하기 위한 충전기(150), 및 ESS 외 부하(170)를 포함할 수 있다. 도 1의 예에서는 다양한 ESS 중 후술하는 바와 같이 바나듐 이온 배터리(VIB)를 활용한 VIB ESS(140)의 사용이 가능하나, 이에 한정될 필요는 없으며, 본 발명의 실시예들에 따라 ESS(140)에 활용 가능한 배터리의 기준에 대해서는 이하에서 상세히 후술하기로 한다.The battery charging management system 100 to which this embodiment will be applied may include a power grid 110, an ESS 140, a charger 150 for charging an electric vehicle 160, and a load 170 other than the ESS. In the example of FIG. 1, among various ESSs, the VIB ESS (140) utilizing a vanadium ion battery (VIB) can be used as will be described later, but it is not limited thereto, and the ESS (140) according to embodiments of the present invention ) The standards for batteries that can be used will be described in detail below.
한편, 전력 공급의 관점에서 도 1을 살펴보면, 전력 그리드(110)로부터 전력, 즉, 교류(AC)를 공급받는 메인 분전반(120)이 있으며, 해당 전력은 전력 변환 시스템(PCS), 전력 뱅크(power bank) 또는 이에 대응하는 전력 변환 장비(130)로 분전되어 제공될 수 있다. 한편, 메인 분전반(120)은 ESS외 부하(170)에도 연결되어 전력을 공급할 수 있다.Meanwhile, looking at FIG. 1 from the perspective of power supply, there is a main distribution board 120 that receives power, that is, alternating current (AC), from the power grid 110, and the corresponding power is supplied through a power conversion system (PCS) and a power bank ( It may be provided by being distributed to a power bank) or a corresponding power conversion equipment 130. Meanwhile, the main distribution board 120 can be connected to loads 170 other than the ESS to supply power.
PCS(130)는 ESS(140)와 동작적으로 연결되어 있으며, 필요한 제어를 제공하여 AC 전력을 DC로 변환하는 기능을 수행할 수 있다. 또한, PCS(130)는 충전기(150)와 연결되어 있고, 충전기(150)는 전기차(160) 또는 충전이 필요한 다른 대상물과 연결될 수 있다. The PCS (130) is operatively connected to the ESS (140) and can perform the function of converting AC power to DC by providing necessary control. Additionally, the PCS 130 is connected to the charger 150, and the charger 150 may be connected to the electric vehicle 160 or other objects that require charging.
전기차(160)는 PCS(130)의 제어 하에 전력 그리드(110)에서 제공되는 전력 및 ESS(140)에서 제공되는 전력 중 적어도 하나를 선택적으로 공급받을 수 있다.The electric vehicle 160 may selectively receive at least one of power provided by the power grid 110 and power provided by the ESS 140 under the control of the PCS 130.
여기서, 메인 분전반(120), PCS(130), ESS(140), 충전기 (150), 전기차 (160) 및 ESS외 부하(170) 중 적어도 하나는 지정된 장소, 예를 들어, 특정 건물 내부 또는 옆에 설치될 수 있다.Here, at least one of the main distribution board 120, PCS 130, ESS 140, charger 150, electric vehicle 160, and loads other than ESS 170 is located in a designated location, for example, inside or next to a specific building. can be installed in
이러한 배터리 충전 관리 시스템(100)은 특정 건물에 대하여 그리드 전력을 공급하며, 추가적으로 전기차 충전도 함께 수행할 수 있도록 설치되고 제어하는 것이 바람직하다. 이를 위해, 도 1의 A, B 및 C로 표시된 부분에서의 전력량을 효율적으로 제어하는 것이 바람직하며, 이를 위해 본 발명의 일 측면에서는 복수의 전력량계를 활용하여 효율적으로 배터리 충전을 제어하는 것을 제안한다. This battery charging management system 100 supplies grid power to a specific building and is preferably installed and controlled so that it can additionally charge electric vehicles. To this end, it is desirable to efficiently control the amount of power in the portions indicated by A, B, and C in FIG. 1, and to this end, one aspect of the present invention proposes to efficiently control battery charging by utilizing a plurality of power meters. .
한편, 이러한 복수의 전력량계를 활용하여 각 부하별 제어를 효율적으로 수행하기 위해서는 ESS에 이용되는 배터리 타입에 대해 먼저 살펴볼 필요가 있다.Meanwhile, in order to efficiently control each load using these multiple power meters, it is necessary to first look at the battery type used in the ESS.
도 2는 본 발명의 일 실시예에 따라 ESS에 적용되는 배터리 타입과 복수의 전력량계를 활용하는 개념에 대해 설명하기 위한 도면이다.Figure 2 is a diagram for explaining the concept of utilizing a battery type and a plurality of power meters applied to an ESS according to an embodiment of the present invention.
상술한 바와 같이 ESS에 적용 가능한 배터리로는 다양한 형태가 존재하며, 예를 들어, 납산화물(lead-acid) 배터리, 납탄소(lead carbon) 배터리, NAS (Sodium Sulfur) 배터리, 리듐이온배터리(LIB), 흐름전지 등이 활용될 수 있다. 도 2의 (A)는 이러한 다양한 ESS용 배터리 중 현재 가장 대중적으로 주목받고 있는 LIB가 적용된 LIB ESS(210)가 적용된 시스템을 예시적으로 도시하고 있다.As mentioned above, there are various types of batteries applicable to ESS, for example, lead-acid battery, lead carbon battery, NAS (Sodium Sulfur) battery, and lithium ion battery (LIB). ), flow batteries, etc. can be used. Figure 2 (A) exemplarily shows a system to which the LIB ESS (210), which is currently receiving the most public attention among these various ESS batteries, is applied.
LIB는 높은 에너지밀도와 출력밀도를 가지며, 기존의 납축전지보다 약 3배 더 가벼우며, 높은 전력밀도로 공간 차지 비율을 50~80% 감소가 가능한 점에서 주목받고 있다. 그리고, 한달에 충전량의 1~2% 방전하고 긴 사용수명의 유지가 가능하며, 10년 정도 사용 가능한 장점과 조건에 따라 5,000회의 배터리 사이클 가진다고 볼 수 있다. LIB has high energy density and power density, is about 3 times lighter than existing lead acid batteries, and is attracting attention as it can reduce space occupancy by 50-80% with high power density. In addition, it is possible to discharge 1-2% of the charge per month and maintain a long service life, and can be considered to have 5,000 battery cycles depending on the advantages and conditions of about 10 years of use.
다만, LIB의 경우, ESS로 운영 시 0.2~0.5C를 기본 조건으로 충방전을 수행하며, 높은 C-rate로 구동시에 열발생으로 인하여 연속 구동이 힘들며, 화재발생 위험성이 높은 단점을 가진다. However, in the case of LIB, when operating as an ESS, charging and discharging are performed under the basic condition of 0.2~0.5C. When operating at a high C-rate, continuous operation is difficult due to heat generation, and it has the disadvantage of having a high risk of fire.
또한, 알칼이성(alkaline) 및 납(lead) 배터리의 경우, 열발생으로 인한 배터리 용량저하(성능감소)를 피하기 위해 0.05C(= 20시간 방전)로 구동되는 것이 일반적이다.Additionally, in the case of alkaline and lead batteries, they are generally operated at 0.05C (= 20 hours of discharge) to avoid battery capacity degradation (performance reduction) due to heat generation.
이에 반해, 본 출원인에 의해 개발된 바나듐 이온 배터리(Vanadium Ion Battery, 이하 VIB)는 바나듐 이온을 활물질로 하여 전기 화학적으로 에너지를 저장/방출하는 이차 전지를 말한다. 기존 바나듐 계열 배터리는 전기화학 반응에 참여하는 활물질(예를 들어, 바나듐 이온, H+ 양이온, 물, 황산 등)이 외부 동력으로 동작하는 펌프 등에 의하여 강제로 순환/이송/저장되며 전기에너지를 저장/방출하는 반면, VIB는 셀 및/또는 모듈 내의 활물질이 내부의 전기장, 삼투압, 농도차 등을 이용한 이온 변화 및 이동을 이루며, 해당 활물질은 해당 셀 및/또는 모듈 내에서 전기화학 반응을 통해 에너지를 저장/방출하는 역할을 수행한다. On the other hand, the vanadium ion battery (VIB) developed by the present applicant refers to a secondary battery that stores/releases energy electrochemically using vanadium ions as an active material. In existing vanadium-based batteries, active materials that participate in electrochemical reactions (e.g., vanadium ions, H+ cations, water, sulfuric acid, etc.) are forcibly circulated/transferred/stored by a pump operated by external power, thereby storing/storing electrical energy. On the other hand, in VIB, the active material within the cell and/or module changes and moves ions using internal electric fields, osmotic pressure, concentration difference, etc., and the active material releases energy through an electrochemical reaction within the cell and/or module. It performs a storage/release role.
특히, 바나듐 이온 배터리(VIB)의 경우, 0.5 ~ 5C(MAX 10C)로 충방전이 가능하다. 또한, 수용성 전해액을 사용하여 구동되기 때문에 화재 위험으로부터 자유로우며, 넓은 SoC의 활용이 가능한 장점을 가진다.In particular, vanadium ion batteries (VIB) can be charged and discharged at 0.5 to 5C (MAX 10C). In addition, because it is driven using an aqueous electrolyte, it is free from fire risk and has the advantage of being able to utilize a wide range of SoCs.
따라서, 도 2의 (B)에서는 본 발명의 일 실시예에 따라 이러한 VIB를 이용한 VIB ESS(140)가 적용된 구성을 도시하고 있다. Accordingly, Figure 2(B) shows a configuration to which the VIB ESS 140 using such a VIB is applied according to an embodiment of the present invention.
예컨대, LIB의 경우, 고출력 시 발열 및 배터리 수명에 영향이 있으나 VIB의 경우 안정적인 고출력이 가능하다. 또한, LIB의 경우 1C 충전 1C 방전 등의 제한이 있으나 VIB는 고출력으로 입출력 유동 제어가 가능하며, 예를 들어 그리드(110)의 정전 발생 시, VIB ESS(140)는 그리드(110)와 충전기 모두 고출력으로 보조가 가능하므로 VIB ESS(140)의 활용은 매우 효율적인 ESS 충방전 관리를 수행할 수 있는 장점을 가진다.For example, in the case of LIB, heat generation and battery life are affected at high output, but in the case of VIB, stable high output is possible. In addition, LIB has limitations such as 1C charging and 1C discharging, but VIB is capable of controlling input and output flow with high output. For example, when a power outage occurs in the grid 110, the VIB ESS 140 controls both the grid 110 and the charger. Since assistance is possible with high output, the use of the VIB ESS (140) has the advantage of being able to perform very efficient ESS charging and discharging management.
특히, VIB의 경우 과부하로 인한 화재위험이 없으므로, 이러한 VIB를 본 실시예의 ESS에 적용하는 경우 다양한 부대설비에서 본 발명의 시스템이 안전을 담보하면서 바람직하게 적용될 수 있다는 점에서 매우 효과적인 전력공급 시스템이라고 할 수 있을 것이다. 또한, VIB ESS(140)의 활용인 안전하고 효율적인 에너지 공급이 가능하기 때문에, 에너지 절약이나 에너지 환경, 탄소중립의 실현 등에서 매우 효과적이고 안전하면서도 친환 경적인 에너지 공급수단으로 활용될 수 있다.In particular, in the case of VIB, there is no risk of fire due to overload, so when this VIB is applied to the ESS of this embodiment, the system of the present invention is a very effective power supply system in that it can be preferably applied while ensuring safety in various auxiliary facilities. You can do it. In addition, since safe and efficient energy supply is possible through the use of VIB ESS (140), it can be used as a very effective, safe, and eco-friendly energy supply means for energy conservation, energy environment, and carbon neutrality.
추가적으로, 도 2의 (B)에 도시된 바와 같이 VIB ESS(140)를 활용하는 경우, 상술한 바와 같이 VIB의 고속 충방전 성능을 활용하여 복수의 전력량계(211, 212, 220)를 통해 계측되는 전력량을 보다 효율적으로 활용할 수 있다. 예를 들어, 충전기로 유입되는 전력량을 계측하는 전력 계측기(212)의 측정값이 급격하게 감소하였을 때 이를 고속 방전으로 지원할 수 있으며, ESS외 부하단에서 계측하는 전력 계층기(220)의 측정값이 소정 기준 이하인 경우, VIB ESS(140)를 고속으로 충전할 수 있다.Additionally, when using the VIB ESS (140) as shown in (B) of FIG. 2, the high-speed charging and discharging performance of the VIB is utilized as described above to measure the energy measured through a plurality of power meters (211, 212, and 220). Electric power can be used more efficiently. For example, when the measured value of the power meter 212, which measures the amount of power flowing into the charger, decreases sharply, this can be supported by high-speed discharge, and the measured value of the power leveler 220, which measures the amount of power flowing into the charger, can be measured at the load end other than the ESS. If it is below this predetermined standard, the VIB ESS (140) can be charged at high speed.
한편, LIB의 경우, 상한 전압과 하한 전압이 존재하여 상대적으로 좁은 전압 범위(윈도우)를 사용한다. 구체적으로, LIB는 0 V 또는 가혹방전상태(상기 하한전압보다 낮은 상태)가 되면 덴드라이트(Dendlite)하는 물질이 생성되어 분리막 손상에 의한 단락(쇼트)이 발생하여 열폭주(Thermal Runaway) 발생할 수 있다. Meanwhile, in the case of LIB, there is an upper and lower limit voltage, so a relatively narrow voltage range (window) is used. Specifically, when LIB reaches 0 V or a severe discharge state (lower than the above lower limit voltage), dendrite material is generated, which may cause a short circuit due to damage to the separator, resulting in thermal runaway. there is.
이에 반해, VIB의 경우, 상한 전압은 존재하나, 하한 전압이 존재하지 않아 상대적으로 넓은 전압 범위(윈도우)를 사용 가능한 장점을 가진다. 즉, 0 V 또는 완방 상태가 되어도 특별한 문제가 발생하지 않아, 후술하는 복수의 전력량계의 계측 상황에 따라 보다 유연하게 동작할 수 있다.On the other hand, in the case of VIB, there is an upper limit voltage but no lower limit voltage, so it has the advantage of being able to use a relatively wide voltage range (window). In other words, no special problems occur even if it is in a 0 V or full power state, and it can operate more flexibly according to the measurement situation of a plurality of power meters, which will be described later.
또한, LIB의 경우, 충방전 사이클 반복 시, 상 변화로 인한 비가역적 반응(표면석출현상, Solid Electrolyte Interphase, 크랙킹현상)이 존재하여, 일정 사이클 작동 시 용량 차이가 발생하는 문제를 가지나, VIB의 경우 가역 반응을 이용하여 처음 용량과 일정 사이클 작동 후 용량에 차이가 없는 장점을 가진다. In addition, in the case of LIB, when charging and discharging cycles are repeated, there is an irreversible reaction due to phase change (surface precipitation phenomenon, solid electrolyte interphase, cracking phenomenon), so there is a problem of capacity difference occurring during certain cycle operation, but VIB's In this case, it has the advantage of using a reversible reaction so that there is no difference between the initial capacity and the capacity after a certain cycle of operation.
이러한 LIB와 VIB의 주요 특징은 아래 [표 1]과 같이 요약할 수 있다.The main characteristics of these LIBs and VIBs can be summarized as in [Table 1] below.
LIBLIB VIBVIB
화재 위험성fire hazard 높음height 없음doesn't exist
충방전율Charge/discharge rate 0.2-0.5 C0.2-0.5C 0.5 - 5 C(Max 10 C)0.5 - 5 C (Max 10 C)
전압범위Voltage range 상한전압, 하한전압 존재Existence of upper and lower limit voltage 상한전압 존재, 하한전압은 XThere is an upper limit voltage, the lower limit voltage is
사이클 반복 시 특징Features when repeating cycle 상 변화로 비가역 반응Irreversible reaction due to phase change 가역적 반응reversible reaction
도 3은 본 발명의 일 실시예에 따른 VIB ESS의 구조를 설명하기 위한 도면이다.Figure 3 is a diagram for explaining the structure of VIB ESS according to an embodiment of the present invention.
도 3에 도시된 바와 같이 VIB ESS 역시 배터리, BMS, PCS, EMS 등의 구성을 포함하고 있다. As shown in Figure 3, VIB ESS also includes a battery, BMS, PCS, and EMS.
구체적으로 배터리는 가장 작은 셀 단위에서부터, 10-20개의 셀이 그룹화된 모듈을 구성하고, 복수의 모듈은 팩을 구성하며, 복수의 팩은 시스템 레벨을 구성할 수 있으며, 이러한 구조에 대응하여 BMS 역시 셀 BMS(미도시), 모듈 BMS(31; 레벨 1), 팩 BMS(32; 레벨 2), 시스템 BMS(33; 레벨 3)의 계층 구조를 가질 수 있다. Specifically, the battery consists of a module in which 10-20 cells are grouped starting from the smallest cell unit, multiple modules constitute a pack, and multiple packs may constitute a system level, and in response to this structure, the BMS It may also have a hierarchical structure of cell BMS (not shown), module BMS (31; level 1), pack BMS (32; level 2), and system BMS (33; level 3).
여기서, 각 레벨은 상술한 BMS뿐만 다른 제어 구성을 포함하는 동작 레벨을 의미한다. 예를 들어, 레벨 2에서는 상술한 팩 BMS(32)의 레벨 1 제어단과의 제어, 그리고 스위치 기어(34)에 대한 제어 동작을 규정하고, 래밸 3에서는 상술한 시스템 BMS(33)와 PMS(35) 사이의 제어 동작을 규정할 수 있다. 또한, 최종적인 레벨 4는 복수의 PMS(35)와 EMS(36) 사이의 제어 동작을 규정할 수 있다.Here, each level refers to an operation level including the above-described BMS as well as other control configurations. For example, level 2 defines control with the level 1 control stage of the pack BMS 32 and control operations for the switch gear 34, and level 3 specifies the system BMS 33 and PMS 35 described above. ) can be defined. Additionally, the final level 4 may define control operations between a plurality of PMSs 35 and EMSs 36.
여기서, 스위치 기어(34)는 배터리와 전력선(컨텍터, 프리차지, 퓨즈)을 제어할 수 있으며, Linear IC(37)는 팩 BMS(32)로부터 명령을 받아 스위치(38) 턴온을 수행할 수 있다. 이때, 스위치 턴온 = 저항에 의한 밸런싱 수행을 의미할 수 있으며, 여기서 저항은 보드에 구리선이 패턴으로 형성된 패턴저항일 수 있다.Here, the switch gear 34 can control the battery and power lines (contactor, precharge, fuse), and the linear IC 37 can turn on the switch 38 by receiving a command from the pack BMS 32. there is. At this time, turning on the switch = may mean performing balancing by resistance, and here the resistance may be a pattern resistor formed in a pattern of copper wires on the board.
도 2 및 도 3에서 설명한 실시예에서는 ESS에 적용되는 배터리의 타입을 LIB (도 2의 (A))와 대비하여, VIB (도 2의 (B) 및 도 3)로서 예시적으로 설명하였으나, ESS에 적용되는 배터리의 타입은 VIB로 제한될 필요는 없다. 예를 들어, 본 명세서에서 ESS는 VRB(Vanadium Redox Battery), PSB(polysulfide bromide battery), ZBB(zinc-bromine battery) 등을 활용할 수도 있다.In the embodiment described in FIGS. 2 and 3, the type of battery applied to the ESS is exemplarily described as VIB (FIGS. 2(B) and 3), in contrast to LIB (FIG. 2(A)). The type of battery applied to ESS does not need to be limited to VIB. For example, in this specification, the ESS may utilize a vanadium redox battery (VRB), a polysulfide bromide battery (PSB), or a zinc-bromine battery (ZBB).
본 발명의 바람직한 일 실시예에서 ESS는 소정 기준 이상의 충방전 속도를 지원하는 배터리를 이용하는 것을 제안한다.In a preferred embodiment of the present invention, the ESS proposes to use a battery that supports a charge/discharge rate higher than a predetermined standard.
일례로서 소정 기준은 0.5 C-Rate를 기준으로 활용될 수도 있으며, 이를 통해 LIB 기반 ESS에서 고속 충방전 대응이 어려운 문제를 해결할 수 있다.As an example, a predetermined standard may be 0.5 C-Rate, which can solve the problem of difficulty in responding to high-speed charging and discharging in LIB-based ESS.
다른 일례로서 소정 기준은 0.5 C-Rate 내지 5 C-Rate 범위 내에서 ESS의 설치 상황에 따라 가변적으로 선택되어 적용될 수 있다. 예를 들어, ESS가 배치되는 장소의 안전성 등에 따라 소정 기준이 가변적으로 적용될 수 있다. 또한, 전기차 등 전기 구동 이동 장치의 충전에 소요되는 전체 시간 중 ESS가 관여하는 시간을 고려하여 소정 기준의 상한은 5 C-Rate 범위 내에서 결정하는 것이 바람직하다.As another example, the predetermined standard can be variably selected and applied depending on the installation situation of the ESS within the range of 0.5 C-Rate to 5 C-Rate. For example, certain standards may be applied variably depending on the safety of the location where the ESS is deployed. In addition, it is desirable to determine the upper limit of the predetermined standard within the range of 5 C-Rate, considering the time in which the ESS is involved among the total time required to charge an electric mobile device such as an electric vehicle.
또 다른 일례로서, 소정 기준은 0.2 C-Rate을 기준으로 활용될 수도 있으며, 이는 LIB 기반 배터리 등을 ESS에 적용하면서, 복수의 전력량계의 측정치에 동적으로 대응하기 위한 추가 수단을 구비하여 활용될 수 있다.As another example, a predetermined standard may be used based on 0.2 C-Rate, which can be used by applying LIB-based batteries to ESS and providing additional means to dynamically respond to measurements of multiple watt-hour meters. there is.
도 4은 본 발명의 일 실시예에 따라 ESS를 포함하는 배터리 충전 관리 시스템의 구조를 도시한 도면이다.Figure 4 is a diagram showing the structure of a battery charging management system including ESS according to an embodiment of the present invention.
도 4는 ESS의 일 실시예인 VIB ESS(100a)가 배치된 구성을 도시하고 있다. 전기의 공급 과정은 그리드인 전원(10), 변전실(5), 제 1 전력량계(205), 그리고 메인 분전반을 일 실시예로 하는 전력 분배 장치(20a)의 순서이며, 전력 분배 장치(20a)에서 VIB ESS(100a), 충전기(50) 그리고 ESS 외 부하로 전기가 공급될 수 있다. Figure 4 shows the arrangement of the VIB ESS (100a), which is an embodiment of the ESS. The process of supplying electricity is in the order of the grid power source 10, the substation room 5, the first power meter 205, and the power distribution device 20a, which uses the main distribution board as an example, and in the power distribution device 20a Electricity can be supplied to the VIB ESS (100a), the charger (50), and loads other than the ESS.
본 실시예에 따르면, 전력 그리드로부터 제공되는 전력량을 계측하는 제 1 전력량계(205)와 상기 전력 그리드로부터 제공되는 전력이 하나 이상의 분전반을 통해 충전기(50), ESS(100a), 및 ESS 외 부하(40a)로 분배되는 전력량을 각각 계측하도록 구성되는 하나 이상의 제 2 전력량계(211, 212, 220)를 포함하는 것을 특징으로 한다. According to this embodiment, the first power meter 205 measures the amount of power provided from the power grid, and the power provided from the power grid is supplied to the charger 50, the ESS 100a, and loads other than the ESS through one or more distribution boards ( It is characterized in that it includes one or more second power meters (211, 212, 220) each configured to measure the amount of power distributed to 40a).
도 4의 예에서는 각각의 영역(30a, 40a)에도 라인 별로 전력량계들(전력 측정기들(211, 212, 220))을 배치하는 예를 도시하고 있다. 또한, 도 4에서는 서포티브 전력 영역(30a) 및 프라이머리 전력 영역(40a)이 구획되어 제어되는 형태를 도시하고 있다. 전력 분배 장치(20a)에서 분기되는 전력의 사용량은 각각의 전력 측정기(211, 212, 220)들이 측정할 수 있다. 그리고 VIB ESS(100a) 내에 배치된 제어기가 각각의 전력 측정기들이 측정한 소모 전력 정보를 수신할 수 있다. 이때 VIB ESS(100a)는 PMS(Power Management System)를 포함할 수 있으며, 이 경우 PMS가 제어기의 기능을 제공할 수 있다.The example of FIG. 4 shows an example of arranging power meters ( power meters 211, 212, and 220) for each line in each area 30a and 40a. Additionally, FIG. 4 shows how the supportive power area 30a and the primary power area 40a are divided and controlled. The amount of power branched from the power distribution device 20a can be measured by each power meter 211, 212, and 220. And the controller disposed within the VIB ESS (100a) can receive the power consumption information measured by each power meter. At this time, the VIB ESS (100a) may include a Power Management System (PMS), and in this case, the PMS may provide the function of a controller.
이하 구체적으로 제 1 전력량계와 하나 이상의 제 2 전력량계의 계측 전력량을 활용하여 제어하는 방법에 대해 도 5 이하에서 설명한다.Hereinafter, a method of controlling using the measured electric power of the first watt hour meter and one or more second watt hour meters will be described in detail in FIG. 5 and below.
기본적으로, 도 5 이하의 도면들에 도시된 구성요소 모두 또는 대부분이 특정 영역, 즉, ESS가 설치된 계통 전체를 개념적으로 나타낸 것이다. 여기서, ESS가 설치된 계통은 하나의 건물일 수도 있고, 여러 건물이 있는 상업 시설, 공장 단지 등의 형태에서 전력 그리드 및 ESS에서 함께 전력을 공급해야 하는 특정 지역 또는 영역을 의미할 수 있다.Basically, all or most of the components shown in the drawings of FIG. 5 and below conceptually represent a specific area, that is, the entire system in which the ESS is installed. Here, the system in which the ESS is installed may be a single building, or it may mean a specific area or area in the form of a commercial facility with multiple buildings, a factory complex, etc., where power must be supplied together from the power grid and the ESS.
본 실시예에 따른 복수의 전력량계 기반 운용 시스템(300)은 ESS 및 전기차 충전기 통합 시스템에 적용한 사례를 예시적으로 설명하지만, 다른 종류의 ESS 구성 및 상업적 적용 사례에도 응용 가능하다.The multiple power meter-based operation system 300 according to this embodiment is illustratively described as an example of application to an ESS and electric vehicle charger integrated system, but can also be applied to other types of ESS configurations and commercial applications.
또한, 도면들에는 전력량계들이 예시적으로 표시되어 있으나, 각종 전력량의 확인 및 비교판단을 위한 감시 또는 모니터링(monitoring) 수단, 장치, 센서, 측정기, 계측기, 전력량계 등을 이용할 수 있으며, 해당 전력량 정보의 송수신에는 이더넷(Ethernet)과 같은 유선통신 또는 와이파이(Wi-Fi)와 같은 무선통신 장비 및 기술을 활용할 수 있다.In addition, although watt-hour meters are shown as examples in the drawings, monitoring or monitoring means, devices, sensors, measuring instruments, instruments, watt-hour meters, etc. can be used to confirm and compare various electric wattages, and the corresponding watt-hour information can be used. For transmission and reception, wired communication such as Ethernet or wireless communication equipment and technology such as Wi-Fi can be used.
도 5는 본 발명의 일 실시예에 따라 복수의 전력량계를 활용하는 충전 관리 시스템의 구성 및 제어 방법을 설명하기 위한 도면이다.Figure 5 is a diagram for explaining the configuration and control method of a charging management system utilizing a plurality of power meters according to an embodiment of the present invention.
전력 그리드(예: AC grid)(310)에서 제공되는 전력은 변전실(320)을 거쳐 필요한 변전이 이루어지고, 메인 분전반(330)으로 전달될 수 있다. 메인 분전반(330)은 적어도 하나의 하위 분전반에 연결될 수 있으며, 도 5에서는 예시적으로 ESS 분전반(340)이 도시되어 있다.The power provided from the power grid (e.g., AC grid) 310 passes through the substation room 320, undergoes the necessary transformation, and can be transmitted to the main distribution board 330. The main distribution board 330 may be connected to at least one sub-distribution board, and an ESS distribution board 340 is shown as an example in FIG. 5 .
ESS 분전반(340)은 크게는 ESS/충전기용 전력 및 ESS 외 부하용 전력을 분전을 통하여 전달할 수 있다. ESS 외 부하(380)는 다양하며 해당 건물의 조명, 서버를 포함한 통신망, 냉난방 시스템, 엘리베이터와 같은 다양한 기계설비 등에 필요한 전기/전력을 포함할 수 있다. The ESS distribution board 340 can largely transmit power for ESS/chargers and power for loads other than the ESS through distribution. Loads 380 other than ESS are diverse and may include electricity/power required for the building's lighting, communication network including servers, cooling and heating systems, and various mechanical facilities such as elevators.
ESS/충전기용 전력은 전력 관리를 수행하는 PMS(370) 및 전력 변환과 처리를 수행하는 PCS(350) 및/또는 파워뱅크(360)에 제공될 수 있다. PMS(370), PCS(350), 파워뱅크(360)는 전력적으로 그리고 통신적으로 서로 연결되는 것이 바람직하다. Power for the ESS/charger may be provided to the PMS 370, which performs power management, and the PCS 350 and/or power bank 360, which perform power conversion and processing. The PMS 370, PCS 350, and power bank 360 are preferably connected to each other in terms of power and communication.
VIB ESS(379)는 PMS(370)의 제어를 받으며, DC 분전반(359)을 통하여 PCS(350)로부터 전력을 받을 수 있다. 파워뱅크(360)는 충전기(charger)(369)에게 전력을 전달하여 전기차(390) 충전을 수행할 수 있다. 충전기(369)는 PMS(370)의 제어를 받을 수 있으며 VIB ESS(379)와도 동작적으로 연결될 수 있다.VIB ESS (379) is controlled by PMS (370) and can receive power from PCS (350) through DC distribution board (359). The power bank 360 can charge the electric vehicle 390 by transmitting power to the charger 369. The charger 369 can be controlled by the PMS 370 and can be operatively connected to the VIB ESS 379.
한편, 도 5에서 PMS(370), PCS(350), VIB ESS(379), 충전기(369) 등이 서로 통신적으로 연결 가능하다는 것을 나타내기 위해 점선으로 표시하였다. 추가적으로, VIB ESS(379)는 상황에 따라 전력 그리드를 보조하여 일부 전력으로 충전기(369), ESS 외 부하(380) 등으로 충전된 배터리를 방전하여 전력을 제공해줄 수도 있고, 이를 VIB ESS (379), DC 분전반(359), PCS(350), ESS 분전반(340) 사이의 전력선을 양방향으로 표기하여 나타내었다.Meanwhile, in Figure 5, the PMS (370), PCS (350), VIB ESS (379), charger (369), etc. are indicated with dotted lines to indicate that they can be connected to each other. Additionally, the VIB ESS (379) may provide power by discharging batteries charged by the charger (369), loads other than the ESS (380), etc. with some power by assisting the power grid depending on the situation, and this can be provided by the VIB ESS (379). ), the power lines between the DC distribution board (359), PCS (350), and ESS distribution board (340) are shown in both directions.
이러한 구성을 기반으로 이하에서는 제 1 전력량계(333)와 하나 이상의 제 2 전력량계(353, 363, 373)의 전력 계측치를 제어기가 구체적으로 활용하는 예를 설명한다.Based on this configuration, the following will describe an example in which the controller specifically utilizes the power measurement values of the first watt hour meter 333 and one or more second watt hour meters 353, 363, and 373.
제 1 전력량계(333)1st wattmeter (333)
본 실시예에서는 상술한 바와 같이 전력 그리드(310)로부터 제공되는 전력량을 계측하는 제 1 전력량계(333)의 전력 계측치를 활용하는 것을 제안한다. 제 1 전력량계(333)의 전력 계측치를 통해 그리드 전체의 사용 가능한 전력량 대비 전체 계통의 소모 전력량의 측정이 가능하며, 본 시스템의 제어기는 이를 활용하여, 여유 전력량, 부족 전력량를 예측할 수 있으며, 전력 단절 정보를 획득하여 활용할 수 있다. In this embodiment, it is proposed to utilize the power measurement value of the first power meter 333, which measures the amount of power provided from the power grid 310, as described above. Through the power measurement value of the first watt-hour meter 333, it is possible to measure the amount of power consumed in the entire system compared to the amount of power available in the entire grid, and the controller of this system can use this to predict the amount of spare power and insufficient power, and provide power cut information. You can obtain and use it.
제 1 전력량계(333) 및 제 3 전력량계(373)First watt hour meter (333) and third watt hour meter (373)
도 5에 도시된 바와 같이 제 2 전력량계(353, 363, 373)는 각 부하별로 분기된 전력량을 계측하기 위한 복수의 전력량계를 포함하는 개념을 가정하며, 본 절에서는 용어의 혼동을 비하기 위해 이러한 제 2 전력량계(353, 363, 373) 중 ESS 외 부하(380)로 분배되는 전력량을 계측하는 전력량계를 제 3 전력량계(373)로 지칭하기로 한다.As shown in FIG. 5, the second power meters 353, 363, and 373 assume a concept including a plurality of power meters for measuring the amount of power branched for each load, and in this section, these are used to avoid confusion in terminology. Among the second power meters 353, 363, and 373, the power meter that measures the amount of power distributed to the load 380 other than the ESS will be referred to as the third power meter 373.
상술한 제 1 전력량계(333)의 전력 계측치에 추가적으로 제 3 전력량계(373)의 전력 계측치를 추가적으로 활용하여, 본 실시예에 따른 제어기는 그리드 전체 사용 가능 전력량에 추가적으로 ESS 외 부하(380)의 전력 소모량을 측정할 수 있다.By additionally utilizing the power measurement value of the third watt hour meter 373 in addition to the power measurement value of the above-described first watt hour meter 333, the controller according to this embodiment measures the power consumption of loads 380 other than the ESS in addition to the entire available power amount of the grid. can be measured.
이러한 ESS외 부하의 전력 소모량을 제어함에 따라, 본 실시예에 따른 제어기는 ESS외 부하의 비정상적인 전력 소모 상황을 인지할 수 있으며, 이에 따라 시스템 에러 또는 무단으로 전력을 끌어 사용하는 '전기 도둑'의 확인이 가능하다.By controlling the power consumption of loads other than the ESS, the controller according to this embodiment can recognize abnormal power consumption situations of loads other than the ESS, thereby preventing system errors or 'electricity thieves' who draw power without permission. It is possible to check.
제 1 전력량계(333) 및 제 4 전력량계(363)First watt hour meter (333) and fourth watt hour meter (363)
본 절에서는 용어의 혼동을 비하기 위해 제 2 전력량계(353, 363, 373) 중 충전기(369)로 분배되는 전력량을 계측하는 전력량계를 제 4 전력량계(363)로 지칭하기로 한다.In this section, to avoid confusion in terminology, the power meter that measures the amount of power distributed to the charger 369 among the second power meters 353, 363, and 373 will be referred to as the fourth power meter 363.
상술한 제 1 전력량계(333)의 전력 계측치에 추가적으로 제 4 전력량계(363)의 전력 계측치를 추가적으로 활용하여, 본 실시예에 따른 제어기는 그리드 전체 사용 가능 전력량에 추가적으로 전기차 충전기(369)의 소모 전력량을 측정할 수 있다.By additionally utilizing the power measurement value of the fourth watt hour meter 363 in addition to the power measurement value of the above-described first watt hour meter 333, the controller according to the present embodiment calculates the amount of power consumed by the electric vehicle charger 369 in addition to the entire available power amount of the grid. It can be measured.
특히, 충전기(369)의 소모 전력량의 측정은 후술하는 바와 같이 전기차 등의 충전 대상물의 과금 및 전력 손실량을 모니터링하여 사용자에게 경고 제공, 충전 중단을 수행하는데 활용될 수 있으며, 이에 대해서는 도 12이하에서 상세하게 후술하기로 한다. In particular, the measurement of the amount of power consumed by the charger 369 can be used to monitor the amount of charging and power loss of charging objects such as electric vehicles, provide warnings to users, and perform charging interruption, as described later in Figure 12 and below. This will be described in detail later.
비정상 작동 인지Recognizing abnormal operation
도 2의 (A)와 관련하여 상술한 LIB ESS(210) 활용 시스템의 경우, 상술한 바와 같이 LIB가 고속 충방전에 활용하기 어렵고, 발화 위험이 있는 점을 중심으로 설명하였으나, 종래 LIB ESS(210) 활용 시스템에서 복수의 전력량계를 활용하기 어려웠던 또 다른 이유로는 PCS(350)의 노이즈로 인한 문제가 있었다. 구체적으로, 충전기(369)의 (고속)충방전 전후로 전력 계측치에 오류가 발생하는 확률이 높으며, 특히 PCS(350) 단에서의 전력량 계측에 오류가 발생할 확률이 높았다.In the case of the system utilizing the LIB ESS (210) described above in relation to (A) of FIG. 2, the explanation was centered on the fact that LIB is difficult to utilize for high-speed charging and discharging as described above and that there is a risk of ignition, but the conventional LIB ESS ( 210) Another reason why it was difficult to utilize multiple power meters in the utilization system was the problem caused by noise in the PCS (350). Specifically, there was a high probability that an error would occur in the power measurement before and after (high-speed) charging and discharging of the charger 369, and in particular, there was a high probability that an error would occur in the power measurement at the PCS 350 stage.
이에 반해 본 실시예에서는 VIB ESS(379)와 같이 소정 기준(예를 들어, 0.5 C) 이상의 고속 충방전을 지원하는 배터리를 활용하여 상술한 문제를 해결하였으나, 이에 추가적으로 충전기(369)로 분배되는 전력량을 계측하는 제 4 전력량계(363)의 계측치와 VIB ESS(379)로 분배되는 전력량에 대한 전력량계(이하, 혼동을 피하기 위해 제 5 전력량계(353)라 함)의 계측치를 통해 실제 소모 전력과 PCS(350)의 인식 소모 전력을 비교할 수 있으며, 그 차이가 소정 기준 이상인 경우 PCS(350)의 고장을 판단할 수 있도록 구성하는 것을 제안한다. In contrast, in this embodiment, the above-mentioned problem was solved by using a battery that supports high-speed charging and discharging above a certain standard (e.g., 0.5 C), such as the VIB ESS 379, but in addition, the battery distributed to the charger 369 Actual power consumption and PCS are determined through the measured values of the fourth watt-hour meter 363, which measures the amount of power, and the measured values of the watt-hour meter (hereinafter referred to as the 5th watt-hour meter 353 to avoid confusion) for the amount of power distributed to the VIB ESS 379. It is proposed that the recognized power consumption of the PCS (350) can be compared, and if the difference is greater than a predetermined standard, a failure of the PCS (350) can be determined.
이러한 정보를 활용함으로써, 본 실시예에 따른 제어기는 PCS(350)의 정상 동작 여부를 관리할 수 있으며, PCS (350)의 정밀도를 관리할 수 있다. By utilizing this information, the controller according to this embodiment can manage whether the PCS 350 is operating normally and can manage the precision of the PCS 350.
한편, 본 실시예에 따르면, 제 1 전력량계(333) 및 상기 하나 이상의 제 2 전력량계(353, 363, 373) 중 어느 특정 전력량계의 전력량 계측이 불가능한 경우, 상기 특정 전력량계를 제외한 나머지 전력량계의 전력량 계측을 통해, 전력 그리드의 전력 분배를 제어하고/제어하거나, 상기 특정 전력량계의 계측 전력량을 추정할 수 있다. 예를 들어, 제 1 전력량계(333)의 고장 상황에서 도 5에 도시된 3개의 제 2 전력량계(353, 363, 373)의 계측치를 합산하여 고장이 발생한 제 1 전력량계(333)의 계측치를 추정할 수 있으며, 유사하게 제 3 전력량계(373)의 고장 시, 제 1 전력량계(333)의 게측치에서 나머지 2개의 제 4 및 제 5 전력량계(353, 363)의 계측치를 차감하여 제 3 전력량계(373)의 계측치를 추정할 수 있다.Meanwhile, according to this embodiment, when it is impossible to measure the power of any specific power meter among the first power meter 333 and the one or more second power meters 353, 363, and 373, power power measurement of the remaining power meters excluding the specific power meter is performed. Through this, it is possible to control power distribution of the power grid and/or estimate the amount of power measured by the specific power meter. For example, in a failure situation of the first watt-hour meter 333, the measured value of the first watt-hour meter 333 in which the failure occurred can be estimated by adding up the measured values of the three second watt- hour meters 353, 363, and 373 shown in FIG. 5. Similarly, when the third watt hour meter (373) fails, the measured values of the remaining two fourth and fifth watt hour meters (353, 363) are subtracted from the measured value of the first watt hour meter (333) to determine the third watt hour meter (373). The measured value can be estimated.
도 6은 본 발명의 일 실시예에 따라 PCS/파위뱅크에서의 전력 오차를 파악하는 개념을 설명하기 위한 도면이다.Figure 6 is a diagram for explaining the concept of determining power error in PCS/power bank according to an embodiment of the present invention.
도 6에서는 도 5에 도시된 제 2 전력량계(353, 363, 373)에 추가적인 전력량계를 활용하는 개념을 도시하고 있다. 구체적으로, 도 6에서 제 2 전력량계는 ESS(379)로 분배되어 PCS(350)로 입력되는 전력량을 계측하는 제 5 전력량계(353)에 추가적으로 PCS(350)에서 출력되는 전력량을 계측하는 제 6 전력량계(355)를 추가적으로 포함하는 것을 제안한다. FIG. 6 illustrates the concept of utilizing an additional watt hour meter to the second watt hour meters 353, 363, and 373 shown in FIG. 5. Specifically, in FIG. 6, the second watt-hour meter is a sixth watt-hour meter that measures the amount of power output from the PCS 350 in addition to the 5th watt-hour meter 353, which measures the amount of power distributed to the ESS 379 and input to the PCS 350. It is proposed to additionally include (355).
이에 따라, 본 실시예에 따른 제어기는 제 5 전력량계(353)의 계측 전력량과 제 6 전력량계(355)의 계측 전력량의 비교를 통해 PCS(350)의 가동 시 오차를 제어할 수 있다.Accordingly, the controller according to this embodiment can control errors when operating the PCS 350 through comparison of the measured power amount of the fifth power meter 353 and the measured power amount of the sixth power meter 355.
또한, 도 6에서 제 2 전력량계는, 충전기(369)로 분배되어 파워 뱅크(360)로 입력되는 전력량을 계측하는 제 4 전력량계(363)에 추가적으로 파워 뱅크(360)에서 출력되어 충전기(369)로 입력되는 전력량을 계측하는 제 7 전력량계(365)를 추가적으로 포함하는 예를 도시하고 있다.In addition, in FIG. 6, the second watt-hour meter measures the amount of power distributed to the charger 369 and input to the power bank 360, in addition to the fourth watt-hour meter 363, which measures the amount of power output from the power bank 360 and supplied to the charger 369. An example is shown that additionally includes a seventh power meter 365 that measures the amount of input power.
본 실시예에 따른 제어기는 상술한 제 4 전력량계(363)의 계측 전력량과 제 7 전력량계(365)의 계측 전력량의 비교를 통해 충전기(369)의 충방전 시작 시 오차를 제어할 수 있다.The controller according to this embodiment can control errors at the start of charging and discharging of the charger 369 by comparing the measured power amount of the fourth watt-hour meter 363 and the measured power amount of the seventh watt-hour meter 365.
또한, 본 발명의 일 실시예에 따른 제어기는 상기 제 6 전력량계(355)의 계측 전력량에 기반하여, ESS(379)의 배터리 관리 시스템(BMS)의 비정상 작동 시 ESS(379)의 배터리 상태를 추정할 수 있다. 예를 들어, BMS의 고장으로 ESS(379)의 배터리의 SoC를 추정할 수 없을 경우, 제 6 전력량계(355)의 계측 전력량을 통해 ESS(379)로 유입된 전력/ESS(379) 내 배터리의 SoC를 추정할 수 있다. 도 6은 더욱 구체적인 추정을 위해 PCS(350)의 전력 출력 후 DC 분전반을 거친 단계에 추가적인 전력량계(357)를 포함하는 예를 도시하고 있으나, 이에 한정될 필요는 없다.In addition, the controller according to an embodiment of the present invention estimates the battery state of the ESS (379) when the battery management system (BMS) of the ESS (379) is abnormally operated, based on the measured power amount of the sixth power meter (355). can do. For example, if the SoC of the battery of the ESS (379) cannot be estimated due to a failure of the BMS, the power flowing into the ESS (379) through the measured power amount of the sixth watt-hour meter (355) / of the battery in the ESS (379) SoC can be estimated. Figure 6 shows an example of including an additional power meter 357 in the step of passing through the DC distribution board after power output from the PCS 350 for more specific estimation, but it is not limited to this.
도 8 및 도 8은 본 발명의 일 실시예에 따라 그리드 분리를 수행하는 개념을 설명하기 위한 도면이다.8 and 8 are diagrams for explaining the concept of performing grid separation according to an embodiment of the present invention.
도 6과 관련하여 상술한 바와 같이, 제어기는 제 6 전력량계(355), 제 7 전력량계(365)와 같은 전력량계의 계측 전력치를 추가적으로 활용하여, 충전기(369)의 충방전 시작 시 오차 및/또는 PCS(350)의 가동 시 오차가 소정 기준 이상인지 여부를 판정할 수 있다. As described above with reference to FIG. 6, the controller additionally utilizes the measured power values of the sixth watt hour meter 355 and the seventh watt hour meter 365 to determine the error and/or PCS at the start of charging and discharging of the charger 369. When operating 350, it can be determined whether the error is greater than a predetermined standard.
만일, 제어기가 충전기(369)의 충방전 시작 시 오차 및/또는 PCS(350)의 가동 시 오차가 소정 기준 이상이라고 판단하는 경우, 제어기는 도 7에 도시된 바와 같이 ESS 외 부하(380)를 전력 그리드에서 분리하도록 제어할 수 있으며, 그리고/또는 도 8에 도시된 바와 같이 전력 그리드를 분전반(330)에서 분리하도록 제어할 수도 있다.If the controller determines that the error when charging and discharging of the charger 369 starts and/or the error when operating the PCS 350 is greater than a predetermined standard, the controller controls the load 380 other than the ESS as shown in FIG. It may be controlled to be separated from the power grid, and/or the power grid may be controlled to be separated from the distribution board 330 as shown in FIG. 8 .
도 9는 본 발명의 일 실시예에 의한 공간 내에 에너지 저장장치가 배치되는 구성 및 다른 전기장치들과의 전력 공급의 구성을 보여주는 도면이다. Figure 9 is a diagram showing the arrangement of an energy storage device in a space and the configuration of power supply with other electric devices according to an embodiment of the present invention.
구체적으로, 도 9는 서포티브 전력 영역(Supportive Power Region)(30)과 프라이머리 전력 영역(Primary Power Region)(40)에 전력을 공급하는 ESS(100) 및 다른 장치들을 도시한다. Specifically, FIG. 9 shows the ESS 100 and other devices that supply power to the Supportive Power Region 30 and the Primary Power Region 40.
여기서, '서포티브 전력 영역'과 '프라이머리 전력 영역'의 구분은 전기차 충전 등의 목적으로 충전기 및 ESS를 특정 현장에 추가 설치할 때, 해당 현장의 기존 사용자의 입장에서 자신의 전력 사용에 문제를 발생하는 문제에 민감할 수 있다. 따라서, 이러한 기존 사용자의 전력 사용 영역을 프라이머리 전력 사용 영역으로 규정하고, 서포티브 전력 영역의 전력 사용은 프라이머리 전력 사용 영역에 영향을 최소화하는 개념으로서 규정하기로 한다.전원(10)에 해당하는 그리드는 서포티브 전력 영역(30)과 프라이머리 전력 영역(40)에 전력을 공급할 수 있다. ESS(100)는 서포티브 전력 영역(30)에 배치될 수 있다.Here, the distinction between 'supportive power area' and 'primary power area' is that when additional chargers and ESS are installed at a specific site for purposes such as charging electric vehicles, existing users at the site may face problems with their own power use. Can be sensitive to problems that arise. Therefore, the power use area of these existing users is defined as the primary power use area, and the power use in the supportive power area is defined as a concept that minimizes the impact on the primary power use area. Corresponds to power source 10. The grid may supply power to the supportive power area 30 and the primary power area 40. ESS (100) may be placed in the supportive power area (30).
전원(10)은 해당 공간에 전력을 공급하며, 일 실시예로 AC 그리드(AC Grid)를 포함한다. 전원(10)이 공급하는 전력은 소정의 전력 분배 장치(20)에서 둘 이상의 전력 영역(30, 40)으로 분배된다.The power source 10 supplies power to the space and, in one embodiment, includes an AC grid. The power supplied by the power source 10 is distributed to two or more power areas 30 and 40 by a predetermined power distribution device 20.
일 실시예로, 전력 분배 장치(20)는 서포티브 전력 영역(30)과 프라이머리 전력 영역(40)으로 전력을 공급할 수 있다. 전력 분배 장치(20)는 배전반을 일 실시예로 한다.In one embodiment, the power distribution device 20 may supply power to the supportive power area 30 and the primary power area 40. The power distribution device 20 uses a switchboard as an example.
프라이머리 전력 영역(40)은 전원(10)에서 전력을 공급하는 영역들 중에서 서포티브 전력 영역(30)을 제외한 영역을 포함한다. 본 발명의 일 실시예에 의한 ESS(100)는 서포티브 전력 영역(30)과 프라이머리 전력 영역(40)에 전력을 공급할 수 있으며, 또한 서포티브 전력 영역(30)에 배치될 수 있다.The primary power area 40 includes areas where power is supplied from the power source 10, excluding the supportive power area 30. The ESS 100 according to an embodiment of the present invention can supply power to the supportive power area 30 and the primary power area 40, and can also be disposed in the supportive power area 30.
ESS (100)와 하나 이상의 충전기(50a, ..., 50n)가 서포티브 전력 영역(30)에 배치될 수 있다. 프라이머리 전력 영역(40)에는 다수의 전기장치들(60a, ..., 60n)이 배치될 수 있다. 또한 프라이머리 전력 영역(40)에는 서포티브 전력 영역(30)에 배치된 ESS(100)와 구별되는 별도의 ESS가 배치될 수 있다. 즉, ESS(100)와 구별되는 별도의 ESS 역시 프라이머리 전력 영역(40) 내의 전기장치(예를 들어 60m)로 배치될 수 있다. ESS 100 and one or more chargers 50a, ..., 50n may be placed in the supportive power area 30. A plurality of electric devices 60a, ..., 60n may be disposed in the primary power area 40. Additionally, a separate ESS that is different from the ESS 100 placed in the supportive power area 30 may be placed in the primary power area 40. That is, a separate ESS that is distinct from the ESS 100 may also be placed as an electric device within the primary power area 40 (for example, 60 m).
도 9의 실시예에서 전력 분배 장치(20)가 서포티브 전력 영역(30) 및 프라이머리 전력 영역(40)에 전력을 분배할 수 있다. 전력 분배 장치(20)가 없는 구성 역시 본 발명의 실시예에 포함될 수 있으며, 이 경우 전원(10)에서 공급된 전력은 하나의 전력선에 의해 서포티브 전력 영역(30) 및 프라이머리 전력 영역(40)으로 제공될 수 있다. 또한, 서포티브 전력 영역(30)에는 ESS(00) 및 해당 ESS(100)로부터 전력을 일부 또는 전부를 공급받는 충전기들(50a, ..., 50n)이 배치될 수 있다.In the embodiment of FIG. 9 , the power distribution device 20 may distribute power to the supportive power area 30 and the primary power area 40. A configuration without the power distribution device 20 may also be included in an embodiment of the present invention. In this case, the power supplied from the power source 10 is connected to the supportive power area 30 and the primary power area 40 by one power line. ) can be provided. Additionally, the ESS 00 and chargers 50a, ..., 50n that receive some or all of the power from the ESS 100 may be disposed in the supportive power area 30.
본 발명의 일 실시예에 의한 에너지 저장장치(ESS, 100)는 전원(10)이 공급하는 전력 공급의 최대 범위 내에서 서포티브 전력 영역(30)과 프라이머리 전력 영역(40)에 전력을 공급할 수 있다. 에너지 저장장치(100)는 두 영역(30,40)에서 사용하는 전기 수요 또는 예상 수요에 따라 충전 또는 방전할 수 있다.The energy storage device (ESS, 100) according to an embodiment of the present invention is capable of supplying power to the supportive power area 30 and the primary power area 40 within the maximum range of power supplied by the power source 10. You can. The energy storage device 100 can charge or discharge according to the electricity demand or expected demand used in the two areas 30 and 40.
이를 위해 서포티브 전력 영역(30)에 연결되어 전력측정기(210)가 설치될 수 있다. 또는, 서포티브 전력 영역(30) 내에 전력측정기(210)가 배치될 수 있다.For this purpose, a power meter 210 may be installed connected to the supportive power area 30. Alternatively, the power meter 210 may be disposed within the supportive power area 30.
또한, 프라이머리 전력 영역(40)에 연결되어 전력측정기(220)가 배치될 수 있다. 또는, 프라이머리 전력 영역(40) 내에 전력측정기(220)가 배치될 수 있다.Additionally, a power meter 220 may be placed connected to the primary power area 40. Alternatively, the power meter 220 may be placed within the primary power area 40.
전력 측정기(210, 220)는 전력량 계측기(전력량계)를 일 실시예로 하며 설치된 영역에서 사용 중인 전력량을 측정한다. 전력측정기(210, 220)는 측정한 값(전력량)을 ESS(100)에게 전송할 수 있다The power meters 210 and 220 are, in one embodiment, a power meter and measure the amount of power being used in the installed area. The power meters (210, 220) can transmit the measured value (amount of power) to the ESS (100).
또한, 본 발명의 일 실시예에 의하면, 전원(10)에도 별도의 전력 측정기가 배치될 수 있다. 이 경우 에너지 저장장치(100)는 전원(10)의 소모 전력의 크기를 실시간으로 확인할 수 있다.Additionally, according to an embodiment of the present invention, a separate power meter may be placed in the power source 10. In this case, the energy storage device 100 can check the amount of power consumed by the power source 10 in real time.
본 발명의 다른 실시예에 의하면, 에너지 저장장치(100)는 전력 분배 장치(20)에서 분기된 서포티브 전력 영역(30)의 전력측정기(210)의 소모 전력과 프라이머리 전력 영역(40)의 전력측정기(220)의 소모 전력량을 합산하여 전원(10)에서 소모되는 전체 전력량을 계산할 수 있다. 이는 구현 방식에 따라 달라질 수 있으며, 본 발명이 이에 한정되는 것은 아니다.According to another embodiment of the present invention, the energy storage device 100 is configured to measure the power consumed by the power meter 210 in the supportive power area 30 branched from the power distribution device 20 and the power consumption in the primary power area 40. The total amount of power consumed by the power source 10 can be calculated by adding up the amount of power consumed by the power meter 220. This may vary depending on the implementation method, and the present invention is not limited thereto.
도 10은 본 발명의 일 실시예에 의한 ESS의 구성을 보여주는 도면이다. Figure 10 is a diagram showing the configuration of an ESS according to an embodiment of the present invention.
ESS(100)는 배터리를 포함하는 에너지 저장 모듈(110)과 제어기/컨트롤러(150)를 포함할 수 있다.The ESS 100 may include an energy storage module 110 including a battery and a controller/controller 150.
제어기/컨트롤러(150)는 서포티브 전력 영역의 전력량 측정 결과 및 프라이머리 전력 영역의 전력량 측정 결과를 이용하여 에너지 저장 모듈(110)의 충전 또는 방전을 결정할 수 있다. 또한 제어기/컨트롤러(150)는 서포티브 전력 영역에 배치된 하나 이상의 충전기 또는 프라이머리 전력 영역 중 어느 하나 이상으로의 방전 여부를 결정할 수 있다.The controller/controller 150 may determine charging or discharging of the energy storage module 110 using the power measurement results of the supportive power area and the power measurement results of the primary power area. Additionally, the controller/controller 150 may determine whether to discharge to one or more chargers arranged in the supportive power area or to one or more of the primary power areas.
ESS(100)는 에너지 저장 모듈(110)의 충전과 방전을 관리하는 Pack BMS(120)를 포함할 수 있다. 또한, ESS(100)는 PMS (130), PCS(140)를 선택적으로 포함할 수 있다. ESS(100)가 PMS(130) 및 PCS(140)를 모두 포함할 경우 통합형 ESS라 지칭할 수 있다.The ESS (100) may include a Pack BMS (120) that manages charging and discharging of the energy storage module (110). Additionally, the ESS (100) may optionally include a PMS (130) and a PCS (140). If the ESS (100) includes both the PMS (130) and the PCS (140), it may be referred to as an integrated ESS.
또는 ESS(100)의 구성에 따라, PMS(130) 및 PCS(140)가 ESS(100)와 물리적으로 구분되어 별도의 장치로 구성될 수 있다. PMS(130) 및 PCS(140)는 별도의 장치로 독립적으로 운영될 수 있고 ESS(100)와 통신을 통해 정보를 교환하여 ESS(100)의 동작을 제어할 수 있다.Alternatively, depending on the configuration of the ESS (100), the PMS (130) and PCS (140) may be physically separated from the ESS (100) and configured as separate devices. The PMS 130 and PCS 140 can be operated independently as separate devices and can control the operation of the ESS 100 by exchanging information through communication with the ESS 100.
ESS(100)의 에너지 저장 모듈(110)은 도시된 바와 같이 하나 이상의 배터리 모듈(Battery Module)과 해당 배터리 모듈을 관리하는 모듈 BMS(Module BMS)들로 구성될 수 있다. 에너지 저장 모듈(110)의 일 실시예는 배터리 모듈-모듈 BMS를 하나의 세트로 하고 하나 이상의 세트들로 구성된 배터리 팩(Battery Pack)을 포함할 수 있다.As shown, the energy storage module 110 of the ESS 100 may be composed of one or more battery modules and module BMSs that manage the battery modules. One embodiment of the energy storage module 110 may include a battery module-module BMS as one set and a battery pack composed of one or more sets.
에너지 저장 모듈(110)의 배터리는 PCS(140)를 경유하여 전기를 충전할 수 있다. PCS(140)는 전기를 공급받아서 배터리에 저장할 수 있거나 계통으로 전기를 방출할 수 있다. 이 과정에서 PCS(140)는 AC/DC 변환 또는 인입/방출되는 전압이나 주파수 등을 변환할 수 있다.The battery of the energy storage module 110 can be charged with electricity via the PCS 140. The PCS 140 can receive electricity and store it in a battery or emit electricity to the system. In this process, the PCS 140 can convert AC/DC or incoming/outgoing voltage or frequency.
PMS(130)는 PCS(140)와 통신을 이용하여 정보를 교환하며 배터리의 충전 또는 방전이나 제어에 필요한 정보를 PCS(140)에 제공할 수 있다.The PMS 130 exchanges information using communication with the PCS 140 and can provide the PCS 140 with information necessary for charging or discharging or controlling the battery.
모듈 BMS는 해당 배터리의 충전 상태, 방전 상태, 온도, 전압, 전류 등을 모니터링하며 배터리를 관리한다. 팩 BMS(120)는 배터리 팩 전체에 대한 배터리 관리 시스템이다.The module BMS manages the battery by monitoring the charging status, discharge status, temperature, voltage, and current of the battery. The pack BMS 120 is a battery management system for the entire battery pack.
제어기/컨트롤러(150)는 서포티브 전력 영역의 전력 측정 결과 및 프라이머리 전력 영역의 전력 측정 결과를 이용하여 에너지 저장 모듈(110)의 충전 또는 방전을 결정하거나 또는 서포티브 전력 영역에 배치된 하나 이상의 충전기 또는 프라이머리 전력 영역으로 방전 여부를 결정할 수 있다. 또한, 일 실시예에 따라 제어기/컨트롤러(150)는 PMS(130)와 통합하여 하나의 구성요소로 작동할 수 있다.The controller/controller 150 uses the power measurement results of the supportive power area and the power measurement results of the primary power area to determine charging or discharging of the energy storage module 110 or one or more of the energy storage modules 110 disposed in the supportive power area. You can decide whether to discharge to the charger or to the primary power area. Additionally, according to one embodiment, the controller/controller 150 may be integrated with the PMS 130 and operate as a single component.
본 발명의 일 실시예에 따르면 제어기/컨트롤러(150)는 독립적인 구성요소가 될 수 있다. 본 발명의 다른 실시예에 따르면 컨트롤러(150)는 PMS(130) 내에 구현될 수 있으며 PMS(130)가 본 명세서에서 설명할 제어기/컨트롤러의 기능을 제공할 수 있다.According to one embodiment of the present invention, the controller/controller 150 may be an independent component. According to another embodiment of the present invention, the controller 150 may be implemented within the PMS 130, and the PMS 130 may provide the controller/controller functions described herein.
도 11은 본 발명의 다른 실시예에 의한 ESS 구성을 보여주는 도면이다. Figure 11 is a diagram showing the configuration of an ESS according to another embodiment of the present invention.
외부로부터 공급되는 전력은 지락차단장치(Ground Fault Device, GFD)(127d) 및 스위치기어(Switch Gear)(125d)를 경유하여 배터리 팩(110d)으로 인가된다. 스위치기어(125d)의 세부 구성으로 SMPS(Switched-Mode Power Supply)(121d)와 팩 BMS(120d)를 일 실시예로 한다.Power supplied from the outside is applied to the battery pack 110d via a ground fault device (GFD) 127d and a switch gear 125d. The detailed configuration of the switchgear 125d includes a switched-mode power supply (SMPS) 121d and a pack BMS 120d as an example.
팩 BMS(120d)는 제어(128d) 및 센싱(129d)을 수행할 수 있는데, LED와 릴레이(Relay)를 제어할 수 있고, 전류와 전압을 센싱할 수 있다.The pack BMS (120d) can perform control (128d) and sensing (129d). It can control LEDs and relays, and sense current and voltage.
도 11에서 스위치 기어(125d)와 PMS(130d)가 상술한 실시예들에서의 제어기/컨트롤러(150)를 구성할 수 있다.In FIG. 11 , the switch gear 125d and the PMS 130d may constitute the controller/controller 150 in the above-described embodiments.
전술한 실시예를 적용할 경우, 전력 공급망은 전력 그리드 및 적어도 하나의 에너지 저장 시스템(에너지 저장 장치)을 포함하는 두 가지 이상의 전력 공급원을 포함하게 된다.When applying the above-described embodiment, the power supply network includes two or more power sources including a power grid and at least one energy storage system (energy storage device).
ESS(100)는 충전 가능한 배터리가 포함된 물체를 충전하는데 이용되는 전력 충전기로부터 전력 충전 요청을 수신한다.The ESS (100) receives a power charging request from a power charger used to charge an object containing a rechargeable battery.
ESS(100)는 충전기 전력 요구량(Charging Request) 및 주된 사용을 위하여 정의된 전력량 (Primary_Usage)을 합산한 값과 전력 그리드로부터 사용 가능한 최대 전력량(Grid_Max)을 비교한다.The ESS (100) compares the sum of the charger power demand (Charging Request) and the amount of power defined for primary use (Primary_Usage) with the maximum amount of power available from the power grid (Grid_Max).
그리고, 전력 그리드로부터 사용 가능한 최대 전력량(Grid_Max)이 합산 값 이하일 경우 ESS(100)는 전력 보조를 위한 동작(제 1 절차)를 수행하고, 그렇지 않을 경우에는 ESS(100)는 충전을 위한 동작(제 2 절차)를 수행할 수 있다.And, if the maximum amount of power available from the power grid (Grid_Max) is less than or equal to the sum value, the ESS (100) performs an operation for power assistance (first procedure), otherwise, the ESS (100) performs an operation for charging ( Step 2) can be performed.
그리고, ESS(100)가 제1 절차 또는 제2 절차를 선택적으로 수행하여 전력 충전기에게 전력 그리드 단독으로, 또는 ESS(100) 단독으로, 또는 전력 그리드와 ESS가 함께 전력을 제공할 수 있다.Additionally, the ESS 100 may selectively perform the first or second procedure to provide power to the power charger through the power grid alone, the ESS 100 alone, or the power grid and the ESS together.
여기서 주된 사용을 위하여 정의된 전력량 (Primary_Usage)은 전력 그리드의 프라이머리 전력 영역(40)에서 사용되는 전력과 관련 있다. 즉, 건물의 부하 등을 포함한다.Here, the amount of power (Primary_Usage) defined for primary use is related to the power used in the primary power area 40 of the power grid. That is, it includes the load of the building, etc.
제 1 절차는 에너지 저장 시스템(100)이 에너지 저장 시스템의 방전 전력량 판단 및 방전을 수행하여 전력 그리드로부터 사용 가능한 최대 전력량(Grid_Max)의 초과 전력분을 보조하는 것을 일 실시예로 한다.In one embodiment, the first procedure involves the energy storage system 100 determining and discharging the amount of power being discharged from the energy storage system to assist with power exceeding the maximum amount of power available from the power grid (Grid_Max).
제 2 절차는 전력 그리드의 여유 전력량이 기준 값 이상일 경우 ESS(100)가 ESS의 충전 전력량 판단 및 충전을 수행하여 전력 그리드의 여유전력이 충전에 이용되고 전력 그리드의 여유 전력량이 기준 값 이하일 경우, ESS(100)가 방전 대기모드로 진입하는 것을 일 실시예로 한다.In the second procedure, when the spare power amount of the power grid is greater than the standard value, the ESS (100) determines the charging power amount of the ESS and performs charging, so that the spare power of the power grid is used for charging, and if the spare power amount of the power grid is less than the standard value, In one embodiment, the ESS (100) enters the discharge standby mode.
상술한 배터리 충전 관리 시스템의 제어기/컨트롤러는 복수의 전력량계를 활용하여 그리드의 전력 흐름제어를 효율적으로 수행할 수 있을 뿐만 아니라, 충전기와 전기차 사이의 충전 제어 역시 효율화할 수 있다. 이하에서는 충전기와 전기차 사이의 충전 제어에 대해 구체적으로 설명한다.The controller/controller of the battery charging management system described above can not only efficiently control the power flow of the grid by utilizing a plurality of power meters, but can also efficiently control charging between the charger and the electric vehicle. Below, charging control between a charger and an electric vehicle will be described in detail.
도 12는 본 발명의 일 실시예에 따른 전기차 충전 시스템의 구성을 설명하기 위한 도면이다.Figure 12 is a diagram for explaining the configuration of an electric vehicle charging system according to an embodiment of the present invention.
도 12에 도시된 전기차 충전 시스템(100)은 유선(또는 무선)으로 전력을 공급받는 전기차(120) 및 전기차(120)에 전력의 송신을 제어하는 충전기(110)를 포함할 수 있다. 충전기(110)는 전기차(120)의 배터리에 실제 충전되는 전력량과 충전에 따른 소모 전력량 각각을 표시부(165)를 통해 표시할 수 있다.The electric vehicle charging system 100 shown in FIG. 12 may include an electric vehicle 120 that receives power by wire (or wirelessly) and a charger 110 that controls transmission of power to the electric vehicle 120. The charger 110 can display the amount of power actually charged to the battery of the electric vehicle 120 and the amount of power consumed due to charging, respectively, through the display unit 165.
충전기(110)는 전력선(130)을 통해 전기차(120)와 연결될 수 있다. 또는, 충전기(110)는 무선으로 전기차(120)와 연결될 수 있다.The charger 110 may be connected to the electric vehicle 120 through a power line 130. Alternatively, the charger 110 may be connected to the electric vehicle 120 wirelessly.
그리고, 충전기(110)는 적어도 하나의 커넥터 보관함을 포함할 수 있고, 각 커넥터 보관함에는 전기차(120)로 전력을 공급하는 커넥터(예: 전력선(RS485))가 포함될 수 있다. 전력선(130)은 충전기(110)와 전기차(120)간의 신호 및 전력을 송수신할 수 있는 전력선(예: RS485)을 포함할 수 있다.Additionally, the charger 110 may include at least one connector storage box, and each connector storage box may include a connector (eg, power line (RS485)) that supplies power to the electric vehicle 120. The power line 130 may include a power line (eg, RS485) capable of transmitting and receiving signals and power between the charger 110 and the electric vehicle 120.
도 13은 본 발명의 일 실시예에 따라 배터리를 포함하는 전기차의 충전을 제어하는 방법을 설명하기 위한 도면이다.Figure 13 is a diagram for explaining a method of controlling charging of an electric vehicle including a battery according to an embodiment of the present invention.
본 실시예에서는, 충전기(110)로부터 전기차(120)의 배터리(1210)에 제공되는 제 1 전력량 정보를 획득하고, 또한 충전기(110)로부터 상기 배터리(1210) 이외의 부하(1220)에 제공되는 제 2 전력량 정보를 획득하여, 이러한 제 2 전력량 정보가 소정 기준 이상인 경우, 충전기(110) 또는 전기차(120)의 사용자 장치(예를 들어, 휴대폰)에 경고 정보를 표시하는 것을 제안한다. 즉, 전기차(120)의 사용자 관점에서 충전기(110)로부터 제공된 전력량을 기준으로 충전에 대한 과금이 이루어지는 경우, 상술한 바와 같이 배터리 이외의 부하(1220)에 제공되는 전력이 일정 기준 이상이라면, 불필요한 과금이 이루어질 수도 있다. 본 발명의 바람직한 일 실시예에서는 상술한 경고 제공뿐만 아니라, 사용자에 대한 과금을 상술한 제 1 전력량 정보 및 제 2 전력량 정보를 모두 고려하여 진행하는 것을 제안한다.In this embodiment, the first power amount information provided to the battery 1210 of the electric vehicle 120 is obtained from the charger 110, and the first power amount information provided to the load 1220 other than the battery 1210 is obtained from the charger 110. It is proposed to obtain second power amount information and display warning information on the charger 110 or the user device (eg, mobile phone) of the electric vehicle 120 when the second power amount information is greater than a predetermined standard. That is, from the perspective of the user of the electric vehicle 120, when charging is made based on the amount of power provided from the charger 110, if the power provided to the load 1220 other than the battery is above a certain standard as described above, unnecessary Charges may apply. In a preferred embodiment of the present invention, it is proposed that in addition to providing the above-described warning, charging the user is carried out by considering both the first power amount information and the second power amount information described above.
배터리 이외의 부하에 의해 소비되는 제 2 전력량 정보(1220)는, V2L (Vehicle to Load) 장비에 사용되는 보조 전력(1220a), 배터리의 컨디셔닝을 위해 소모되는 전력(1220b) (예를 들어, 온도 조절을 위한 에어컨 등), 배터리를 관리하는 BMS에 의해 소모되는 전력(1220c) 등을 포함할 수 있으며, 이러한 제 2 전력량 정보(1220)는 도 13에 도시된 바와 같이 전기차의 전력량계(1230)에 의해 측정될 수 있다. The second power amount information 1220 consumed by loads other than the battery includes auxiliary power 1220a used in V2L (Vehicle to Load) equipment, power consumed for conditioning of the battery 1220b (e.g., temperature air conditioner for control, etc.), power consumed by the BMS that manages the battery (1220c), etc., and this second power amount information 1220 is displayed in the power meter 1230 of the electric vehicle as shown in FIG. 13. It can be measured by
또한, 상술한 제 2 전력량 정보(1220)는 충전기(110)와 전기차(120) 사이의 손실 전력(1220d)을 추가적으로 포함할 수 있다. 이러한 손실 전력(1220d)은 전기차(120)의 전력량계(1230)에 의한 측정치와 충전기(110)의 출력단에서의 측정치를 비교하여 산정할 수도 있다.In addition, the above-described second power amount information 1220 may additionally include power loss 1220d between the charger 110 and the electric vehicle 120. This power loss 1220d may be calculated by comparing the measured value by the power meter 1230 of the electric vehicle 120 and the measured value at the output terminal of the charger 110.
한편, 본 발명의 일 실시예에서, 상기 제 2 전력량 정보가 소정 기준 이상인지 여부를 판단하는 것은, 제 2 전력량(1220)이 배터리 이외의 부하에 제공되는 전력량에 대해 기존에 측정한 측정치의 평균을 초과하는지 여부를 통해 판단하는 것일 수 있다. 즉, 평소와 다르게 평균 이상의 전력이 배터리 이외의 부하에 제공되는 경우, 사용자에게 경고 메시지를 표시하도록 제어하는 것이 바람직하다.Meanwhile, in one embodiment of the present invention, determining whether the second power amount information is greater than or equal to a predetermined standard is determined by determining that the second power amount 1220 is the average of previously measured measurements for the amount of power provided to loads other than the battery. It may be judged by whether it exceeds . In other words, it is desirable to control the system to display a warning message to the user when unusually higher than average power is provided to loads other than the battery.
또한, 본 발명의 다른 일 실시예에서, 상기 제 2 전력량 정보가 소정 기준 이상인지 여부를 판단하는 것은, 충전기로부터 전기 구동 이동 장치에 제공되는 전력량 정보와 배터리에 제공되는 전력량 정보의 차이를 동적으로 산정하여 일정 기준 이상인지 여부로 판단할 수도 있다.In addition, in another embodiment of the present invention, determining whether the second power amount information is greater than or equal to a predetermined standard is performed by dynamically determining the difference between the power amount information provided to the electric drive mobile device from the charger and the power amount information provided to the battery. It can also be calculated to determine whether it exceeds a certain standard.
도 14는 본 발명의 일 실시예에 따라 충전기와 전기차 내부에 배치된 전력 측정 장치의 블록도이다.Figure 14 is a block diagram of a charger and a power measurement device disposed inside an electric vehicle according to an embodiment of the present invention.
본 실시예의 충전기(110)에는 EVSE(Electric Vehicle Supply Equipment)(112)와 파워 모듈(Power Module)(114)이 갖추어질 수 있다. 파워 모듈(114)은 직류 충전기에 마련될 수 있고, 교류 충전기에는 장착되지 않을 수 있다. 그리고, 충전기(110)는 전기차(120)의 통신부(예: EVCC)(210)와 통신을 수행하여, 충전 절차를 제어하는 장치인 SECC(Supply Equipment Communication Controller)(111)를 구비할 수 있다. The charger 110 of this embodiment may be equipped with Electric Vehicle Supply Equipment (EVSE) 112 and a power module (Power Module) 114. The power module 114 may be installed in a direct current charger, but may not be installed in an alternating current charger. In addition, the charger 110 may be provided with a supply equipment communication controller (SECC) 111, which is a device that controls the charging procedure by communicating with a communication unit (eg, EVCC) 210 of the electric vehicle 120.
파워 모듈(Power Module)(114)은 정류기(Rectifier)를 포함할 수 있으며, 정류기는 충전기(110)로 공급되는 외부 전력을 전기차(120)로 공급하기 위한 전압으로 변환해주는 기능을 수행할 수 있다. 예를 들면, EVCC는 전기차의 급속 및 완속 충전을 위해 전기차 내부의 제어 장치와 충전 인프라 사이의 통신을 제어하는 통신 컨트롤러에 대응할 수 있다.The power module 114 may include a rectifier, and the rectifier may perform the function of converting external power supplied to the charger 110 into a voltage for supply to the electric vehicle 120. . For example, EVCC can correspond to a communication controller that controls communication between the control device inside the electric vehicle and the charging infrastructure for fast and slow charging of the electric vehicle.
이러한 EVCC는 전압, 전류 등 충전 상태 제어에 관한 신호 또는 요금 정보를 충전기(110)와 송수신할 수 있다.This EVCC can transmit and receive signals related to charging state control, such as voltage and current, or charge information with the charger 110.
SECC(111)는 유무선 통신을 통하여 충전 관리 서버와 통신할 수 있고, 전기차(120)에 마련된 통신부(예: EVCC)(210)와 전기차 정보 및 충전 정보를 송수신할 수 있다. 충전기(110)의 통신부(164)는 전기차(120)에 충전된 충전량, 전기차 식별 기호 및 충전기 식별 기호를 충전 관리 서버에 제공할 수 있다.The SECC 111 can communicate with the charging management server through wired or wireless communication, and can transmit and receive electric vehicle information and charging information with the communication unit (eg, EVCC) 210 provided in the electric vehicle 120. The communication unit 164 of the charger 110 may provide the amount of charge charged to the electric vehicle 120, the electric vehicle identification symbol, and the charger identification symbol to the charging management server.
충전기(110)는 전기차(120)의 충전에 관한 정보(예: 배터리 충전 전압, 전기차 내의 각 장치에서 소모되는 소모 전압, 배터리(280) 상태 정보 등)를 전기차(120)로부터 수신할 수 있다. 그리고, 충전기(110)는 이러한 충전에 관한 정보를 충전 관리 서버로 전송할 수 있다. 충전 관리 서버는 충전기(110)와 통신이 가능하게 연결되어, 이러한 전기차(120)의 충전과 관련된 정보를 주고받을 수 있다.The charger 110 may receive information about the charging of the electric vehicle 120 (e.g., battery charging voltage, voltage consumed by each device in the electric vehicle, battery 280 status information, etc.) from the electric vehicle 120. And, the charger 110 may transmit this charging-related information to the charging management server. The charging management server is connected to enable communication with the charger 110 and can exchange information related to charging of the electric vehicle 120.
도 14의 전력 측정 장치는 전기차의 특성 정보를 제공할 수 있다. 한편, 충전기(110)는 전기차로부터 전력과 관련된 정보를 수신할 수 있다. 또한, 충전기(110)가 전기차에 전력을 공급하는 과정에서 충전기(110)는 전기차로부터 배터리를 충전한 결과를 수신할 수 있으며, 이를 통해 전기차의 충전에 대한 특성을 확인할 수 있다. 또한, 이 과정에서 충전기(110)는 누설된 전력 또는 배터리 충전과 무관하게 사용된 전력량을 확인할 수 있다.The power measurement device of FIG. 14 can provide characteristic information of an electric vehicle. Meanwhile, the charger 110 may receive information related to power from the electric vehicle. Additionally, while the charger 110 supplies power to the electric vehicle, the charger 110 can receive the result of charging the battery from the electric vehicle, and through this, the charging characteristics of the electric vehicle can be confirmed. Additionally, during this process, the charger 110 can check the amount of power used regardless of leaked power or battery charging.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다.A detailed description of preferred embodiments of the invention disclosed above is provided to enable any person skilled in the art to make or practice the invention. Although the present invention has been described above with reference to preferred embodiments, those skilled in the art will understand that various modifications and changes can be made to the present invention without departing from the scope of the present invention. For example, a person skilled in the art may use each configuration described in the above-described embodiments by combining them with each other.
따라서, 본 발명은 여기에 나타난 실시예들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.Therefore, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
상술한 바와 같은 본 발명의 실시예들에 따른 배터리 충전 관리 시스템 및 이를 이용한 충전 제어 방법은 전기차의 충전뿐만 아니라 다양한 전기 구동 이동 장치의 충전에 활용될 수 있다. The battery charging management system and charging control method using the same according to the embodiments of the present invention as described above can be used not only for charging electric vehicles but also for charging various electric mobile devices.

Claims (17)

  1. ESS(Energy Storage System)를 포함하는 배터리 충전 관리 시스템에 있어서,In a battery charging management system including an ESS (Energy Storage System),
    전력 그리드(grid)로부터 제공되는 전력량을 계측하는 제 1 전력량계;a first power meter that measures the amount of power provided from a power grid;
    상기 전력 그리드로부터 제공되는 전력이 하나 이상의 분전반을 통해 충전기, 상기 ESS, 및 상기 ESS 외 부하로 분배되는 전력량을 각각 계측하도록 구성되는 하나 이상의 제 2 전력량계; 및one or more second power meters configured to measure the amount of power provided from the power grid distributed to a charger, the ESS, and loads other than the ESS through one or more distribution boards; and
    상기 제 1 전력량계 및 상기 하나 이상의 제 2 전력량계 각각의 전력량 정보를 기반으로 상기 전력 그리드의 전력 분배를 제어하도록 구성되는 제어기를 포함하되,A controller configured to control power distribution of the power grid based on power amount information of each of the first power meter and the one or more second power meters,
    상기 ESS는 소정 기준 이상의 충방전 속도를 지원하는 배터리를 이용하는, 배터리 충전 관리 시스템.The ESS is a battery charging management system that uses a battery that supports charging and discharging speeds above a predetermined standard.
  2. 제 1 항에 있어서,According to claim 1,
    상기 소정 기준은 0.5 C-Rate 내지 5 C-Rate 범위 내에서 선택되는, 배터리 충전 관리 시스템.A battery charging management system wherein the predetermined standard is selected within the range of 0.5 C-Rate to 5 C-Rate.
  3. 제 1 항에 있어서,According to claim 1,
    상기 ESS는 바나듐 이온 배터리(VIB) 기반의 ESS인, 배터리 충전 관리 시스템.The ESS is a battery charging management system that is an ESS based on a vanadium ion battery (VIB).
  4. 제 1 항에 있어서,According to claim 1,
    상기 제 2 전력량계는,The second watt hour meter is,
    상기 ESS 외 부하로 분배되는 전력량을 계측하는 제 3 전력량계를 포함하며,It includes a third power meter that measures the amount of power distributed to loads other than the ESS,
    상기 제어기는 상기 제 1 전력량계의 계측 전력량과 상기 제 3 전력량계의 계측 전력량의 비교를 통해 부하 소모량을 제어하는, 배터리 충전 관리 시스템.The battery charging management system wherein the controller controls load consumption through comparison of the measured power amount of the first power meter and the measured power amount of the third power meter.
  5. 제 1 항에 있어서,According to claim 1,
    상기 제 2 전력량계는,The second watt hour meter is,
    상기 충전기로 분배되는 전력량을 계측하는 제 4 전력량계를 포함하며,It includes a fourth power meter that measures the amount of power distributed to the charger,
    상기 제어기는 상기 제 1 전력량계의 계측 전력량과 상기 제 4 전력량계의 계측 전력량의 비교를 통해 상기 충전기의 전력 소모량을 제어하는, 배터리 충전 관리 시스템.The controller controls the power consumption of the charger through comparison of the measured power amount of the first power meter and the measured power amount of the fourth power meter.
  6. 제 1 항에 있어서,According to claim 1,
    상기 제어기는, The controller is,
    상기 제 1 전력량계 및 상기 하나 이상의 제 2 전력량계 중 어느 특정 전력량계의 전력량 계측이 불가능한 경우, When it is impossible to measure the power of any specific power meter among the first power meter and the one or more second power meters,
    상기 특정 전력량계를 제외한 나머지 전력량계의 전력량 계측을 통해, 상기 전력 그리드의 전력 분배를 제어하는 것 및 상기 특정 전력량계의 계측 전력량을 추정하는 것 중 하나 이상을 수행하는, 배터리 충전 관리 시스템.A battery charging management system that performs one or more of controlling power distribution of the power grid and estimating the measured power amount of the specific power meter by measuring the power amount of the remaining power meters excluding the specific power meter.
  7. 제 1 항에 있어서,According to claim 1,
    상기 제 2 전력량계는,The second watt hour meter is,
    상기 ESS로 분배되어 전력변환시스템(PCS)로 입력되는 전력을 계측하는 제 5 전력량계; 및A fifth power meter that measures power distributed to the ESS and input to a power conversion system (PCS); and
    상기 PCS에서 출력되는 전력을 계측하는 제 6 전력량계를 포함하며,It includes a sixth power meter that measures the power output from the PCS,
    상기 제어기는 상기 제 5 전력량계의 계측 전력량과 상기 제 6 전력량계의 계측 전력량의 비교를 통해 상기 PCS의 가동 시 오차를 제어하는, 배터리 충전 관리 시스템.The battery charging management system, wherein the controller controls an error when operating the PCS by comparing the measured power amount of the fifth power meter with the measured power amount of the sixth power meter.
  8. 제 1 항에 있어서,According to claim 1,
    상기 제 2 전력량계는,The second watt hour meter is,
    상기 충전기로 분배되어 파워 뱅크(power bank)로 입력되는 전력량을 계측하는 제 4 전력량계; 및a fourth power meter that measures the amount of power distributed to the charger and input into a power bank; and
    상기 파워 뱅크에서 출력되어 충전기로 입력되는 전력량을 계측하는 제 7 전력량계를 포함하며,It includes a seventh power meter that measures the amount of power output from the power bank and input to the charger,
    상기 제어기는 상기 제 4 전력량계의 계측 전력량과 상기 제 7 전력량계의 계측 전력량의 비교를 통해 상기 충전기의 충방전 시작 시 오차를 제어하는, 배터리 충전 관리 시스템.The battery charging management system wherein the controller controls errors at the start of charging and discharging of the charger by comparing the measured power amount of the fourth power meter with the measured power amount of the seventh power meter.
  9. 제 7 항 또는 제 8 항에 있어서,According to claim 7 or 8,
    상기 제어기는 상기 충전기의 충방전 시작 시 오차 또는 상기 PCS의 가동 시 오차가 소정 기준 이상인 경우, If the error at the start of charging and discharging of the charger or the error when operating the PCS is greater than a predetermined standard, the controller
    상기 ESS 외 부하를 상기 전력 그리드에서 분리하는 것 및 상기 전력 그리드를 상기 분전반에서 분리하는 것 중 하나 이상을 수행하는, 배터리 충전 관리 시스템.A battery charge management system that performs one or more of separating loads other than the ESS from the power grid and separating the power grid from the distribution board.
  10. 제 7 항에 있어서,According to claim 7,
    상기 제어기는 상기 제 6 전력량계의 계측 전력량에 기반하여, 상기 ESS의 배터리 관리 시스템(BMS)의 비정상 작동 시 상기 ESS의 배터리 상태를 추정하는, 배터리 충전 관리 시스템.A battery charging management system, wherein the controller estimates the battery state of the ESS when the battery management system (BMS) of the ESS is abnormally operated, based on the measured power amount of the sixth watt-hour meter.
  11. 제 1 항에 있어서,According to claim 1,
    상기 제어기는 상기 제 1 전력량계의 계측 전력량과 상기 하나 이상의 제 2 전력량계의 계측 전력량의 비교를 통해 비정상 전력 누수를 관리하는, 배터리 충전 관리 시스템.The battery charging management system, wherein the controller manages abnormal power leakage through comparison of the measured power amount of the first power meter and the measured power amount of the one or more second power meters.
  12. 제 1 항에 있어서,According to claim 1,
    상기 제어기는,The controller is,
    상기 충전기로부터 전기 구동 이동 장치의 배터리에 제공되는 제 1 전력량 정보를 획득하고,Obtaining first power amount information provided to the battery of the electric mobile device from the charger,
    상기 충전기로부터 상기 전기 구동 이동 장치의 상기 배터리 이외의 부하에 제공되는 제 2 전력량 정보를 획득하며;Obtain second power amount information provided to loads other than the battery of the electrically driven mobile device from the charger;
    상기 제 2 전력량 정보가 소정 기준 이상인 경우, 상기 충전기 또는 상기 전기 구동 이동 장치의 사용자 장치에 경고 정보를 표시하도록 제어하는, 배터리 충전 관리 시스템.A battery charge management system that controls to display warning information on the charger or a user device of the electrically driven mobile device when the second power amount information is greater than a predetermined standard.
  13. 배터리를 포함하는 전기 구동 이동 장치의 충전을 제어하는 방법에 있어서,In a method for controlling charging of an electrically driven mobile device comprising a battery,
    충전기로부터 상기 배터리에 제공되는 제 1 전력량 정보를 획득하고;Obtain first power amount information provided to the battery from a charger;
    상기 충전기로부터 상기 배터리 이외의 부하에 제공되는 제 2 전력량 정보를 획득하며;Obtain second power amount information provided to loads other than the battery from the charger;
    상기 제 2 전력량 정보가 소정 기준 이상인 경우, 상기 충전기 또는 상기 전기 구동 이동 장치의 사용자 장치에 경고 정보를 표시하는 것을 포함하는, 전기 구동 이동 장치 충전 제어 방법.When the second power amount information is greater than a predetermined standard, displaying warning information on the charger or a user device of the electric driven mobile device.
  14. 제 13 항에 있어서,According to claim 13,
    상기 제 2 전력량 정보는,The second power amount information is,
    상기 배터리의 컨디셔닝을 위해 소모되는 전력,Power consumed for conditioning of the battery,
    상기 충전기와 상기 전기 구동 이동 장치 사이의 손실 전력,Power loss between the charger and the electrically driven mobile device,
    V2L (Vehicle to Load) 장비에 사용되는 보조 전력,Auxiliary power used in V2L (Vehicle to Load) equipment;
    중 하나 이상을 포함하는 전력의 전력량 정보에 대응하는, 전기 구동 이동 장치 충전 제어 방법.A method of controlling charging of an electric driven mobile device, corresponding to information on the amount of power including one or more of the following:
  15. 제 13 항에 있어서,According to claim 13,
    상기 제 2 전력량 정보가 상기 소정 기준 이상인지 여부를 판단하는 것은,Determining whether the second power amount information is greater than or equal to the predetermined standard includes:
    상기 제 2 전력량이 상기 배터리 이외의 부하에 제공되는 전력량의 평균을 초과하는지 여부를 판단하는 것을 포함하는, 전기 구동 이동 장치 충전 제어 방법.A method for controlling charging of an electrically driven mobile device, comprising determining whether the second amount of power exceeds an average amount of power provided to loads other than the battery.
  16. 제 13 항에 있어서,According to claim 13,
    상기 제 2 전력량 정보가 상기 소정 기준 이상인지 여부를 판단하는 것은,Determining whether the second power amount information is greater than or equal to the predetermined standard includes:
    상기 충전기로부터 상기 전기 구동 이동 장치에 제공되는 제 3 전력량 정보와 상기 제 1 전력량 정보의 차이가 제 2 소정 기준 이상인지 여부를 판단하는 것을 포함하는, 전기 구동 이동 장치 충전 제어 방법.A charging control method for an electric drive mobile device, comprising determining whether a difference between third power amount information provided to the electric drive mobile device from the charger and the first power amount information is greater than or equal to a second predetermined standard.
  17. 제 13 항에 있어서,According to claim 13,
    상기 제 2 전력량 정보는,The second power amount information is,
    상기 배터리의 컨디셔닝을 위해 소모되는 전력,Power consumed for conditioning of the battery,
    상기 충전기와 상기 전기 구동 이동 장치 사이의 손실 전력,Power loss between the charger and the electrically driven mobile device,
    V2L (Vehicle to Load) 장비에 사용되는 보조 전력,Auxiliary power used in V2L (Vehicle to Load) equipment;
    중 하나 이상을 측정하는 전력량계에 의해 획득되는, 전기 구동 이동 장치 충전 제어 방법.A method of controlling charging of an electric driven mobile device, obtained by means of a power meter that measures one or more of the following:
PCT/KR2023/011469 2022-08-04 2023-08-04 Battery charging management system and charging control method using same WO2024029983A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20220097420 2022-08-04
KR10-2022-0097420 2022-08-04
KR10-2022-0107295 2022-08-26
KR20220107295 2022-08-26
KR20220147628 2022-11-08
KR10-2022-0147628 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024029983A1 true WO2024029983A1 (en) 2024-02-08

Family

ID=89849658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011469 WO2024029983A1 (en) 2022-08-04 2023-08-04 Battery charging management system and charging control method using same

Country Status (2)

Country Link
KR (1) KR20240019747A (en)
WO (1) WO2024029983A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120046490A (en) * 2010-11-02 2012-05-10 (주)보강하이텍 Optimal charge system of electric vehicle and charging method
KR102258306B1 (en) * 2020-07-13 2021-06-02 주식회사 에스피엠 Electric vehicle charging system using energy storage system
US20210221247A1 (en) * 2018-06-22 2021-07-22 Moixa Energy Holdings Limited Systems for machine learning, optimising and managing local multi-asset flexibility of distributed energy storage resources
US20220077707A1 (en) * 2019-01-31 2022-03-10 General Electric Company Battery charge and discharge power control in a power grid
KR20220062826A (en) * 2020-11-09 2022-05-17 주식회사 엘지에너지솔루션 Energy storage system for electric vehicle charging and Electric vehicle charging system including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120046490A (en) * 2010-11-02 2012-05-10 (주)보강하이텍 Optimal charge system of electric vehicle and charging method
US20210221247A1 (en) * 2018-06-22 2021-07-22 Moixa Energy Holdings Limited Systems for machine learning, optimising and managing local multi-asset flexibility of distributed energy storage resources
US20220077707A1 (en) * 2019-01-31 2022-03-10 General Electric Company Battery charge and discharge power control in a power grid
KR102258306B1 (en) * 2020-07-13 2021-06-02 주식회사 에스피엠 Electric vehicle charging system using energy storage system
KR20220062826A (en) * 2020-11-09 2022-05-17 주식회사 엘지에너지솔루션 Energy storage system for electric vehicle charging and Electric vehicle charging system including the same

Also Published As

Publication number Publication date
KR20240019747A (en) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2019225834A1 (en) Power supply control system and method using energy storage device and photovoltaic power generation
WO2012020902A1 (en) Secondary battery management apparatus
WO2012033254A1 (en) Energy storage system and controlling method of the same
WO2012091402A2 (en) Method and device for managing battery system
WO2015126035A1 (en) Apparatus, system and method for preventing damage to battery rack by means of voltage measurement
WO2021125615A1 (en) Power supply method of charger for electric vehicle
WO2018117530A1 (en) Pcs for ess and pcs operating method
WO2021054716A1 (en) Abnormal state pre-sensing system using battery voltage data and temperature data
WO2019031686A1 (en) Energy storage system
WO2013002438A1 (en) Switchgear and power handling method using same
WO2018105990A1 (en) Microgrid system, and method for managing malfunction
WO2019059489A1 (en) Microgrid system
US11289921B1 (en) Energy storage system employing second-life electric vehicle batteries
WO2023243943A1 (en) Method/device for operating pcs in optimal efficiency range
WO2019093625A1 (en) Charging control apparatus and method
WO2023000585A1 (en) Low-voltage transformer area load non-power-cut switching system and working method thereof
WO2024029983A1 (en) Battery charging management system and charging control method using same
WO2019107801A1 (en) Energy storage system
WO2022196846A1 (en) Energy storage system hierarchical management system
WO2024106875A1 (en) Battery life management system and battery charging method using same
US11491886B2 (en) DC voltage charging post for charging an electric vehicle
CN221150999U (en) Measurement and control module for intelligent charge and discharge and charge and discharge system adopting module
WO2024043721A1 (en) Battery system supporting plurality of operation modes according to soc
US6420850B1 (en) Telecommunication power distribution systems and apparatuses and methods of supplying power to a telecommunication device
WO2023243942A1 (en) Apparatus and method for charging electric vehicles by using vib ess

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850483

Country of ref document: EP

Kind code of ref document: A1