WO2024029755A1 - Animal model of charcot-marie-tooth disease - Google Patents

Animal model of charcot-marie-tooth disease Download PDF

Info

Publication number
WO2024029755A1
WO2024029755A1 PCT/KR2023/009373 KR2023009373W WO2024029755A1 WO 2024029755 A1 WO2024029755 A1 WO 2024029755A1 KR 2023009373 W KR2023009373 W KR 2023009373W WO 2024029755 A1 WO2024029755 A1 WO 2024029755A1
Authority
WO
WIPO (PCT)
Prior art keywords
hspb8
marie
charcot
tooth disease
protein
Prior art date
Application number
PCT/KR2023/009373
Other languages
French (fr)
Korean (ko)
Inventor
고형종
강경화
한지은
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Publication of WO2024029755A1 publication Critical patent/WO2024029755A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • A01K67/0333Genetically modified invertebrates, e.g. transgenic, polyploid
    • A01K67/0337Genetically modified Arthropods
    • A01K67/0339Genetically modified insects, e.g. Drosophila melanogaster, medfly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/054Animals comprising random inserted nucleic acids (transgenic) inducing loss of function
    • A01K2217/056Animals comprising random inserted nucleic acids (transgenic) inducing loss of function due to mutation of coding region of the transgene (dominant negative)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/70Invertebrates
    • A01K2227/706Insects, e.g. Drosophila melanogaster, medfly
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases
    • A01K2267/0318Animal model for neurodegenerative disease, e.g. non- Alzheimer's
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to an animal model of Charcot-Marie-Tooth disease caused by K141N or K141T mutation of HSPB8.
  • Hereditary peripheral neuropathy is largely divided into three types: hereditary motor and sensory neuropathy (HMSN), hereditary motor neuropathy (HMN), and hereditary sensory neuropathy (HSN).
  • HMSN hereditary motor and sensory neuropathy
  • HSN hereditary sensory neuropathy
  • CMT Charcot-MarieTooth disease
  • Charcot-Marie-Tooth disease was first known in 1886 by the Frenchmen Charcot and Marie, and the Englishman Tooth, and is commonly called CMT disease, named after the first letters of their names.
  • Charcot-Marie-Tooth (CMT) disease, or hereditary motor and sensory neuropathy (HMSN) is also known as distal hereditary motor neuropathy (dHMN), hereditary sensory neuropathy (HMSN).
  • HSN Hereditary Neuropathy with a liability to pressure palsy
  • HNPP Hereditary Neuropathy with a liability to pressure palsy
  • Charcot-Marie-Tooth disease is a general term for all genetic diseases in which motor and sensory nerves are abnormal on nerve conduction tests.
  • the incidence of CMT is one in 2,500 people, which is the highest among rare inherited diseases.
  • CMT patients the muscles in the feet and hands gradually atrophy, resulting in weakened strength, deformed foot and hand shapes, facial paralysis, and hearing impairment. Onset usually occurs around the age of 10, but rarely occurs after the age of 30.
  • patients' symptoms range from mild, almost normal, to very severe, requiring assistance with walking or relying on a wheelchair.
  • CMT myelin defect type
  • CMT2 axonal type
  • CMTX CMTX type
  • CMT genetic diagnosis of CMT relies on direct sequencing of the primary causative gene, but despite being a difficult process, it has low isolation efficiency.
  • WES Whole Exome Sequencing
  • NGS Next-generation Sequencing
  • CMT1A genetic research on various diseases, especially heterogeneous diseases such as CMT, is expanding and accelerating.
  • onapriston, ascorbic acid, and NT-3 neurotrophin-3 have been reported as reasonable and potential drug treatments for CMT1A, the most common type of hereditary motor sensory neuropathy. .
  • the object of the present invention is to provide a composition for diagnosing Charcot-Marie-Tooth disease.
  • an object of the present invention is to provide a diagnostic kit for Charcot-Marie-Tooth disease.
  • an object of the present invention is to provide a pharmaceutical composition for preventing or treating Charcot-Marie-Tooth disease.
  • an object of the present invention is to provide an animal model for Charcot-Marie-Tooth disease.
  • an object of the present invention is to provide a method for providing information necessary to diagnose the possibility of developing Charcot-Marie-Tooth disease.
  • an object of the present invention is to provide a screening method for a candidate drug for the treatment of Charcot-Marie-Tooth disease.
  • an object of the present invention is to provide a method for diagnosing Charcot-Marie-Tooth disease.
  • an object of the present invention is to provide a method of treating Charcot-Marie-Tooth.
  • an object of the present invention is to provide a diagnostic use of Charcot-Marie-Tooth disease of an agent capable of detecting the K141N or K141T mutation of the HSPB8 protein.
  • the object of the present invention is to provide a use for the prevention or treatment of Charcot-Marie-Tooth disease of a vector containing PINK1 or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same.
  • the present invention provides a composition for diagnosing Charcot-Marie-Tooth disease, which includes an agent capable of detecting the K141N or K141T mutation of the HSPB8 protein.
  • the present invention provides a kit for diagnosing Charcot-Marie-Tooth disease comprising the composition.
  • the present invention provides a pharmaceutical composition for preventing or treating Charcot-Marie-Tooth disease, comprising PINK1 or Parkin protein, a nucleic acid molecule encoding it, or an activator thereof.
  • the present invention provides a Charcot-Marie-Tooth disease animal model expressing HSPB8 protein containing a K141N or K141T mutation.
  • the present invention provides a method for providing information necessary for diagnosing the possibility of developing Charcot-Marie-Tooth disease, which includes detecting the K141N or K141T mutation of the HSPB8 protein in a sample isolated from a subject.
  • the present invention provides a screening method for a candidate drug for the treatment of Charcot-Marie-Tooth disease.
  • the present invention provides a method for diagnosing Charcot-Marie-Tooth disease, comprising detecting a K141N or K141T mutation in the HSPB8 protein.
  • the present invention provides a method for treating Charcot-Marie-Tooth, comprising administering a vector containing a PINK1 or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same to an individual suffering from Charcot-Marie-Tooth disease. provides.
  • the present invention provides diagnostic use of Charcot-Marie-Tooth disease of an agent capable of detecting K141N or K141T mutations in the HSPB8 protein.
  • the present invention provides the use of a vector containing a PINK1 or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same for the prevention or treatment of Charcot-Marie-Tooth disease.
  • Figure 1 shows the results of HSPB8 expression and lifespan analysis of transgenic Drosophila:
  • Figure 1A Results of immunoblot analysis of control Drosophila elav (elav-GAL4), wild-type HSPB8-expressing Drosophila ( elav HSPB8 WT ), HSPB8 K141T -expressing Drosophila ( elav HSPB8 K141T ) and HSPB8 K141E -expressing Drosophila ( elav HSPB8 K141E );
  • Figure 1B Photomicrograph of a 5-day-old fruit fly
  • Figure 1D Lifespan curve of female Drosophila.
  • Figure 2 is a diagram confirming the occurrence of sensory defects due to HSPB8 mutation:
  • FIG. 2A Heat nociception assay results of L3 larvae ( ppk ) transgenic with the ppk-GAL4 driver;
  • Figure 2b Result of response delay analysis for thermal nociception in ppk- expressing larvae, HSPB8 WT -expressing larvae ( ppk HSPB8 WT ), HSPB8 K141T -expressing larvae ( ppk HSPB8 K141T ) and HSPB8 K141E- expressing larvae ( ppk HSPB8 K141E ) at 40°C.
  • Figure 3 is a diagram confirming changes in exercise capacity due to HSPB8 mutation:
  • elav HSPB8 WT Drosophila expressing wild type HSPB8;
  • elav HSPB8 K141E Drosophila expressing HSPB8 K141E ;
  • Figure 3a and b Average walking speed of 5-day-old fruit flies (A) and 15-day-old fruit flies (B); and
  • Figure 3c and d Movement trajectories of 5-day-old fruit flies (C) and 15-day-old fruit flies (D).
  • Figure 4 shows the occurrence of mitochondrial dysfunction caused by mutations and the expression of PINK1 and parkin . This is a diagram confirming the recovery of mitochondrial dysfunction by introducing:
  • elav HSPB8 WT Drosophila expressing wild type HSPB8
  • elav HSPB8 WT Drosophila expressing wild type HSPB8;
  • elav HSPB8 K141E Drosophila expressing HSPB8 K141E ;
  • elav HSPB8 K141T PINK1 Drosophila expressing HSPB8 K141T and PINK1 ;
  • elav HSPB8 K141E PINK1 Drosophila expressing HSPB8 K141E and PINK1 ;
  • FIG. 4A Mitochondrial membrane potential ( ⁇ ) measured in Drosophila larva VNC
  • Figure 4b mt-Keima fluorescence image of Drosophila larva VNC
  • FIG. 4C Quantitative analysis of mitophagy in Drosophila larvae VNC
  • Figure 4d Climbing ability analysis of 15-day-old fruit flies
  • Figure 4e Average walking speed of 15-day-old fruit flies.
  • Figure 4f Movement trajectory of female fruit fly.
  • Figure 5 is a diagram confirming motor defects caused by motor neuron-specific HSPB8 mutant expression:
  • D42 Drosophila expressing motor neuron-specific D42 -GAL4;
  • D42 HSPB8 WT Drosophila expressing motor neuron-specific HSPB8 WT ;
  • D42 HSPB8 K141T Drosophila expressing motor neuron-specific HSPB8 K141T ;
  • D42 HSPB8 K141E Drosophila expressing motor neuron-specific HSPB8 K141E ;
  • Figure 5A Average walking speed of 5-day-old fruit flies
  • Figure 5b Average walking speed of 15-day-old fruit flies
  • Figure 5d Movement trajectory of 15-day-old fruit flies.
  • Figure 6 shows 15-day-old male transgenic Drosophila ( elav HSPB8 WT , elav HSPB8 K141T ) following PINK1 activation by KR administration (1 and 5 mM). and elav HSPB8 K141E ), which confirmed the recovery of motor skills:
  • Figure 6A Average walking speed of fruit flies
  • step of or “step of” do not mean “step for.”
  • the term "combination thereof" included in the Markushi format expression means a mixture or combination of one or more components selected from the group consisting of the components described in the Markushi format expression, It means including one or more selected from the group consisting of.
  • the present invention provides a composition for diagnosing Charcot-Marie-Tooth disease (CMT) disease, comprising an agent capable of detecting the K141N or K141T mutation of the small heat shock protein B8 (HSPB8) protein. It's about.
  • CMT Charcot-Marie-Tooth disease
  • HSPB8 small heat shock protein B8
  • detecting the K141N or K141T mutation of the HSPB8 protein may be detecting a nucleic acid molecule encoding the HSPB8 protein comprising the K141N or K141T mutation or the HSPB8 protein comprising the K141N or K141T mutation.
  • the agent capable of detecting a mutation is an antibody, antibody fragment, aptamer, Affilin, Affibody, Affimer, Affitin, Alphabody, Anticlin, DARpin, Fynomoer, Kunitz domain peptide, avidity multimer, peptidomimetic It may include peptidomimetics, receptors, ligands, or cofactors, and detection of protein mutations can be performed using Western blot, ELISA (enzyme linked immunosorbent assay), RIA (Radioimmunoassay), radioimmunodiffusion, or immunosorbent assay. It may be performed by one or more methods selected from the group consisting of electrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, FACS, mass spectrometry, or protein microarray.
  • the antibody is a polyclonal antibody, monoclonal antibody, minibody, domain antibody, bispecific antibody, antibody mimetic, chimeric antibody, antibody conjugate, human antibody, or humanized antibody.
  • Fragments with immunological activity include Fab, Fd, Fab', dAb, F(ab'), F(ab') 2 , scFv (single chain fragment variable), Fv, single chain antibody, and Fv of the antibody. It may be a dimer, a complementarity determining region fragment, or a diabody.
  • an agent capable of detecting a mutation may include a primer pair, or probe, or a primer pair and probe that specifically recognizes a nucleic acid molecule encoding the HSPB8 protein, Detection of nucleic acid molecules can be performed using polymerase chain reaction, real-time RT-PCR, reverse transcription polymerase chain reaction, competitive RT-PCR, and nuclease protection assay (RNase, S1 nuclease assay). ), in situ hybridization, nucleic acid microarray, Northern blot, DNA chip, multiplex PCR, or ddPCR.
  • the term “detection” or “measurement” means confirming the presence or absence of a detected or measured object.
  • the terms “gene,” “nucleic acid,” “polynucleotide,” or “oligonucleotide” refer to DNA molecules, RNA molecules, or analogs thereof.
  • the terms “nucleic acid,” “polynucleotide,” and “oligonucleotide” include, but are not limited to, DNA molecules, such as cDNA, genomic DNA, or synthetic DNA and RNA molecules, such as guide RNA, messenger RNA, or Contains synthetic RNA.
  • the terms “nucleic acid” and “polynucleotide” include single-stranded and double-stranded forms.
  • the term "primer” is a nucleic acid sequence with a short free 3-terminal hydroxyl group that can form a base pair with a complementary template and serves as a starting point for copying the template strand. It refers to a short nucleic acid sequence that functions as a point. Primers can initiate DNA synthesis in the presence of four different nucleoside triphosphates and reagents for polymerization (i.e., DNA polymerase or reverse transcriptase) in an appropriate buffer solution and temperature.
  • probe refers to a nucleic acid fragment such as RNA or DNA that is as short as a few bases or as long as several hundred bases, capable of forming a specific binding to mRNA, and is labeled to determine the presence or absence of a specific mRNA. You can check. Probes may be manufactured in the form of oligonucleotide probes, single stranded DNA probes, double stranded DNA probes, RNA probes, etc. In the present invention, hybridization is performed using a probe complementary to the AR or AR-V7 gene, and the level of gene expression can be diagnosed based on hybridization. Selection of appropriate probes and hybridization conditions can be modified based on those known in the art, so the present invention is not particularly limited thereto.
  • Primers or probes of the present invention can be chemically synthesized using the phosphoramidite solid support method or other well-known methods. These nucleic acid sequences can also be modified using many means known in the art. Non-limiting examples of such modifications include methylation, capping, substitution of a native nucleotide with one or more homologues, and modifications between nucleotides, such as uncharged linkages (e.g., methyl phosphonate, phosphotriester, phosphoronucleotide). amidate, carbamate, etc.) or charged linkages (e.g. phosphorothioate, phosphorodithioate, etc.).
  • uncharged linkages e.g., methyl phosphonate, phosphotriester, phosphoronucleotide
  • charged linkages e.g. phosphorothioate, phosphorodithioate, etc.
  • an antibody is a term known in the art and refers to a specific protein molecule directed to an antigenic site.
  • an antibody refers to an antibody that specifically binds to the amino acid substitution mutation of HSPB8, which is a marker of the present invention, and the antibody can be produced using a well-known method. This also includes partial peptides that can be made from the above proteins.
  • the form of the antibody of the present invention is not particularly limited, and as long as it is a polyclonal antibody, monoclonal antibody, or has antigen binding properties, a portion thereof is also included in the antibody of the present invention, and all immunoglobulin antibodies are included.
  • the antibodies of the present invention also include special antibodies such as humanized antibodies.
  • the present invention relates to a diagnostic kit for Charcot-Marie-Tooth disease comprising the composition of the present invention.
  • the kit may be an RT-PCR kit, a microarray chip kit, or a protein chip kit.
  • the present invention provides a pharmaceutical for the prevention or treatment of Charcot-Marie-Tooth disease, comprising a vector containing a PINK1 (PTEN-induced putative kinase 1) or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same. It relates to composition.
  • PINK1 PTEN-induced putative kinase 1
  • Parkin protein an activator thereof
  • nucleic acid molecule encoding the same. It relates to composition.
  • the Charcot-Marie-Tooth disease may be Charcot-Marie-Tooth disease caused by a K141N or K141T mutation in the HSPB8 protein.
  • the activator of PINK1 may be kinetin riboside (KR) (N6-furfuryl adenine riboside).
  • KR kinetin riboside
  • the composition can improve symptoms of motor defects, mitochondrial dysfunction, or reduced mitophagy levels caused by the K141N or K141T mutation of the HSPB8 protein.
  • vector refers to any nucleic acid containing a competent nucleotide sequence that is inserted into a host cell and recombines with and integrates into the host cell genome, or replicates spontaneously as an episome.
  • vectors include linear nucleic acids, plasmids, phagemids, cosmids, RNA vectors, viral vectors, etc.
  • the pharmaceutical composition of the present invention may further include a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable refers to a composition that is physiologically acceptable and does not usually cause allergic reactions such as gastrointestinal disorders, dizziness, or similar reactions when administered to humans.
  • Pharmaceutically acceptable carriers include, for example, carriers for oral administration, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, etc., and carriers for parenteral administration, such as water, suitable oils, saline solutions, aqueous glucose and glycols, etc. and may additionally contain stabilizers and preservatives. Suitable stabilizers include antioxidants such as sodium bisulfite, sodium sulfite or ascorbic acid.
  • Suitable preservatives include benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol.
  • benzalkonium chloride methyl- or propyl-paraben and chlorobutanol.
  • other pharmaceutically acceptable carriers those described in the following literature may be referred to (Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995).
  • the pharmaceutical composition according to the present invention can be formulated in a suitable form according to methods known in the art along with a pharmaceutically acceptable carrier as described above. That is, the pharmaceutical composition of the present invention can be prepared in various forms for parenteral or oral administration according to known methods, and a representative example of the formulation for parenteral administration is an isotonic aqueous solution or suspension as an injectable formulation. Injectable formulations can be prepared according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. For example, each component can be dissolved in saline solution or buffer solution and formulated for injection. Additionally, dosage forms for oral administration include, but are not limited to, powders, granules, tablets, pills, and capsules.
  • the pharmaceutical composition formulated in the manner described above can be administered in an effective amount through various routes including orally, transdermally, subcutaneously, intravenously, or intramuscularly.
  • administration refers to introducing a predetermined substance into a patient by any appropriate method. This means that the substance can be administered through any general route as long as it can reach the target tissue.
  • effective amount refers to the amount that exhibits a preventive or therapeutic effect when administered to a patient.
  • the dosage of the pharmaceutical composition according to the present invention may vary depending on various factors such as the type and severity of the patient's disease, age, gender, weight, sensitivity to the drug, type of current treatment, administration method, target cells, etc., and may vary depending on the field of the art. can be easily determined by experts.
  • the pharmaceutical composition of the present invention can be administered in combination with conventional therapeutic agents, can be administered sequentially or simultaneously with conventional therapeutic agents, and can be administered singly or multiple times.
  • the amount that can obtain the maximum effect with the minimum amount without side effects can be administered, more preferably 1 to 10,000 ⁇ g/kg of body weight/day, and even more preferably 10 to 1,000.
  • the effective dose is mg/kg body weight/day and can be administered repeatedly several times a day.
  • the invention relates to an animal model of Charcot-Marie-Tooth disease expressing HSPB8 protein containing a K141N or K141T mutation.
  • the animal model is capable of expressing K141N or K141T mutant HSPB8 protein in neurons, motor neurons, or multi-dendritic sensory neurons.
  • the animal model may be Drosophila.
  • K141N or K141T mutant HSPB8 in the neuron-specific promoter elav , motor neuron-specific promoter D42 , or multi-dendritic sensory neurons-specific promoter ppk in the animal model, K141N or K141T mutant HSPB8 in the neuron-specific promoter elav , motor neuron-specific promoter D42 , or multi-dendritic sensory neurons-specific promoter ppk.
  • Nucleic acid molecules encoding the protein can be operably linked to express the HSPB8 protein containing the K141N or K141T mutation specifically in neurons, motor cells, or multi-dendritic sensory neurons.
  • operably linked means that one nucleic acid fragment is linked to another nucleic acid fragment so that its function or expression is affected by the other nucleic acid fragment.
  • Promoters used in the present invention can be of various natures and origins and have various properties. This is because the choice of promoter used depends particularly on the gene in question. Accordingly, the promoter can be driven, for example, by a promoter that is strong or weak, ubiquitous or tissue/cell specific, or specific to a physiological or pathophysiological state (the activity may depend on the state of cell differentiation or on a specific stage of the cell cycle). being). Promoters may be of eukaryotic, prokaryotic, viral, animal, plant, artificial, human, etc. origin.
  • the present invention relates to a vector for constructing a Charcot-Marie-Tooth disease animal model comprising a nucleic acid encoding a K141N or K141T mutant HSPB8 protein and a neuron-specific promoter operably linked thereto.
  • the neuron-specific promoter may be the neuron-specific promoter elav , the motor neuron-specific promoter D42 , or the multi-dendritic sensory neuron-specific promoter ppk .
  • the present invention relates to a method of providing information necessary for diagnosing the possibility of developing Charcot-Marie-Tooth disease, including detecting the K141N or K141T mutation of the HSPB8 protein in a sample isolated from a subject.
  • the method may further include determining that the subject is likely to develop Charcot-Marie-Tooth disease when the K141N or K141T mutation of the HSPB8 protein is detected in a sample isolated from the subject. You can.
  • the present invention provides treatment of a test compound or composition to a cell line or animal model expressing HSPB8 protein containing a K141N or K141T mutation; Determining the degree of mitochondrial dysfunction in cell lines or animal models treated with the test compound or composition; and a method for screening a candidate for the treatment of Charcot-Marie-Tooth disease, comprising selecting a test compound or composition in which mitochondrial dysfunction is improved compared to a control cell line untreated with the test compound or composition.
  • the present invention provides treatment of a test compound or composition to a cell line or animal model expressing HSPB8 protein containing a K141N or K141T mutation; Confirming the expression of PINK1 or Parkin, or its activity, in cell lines or animal models treated with the test compound or composition; And a method for screening a candidate for the treatment of Charcot-Marie-Tooth disease, comprising selecting a test compound or composition with increased expression or activity of PINK1 or Parkin compared to a control cell line untreated with the test compound or composition.
  • the present invention relates to a method for diagnosing Charcot-Marie-Tooth disease, comprising detecting a K141N or K141T mutation in the HSPB8 protein.
  • the present invention provides treatment for Charcot-Marie-Tooth disease, comprising administering a vector containing a PINK1 or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same to an individual suffering from Charcot-Marie-Tooth disease. It's about treatment methods.
  • the invention relates to the diagnostic use of Charcot-Marie-Tooth disease of an agent capable of detecting the K141N or K141T mutation of the HSPB8 protein.
  • the present invention relates to the use of a vector containing a PINK1 or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same for the prevention or treatment of Charcot-Marie-Tooth disease.
  • HSPB8 small heat shock protein B8
  • HSP22 HSP22
  • elav -GAL4 a nerve (neuron)-specific GAL4 driver
  • motor neuron-specific GAL4 driver Wild-type human HSPB8 ( HSPB8 WT ), K141T mutant HSPB8 ( HSPB8 K141T ), and K141E mutant HSPB8 in Drosophila neurons using D42 -GAL4 and ppk -GAL4, a multi-dendritic sensory neurons-specific GAL4 driver, respectively.
  • Drosophila models that specifically expressed the UAS transgene HSPB8 K141E ) were created.
  • K141T and K141E mutations were induced in the cDNA of human HSPB8, respectively, using the QuikChangeTM site-directed mutagenesis kit (Agilent Technologies) using the following primer pairs: HSPB8 K141T forward primer: 5'-ctg cag gaa gct gga ttt tcg ttg tga agt tct tag aaa ca-3' and K141T reverse primer: 5'-tgt ttc taa gaa ctt cac aac gaa aat cca gct tcc tgc ag), and HSPB8 K141E forward primer: 5'-gaa gct gga ttt tct ctg tga agt tct tag aaa caa tgc cac c-3' and K141E reverse primer: 5'-ggt ggc att g g
  • the wild-type HSPB8 cDNAs and the mutant HSPB8 cDNAs were each inserted into the pACU2 vector and microinjected into y w;PBac y[+]-attP-3B VK00001 embryos.
  • elav -GAL4, ppk -GAL4, and D42 -GAL4 lines were purchased from Bloomington Stock Center.
  • Drosophila lines expressing UAS-PINK1 and UAS-Parkin were also created using the method described in Park et al., 2006.
  • genotypes of the constructed Drosophila lines are as follows: elav (elav-GAL4/+); elav HSPB8 WT (elav-GAL4/+; UAS-HSPB8 WT /+); elav HSPB K141T (elav-GAL4/+; UAS-HSPB8 K141T /+); elav HSPB K141E (elav-GAL4/+;; UAS-HSPB8 K141E /+); ppk (ppk-GAL4/+); ppk HSPB8 WT (ppk-GAL4/UAS-HSPB8 WT ); ppk HSPB K141T (ppk-GAL4/UAS-HSPB8 K141T ); ppk HSPB K141E (ppk-GAL4/UAS-HSPB8 K141E ); D42 (D42-GAL4/+); D42 HSPB8 WT (UAS-HSPB
  • HSPB8 expression in the transgenic fruit flies prepared above was confirmed by Western blot analysis, and their lifespan analysis was performed. Specifically, to confirm the expression of HSPB8, 20 10-day-old male fruit fly heads were disrupted with disruption buffer, then centrifuged, and SDS sample buffer was added and heated. Afterwards, the samples were electrophoresed on SDS-PAGE gel and transferred to a nitrocellulose membrane. The membrane was incubated with blocking solution for 30 minutes and then incubated with anti-HSPB8 antibody (1:1,000, Cell Signaling Technology, # 95357 ) or anti-beta-actin antibody (1:1,000, Santa Cruz Biotechnology, SC-1616) as the primary antibody.
  • a thermal nociception assay was performed using Drosophila larvae. Specifically, each L3 larvae (hatched) of HSPB8 WT fruit flies, HSPB8 K141N mutant fruit flies, and HSPB8 K141T mutant fruit flies that expressed the HSPB8 transgene in multi-dendritic sensory neurons using ppk-GAL4 After [AEL] 120 h) (minimum of 50 larvae) were rinsed with distilled water, placed in Petri dishes, allowed to acclimatize for 10 s, and observed under a microscope.
  • the behavior of the transgenic Drosophila lines HSPB8 WT , HSPB8 K141T , and HSPB8 K141E ( elav, elav HSPB8 WT , elav HSPB8 K141T , and elav HSPB8 K141E ) produced in Example 1, respectively. It was recorded with a digital video camera, and walking trajectory and speed were calculated with Ctrax and Matlab.
  • 5-day-old adult male transgenic fruit flies expressing HSPB8 WT (elav HSPB8 WT ), HSPB8 K141T ( elav HSPB8 K141T ), or HSPB8 K141E ( elav HSPB8 K141E ) were each spaced at 675 mm ⁇ 440 mm ⁇ 410 mm equipped with a camera. They were placed in an insulated box and acclimatized for 30 minutes at 25°C, and their free movement in a transparent, round space with a height of 2 mm and a diameter of 60 mm was recorded at 30.06 fps (frames per second). The recorded video was converted to a MATLAB file using Ctrax and the behavioral microarray toolbox was used to obtain average velocity and trajectory graphs.
  • a climbing assay was also used to determine climbing ability, which has proven useful in identifying motor deficits in fruit fly models of various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
  • the D42-GAL4 driver was used to express the HSPB8 WT , HSPB8 K141T or HSPB8 K141E transgene in the motor neurons of Drosophila, and then perform transformation. Motor ability as a phenotype of Drosophila was confirmed by the method described in Examples 3-1 and 3-2 above.
  • TMRM ventral nerve cord
  • TMRM tetramethylrhodamine methyl ester
  • the level of mitophagy was defined as the number of pixels with a high red/green ratio divided by the total number of pixels.
  • Mean mitophagy levels ( ⁇ SD) were calculated for 10 independent samples.
  • transgenes of PINK1 or Parkin were introduced into HSPB8 mutant Drosophila ( elav HSPB8 K141T PINK1, elav HSPB8 K141E PINK1, elav HSPB8 K141T Parkin and elav HSPB8 K141E Parkin ) Changes in mitochondrial membrane potential, mitophagy level, and exercise capacity were confirmed.
  • KR kinetin riboside
  • locomotor activity of the wild-type transgenic fruit flies appeared to be unchanged compared to the control group (vehicle administered group) due to KR administration (FIGS. 6a to 6c), confirming that there were no side effects caused by KR.
  • locomotor activity was shown to be significantly restored depending on the administered concentration of KR ( Figures 6a to c).
  • PINK1 activation can restore the phenotype induced by HSPB8 mutation and that KR can suppress HSPB8-related pathogenesis.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Neurosurgery (AREA)
  • Animal Husbandry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Cell Biology (AREA)

Abstract

The present invention relates to an animal model of Charcot-Marie-Tooth disease caused by K141N or K141T mutations in HSPB8. In this animal model expressing the K141N or K141T mutant HSPB8 protein, symptoms of Charcot-Marie-Tooth disease, such as motor deficit, mitochondrial dysfunction, and reduced levels of mitophagy, were observed, confirming that Charcot-Marie-Tooth disease can be induced by K141N or K141T mutations in the HSPB8 protein. Therefore, the animal model expressing the K141N or K141T mutant HSPB8 protein can be used as an animal model of Charcot-Marie-Tooth disease. The symptoms of Charcot-Marie-Tooth disease were significantly reduced by the expression and activation of PINK1 or Parkin, so that the animal model can be used in therapeutic applications for Charcot-Marie-Tooth disease.

Description

샤르코-마리-투스 질환 동물 모델Charcot-Marie-Tooth disease animal model
본 발명은 HSPB8의 K141N 또는 K141T 돌연변이에 의한 샤르코-마리-투스 질환 동물 모델에 관한 것이다.The present invention relates to an animal model of Charcot-Marie-Tooth disease caused by K141N or K141T mutation of HSPB8.
유전성 말초 신경병은 크게 유전운동감각신경병(hereditary motor and sensory neuropathy; HMSN), 유전운동신경병(herediatary motor neuropathy; HMN) 및 유전감각신경병(herediatary sensory neuropathy; HSN)의 3가지로 구분된다. 이 중 유전운동감각신경병이 대부분을 차지하며, 이는 샤르코-마리-투스 질환(Charcot-MarieTooth disease; CMT)으로 더 잘 알려져 있다. 샤르코-마리-투스 질환은 1886년에 프랑스인 샤르코(Charcot)와 마리(Marie), 그리고 영국인 투스(Tooth)에 의해 처음으로 알려졌고, 이들의 이름 첫 글자를 따서 CMT 질환이라고 흔히 불리고 있다. 샤르코-마리-투스(Charcot-Marie-Tooth; CMT) 질환 또는 유전운동감각신경병(Hereditary motor and sensory neuropathy; HMSN)은 원위유전운동신경병(distal Hereditary Motor Neuropathy; dHMN), 유전감각신경병(Hereditary Sensory Neuropathy; HSN) 및 압박마비유전신경병(Hereditary Neuropathy with a liability to pressure palsy; HNPP)과 같이 임상적으로 이질적 질환(heterogeneous disease)이다. 샤르코-마리-투스 질환은 신경전도검사상 운동신경과 감각신경에 이상이 있는 모든 유전질환을 총칭하며, CMT의 발생빈도는 2500 명당 한 명으로 유전되는 희귀질환 가운데 높은 빈도를 보인다. CMT 환자들은 발과 손의 근육들이 점점 위축되어 힘이 약해지며, 발 모양과 손 모양이 변형되거나 안면 마비 및 청력장애 등이 발생한다. 발병은 주로 10세 전후에 일어나나 드물게는 30 대 이후에도 일어난다. 환자들의 증상은 유전자 돌연변이의 종류에 따라 거의 정상에 가까운 가벼운 상태에서부터 아주 심하여 보행에 도움이 필요하거나 또는 휠체어에 의존해야 하는 정도까지 다양하다. 과거에는 하지 원위부의 근육 위축으로 인하여 샴페인 병을 거꾸로 세운 듯한 다리 모양을 하는 질환으로 비교적 단순하게 인식되어 왔으나, 현재는 단일질환이라기보다는 하나의 질환군(syndrome)으로 인식되고 있다. 최근에는 CMT의 새로운 발병 기전들이 많이 밝혀져서 병태 생리학적 연구뿐만 아니라 복잡한 임상형과 유전형의 분류에 큰 도움을 주었다. 지난 연구기간 동안 유전자 클로닝 기법으로 40개 이상의 유전운동감각신경병에 대한 유전자좌(locus)가 발견되었으며, 20개 이상의 원인 유전자가 밝혀졌다. 그러나 아직도 많은 유전운동감각신경병 환자들에서 이미 알려진 유전자좌와 연관성이 없음을 보여 앞으로도 50개 이상의 발병원인 유전자들이 더 있을 것으로 보고되고 있다. CMT는 유전되는 양상에 따라 상염색체 우성 및 열성유전을 하는 수초결손형(CMT1), 축삭형(CMT2) 및 X-염색체 연관유전을 하는 CMTX형으로 나누어진다. 그리고 같은 CMT 1형인 경우에는 유전자 변이 등이 보고된 순서에 따라 1A, 1B, 1C 등의 차례로 명명되었다. 현재까지 CMT의 발병 원인으로 50 여개 이상의 원인 유전자가 보고되었으며, 원인 유전자의 단일 유전자 돌연변이(single gene mutation)에 의해 발병하여, 증상의 정도는 차이가 있으나 멘델의 법칙을 따라 유전된다. 따라서, 다양한 신경조직을 구성하는 요소들이 점차적으로 그 모습을 드러내고 있는 것으로 유전성 근육병의 종류가 많은 것처럼 유전성 신경병의 종류도 상당히 다양할 것으로 추정된다. 또한, 유전적 결함 및 발병이 직접적으로 연관되므로, CMT 원인 유전자 진단의 결과는 단순한 경향성 또는 발병의 가능성 제시가 아닌 확진의 의미를 가지므로, 유전자 진단 시스템을 활용하기에 매우 적절하다. Hereditary peripheral neuropathy is largely divided into three types: hereditary motor and sensory neuropathy (HMSN), hereditary motor neuropathy (HMN), and hereditary sensory neuropathy (HSN). Among these, hereditary motor and sensory neuropathy accounts for the majority, which is better known as Charcot-MarieTooth disease (CMT). Charcot-Marie-Tooth disease was first known in 1886 by the Frenchmen Charcot and Marie, and the Englishman Tooth, and is commonly called CMT disease, named after the first letters of their names. Charcot-Marie-Tooth (CMT) disease, or hereditary motor and sensory neuropathy (HMSN), is also known as distal hereditary motor neuropathy (dHMN), hereditary sensory neuropathy (HMSN). ; HSN) and Hereditary Neuropathy with a liability to pressure palsy (HNPP), it is a clinically heterogeneous disease. Charcot-Marie-Tooth disease is a general term for all genetic diseases in which motor and sensory nerves are abnormal on nerve conduction tests. The incidence of CMT is one in 2,500 people, which is the highest among rare inherited diseases. In CMT patients, the muscles in the feet and hands gradually atrophy, resulting in weakened strength, deformed foot and hand shapes, facial paralysis, and hearing impairment. Onset usually occurs around the age of 10, but rarely occurs after the age of 30. Depending on the type of genetic mutation, patients' symptoms range from mild, almost normal, to very severe, requiring assistance with walking or relying on a wheelchair. In the past, it was recognized as a relatively simple disease with legs shaped like upside-down champagne bottles due to muscle atrophy in the distal lower extremities, but it is now recognized as a syndrome rather than a single disease. Recently, many new pathogenic mechanisms of CMT have been discovered, which has greatly helped in classifying complex clinical types and genotypes as well as pathophysiological research. During the last research period, more than 40 genetic loci for hereditary motor and sensory neuron diseases were discovered using gene cloning techniques, and more than 20 causative genes were identified. However, many patients with hereditary motor and sensory neuropathy still show no correlation with known loci, so it is reported that there will be more than 50 more causative genes in the future. Depending on the pattern of inheritance, CMT is divided into the myelin defect type (CMT1), which is inherited autosomal dominantly and recessively, the axonal type (CMT2), and the CMTX type, which is inherited via X-chromosome linkage. In the case of CMT type 1, it was named 1A, 1B, 1C, etc. in the order in which genetic mutations were reported. To date, more than 50 causative genes have been reported as the cause of CMT. It is caused by a single gene mutation in the causative gene, and although the severity of symptoms varies, it is inherited according to Mendel's laws. Therefore, the elements that make up various nervous tissues are gradually revealing themselves, and just as there are many types of hereditary muscle diseases, it is assumed that there will be quite a variety of types of hereditary neuropathy. In addition, since genetic defects and onset are directly related, the results of genetic diagnosis of the cause of CMT have the meaning of confirmation rather than a simple tendency or possibility of onset, making it very appropriate to utilize a genetic diagnosis system.
CMT의 유전적 진단은 주요 원인 유전자의 직접 시퀀싱에 의존적이나, 이는 어려운 과정에도 불구하고 낮은 분리 효율을 갖는다. 차세대 시퀀싱(Next-generation Sequenceing; NGS) 기술에 기반한 엑손시퀀싱(Whole Exome Sequencing; WES)의 등장으로 다양한 질환, 특히 CMT와 같은 이질적 질환의 유전적 연구가 확대 및 가속화되고 있다. 또한, 현재 유전운동감각신경병에서 가장 흔한 유형인 CMT1A에 대한 합리적이면서 잠재적인 약물치료법으로 오나프리스톤(onapriston), 아스코르빈산(ascorbic acid) 및 NT-3(neurotrophin-3) 등이 보고된 바 있다. CMT 치료를 위한 약물들 가운데 프로게스테론 수용체의 길항제인 오나프리스톤(onapristone)을 투여한 형질전환 마우스에서 Pmp22 mRNA의 과발현을 감소시키고 부작용이 없이 유전운동감각신경병의 표현형을 호전시킨 보고가 있었고, 말초신경에서 수초형성에 필수적인 물질인 아스코르빈산(ascorbic acid)은 CMT1A 형질전환 마우스에서 수초 재형성 및 유전운동감각신경병의 표현형을 개선하였고, 뉴트로핀-3(neurotrophin-3; NT-3)은 CMT1A 환자군에서 수초화된 신경섬유를 증가시켜 감각 증상 개선효과를 나타냈다고 보고되었다. 따라서, CMT의 정확한 유전적 진단에 따라 발병의 억제 및 유전적 원인에 적합한 맞춤 치료가 가능하게 되었으나, 아직까지 효율적인 유전성 신경 질환의 진단 방법 개발은 미흡한 실정이다. 유전적으로 매우 이질적인 특성을 가진 운동감각신경병의 맞춤 치료를 위하여 먼저 정확한 유전적 진단법이 확립이 요구되고 있다.Genetic diagnosis of CMT relies on direct sequencing of the primary causative gene, but despite being a difficult process, it has low isolation efficiency. With the advent of Whole Exome Sequencing (WES) based on Next-generation Sequencing (NGS) technology, genetic research on various diseases, especially heterogeneous diseases such as CMT, is expanding and accelerating. In addition, onapriston, ascorbic acid, and NT-3 (neurotrophin-3) have been reported as reasonable and potential drug treatments for CMT1A, the most common type of hereditary motor sensory neuropathy. . Among the drugs for CMT treatment, there was a report that administration of onapristone, a progesterone receptor antagonist, reduced overexpression of Pmp22 mRNA in transgenic mice and improved the phenotype of hereditary motor-sensory neuropathy without side effects, and in peripheral nerves. Ascorbic acid, an essential substance for myelin formation, improved myelin remodeling and the phenotype of hereditary motor-sensory neuropathy in CMT1A transgenic mice, and neurotrophin-3 (NT-3) improved the phenotype in CMT1A patient groups. It was reported that it improved sensory symptoms by increasing myelinated nerve fibers. Therefore, accurate genetic diagnosis of CMT has made it possible to suppress its onset and provide customized treatment appropriate for the genetic cause, but the development of efficient diagnostic methods for hereditary neurological diseases is still insufficient. In order to provide customized treatment for motor-sensory neuropathy, which has genetically very heterogeneous characteristics, an accurate genetic diagnosis method is first required to be established.
한편, 신약과 새로운 치료기술의 개발에 있어서 동물모델을 이용한 실험은 인체를 대상으로한 연구에 선행되어야할 필수불가결한 단계이다. 그러나 인체질환의 종류가 수없이 많음에 비하여 이를 모방하는 동물모델의 종류는 극히 적으며, 이것은 신약과 새로운 치료기술의 개발에 있어서 커다란 제약요소로서 작용하고 있다. 질환 동물의 제작은 사용되는 방법에 따라 특징을 달리하는 다양한 종류가 만들어지며, 실험의 목적에 따라 각기 그 효용이 다르다. 현재까지 알려진 질환 모델동물 제작법을 크게 3가지로 구분해보면 전통적으로 자연발생적인 돌연변이종을 질환 모델로 개발하는 방법이 있었고, 후에 화학물질 투여나 인공세포주 이식 등 실험적 질환유발법이 개발되어 통용되어 왔으며, 분자유전학적 방법이 비약적으로 발전된 최근에는 유전자 도입에 의한 형질전환방법이 강력한 기술로써 각광을 받고 있다. 신약과 새로운 치료법 연구개발의 다양한 욕구를 충족시키기 위해서는 여러 가지 접근법에 의한 질환모델 제작법을 확보하고 이들 간의 협력을 통한 효과적인 모델동물 제작시스템을 수립하는 것이 매우 중요하다.Meanwhile, in the development of new drugs and new treatment technologies, experiments using animal models are an essential step that must precede research on humans. However, compared to the numerous types of human diseases, the types of animal models that mimic them are extremely small, and this acts as a major constraint in the development of new drugs and new treatment technologies. There are various types of diseased animals with different characteristics depending on the method used, and each has different utility depending on the purpose of the experiment. The methods for producing disease model animals known to date can be roughly divided into three types. Traditionally, there has been a method of developing naturally occurring mutant species as disease models, and later, experimental disease-inducing methods such as chemical administration or artificial cell line transplantation have been developed and used. Recently, with the rapid development of molecular genetic methods, the transformation method by gene introduction has been in the spotlight as a powerful technology. In order to meet the diverse needs of research and development of new drugs and new treatments, it is very important to secure disease model production methods using various approaches and establish an effective model animal production system through cooperation between them.
본 발명의 목적은 샤르코-마리-투스 질환의 진단용 조성물을 제공하는 것이다.The object of the present invention is to provide a composition for diagnosing Charcot-Marie-Tooth disease.
또한, 본 발명의 목적은 샤르코-마리-투스 질환의 진단용 키트를 제공하는 것이다.Additionally, an object of the present invention is to provide a diagnostic kit for Charcot-Marie-Tooth disease.
또한, 본 발명의 목적은 샤르코-마리-투스 질환의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.Additionally, an object of the present invention is to provide a pharmaceutical composition for preventing or treating Charcot-Marie-Tooth disease.
또한, 본 발명의 목적은 샤르코-마리-투스 질환 동물 모델을 제공하는 것이다.Additionally, an object of the present invention is to provide an animal model for Charcot-Marie-Tooth disease.
또한, 본 발명의 목적은 샤르코-마리-투스 질환의 발병 가능성을 진단하는데 필요한 정보를 제공하는 방법을 제공하는 것이다.Additionally, an object of the present invention is to provide a method for providing information necessary to diagnose the possibility of developing Charcot-Marie-Tooth disease.
또한, 본 발명의 목적은 샤르코-마리-투스 질환 치료제 후보물질의 스크리닝 방법을 제공하는 것이다.Additionally, an object of the present invention is to provide a screening method for a candidate drug for the treatment of Charcot-Marie-Tooth disease.
또한, 본 발명의 목적은 샤르코-마리-투스 질환의 진단 방법을 제공하는 것이다.Additionally, an object of the present invention is to provide a method for diagnosing Charcot-Marie-Tooth disease.
또한, 본 발명의 목적은 샤르코-마리-투스의 치료 방법을 제공하는 것이다.Additionally, an object of the present invention is to provide a method of treating Charcot-Marie-Tooth.
또한, 본 발명의 목적은 HSPB8 단백질의 K141N 또는 K141T 돌연변이를 검출할 수 있는 제제의 샤르코-마리-투스 질환의 진단 용도를 제공하는 것이다.Additionally, an object of the present invention is to provide a diagnostic use of Charcot-Marie-Tooth disease of an agent capable of detecting the K141N or K141T mutation of the HSPB8 protein.
아울러, 본 발명의 목적은 PINK1 또는 Parkin 단백질, 이의 활성화제, 또는 이를 코딩하는 핵산분자를 포함하는 벡터의 샤르코-마리-투스 질환의 예방 또는 치료 용도를 제공하는 것이다.In addition, the object of the present invention is to provide a use for the prevention or treatment of Charcot-Marie-Tooth disease of a vector containing PINK1 or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same.
상기 과제를 해결하기 위하여, 본 발명은 HSPB8 단백질의 K141N 또는 K141T 돌연변이를 검출할 수 있는 제제를 포함하는, 샤르코-마리-투스 질환의 진단용 조성물을 제공한다.In order to solve the above problems, the present invention provides a composition for diagnosing Charcot-Marie-Tooth disease, which includes an agent capable of detecting the K141N or K141T mutation of the HSPB8 protein.
또한, 본 발명은 상기 조성물을 포함하는 샤르코-마리-투스 질환의 진단용 키트를 제공한다.Additionally, the present invention provides a kit for diagnosing Charcot-Marie-Tooth disease comprising the composition.
또한, 본 발명은 PINK1 또는 Parkin 단백질, 이를 코딩하는 핵산분자, 또는 이의 활성화제를 포함하는 샤르코-마리-투스 질환의 예방 또는 치료용 약학적 조성물을 제공한다.Additionally, the present invention provides a pharmaceutical composition for preventing or treating Charcot-Marie-Tooth disease, comprising PINK1 or Parkin protein, a nucleic acid molecule encoding it, or an activator thereof.
또한, 본 발명은 K141N 또는 K141T 돌연변이를 포함하는 HSPB8 단백질을 발현하는 샤르코-마리-투스 질환 동물 모델을 제공한다.Additionally, the present invention provides a Charcot-Marie-Tooth disease animal model expressing HSPB8 protein containing a K141N or K141T mutation.
또한, 본 발명은 대상으로부터 분리된 시료에서 HSPB8 단백질의 K141N 또는 K141T 돌연변이를 검출하는 것을 포함하는, 샤르코-마리-투스 질환의 발병 가능성을 진단하는데 필요한 정보를 제공하는 방법을 제공한다.Additionally, the present invention provides a method for providing information necessary for diagnosing the possibility of developing Charcot-Marie-Tooth disease, which includes detecting the K141N or K141T mutation of the HSPB8 protein in a sample isolated from a subject.
또한, 본 발명은 샤르코-마리-투스 질환 치료제 후보물질의 스크리닝 방법을 제공한다.Additionally, the present invention provides a screening method for a candidate drug for the treatment of Charcot-Marie-Tooth disease.
또한, 본 발명은 HSPB8 단백질의 K141N 또는 K141T 돌연변이를 검출하는 단계를 포함하는, 샤르코-마리-투스 질환의 진단 방법을 제공한다.Additionally, the present invention provides a method for diagnosing Charcot-Marie-Tooth disease, comprising detecting a K141N or K141T mutation in the HSPB8 protein.
또한, 본 발명은 PINK1 또는 Parkin 단백질, 이의 활성화제, 또는 이를 코딩하는 핵산분자를 포함하는 벡터를 샤르코-마리-투스 질환에 걸린 개체에 투여하는 단계를 포함하는, 샤르코-마리-투스의 치료 방법을 제공한다.In addition, the present invention provides a method for treating Charcot-Marie-Tooth, comprising administering a vector containing a PINK1 or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same to an individual suffering from Charcot-Marie-Tooth disease. provides.
또한, 본 발명은 HSPB8 단백질의 K141N 또는 K141T 돌연변이를 검출할 수 있는 제제의 샤르코-마리-투스 질환의 진단 용도를 제공한다.Additionally, the present invention provides diagnostic use of Charcot-Marie-Tooth disease of an agent capable of detecting K141N or K141T mutations in the HSPB8 protein.
아울러, 본 발명은 PINK1 또는 Parkin 단백질, 이의 활성화제, 또는 이를 코딩하는 핵산분자를 포함하는 벡터의 샤르코-마리-투스 질환의 예방 또는 치료 용도를 제공한다.In addition, the present invention provides the use of a vector containing a PINK1 or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same for the prevention or treatment of Charcot-Marie-Tooth disease.
본 발명의 K141N 또는 K141T 돌연변이 HSPB8 단백질을 발현하는 동물 모델에서 샤르코-마리-투스 질환의 증상인 운동 결함, 미토콘드리아 기능 장애 및 마이토파지(mitophagy) 수준 감소가 나타나, HSPB8 단백질의 K141N 또는 K141T 변이에 의해 샤르코-마리-투스 질환이 발병되는 것을 확인하였으므로, K141N 또는 K141T 돌연변이 HSPB8 단백질을 발현하는 동물 모델을 샤르코-마리-투스 질환의 동물 모델로 이용할 수 있고, 상기 샤르코-마리-투스 질환의 증상이 PINK1 또는 Parkin의 발현, 및 PINK1 활성화에 의해 현저히 감소되었으므로, 이를 샤르코-마리-투스 질환의 치료 용도에 활용할 수 있다.In an animal model expressing the K141N or K141T mutant HSPB8 protein of the present invention, symptoms of Charcot-Marie-Tooth disease, such as motor defects, mitochondrial dysfunction, and reduced mitophagy levels, were observed in the K141N or K141T mutation of the HSPB8 protein. Since it has been confirmed that Charcot-Marie-Tooth disease is caused by Since the expression of PINK1 or Parkin and PINK1 activation were significantly reduced, it can be used to treat Charcot-Marie-Tooth disease.
도 1은 형질전환 초파리들의 HSPB8 발현 및 수명 분석 결과를 나타낸 도이다:Figure 1 shows the results of HSPB8 expression and lifespan analysis of transgenic Drosophila:
도 1a: 대조군 초파리 elav (elav-GAL4), 야생형 HSPB8 발현 초파리 (elav HSPB8 WT), HSPB8K141T 발현 초파리 (elav HSPB8 K141T) 및 HSPB8 K141E 발현 초파리 (elav HSPB8 K141E)의 면역 블롯 분석 결과;Figure 1A: Results of immunoblot analysis of control Drosophila elav (elav-GAL4), wild-type HSPB8-expressing Drosophila ( elav HSPB8 WT ), HSPB8 K141T -expressing Drosophila ( elav HSPB8 K141T ) and HSPB8 K141E -expressing Drosophila ( elav HSPB8 K141E );
도 1b: 5일령 초파리의 현미경 사진;Figure 1B: Photomicrograph of a 5-day-old fruit fly;
도 1c: 수컷 초파리의 수명 곡선; 및 Figure 1c: Lifespan curve of male Drosophila; and
도 1d: 암컷 초파리의 수명 곡선.Figure 1D: Lifespan curve of female Drosophila.
도 2는 HSPB8 돌연변이에 의해 감각 이상(sensory defects) 발생을 확인한 도이다:Figure 2 is a diagram confirming the occurrence of sensory defects due to HSPB8 mutation:
도 2a: ppk-GAL4 드라이버로 형질전환된 L3 유충 (ppk)의 열 통각 분석 결과; 및Figure 2A: Heat nociception assay results of L3 larvae ( ppk ) transgenic with the ppk-GAL4 driver; and
도 2b: 40℃에서 ppk 발현 유충, HSPB8 WT 발현 유충 (ppk HSPB8 WT), HSPB8 K141T 발현 유충 (ppk HSPB8 K141T) 및 HSPB8 K141E 발현 유충 (ppk HSPB8 K141E)의 열 통각에 대한 반응 지연 분석 결과.Figure 2b: Result of response delay analysis for thermal nociception in ppk- expressing larvae, HSPB8 WT -expressing larvae ( ppk HSPB8 WT ), HSPB8 K141T -expressing larvae ( ppk HSPB8 K141T ) and HSPB8 K141E- expressing larvae ( ppk HSPB8 K141E ) at 40°C.
도 3은 HSPB8 돌연변이에 의한 운동 능력 변화를 확인한 도이다:Figure 3 is a diagram confirming changes in exercise capacity due to HSPB8 mutation:
elav: 대조군 초파리; elav : control Drosophila;
elav HSPB8 WT: 야생형 HSPB8 발현 초파리; elav HSPB8 WT : Drosophila expressing wild type HSPB8;
elav HSPB8 K141T: HSPB8 K141T 발현 초파리;elav HSPB8 K141T : Drosophila expressing HSPB8 K141T ;
elav HSPB8 K141E: HSPB8 K141E 발현 초파리; elav HSPB8 K141E : Drosophila expressing HSPB8 K141E ;
도 3a 및 b: 5일령 초파리 (A) 및 15일령 초파리 (B)의 평균 걷는 속도; 및Figure 3a and b: Average walking speed of 5-day-old fruit flies (A) and 15-day-old fruit flies (B); and
도 3c 및 d: 5일령 초파리 (C) 및 15일령 초파리 (D)의 이동 궤적.Figure 3c and d: Movement trajectories of 5-day-old fruit flies (C) and 15-day-old fruit flies (D).
도 4는 돌연변이에 의한 미토콘드리아 기능 장애 발생 및 PINK1parkin 도입에 의한 미토콘드리아 기능 장애 회복을 확인한 도이다:Figure 4 shows the occurrence of mitochondrial dysfunction caused by mutations and the expression of PINK1 and parkin . This is a diagram confirming the recovery of mitochondrial dysfunction by introducing:
elav HSPB8 WT: 야생형 HSPB8 발현 초파리 elav HSPB8 WT : Drosophila expressing wild type HSPB8
elav HSPB8 WT: 야생형 HSPB8 발현 초파리; elav HSPB8 WT : Drosophila expressing wild type HSPB8;
elav HSPB8 K141T: HSPB8 K141T 발현 초파리; elav HSPB8 K141T : Drosophila expressing HSPB8 K141T ;
elav HSPB8 K141E: HSPB8 K141E 발현 초파리; elav HSPB8 K141E : Drosophila expressing HSPB8 K141E ;
elav HSPB8 K141T PINK1: HSPB8 K141TPINK1 발현 초파리; elav HSPB8 K141T PINK1 : Drosophila expressing HSPB8 K141T and PINK1 ;
elav HSPB8 K141E PINK1: HSPB8 K141EPINK1 발현 초파리; elav HSPB8 K141E PINK1 : Drosophila expressing HSPB8 K141E and PINK1 ;
elav HSPB8 K141T Parkin: HSPB8K141TParkin 발현 초파리; elav HSPB8 K141T Parkin : Drosophila expressing HSPB8 K141T and Parkin ;
elav HSPB8 K141E Parkin: HSPB8 K141EParkin 발현 초파리; elav HSPB8 K141E Parkin : Drosophila expressing HSPB8 K141E and Parkin ;
도 4a: 초파리 유충 VNC에서 측정된 미토콘드리아 막 전위 (ΔΨ);Figure 4A: Mitochondrial membrane potential (ΔΨ) measured in Drosophila larva VNC;
도 4b: 초파리 유충 VNC의 mt-Keima 형광 이미지;Figure 4b: mt-Keima fluorescence image of Drosophila larva VNC;
도 4c: 초파리 유충 VNC의 마이토파지의 정량 분석;Figure 4C: Quantitative analysis of mitophagy in Drosophila larvae VNC;
도 4d: 15일령 초파리의 등반 능력 분석; Figure 4d: Climbing ability analysis of 15-day-old fruit flies;
도 4e: 15일령 초파리의 평균 걷는 속도; 및 Figure 4e: Average walking speed of 15-day-old fruit flies; and
도 4f: 암컷 초파리의 이동 궤적.Figure 4f: Movement trajectory of female fruit fly.
도 5는 운동 신경 특이적 HSPB8 돌연변이 발현에 의한 운동 결함을 확인한 도이다:Figure 5 is a diagram confirming motor defects caused by motor neuron-specific HSPB8 mutant expression:
D42: 운동 신경 특이적 D42-GAL4 발현 초파리; D42 : Drosophila expressing motor neuron-specific D42 -GAL4;
D42 HSPB8 WT: 운동 신경 특이적 HSPB8 WT 발현 초파리; D42 HSPB8 WT : Drosophila expressing motor neuron-specific HSPB8 WT ;
D42 HSPB8 K141T: 운동 신경 특이적 HSPB8 K141T 발현 초파리; D42 HSPB8 K141T : Drosophila expressing motor neuron-specific HSPB8 K141T ;
D42 HSPB8 K141E: 운동 신경 특이적 HSPB8 K141E 발현 초파리; D42 HSPB8 K141E : Drosophila expressing motor neuron-specific HSPB8 K141E ;
도 5a: 5일령 초파리의 평균 걷는 속도;Figure 5A: Average walking speed of 5-day-old fruit flies;
도 5b: 15일령 초파리의 평균 걷는 속도;Figure 5b: Average walking speed of 15-day-old fruit flies;
도 5c: 5일령 초파리의 이동 궤적; 및 Figure 5c: Movement trajectory of 5-day-old fruit flies; and
도 5d: 15일령 초파리의 이동 궤적. Figure 5d: Movement trajectory of 15-day-old fruit flies.
도 6은 KR 투여 (1 및 5 mM)에 의한 PINK1 활성화에 따른 15일령 수컷 형질전환 초파리 (elav HSPB8 WT, elav HSPB8 K141T elav HSPB8 K141E)의 운동 능력 회복을 확인한 도이다:Figure 6 shows 15-day-old male transgenic Drosophila ( elav HSPB8 WT , elav HSPB8 K141T ) following PINK1 activation by KR administration (1 and 5 mM). and elav HSPB8 K141E ), which confirmed the recovery of motor skills:
도 6a: 초파리의 평균 걷는 속도;Figure 6A: Average walking speed of fruit flies;
도 6b: 이동 궤적; 및Figure 6b: Movement trajectory; and
도 6c: 등반 능력 분석.Figure 6c: Climbing ability analysis.
이하, 첨부된 도면을 참조하여 본 발명의 구현예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현예는 본 발명에 대한 예시로 제시되는 것으로, 당업자에게 주지 저명한 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있고, 이에 의해 본 발명이 제한되지는 않는다. 본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다. Hereinafter, the present invention will be described in detail through embodiments of the present invention with reference to the attached drawings. However, the following embodiments are provided as examples of the present invention, and if it is judged that a detailed description of a technology or configuration well known to those skilled in the art may unnecessarily obscure the gist of the present invention, the detailed description may be omitted. , the present invention is not limited thereby. The present invention is capable of various modifications and applications within the description of the claims described below and the scope of equivalents interpreted therefrom.
또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In addition, the terminology used in this specification is a term used to appropriately express preferred embodiments of the present invention, and may vary depending on the intention of the user or operator or the customs of the field to which the present invention belongs. Therefore, definitions of these terms should be made based on the content throughout this specification. Throughout the specification, when a part is said to “include” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.
본 명세서에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.As used herein, the terms “step of” or “step of” do not mean “step for.”
본 명세서에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.In this specification, the term "combination thereof" included in the Markushi format expression means a mixture or combination of one or more components selected from the group consisting of the components described in the Markushi format expression, It means including one or more selected from the group consisting of.
본 명세서에서, "A 및/또는 B" 의 기재는, "A, B, 또는, A 및 B" 를 의미한다. In this specification, the description of “A and/or B” means “A, B, or A and B.”
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다.All technical terms used in the present invention, unless otherwise defined, are used with the same meaning as commonly understood by a person skilled in the art in the field related to the present invention. In addition, preferred methods and samples are described in this specification, but similar or equivalent methods are also included in the scope of the present invention. The contents of all publications incorporated by reference herein are hereby incorporated by reference.
일 측면에서, 본 발명은 HSPB8(small heat shock protein B8) 단백질의 K141N 또는 K141T 돌연변이를 검출할 수 있는 제제를 포함하는, 샤르코-마리-투스(Charcot-Marie-Tooth disease, CMT) 질환의 진단용 조성물에 관한 것이다.In one aspect, the present invention provides a composition for diagnosing Charcot-Marie-Tooth disease (CMT) disease, comprising an agent capable of detecting the K141N or K141T mutation of the small heat shock protein B8 (HSPB8) protein. It's about.
일 구현예에서, HSPB8 단백질의 K141N 또는 K141T 돌연변이를 검출하는 것은 K141N 또는 K141T 돌연변이를 포함하는 HSPB8 단백질 또는 K141N 또는 K141T 돌연변이를 포함하는 HSPB8 단백질을 인코딩하는 핵산 분자를 검출하는 것일 수 있다.In one embodiment, detecting the K141N or K141T mutation of the HSPB8 protein may be detecting a nucleic acid molecule encoding the HSPB8 protein comprising the K141N or K141T mutation or the HSPB8 protein comprising the K141N or K141T mutation.
일 구현예에서, 돌연변이를 검출할 수 있는 제제는 HSPB8 단백질에 특이적으로 결합하는 항체, 항체 단편, 앱타머(aptamer), 애필린(Affilin), 애피바디(Affibody), 애피머(Affimer), 애피틴(Affitin), 알파바디(Alphabody), 앤티클린(Anticlin), 다르핀(DARpin), 피노머(Fynomoer), 쿠니츠 도메인 펩타이드(Kunitz domain peptide), 아비머(avidity multimer), 펩티도모방체(peptidomimetics), 수용체, 리간드 또는 보조인자를 포함할 수 있으며, 상기 단백질 돌연변이 검출은 웨스턴블랏, ELISA(enzyme linked immunosorbent assay), 방사선면역분석(RIA: Radioimmunoassay), 방사면역확산법(radioimmunodiffusion), 면역 전기영동, 조직면역염색, 면역침전 분석법(Immunoprecipitation assay), 보체 고정 분석법(Complement Fixation Assay), FACS, 질량분석 또는 단백질 마이크로어레이로 이루어진 군으로부터 선택되는 하나 이상의 방법으로 수행될 수 있다.In one embodiment, the agent capable of detecting a mutation is an antibody, antibody fragment, aptamer, Affilin, Affibody, Affimer, Affitin, Alphabody, Anticlin, DARpin, Fynomoer, Kunitz domain peptide, avidity multimer, peptidomimetic It may include peptidomimetics, receptors, ligands, or cofactors, and detection of protein mutations can be performed using Western blot, ELISA (enzyme linked immunosorbent assay), RIA (Radioimmunoassay), radioimmunodiffusion, or immunosorbent assay. It may be performed by one or more methods selected from the group consisting of electrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, FACS, mass spectrometry, or protein microarray.
일 구현예에서, 항체는 폴리클로날 항체, 모노클로날 항체, 미니바디(minibody), 도메인 항체, 이중특이적 항체, 항체 모방체, 키메라 항체, 항체 접합체(conjugate), 인간항체 또는 인간화 항체일 수 있으며, 면역학적 활성을 가진 단편은 상기 항체의 Fab, Fd, Fab', dAb, F(ab'), F(ab')2, scFv(single chain fragment variable), Fv, 단일쇄 항체, Fv 이량체, 상보성 결정 영역 단편 또는 디아바디(diabody)일 수 있다.In one embodiment, the antibody is a polyclonal antibody, monoclonal antibody, minibody, domain antibody, bispecific antibody, antibody mimetic, chimeric antibody, antibody conjugate, human antibody, or humanized antibody. Fragments with immunological activity include Fab, Fd, Fab', dAb, F(ab'), F(ab') 2 , scFv (single chain fragment variable), Fv, single chain antibody, and Fv of the antibody. It may be a dimer, a complementarity determining region fragment, or a diabody.
일 구현예에서, 돌연변이를 검출할 수 있는 제제는 HSPB8 단백질을 인코딩하는 핵산 분자를 특이적으로 인식하는 프라미어쌍, 또는 프로브, 또는 프라이머쌍 및 프로브를 포함할 수 있으며, 상기 HSPB8 단백질을 인코딩하는 핵산 분자의 검출은 중합효소연쇄반응, 실시간 RT-PCR (Real-time RT-PCR), 역전사 중합효소연쇄반응, 경쟁적 중합효소연쇄반응(Competitive RT-PCR), Nuclease 보호 분석(RNase, S1 nuclease assay), in situ 교잡법, 핵산 마이크로어레이, 노던블랏, DNA 칩, multiplex PCR 또는 ddPCR로 이루어진 군으로부터 선택되는 하나 이상의 방법으로 수행될 수 있다.In one embodiment, an agent capable of detecting a mutation may include a primer pair, or probe, or a primer pair and probe that specifically recognizes a nucleic acid molecule encoding the HSPB8 protein, Detection of nucleic acid molecules can be performed using polymerase chain reaction, real-time RT-PCR, reverse transcription polymerase chain reaction, competitive RT-PCR, and nuclease protection assay (RNase, S1 nuclease assay). ), in situ hybridization, nucleic acid microarray, Northern blot, DNA chip, multiplex PCR, or ddPCR.
본 발명에서 사용된 용어, "검출" 또는 "측정"은 검출 또는 측정된 대상의 존재 여부를 확인하는 것을 의미한다.As used herein, the term “detection” or “measurement” means confirming the presence or absence of a detected or measured object.
본 명세서에서 사용된 용어, "유전자", "핵산", "폴리뉴클레오타이드" 또는 "올리고뉴클레오타이드"란 용어는 DNA 분자, RNA 분자 또는 이들의 유사체를 지칭한다. 본 명세서에 사용되는 "핵산", "폴리뉴클레오타이드" 및 "올리고뉴클레오타이드"란 용어는 비제한적으로 DNA 분자, 예를 들어 cDNA, 게놈 DNA 또는 합성 DNA 및 RNA 분자, 예를 들어 가이드 RNA, 전령 RNA 또는 합성 RNA를 포함한다. 더욱이, 본 명세서에 사용되는 "핵산" 및 "폴리뉴클레오타이드"란 용어는 단일-가닥 및 이중-가닥 형태를 포함한다.As used herein, the terms “gene,” “nucleic acid,” “polynucleotide,” or “oligonucleotide” refer to DNA molecules, RNA molecules, or analogs thereof. As used herein, the terms “nucleic acid,” “polynucleotide,” and “oligonucleotide” include, but are not limited to, DNA molecules, such as cDNA, genomic DNA, or synthetic DNA and RNA molecules, such as guide RNA, messenger RNA, or Contains synthetic RNA. Moreover, as used herein, the terms “nucleic acid” and “polynucleotide” include single-stranded and double-stranded forms.
본 발명에서 사용된 용어, "프라이머"는 짧은 자유 3말단 수산화기 (free 3 hydroxyl group)를 가지는 핵산 서열로 상보적인 템플레이트(template)와 염기쌍 (base pair)를 형성할 수 있고 템플레이트 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 핵산 서열을 의미한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응 (즉, DNA 폴리머레이트 또는 역전사효소)을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트의 존재하에서 DNA 합성이 개시할 수 있다. As used in the present invention, the term "primer" is a nucleic acid sequence with a short free 3-terminal hydroxyl group that can form a base pair with a complementary template and serves as a starting point for copying the template strand. It refers to a short nucleic acid sequence that functions as a point. Primers can initiate DNA synthesis in the presence of four different nucleoside triphosphates and reagents for polymerization (i.e., DNA polymerase or reverse transcriptase) in an appropriate buffer solution and temperature.
본 발명에서 사용된 용어, "프로브"란 mRNA와 특이적 결합을 이룰 수 있는 짧게는 수 염기 내지 길게는 수백 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미하며 라벨링 되어 있어서 특정 mRNA의 존재 유무를 확인할 수 있다. 프로브는 올리고 뉴클레오타이드(oligonucleotide) 프로브, 단쇄 DNA(single stranded DNA) 프로브, 이중쇄 DNA(double stranded DNA) 프로브, RNA 프로브 등의 형태로 제작될 수 있다. 본 발명에서는 상기 AR 또는 AR-V7 유전자와 상보적인 프로브를 이용하여 혼성화를 실시하여, 혼성화 여부를 통해 상기 유전자 발현 정도를 진단할 수 있다. 적당한 프로브의 선택 및 혼성화 조건은 통상의 기술분야에 공지된 것을 기초로 변형할 수 있으므로 본 발명에서는 이에 대해 특별히 한정하지 않는다.As used in the present invention, the term "probe" refers to a nucleic acid fragment such as RNA or DNA that is as short as a few bases or as long as several hundred bases, capable of forming a specific binding to mRNA, and is labeled to determine the presence or absence of a specific mRNA. You can check. Probes may be manufactured in the form of oligonucleotide probes, single stranded DNA probes, double stranded DNA probes, RNA probes, etc. In the present invention, hybridization is performed using a probe complementary to the AR or AR-V7 gene, and the level of gene expression can be diagnosed based on hybridization. Selection of appropriate probes and hybridization conditions can be modified based on those known in the art, so the present invention is not particularly limited thereto.
본 발명의 프라이머 또는 프로브는 포스포르아미다이트 고체 지지체 방법, 또는 기타 널리 공지된 방법을 사용하여 화학적으로 합성할 수 있다. 이러한 핵산 서열은 또한 당해 분야에 공지된 많은 수단을 이용하여 변형시킬 수 있다. 이러한 변형의 비-제한적인 예로는 메틸화, 캡화, 천연 뉴클레오타이드 하나 이상의 동족체로의 치환및 뉴클레오타이드 간의 변형, 예를 들면, 하전되지 않은 연결체 (예: 메틸 포스포네이트, 포스소트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체 (예: 포스포로티오에이트, 포스포로디티오에이트 등)로의 변형이 있다.Primers or probes of the present invention can be chemically synthesized using the phosphoramidite solid support method or other well-known methods. These nucleic acid sequences can also be modified using many means known in the art. Non-limiting examples of such modifications include methylation, capping, substitution of a native nucleotide with one or more homologues, and modifications between nucleotides, such as uncharged linkages (e.g., methyl phosphonate, phosphotriester, phosphoronucleotide). amidate, carbamate, etc.) or charged linkages (e.g. phosphorothioate, phosphorodithioate, etc.).
본 발명에서 사용된 용어, "항체"란 당해 분야에서 공지된 용어로서 항원성 부위에 대해서 지시되는 특이적인 단백질 분자를 의미한다. 본 발명의 목적상, 항체는 본 발명의 마커인 상기 HSPB8의 아미노산 치환 돌연변이에 특이적으로 결합하는 항체를 의미하며, 상기 항체의 제조방법은 널리 공지된 방법을 사용하여 제조할 수 있다. 여기에는 상기 단백질에서 만들어질 수 있는 부분 펩티드도 포함된다. 본발명의 항체의 형태는 특별히 제한되지 않으며 폴리클로날 항체, 모노클로날 항체 또는 항원 결합성을 갖는 것이면 그것의 일부도 본 발명의 항체에 포함되고 모든 면역 글로불린 항체가 포함된다. 나아가, 본 발명의 항체에는 인간화 항체 등의 특수 항체도 포함된다.As used in the present invention, the term “antibody” is a term known in the art and refers to a specific protein molecule directed to an antigenic site. For the purpose of the present invention, an antibody refers to an antibody that specifically binds to the amino acid substitution mutation of HSPB8, which is a marker of the present invention, and the antibody can be produced using a well-known method. This also includes partial peptides that can be made from the above proteins. The form of the antibody of the present invention is not particularly limited, and as long as it is a polyclonal antibody, monoclonal antibody, or has antigen binding properties, a portion thereof is also included in the antibody of the present invention, and all immunoglobulin antibodies are included. Furthermore, the antibodies of the present invention also include special antibodies such as humanized antibodies.
일 측면에서, 본 발명은 본 발명의 조성물을 포함하는 샤르코-마리-투스 질환의 진단용 키트에 관한 것이다.In one aspect, the present invention relates to a diagnostic kit for Charcot-Marie-Tooth disease comprising the composition of the present invention.
일 구현예에서, 상기 키트는 RT-PCR 키트, 마이크로어레이 칩 키트 또는 단백질 칩 키트일 수 있다.In one embodiment, the kit may be an RT-PCR kit, a microarray chip kit, or a protein chip kit.
일 측면에서, 본 발명은 PINK1(PTEN-induced putative kinase 1) 또는 Parkin 단백질, 이의 활성화제, 또는 이를 코딩하는 핵산분자를 포함하는 벡터를 포함하는 샤르코-마리-투스 질환의 예방 또는 치료용 약학적 조성물에 관한 것이다.In one aspect, the present invention provides a pharmaceutical for the prevention or treatment of Charcot-Marie-Tooth disease, comprising a vector containing a PINK1 (PTEN-induced putative kinase 1) or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same. It relates to composition.
일 구현예에서, 상기 샤르코-마리-투스 질환은 HSPB8 단백질의 K141N 또는 K141T 돌연변이에 의한 샤르코-마리-투스 질환일 수 있다.In one embodiment, the Charcot-Marie-Tooth disease may be Charcot-Marie-Tooth disease caused by a K141N or K141T mutation in the HSPB8 protein.
일 구현예에서, PINK1의 활성화제는 키네틴 리보사이드(kinetin riboside, KR) (N6-furfuryl adenine riboside)일 수 있다.In one embodiment, the activator of PINK1 may be kinetin riboside (KR) (N6-furfuryl adenine riboside).
일 구현예에서, 상기 조성물은 HSPB8 단백질의 K141N 또는 K141T 돌연변이에 의한 운동 결함, 미토콘드리아 기능 장애 또는 마이토파지(mitophagy) 수준 감소 증상을 개선시킬 수 있다.In one embodiment, the composition can improve symptoms of motor defects, mitochondrial dysfunction, or reduced mitophagy levels caused by the K141N or K141T mutation of the HSPB8 protein.
본 명세서에서 사용된 용어, "벡터"는 숙주 세포에 삽입되어 숙주 세포 게놈과 재조합되고 이에 삽입되거나, 또는 에피좀으로서 자발적으로 복제하는 컴피턴트 뉴클레오티드 서열을 포함하는 임의의 핵산을 의미한다. 이러한 벡터로는 선형 핵산, 플라스미드, 파지미드, 코스미드, RNA 벡터, 바이러스 벡터 등이 있다. As used herein, the term “vector” refers to any nucleic acid containing a competent nucleotide sequence that is inserted into a host cell and recombines with and integrates into the host cell genome, or replicates spontaneously as an episome. These vectors include linear nucleic acids, plasmids, phagemids, cosmids, RNA vectors, viral vectors, etc.
본 발명에서 상기 본 발명의 약학적 조성물은 약학적으로 허용되는 담체를 추가로 포함할 수 있다. 상기에서 "약학적으로 허용되는"이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증 등과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 약학적으로 허용되는 담체로는 예를 들면, 락토스, 전분, 셀룰로스 유도체, 마그네슘 스테아레이트, 스테아르산 등과 같은 경구 투여용 담체 및 물, 적합한 오일, 식염수, 수성 글루코스 및 글리콜 등과 같은 비경구 투여용 담체 등이 있으며 안정화제 및 보존제를 추가로 포함할 수 있다. 적합한 안정화제로는 아황산수소나트륨, 아황산나트륨 또는 아스코르브산과 같은 항산화제가 있다. 적합한 보존제로는 벤즈알코늄 클로라이드, 메틸- 또는 프로필-파라벤 및 클로로부탄올이 있다. 그 밖의 약학적으로 허용되는 담체로는 다음의 문헌에 기재되어 있는 것을 참고로 할 수 있다 (Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995). In the present invention, the pharmaceutical composition of the present invention may further include a pharmaceutically acceptable carrier. In the above, “pharmaceutically acceptable” refers to a composition that is physiologically acceptable and does not usually cause allergic reactions such as gastrointestinal disorders, dizziness, or similar reactions when administered to humans. Pharmaceutically acceptable carriers include, for example, carriers for oral administration, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, etc., and carriers for parenteral administration, such as water, suitable oils, saline solutions, aqueous glucose and glycols, etc. and may additionally contain stabilizers and preservatives. Suitable stabilizers include antioxidants such as sodium bisulfite, sodium sulfite or ascorbic acid. Suitable preservatives include benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol. As for other pharmaceutically acceptable carriers, those described in the following literature may be referred to (Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995).
본 발명에 따른 약학적 조성물은 상술한 바와 같은 약학적으로 허용되는 담체와 함께 당업계에 공지된 방법에 따라 적합한 형태로 제형화될 수 있다. 즉, 본 발명의 약학적 조성물은 공지의 방법에 따라 다양한 비경구 또는 경구 투여용 형태로 제조될 수 있으며, 비경구 투여용 제형의 대표적인 것으로는 주사용 제형으로 등장성 수용액 또는 현탁액이 바람직하다. 주사용 제형은 적합한 분산제 또는 습윤제 및 현탁화제를 사용하여 당업계에 공지된 기술에 따라 제조할 수 있다. 예를 들면, 각 성분을 식염수 또는 완충액에 용해시켜 주사용으로 제형화될 수 있다. 또한, 경구 투여용 제형으로는, 이에 한정되지는 않으나, 분말, 과립, 정제, 환약 및 캡슐 등이 있다. 상기와 같은 방법으로 제형화된 약학적 조성물은 유효량으로 경구, 경피, 피하, 정맥 또는 근육을 포함한 여러 경로를 통해 투여될 수 있는데, 상기 "투여"란 어떠한 적절한 방법으로 환자에게 소정의 물질을 도입하는 것을 의미하며 물질의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 상기에서 "유효량"이란 환자에게 투여하였을 때, 예방 또는 치료 효과를 나타내는 양을 말한다. 본 발명에 따른 약학적 조성물의 투여량은 환자의 질환 종류 및 중증도, 연령, 성별, 체중, 약물에 대한 민감도, 현재 치료법의 종류, 투여방법, 표적 세포 등 다양한 요인에 따라 달라질 수 있으며, 당 분야의 전문가들에 의해 용이하게 결정될 수 있다. 또한, 본 발명의 약학적 조성물은 종래의 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 바람직하게는 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여할 수 있으며, 더욱 바람직하게는 1~10000㎍/체중kg/day, 더욱 더 바람직하게는 10~1000㎎/체중kg /day의 유효용량으로 하루에 수회 반복 투여될 수 있다. The pharmaceutical composition according to the present invention can be formulated in a suitable form according to methods known in the art along with a pharmaceutically acceptable carrier as described above. That is, the pharmaceutical composition of the present invention can be prepared in various forms for parenteral or oral administration according to known methods, and a representative example of the formulation for parenteral administration is an isotonic aqueous solution or suspension as an injectable formulation. Injectable formulations can be prepared according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. For example, each component can be dissolved in saline solution or buffer solution and formulated for injection. Additionally, dosage forms for oral administration include, but are not limited to, powders, granules, tablets, pills, and capsules. The pharmaceutical composition formulated in the manner described above can be administered in an effective amount through various routes including orally, transdermally, subcutaneously, intravenously, or intramuscularly. The term “administration” refers to introducing a predetermined substance into a patient by any appropriate method. This means that the substance can be administered through any general route as long as it can reach the target tissue. In the above, “effective amount” refers to the amount that exhibits a preventive or therapeutic effect when administered to a patient. The dosage of the pharmaceutical composition according to the present invention may vary depending on various factors such as the type and severity of the patient's disease, age, gender, weight, sensitivity to the drug, type of current treatment, administration method, target cells, etc., and may vary depending on the field of the art. can be easily determined by experts. Additionally, the pharmaceutical composition of the present invention can be administered in combination with conventional therapeutic agents, can be administered sequentially or simultaneously with conventional therapeutic agents, and can be administered singly or multiple times. Preferably, considering all of the above factors, the amount that can obtain the maximum effect with the minimum amount without side effects can be administered, more preferably 1 to 10,000 ㎍/kg of body weight/day, and even more preferably 10 to 1,000. The effective dose is ㎎/kg body weight/day and can be administered repeatedly several times a day.
일 측면에서, 본 발명은 K141N 또는 K141T 돌연변이를 포함하는 HSPB8 단백질을 발현하는 샤르코-마리-투스 질환 동물 모델에 관한 것이다.In one aspect, the invention relates to an animal model of Charcot-Marie-Tooth disease expressing HSPB8 protein containing a K141N or K141T mutation.
일 구현예에서, 상기 동물 모델은 신경세포, 운동 신경세포 또는 다중-수지상 감각 신경세포에서 K141N 또는 K141T 돌연변이 HSPB8 단백질을 발현할 수 있다.In one embodiment, the animal model is capable of expressing K141N or K141T mutant HSPB8 protein in neurons, motor neurons, or multi-dendritic sensory neurons.
일 구현예에서, 상기 동물 모델은 초파리(Drosophila)일 수 있다.In one embodiment, the animal model may be Drosophila.
일 구현예에서, 상기 동물 모델에서 신경세포(뉴런) 특이적 프로모터 elav, 운동 신경세포 특이적 프로모터 D42 또는 다중-수지상 감각 신경 세포(multi-dendritic sensory neurons) 특이적 프로모터 ppk에 K141N 또는 K141T 돌연변이 HSPB8 단백질을 코딩하는 핵산 분자가 작동가능하게 연결되어 신경세포, 운동세포 또는 다중-수지상 감각 신경 세포 특이적으로 K141N 또는 K141T 돌연변이를 포함하는 HSPB8 단백질이 발현될 수 있다. In one embodiment, in the animal model, K141N or K141T mutant HSPB8 in the neuron-specific promoter elav , motor neuron-specific promoter D42 , or multi-dendritic sensory neurons-specific promoter ppk. Nucleic acid molecules encoding the protein can be operably linked to express the HSPB8 protein containing the K141N or K141T mutation specifically in neurons, motor cells, or multi-dendritic sensory neurons.
본 명세서에서 사용된 용어, "작동가능하게 연결된"은 하나의 핵산 단편이 다른 핵산 단편과 결합되어 그의 기능 또는 발현이 다른 핵산 단편에 의해 영향을 받는 것을 의미한다.As used herein, the term “operably linked” means that one nucleic acid fragment is linked to another nucleic acid fragment so that its function or expression is affected by the other nucleic acid fragment.
본 발명에서 사용된 프로모터는 다양한 성질 및 기원일 수 있고 다양한 성질을 가진다. 이는 사용된 프로모터의 선택이 특히 해당 유전자에 좌우되기 때문이다. 이에 따라, 프로모터는 예를 들면 강하거나 약하고, 편재되거나 조직/세포에 특이적이거나, 생리적 또는 병리생리적 상태에 특이적인 프로모터에서 유도될 수 있다(활성은 세포 분화 상태 또는 세포 사이클의 특정 단계에 좌우됨). 프로모터는 진핵생물, 원핵생물, 바이러스, 동물, 식물, 인공, 인간 등의 기원일 수 있다.Promoters used in the present invention can be of various natures and origins and have various properties. This is because the choice of promoter used depends particularly on the gene in question. Accordingly, the promoter can be driven, for example, by a promoter that is strong or weak, ubiquitous or tissue/cell specific, or specific to a physiological or pathophysiological state (the activity may depend on the state of cell differentiation or on a specific stage of the cell cycle). being). Promoters may be of eukaryotic, prokaryotic, viral, animal, plant, artificial, human, etc. origin.
일 측면에서, 본 발명은 K141N 또는 K141T 돌연변이 HSPB8 단백질을 코딩하는 핵산 및 이에 작동 가능하게 연결된 신경세포 특이적 프로모터를 포함하는 샤르코-마리-투스 질환 동물 모델 제작용 벡터에 관한 것이다.In one aspect, the present invention relates to a vector for constructing a Charcot-Marie-Tooth disease animal model comprising a nucleic acid encoding a K141N or K141T mutant HSPB8 protein and a neuron-specific promoter operably linked thereto.
일 구현예에서, 신경세포 특이적 프로모터는 신경세포(뉴런) 특이적 프로모터 elav, 운동 신경세포 특이적 프로모터 D42 또는 다중-수지상 감각 신경 세포 특이적 프로모터 ppk일 수 있다.In one embodiment, the neuron-specific promoter may be the neuron-specific promoter elav , the motor neuron-specific promoter D42 , or the multi-dendritic sensory neuron-specific promoter ppk .
일 측면에서, 본 발명은 대상으로부터 분리된 시료에서 HSPB8 단백질의 K141N 또는 K141T 돌연변이를 검출하는 것을 포함하는, 샤르코-마리-투스 질환의 발병 가능성을 진단하는데 필요한 정보를 제공하는 방법에 관한 것이다.In one aspect, the present invention relates to a method of providing information necessary for diagnosing the possibility of developing Charcot-Marie-Tooth disease, including detecting the K141N or K141T mutation of the HSPB8 protein in a sample isolated from a subject.
일 구현예에서, 상기 방법은 대상으로부터 분리된 시료에서 HSPB8 단백질의 K141N 또는 K141T 돌연변이가 검출된 경우, 상기 대상이 샤르코-마리-투스 질환이 발병할 가능성이 높은 것으로 판정하는 단계를 추가로 포함할 수 있다.In one embodiment, the method may further include determining that the subject is likely to develop Charcot-Marie-Tooth disease when the K141N or K141T mutation of the HSPB8 protein is detected in a sample isolated from the subject. You can.
일 측면에서, 본 발명은 피검 화합물 또는 조성물을 K141N 또는 K141T 돌연변이를 포함하는 HSPB8 단백질을 발현하는 세포주 또는 동물 모델에 처리하고; 피검 화합물 또는 조성물이 처리된 세포주 또는 동물 모델에서 미토콘드리아 기능 장애 정도를 측정하며; 및 피검 화합물 또는 조성물을 무처리한 대조군 세포주와 비교하여 미토콘드리아 기능 장애가 개선된 피검 화합물 또는 조성물을 선별하는 것을 포함하는 샤르코-마리-투스 질환 치료제 후보물질의 스크리닝 방법에 관한 것이다.In one aspect, the present invention provides treatment of a test compound or composition to a cell line or animal model expressing HSPB8 protein containing a K141N or K141T mutation; Determining the degree of mitochondrial dysfunction in cell lines or animal models treated with the test compound or composition; and a method for screening a candidate for the treatment of Charcot-Marie-Tooth disease, comprising selecting a test compound or composition in which mitochondrial dysfunction is improved compared to a control cell line untreated with the test compound or composition.
일 측면에서, 본 발명은 피검 화합물 또는 조성물을 K141N 또는 K141T 돌연변이를 포함하는 HSPB8 단백질을 발현하는 세포주 또는 동물 모델에 처리하고; 피검 화합물 또는 조성물이 처리된 세포주 또는 동물 모델에서 PINK1 또는 Parkin의 발현, 또는 이의 활성을 확인하며; 및 피검 화합물 또는 조성물을 무처리한 대조군 세포주와 비교하여 PINK1 또는 Parkin의 발현, 또는 이의 활성이 증가한 피검 화합물 또는 조성물을 선별하는 것을 포함하는 샤르코-마리-투스 질환 치료제 후보물질의 스크리닝 방법에 관한 것이다.In one aspect, the present invention provides treatment of a test compound or composition to a cell line or animal model expressing HSPB8 protein containing a K141N or K141T mutation; Confirming the expression of PINK1 or Parkin, or its activity, in cell lines or animal models treated with the test compound or composition; And a method for screening a candidate for the treatment of Charcot-Marie-Tooth disease, comprising selecting a test compound or composition with increased expression or activity of PINK1 or Parkin compared to a control cell line untreated with the test compound or composition. .
일 측면에서, 본 발명은 HSPB8 단백질의 K141N 또는 K141T 돌연변이를 검출하는 단계를 포함하는, 샤르코-마리-투스 질환의 진단 방법에 관한 것이다.In one aspect, the present invention relates to a method for diagnosing Charcot-Marie-Tooth disease, comprising detecting a K141N or K141T mutation in the HSPB8 protein.
일 측면에서, 본 발명은 PINK1 또는 Parkin 단백질, 이의 활성화제, 또는 이를 코딩하는 핵산분자를 포함하는 벡터를 샤르코-마리-투스 질환에 걸린 개체에 투여하는 단계를 포함하는, 샤르코-마리-투스의 치료 방법에 관한 것이다.In one aspect, the present invention provides treatment for Charcot-Marie-Tooth disease, comprising administering a vector containing a PINK1 or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same to an individual suffering from Charcot-Marie-Tooth disease. It's about treatment methods.
일 측면에서, 본 발명은 HSPB8 단백질의 K141N 또는 K141T 돌연변이를 검출할 수 있는 제제의 샤르코-마리-투스 질환의 진단 용도에 관한 것이다.In one aspect, the invention relates to the diagnostic use of Charcot-Marie-Tooth disease of an agent capable of detecting the K141N or K141T mutation of the HSPB8 protein.
일 측면에서, 본 발명은 PINK1 또는 Parkin 단백질, 이의 활성화제, 또는 이를 코딩하는 핵산분자를 포함하는 벡터의 샤르코-마리-투스 질환의 예방 또는 치료 용도에 관한 것이다.In one aspect, the present invention relates to the use of a vector containing a PINK1 or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same for the prevention or treatment of Charcot-Marie-Tooth disease.
하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다. The present invention will be described in more detail through the following examples. However, the following examples are only for illustrating the content of the present invention and are not intended to limit the present invention.
실시예 1. Example 1. HSPB8HSPB8 돌연변이 동물 모델 제작 및 확인 Creation and validation of mutant animal models
1-1. HSPB8 K141N/K141T 돌연변이 모델 제작1-1. Construction of HSPB8 K141N/K141T mutant model
HSPB8(small heat shock protein B8) (HSP22라고도 불림) 유전자의 K141N 돌연변이 동물 모델 및 K141T 돌연변이 동물 모델을 제작하기 위해, 신경(뉴런) 특이적 GAL4 드라이버인 elav-GAL4, 운동 신경세포 특이적 GAL4 드라이버인 D42-GAL4 및 다중-수지상 감각 신경(multi-dendritic sensory neurons) 특이적 GAL4 드라이버인 ppk-GAL4를 각각 이용하여 초파리 신경에서 야생형 인간 HSPB8(HSPB8 WT), K141T 돌연변이 HSPB8(HSPB8 K141T) 및 K141E 돌연변이 HSPB8(HSPB8 K141E)의 UAS 전이유전자(transgene)를 특이적으로 발현하는 초파리 모델들을 제작하였다. 구체적으로, 하기의 프라이머쌍을 이용하여 QuikChange™site-directed mutagenesis kit (Agilent Technologies)로 인간 HSPB8의 cDNA에 K141T 및 K141E 돌연변이를 각각 유도하였다: HSPB8 K141T 정방향 프라이머: 5'-ctg cag gaa gct gga ttt tcg ttg tga agt tct tag aaa ca-3' 및 K141T 역방향 프라이머: 5'-tgt ttc taa gaa ctt cac aac gaa aat cca gct tcc tgc ag), 및 HSPB8 K141E 정방향 프라이머: 5'-gaa gct gga ttt tct ctg tga agt tct tag aaa caa tgc cac c-3' 및 K141E 역방향 프라이머: 5'-ggt ggc att gtt tct aag aac ttc aca gag aaa atc cag ctt c-3'. 그 후, 야생형 HSPB8 cDNAs 및 상기 돌연변이 HSPB8 cDNAs를 각각 pACU2 벡터에 삽입하고 yw;PBac y[+]-attP-3B VK00001 배아에 미세주입하였다. elav-GAL4, ppk-GAL4 및 D42-GAL4 계통(lines)은 Bloomington Stock Center에서 구매하였다. 또한, UAS-PINK1 및 UAS-Parkin을 발현시킨 초파리 계통도 Park et al., 2006에 기재된 방법으로 제작하였다. 제작한 초파리 계통들의 유전형은 하기와 같다: elav (elav-GAL4/+); elav HSPB8 WT (elav-GAL4/+; UAS-HSPB8 WT /+); elav HSPB K141T (elav-GAL4/+; UAS-HSPB8 K141T /+); elav HSPB K141E (elav-GAL4/+;; UAS-HSPB8 K141E /+); ppk (ppk-GAL4/+); ppk HSPB8 WT (ppk-GAL4/UAS-HSPB8 WT ); ppk HSPB K141T (ppk-GAL4/UAS-HSPB8 K141T ); ppk HSPB K141E (ppk-GAL4/UAS-HSPB8 K141E ); D42 (D42-GAL4/+); D42 HSPB8 WT (UAS-HSPB8 WT /+; D42-GAL4/+); D42 HSPB K141T (UAS- HSPB K141T /+; D42-GAL4/+); D42 HSPB K141E (UAS-HSPB8 K141E /+; D42-GAL4/+); elav HSPB K141T PINK1 (elav-GAL4/+; UAS-HSPB8 K141T /UAS-PINK1); elav HSPB K141T Parkin (elav-GAL4/+; UAS-HSPB8 K141T /UAS-Parkin); elav HSPB K141E PINK1 (elav-GAL4/+; UAS-HSPB8 K141E /UAS-PINK1); elav HSPB K141E Parkin (elav-GAL4/+; 및 UAS-HSPB8 K141E /UAS-Parkin).To create a K141N mutant animal model and a K141T mutant animal model of the HSPB8 (small heat shock protein B8) (also called HSP22) gene, elav -GAL4, a nerve (neuron)-specific GAL4 driver, and motor neuron-specific GAL4 driver Wild-type human HSPB8 ( HSPB8 WT ), K141T mutant HSPB8 ( HSPB8 K141T ), and K141E mutant HSPB8 in Drosophila neurons using D42 -GAL4 and ppk -GAL4, a multi-dendritic sensory neurons-specific GAL4 driver, respectively. Drosophila models that specifically expressed the UAS transgene ( HSPB8 K141E ) were created. Specifically, K141T and K141E mutations were induced in the cDNA of human HSPB8, respectively, using the QuikChange™ site-directed mutagenesis kit (Agilent Technologies) using the following primer pairs: HSPB8 K141T forward primer: 5'-ctg cag gaa gct gga ttt tcg ttg tga agt tct tag aaa ca-3' and K141T reverse primer: 5'-tgt ttc taa gaa ctt cac aac gaa aat cca gct tcc tgc ag), and HSPB8 K141E forward primer: 5'-gaa gct gga ttt tct ctg tga agt tct tag aaa caa tgc cac c-3' and K141E reverse primer: 5'-ggt ggc att gtt tct aag aac ttc aca gag aaa atc cag ctt c-3'. Afterwards, the wild-type HSPB8 cDNAs and the mutant HSPB8 cDNAs were each inserted into the pACU2 vector and microinjected into y w;PBac y[+]-attP-3B VK00001 embryos. elav -GAL4, ppk -GAL4, and D42 -GAL4 lines were purchased from Bloomington Stock Center. In addition, Drosophila lines expressing UAS-PINK1 and UAS-Parkin were also created using the method described in Park et al., 2006. The genotypes of the constructed Drosophila lines are as follows: elav (elav-GAL4/+); elav HSPB8 WT (elav-GAL4/+; UAS-HSPB8 WT /+); elav HSPB K141T (elav-GAL4/+; UAS-HSPB8 K141T /+); elav HSPB K141E (elav-GAL4/+;; UAS-HSPB8 K141E /+); ppk (ppk-GAL4/+); ppk HSPB8 WT (ppk-GAL4/UAS-HSPB8 WT ); ppk HSPB K141T (ppk-GAL4/UAS-HSPB8 K141T ); ppk HSPB K141E (ppk-GAL4/UAS-HSPB8 K141E ); D42 (D42-GAL4/+); D42 HSPB8 WT (UAS-HSPB8 WT /+; D42-GAL4/+); D42 HSPB K141T (UAS- HSPB K141T /+; D42-GAL4/+); D42 HSPB K141E (UAS-HSPB8 K141E /+; D42-GAL4/+); elav HSPB K141T PINK1 (elav-GAL4/+; UAS-HSPB8 K141T /UAS-PINK1); elav HSPB K141T Parkin (elav-GAL4/+; UAS-HSPB8 K141T /UAS-Parkin); elav HSPB K141E PINK1 (elav-GAL4/+; UAS-HSPB8 K141E /UAS-PINK1); elav HSPB K141E Parkin (elav-GAL4/+; and UAS-HSPB8 K141E /UAS-Parkin) .
1-2. 돌연변이 모델 검증1-2. Mutation model validation
상기에서 제작한 형질전환 초파리들의 HSPB8 발현을 웨스턴 블롯 분석으로 확인하고, 이들의 수명 분석을 수행하였다. 구체적으로, HSPB8의 발현을 확인하기 위해, 20개의 10일령 수컷 초파리 머리를 파쇄 버퍼로 파쇄한 후, 파쇄물을 원심분리하고, SDS 샘플 버퍼를 첨가하여 가열하였다. 그 후 샘플들을 SDS-PAGE젤에 전기영동하고 니트로셀룰로오스 멤브레인에 트랜스퍼하였다. 멤브레인을 블로킹 용액과 30분 인큐베이션한 뒤 항-HSPB8 항체 (1:1,000, Cell Signaling Technology, #95357) 또는 항-베타-액틴 항체 (1:1,000, Santa Cruz Biotechnology, SC-1616)를 일차 항체로 이용하여 Kang et al., 2020에 기재된 바와 같이 반응시키고 ImageQuant LAS 4000 system (GE Healthcare Life Sciences)을 이용하여 멤브레인에 결합된 항체를 검출하였다. 또한, 수명 분석을 위해, 90마리의 초파리를 3개의 군 (각 군의 n = 30)으로 나눠 각각 바이알로 옮긴 뒤, 25℃에서 3일 또는 4일마다 생존 점수를 매겼다. 그 후, Online Application Survival Analysis 2 Lifespan Assays (http://sbi.postech.ac.kr/oasis2)를 이용하여 각 유전형이 개체의 수명에 미치는 영향을 확인하기 위해 누적 생존 데이터에 대해 Kaplan-Meier 추정 및 로그-순위 검정법(log-rank test)을 수행하였다. HSPB8 expression in the transgenic fruit flies prepared above was confirmed by Western blot analysis, and their lifespan analysis was performed. Specifically, to confirm the expression of HSPB8, 20 10-day-old male fruit fly heads were disrupted with disruption buffer, then centrifuged, and SDS sample buffer was added and heated. Afterwards, the samples were electrophoresed on SDS-PAGE gel and transferred to a nitrocellulose membrane. The membrane was incubated with blocking solution for 30 minutes and then incubated with anti-HSPB8 antibody (1:1,000, Cell Signaling Technology, # 95357 ) or anti-beta-actin antibody (1:1,000, Santa Cruz Biotechnology, SC-1616) as the primary antibody. The reaction was performed as described in Kang et al., 2020, and antibodies bound to the membrane were detected using the ImageQuant LAS 4000 system (GE Healthcare Life Sciences). Additionally, for lifespan analysis, 90 fruit flies were divided into three groups (n = 30 in each group), transferred to each vial, and survival scores were scored every 3 or 4 days at 25°C. Afterwards, Kaplan-Meier estimation was performed on the cumulative survival data to determine the effect of each genotype on the individual's lifespan using Online Application Survival Analysis 2 Lifespan Assays ( http://sbi.postech.ac.kr/oasis2 ). And the log-rank test was performed.
그 결과, 형질전환 초파리들이 성공적으로 성체로 발달하였으며, 이들 간 HSPB8의 단백질 발현 수준은 유의적 차이가 없는 것으로 나타났다 (도 1a 및 b). 또한, 수명 분석 결과, 야생형 및 HSPB8 돌연변이의 발현이 수명의 부분적 감소를 야기했으나, 15일 이내에 생존율의 유의한 감소는 관찰되지 않았다 (도 1c 및 d).As a result, the transgenic fruit flies successfully developed into adults, and there was no significant difference in the protein expression level of HSPB8 between them (Figures 1a and b). Additionally, lifespan analysis showed that expression of wild type and HSPB8 mutants caused a partial reduction in lifespan, but no significant decrease in survival was observed within 15 days (Figures 1c and d).
실시예 2. 돌연변이에 의한 감각 증상(sensory symptoms) 확인Example 2. Confirmation of sensory symptoms due to mutation
HSPB8 돌연변이에 의해 감각 이상(sensory defects)이 발생하는지 확인하기 위해, 초파리 유충을 이용하여 열 통각 분석(thermal nociception assay)을 수행하였다. 구체적으로, ppk-GAL4를 이용하여 다중-수지상 감각 신경(multi-dendritic sensory neurons)에서 HSPB8 전이유전자를 발현시킨 HSPB8 WT 초파리, HSPB8 K141N 돌연변이 초파리 및 HSPB8 K141T 돌연변이 초파리의 각 L3 유충(larvae) (부화 후 [AEL] 120h) (최소 50마리)를 증류수로 헹군 뒤 패트리 디쉬에 놓고 10초 동안 순응시키고 현미경으로 관찰하면서 각 유충의 복부 A4-A5 세그먼트를 마이크로프로세서로 온도가 조절되는 맞춤 제작된 0.6-mm 너비의 열 프로브로 터치하였다. 회피적인 나선형 롤링(corkscrewlike rolling) 반응을 유발하는데 걸린 시간을 통증 평가(withdrawal latency)로 측정하였고, 컷오프 값인 20초 이내에 롤링 반응을 보이지 않은 유충은 반응이 없는 것으로 간주하였다. 그 결과, 모든 유충은 36℃의 열 프로브에는 반응을 보이지 않은 반면, 46℃의 열 프로브에는 빠른 롤링 반응을 보였다 (도 2a). 이에, 열 프로브의 온도를 40℃로 선택한 뒤, ppk 발현 유충, HSPB8WT 발현 유충 (ppk HSPB8 WT), HSPB8 K141T 발현 유충 (ppk HSPB8 K141T) 및 HSPB8 K141E 발현 유충 (ppk HSPB8 K141E)에서 각각 열 통각 분석을 수행하고 반응 지연을 분석하였다. 그 결과, 각 유충의 군에서 유의적인 차이가 발견되지 않아, HSPB8 전이 유전자가 초파리 열 통각 모델에서 감각 이상을 유도할 수 없음을 확인하였다 (도 2b).To confirm whether sensory defects occur due to HSPB8 mutation, a thermal nociception assay was performed using Drosophila larvae. Specifically, each L3 larvae (hatched) of HSPB8 WT fruit flies, HSPB8 K141N mutant fruit flies, and HSPB8 K141T mutant fruit flies that expressed the HSPB8 transgene in multi-dendritic sensory neurons using ppk-GAL4 After [AEL] 120 h) (minimum of 50 larvae) were rinsed with distilled water, placed in Petri dishes, allowed to acclimatize for 10 s, and observed under a microscope. Abdominal A4-A5 segments of each larva were placed in a custom-made 0.6-microprocessor temperature-controlled larvae. It was touched with a mm-wide thermal probe. The time taken to induce an evasive corkscrewlike rolling response was measured as pain assessment (withdrawal latency), and larvae that did not show a rolling response within the cutoff value of 20 seconds were considered unresponsive. As a result, all larvae showed no response to the heat probe at 36°C, whereas they showed a rapid rolling response to the heat probe at 46°C (Figure 2a). Accordingly, after selecting the temperature of the heat probe at 40°C, heat nociception was observed in ppk- expressing larvae, HSPB8 WT -expressing larvae ( ppk HSPB8 WT ), HSPB8 K141T -expressing larvae ( ppk HSPB8 K141T ), and HSPB8 K141E -expressing larvae ( ppk HSPB8 K141E ), respectively. Analyzes were performed and response latencies were analyzed. As a result, no significant differences were found in each group of larvae, confirming that the HSPB8 transgene was unable to induce sensory abnormalities in the Drosophila heat nociception model (Figure 2b).
실시예 3. 돌연변이에 의한 운동 능력 감소 확인Example 3. Confirmation of decreased exercise capacity due to mutation
3-1. 행동 분석3-1. behavioral analysis
HSPB8의 돌연변이에 따른 운동 활동 변화를 확인하기 위해, 실시예 1에서 제작한 형질전환 초파리 계통 HSPB8 WT, HSPB8 K141THSPB8 K141E (elav, elav HSPB8 WT, elav HSPB8 K141Telav HSPB8 K141E)의 행동을 각각 디지털 비디오 카메라로 기록하고 걷는 궤적(trajectory) 및 속도를 Ctrax 및 Matlab.로 계산하였다. 구체적으로, HSPB8 WT (elav HSPB8 WT), HSPB8 K141T (elav HSPB8 K141T) 또는 HSPB8 K141E (elav HSPB8 K141E)를 발현하는 5일령의 성충 수컷 형질전환 초파리를 각각 카메라가 설치된 675 mm×440 mm×410 mm 크기의 단열 상자에 넣어 25℃에서 30분 동안 적응시키고, 높이 2 mm 및 직경 60 mm의 투명하고 둥근 공간에서의 자유로운 움직임을 30.06 fps(초당 프레임)로 기록했다. 기록된 비디오는 Ctrax를 이용하여 MATLAB 파일로 변환하고 평균 속도 및 궤적 그래프를 얻기 위해 behavioral microarray toolbox를 사용하였다. In order to confirm changes in locomotor activity due to mutations in HSPB8, the behavior of the transgenic Drosophila lines HSPB8 WT , HSPB8 K141T , and HSPB8 K141E ( elav, elav HSPB8 WT , elav HSPB8 K141T , and elav HSPB8 K141E ) produced in Example 1, respectively. It was recorded with a digital video camera, and walking trajectory and speed were calculated with Ctrax and Matlab. Specifically, 5-day-old adult male transgenic fruit flies expressing HSPB8 WT ( elav HSPB8 WT ), HSPB8 K141T ( elav HSPB8 K141T ), or HSPB8 K141E ( elav HSPB8 K141E ) were each spaced at 675 mm × 440 mm × 410 mm equipped with a camera. They were placed in an insulated box and acclimatized for 30 minutes at 25°C, and their free movement in a transparent, round space with a height of 2 mm and a diameter of 60 mm was recorded at 30.06 fps (frames per second). The recorded video was converted to a MATLAB file using Ctrax and the behavioral microarray toolbox was used to obtain average velocity and trajectory graphs.
그 결과, HSPB8WT을 발현하는 초파리군은 elav-GAL4 드라이버만을 발현하는 대조군 초파리와 움직임에서 유의한 차이를 나타내지 않았으나, HSPB8 K141T 또는 HSPB8 K141E를 발현하는 초파리군은 걸음 속도 및 궤적에서 명백한 결함을 나타냈다 (도 3A 및 B). 이와 같은 돌연변이 특이적 운동 결함은 5일령 암컷 초파리에게서도 나타났다. 또한, 15일령 초파리의 운동 능력을 측정했을 때, HSPB8 WT 초파리군은 지속적으로 운동 능력에 유의미한 변화가 없는 것으로 나타났으나, HSPB8 K141T 또는 HSPB8 K141E 초파리군은 5일령 초파리일때에 비해 심각한 운동 능력 감소를 나타냈다 (도 3c 및 d). As a result, the group of fruit flies expressing HSPB8 WT showed no significant difference in movement from the control fruit flies expressing only the elav-GAL4 driver, but the group of fruit flies expressing HSPB8 K141T or HSPB8 K141E showed obvious defects in walking speed and trajectory. (Figure 3A and B). This mutation-specific movement defect was also observed in 5-day-old female fruit flies. Additionally, when measuring the exercise capacity of 15-day-old fruit flies, the HSPB8 WT fruit fly group consistently showed no significant change in exercise ability, but the HSPB8 K141T or HSPB8 K141E fruit fly group showed a serious decrease in exercise ability compared to 5-day-old fruit flies. (Figures 3c and d).
3-2. 등반 분석3-2. Climbing Analysis
알츠하이머병 및 파킨슨병과 같은 다양한 신경퇴행성질환의 초파리 모델에서 운동 결함을 확인하는데 유용한 것으로 입증된 등반 능력을 등반 분석(climbing assay)도 확인하였다. 구체적으로, 상기 실시예 3-1의 HSPB8 WT, HSPB8 K141T 또는 HSPB8 K141E를 발현하는 초파리군들 (n=15)를 climbing ability test vials로 옮긴 후 상온에서 1h 동안 환경 순응시키고, 바이알을 두드려 파리들을 바닥으로 떨어트린 뒤 등반하는 파리의 수를 10초 동안 계수하였다. 각 군에 대해 10번 시도한 뒤 등반 점수 (총 파리 수에 대한 등반 파리수의 백분율)을 계산하였다. A climbing assay was also used to determine climbing ability, which has proven useful in identifying motor deficits in fruit fly models of various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Specifically, the fruit fly group (n=15) expressing HSPB8 WT , HSPB8 K141T or HSPB8 K141E of Example 3-1 was transferred to climbing ability test vials, acclimatized to the environment for 1 h at room temperature, and the flies were knocked by tapping the vials. After being dropped to the floor, the number of climbing flies was counted for 10 seconds. Climbing scores (percentage of number of climbing flies relative to total number of flies) were calculated after 10 attempts for each group.
그 결과, HSPB8 WT의 발현은 등반 능력에 유의미한 차이를 유도하지 않았으나, HSPB8 K141T 또는 HSPB8 K141E의 발현은 5일령 수컷 초파리 및 암컷 초파리 모두에게 현저한 운동 감소를 유도하였다 (도 4a 및 b). 이와 같은 등반능 손실은 HSPB8 K141T 또는 HSPB8 K141E를 발현하는 15일령 초파리에서도 일관되게 관찰되었다 (도 4a 및 b).As a result, expression of HSPB8 WT did not induce a significant difference in climbing ability, but expression of HSPB8 K141T or HSPB8 K141E induced a significant decrease in locomotion in both 5-day-old male and female flies (Figures 4a and b). This loss of climbing ability was also consistently observed in 15-day-old fruit flies expressing HSPB8 K141T or HSPB8 K141E (Figures 4a and b).
3-3. 운동 신경 이상 확인3-3. Check for motor nerve abnormalities
운동 신경(motor neuron) 이상이 HSPB8-관련된 인간 병리에서 주요 증상이기 때문에, D42-GAL4 드라이버를 이용하여 초파리의 운동 신경에서 HSPB8 WT, HSPB8 K141T 또는 HSPB8 K141E 전이유전자(transgene)를 발현시키고, 형질전환 초파리의 표현형으로서 운동 능력을 상기 실시예 3-1 및 3-2에 기재된 방법으로 확인하였다. Since motor neuron abnormalities are a major symptom in HSPB8-related human pathology, the D42-GAL4 driver was used to express the HSPB8 WT , HSPB8 K141T or HSPB8 K141E transgene in the motor neurons of Drosophila, and then perform transformation. Motor ability as a phenotype of Drosophila was confirmed by the method described in Examples 3-1 and 3-2 above.
그 결과, HSPB8 WT를 발현하는 초파리군에서는 대조군에 비해 유의미한 등반 능력 변화가 관찰되지 않은 반면, HSPB8 K141T 또는 HSPB8 K141E를 발현하는 초파리군들에서는 대조군 또는 HSPB8 WT 발현군에 비해 운동 능력이 현저히 감소하는 것으로 나타났다 (도 4c 및 d). 또한, 비디오 트래킹 분석에서도 D42-GAL4 드라이버를 이용하여 HSPB8 전이 유전자를 발현하는 초파리의 걷는 속도 및 궤적이 현저히 감소하는 것으로 나타나 (도 5), 인간 HSPB8 돌연변이의 운동 신경에서의 발현이 지속적으로 운동 능력을 감소시키는 것을 확인하였다. 이를 통해, 인간 HSPB8 K141T 또는 HSPB8 K141E의 발현이 초파리에서 명확한 운동 결함을 발생시키는 것을 알 수 있다.As a result, no significant change in climbing ability was observed in the fruit fly group expressing HSPB8 WT compared to the control group, whereas in the fruit fly group expressing HSPB8 K141T or HSPB8 K141E , locomotor ability was significantly reduced compared to the control or HSPB8 WT expression group. was found to be (Figure 4c and d). Additionally, video tracking analysis also showed that the walking speed and trajectory of fruit flies expressing the HSPB8 transgene using the D42-GAL4 driver were significantly reduced (Figure 5), suggesting that expression in motor neurons of human HSPB8 mutants consistently impaired locomotor performance. It was confirmed that it decreased. This shows that expression of human HSPB8 K141T or HSPB8 K141E causes clear movement defects in Drosophila.
실시예 4. 돌연변이에 의한 미토콘드리아 기능 장애 확인Example 4. Confirmation of mitochondrial dysfunction caused by mutation
4-1. 미토콘드리아 막 전위4-1. mitochondrial membrane potential
다발성 신경퇴행성 질환(multiple neurodegenerative diseases)의 병태생리학에서 미토콘드리아 기능 장애(mitochondrial dysfunction)가 필수적인 역할을 하는 것이 보고된 바 있으므로, HSPB8의 돌연변이가 초파리의 신경에서 미토콘드리아 막 전위에 영향을 미치는지 확인하기 위해, 각 HSPB8 형질전환 초파리군의 유충의 VNC(ventral nerve cord) (운동 신경을 포함하는 포유동물의 척수(spinal cord)와 기능적으로 대응됨)에서 막 전위를 TMRM로 측정하였다. 구체적으로, 미토콘드리아 막 전위를 측정하기 위해, 각 형질전환 초파리군의 유충의 VNC를 PBS에서 절개하고, 2.5 nM tetramethylrhodamine methyl ester (TMRM, Molecular Probes, MA) (in PBS+0.1% Triton X-100)로 30분 동안 염색하였다. TMRM 형광은 Zeiss LSM 800 콘포칼 현미경을 이용하여 분석하였으며, TMRM 신호 강도는 Zeiss Zen 소프트웨어를 이용하여 측정하였으며, 평균 TMRM 형광 강도 (±SD)는 10개의 독입적인 샘플에 대해 계산되었다.Since mitochondrial dysfunction has been reported to play an essential role in the pathophysiology of multiple neurodegenerative diseases, to determine whether mutations in HSPB8 affect mitochondrial membrane potential in Drosophila neurons, Membrane potential was measured using TMRM in the ventral nerve cord (VNC) (functionally equivalent to the spinal cord of mammals containing motor neurons) of larvae from each HSPB8 transgenic Drosophila group. Specifically, to measure mitochondrial membrane potential, the VNC of larvae of each transgenic Drosophila group was dissected in PBS and incubated with 2.5 nM tetramethylrhodamine methyl ester (TMRM, Molecular Probes, MA) (in PBS+0.1% Triton X-100). was stained for 30 minutes. TMRM fluorescence was analyzed using a Zeiss LSM 800 confocal microscope, TMRM signal intensity was measured using Zeiss Zen software, and the average TMRM fluorescence intensity (±SD) was calculated for 10 independent samples.
그 결과, 미토콘드리아 막 전위(transmembrane potential)는 HSPB8 K141T 돌연변이 유충 및 HSPB8 K141E 돌연변이 유충 모두에게서 야생형 형질전환 유충에 비해 내내 감소하여 (도 4a), HSPB8 돌연변이 초파리가 운동 능력 손실 및 미토콘드리아 기능 장애와 같은 환자들의 표현형을 성공적으로 나타내는 것을 확인하였다. As a result, mitochondrial membrane potential (transmembrane potential) was decreased throughout both HSPB8 K141T mutant larvae and HSPB8 K141E mutant larvae compared to wild-type transgenic larvae (Figure 4a), indicating that HSPB8 mutant Drosophila was more susceptible to patients with locomotor loss and mitochondrial dysfunction. It was confirmed that their phenotypes were successfully expressed.
4-2. 마이토파지 수준4-2. Mitophage level
HSPB8 돌연변이에 의해 유도된 미토콘드리아 결함을 추가로 조사하기 위해, elav-GAL4 드라이버에 미토콘드리아 표적 형광 프로브인 mt-Keima(mitochondria-targeted fluorescent protein Keima)를 함께 발현시킨 HSPB8 형질전환 초파리 유충의 VNC에서, mt-Keima의 특성 (미토콘드리아의 물리적 pH8.0에서 mt-Keima가 440nm에서 여기 피크를 나타내고 마이토파지 후 산성 리소좀 내의 pH4.5에서 mt-Keima의 여기 피크가 586nm로 이동)을 이용하여 미토콘드리아 QC(mitochondria quality control) 기전에 필수적인 마이토파지(mitophagy)의 수준을 확인하였다. 구체적으로, mt-Keima를 발현하는 각 군의 유충의 VNC를 PBS에서 절개하고 Zeiss LSM 800 콘포칼 현미경을 이용하여 mt-Keima의 형광을 595-700 nm 여기 대역폭(bandwidth)을 이용한 두 개의 순차적인 여기 레이저 (488 nm 및 555 nm)로 이미지화하였으며, 이 이미지를 Zeiss Zen을 이용하여 픽셀 단위로 분석하였다. 마이토파지 수준 (마이토파지의 %)는 총 픽셀수로 나눈 높은 적/녹 비율을 가지는 픽셀의 수로 정의되었다. 평균 마이토파지 수준 (±SD)은 10개의 독립적인 샘플에 대해 계산되었다.To further investigate the mitochondrial defects induced by HSPB8 mutations, in the VNC of HSPB8 transgenic Drosophila larvae in which the elav-GAL4 driver was coexpressed with the mitochondria-targeted fluorescent protein Keima (mt-Keima), mt -Mitochondrial QC ( The level of mitophagy, which is essential for the mitochondria quality control mechanism, was confirmed. Specifically, the VNC of each group of larvae expressing mt-Keima was dissected in PBS, and the fluorescence of mt-Keima was measured using a Zeiss LSM 800 confocal microscope in two sequential waves using an excitation bandwidth of 595-700 nm. Images were imaged with excitation lasers (488 nm and 555 nm), and the images were analyzed pixel by pixel using Zeiss Zen. The level of mitophagy (% of mitophagy) was defined as the number of pixels with a high red/green ratio divided by the total number of pixels. Mean mitophagy levels (±SD) were calculated for 10 independent samples.
그 결과, 마이토파지 수준 또한 HSPB8 K141T 돌연변이 유충 및 HSPB8 K141E 돌연변이 유충 모두에서 야생형 대조군에 비해 감소하는 것으로 나타났다 (도 4b).As a result, mitophagy levels were also found to be reduced in both HSPB8 K141T mutant larvae and HSPB8 K141E mutant larvae compared to the wild-type control (Figure 4b).
이를 통해, HSPB8 단백질의 돌연변이가 미토콘드리아 QC를 방해하여 결과적으로 미토콘드리아의 기능을 손상시키는 것을 확인할 수 있었다. Through this, it was confirmed that mutations in the HSPB8 protein interfere with mitochondrial QC and consequently impair mitochondrial function.
실시예 5. Example 5. PINK1PINK1 and parkinparkin of 도입에 의한 미토콘드리아 기능 장애 회복Restoration of mitochondrial dysfunction by introduction
HSPB8 돌연변이에 의한 초파리에서의 미토콘드리아 활성 및 QC 감소가 PINK1 또는 Parkin에 의해 회복되는지 확인하기 위해, PINK1 또는 Parkin의 전이 유전자를 HSPB8 돌연변이 초파리에 도입하고 (elav HSPB8 K141T PINK1, elav HSPB8 K141E PINK1, elav HSPB8 K141T Parkinelav HSPB8 K141E Parkin) 미토콘드리아 막 전위, 마이토파지 수준 및 운동 능력 변화를 확인하였다. 그 결과, HSPB8 K141T 또는 HSPB8 K141E 형질전환 초파리 모두에서 PINK1 또는 Parkin의 발현에 의해 미토콘드리아 막 전위 손실이 회복되었으며 (도 4a), 감소된 마이토파지 수준, 감소된 등반 능력, 걷는 속도 및 운동 궤적도 회복되는 것으로 나타났다 (도 4c 내지 f).To determine whether the reduction in mitochondrial activity and QC in Drosophila caused by HSPB8 mutation is restored by PINK1 or Parkin, transgenes of PINK1 or Parkin were introduced into HSPB8 mutant Drosophila ( elav HSPB8 K141T PINK1, elav HSPB8 K141E PINK1, elav HSPB8 K141T Parkin and elav HSPB8 K141E Parkin ) Changes in mitochondrial membrane potential, mitophagy level, and exercise capacity were confirmed. As a result, loss of mitochondrial membrane potential was restored by expression of PINK1 or Parkin in both HSPB8 K141T or HSPB8 K141E transgenic Drosophila (Figure 4a), as well as reduced mitophagy level, reduced climbing ability, walking speed, and locomotor trajectory. appeared to recover (Figures 4c to f).
상기의 미토콘드리아 활성 및 마이토파지 회복과 동반되는 운동 결함 회복 결과를 통해, 미토콘드리아 기능 장애가 HSPB8 돌연변이에 의해 유도되는 신경병증(neuropathies)의 발병에 중요한 역할을 하는 것을 확인하였다. Through the results of recovery of motor defects accompanied by recovery of mitochondrial activity and mitophagy, it was confirmed that mitochondrial dysfunction plays an important role in the development of neuropathies induced by HSPB8 mutations.
실시예 6. PINK1 활성화에 의한 미토콘드리아 기능 장애 회복Example 6. Recovery of mitochondrial dysfunction by PINK1 activation
PINK1의 활성화에 의해 HSPB8 돌연변이 초파리의 운동 결함도 회복되는지 확인하기 위해, 미토콘드리아 탈분극(mitochondrial depolarization)과 독립적으로 PINK1을 활성화시키는 키네틴 리보사이드(kinetin riboside, KR) (N6-furfuryl adenine riboside)를 1일령 HSPB8 WT 초파리, HSPB8 K141N 돌연변이 초파리 및 HSPB8 K141T 돌연변이 초파리에 각각 1 mM 또는 5 mM로 14일 동안 경구투여한 후 비디오 트래킹 분석 및 등반 분석으로 운동 활성(locomotor activity)을 확인하였다. To determine whether the movement defects of HSPB8 mutant Drosophila are restored by activation of PINK1, kinetin riboside (KR) (N6-furfuryl adenine riboside), which activates PINK1 independently of mitochondrial depolarization, was administered to mice at 1 day of age. After oral administration of 1 mM or 5 mM to HSPB8 WT fruit flies, HSPB8 K141N mutant fruit flies, and HSPB8 K141T mutant fruit flies, respectively, for 14 days, locomotor activity was confirmed using video tracking analysis and climbing analysis.
그 결과, 야생형 형질전환 초파리는 KR 투여에 의해 운동 활성이 대조군 (비히클 투여군)에 비해 변하지 않은 것으로 나타나 (도 6a 내지 c), KR에 의한 부작용이 없음을 확인할 수 있었다. 또한, HSPB8 돌연변이 형질전환 초파리에서, KR의 투여 농도에 의존적으로 운동 활성이 현저히 회복되는 것으로 나타났다 (도 6a 내지 c). As a result, the locomotor activity of the wild-type transgenic fruit flies appeared to be unchanged compared to the control group (vehicle administered group) due to KR administration (FIGS. 6a to 6c), confirming that there were no side effects caused by KR. In addition, in HSPB8 mutant transgenic fruit flies, locomotor activity was shown to be significantly restored depending on the administered concentration of KR (Figures 6a to c).
이를 통해, PINK1 활성화가 HSPB8 돌연변이에 의해 유도되는 표현형을 회복시킬 수 있으며, KR이 HSPB8-관련된 발병을 억제할 수 있음을 확인하였다.Through this, it was confirmed that PINK1 activation can restore the phenotype induced by HSPB8 mutation and that KR can suppress HSPB8-related pathogenesis.

Claims (20)

  1. HSPB8(small heat shock protein B8) 단백질의 K141N 또는 K141T 돌연변이를 검출할 수 있는 제제를 포함하는, 샤르코-마리-투스(Charcot-Marie-Tooth disease, CMT) 질환의 진단용 조성물.A composition for diagnosing Charcot-Marie-Tooth disease (CMT) disease, comprising an agent capable of detecting the K141N or K141T mutation of the small heat shock protein B8 (HSPB8) protein.
  2. 제 1항에 있어서, 돌연변이를 검출할 수 있는 제제는 HSPB8 단백질에 특이적으로 결합하는 항체, 항체 단편, 앱타머(aptamer), 애필린(Affilin), 애피바디(Affibody), 애피머(Affimer), 애피틴(Affitin), 알파바디(Alphabody), 앤티클린(Anticlin), 다르핀(DARpin), 피노머(Fynomoer), 쿠니츠 도메인 펩타이드(Kunitz domain peptide), 아비머(avidity multimer), 펩티도모방체(peptidomimetics), 수용체, 리간드 또는 보조인자를 포함하는, 샤르코-마리-투스 질환의 진단용 조성물.The method of claim 1, wherein the agent capable of detecting a mutation is an antibody, antibody fragment, aptamer, Affilin, Affibody, or Affimer that specifically binds to the HSPB8 protein. , Affitin, Alphabody, Anticlin, DARpin, Fynomoer, Kunitz domain peptide, avidity multimer, peptido A composition for diagnosing Charcot-Marie-Tooth disease, comprising peptidomimetics, receptors, ligands or cofactors.
  3. 제 1항에 있어서, 돌연변이를 검출할 수 있는 제제는 HSPB8 단백질을 인코딩하는 핵산 분자를 특이적으로 인식하는 프라미어쌍, 또는 프로브, 또는 프라이머쌍 및 프로브를 포함하는, 샤르코-마리-투스 질환의 진단용 조성물.The method of claim 1, wherein the agent capable of detecting a mutation comprises a primer pair, or a probe, or a primer pair and a probe that specifically recognizes a nucleic acid molecule encoding the HSPB8 protein, for Charcot-Marie-Tooth disease. Diagnostic composition.
  4. 제 1항 내지 제 3항 중 어느 한 항의 조성물을 포함하는 샤르코-마리-투스 질환의 진단용 키트.A diagnostic kit for Charcot-Marie-Tooth disease comprising the composition of any one of claims 1 to 3.
  5. 제 4항에 있어서, RT-PCR 키트, 마이크로어레이 칩 키트 또는 단백질 칩 키트인 샤르코-마리-투스 질환의 진단용 키트.The diagnostic kit for Charcot-Marie-Tooth disease according to claim 4, which is an RT-PCR kit, a microarray chip kit, or a protein chip kit.
  6. PINK1(PTEN-induced putative kinase 1) 또는 Parkin 단백질, 이의 활성화제, 또는 이를 코딩하는 핵산분자를 포함하는 벡터를 포함하는 샤르코-마리-투스 질환의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for the prevention or treatment of Charcot-Marie-Tooth disease, comprising a vector containing PINK1 (PTEN-induced putative kinase 1) or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same.
  7. 제 6항에 있어서, HSPB8 단백질의 K141N 또는 K141T 돌연변이에 의한 샤르코-마리-투스 질환인, 샤르코-마리-투스 질환의 예방 또는 치료용 약학적 조성물.The pharmaceutical composition for preventing or treating Charcot-Marie-Tooth disease according to claim 6, which is Charcot-Marie-Tooth disease caused by K141N or K141T mutation of HSPB8 protein.
  8. 제 6항에 있어서, 키네틴 리보사이드(kinetin riboside, KR) (N6-furfuryl adenine riboside)를 포함하는, 샤르코-마리-투스 질환의 예방 또는 치료용 약학적 조성물.The pharmaceutical composition for preventing or treating Charcot-Marie-Tooth disease according to claim 6, comprising kinetin riboside (KR) (N6-furfuryl adenine riboside).
  9. 제 6항에 있어서, 운동 결함 또는 미토콘드리아 기능 장애를 개선하는, 샤르코-마리-투스 질환의 예방 또는 치료용 약학적 조성물. The pharmaceutical composition for preventing or treating Charcot-Marie-Tooth disease according to claim 6, which improves motor defects or mitochondrial dysfunction.
  10. K141N 또는 K141T 돌연변이를 포함하는 HSPB8 단백질을 발현하는 샤르코-마리-투스 질환 동물 모델.Charcot-Marie-Tooth disease animal model expressing HSPB8 protein containing K141N or K141T mutations.
  11. 제 10항에 있어서, 신경세포, 운동 신경세포 또는 다중-수지상 감각 신경세포에서 K141N 또는 K141T 돌연변이 HSPB8 단백질을 발현하는 샤르코-마리-투스 질환 동물 모델.11. The Charcot-Marie-Tooth disease animal model according to claim 10, which expresses the K141N or K141T mutant HSPB8 protein in neurons, motor neurons, or multi-dendritic sensory neurons.
  12. 제 10항에 있어서, 초파리(Drosophila)인 샤르코-마리-투스 질환 동물 모델.The Charcot-Marie-Tooth disease animal model according to claim 10, which is Drosophila.
  13. 제 10항에 있어서, K141N 또는 K141T 돌연변이 HSPB8 단백질을 코딩하는 핵산 분자가 신경(뉴런) 특이적 프로모터 elav, 운동 신경세포 특이적 프로모터 D42 또는 다중-수지상 감각 신경 세포(multi-dendritic sensory neurons) 특이적 프로모터 ppk에 작동가능하게 연결된 샤르코-마리-투스 질환 동물 모델.The method of claim 10, wherein the nucleic acid molecule encoding the K141N or K141T mutant HSPB8 protein is selected from the neuron-specific promoter elav , the motor neuron-specific promoter D42 , or the multi-dendritic sensory neurons-specific promoter. A Charcot-Marie-Tooth disease animal model operably linked to the promoter ppk .
  14. 대상으로부터 분리된 시료에서 HSPB8 단백질의 K141N 또는 K141T 돌연변이를 검출하는 것을 포함하는, 샤르코-마리-투스 질환의 발병 가능성을 진단하는데 필요한 정보를 제공하는 방법.A method for providing information necessary for diagnosing the possibility of developing Charcot-Marie-Tooth disease, comprising detecting the K141N or K141T mutation of the HSPB8 protein in a sample isolated from a subject.
  15. 제 14항에 있어서, 대상으로부터 분리된 시료에서 HSPB8 단백질의 K141N 또는 K141T 돌연변이가 검출된 경우, 상기 대상이 샤르코-마리-투스 질환이 발병할 가능성이 높은 것으로 판정하는 단계를 추가로 포함하는, 샤르코-마리-투스 질환의 발병 가능성을 진단하는데 필요한 정보를 제공하는 방법.The method of claim 14, further comprising the step of determining that the subject is likely to develop Charcot-Marie-Tooth disease when the K141N or K141T mutation of the HSPB8 protein is detected in the sample isolated from the subject. -A method of providing the information necessary to diagnose the possibility of developing Marie-Tooth disease.
  16. 1) 피검 화합물 또는 조성물을 K141N 또는 K141T 돌연변이를 포함하는 HSPB8 단백질을 발현하는 세포주 또는 동물 모델에 처리하고;1) Treating the test compound or composition to a cell line or animal model expressing HSPB8 protein containing K141N or K141T mutation;
    2) 피검 화합물 또는 조성물이 처리된 세포주 또는 동물 모델에서 미토콘드리아 기능 장애 정도를 측정하며; 및2) measuring the degree of mitochondrial dysfunction in cell lines or animal models treated with the test compound or composition; and
    3) 피검 화합물 또는 조성물을 무처리한 대조군 세포주와 비교하여 미토콘드리아 기능 장애가 개선된 피검 화합물 또는 조성물을 선별하는 것을 포함하는 샤르코-마리-투스 질환 치료제 후보물질의 스크리닝 방법.3) A screening method for a candidate for the treatment of Charcot-Marie-Tooth disease, comprising selecting a test compound or composition with improved mitochondrial dysfunction compared to a control cell line untreated with the test compound or composition.
  17. HSPB8 단백질의 K141N 또는 K141T 돌연변이를 검출하는 단계를 포함하는, 샤르코-마리-투스 질환의 진단 방법.A method for diagnosing Charcot-Marie-Tooth disease, comprising detecting a K141N or K141T mutation in the HSPB8 protein.
  18. PINK1 또는 Parkin 단백질, 이의 활성화제, 또는 이를 코딩하는 핵산분자를 포함하는 벡터를 샤르코-마리-투스 질환에 걸린 개체에 투여하는 단계를 포함하는, 샤르코-마리-투스의 치료 방법.A method of treating Charcot-Marie-Tooth, comprising administering a vector containing PINK1 or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same to an individual suffering from Charcot-Marie-Tooth disease.
  19. HSPB8 단백질의 K141N 또는 K141T 돌연변이를 검출할 수 있는 제제의 샤르코-마리-투스 질환의 진단 용도.Diagnostic use of Charcot-Marie-Tooth disease of an agent capable of detecting the K141N or K141T mutation of the HSPB8 protein.
  20. PINK1 또는 Parkin 단백질, 이의 활성화제, 또는 이를 코딩하는 핵산분자를 포함하는 벡터의 샤르코-마리-투스 질환의 예방 또는 치료 용도.Use of a vector containing PINK1 or Parkin protein, an activator thereof, or a nucleic acid molecule encoding the same for the prevention or treatment of Charcot-Marie-Tooth disease.
PCT/KR2023/009373 2022-08-01 2023-07-04 Animal model of charcot-marie-tooth disease WO2024029755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220095418A KR20240018003A (en) 2022-08-01 2022-08-01 Charcot-Marie-Tooth disease model animal
KR10-2022-0095418 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024029755A1 true WO2024029755A1 (en) 2024-02-08

Family

ID=89849091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009373 WO2024029755A1 (en) 2022-08-01 2023-07-04 Animal model of charcot-marie-tooth disease

Country Status (2)

Country Link
KR (1) KR20240018003A (en)
WO (1) WO2024029755A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070101447A1 (en) * 2003-11-13 2007-05-03 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Diagnostic tests for the detection of motor neuropathy
WO2019068865A1 (en) * 2017-10-06 2019-04-11 Universiteit Antwerpen Biomarkers for neurodegenerative and/or neuromuscular diseases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070101447A1 (en) * 2003-11-13 2007-05-03 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Diagnostic tests for the detection of motor neuropathy
WO2019068865A1 (en) * 2017-10-06 2019-04-11 Universiteit Antwerpen Biomarkers for neurodegenerative and/or neuromuscular diseases

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HAN, J. E. ET AL.: "Small heat shock protein HSPB8 mutation recapitulates features of Charcot-Marie-Tooth disease (CMT) accompanying with mitochondria dysfunction in Drosophila", THE 51ST ANNUAL MEETING OF KOREAN DROSOPHILA SOCIETY, poster-44, 4 July 2022 (2022-07-04) *
KANG KYONG-HWA, HAN JI EUN, KIM HYUNJIN, KIM SOHEE, HONG YOUNG BIN, YUN JEANHO, NAM SOO HYUN, CHOI BYUNG-OK, KOH HYONGJONG: "PINK1 and Parkin Ameliorate the Loss of Motor Activity and Mitochondrial Dysfunction Induced by Peripheral Neuropathy-Associated HSPB8 Mutants in Drosophila Models", BIOMEDICINES, MDPI, BASEL, vol. 11, no. 3, Basel , pages 832, XP093127990, ISSN: 2227-9059, DOI: 10.3390/biomedicines11030832 *
MILLER SILKE; MUQIT MIRATUL M.K.: "Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson’s disease", NEUROSCIENCE LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 705, 1 January 1900 (1900-01-01), AMSTERDAM, NL , pages 7 - 13, XP085708649, ISSN: 0304-3940, DOI: 10.1016/j.neulet.2019.04.029 *
NAKHRO KHRIEZHANUO, PARK JIN-MO, KIM YE JIN, YOON BO RAM, YOO JEONG HYUN, KOO HEASOO, CHOI BYUNG-OK, CHUNG KI WHA: "A novel Lys141Thr mutation in small heat shock protein 22 (HSPB8) gene in Charcot–Marie–Tooth disease type 2L", NEUROMUSCULAR DISORDERS, ELSEVIER LTD, GB, vol. 23, no. 8, 1 August 2013 (2013-08-01), GB , pages 656 - 663, XP093136646, ISSN: 0960-8966, DOI: 10.1016/j.nmd.2013.05.009 *
STORKEBAUM ERIK, LEITÃO-GONÇALVES RICARDO, GODENSCHWEGE TANJA, NANGLE LESLIE, MEJIA MONICA, BOSMANS INGE, OOMS TINNE, JACOBS AN, V: "Dominant mutations in the tyrosyl-tRNA synthetase gene recapitulate in Drosophila features of human Charcot–Marie–Tooth neuropathy", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 106, no. 28, 14 July 2009 (2009-07-14), pages 11782 - 11787, XP093136650, ISSN: 0027-8424, DOI: 10.1073/pnas.0905339106 *

Also Published As

Publication number Publication date
KR20240018003A (en) 2024-02-13

Similar Documents

Publication Publication Date Title
De Coo et al. A 4–base pair deletion in the mitochondrial cytochrome b gene associated with parkinsonism/MELAS overlap syndrome
Andreu et al. A nonsense mutation (G15059A) in the cytochrome b gene in a patient with exercise intolerance and myoglobinuria
JP4723550B2 (en) Survival motor neuron (SMN) gene; spinal muscular atrophy
Scott et al. Peroxynitrite production and activation of poly (adenosine diphosphate‐ribose) synthetase in spinal cord injury
Wang et al. A role for the C. elegans L1CAM homologue lad-1/sax-7 in maintaining tissue attachment
Sawaishi et al. Acute cerebellitis caused by Coxiella burnetii
JPH04506752A (en) Polypeptides having thyrotropin receptor activity, nucleic acids encoding this receptor and polypeptides, and uses of such peptides
WO2018131909A1 (en) Pcnt as target protein for treating or diagnosing brain-nervous system diseases
WO2019078684A9 (en) Marker tmem43 for sensorineural hearing loss diagnosis, and use thereof
WO2024029755A1 (en) Animal model of charcot-marie-tooth disease
JP4942044B2 (en) Psychiatric disorder-related genes and their use
WO2018117647A1 (en) Mutated tau protein fragment and use thereof
WO2022114526A1 (en) Single nucleotide polymorphism marker for predicting risk of alzheimer's disease and use thereof
JP6465655B2 (en) Genes associated with seizure disorders and movement disorders and their mutations
KR101866484B1 (en) OPA1 as a causative gene of optic atrophy or sensorimotor neuropathy and method for diagnosing the disease using the same
EP0711833A2 (en) Survival motor neuron (SMN) gene: a gene for spinal muscular atrophy
WO2021107713A1 (en) Method for diagnosing amyotrophic lateral sclerosis on basis of lats1 gene mutation marker
KR101967881B1 (en) Marker for diagnosing Charcot-Marie-Tooth disease and use thereof
JP2006514821A (en) Novel KCNQ polypeptides, their modulators and their use in the treatment of mental disorders
JP5576010B2 (en) Lafora disease gene
WO2021101257A1 (en) Composition for diagnosing, preventing, or treating cognitive dysfunction comprising cotl1 as active ingredient
JP4789171B2 (en) Novel neurotrophic factor
KR101849684B1 (en) MORC2 as a causative gene of Charcot-Marie-Tooth disease type 1 and method for diagnosing the disease using the same
WO2012091449A2 (en) Pharmaceutical composition comprising phosphorylated grasp for treating cystic fibrosis
KR20230049059A (en) Targeting the palmotylation/decalmotylation cycle for the treatment of inflammatory diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850265

Country of ref document: EP

Kind code of ref document: A1