WO2024029612A1 - Substrate processing system and substrate processing method - Google Patents

Substrate processing system and substrate processing method Download PDF

Info

Publication number
WO2024029612A1
WO2024029612A1 PCT/JP2023/028509 JP2023028509W WO2024029612A1 WO 2024029612 A1 WO2024029612 A1 WO 2024029612A1 JP 2023028509 W JP2023028509 W JP 2023028509W WO 2024029612 A1 WO2024029612 A1 WO 2024029612A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
substrate
processing
plasma
chamber
Prior art date
Application number
PCT/JP2023/028509
Other languages
French (fr)
Japanese (ja)
Inventor
宏史 長池
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024029612A1 publication Critical patent/WO2024029612A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present disclosure relates to a substrate processing system and a substrate processing method.
  • Patent Document 1 discloses a substrate processing system that includes a gas analyzer that samples and analyzes gas in a chamber via gas sampling piping and a valve. It has been disclosed that, for example, a quadrupole mass spectrometer or the like is used as the gas analysis device.
  • the present disclosure provides a substrate processing system and a substrate processing method that control plasma processing with high precision.
  • a chamber a substrate support section provided in the chamber, a gas supply section configured to supply gas into the chamber, and a substrate support section provided in the chamber, a gas supply section configured to supply gas into the chamber, an RF power supply configured to supply RF power to generate plasma from the gas in the plasma, a gas measurement unit configured to measure a dissociation state of the gas in the plasma, and a control unit.
  • the control unit controls to start processing the substrate placed on the substrate support in the chamber according to set substrate processing conditions, and controls the gas measurement during the processing of the substrate.
  • a substrate processing system that controls to acquire a dissociation state of the gas from a unit, and controls to adjust processing conditions of the substrate or a substrate to be processed after the substrate based on the dissociation state of the gas.
  • FIG. 1 is a configuration diagram of an example of a plasma processing system.
  • FIG. 1 is a configuration diagram of an example of a plasma processing apparatus.
  • FIG. 3 is a configuration diagram of another example of a plasma processing apparatus.
  • 5 is a flowchart showing an example of feedback control.
  • An example of a mass spectrum that measures the dissociation state of the processing gas. 7 is a flowchart showing another example of feedback control.
  • FIG. 1 is a configuration diagram of an example of a plasma processing system.
  • FIG. 1 is a diagram for explaining a configuration example of a plasma processing system.
  • a plasma processing system includes a plasma processing apparatus 1 and a controller 2.
  • the plasma processing system is an example of a substrate processing system
  • the plasma processing apparatus 1 is an example of a substrate processing apparatus.
  • the plasma processing apparatus 1 includes a plasma processing chamber (chamber) 10, a substrate support section 11, and a plasma generation section 12.
  • the plasma processing chamber 10 has a plasma processing space.
  • the plasma processing chamber 10 also includes at least one gas supply port for supplying at least one processing gas to the plasma processing space, and at least one gas exhaust port for discharging gas from the plasma processing space.
  • the gas supply port is connected to a gas supply section 20, which will be described later, and the gas discharge port is connected to an exhaust system 40, which will be described later.
  • the substrate support section 11 is disposed within the plasma processing space and has a substrate support surface for supporting a substrate.
  • the plasma generation unit 12 is configured to generate plasma from at least one processing gas supplied into the plasma processing space.
  • the plasmas formed in the plasma processing space are capacitively coupled plasma (CCP), inductively coupled plasma (ICP), and ECR plasma (Electron-Cyclotron-resonance plasma).
  • CCP capacitively coupled plasma
  • ICP inductively coupled plasma
  • ECR plasma Electro-Cyclotron-resonance plasma
  • HWP Helicon wave excited plasma
  • SWP surface wave plasma
  • various types of plasma generation sections may be used, including an AC (Alternating Current) plasma generation section and a DC (Direct Current) plasma generation section.
  • the AC signal (AC power) used in the AC plasma generator has a frequency in the range of 100 kHz to 10 GHz. Therefore, the AC signal includes an RF (Radio Frequency) signal and a microwave signal.
  • the RF signal has a frequency within the range of 100kHz to 150MHz.
  • the control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform various steps described in this disclosure.
  • the control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein. In one embodiment, part or all of the control unit 2 may be included in the plasma processing apparatus 1.
  • the control unit 2 may include a processing unit 2a1, a storage unit 2a2, and a communication interface 2a3.
  • the control unit 2 is realized by, for example, a computer 2a.
  • the processing unit two a1 may be configured to read a program from the storage unit two a2 and perform various control operations by executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary.
  • the acquired program is stored in the storage unit 2a2, and is read out from the storage unit 2a2 and executed by the processing unit 2a1.
  • the medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3.
  • the processing unit 2a1 may be a CPU (Central Processing Unit).
  • the storage unit 2a2 may include a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof. Good.
  • the communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
  • FIG. 2 is a configuration diagram of an example of a capacitively coupled plasma processing apparatus 1.
  • FIG. 3 is a configuration diagram of another example of the plasma processing apparatus 1.
  • the capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10, a gas supply section 20, a power supply 30, and an exhaust system 40. Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section. The gas inlet is configured to introduce at least one processing gas into the plasma processing chamber 10 .
  • the gas introduction section includes a shower head 13.
  • Substrate support 11 is arranged within plasma processing chamber 10 .
  • the shower head 13 is arranged above the substrate support section 11 . In one embodiment, showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 .
  • the plasma processing chamber 10 has a plasma processing space 10s defined by a shower head 13, a side wall 10a of the plasma processing chamber 10, and a substrate support 11. Plasma processing chamber 10 is grounded.
  • the shower head 13 and the substrate support section 11 are electrically insulated from the casing of the plasma processing chamber 10.
  • the substrate support section 11 includes a main body section 111 and a ring assembly 112.
  • the main body portion 111 has a central region 111a for supporting the substrate W and an annular region 111b for supporting the ring assembly 112.
  • a wafer is an example of a substrate W.
  • the annular region 111b of the main body 111 surrounds the central region 111a of the main body 111 in plan view.
  • the substrate W is placed on the central region 111a of the main body 111, and the ring assembly 112 is placed on the annular region 111b of the main body 111 so as to surround the substrate W on the central region 111a of the main body 111. Therefore, the central region 111a is also called a substrate support surface for supporting the substrate W, and the annular region 111b is also called a ring support surface for supporting the ring assembly 112.
  • the main body 111 includes a base 1110 and an electrostatic chuck 1111.
  • Base 1110 includes a conductive member.
  • the conductive member of the base 1110 can function as a lower electrode.
  • Electrostatic chuck 1111 is placed on base 1110.
  • Electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within ceramic member 1111a.
  • Ceramic member 1111a has a central region 111a. In one embodiment, ceramic member 1111a also has an annular region 111b. Note that another member surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b.
  • the ring assembly 112 may be placed on the annular electrostatic chuck or the annular insulating member, or may be placed on both the electrostatic chuck 1111 and the annular insulating member.
  • at least one RF/DC electrode coupled to an RF power source 31 and/or a DC power source 32, which will be described later, may be disposed within the ceramic member 1111a.
  • at least one RF/DC electrode functions as a bottom electrode. If at least one RF/DC electrode is supplied with a bias RF signal and/or a DC signal as described below, the RF/DC electrode is also referred to as a bias electrode.
  • the conductive member of the base 1110 and at least one RF/DC electrode may function as a plurality of lower electrodes.
  • the electrostatic electrode 1111b may function as a lower electrode. Therefore, the substrate support 11 includes at least one lower electrode.
  • Ring assembly 112 includes one or more annular members.
  • the one or more annular members include one or more edge rings and at least one cover ring.
  • the edge ring is made of a conductive or insulating material
  • the cover ring is made of an insulating material.
  • the substrate support unit 11 may include a temperature control module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 112, and the substrate to a target temperature.
  • the temperature control module may include a heater, a heat transfer medium, a flow path 1110a, or a combination thereof.
  • a heat transfer fluid such as brine or gas flows through the flow path 1110a.
  • a channel 1110a is formed within the base 1110 and one or more heaters are disposed within the ceramic member 1111a of the electrostatic chuck 1111.
  • the substrate support section 11 may include a heat transfer gas supply section configured to supply heat transfer gas to the gap between the back surface of the substrate W and the central region 111a.
  • the shower head 13 is configured to introduce at least one processing gas from the gas supply section 20 into the plasma processing space 10s.
  • the shower head 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and a plurality of gas introduction ports 13c.
  • the processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s from the plurality of gas introduction ports 13c.
  • the showerhead 13 also includes at least one upper electrode.
  • the gas introduction section may include one or more side gas injectors (SGI) attached to one or more openings formed in the side wall 10a.
  • SGI side gas injectors
  • the gas supply section 20 may include at least one gas source 21 and at least one flow rate controller 22.
  • the gas supply 20 is configured to supply at least one process gas from a respective gas source 21 to the showerhead 13 via a respective flow controller 22 .
  • Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller.
  • gas supply 20 may include at least one flow modulation device that modulates or pulses the flow rate of at least one process gas.
  • Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit.
  • RF power source 31 is configured to supply at least one RF signal (RF power) to at least one bottom electrode and/or at least one top electrode.
  • RF power supply 31 can function as at least a part of the plasma generation section 12. Further, by supplying a bias RF signal to at least one lower electrode, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W.
  • the RF power supply 31 includes a first RF generation section 31a and a second RF generation section 31b.
  • the first RF generation section 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit, and generates a source RF signal (source RF power) for plasma generation. It is configured as follows.
  • the source RF signal has a frequency within the range of 10 MHz to 150 MHz.
  • the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are provided to at least one bottom electrode and/or at least one top electrode.
  • the second RF generating section 31b is coupled to at least one lower electrode via at least one impedance matching circuit, and is configured to generate a bias RF signal (bias RF power).
  • the frequency of the bias RF signal may be the same or different than the frequency of the source RF signal.
  • the bias RF signal has a lower frequency than the frequency of the source RF signal.
  • the bias RF signal has a frequency within the range of 100kHz to 60MHz.
  • the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies.
  • the generated one or more bias RF signals are provided to at least one bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
  • Power source 30 may also include a DC power source 32 coupled to plasma processing chamber 10 .
  • the DC power supply 32 includes a first DC generation section 32a and a second DC generation section 32b.
  • the first DC generator 32a is connected to at least one lower electrode and configured to generate a first DC signal.
  • the generated first DC signal is applied to at least one bottom electrode.
  • the second DC generator 32b is connected to the at least one upper electrode and configured to generate a second DC signal.
  • the generated second DC signal is applied to the at least one top electrode.
  • the first and second DC signals may be pulsed.
  • a sequence of voltage pulses is applied to at least one lower electrode and/or at least one upper electrode.
  • the voltage pulse may have a pulse waveform that is rectangular, trapezoidal, triangular, or a combination thereof.
  • a waveform generator for generating a sequence of voltage pulses from a DC signal is connected between the first DC generator 32a and the at least one bottom electrode. Therefore, the first DC generation section 32a and the waveform generation section constitute a voltage pulse generation section.
  • the voltage pulse generation section is connected to at least one upper electrode.
  • the voltage pulse may have positive polarity or negative polarity.
  • the sequence of voltage pulses may include one or more positive voltage pulses and one or more negative voltage pulses within one period.
  • the first and second DC generation units 32a and 32b may be provided in addition to the RF power source 31, or the first DC generation unit 32a may be provided in place of the second RF generation unit 31b. good.
  • the exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example.
  • Evacuation system 40 may include a pressure regulating valve and a vacuum pump. The pressure within the plasma processing space 10s is adjusted by the pressure regulating valve.
  • the vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
  • the gas measurement unit 5 (5A) includes a gas measurement device 51, a valve 52, and a pipe 53.
  • One end of the pipe 53 is connected to a gas sampling port 10b provided in the side wall 10a of the plasma processing chamber 10.
  • the other end of the pipe 53 is connected to the gas measuring device 51.
  • the pipe 53 is provided with a valve 52 .
  • a quadrupole mass analyzer can be used as the gas measuring device 51.
  • a quadrupole mass spectrometer can measure trace components by separating gases in terms of mass. Additionally, a quadrupole mass spectrometer can measure gas dissociation caused by plasma.
  • a quadrupole mass spectrometer has an ion source section, a mass spectrometer section, and a detection section.
  • the ion source section includes a filament and a filament power source.
  • a filament power supply applies voltage to the filament. When a voltage is applied to the filament and the temperature reaches a high temperature, the filament emits thermoelectrons. The emitted thermionic electrons collide with the gas and ionize the gas.
  • the mass spectrometer applies a DC or AC voltage to four electrodes (quadrupole) to allow ions of a predetermined mass to pass through.
  • the detection section detects ions that have passed through the mass spectrometry section.
  • the valve 52 opens and closes the pipe 53 and creates a pressure difference between the pressure inside the plasma processing chamber 10 and the pressure on the gas measuring device 51 side.
  • the gas measurement unit 5 (5B) may be a differential pumping system. That is, the gas measurement unit 5 (5B) includes a gas measurement device 51, a valve 52, a pipe 53, and an exhaust system 54.
  • the exhaust system 54 can be connected, for example, between the valve 52 of the pipe 53 and the gas measuring device 51.
  • the exhaust system 54 may include a pressure regulating valve and a vacuum pump. The pressure of the gas supplied to the gas measuring device 51 is adjusted by the pressure regulating valve.
  • the vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
  • the gas measuring device 51 will be described as a quadrupole mass spectrometer, but is not limited to this.
  • the gas measuring device 51 may be, for example, a residual gas analyzer (RGA), an ion trap mass spectrometer, or a time-of-flight mass spectrometer (TOFMS).
  • RAA residual gas analyzer
  • TOFMS time-of-flight mass spectrometer
  • FIG. 4 is an example of a graph showing the dissociation state of the processing gas measured by the gas measuring device 51.
  • the pressure in the plasma processing chamber 10 is 20 mT (2.7 Pa)
  • the processing gases introduced from the gas supply unit 20 into the plasma processing space 10s are Ar gas 800 sccm, C 4 F 8 gas 20 sccm, and O 2 gas 20 sccm.
  • An RF signal is supplied from the RF power source 31 to the lower electrode and/or the upper electrode to generate plasma of these gases in the plasma processing chamber 10, and a QMS (gas measuring device 51) (hereinafter also referred to as QMS 51) generates plasma of these gases.
  • the composition ratio of the dissociated state of the gas was detected.
  • the vertical axis indicates the ion current ratio measured by the QMS 51, in other words, the composition ratio of the dissociated state of C 4 F 8 gas.
  • (a) shows the composition ratio in a state where no RF signal is applied.
  • (b) shows a state in which an LF signal of 100 W and an HF signal of 700 W are applied.
  • (c) shows the composition ratio in a state where 400 W of LF signal and 700 W of HF signal are applied.
  • (d) shows the composition ratio in a state where 700 W of LF signal and 700 W of HF signal are applied.
  • the LF signal and the HF signal are examples of RF signals, where the LF signal corresponds to a bias RF signal coupled to the bottom electrode, and the HF signal corresponds to a source RF signal coupled to the bottom electrode and/or the top electrode. . In the experiment of FIG. 4, the HF signal was applied to the top electrode.
  • the composition ratio of the dissociated state of the processing gas detected by the QMS 51 changes.
  • a plasma etching process (plasma treatment) using a CF-based etching gas
  • etching reaction that etches the target film
  • deposition deposit
  • the dissociation state of the processing gas is determined by the RF power, the flow rate of the processing gas contributing to etching (in the example of FIG. 4, the flow rate of C 4 F 8 gas), and the flow rate ratio of the processing gas (in the example of FIG. 4, the C 4 F 8 gas flow rate).
  • the process may also depend on the surface conditions of parts in the equipment, etc. Change.
  • the QMS 51 can monitor the plasma state by monitoring the dissociation state of the processing gas during plasma processing. That is, by detecting and analyzing the dissociation state of the processing gas using the QMS 51, it is possible to understand the processing state inside the plasma processing chamber 10. Further, by adjusting the processing conditions based on the detection results of the QMS 51, the plasma etching process can be controlled.
  • FIG. 5 is a flowchart showing an example of feedback control.
  • step S11 the control unit 2 sets processing conditions such as a processing recipe for the first substrate W. Processing conditions are set in a processing recipe and/or process parameters. For the first substrate W, the processing recipe and/or process parameters are read out from, for example, the processing recipe and/or process parameters stored in advance in the storage unit 2a2.
  • step S12 the control section 2 transports the first substrate W to the plasma processing chamber 10, and causes the substrate support section 11 to support the substrate W.
  • the control unit 2 performs a first plasma treatment on the substrate W based on the substrate treatment conditions.
  • step S14 the control unit 2 subjects the substrate W to a second plasma treatment based on the substrate processing conditions.
  • step S15 the control unit 2 carries out the first substrate W from the plasma processing chamber 10.
  • two different plasma treatments first plasma treatment and second plasma treatment
  • the first plasma treatment and the second plasma treatment performed on the substrate W are, for example, etching treatment using plasma.
  • the plasma processing apparatus 1 may perform only one plasma treatment (first plasma treatment) on the substrate W.
  • the dissociation state (composition ratio) of the processing gas is measured by the QMS 51. Further, when performing the second plasma treatment (step S14) on the first substrate W, the QMS 51 measures the dissociation state (composition ratio) of the processing gas. Then, the control unit 2 acquires the measurement results of the QMS 51.
  • control unit 2 performs processing condition adjustment (step S21), substrate transport (step S22), first plasma treatment (step S23), second plasma treatment (step S24), and the like for the second substrate W.
  • the substrate is carried out (step S25).
  • the processing condition adjustment (step S21) is performed by performing the first plasma processing (step S21) on the first substrate W.
  • the processing conditions in the first plasma processing (step S23) are adjusted based on the dissociation state (component ratio) of the processing gas measured by the QMS 51 when performing step S13).
  • the processing condition adjustment (step S21) is based on the dissociation state (composition ratio) of the processing gas measured by the QMS 51 when the second plasma processing (step S14) is performed on the first substrate W.
  • Conditions for the second plasma treatment (step S24) are adjusted.
  • step S23 the control unit 2 performs the first plasma treatment on the second substrate W based on the processing conditions adjusted in step S21. Furthermore, in step S24, the control unit 2 performs a second plasma treatment on the second substrate W based on the processing conditions adjusted in step S21.
  • the QMS 51 measures the dissociation state (composition ratio) of the processing gas. Further, when performing the second plasma treatment (step S24) on the second substrate W, the QMS 51 measures the dissociation state (composition ratio) of the processing gas. Then, the control unit 2 acquires the measurement results of the QMS 51.
  • the control unit 2 controls processing condition adjustment (step S31), substrate transport (step S32), and First plasma treatment (step S33), second plasma treatment (step S34), and substrate unloading (step S35) are performed.
  • the processing condition adjustment (step S31) is based on the dissociation of the processing gas measured by the QMS 51 when the first plasma processing (step S23) is performed on the second substrate W. Based on the state (component ratio), the processing conditions in the first plasma processing (step S33) are adjusted.
  • the processing condition adjustment (step S31) is based on the dissociation state (composition ratio) of the processing gas measured by the QMS 51 when the second plasma processing (step S24) is performed on the second substrate W. Conditions for the second plasma treatment (step S34) are adjusted.
  • the dissociation state of the processing gas is measured by the QMS 51 during the processing of the first substrate W, and based on the measured dissociation state, the second substrate W to be processed next to the first substrate W is
  • the processing conditions for the substrate W have been described as being adjusted, the present invention is not limited to this. Even if the configuration is such that the dissociation state of the processing gas is measured by the QMS 51 during the processing of the first substrate W, and the processing conditions of the substrate W to be processed after the first substrate W are adjusted based on the measured dissociation state. good.
  • the dissociation state of the processing gas is measured by the QMS 51, and based on the measured dissociation state, the second substrate W and the third substrate W to be processed after the first substrate W are processed.
  • the processing conditions may be adjusted.
  • the dissociation state of the processing gas is measured by the QMS 51, and the processing conditions of the third substrate W to be processed after the first substrate W are adjusted based on the measured dissociation state. You can.
  • the dissociation state (composition ratio) of the processing gas is measured by the QMS 51 during the first plasma treatment S13 and the second plasma treatment S14.
  • FIG. 6 is an example of a mass spectrum obtained by measuring the dissociation state of the processing gas (C 4 F 8 ) using the QMS 51.
  • the horizontal axis shows m/z
  • the vertical axis shows relative ion intensity. Note that FIG. 6 shows an example of the mass spectrum of C 4 F 8 when no plasma is generated.
  • the fragments of the processing gas can be divided into a main fragment 610 and a trace fragment 620.
  • the main fragment 610 is a fragment with a high detected relative ion intensity, in other words, a high composition ratio.
  • the trace amount existing fragment 620 is a fragment whose detected relative ion intensity is low, in other words, a trace amount existing fragment.
  • the QMS 51 is not limited to this.
  • the QMS 51 may have a specification that includes at least some of the main fragments 611 among the main fragments 610 with a high composition ratio in the measurable range.
  • the gas flow rate (flow rate ratio) of the CF-based gas when setting the processing conditions for the second substrate W in step S21, the gas flow rate (flow rate ratio) of the CF-based gas, the gas type of the CF-based gas (including the additive gas added to the CF-based gas). ), pressure, HF power (output of source RF signal), LF power (output of bias RF signal), and the like.
  • the processing conditions are set by lowering the HF power that makes a large contribution to the dissociation of the CF-based gas.
  • the processing conditions are set by lowering the HF power that makes a large contribution to the dissociation of the CF-based gas.
  • the flow rate ratio of the CF 4 gas may be changed.
  • the processing conditions are set by changing the gas flow rate ratio to decrease the C 4 F 8 flow rate and increase the C 4 F 8 flow rate ratio.
  • the flow rate ratio of C 4 F 8 which makes a large contribution to the deposition of reaction products, can be increased.
  • At least one of the processing conditions is changed. Specifically, the processing conditions are adjusted by increasing the HF power, which makes a large contribution to the dissociation of the CF-based gas. Thereby, the dissociation of the CF-based gas can be promoted, and the state of dissociation of the CF-based gas (processing gas) can be brought close to the target value.
  • the flow rate ratio of the CF 4 gas may be changed.
  • the processing conditions are set by changing the gas flow rate ratio so as to increase the C 4 F 6 flow rate and decrease the C 4 F 6 flow rate ratio.
  • FIG. 7 is a flowchart showing another example of feedback control.
  • step S51 the control unit 2 sets processing conditions for the substrate W.
  • the processing conditions for example, a processing recipe and/or process parameters stored in advance in the storage unit 2a2 are read out.
  • step S52 the control section 2 transports the substrate W to the plasma processing chamber 10, and causes the substrate support section 11 to support the substrate W.
  • step S53 the control unit 2 performs a plasma etching process on the substrate W based on the process conditions.
  • step S53 when plasma processing (step S53) is performed on the substrate W, the dissociation state (composition ratio) of the processing gas is measured by the QMS 51. Then, the control unit 2 acquires the measurement results of the QMS 51.
  • step S54 the control unit 2 determines whether the measured dissociation state is within a predetermined range. If the measured dissociation state is within the predetermined range (S54, YES), the control unit 2 continues the plasma treatment until the predetermined time (step S55), and subjects the substrate W to the plasma treatment.
  • the control unit 2 adjusts the dissociation state (composition ratio) of the processing gas measured by the QMS 51 when plasma processing S53 is performed on the substrate W. Based on this, the processing conditions for plasma processing are adjusted (step S56). Then, plasma processing is performed on the substrate W based on the adjusted processing conditions (step S57). Furthermore, when plasma processing (step S57) is performed on the substrate W, the QMS 51 measures the dissociation state (composition ratio) of the processing gas. Then, the control unit 2 acquires the measurement results of the QMS 51.
  • step S58 the control unit 2 determines whether the measured dissociation state is within a predetermined range. If the measured dissociation state is within the predetermined range (S58, YES), the control unit 2 continues the plasma treatment until the predetermined time (step S59), and subjects the substrate W to the plasma treatment.
  • the control unit 2 adjusts the dissociation state (composition ratio) of the processing gas measured by the QMS 51 when plasma processing S53 is performed on the substrate W. Based on this, the processing conditions for plasma processing are adjusted (step S60). Then, based on the adjusted processing conditions, the substrate W is subjected to plasma processing until a predetermined time (step S61). Note that when plasma processing (step S61) is performed on the substrate W, the dissociation state (composition ratio) of the processing gas is measured by the QMS 51, and if the measured dissociation state is not within a predetermined range, the processing conditions are readjusted. You can.
  • control unit 2 carries out the substrate W from the plasma processing chamber 10 (step S62).
  • the composition ratio of the processing gas is detected by the QMS 51 during the first plasma processing S53.
  • the QMS51 is capable of measuring the entire mass range of fragments expected from the processing gas. It is preferable that the specifications fall within this range, but the specification is not limited thereto.
  • the gas flow rate (flow rate ratio) of the CF-based gas in plasma processing S57, the gas type of the CF-based gas (including the additive gas added to the CF-based gas), the pressure, the HF power (the output of the source RF signal) , at least one of processing conditions such as LF power (output of bias RF signal) is changed.
  • the processing conditions of the plasma processing S57 are adjusted by lowering the HF power that makes a large contribution to the dissociation of the CF-based gas.
  • the processing conditions of the plasma processing S57 are adjusted by lowering the HF power that makes a large contribution to the dissociation of the CF-based gas.
  • the flow rate ratio of the CF 4 gas may be changed.
  • the processing conditions are set by changing the gas flow rate ratio to decrease the C 4 F 8 flow rate and increase the C 4 F 8 flow rate ratio.
  • the flow rate ratio of C 4 F 8 which makes a large contribution to the deposit, can be increased.
  • the processing condition setting S56 at least one of the processing conditions such as the gas flow rate (flow rate ratio) of the CF-based gas, the gas type (addition) of the CF-based gas, the pressure, the HF power, the LF power, etc. in the plasma processing S57 is set. adjust.
  • the processing conditions of plasma processing S57 are adjusted by increasing the HF power, which makes a large contribution to the dissociation of the CF-based gas. Thereby, the dissociation of the CF-based gas can be promoted and the state of dissociation of the CF-based gas can be brought closer to the target value.
  • the flow rate ratio of the CF 4 gas may be changed. The processing conditions are set by changing the gas flow rate ratio so as to increase the C 4 F 6 flow rate and decrease the C 4 F 6 flow rate ratio. Thereby, in plasma processing S57, the dissociation state of the CF-based gas can be brought close to the target value.
  • the QMS51 can be used to detect the dissociation state of the processing gas, which is an index directly connected to the chemical reaction of the etching process, and to understand the state of the apparatus, and the processing conditions can be adjusted based on the detection results of the QMS51. Through adjustment, plasma processing can be controlled.
  • the state of the apparatus can be determined by monitoring the actual measured value of the plasma, including an index such as the self-bias voltage Vdc, which is directly connected to the ion incident energy related to the physical reaction of the etching process.
  • composition ratio of the gas detected by the QMS 51 and the method of adjusting the processing conditions will be explained.
  • the HF signal is related to the control of the dissociation state. Therefore, the processing conditions for the HF signal can be optimized based on the dissociation state measured using QMS.
  • LF signals (particularly below 3 MHz) have a small influence on the dissociated state.
  • the LF signal is a parameter mainly effective for controlling the ion energy incident on the wafer. Therefore, when optimizing the processing conditions of the LF signal, in addition to the gas dissociation state measured by the gas measurement device 51, optimization is performed in combination with other monitoring methods and measurement results such as ion energy measurement, thereby achieving a wider range of results. Adjustment of processing conditions and process control can be achieved.
  • etching processing conditions can be automatically created by setting the desired device shape and inputting the monitoring results of the gas dissociation state and other values indicating the plasma state into the calculator. be able to.
  • the etching process conditions are automatically optimized by repeating the loop of inputting the shape result into the computer again and performing the etching process while monitoring the plasma again. can be converted into
  • a quadrupole mass spectrometer is preferable as the gas measuring device 51 that monitors the state of gas dissociation.
  • QMS generally performs separation by ionizing gas. During this ionization, gas molecules are dissociated to generate a plurality of fragments, which are counted using an FC (Faraday cup) or SEM (secondary electron amplifier). Therefore, if gas molecules are dissociated too much during ionization, the ionization efficiency increases and the measurement sensitivity improves, but information on the molecular structure is lost because the original gas molecules are dissociated too much.
  • FC Fluorday cup
  • SEM secondary electron amplifier
  • the QMS has a function that can vary or scan the ionization energy from about 15 eV to about 150 eV.
  • the dissociation state of the gas can be measured at a plurality of ionization energies, the gas state in the plasma can be more accurately grasped, and the substrate processing can be controlled with high precision.
  • QMS may be measured for all masses, or one or a certain number of masses may be selected and the ionization voltage may be scanned for the selected masses.
  • QMS requires measurement time if measurement is performed by continuously changing the ionization voltage. For this reason, QMS sets multiple ionization voltages and performs gas measurements while switching between each of the multiple ionization voltages, allowing it to measure extremely small amounts of gas while measuring the gas state in the plasma with high precision. It achieves the necessary high sensitivity and can acquire data in a short time.
  • the mass range of the QMS is preferably one that can handle up to 131 (C 3 F 5 ) or more. Furthermore, when a gas of C 5 F 8 or more is used in the process, the QMS preferably has a mass range of 193 or more.
  • monitoring the molecular weight in the range of about 1 to 200 using QMS is less effective for gases such as O 2 , Cl 2 , and HBr, which have simple dissociation states.
  • monitoring using QMS is extremely effective for CF-based gases, which have large molecules, complex structures, and the contribution of reaction products to deposition/etching varies greatly depending on the state of dissociation. It is especially suitable for etching equipment for dielectric films.
  • monitoring using QMS is also effective in plasma film forming processes where the gas dissociation state greatly affects film formation, the molecular size of the gas used is large, and the structure is complex.
  • it can be used to control the deposition characteristics (density, electrical conductivity, dielectric constant, dielectric strength, etc.) of reaction products, rather than the deposition and etching properties of reaction products.
  • a chamber a substrate support provided in the chamber; a gas supply configured to supply gas into the chamber; an RF power source configured to provide RF power to generate a plasma from the gas within the chamber; a gas measuring unit configured to measure a dissociation state of the gas in the plasma; comprising a control unit;
  • the control unit includes: Controlling to start processing of the substrate placed on the substrate support in the chamber according to the set substrate processing conditions, During the processing of the substrate, controlling to obtain the dissociation state of the gas from the gas measurement unit, controlling to adjust the processing conditions of the substrate or a substrate processed after the substrate, based on the dissociation state of the gas; Substrate processing system.
  • the control unit includes: using the adjusted processing conditions to control processing of the substrate or a substrate processed after the substrate;
  • the substrate processing system according to Supplementary Note 1. (Additional note 3)
  • the gas measurement unit is a quadrupole mass spectrometer,
  • the treatment of the substrate is an etching treatment,
  • the gas includes a gas in which the relationship between the etching reaction and the deposition reaction of a reaction product changes in the etching process depending on the dissociation state of the gas.
  • the substrate processing system according to any one of Supplementary Notes 1 to 3. (Appendix 5)
  • the gas is a fluorocarbon gas containing C and F.
  • the gas is C 4 F 8 gas.
  • the control unit includes: If the ratio of at least one of F and CF dissociated from the C 4 F 8 gas is greater than a predetermined target value, control is performed to determine that the C 4 F 8 gas is in a state of excessive dissociation;
  • the control unit includes: controlling the RF power source to reduce the output of the source RF signal when determining that the C 4 F 8 gas is in a state of excessive dissociation;
  • the gas is a mixed gas of CF 4 gas and C 4 F 6 gas,
  • the control unit includes: If the ratio of at least one of F and CF dissociated from the mixed gas is higher than a predetermined target value, control is performed so that the mixed gas is determined to be in a state of excessive dissociation.
  • the substrate processing system according to appendix 9. (Appendix 11)
  • the control unit includes: When determining that the mixed gas is in a state of excessive dissociation, controlling the gas supply unit to reduce the proportion of the CF 4 gas in the mixed gas;
  • the control unit includes: In the first substrate processing, the substrate is processed in the chamber using the set substrate processing conditions, and the gas dissociation state is controlled to be obtained from the gas measurement unit; controlling the substrate to be processed using the adjusted processing conditions in processing a second substrate different from the first substrate; The substrate processing system according to any one of Supplementary notes 1 to 11.
  • the control unit includes: In the processing of one substrate, the substrate is processed using the set substrate processing conditions, and the dissociation state of the gas is controlled to be obtained; controlling the substrate to be processed using the adjusted processing conditions in the processing of the one substrate; The substrate processing system according to any one of Supplementary notes 1 to 11.
  • a substrate processing method of a substrate processing system comprising: an RF power source configured to measure the dissociation state of the gas in the plasma; starting processing of the substrate placed on the substrate support in the chamber according to the set substrate processing conditions; acquiring the dissociation state of the gas from the gas measurement unit during the processing of the substrate; adjusting processing conditions for the substrate or a substrate to be processed after the substrate, based on the dissociation state of the gas; Substrate processing method. (Additional note 15) using the adjusted processing conditions to process the substrate or a substrate to be processed after the substrate; Substrate processing method according to appendix 14.
  • Plasma processing apparatus 2 Control unit 10 Plasma processing chamber (chamber) 11 Substrate support section 20 Gas supply section 30 Power supply 31 RF power supply 10b Gas sampling port 5 Gas measurement section 5A Gas measurement section 5B Gas measurement section 51 Gas measurement device 52 Valve 53 Piping 54 Exhaust system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Provided are a substrate processing system and a substrate processing method for precisely controlling plasma processing. This substrate processing system comprises: a chamber; a substrate support part provided in the chamber; a gas supply part configured so as to supply the gas into the chamber; an RF power supply configured to supply RF power in order to generate plasma from the gas in the chamber; a gas measuring part configured to measure a dissociative state of the gas in the plasma; and a control unit. The control unit: controls so as to start processing of a substrate placed on the substrate support part in the chamber in accordance with a set processing condition of the substrate; controls so as to acquire the dissociative state of the gas from the gas measuring part during the processing of the substrate; and controls so as to adjust the processing condition of the substrate or a substrate to be processed after the substrate on the basis of the dissociative state of the gas.

Description

基板処理システム及び基板処理方法Substrate processing system and substrate processing method
 本開示は、基板処理システム及び基板処理方法に関する。 The present disclosure relates to a substrate processing system and a substrate processing method.
 特許文献1には、ガス採取配管及びバルブを介してチャンバ内のガスを採取し分析するガス分析装置を備える基板処理システムが開示されている。ガス分析装置として、例えば四重極質量分析器等を用いることが開示されている。 Patent Document 1 discloses a substrate processing system that includes a gas analyzer that samples and analyzes gas in a chamber via gas sampling piping and a valve. It has been disclosed that, for example, a quadrupole mass spectrometer or the like is used as the gas analysis device.
特開2010-27787号公報Japanese Patent Application Publication No. 2010-27787
 一の側面では、本開示は、精度よくプラズマ処理を制御する基板処理システム及び基板処理方法を提供する。 In one aspect, the present disclosure provides a substrate processing system and a substrate processing method that control plasma processing with high precision.
 上記課題を解決するために、一の態様によれば、チャンバと、前記チャンバ内に設けられた基板支持部と、前記チャンバ内にガスを供給するように構成されたガス供給部と、前記チャンバ内で前記ガスからプラズマを生成するためにRF電力を供給するように構成されたRF電源と、前記プラズマ中の前記ガスの解離状態を計測するように構成されたガス計測部と、制御部と、を備え、前記制御部は、設定した基板の処理条件により前記チャンバ内において前記基板支持部に載置した基板の処理を開始するよう制御し、前記基板の前記処理の間に、前記ガス計測部から前記ガスの解離状態を取得するよう制御し、前記ガスの解離状態に基づき、前記基板又は前記基板の後に処理される基板の処理条件を調整するよう制御する、基板処理システムが提供される。 In order to solve the above problems, according to one aspect, a chamber, a substrate support section provided in the chamber, a gas supply section configured to supply gas into the chamber, and a substrate support section provided in the chamber, a gas supply section configured to supply gas into the chamber, an RF power supply configured to supply RF power to generate plasma from the gas in the plasma, a gas measurement unit configured to measure a dissociation state of the gas in the plasma, and a control unit. , the control unit controls to start processing the substrate placed on the substrate support in the chamber according to set substrate processing conditions, and controls the gas measurement during the processing of the substrate. Provided is a substrate processing system that controls to acquire a dissociation state of the gas from a unit, and controls to adjust processing conditions of the substrate or a substrate to be processed after the substrate based on the dissociation state of the gas. .
 一の側面によれば、精度よくプラズマ処理を制御する基板処理システム及び基板処理方法を提供することができる。 According to one aspect, it is possible to provide a substrate processing system and a substrate processing method that control plasma processing with high precision.
プラズマ処理システムの一例の構成図。FIG. 1 is a configuration diagram of an example of a plasma processing system. プラズマ処理装置の一例の構成図。FIG. 1 is a configuration diagram of an example of a plasma processing apparatus. プラズマ処理装置の他の一例の構成図。FIG. 3 is a configuration diagram of another example of a plasma processing apparatus. ガス計測装置で計測されたガスの解離状態を示すグラフの一例。An example of a graph showing the dissociation state of gas measured by a gas measuring device. フィードバック制御の一例を示すフローチャート。5 is a flowchart showing an example of feedback control. 処理ガスの解離状態を計測したマススペクトルの一例。An example of a mass spectrum that measures the dissociation state of the processing gas. フィードバック制御の他の一例を示すフローチャート。7 is a flowchart showing another example of feedback control.
 以下、図面を参照して種々の例示的実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。 Hereinafter, various exemplary embodiments will be described in detail with reference to the drawings. In addition, the same reference numerals are given to the same or corresponding parts in each drawing.
 プラズマ処理システム(基板処理システム)について、図1を用いて説明する。図1は、プラズマ処理システムの一例の構成図である。 The plasma processing system (substrate processing system) will be explained using FIG. 1. FIG. 1 is a configuration diagram of an example of a plasma processing system.
 図1は、プラズマ処理システムの構成例を説明するための図である。一実施形態において、プラズマ処理システムは、プラズマ処理装置1及び制御部2を含む。プラズマ処理システムは、基板処理システムの一例であり、プラズマ処理装置1は、基板処理装置の一例である。プラズマ処理装置1は、プラズマ処理チャンバ(チャンバ)10、基板支持部11及びプラズマ生成部12を含む。プラズマ処理チャンバ10は、プラズマ処理空間を有する。また、プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間に供給するための少なくとも1つのガス供給口と、プラズマ処理空間からガスを排出するための少なくとも1つのガス排出口とを有する。ガス供給口は、後述するガス供給部20に接続され、ガス排出口は、後述する排気システム40に接続される。基板支持部11は、プラズマ処理空間内に配置され、基板を支持するための基板支持面を有する。 FIG. 1 is a diagram for explaining a configuration example of a plasma processing system. In one embodiment, a plasma processing system includes a plasma processing apparatus 1 and a controller 2. The plasma processing system is an example of a substrate processing system, and the plasma processing apparatus 1 is an example of a substrate processing apparatus. The plasma processing apparatus 1 includes a plasma processing chamber (chamber) 10, a substrate support section 11, and a plasma generation section 12. The plasma processing chamber 10 has a plasma processing space. The plasma processing chamber 10 also includes at least one gas supply port for supplying at least one processing gas to the plasma processing space, and at least one gas exhaust port for discharging gas from the plasma processing space. The gas supply port is connected to a gas supply section 20, which will be described later, and the gas discharge port is connected to an exhaust system 40, which will be described later. The substrate support section 11 is disposed within the plasma processing space and has a substrate support surface for supporting a substrate.
 プラズマ生成部12は、プラズマ処理空間内に供給された少なくとも1つの処理ガスからプラズマを生成するように構成される。プラズマ処理空間において形成されるプラズマは、容量結合プラズマ(CCP;Capacitively Coupled Plasma)、誘導結合プラズマ(ICP;Inductively Coupled Plasma)、ECRプラズマ(Electron-Cyclotron-resonance plasma)、ヘリコン波励起プラズマ(HWP:Helicon Wave Plasma)、又は、表面波プラズマ(SWP:Surface Wave Plasma)等であってもよい。また、AC(Alternating Current)プラズマ生成部及びDC(Direct Current)プラズマ生成部を含む、種々のタイプのプラズマ生成部が用いられてもよい。一実施形態において、ACプラズマ生成部で用いられるAC信号(AC電力)は、100kHz~10GHzの範囲内の周波数を有する。従って、AC信号は、RF(Radio Frequency)信号及びマイクロ波信号を含む。一実施形態において、RF信号は、 100kHz~150MHzの範囲内の周波数を有する。 The plasma generation unit 12 is configured to generate plasma from at least one processing gas supplied into the plasma processing space. The plasmas formed in the plasma processing space are capacitively coupled plasma (CCP), inductively coupled plasma (ICP), and ECR plasma (Electron-Cyclotron-resonance plasma). a) Helicon wave excited plasma (HWP: Helicon Wave Plasma), surface wave plasma (SWP), or the like may be used. Furthermore, various types of plasma generation sections may be used, including an AC (Alternating Current) plasma generation section and a DC (Direct Current) plasma generation section. In one embodiment, the AC signal (AC power) used in the AC plasma generator has a frequency in the range of 100 kHz to 10 GHz. Therefore, the AC signal includes an RF (Radio Frequency) signal and a microwave signal. In one embodiment, the RF signal has a frequency within the range of 100kHz to 150MHz.
 制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1に含まれてもよい。制御部2は、処理部2a1、記憶部2a2及び通信インターフェース2a3を含んでもよい。制御部2は、例えばコンピュータ2aにより実現される。処理部2a1は、記憶部2a2からプログラムを読み出し、読み出されたプログラムを実行することにより種々の制御動作を行うように構成され得る。このプログラムは、予め記憶部2a2に格納されていてもよく、必要なときに、媒体を介して取得されてもよい。取得されたプログラムは、記憶部2a2に格納され、処理部2a1によって記憶部2a2から読み出されて実行される。媒体は、コンピュータ2aに読み取り可能な種々の記憶媒体であってもよく、通信インターフェース2a3に接続されている通信回線であってもよい。処理部2a1は、CPU(Central Processing Unit)であってもよい。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。 The control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform various steps described in this disclosure. The control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein. In one embodiment, part or all of the control unit 2 may be included in the plasma processing apparatus 1. The control unit 2 may include a processing unit 2a1, a storage unit 2a2, and a communication interface 2a3. The control unit 2 is realized by, for example, a computer 2a. The processing unit two a1 may be configured to read a program from the storage unit two a2 and perform various control operations by executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary. The acquired program is stored in the storage unit 2a2, and is read out from the storage unit 2a2 and executed by the processing unit 2a1. The medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3. The processing unit 2a1 may be a CPU (Central Processing Unit). The storage unit 2a2 may include a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof. Good. The communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
 以下に、プラズマ処理装置1の一例としての容量結合型のプラズマ処理装置1の構成例について説明する。図2は、容量結合型のプラズマ処理装置1の一例の構成図である。図3は、プラズマ処理装置1の他の一例の構成図である。 A configuration example of a capacitively coupled plasma processing apparatus 1 as an example of the plasma processing apparatus 1 will be described below. FIG. 2 is a configuration diagram of an example of a capacitively coupled plasma processing apparatus 1. As shown in FIG. FIG. 3 is a configuration diagram of another example of the plasma processing apparatus 1.
 容量結合型のプラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持部11及びガス導入部を含む。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成される。ガス導入部は、シャワーヘッド13を含む。基板支持部11は、プラズマ処理チャンバ10内に配置される。シャワーヘッド13は、基板支持部11の上方に配置される。一実施形態において、シャワーヘッド13は、プラズマ処理チャンバ10の天部(ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10は、シャワーヘッド13、プラズマ処理チャンバ10の側壁10a及び基板支持部11により規定されたプラズマ処理空間10sを有する。プラズマ処理チャンバ10は接地される。シャワーヘッド13及び基板支持部11は、プラズマ処理チャンバ10の筐体とは電気的に絶縁される。 The capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10, a gas supply section 20, a power supply 30, and an exhaust system 40. Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section. The gas inlet is configured to introduce at least one processing gas into the plasma processing chamber 10 . The gas introduction section includes a shower head 13. Substrate support 11 is arranged within plasma processing chamber 10 . The shower head 13 is arranged above the substrate support section 11 . In one embodiment, showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 . The plasma processing chamber 10 has a plasma processing space 10s defined by a shower head 13, a side wall 10a of the plasma processing chamber 10, and a substrate support 11. Plasma processing chamber 10 is grounded. The shower head 13 and the substrate support section 11 are electrically insulated from the casing of the plasma processing chamber 10.
 基板支持部11は、本体部111及びリングアセンブリ112を含む。本体部111は、基板Wを支持するための中央領域111aと、リングアセンブリ112を支持するための環状領域111bとを有する。ウェハは基板Wの一例である。本体部111の環状領域111bは、平面視で本体部111の中央領域111aを囲んでいる。基板Wは、本体部111の中央領域111a上に配置され、リングアセンブリ112は、本体部111の中央領域111a上の基板Wを囲むように本体部111の環状領域111b上に配置される。従って、中央領域111aは、基板Wを支持するための基板支持面とも呼ばれ、環状領域111bは、リングアセンブリ112を支持するためのリング支持面とも呼ばれる。 The substrate support section 11 includes a main body section 111 and a ring assembly 112. The main body portion 111 has a central region 111a for supporting the substrate W and an annular region 111b for supporting the ring assembly 112. A wafer is an example of a substrate W. The annular region 111b of the main body 111 surrounds the central region 111a of the main body 111 in plan view. The substrate W is placed on the central region 111a of the main body 111, and the ring assembly 112 is placed on the annular region 111b of the main body 111 so as to surround the substrate W on the central region 111a of the main body 111. Therefore, the central region 111a is also called a substrate support surface for supporting the substrate W, and the annular region 111b is also called a ring support surface for supporting the ring assembly 112.
 一実施形態において、本体部111は、基台1110及び静電チャック1111を含む。基台1110は、導電性部材を含む。基台1110の導電性部材は下部電極として機能し得る。静電チャック1111は、基台1110の上に配置される。静電チャック1111は、セラミック部材1111aとセラミック部材1111a内に配置される静電電極1111bとを含む。セラミック部材1111aは、中央領域111aを有する。一実施形態において、セラミック部材1111aは、環状領域111bも有する。なお、環状静電チャックや環状絶縁部材のような、静電チャック1111を囲む他の部材が環状領域111bを有してもよい。この場合、リングアセンブリ112は、環状静電チャック又は環状絶縁部材の上に配置されてもよく、静電チャック1111と環状絶縁部材の両方の上に配置されてもよい。また、後述するRF電源31及び/又はDC電源32に結合される少なくとも1つのRF/DC電極がセラミック部材1111a内に配置されてもよい。この場合、少なくとも1つのRF/DC電極が下部電極として機能する。後述するバイアスRF信号及び/又はDC信号が少なくとも1つのRF/DC電極に供給される場合、RF/DC電極はバイアス電極とも呼ばれる。なお、基台1110の導電性部材と少なくとも1つのRF/DC電極とが複数の下部電極として機能してもよい。また、静電電極1111bが下部電極として機能してもよい。従って、基板支持部11は、少なくとも1つの下部電極を含む。 In one embodiment, the main body 111 includes a base 1110 and an electrostatic chuck 1111. Base 1110 includes a conductive member. The conductive member of the base 1110 can function as a lower electrode. Electrostatic chuck 1111 is placed on base 1110. Electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within ceramic member 1111a. Ceramic member 1111a has a central region 111a. In one embodiment, ceramic member 1111a also has an annular region 111b. Note that another member surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b. In this case, the ring assembly 112 may be placed on the annular electrostatic chuck or the annular insulating member, or may be placed on both the electrostatic chuck 1111 and the annular insulating member. Also, at least one RF/DC electrode coupled to an RF power source 31 and/or a DC power source 32, which will be described later, may be disposed within the ceramic member 1111a. In this case, at least one RF/DC electrode functions as a bottom electrode. If at least one RF/DC electrode is supplied with a bias RF signal and/or a DC signal as described below, the RF/DC electrode is also referred to as a bias electrode. Note that the conductive member of the base 1110 and at least one RF/DC electrode may function as a plurality of lower electrodes. Further, the electrostatic electrode 1111b may function as a lower electrode. Therefore, the substrate support 11 includes at least one lower electrode.
 リングアセンブリ112は、1又は複数の環状部材を含む。一実施形態において、1又は複数の環状部材は、1又は複数のエッジリングと少なくとも1つのカバーリングとを含む。エッジリングは、導電性材料又は絶縁材料で形成され、カバーリングは、絶縁材料で形成される。 Ring assembly 112 includes one or more annular members. In one embodiment, the one or more annular members include one or more edge rings and at least one cover ring. The edge ring is made of a conductive or insulating material, and the cover ring is made of an insulating material.
 また、基板支持部11は、静電チャック1111、リングアセンブリ112及び基板のうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路1110a、又はこれらの組み合わせを含んでもよい。流路1110aには、ブラインやガスのような伝熱流体が流れる。一実施形態において、流路1110aが基台1110内に形成され、1又は複数のヒータが静電チャック1111のセラミック部材1111a内に配置される。また、基板支持部11は、基板Wの裏面と中央領域111aとの間の間隙に伝熱ガスを供給するように構成された伝熱ガス供給部を含んでもよい。 Further, the substrate support unit 11 may include a temperature control module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 112, and the substrate to a target temperature. The temperature control module may include a heater, a heat transfer medium, a flow path 1110a, or a combination thereof. A heat transfer fluid such as brine or gas flows through the flow path 1110a. In one embodiment, a channel 1110a is formed within the base 1110 and one or more heaters are disposed within the ceramic member 1111a of the electrostatic chuck 1111. Further, the substrate support section 11 may include a heat transfer gas supply section configured to supply heat transfer gas to the gap between the back surface of the substrate W and the central region 111a.
 シャワーヘッド13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッド13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、及び複数のガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13bを通過して複数のガス導入口13cからプラズマ処理空間10s内に導入される。また、シャワーヘッド13は、少なくとも1つの上部電極を含む。なお、ガス導入部は、シャワーヘッド13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。 The shower head 13 is configured to introduce at least one processing gas from the gas supply section 20 into the plasma processing space 10s. The shower head 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and a plurality of gas introduction ports 13c. The processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s from the plurality of gas introduction ports 13c. The showerhead 13 also includes at least one upper electrode. In addition to the shower head 13, the gas introduction section may include one or more side gas injectors (SGI) attached to one or more openings formed in the side wall 10a.
 ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッド13に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する少なくとも1つの流量変調デバイスを含んでもよい。 The gas supply section 20 may include at least one gas source 21 and at least one flow rate controller 22. In one embodiment, the gas supply 20 is configured to supply at least one process gas from a respective gas source 21 to the showerhead 13 via a respective flow controller 22 . Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller. Additionally, gas supply 20 may include at least one flow modulation device that modulates or pulses the flow rate of at least one process gas.
 電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、少なくとも1つのRF信号(RF電力)を少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ生成部12の少なくとも一部として機能し得る。また、バイアスRF信号を少なくとも1つの下部電極に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。 Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit. RF power source 31 is configured to supply at least one RF signal (RF power) to at least one bottom electrode and/or at least one top electrode. Thereby, plasma is formed from at least one processing gas supplied to the plasma processing space 10s. Therefore, the RF power supply 31 can function as at least a part of the plasma generation section 12. Further, by supplying a bias RF signal to at least one lower electrode, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W.
 一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成される。一実施形態において、ソースRF信号は、10MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給される。 In one embodiment, the RF power supply 31 includes a first RF generation section 31a and a second RF generation section 31b. The first RF generation section 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit, and generates a source RF signal (source RF power) for plasma generation. It is configured as follows. In one embodiment, the source RF signal has a frequency within the range of 10 MHz to 150 MHz. In one embodiment, the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are provided to at least one bottom electrode and/or at least one top electrode.
 第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。バイアスRF信号の周波数は、ソースRF信号の周波数と同じであっても異なっていてもよい。一実施形態において、バイアスRF信号は、ソースRF信号の周波数よりも低い周波数を有する。一実施形態において、バイアスRF信号は、100kHz~60MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、少なくとも1つの下部電極に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。 The second RF generating section 31b is coupled to at least one lower electrode via at least one impedance matching circuit, and is configured to generate a bias RF signal (bias RF power). The frequency of the bias RF signal may be the same or different than the frequency of the source RF signal. In one embodiment, the bias RF signal has a lower frequency than the frequency of the source RF signal. In one embodiment, the bias RF signal has a frequency within the range of 100kHz to 60MHz. In one embodiment, the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies. The generated one or more bias RF signals are provided to at least one bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
 また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、少なくとも1つの下部電極に接続され、第1のDC信号を生成するように構成される。生成された第1のDC信号は、少なくとも1つの下部電極に印加される。一実施形態において、第2のDC生成部32bは、少なくとも1つの上部電極に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、少なくとも1つの上部電極に印加される。 Power source 30 may also include a DC power source 32 coupled to plasma processing chamber 10 . The DC power supply 32 includes a first DC generation section 32a and a second DC generation section 32b. In one embodiment, the first DC generator 32a is connected to at least one lower electrode and configured to generate a first DC signal. The generated first DC signal is applied to at least one bottom electrode. In one embodiment, the second DC generator 32b is connected to the at least one upper electrode and configured to generate a second DC signal. The generated second DC signal is applied to the at least one top electrode.
 種々の実施形態において、第1及び第2のDC信号がパルス化されてもよい。この場合、電圧パルスのシーケンスが少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に印加される。電圧パルスは、矩形、台形、三角形又はこれらの組み合わせのパルス波形を有してもよい。一実施形態において、DC信号から電圧パルスのシーケンスを生成するための波形生成部が第1のDC生成部32aと少なくとも1つの下部電極との間に接続される。従って、第1のDC生成部32a及び波形生成部は、電圧パルス生成部を構成する。第2のDC生成部32b及び波形生成部が電圧パルス生成部を構成する場合、電圧パルス生成部は、少なくとも1つの上部電極に接続される。電圧パルスは、正の極性を有してもよく、負の極性を有してもよい。また、電圧パルスのシーケンスは、1周期内に1又は複数の正極性電圧パルスと1又は複数の負極性電圧パルスとを含んでもよい。なお、第1及び第2のDC生成部32a,32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。 In various embodiments, the first and second DC signals may be pulsed. In this case, a sequence of voltage pulses is applied to at least one lower electrode and/or at least one upper electrode. The voltage pulse may have a pulse waveform that is rectangular, trapezoidal, triangular, or a combination thereof. In one embodiment, a waveform generator for generating a sequence of voltage pulses from a DC signal is connected between the first DC generator 32a and the at least one bottom electrode. Therefore, the first DC generation section 32a and the waveform generation section constitute a voltage pulse generation section. When the second DC generation section 32b and the waveform generation section constitute a voltage pulse generation section, the voltage pulse generation section is connected to at least one upper electrode. The voltage pulse may have positive polarity or negative polarity. Furthermore, the sequence of voltage pulses may include one or more positive voltage pulses and one or more negative voltage pulses within one period. Note that the first and second DC generation units 32a and 32b may be provided in addition to the RF power source 31, or the first DC generation unit 32a may be provided in place of the second RF generation unit 31b. good.
 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。 The exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example. Evacuation system 40 may include a pressure regulating valve and a vacuum pump. The pressure within the plasma processing space 10s is adjusted by the pressure regulating valve. The vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
 図2に示すガス計測部5(5A)及び図3に示すガス計測部5(5B)は、プラズマ処理チャンバ10内のガスを採取して計測する。図2に示すように、ガス計測部5(5A)は、ガス計測装置51と、バルブ52と、配管53と、を備える。配管53の一端は、プラズマ処理チャンバ10の側壁10aに設けられたガス採取口10bと接続される。配管53の他端は、ガス計測装置51と接続される。また、配管53には、バルブ52が設けられている。 The gas measurement unit 5 (5A) shown in FIG. 2 and the gas measurement unit 5 (5B) shown in FIG. 3 sample and measure the gas in the plasma processing chamber 10. As shown in FIG. 2, the gas measurement unit 5 (5A) includes a gas measurement device 51, a valve 52, and a pipe 53. One end of the pipe 53 is connected to a gas sampling port 10b provided in the side wall 10a of the plasma processing chamber 10. The other end of the pipe 53 is connected to the gas measuring device 51. Further, the pipe 53 is provided with a valve 52 .
 ガス計測装置51は、例えば、四重極質量分析器(QMS:Quadrupole Mass Analyzer)を用いることができる。四重極質量分析器は、ガスを質量の観点で分離することにより、微量な成分の計測を行うことができる。また、四重極質量分析器は、プラズマによるガスの解離を計測することができる。 As the gas measuring device 51, for example, a quadrupole mass analyzer (QMS) can be used. A quadrupole mass spectrometer can measure trace components by separating gases in terms of mass. Additionally, a quadrupole mass spectrometer can measure gas dissociation caused by plasma.
 四重極質量分析器は、イオンソース部、質量分析部、検出部を有する。イオンソース部は、フィラメントとフィラメント電源を備える。フィラメント電源は、フィラメントに電圧を印加する。電圧が印加され高温となったフィラメントは、熱電子を放出する。放出された熱電子は、ガスと衝突して、ガスをイオン化する。質量分析部は、4本の電極(四重極)に直流または交流の電圧を印加することにより、所定の質量のイオンを通過させる。検出部は、質量分析部を通過したイオンを検出する。 A quadrupole mass spectrometer has an ion source section, a mass spectrometer section, and a detection section. The ion source section includes a filament and a filament power source. A filament power supply applies voltage to the filament. When a voltage is applied to the filament and the temperature reaches a high temperature, the filament emits thermoelectrons. The emitted thermionic electrons collide with the gas and ionize the gas. The mass spectrometer applies a DC or AC voltage to four electrodes (quadrupole) to allow ions of a predetermined mass to pass through. The detection section detects ions that have passed through the mass spectrometry section.
 バルブ52は、配管53を開閉するとともに、プラズマ処理チャンバ10内の圧力とガス計測装置51側の圧力との間に圧力差を形成する。 The valve 52 opens and closes the pipe 53 and creates a pressure difference between the pressure inside the plasma processing chamber 10 and the pressure on the gas measuring device 51 side.
 なお、図3に示すように、ガス計測部5(5B)は、差動排気システムであってもよい。即ち、ガス計測部5(5B)は、ガス計測装置51と、バルブ52と、配管53と、排気システム54と、を備える。排気システム54は、例えば配管53のバルブ52とガス計測装置51の間に接続され得る。排気システム54は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、ガス計測装置51に供給されるガスの圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。これにより、プラズマ処理チャンバ10内のガスは、排気システム40によって排気される(黒塗り矢印参照)。また、配管53内のガスは、排気システム54によって排気される(黒塗り矢印参照)。 Note that, as shown in FIG. 3, the gas measurement unit 5 (5B) may be a differential pumping system. That is, the gas measurement unit 5 (5B) includes a gas measurement device 51, a valve 52, a pipe 53, and an exhaust system 54. The exhaust system 54 can be connected, for example, between the valve 52 of the pipe 53 and the gas measuring device 51. The exhaust system 54 may include a pressure regulating valve and a vacuum pump. The pressure of the gas supplied to the gas measuring device 51 is adjusted by the pressure regulating valve. The vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof. Thereby, the gas in the plasma processing chamber 10 is exhausted by the exhaust system 40 (see black arrow). Further, the gas in the pipe 53 is exhausted by an exhaust system 54 (see black arrow).
 なお、ガス計測装置51は、四重極質量分析器として説明するか、これに限られるものではない。ガス計測装置51は、例えば、残留ガス分析計(RGA:Residual Gas Analyzer)、イオントラップ型質量分析計、飛行時間型質量分析計(TOFMS)であってもよい。 Note that the gas measuring device 51 will be described as a quadrupole mass spectrometer, but is not limited to this. The gas measuring device 51 may be, for example, a residual gas analyzer (RGA), an ion trap mass spectrometer, or a time-of-flight mass spectrometer (TOFMS).
 次に、プラズマ処理チャンバ10内の処理ガスの解離状態についての実験結果の一例について、図4を用いて説明する。図4は、ガス計測装置51で計測された処理ガスの解離状態を示すグラフの一例である。ここでは、プラズマ処理チャンバ10内の圧力20mT(2.7Pa)、ガス供給部20からプラズマ処理空間10sに導入される処理ガスをArガス800sccm、Cガス20sccm、Oガス20sccmとして、RF電源31から下部電極及び/又は上部電極にRF信号を供給してプラズマ処理チャンバ10内にこれらのガスのプラズマを生成し、QMS(ガス計測装置51)(以下、QMS51とも記す。)でこれらのガスの解離状態の構成比を検出した。縦軸は、QMS51で計測されたイオン電流比、換言すればCガスの解離状態の構成比を示す。また、(a)はRF信号を印加していない状態の構成比を示す。(b)はLF信号100W、HF信号700Wを印加した状態を示す。(c)はLF信号400W、HF信号700Wを印加した状態の構成比を示す。(d)はLF信号700W、HF信号700Wを印加した状態の構成比を示す。LF信号及びHF信号は、RF信号の一例であり、LF信号は下部電極に結合されるバイアスRF信号に相当し、HF信号は下部電極及び/又は上部電極に結合されるソースRF信号に相当する。図4の実験では、HF信号は上部電極に供給した。 Next, an example of experimental results regarding the dissociation state of the processing gas in the plasma processing chamber 10 will be described using FIG. 4. FIG. 4 is an example of a graph showing the dissociation state of the processing gas measured by the gas measuring device 51. Here, the pressure in the plasma processing chamber 10 is 20 mT (2.7 Pa), and the processing gases introduced from the gas supply unit 20 into the plasma processing space 10s are Ar gas 800 sccm, C 4 F 8 gas 20 sccm, and O 2 gas 20 sccm. An RF signal is supplied from the RF power source 31 to the lower electrode and/or the upper electrode to generate plasma of these gases in the plasma processing chamber 10, and a QMS (gas measuring device 51) (hereinafter also referred to as QMS 51) generates plasma of these gases. The composition ratio of the dissociated state of the gas was detected. The vertical axis indicates the ion current ratio measured by the QMS 51, in other words, the composition ratio of the dissociated state of C 4 F 8 gas. Moreover, (a) shows the composition ratio in a state where no RF signal is applied. (b) shows a state in which an LF signal of 100 W and an HF signal of 700 W are applied. (c) shows the composition ratio in a state where 400 W of LF signal and 700 W of HF signal are applied. (d) shows the composition ratio in a state where 700 W of LF signal and 700 W of HF signal are applied. The LF signal and the HF signal are examples of RF signals, where the LF signal corresponds to a bias RF signal coupled to the bottom electrode, and the HF signal corresponds to a source RF signal coupled to the bottom electrode and/or the top electrode. . In the experiment of FIG. 4, the HF signal was applied to the top electrode.
 Cガスは、C(Mass=12)、F(Mass=19)、CF(Mass=31)、CF(Mass=50)、CF(Mass=69)、C(Mass=100)、C(Mass=131)等のフラグメントに解離する。また、Cガスから解離したCとOが結合したCO(Mass=28)が生成される。なお、「Mass」は質量数または分子量を示す。QMS51は、これらの分子量について計測する。なお、QMS51で計測された「Mass=28」の測定結果には、COとともに、プラズマ処理チャンバ10内に含まれるN(Mass=28)も含む。 C 4 F 8 gas is C (Mass=12), F (Mass=19), CF (Mass=31), CF 2 (Mass=50), CF 3 (Mass=69), C 2 F 4 (Mass =100) and C3F5 ( Mass=131). Further, CO (Mass=28) is generated in which C and O bonded together are dissociated from the C 4 F 8 gas. Note that "Mass" indicates mass number or molecular weight. QMS51 measures these molecular weights. Note that the measurement result of “Mass=28” measured by the QMS 51 includes N 2 (Mass=28) contained in the plasma processing chamber 10 as well as CO.
 図4では、計測範囲をMass=1からMass=100までとするQMS51で計測した処理ガスの解離状態の構成比を示す。図4に示すように、プラズマ処理チャンバ10内の状態(図4の例では、RF信号の出力)が変化することで、QMS51で検出される処理ガスの解離状態の構成比が変化する。 FIG. 4 shows the composition ratio of the dissociation state of the processing gas measured by the QMS 51 with the measurement range from Mass=1 to Mass=100. As shown in FIG. 4, as the state within the plasma processing chamber 10 (in the example of FIG. 4, the output of the RF signal) changes, the composition ratio of the dissociated state of the processing gas detected by the QMS 51 changes.
 ところで、CF系のエッチングガスを用いたプラズマエッチングプロセス(プラズマ処理)において、処理ガスの解離状態により、対象膜をエッチングするエッチング反応と、エッチング処理の際に生じる反応生成物が堆積する堆積(デポ)反応と、のいずれが優位かの関係が変化する。処理ガスの解離状態は、RFパワー、エッチングに寄与する処理ガスの流量(図4の例では、Cガスの流量)、処理ガスの流量比(図4の例では、Cガスの流量比)、プラズマ処理チャンバ10内の圧力、装置温度など、処理レシピやプロセスパラメータに設定されたエッチング工程におけるさまざまな基板の処理条件に加え、装置内のパーツの表面状態等によっても、変化する。 By the way, in a plasma etching process (plasma treatment) using a CF-based etching gas, depending on the dissociation state of the processing gas, there is an etching reaction that etches the target film, and a deposition (deposit) where reaction products generated during the etching process are deposited. ) reaction and which one is dominant changes. The dissociation state of the processing gas is determined by the RF power, the flow rate of the processing gas contributing to etching (in the example of FIG. 4, the flow rate of C 4 F 8 gas), and the flow rate ratio of the processing gas (in the example of FIG. 4, the C 4 F 8 gas flow rate). In addition to various substrate processing conditions in the etching process set in the processing recipe and process parameters, such as gas flow rate ratio), pressure inside the plasma processing chamber 10, and equipment temperature, the process may also depend on the surface conditions of parts in the equipment, etc. Change.
 QMS51は、プラズマ処理中の処理ガスの解離状態をモニタリングすることでプラズマの状態を監視できる。つまり、処理ガスの解離状態をQMS51で検出して解析することで、プラズマ処理チャンバ10内の処理状態を把握することができる。また、QMS51の検出結果に基づいて処理条件を調整することにより、プラズマエッチング処理を制御することができる。 The QMS 51 can monitor the plasma state by monitoring the dissociation state of the processing gas during plasma processing. That is, by detecting and analyzing the dissociation state of the processing gas using the QMS 51, it is possible to understand the processing state inside the plasma processing chamber 10. Further, by adjusting the processing conditions based on the detection results of the QMS 51, the plasma etching process can be controlled.
<フィードバック制御の一例>
 連続して複数の基板を処理する際に、第1の基板Wのプラズマ処理中にQMS51で計測した処理ガスの解離状態に基づいて、第1の基板Wの後に処理される第2の基板Wの処理条件を調整するフィードバック制御の一例を図5を用いて説明する。図5は、フィードバック制御の一例を示すフローチャートである。
<Example of feedback control>
When processing a plurality of substrates in succession, the second substrate W to be processed after the first substrate W is determined based on the dissociation state of the processing gas measured by the QMS 51 during the plasma processing of the first substrate W. An example of feedback control for adjusting processing conditions will be described with reference to FIG. FIG. 5 is a flowchart showing an example of feedback control.
 図5に示すように、ステップS11において、制御部2は、1枚目の基板Wに対する処理レシピ等の処理条件を設定する。処理条件は、処理レシピ及び/又はプロセスパラメータに設定されている。1枚目の基板Wにおいて、処理レシピ及び/又はプロセスパラメータは例えば記憶部2a2に予め記憶された処理レシピ及び/又はプロセスパラメータを読み出す。次に、ステップS12において、制御部2は、1枚目の基板Wをプラズマ処理チャンバ10に搬送し、基板Wを基板支持部11に支持させる。次に、ステップS13において、制御部2は、基板の処理条件に基づいて、基板Wに第1プラズマ処理を施す。次に、ステップS14において、制御部2は、基板の処理条件に基づいて、基板Wに第2プラズマ処理を施す。次に、ステップS15において、制御部2は、1枚目の基板Wをプラズマ処理チャンバ10から搬出する。なお、図5に示すフローチャートの例において、プラズマ処理装置1によって基板Wには異なる2つのプラズマ処理(第1プラズマ処理、第2プラズマ処理)が施される。基板Wに施される第1プラズマ処理及び第2プラズマ処理は、例えばプラズマを用いたエッチング処理である。ただし、これに限らず、プラズマ処理装置1によって基板Wには1つのプラズマ処理(第1プラズマ処理)のみを行ってもよい。 As shown in FIG. 5, in step S11, the control unit 2 sets processing conditions such as a processing recipe for the first substrate W. Processing conditions are set in a processing recipe and/or process parameters. For the first substrate W, the processing recipe and/or process parameters are read out from, for example, the processing recipe and/or process parameters stored in advance in the storage unit 2a2. Next, in step S12, the control section 2 transports the first substrate W to the plasma processing chamber 10, and causes the substrate support section 11 to support the substrate W. Next, in step S13, the control unit 2 performs a first plasma treatment on the substrate W based on the substrate treatment conditions. Next, in step S14, the control unit 2 subjects the substrate W to a second plasma treatment based on the substrate processing conditions. Next, in step S15, the control unit 2 carries out the first substrate W from the plasma processing chamber 10. In the example of the flowchart shown in FIG. 5, two different plasma treatments (first plasma treatment and second plasma treatment) are performed on the substrate W by the plasma processing apparatus 1. The first plasma treatment and the second plasma treatment performed on the substrate W are, for example, etching treatment using plasma. However, the present invention is not limited to this, and the plasma processing apparatus 1 may perform only one plasma treatment (first plasma treatment) on the substrate W.
 ここで、1枚目の基板Wに対して第1プラズマ処理(ステップS13)を施す際、QMS51で処理ガスの解離状態(構成比)を計測する。また、1枚目の基板Wに対して第2プラズマ処理(ステップS14)を施す際、QMS51で処理ガスの解離状態(構成比)を計測する。そして、制御部2は、QMS51の測定結果を取得する。 Here, when performing the first plasma treatment (step S13) on the first substrate W, the dissociation state (composition ratio) of the processing gas is measured by the QMS 51. Further, when performing the second plasma treatment (step S14) on the first substrate W, the QMS 51 measures the dissociation state (composition ratio) of the processing gas. Then, the control unit 2 acquires the measurement results of the QMS 51.
 そして、制御部2は、2枚目の基板Wに対して、処理条件調整(ステップS21)、基板搬送(ステップS22)、第1プラズマ処理(ステップS23)、第2プラズマ処理(ステップS24)、基板搬出(ステップS25)を行う。 Then, the control unit 2 performs processing condition adjustment (step S21), substrate transport (step S22), first plasma treatment (step S23), second plasma treatment (step S24), and the like for the second substrate W. The substrate is carried out (step S25).
 ここで、2枚目の基板W(1枚目の基板Wの後に処理される基板W)において、処理条件調整(ステップS21)は、1枚目の基板Wに対して第1プラズマ処理(ステップS13)を施した際のQMS51で計測した処理ガスの解離状態(構成比)に基づいて、第1プラズマ処理(ステップS23)における処理条件を調整する。また、処理条件調整(ステップS21)は、1枚目の基板Wに対して第2プラズマ処理(ステップS14)を施した際のQMS51で計測した処理ガスの解離状態(構成比)に基づいて、第2プラズマ処理(ステップS24)における条件を調整する。 Here, in the second substrate W (substrate W to be processed after the first substrate W), the processing condition adjustment (step S21) is performed by performing the first plasma processing (step S21) on the first substrate W. The processing conditions in the first plasma processing (step S23) are adjusted based on the dissociation state (component ratio) of the processing gas measured by the QMS 51 when performing step S13). Further, the processing condition adjustment (step S21) is based on the dissociation state (composition ratio) of the processing gas measured by the QMS 51 when the second plasma processing (step S14) is performed on the first substrate W. Conditions for the second plasma treatment (step S24) are adjusted.
 これにより、ステップS23において、制御部2は、ステップS21で調整された処理条件に基づいて、2枚目の基板Wに第1プラズマ処理を施す。また、ステップS24において、制御部2は、ステップS21で調整された処理条件に基づいて、2枚目の基板Wに第2プラズマ処理を施す。 Thereby, in step S23, the control unit 2 performs the first plasma treatment on the second substrate W based on the processing conditions adjusted in step S21. Furthermore, in step S24, the control unit 2 performs a second plasma treatment on the second substrate W based on the processing conditions adjusted in step S21.
 また、2枚目の基板Wに対して第1プラズマ処理(ステップS23)を施す際、QMS51で処理ガスの解離状態(構成比)を計測する。また、2枚目の基板Wに対して第2プラズマ処理(ステップS24)を施す際、QMS51で処理ガスの解離状態(構成比)を計測する。そして、制御部2は、QMS51の測定結果を取得する。 Furthermore, when performing the first plasma treatment (step S23) on the second substrate W, the QMS 51 measures the dissociation state (composition ratio) of the processing gas. Further, when performing the second plasma treatment (step S24) on the second substrate W, the QMS 51 measures the dissociation state (composition ratio) of the processing gas. Then, the control unit 2 acquires the measurement results of the QMS 51.
 以下同様に、制御部2は、3枚目の基板W(2枚目の基板Wの後に処理される基板W)に対して、処理条件調整(ステップS31)、基板搬送(ステップS32)、第1プラズマ処理(ステップS33)、第2プラズマ処理(ステップS34)、基板搬出(ステップS35)を行う。ここで、3枚目の基板Wにおいて、処理条件調整(ステップS31)は、2枚目の基板Wに対して第1プラズマ処理(ステップS23)を施した際のQMS51で計測した処理ガスの解離状態(構成比)に基づいて、第1プラズマ処理(ステップS33)における処理条件を調整する。また、処理条件調整(ステップS31)は、2枚目の基板Wに対して第2プラズマ処理(ステップS24)を施した際のQMS51で計測した処理ガスの解離状態(構成比)に基づいて、第2プラズマ処理(ステップS34)における条件を調整する。 Similarly, the control unit 2 controls processing condition adjustment (step S31), substrate transport (step S32), and First plasma treatment (step S33), second plasma treatment (step S34), and substrate unloading (step S35) are performed. Here, for the third substrate W, the processing condition adjustment (step S31) is based on the dissociation of the processing gas measured by the QMS 51 when the first plasma processing (step S23) is performed on the second substrate W. Based on the state (component ratio), the processing conditions in the first plasma processing (step S33) are adjusted. Further, the processing condition adjustment (step S31) is based on the dissociation state (composition ratio) of the processing gas measured by the QMS 51 when the second plasma processing (step S24) is performed on the second substrate W. Conditions for the second plasma treatment (step S34) are adjusted.
 なお、図5に示すフローにおいて、第1の基板Wの処理の間にQMS51で処理ガスの解離状態を計測し、計測した解離状態に基づき第1の基板Wの次に処理される第2の基板Wの処理条件を調整するものとして説明したが、これに限られるものではない。第1の基板Wの処理の間にQMS51で処理ガスの解離状態を計測し、計測した解離状態に基づき第1の基板Wの後に処理される基板Wの処理条件を調整する構成であってもよい。例えば、第1の基板Wの処理の間にQMS51で処理ガスの解離状態を計測し、計測した解離状態に基づき第1の基板Wの後に処理される第2の基板W、第3の基板Wの処理条件を調整してもよい。また、第1の基板Wの処理の間にQMS51で処理ガスの解離状態を計測し、計測した解離状態に基づき第1の基板Wの後に処理される第3の基板Wの処理条件を調整してもよい。 In the flow shown in FIG. 5, the dissociation state of the processing gas is measured by the QMS 51 during the processing of the first substrate W, and based on the measured dissociation state, the second substrate W to be processed next to the first substrate W is Although the processing conditions for the substrate W have been described as being adjusted, the present invention is not limited to this. Even if the configuration is such that the dissociation state of the processing gas is measured by the QMS 51 during the processing of the first substrate W, and the processing conditions of the substrate W to be processed after the first substrate W are adjusted based on the measured dissociation state. good. For example, during the processing of the first substrate W, the dissociation state of the processing gas is measured by the QMS 51, and based on the measured dissociation state, the second substrate W and the third substrate W to be processed after the first substrate W are processed. The processing conditions may be adjusted. Further, during the processing of the first substrate W, the dissociation state of the processing gas is measured by the QMS 51, and the processing conditions of the third substrate W to be processed after the first substrate W are adjusted based on the measured dissociation state. You can.
 ここで、処理条件の調整方法の一例について、図4に示すCガスなどのエッチングに寄与するCF系ガス(C及びFを含むフルオロカーボンガス)を使用した処理条件の場合を例に説明する。 Here, an example of how to adjust the processing conditions will be explained using the case of processing conditions using a CF-based gas (fluorocarbon gas containing C and F) that contributes to etching, such as C 4 F 8 gas shown in FIG. 4. do.
 1枚目の基板Wにおいて、第1プラズマ処理S13及び第2プラズマ処理S14の際に、QMS51で処理ガスの解離状態(構成比)を計測する。 For the first substrate W, the dissociation state (composition ratio) of the processing gas is measured by the QMS 51 during the first plasma treatment S13 and the second plasma treatment S14.
 ここで、処理ガス(C)の解離状態の一例について、図6を用いて説明する。図6は、QMS51で処理ガス(C)の解離状態を計測したマススペクトルの一例である。図6において、横軸はm/zを示し、縦軸は相対イオン強度を示す。なお、図6では、プラズマ非生成時におけるCのマススペクトルの一例を示す。 Here, an example of the dissociation state of the processing gas (C 4 F 8 ) will be explained using FIG. 6. FIG. 6 is an example of a mass spectrum obtained by measuring the dissociation state of the processing gas (C 4 F 8 ) using the QMS 51. In FIG. 6, the horizontal axis shows m/z, and the vertical axis shows relative ion intensity. Note that FIG. 6 shows an example of the mass spectrum of C 4 F 8 when no plasma is generated.
 図6に示すように、処理ガス(C)のフラグメントは、主要フラグメント610と、微量存在フラグメント620と、に分けることができる。主要フラグメント610は、検出した相対イオン強度が高い、換言すれば、構成比の高いフラグメントである。微量存在フラグメント620は、検出した相対イオン強度が小さい、換言すれば、微量に存在するフラグメントである。図6に示す例において、Cの主要フラグメント610には、CF(Mass=31)、CF(Mass=50)、CF(Mass=69)、C(Mass=100)、C(Mass=131)を含む。また、プラズマ生成中には、プラズマによってフラグメントが細分化されるため、小さな質量数のフラグメント(例えば、C(Mass=12)、F(Mass=19))が増加する。このため、Cの主要フラグメント610には、C(Mass=12)、F(Mass=19)を含む。 As shown in FIG. 6, the fragments of the processing gas (C 4 F 8 ) can be divided into a main fragment 610 and a trace fragment 620. The main fragment 610 is a fragment with a high detected relative ion intensity, in other words, a high composition ratio. The trace amount existing fragment 620 is a fragment whose detected relative ion intensity is low, in other words, a trace amount existing fragment. In the example shown in FIG. 6, the main fragment 610 of C 4 F 8 includes CF (Mass=31), CF 2 (Mass=50), CF 3 (Mass=69), and C 2 F 4 (Mass=100). , C 3 F 5 (Mass=131). Furthermore, during plasma generation, fragments are fragmented by the plasma, so fragments with small mass numbers (for example, C (Mass=12), F (Mass=19)) increase. Therefore, the main fragment 610 of C 4 F 8 includes C (Mass=12) and F (Mass=19).
 ここで、処理ガス(C)の解離状態を正確に把握するためには、QMS51は、処理ガスから想定されるフラグメントの質量範囲の全てを計測可能範囲に含む仕様であることが求められる。C(Mass=200)においては、例えば、Mass=1からMass=200まで計測可能なQMS51を用いることが好ましい。 Here, in order to accurately grasp the dissociation state of the processing gas (C 4 F 8 ), the QMS51 must be designed to include the entire mass range of fragments expected from the processing gas within its measurable range. It will be done. For C 4 F 8 (Mass=200), it is preferable to use QMS 51 that can measure from Mass=1 to Mass=200, for example.
 但し、QMS51は、これに限られるものではない。QMS51は、構成比の高い主要フラグメント610のうち少なくとも一部の主要フラグメント611を計測可能範囲に含む仕様であってもよい。図6に示す例において、一部の主要フラグメント611には、F(Mass=19)、CF(Mass=31)、CF(Mass=50)、CF(Mass=69)を含む。これにより、プラズマ処理装置1においては、一部の主要フラグメント611を計測可能なQMS51、例えば、Mass=1からMass=100まで計測可能なQMS51を用いることができる。これにより、処理ガスから想定されるフラグメントの質量範囲よりも計測可能範囲の狭いQMS51を用いることができるので、コストを低減することができる。 However, the QMS 51 is not limited to this. The QMS 51 may have a specification that includes at least some of the main fragments 611 among the main fragments 610 with a high composition ratio in the measurable range. In the example shown in FIG. 6, some main fragments 611 include F (Mass=19), CF (Mass=31), CF 2 (Mass=50), and CF 3 (Mass=69). Thereby, in the plasma processing apparatus 1, it is possible to use a QMS 51 that can measure some of the main fragments 611, for example, a QMS 51 that can measure from Mass=1 to Mass=100. As a result, it is possible to use the QMS 51 whose measurable range is narrower than the mass range of fragments expected from the processing gas, thereby reducing costs.
 具体的には、F(Mass=19)、CF(Mass=31)、CF(Mass=50)、CF(Mass=69)の比率(ガス構成比)を計測する。ここで、比率は、Cガスから解離して生成されるC(Mass=12)、F(Mass=19)、CO(Mass=28)、CF(Mass=31)、CF(Mass=50)、CF(Mass=69)、C(Mass=100)の検出数の合計を母数として、対象とするF(Mass=19)、CF(Mass=31)、CF(Mass=50)、CF(Mass=69)のそれぞれの比率を計測する。また、解離しないArガスを基準として、Arガスに対するF(Mass=19)、CF(Mass=31)、CF(Mass=50)、CF(Mass=69)のそれぞれの比率を計測してもよい。 Specifically, the ratio (gas composition ratio) of F (Mass=19), CF (Mass=31), CF 2 (Mass=50), and CF 3 (Mass=69) is measured. Here, the ratio is C (Mass=12), F (Mass= 19 ), CO (Mass=28), CF (Mass=31), CF 2 (Mass =50), CF 3 (Mass=69), C 2 F 4 (Mass=100), using the total number of detections as a parameter, target F (Mass=19), CF (Mass=31), CF 2 (Mass=50) and CF 3 (Mass=69). In addition, the ratios of F (Mass=19), CF (Mass=31), CF 2 (Mass=50), and CF 3 (Mass=69) to Ar gas were measured using undissociated Ar gas as a reference. Good too.
 ここで、QMS51の結果において、エッチングに寄与するF及びCFのうち少なくとも一方の割合が目標値(目標の処理状態値)よりも多い場合、CF系ガスが過剰解離の状態を判断する。換言すれば、エッチング反応が優勢で、反応生成物の堆積(デポ)が減る(劣勢)と判断する。 Here, in the results of QMS51, if the ratio of at least one of F and CF contributing to etching is greater than the target value (target processing state value), it is determined that the CF-based gas is in a state of excessive dissociation. In other words, it is determined that the etching reaction is dominant and the deposition of reaction products is reduced (inferior).
 この場合、ステップS21において2枚目の基板Wに対する処理条件を設定する際、CF系ガスのガス流量(流量比)、CF系ガスのガス種(CF系ガスに添加される添加ガスも含む。)、圧力、HFパワー(ソースRF信号の出力)、LFパワー(バイアスRF信号の出力)等の処理条件の少なくとも一つを変更する。 In this case, when setting the processing conditions for the second substrate W in step S21, the gas flow rate (flow rate ratio) of the CF-based gas, the gas type of the CF-based gas (including the additive gas added to the CF-based gas). ), pressure, HF power (output of source RF signal), LF power (output of bias RF signal), and the like.
 一例としては、具体的には、CF系ガスの解離への寄与が大きいHFパワーを下げて、処理条件を設定する。これにより、2枚目の基板Wに対する第1プラズマ処理S33、第2プラズマ処理S34において、CF系ガスの過剰解離を抑え、CF系ガス(処理ガス)の解離状態を目標値に近づけることができる。 As an example, specifically, the processing conditions are set by lowering the HF power that makes a large contribution to the dissociation of the CF-based gas. As a result, in the first plasma treatment S33 and second plasma treatment S34 for the second substrate W, excessive dissociation of the CF-based gas can be suppressed and the dissociation state of the CF-based gas (processing gas) can be brought close to the target value. .
 また、CF系ガスとして例えば、CFなどの分子量の小さいCF系ガスと、Cなどの分子量の大きいCF系ガスとの混合ガスを供給する処理条件において、CFガスの流量比を減少させ、Cの流量比を増加させるように、ガス流量比を変更して、処理条件を設定する。これにより、反応生成物の堆積への寄与が大きいCの流量比を増加させることができる。これにより、2枚目の基板Wに対する第1プラズマ処理S33、第2プラズマ処理S34において、CF系ガス(処理ガス)の解離状態を目標値に近づけることができる。 In addition, under the processing conditions for supplying a mixed gas of a CF-based gas with a small molecular weight such as CF 4 and a CF-based gas with a large molecular weight such as C 4 F 8 as the CF-based gas, the flow rate ratio of the CF 4 gas may be changed. The processing conditions are set by changing the gas flow rate ratio to decrease the C 4 F 8 flow rate and increase the C 4 F 8 flow rate ratio. Thereby, the flow rate ratio of C 4 F 8, which makes a large contribution to the deposition of reaction products, can be increased. Thereby, in the first plasma treatment S33 and the second plasma treatment S34 for the second substrate W, the dissociation state of the CF-based gas (processing gas) can be brought close to the target value.
 一方、QMS51の結果において、エッチングに寄与するF及びCFのうち少なくとも一方の割合が目標値よりも少ない場合、CF系ガスの解離不足の状態を判断する。換言すれば、エッチング反応が劣勢で、反応生成物の堆積(デポ)が増える(優勢)と判断する。 On the other hand, in the results of QMS51, if the ratio of at least one of F and CF contributing to etching is lower than the target value, it is determined that the CF-based gas is insufficiently dissociated. In other words, it is determined that the etching reaction is recessive and the deposition of reaction products increases (predominant).
 この場合、ステップS21において2枚目の基板Wに対する処理条件を設定する際、CF系ガスのガス流量(流量比)、CF系ガスのガス種(添加)、圧力、HFパワー、LFパワー等の処理条件の少なくとも一つを変更する。具体的には、CF系ガスの解離への寄与が大きいHFパワーを上げて、処理条件を調整する。これにより、CF系ガスの解離を促進し、CF系ガス(処理ガス)の解離状態を目標値に近づけることができる。 In this case, when setting the processing conditions for the second substrate W in step S21, the gas flow rate (flow rate ratio) of the CF-based gas, the gas type (addition) of the CF-based gas, the pressure, the HF power, the LF power, etc. At least one of the processing conditions is changed. Specifically, the processing conditions are adjusted by increasing the HF power, which makes a large contribution to the dissociation of the CF-based gas. Thereby, the dissociation of the CF-based gas can be promoted, and the state of dissociation of the CF-based gas (processing gas) can be brought close to the target value.
 また、CF系ガスとして例えば、CFなどの分子量の小さいCF系ガスと、Cなどの分子量の大きいCF系ガスとの混合ガスを供給する処理条件において、CFガスの流量比を増加させ、Cの流量比を減少させるように、ガス流量比を変更して、処理条件を設定する。これにより、2枚目の基板Wに対する第1プラズマ処理S33、第2プラズマ処理S34において、CF系ガス(処理ガス)の解離状態を目標値に近づけることができる。 In addition, under the processing conditions for supplying a mixed gas of a CF-based gas with a small molecular weight such as CF 4 and a CF-based gas with a large molecular weight such as C 4 F 6 as the CF-based gas, the flow rate ratio of the CF 4 gas may be changed. The processing conditions are set by changing the gas flow rate ratio so as to increase the C 4 F 6 flow rate and decrease the C 4 F 6 flow rate ratio. Thereby, in the first plasma treatment S33 and the second plasma treatment S34 for the second substrate W, the dissociation state of the CF-based gas (processing gas) can be brought close to the target value.
<フィードバック制御の他の一例>
 次に、基板Wのプラズマ処理中にQMS51で計測した処理ガスの解離状態を解析し、そのプラズマ処理における処理条件をリアルタイムで調整する制御の一例を図7を用いて説明する。図7は、フィードバック制御の他の一例を示すフローチャートである。
<Another example of feedback control>
Next, an example of control in which the dissociation state of the processing gas measured by the QMS 51 during plasma processing of the substrate W is analyzed and the processing conditions in the plasma processing are adjusted in real time will be described with reference to FIG. FIG. 7 is a flowchart showing another example of feedback control.
 図7に示すように、ステップS51において、制御部2は、基板Wに対する処理条件を設定する。ここで、処理条件は例えば記憶部2a2に予め記憶された処理レシピ及び/又はプロセスパラメータを読み出す。次に、ステップS52において、制御部2は、基板Wをプラズマ処理チャンバ10に搬送し、基板Wを基板支持部11に支持させる。次に、ステップS53において、制御部2は、処理条件に基づいて、基板Wにプラズマエッチング処理を施す。 As shown in FIG. 7, in step S51, the control unit 2 sets processing conditions for the substrate W. Here, as the processing conditions, for example, a processing recipe and/or process parameters stored in advance in the storage unit 2a2 are read out. Next, in step S52, the control section 2 transports the substrate W to the plasma processing chamber 10, and causes the substrate support section 11 to support the substrate W. Next, in step S53, the control unit 2 performs a plasma etching process on the substrate W based on the process conditions.
 ここで、基板Wに対して、プラズマ処理(ステップS53)を施す際、QMS51で処理ガスの解離状態(構成比)を計測する。そして、制御部2は、QMS51の測定結果を取得する。 Here, when plasma processing (step S53) is performed on the substrate W, the dissociation state (composition ratio) of the processing gas is measured by the QMS 51. Then, the control unit 2 acquires the measurement results of the QMS 51.
 そして、ステップS54において、制御部2は、計測した解離状態が既定範囲内であるか否かを判定する。計測した解離状態が既定範囲内である場合(S54・YES)、制御部2は、既定の時間までプラズマ処理を継続し(ステップS55)、基板Wにプラズマ処理を施す。 Then, in step S54, the control unit 2 determines whether the measured dissociation state is within a predetermined range. If the measured dissociation state is within the predetermined range (S54, YES), the control unit 2 continues the plasma treatment until the predetermined time (step S55), and subjects the substrate W to the plasma treatment.
 一方、計測した解離状態が既定範囲内でない場合(S54・NO)、制御部2は、基板Wに対してプラズマ処理S53を施した際のQMS51で計測した処理ガスの解離状態(構成比)に基づいて、プラズマ処理の処理条件を調整する(ステップS56)。そして、調整された処理条件に基づいて、基板Wにプラズマ処理を施す(ステップS57)。また、基板Wに対して、プラズマ処理(ステップS57)を施す際、QMS51で処理ガスの解離状態(構成比)を計測する。そして、制御部2は、QMS51の測定結果を取得する。 On the other hand, if the measured dissociation state is not within the predetermined range (S54/NO), the control unit 2 adjusts the dissociation state (composition ratio) of the processing gas measured by the QMS 51 when plasma processing S53 is performed on the substrate W. Based on this, the processing conditions for plasma processing are adjusted (step S56). Then, plasma processing is performed on the substrate W based on the adjusted processing conditions (step S57). Furthermore, when plasma processing (step S57) is performed on the substrate W, the QMS 51 measures the dissociation state (composition ratio) of the processing gas. Then, the control unit 2 acquires the measurement results of the QMS 51.
 そして、ステップS58において、制御部2は、計測した解離状態が既定範囲内であるか否かを判定する。計測した解離状態が既定範囲内である場合(S58・YES)、制御部2は、既定の時間までプラズマ処理を継続し(ステップS59)、基板Wにプラズマ処理を施す。 Then, in step S58, the control unit 2 determines whether the measured dissociation state is within a predetermined range. If the measured dissociation state is within the predetermined range (S58, YES), the control unit 2 continues the plasma treatment until the predetermined time (step S59), and subjects the substrate W to the plasma treatment.
 一方、計測した解離状態が既定範囲内でない場合(S58・NO)、制御部2は、基板Wに対してプラズマ処理S53を施した際のQMS51で計測した処理ガスの解離状態(構成比)に基づいて、プラズマ処理の処理条件を調整する(ステップS60)。そして、調整された処理条件に基づいて、既定の時間まで基板Wにプラズマ処理を施す(ステップS61)。なお、基板Wに対して、プラズマ処理(ステップS61)を施す際、QMS51で処理ガスの解離状態(構成比)を計測し、計測した解離状態が既定範囲内でない場合、処理条件を再調整してもよい。 On the other hand, if the measured dissociation state is not within the predetermined range (S58, NO), the control unit 2 adjusts the dissociation state (composition ratio) of the processing gas measured by the QMS 51 when plasma processing S53 is performed on the substrate W. Based on this, the processing conditions for plasma processing are adjusted (step S60). Then, based on the adjusted processing conditions, the substrate W is subjected to plasma processing until a predetermined time (step S61). Note that when plasma processing (step S61) is performed on the substrate W, the dissociation state (composition ratio) of the processing gas is measured by the QMS 51, and if the measured dissociation state is not within a predetermined range, the processing conditions are readjusted. You can.
 規定の処理時間が経過すると、制御部2は、プラズマ処理チャンバ10から基板Wを搬出する(ステップS62)。 When the prescribed processing time has elapsed, the control unit 2 carries out the substrate W from the plasma processing chamber 10 (step S62).
 ここで、処理条件の調整方法の一例について、CなどのCF系ガスを使用した処理条件の場合を例に説明する。 Here, an example of a method for adjusting the processing conditions will be described using a case of processing conditions using a CF-based gas such as C 4 F 8 as an example.
 基板Wにおいて、第1プラズマ処理S53の際に、QMS51で処理ガスの構成比を検出する。なお、図6を用いて前述したように、処理ガス(C)の解離状態を正確に把握するためには、QMS51は、処理ガスから想定されるフラグメントの質量範囲を全てを計測可能範囲に含む仕様であることが好ましいが、これに限られるものではない。QMS51は、一部の主要フラグメント611を計測可能範囲に含む構成、例えばMass=1からMass=100まで計測可能な四重極質量分析器であってもよい。 In the substrate W, the composition ratio of the processing gas is detected by the QMS 51 during the first plasma processing S53. As described above using FIG. 6, in order to accurately grasp the dissociation state of the processing gas (C 4 F 8 ), the QMS51 is capable of measuring the entire mass range of fragments expected from the processing gas. It is preferable that the specifications fall within this range, but the specification is not limited thereto. The QMS 51 may be a quadrupole mass spectrometer that can include some of the main fragments 611 in its measurable range, for example, from Mass=1 to Mass=100.
 具体的には、F(Mass=19)、CF(Mass=31)、CF(Mass=50)、CF(Mass=69)の比率(ガス構成比)を計測する。ここで、比率は、Cガスから解離して生成されるC(Mass=12)、F(Mass=19)、CO(Mass=28)、CF(Mass=31)、CF(Mass=50)、CF(Mass=69)、C(Mass=100)の検出数の合計を母数として、対象とするF(Mass=19)、CF(Mass=31)、CF(Mass=50)、CF(Mass=69)のそれぞれの比率を計測する。また、解離しないArガスを基準として、Arガスに対するF(Mass=19)、CF(Mass=31)、CF(Mass=50)、CF(Mass=69)のそれぞれの比率を計測してもよい。 Specifically, the ratio (gas composition ratio) of F (Mass=19), CF (Mass=31), CF 2 (Mass=50), and CF 3 (Mass=69) is measured. Here, the ratio is C (Mass=12), F (Mass= 19 ), CO (Mass=28), CF (Mass=31), CF 2 (Mass =50), CF 3 (Mass=69), C 2 F 4 (Mass=100), using the total number of detections as a parameter, target F (Mass=19), CF (Mass=31), CF 2 (Mass=50) and CF 3 (Mass=69). In addition, the ratios of F (Mass=19), CF (Mass=31), CF 2 (Mass=50), and CF 3 (Mass=69) to Ar gas were measured using undissociated Ar gas as a reference. Good too.
 ここで、QMS51の結果において、エッチングに寄与するF及びCFのうち少なくとも一方の割合が目標値よりも多い場合、CF系ガスが過剰解離の状態を判断する。換言すれば、エッチング反応が優勢で、反応生成物の堆積(デポ)が減る(劣勢)と判断する。 Here, in the results of QMS51, if the ratio of at least one of F and CF contributing to etching is greater than the target value, it is determined that the CF-based gas is in a state of excessive dissociation. In other words, it is determined that the etching reaction is dominant and the deposition of reaction products is reduced (inferior).
 この場合、プラズマ処理S57におけるCF系ガスのガス流量(流量比)、CF系ガスのガス種(CF系ガスに添加される添加ガスも含む。)、圧力、HFパワー(ソースRF信号の出力)、LFパワー(バイアスRF信号の出力)等の処理条件の少なくとも一つを変更する。 In this case, the gas flow rate (flow rate ratio) of the CF-based gas in plasma processing S57, the gas type of the CF-based gas (including the additive gas added to the CF-based gas), the pressure, the HF power (the output of the source RF signal) , at least one of processing conditions such as LF power (output of bias RF signal) is changed.
 一例としては、具体的には、CF系ガスの解離への寄与が大きいHFパワーを下げて、プラズマ処理S57の処理条件を調整する。これにより、プラズマ処理S57において、CF系ガスの過剰解離を抑え、CF系ガス(処理ガス)の解離状態を目標値に近づけることができる。 As an example, specifically, the processing conditions of the plasma processing S57 are adjusted by lowering the HF power that makes a large contribution to the dissociation of the CF-based gas. Thereby, in plasma processing S57, excessive dissociation of the CF-based gas can be suppressed, and the dissociation state of the CF-based gas (processing gas) can be brought close to the target value.
 また、CF系ガスとして例えば、CFなどの分子量の小さいCF系ガスと、Cなどの分子量の大きいCF系ガスとの混合ガスを供給する処理条件において、CFガスの流量比を減少させ、Cの流量比を増加させるように、ガス流量比を変更して、処理条件を設定する。これにより、デポへの寄与が大きいCの流量比を増加させることができる。これにより、プラズマ処理S57において、CF系ガス(処理ガス)の解離状態を目標値に近づけることができる。 In addition, under the processing conditions for supplying a mixed gas of a CF-based gas with a small molecular weight such as CF 4 and a CF-based gas with a large molecular weight such as C 4 F 8 as the CF-based gas, the flow rate ratio of the CF 4 gas may be changed. The processing conditions are set by changing the gas flow rate ratio to decrease the C 4 F 8 flow rate and increase the C 4 F 8 flow rate ratio. Thereby, the flow rate ratio of C 4 F 8 , which makes a large contribution to the deposit, can be increased. Thereby, in plasma processing S57, the dissociation state of the CF-based gas (processing gas) can be brought close to the target value.
 一方、QMS51の結果において、エッチングに寄与するF及びCFのうち少なくとも一方の割合よりも少ない場合、CF系ガスの解離不足の状態を判断する。換言すれば、反応生成物の堆積(デポ)が増えると判断する。 On the other hand, if the result of QMS51 is lower than the proportion of at least one of F and CF that contribute to etching, it is determined that the CF-based gas is insufficiently dissociated. In other words, it is determined that the amount of reaction product deposit increases.
 この場合、処理条件設定S56において、プラズマ処理S57におけるCF系ガスのガス流量(流量比)、CF系ガスのガス種(添加)、圧力、HFパワー、LFパワー等の処理条件の少なくとも一つを調整する。 In this case, in the processing condition setting S56, at least one of the processing conditions such as the gas flow rate (flow rate ratio) of the CF-based gas, the gas type (addition) of the CF-based gas, the pressure, the HF power, the LF power, etc. in the plasma processing S57 is set. adjust.
 具体的には、CF系ガスの解離への寄与が大きいHFパワーを上げて、プラズマ処理S57の処理条件を調整する。これにより、CF系ガスの解離を促進し、CF系ガスの解離状態を目標値に近づけることができる。また、CF系ガスとして例えば、CFなどの分子量の小さいCF系ガスと、Cなどの分子量の大きいCF系ガスとの混合ガスを供給する処理条件において、CFガスの流量比を増加させ、Cの流量比を減少させるように、ガス流量比を変更して、処理条件を設定する。これにより、プラズマ処理S57において、CF系ガスの解離状態を目標値に近づけることができる。 Specifically, the processing conditions of plasma processing S57 are adjusted by increasing the HF power, which makes a large contribution to the dissociation of the CF-based gas. Thereby, the dissociation of the CF-based gas can be promoted and the state of dissociation of the CF-based gas can be brought closer to the target value. In addition, under the processing conditions for supplying a mixed gas of a CF-based gas with a small molecular weight such as CF 4 and a CF-based gas with a large molecular weight such as C 4 F 6 as the CF-based gas, the flow rate ratio of the CF 4 gas may be changed. The processing conditions are set by changing the gas flow rate ratio so as to increase the C 4 F 6 flow rate and decrease the C 4 F 6 flow rate ratio. Thereby, in plasma processing S57, the dissociation state of the CF-based gas can be brought close to the target value.
 以上のように、QMS51を用いてエッチングプロセスのケミカル反応に直結する指標である処理ガスの解離状態を検出して、装置の状態を把握することができ、QMS51の検出結果に基づいて処理条件を調整することにより、プラズマ処理を制御することができる。 As described above, the QMS51 can be used to detect the dissociation state of the processing gas, which is an index directly connected to the chemical reaction of the etching process, and to understand the state of the apparatus, and the processing conditions can be adjusted based on the detection results of the QMS51. Through adjustment, plasma processing can be controlled.
 これに加えて、エッチングプロセスの物理反応に関連するイオン入射エネルギーに直結するセルフバイアス電圧Vdcなどの指標を加えたプラズマの実測値をモニタリングすることで装置の状態を判断することができる。 In addition to this, the state of the apparatus can be determined by monitoring the actual measured value of the plasma, including an index such as the self-bias voltage Vdc, which is directly connected to the ion incident energy related to the physical reaction of the etching process.
 ここで、QMS51で検出されたガスの構成比と、処理条件の調整方法について説明する。 Here, the composition ratio of the gas detected by the QMS 51 and the method of adjusting the processing conditions will be explained.
 CFなどの分子量の小さなサイズのフラグメントが増加した場合、Cの解離が進んでいると判断することができる。即ち、エッチング反応が堆積反応よりも進む(Etching>Depo)状態を示す。一方、CFなど分子量の大きなサイズのフラグメントが増加した場合、Cの解離が抑制されていると判断することができる。即ち、堆積反応がエッチング反応よりも進む(Etching<Depo)状態を示す。なお、CF系ガスから解離したフラグメントが、小さなサイズのフラグメントに属するか、大きなサイズのフラグメントに属するか、は予め定められている。例えば、CFを基準として、フラグメントの大小を定めてもよい。 When the number of small molecular weight fragments such as CF increases, it can be determined that the dissociation of C 4 F 8 is progressing. That is, it shows a state in which the etching reaction proceeds more than the deposition reaction (Etching>Depo). On the other hand, when the number of large-molecular-weight fragments such as CF 3 increases, it can be determined that the dissociation of C 4 F 8 is suppressed. That is, a state in which the deposition reaction proceeds more than the etching reaction (Etching<Depo) is shown. Note that it is determined in advance whether the fragments dissociated from the CF-based gas belong to small-sized fragments or large-sized fragments. For example, the size of the fragment may be determined based on CF2 .
 なお、エッチングに直接寄与するFは解離によって生成するものと、反応によって消費されるものが存在するため、制御に活用できない場合がある。このため、CF(Mass=31)、CF(Mass=50)、CF(Mass=69)の比率に基づいて、エッチング反応と堆積反応のいずれが優位かの関係を求めることが好ましい。 Note that some F, which directly contributes to etching, is generated by dissociation and some is consumed by reaction, so it may not be able to be used for control. Therefore, it is preferable to determine which of the etching reaction and the deposition reaction is superior based on the ratio of CF (Mass=31), CF 2 (Mass=50), and CF 3 (Mass=69).
 また、RF信号の制御において、HF信号は解離状態の制御に関連する。このため、QMSを用いて計測した解離状態に基づいて、HF信号の処理条件を最適化することができる。一方、LF信号(特に3MHz以下)では解離状態に対する影響度が小さい。LF信号は、主にウェハに入射するイオンエネルギーの制御に有効なパラメータである。このため、LF信号の処理条件を最適化する場合、ガス計測装置51によるガス解離状態に加え、イオンエネルギー計測など別のモニタリング手法や計測結果と組み合わせて最適化を行うことで、より広い範囲の処理条件の調整、プロセス制御を実現することができる。 In addition, in controlling the RF signal, the HF signal is related to the control of the dissociation state. Therefore, the processing conditions for the HF signal can be optimized based on the dissociation state measured using QMS. On the other hand, LF signals (particularly below 3 MHz) have a small influence on the dissociated state. The LF signal is a parameter mainly effective for controlling the ion energy incident on the wafer. Therefore, when optimizing the processing conditions of the LF signal, in addition to the gas dissociation state measured by the gas measurement device 51, optimization is performed in combination with other monitoring methods and measurement results such as ion energy measurement, thereby achieving a wider range of results. Adjustment of processing conditions and process control can be achieved.
 また、未経験の新しいプロセスを開発する際、所望のデバイス形状を設定し、ガスの解離状態のモニタリング結果とその他プラズマ状態を示す値を計算器に入力することで、エッチング処理条件を自動で作成することができる。また、一度の計算結果で所望の形状を実現できなかった場合、形状結果を再度計算機に入力し、再度プラズマをモニタリングしながらエッチング処理を行うというループを繰り返すことにより、エッチング処理条件を自動で最適化することができる。 In addition, when developing a new process for which there is no prior experience, etching processing conditions can be automatically created by setting the desired device shape and inputting the monitoring results of the gas dissociation state and other values indicating the plasma state into the calculator. be able to. In addition, if the desired shape cannot be achieved with the first calculation result, the etching process conditions are automatically optimized by repeating the loop of inputting the shape result into the computer again and performing the etching process while monitoring the plasma again. can be converted into
 また、ガスの解離状態をモニタリングするガス計測装置51として、四重極質量分析計(QMS)が好ましい。QMSは、一般的にガスをイオン化して分離を行う。このイオン化時にガスの分子は解離し複数のフラグメントが生成され、FC(ファラデーカップ)やSEM(二次電子増幅器)を用いてカウントされる。そのため、イオン化時にガス分子を解離させすぎると、イオン化効率が高まり計測感度は向上するが、元のガス分子を解離しすぎてしまうため分子構造の情報が失われてしまう。そのため、プラズマのガス解離度を把握するためにはイオン化時のガス解離を抑えることが有効であり、イオン化電圧を低くすることが求められる。一方、イオン化エネルギーを下げると、感度が低下する傾向がある。 Furthermore, a quadrupole mass spectrometer (QMS) is preferable as the gas measuring device 51 that monitors the state of gas dissociation. QMS generally performs separation by ionizing gas. During this ionization, gas molecules are dissociated to generate a plurality of fragments, which are counted using an FC (Faraday cup) or SEM (secondary electron amplifier). Therefore, if gas molecules are dissociated too much during ionization, the ionization efficiency increases and the measurement sensitivity improves, but information on the molecular structure is lost because the original gas molecules are dissociated too much. Therefore, in order to understand the degree of gas dissociation in plasma, it is effective to suppress gas dissociation during ionization, and it is required to lower the ionization voltage. On the other hand, lowering the ionization energy tends to lower the sensitivity.
 このため、QMSは、イオン化エネルギーを15eV程度から150eV程度まで可変またはスキャンできる機能を有していることが好ましい。これにより、複数のイオン化エネルギーでガスの解離状態を計測することができ、プラズマ中のガス状態をより正確に把握することができ、高い精度での基板処理を制御することができる。また、QMSは、全Massについて計測してもよく、1つまたはある程度絞った数のMassを選択してそれに対してイオン化電圧をスキャンしてもよい。 For this reason, it is preferable that the QMS has a function that can vary or scan the ionization energy from about 15 eV to about 150 eV. Thereby, the dissociation state of the gas can be measured at a plurality of ionization energies, the gas state in the plasma can be more accurately grasped, and the substrate processing can be controlled with high precision. Further, QMS may be measured for all masses, or one or a certain number of masses may be selected and the ionization voltage may be scanned for the selected masses.
 また、QMSは、連続的にイオン化電圧を変えて計測を行うと計測時間を要する。このため、QMSは、複数のイオン化電圧の設定を行い、複数のイオン化電圧のそれぞれを切り替えながらガス計測を行うことにより、プラズマ中のガス状態を高精度で計測しながら、極微量ガスの計測に必要な高感度を実現し、短時間でデータを取得することができる。 Additionally, QMS requires measurement time if measurement is performed by continuously changing the ionization voltage. For this reason, QMS sets multiple ionization voltages and performs gas measurements while switching between each of the multiple ionization voltages, allowing it to measure extremely small amounts of gas while measuring the gas state in the plasma with high precision. It achieves the necessary high sensitivity and can acquire data in a short time.
 なお、QMSは、Cよりも分子量の大きいガスをプロセスで使用する場合、QMSのMass範囲は131(C)以上まで対応できるものであると好ましい。また、QMSは、C以上のガスをプロセスで使用する場合、QMSのMass範囲は193以上まで対応できるものであると好ましい。 Note that when a gas having a molecular weight larger than C 4 F 8 is used in the process, the mass range of the QMS is preferably one that can handle up to 131 (C 3 F 5 ) or more. Furthermore, when a gas of C 5 F 8 or more is used in the process, the QMS preferably has a mass range of 193 or more.
 また、QMSを使用して1~200程度の範囲の分子量をモニタリングすることは、ガスの解離状態が単純なOやCl、HBrなどでは有効性が低い。これに対し、分子サイズが大きく、構造が複雑、かつ、解離状態によって反応生成物の堆積/エッチングへの寄与度が大きく変わるCF系ガスでは、QMSを使用したモニタリングは、非常に有効性が高く、特に誘電体膜のエッチング装置により適している。 Furthermore, monitoring the molecular weight in the range of about 1 to 200 using QMS is less effective for gases such as O 2 , Cl 2 , and HBr, which have simple dissociation states. On the other hand, monitoring using QMS is extremely effective for CF-based gases, which have large molecules, complex structures, and the contribution of reaction products to deposition/etching varies greatly depending on the state of dissociation. It is especially suitable for etching equipment for dielectric films.
 同様に、ガスの解離状態が成膜に大きく影響し、使用されるガスの分子サイズが大きく、構造が複雑なプラズマ成膜プロセスにおいても、QMSを使用したモニタリングは有効である。成膜プロセスの場合、反応生成物の堆積性、エッチング性の制御ではなく、反応生成物の堆積の特性(密度、電気伝導度、誘電率、絶縁耐圧など)の制御に利用することができる。 Similarly, monitoring using QMS is also effective in plasma film forming processes where the gas dissociation state greatly affects film formation, the molecular size of the gas used is large, and the structure is complex. In the case of a film formation process, it can be used to control the deposition characteristics (density, electrical conductivity, dielectric constant, dielectric strength, etc.) of reaction products, rather than the deposition and etching properties of reaction products.
 以上に開示された実施形態は、例えば、以下の態様を含む。
(付記1)
 チャンバと、
 前記チャンバ内に設けられた基板支持部と、
 前記チャンバ内にガスを供給するように構成されたガス供給部と、
 前記チャンバ内で前記ガスからプラズマを生成するためにRF電力を供給するように構成されたRF電源と、
 前記プラズマ中の前記ガスの解離状態を計測するように構成されたガス計測部と、
 制御部と、を備え、
 前記制御部は、
 設定した基板の処理条件により前記チャンバ内において前記基板支持部に載置した基板の処理を開始するよう制御し、
 前記基板の前記処理の間に、前記ガス計測部から前記ガスの解離状態を取得するよう制御し、
 前記ガスの解離状態に基づき、前記基板又は前記基板の後に処理される基板の処理条件を調整するよう制御する、
基板処理システム。
(付記2)
 前記制御部は、
 調整された前記処理条件を使用して、前記基板又は前記基板の後に処理される基板の処理を行うよう制御する、
付記1に記載の基板処理システム。
(付記3)
 前記ガス計測部は、四重極質量分析器である、
付記1または付記2に記載の基板処理システム。
(付記4)
 前記基板の処理は、エッチング処理であり、
 前記ガスは、該ガスの解離状態によって前記エッチング処理におけるエッチング反応と反応生成物の堆積反応とのいずれが優位かの関係が切り替わるガスを含む、
付記1乃至付記3のいずれか1項に記載の基板処理システム。
(付記5)
 前記ガスは、C及びFを含むフルオロカーボンガスである、
付記4に記載の基板処理システム。
(付記6)
 前記ガスは、Cガスである、
付記4に記載の基板処理システム。
(付記7)
 前記制御部は、
 前記Cガスから解離したF及びCFのうち少なくとも一方の割合が所定の目標値よりも多い場合、前記Cガスが過剰解離の状態であると判断するよう制御する、
付記6に記載の基板処理システム。
(付記8)
 前記制御部は、
 前記Cガスが過剰解離の状態と判断すると、前記RF電源を制御して、ソースRF信号の出力を減少させるよう制御する、
付記6に記載の基板処理システム。
(付記9)
 前記ガスは、CFガスとCガスの混合ガスである、
付記4に記載の基板処理システム。
(付記10)
 前記制御部は、
 前記混合ガスから解離したF及びCFのうち少なくとも一方の割合が所定の目標値よりも多い場合、前記混合ガスが過剰解離の状態であると判断するよう制御する、
付記9に記載の基板処理システム。
(付記11)
 前記制御部は、
 前記混合ガスが過剰解離の状態と判断すると、前記ガス供給部を制御して、前記混合ガスにおける前記CFガスの割合を減少させるよう制御する、
付記10に記載の基板処理システム。
(付記12)
 前記制御部は、
 第1の基板の処理において、設定した基板の処理条件を使用して前記チャンバ内において基板の処理を行うとともに、前記ガス計測部からガスの解離状態を取得するよう制御し、
 前記第1の基板とは異なる第2の基板の処理において、調整された前記処理条件を使用して、基板の処理を行うよう制御する、
付記1乃至付記11のいずれか1項に記載の基板処理システム。
(付記13)
 前記制御部は、
 一の基板の処理において、設定した基板の処理条件を使用して基板の処理を行うとともに、前記ガスの解離状態を取得するよう制御し、
 前記一の基板の処理において、調整された前記処理条件を使用して、基板の処理を行うよう制御する、
付記1乃至付記11のいずれか1項に記載の基板処理システム。
(付記14)
 チャンバと、前記チャンバ内に設けられた基板支持部と、前記チャンバ内にガスを供給するように構成されたガス供給部と、前記チャンバ内で前記ガスからプラズマを生成するためにRF電力を供給するように構成されたRF電源と、前記プラズマ中の前記ガスの解離状態を計測するように構成されたガス計測部と、を備える基板処理システムの基板処理方法であって、
 設定した基板の処理条件により前記チャンバ内において前記基板支持部に載置した基板の処理を開始するステップと、
 前記基板の前記処理の間に、前記ガス計測部から前記ガスの解離状態を取得するステップと、
 前記ガスの解離状態に基づき、前記基板又は前記基板の後に処理される基板の処理条件を調整するステップと、を有する、
基板処理方法。
(付記15)
 調整された前記処理条件を使用して、前記基板又は前記基板の後に処理される基板の処理を行うステップと、を有する、
付記14に記載の基板処理方法。
The embodiments disclosed above include, for example, the following aspects.
(Additional note 1)
a chamber;
a substrate support provided in the chamber;
a gas supply configured to supply gas into the chamber;
an RF power source configured to provide RF power to generate a plasma from the gas within the chamber;
a gas measuring unit configured to measure a dissociation state of the gas in the plasma;
comprising a control unit;
The control unit includes:
Controlling to start processing of the substrate placed on the substrate support in the chamber according to the set substrate processing conditions,
During the processing of the substrate, controlling to obtain the dissociation state of the gas from the gas measurement unit,
controlling to adjust the processing conditions of the substrate or a substrate processed after the substrate, based on the dissociation state of the gas;
Substrate processing system.
(Additional note 2)
The control unit includes:
using the adjusted processing conditions to control processing of the substrate or a substrate processed after the substrate;
The substrate processing system according to Supplementary Note 1.
(Additional note 3)
The gas measurement unit is a quadrupole mass spectrometer,
The substrate processing system according to Supplementary Note 1 or 2.
(Additional note 4)
The treatment of the substrate is an etching treatment,
The gas includes a gas in which the relationship between the etching reaction and the deposition reaction of a reaction product changes in the etching process depending on the dissociation state of the gas.
The substrate processing system according to any one of Supplementary Notes 1 to 3.
(Appendix 5)
The gas is a fluorocarbon gas containing C and F.
The substrate processing system according to appendix 4.
(Appendix 6)
The gas is C 4 F 8 gas.
The substrate processing system according to appendix 4.
(Appendix 7)
The control unit includes:
If the ratio of at least one of F and CF dissociated from the C 4 F 8 gas is greater than a predetermined target value, control is performed to determine that the C 4 F 8 gas is in a state of excessive dissociation;
The substrate processing system according to appendix 6.
(Appendix 8)
The control unit includes:
controlling the RF power source to reduce the output of the source RF signal when determining that the C 4 F 8 gas is in a state of excessive dissociation;
The substrate processing system according to appendix 6.
(Appendix 9)
The gas is a mixed gas of CF 4 gas and C 4 F 6 gas,
The substrate processing system according to appendix 4.
(Appendix 10)
The control unit includes:
If the ratio of at least one of F and CF dissociated from the mixed gas is higher than a predetermined target value, control is performed so that the mixed gas is determined to be in a state of excessive dissociation.
The substrate processing system according to appendix 9.
(Appendix 11)
The control unit includes:
When determining that the mixed gas is in a state of excessive dissociation, controlling the gas supply unit to reduce the proportion of the CF 4 gas in the mixed gas;
The substrate processing system according to appendix 10.
(Appendix 12)
The control unit includes:
In the first substrate processing, the substrate is processed in the chamber using the set substrate processing conditions, and the gas dissociation state is controlled to be obtained from the gas measurement unit;
controlling the substrate to be processed using the adjusted processing conditions in processing a second substrate different from the first substrate;
The substrate processing system according to any one of Supplementary notes 1 to 11.
(Appendix 13)
The control unit includes:
In the processing of one substrate, the substrate is processed using the set substrate processing conditions, and the dissociation state of the gas is controlled to be obtained;
controlling the substrate to be processed using the adjusted processing conditions in the processing of the one substrate;
The substrate processing system according to any one of Supplementary notes 1 to 11.
(Appendix 14)
a chamber; a substrate support disposed within the chamber; a gas supply configured to supply a gas into the chamber; and a gas supply configured to supply RF power to generate a plasma from the gas within the chamber. A substrate processing method of a substrate processing system comprising: an RF power source configured to measure the dissociation state of the gas in the plasma;
starting processing of the substrate placed on the substrate support in the chamber according to the set substrate processing conditions;
acquiring the dissociation state of the gas from the gas measurement unit during the processing of the substrate;
adjusting processing conditions for the substrate or a substrate to be processed after the substrate, based on the dissociation state of the gas;
Substrate processing method.
(Additional note 15)
using the adjusted processing conditions to process the substrate or a substrate to be processed after the substrate;
Substrate processing method according to appendix 14.
 以上、プラズマ処理システムの実施形態等について説明したが、本開示は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形、改良が可能である。 Although the embodiments of the plasma processing system have been described above, the present disclosure is not limited to the above embodiments, etc., and various modifications and variations may be made within the scope of the gist of the present disclosure described in the claims. Improvements are possible.
 尚、本願は、2022年8月5日に出願した日本国特許出願2022-125858号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。 Additionally, this application claims priority based on Japanese patent application No. 2022-125858 filed on August 5, 2022, and the entire contents of these Japanese patent applications are incorporated into this application by reference.
1     プラズマ処理装置
2     制御部
10    プラズマ処理チャンバ(チャンバ)
11    基板支持部
20    ガス供給部
30    電源
31    RF電源
10b   ガス採取口
5     ガス計測部
5A    ガス計測部
5B    ガス計測部
51    ガス計測装置
52    バルブ
53    配管
54    排気システム
1 Plasma processing apparatus 2 Control unit 10 Plasma processing chamber (chamber)
11 Substrate support section 20 Gas supply section 30 Power supply 31 RF power supply 10b Gas sampling port 5 Gas measurement section 5A Gas measurement section 5B Gas measurement section 51 Gas measurement device 52 Valve 53 Piping 54 Exhaust system

Claims (15)

  1.  チャンバと、
     前記チャンバ内に設けられた基板支持部と、
     前記チャンバ内にガスを供給するように構成されたガス供給部と、
     前記チャンバ内で前記ガスからプラズマを生成するためにRF電力を供給するように構成されたRF電源と、
     前記プラズマ中の前記ガスの解離状態を計測するように構成されたガス計測部と、
     制御部と、を備え、
     前記制御部は、
     設定した基板の処理条件により前記チャンバ内において前記基板支持部に載置した基板の処理を開始するよう制御し、
     前記基板の前記処理の間に、前記ガス計測部から前記ガスの解離状態を取得するよう制御し、
     前記ガスの解離状態に基づき、前記基板又は前記基板の後に処理される基板の処理条件を調整するよう制御する、
    基板処理システム。
    a chamber;
    a substrate support provided in the chamber;
    a gas supply configured to supply gas into the chamber;
    an RF power source configured to provide RF power to generate a plasma from the gas within the chamber;
    a gas measuring unit configured to measure a dissociation state of the gas in the plasma;
    comprising a control unit;
    The control unit includes:
    Controlling to start processing of the substrate placed on the substrate support in the chamber according to the set substrate processing conditions,
    During the processing of the substrate, controlling to obtain the dissociation state of the gas from the gas measurement unit,
    controlling to adjust the processing conditions of the substrate or a substrate processed after the substrate, based on the dissociation state of the gas;
    Substrate processing system.
  2.  前記制御部は、
     調整された前記処理条件を使用して、前記基板又は前記基板の後に処理される基板の処理を行うよう制御する、
    請求項1に記載の基板処理システム。
    The control unit includes:
    using the adjusted processing conditions to control processing of the substrate or a substrate processed after the substrate;
    The substrate processing system according to claim 1.
  3.  前記ガス計測部は、四重極質量分析器である、
    請求項1または請求項2に記載の基板処理システム。
    The gas measurement unit is a quadrupole mass spectrometer,
    The substrate processing system according to claim 1 or claim 2.
  4.  前記基板の処理は、エッチング処理であり、
     前記ガスは、該ガスの解離状態によって前記エッチング処理におけるエッチング反応と反応生成物の堆積反応とのいずれが優位かの関係が切り替わるガスを含む、
    請求項3に記載の基板処理システム。
    The treatment of the substrate is an etching treatment,
    The gas includes a gas in which the relationship between the etching reaction and the deposition reaction of a reaction product changes in the etching process depending on the dissociation state of the gas.
    The substrate processing system according to claim 3.
  5.  前記ガスは、C及びFを含むフルオロカーボンガスである、
    請求項4に記載の基板処理システム。
    The gas is a fluorocarbon gas containing C and F.
    The substrate processing system according to claim 4.
  6.  前記ガスは、Cガスである、
    請求項4に記載の基板処理システム。
    The gas is C 4 F 8 gas.
    The substrate processing system according to claim 4.
  7.  前記制御部は、
     前記Cガスから解離したF及びCFのうち少なくとも一方の割合が所定の目標値よりも多い場合、前記Cガスが過剰解離の状態であると判断するよう制御する、
    請求項6に記載の基板処理システム。
    The control unit includes:
    If the ratio of at least one of F and CF dissociated from the C 4 F 8 gas is greater than a predetermined target value, control is performed to determine that the C 4 F 8 gas is in a state of excessive dissociation;
    The substrate processing system according to claim 6.
  8.  前記制御部は、
     前記Cガスが過剰解離の状態と判断すると、前記RF電源を制御して、ソースRF信号の出力を減少させるよう制御する、
    請求項6に記載の基板処理システム。
    The control unit includes:
    controlling the RF power source to reduce the output of the source RF signal when determining that the C 4 F 8 gas is in a state of excessive dissociation;
    The substrate processing system according to claim 6.
  9.  前記ガスは、CFガスとCガスの混合ガスである、
    請求項4に記載の基板処理システム。
    The gas is a mixed gas of CF 4 gas and C 4 F 6 gas,
    The substrate processing system according to claim 4.
  10.  前記制御部は、
     前記混合ガスから解離したF及びCFのうち少なくとも一方の割合が所定の目標値よりも多い場合、前記混合ガスが過剰解離の状態であると判断するよう制御する、
    請求項9に記載の基板処理システム。
    The control unit includes:
    If the ratio of at least one of F and CF dissociated from the mixed gas is higher than a predetermined target value, control is performed so that the mixed gas is determined to be in a state of excessive dissociation.
    The substrate processing system according to claim 9.
  11.  前記制御部は、
     前記混合ガスが過剰解離の状態と判断すると、前記ガス供給部を制御して、前記混合ガスにおける前記CFガスの割合を減少させるよう制御する、
    請求項10に記載の基板処理システム。
    The control unit includes:
    When determining that the mixed gas is in a state of excessive dissociation, controlling the gas supply unit to reduce the proportion of the CF 4 gas in the mixed gas;
    The substrate processing system according to claim 10.
  12.  前記制御部は、
     第1の基板の処理において、設定した基板の処理条件を使用して前記チャンバ内において基板の処理を行うとともに、前記ガス計測部からガスの解離状態を取得するよう制御し、
     前記第1の基板とは異なる第2の基板の処理において、調整された前記処理条件を使用して、基板の処理を行うよう制御する、
    請求項11に記載の基板処理システム。
    The control unit includes:
    In the first substrate processing, the substrate is processed in the chamber using the set substrate processing conditions, and the gas dissociation state is controlled to be obtained from the gas measurement unit;
    controlling the substrate to be processed using the adjusted processing conditions in processing a second substrate different from the first substrate;
    The substrate processing system according to claim 11.
  13.  前記制御部は、
     一の基板の処理において、設定した基板の処理条件を使用して基板の処理を行うとともに、前記ガスの解離状態を取得するよう制御し、
     前記一の基板の処理において、調整された前記処理条件を使用して、基板の処理を行うよう制御する、
    請求項11に記載の基板処理システム。
    The control unit includes:
    In the processing of one substrate, the substrate is processed using the set substrate processing conditions, and the dissociation state of the gas is controlled to be obtained;
    controlling the substrate to be processed using the adjusted processing conditions in the processing of the one substrate;
    The substrate processing system according to claim 11.
  14.  チャンバと、前記チャンバ内に設けられた基板支持部と、前記チャンバ内にガスを供給するように構成されたガス供給部と、前記チャンバ内で前記ガスからプラズマを生成するためにRF電力を供給するように構成されたRF電源と、前記プラズマ中の前記ガスの解離状態を計測するように構成されたガス計測部と、を備える基板処理システムの基板処理方法であって、
     設定した基板の処理条件により前記チャンバ内において前記基板支持部に載置した基板の処理を開始するステップと、
     前記基板の前記処理の間に、前記ガス計測部から前記ガスの解離状態を取得するステップと、
     前記ガスの解離状態に基づき、前記基板又は前記基板の後に処理される基板の処理条件を調整するステップと、を有する、
    基板処理方法。
    a chamber; a substrate support disposed within the chamber; a gas supply configured to supply a gas into the chamber; and a gas supply configured to supply RF power to generate a plasma from the gas within the chamber. A substrate processing method of a substrate processing system comprising: an RF power source configured to measure the dissociation state of the gas in the plasma;
    starting processing of the substrate placed on the substrate support in the chamber according to the set substrate processing conditions;
    acquiring the dissociation state of the gas from the gas measuring unit during the processing of the substrate;
    adjusting processing conditions for the substrate or a substrate to be processed after the substrate, based on the dissociation state of the gas;
    Substrate processing method.
  15.  調整された前記処理条件を使用して、前記基板又は前記基板の後に処理される基板の処理を行うステップと、を有する、
    請求項14に記載の基板処理方法。
    using the adjusted processing conditions to process the substrate or a substrate to be processed after the substrate;
    The substrate processing method according to claim 14.
PCT/JP2023/028509 2022-08-05 2023-08-04 Substrate processing system and substrate processing method WO2024029612A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-125858 2022-08-05
JP2022125858 2022-08-05

Publications (1)

Publication Number Publication Date
WO2024029612A1 true WO2024029612A1 (en) 2024-02-08

Family

ID=89849456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028509 WO2024029612A1 (en) 2022-08-05 2023-08-04 Substrate processing system and substrate processing method

Country Status (1)

Country Link
WO (1) WO2024029612A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277293A (en) * 1999-03-25 2000-10-06 Univ Nagoya Plasma processing device
JP2001176853A (en) * 1999-12-16 2001-06-29 Hitachi Ltd Plasma processing system
JP2005257651A (en) * 2004-03-15 2005-09-22 Omron Corp Plasma measuring instrument and plasma measuring method
JP2008028022A (en) * 2006-07-19 2008-02-07 Tokyo Electron Ltd Plasma etching method and computer readable storage medium
US20110174606A1 (en) * 2010-01-15 2011-07-21 Tokyo Electron Limited Apparatus and Method for Improving Photoresist Properties Using a Quasi-Neutral Beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277293A (en) * 1999-03-25 2000-10-06 Univ Nagoya Plasma processing device
JP2001176853A (en) * 1999-12-16 2001-06-29 Hitachi Ltd Plasma processing system
JP2005257651A (en) * 2004-03-15 2005-09-22 Omron Corp Plasma measuring instrument and plasma measuring method
JP2008028022A (en) * 2006-07-19 2008-02-07 Tokyo Electron Ltd Plasma etching method and computer readable storage medium
US20110174606A1 (en) * 2010-01-15 2011-07-21 Tokyo Electron Limited Apparatus and Method for Improving Photoresist Properties Using a Quasi-Neutral Beam

Similar Documents

Publication Publication Date Title
US11670486B2 (en) Pulsed plasma chamber in dual chamber configuration
US11273469B2 (en) Controlling dry etch process characteristics using waferless dry clean optical emission spectroscopy
US11658011B2 (en) Plasma processing apparatus
TWI622081B (en) Plasma processing apparatus and plasma processing method
US8877080B2 (en) Using vacuum ultra-violet (VUV) data in microwave sources
US8193097B2 (en) Plasma processing apparatus and impedance adjustment method
KR100302167B1 (en) Plasma Treatment Equipment and Plasma Treatment Methods
US8741095B2 (en) Plasma processing apparatus, plasma processing method, and computer readable storage medium
TWI356452B (en) Plasma control using dual cathode frequency mixing
US6796269B2 (en) Apparatus and method for monitoring plasma processing apparatus
US9502219B2 (en) Plasma processing method
US20100248488A1 (en) Pulsed plasma high aspect ratio dielectric process
US20130228550A1 (en) Dry etching apparatus and method
KR100690144B1 (en) Gas analyzer using plasma
WO2021033612A1 (en) Cleaning method and microwave plasma treatment device
WO2024029612A1 (en) Substrate processing system and substrate processing method
TW202004829A (en) Method for ion mass separation and ion energy control in process plasmas
US10588212B1 (en) Plasma initiation in an inductive RF coupling mode
WO2019230526A1 (en) Film forming device and film forming method
JP6019203B2 (en) Plasma processing equipment
JP2023042429A (en) Substrate processing system and gas measurement method
JP5846851B2 (en) Plasma processing method
US20210272772A1 (en) Substrate processing system, switching timing creation support device,switching timing creation support method, and substrate processing apparatus
Yoon et al. Optimizing antenna voltage balancing for remote helical ICP plasma discharge using Oxygen, Hydrogen, Nitrogen, Ammonia and their mixtures: AEPM: Advanced Equipment Processes and Materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850165

Country of ref document: EP

Kind code of ref document: A1