WO2024029442A1 - Resin composition for living body - Google Patents
Resin composition for living body Download PDFInfo
- Publication number
- WO2024029442A1 WO2024029442A1 PCT/JP2023/027518 JP2023027518W WO2024029442A1 WO 2024029442 A1 WO2024029442 A1 WO 2024029442A1 JP 2023027518 W JP2023027518 W JP 2023027518W WO 2024029442 A1 WO2024029442 A1 WO 2024029442A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- biological
- light
- living body
- biological resin
- Prior art date
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 365
- -1 azide compound Chemical class 0.000 claims abstract description 69
- 239000002253 acid Substances 0.000 claims abstract description 57
- 239000002537 cosmetic Substances 0.000 claims abstract description 28
- 230000008859 change Effects 0.000 claims abstract description 22
- 239000000853 adhesive Substances 0.000 claims description 71
- 230000001070 adhesive effect Effects 0.000 claims description 71
- 229920000642 polymer Polymers 0.000 claims description 27
- 230000000638 stimulation Effects 0.000 claims description 27
- JSOGDEOQBIUNTR-UHFFFAOYSA-N 2-(azidomethyl)oxirane Chemical compound [N-]=[N+]=NCC1CO1 JSOGDEOQBIUNTR-UHFFFAOYSA-N 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 16
- 230000031700 light absorption Effects 0.000 claims description 14
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 5
- CSYSRRCOBYEGPI-UHFFFAOYSA-N diazo(sulfonyl)methane Chemical class [N-]=[N+]=C=S(=O)=O CSYSRRCOBYEGPI-UHFFFAOYSA-N 0.000 claims description 4
- 239000012954 diazonium Substances 0.000 claims description 4
- 150000001989 diazonium salts Chemical class 0.000 claims description 4
- 230000005611 electricity Effects 0.000 claims description 4
- 125000005228 aryl sulfonate group Chemical group 0.000 claims description 3
- 230000005389 magnetism Effects 0.000 claims description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 abstract description 26
- 239000000463 material Substances 0.000 description 73
- 238000000034 method Methods 0.000 description 49
- 238000011156 evaluation Methods 0.000 description 37
- 239000010410 layer Substances 0.000 description 37
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 28
- 239000007789 gas Substances 0.000 description 27
- 230000003247 decreasing effect Effects 0.000 description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 21
- 239000010408 film Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 20
- 238000005187 foaming Methods 0.000 description 20
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 19
- 229910001873 dinitrogen Inorganic materials 0.000 description 18
- 239000000203 mixture Substances 0.000 description 17
- 210000000720 eyelash Anatomy 0.000 description 16
- 238000001723 curing Methods 0.000 description 14
- 210000004209 hair Anatomy 0.000 description 13
- 239000012620 biological material Substances 0.000 description 11
- 229920001651 Cyanoacrylate Polymers 0.000 description 10
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 10
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- 239000002861 polymer material Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- 150000001540 azides Chemical class 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 210000003491 skin Anatomy 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000007933 dermal patch Substances 0.000 description 3
- 238000007755 gap coating Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229920000298 Cellophane Polymers 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- 230000000035 biogenic effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 239000004830 Super Glue Substances 0.000 description 1
- SORGEQQSQGNZFI-UHFFFAOYSA-N [azido(phenoxy)phosphoryl]oxybenzene Chemical compound C=1C=CC=CC=1OP(=O)(N=[N+]=[N-])OC1=CC=CC=C1 SORGEQQSQGNZFI-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- MHCLJIVVJQQNKQ-UHFFFAOYSA-N ethyl carbamate;2-methylprop-2-enoic acid Chemical compound CCOC(N)=O.CC(=C)C(O)=O MHCLJIVVJQQNKQ-UHFFFAOYSA-N 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000003676 hair preparation Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000013008 moisture curing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000000282 nail Anatomy 0.000 description 1
- 238000001225 nuclear magnetic resonance method Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- CTRLRINCMYICJO-UHFFFAOYSA-N phenyl azide Chemical compound [N-]=[N+]=NC1=CC=CC=C1 CTRLRINCMYICJO-UHFFFAOYSA-N 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000031070 response to heat Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 210000000434 stratum corneum Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- HSVFKFNNMLUVEY-UHFFFAOYSA-N sulfuryl diazide Chemical compound [N-]=[N+]=NS(=O)(=O)N=[N+]=[N-] HSVFKFNNMLUVEY-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- KFUSEUYYWQURPO-OWOJBTEDSA-N trans-1,2-dichloroethene Chemical compound Cl\C=C\Cl KFUSEUYYWQURPO-OWOJBTEDSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/46—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/86—Polyethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/02—Preparations containing skin colorants, e.g. pigments
- A61Q1/10—Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q3/00—Manicure or pedicure preparations
- A61Q3/02—Nail coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/06—Preparations for styling the hair, e.g. by temporary shaping or colouring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/06—Non-macromolecular additives organic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J201/00—Adhesives based on unspecified macromolecular compounds
Definitions
- the present disclosure relates to a biological resin composition.
- Patent Document 1 proposes an artificial nail composition that uses radical polymerization to strongly adhere an artificial nail to a natural nail.
- Patent Document 2 discloses an artificial nail raw material composition containing a radically polymerizable compound, a polyfunctional thiol compound having a thiol group, and a photopolymerization initiator.
- this artificial nail raw material composition By using this artificial nail raw material composition, the adhesiveness between the artificial nail and the natural nail can be maintained for a long period of time without using an adhesive or a primer.
- When removing the artificial nail obtained by curing this artificial nail raw material composition first scrape and scratch the artificial nail, then place cotton soaked in acetone on the artificial nail for about 10 minutes, and then The method used is to use a stick or similar tool to peel off the artificial nail from the natural nail.
- Patent Document 3 discloses an artificial nail composition containing an ionic monomer that can be polymerized by irradiation with ultraviolet rays.
- the artificial nail obtained by curing this artificial nail composition can be removed from the natural nail with an acid having a pH of 3.5 or less.
- WO 2005/000003 discloses a method for treating a nail surface, in which a covering applied to the nail surface (e.g., a gel nail or an artificial nail) can be removed by solvent soaking, peeling, or a combination thereof for less than 20 minutes, and A kit is proposed.
- a covering applied to the nail surface e.g., a gel nail or an artificial nail
- Cyanoacrylate and the like are generally used as adhesives for eyelash extensions.
- Cyanoacrylate is an adhesive with strong adhesive strength that hardens and adheres by polymerizing due to humidity in the air. Cyanoacrylate is called an instant adhesive and is widely used not only in industrial and medical applications but also in general households.
- cyanoacrylate adhesives can be used to strongly bond hair and artificial hair, allowing artificial hair to adhere to eyelashes for several weeks.
- Patent Document 5 discloses a cyanoacrylate-containing composition containing cyanoacrylate and fullerene. This cyanoacrylate-containing composition can be used as an adhesive composition for eyelash extensions and the like, and has excellent storage stability.
- Biological resin compositions such as photo-curable resins used in gel nails and cyanoacrylate moisture-curable resins used in eyelash extensions are capable of adhering to living organisms such as nails and hair with high strength.
- it is necessary to perform polishing or use solvents such as acetone, acids, etc., and the peeling process places a heavy burden on living organisms such as nails and hair.
- the adhesiveness of the biological resin composition to the living body is reduced in order to facilitate the peeling process, a problem arises in that the cosmetic cannot be applied to the living body continuously for a desired period of time.
- the present disclosure provides a biological resin composition that can be firmly adhered to a part of a living body and can be easily peeled off from the living body at any timing.
- the present disclosure provides a biological resin composition that adheres to a part of a living body, comprising:
- the biological resin composition includes: an azide compound; an acid generator that generates acid upon external stimulation; including.
- the resin composition for biological use in the present disclosure can be firmly adhered to a part of a living body, and can be easily peeled off from the living body at any timing.
- the biological resin composition in the embodiment is a biological resin composition that adheres to a biological body.
- the biological resin composition in this embodiment includes an azide compound and an acid generator that generates acid upon external stimulation.
- the azide compound is an organic or inorganic compound having an azide group, and decomposes to generate nitrogen gas when external stimulation (for example, light) is applied. Furthermore, the azide compound has the property of releasing nitrogen gas by reacting with an acid.
- An acid generator that generates acid upon external stimulation has the property of decomposing and generating acid when external stimulation is applied. Acid generation that generates acid due to external stimulation when external stimulation is applied to the solidified material of the biological resin composition in this embodiment in a state where the solidified material is adhered to a part of the living body.
- the Acid is produced from the agent.
- Nitrogen gas is generated by the reaction between the generated acid and the azide compound. This nitrogen gas causes a volume change in the solidified resin composition for living organisms in this embodiment, reducing the adhesive strength with the part of the living body to which it is adhered.
- the nitrogen gas generated may also include nitrogen gas generated by decomposition of the azide compound when an external stimulus (for example, light) is applied to the azide compound.
- the solidified material of the biological resin composition in this embodiment generates gas and causes a volume change when external stimulation is applied, reducing the adhesive strength with the living body.
- the resin composition for biological use in this embodiment allows the solidified product of the resin composition for biological use that is firmly adhered to a part of the living body to be easily removed from the living body at any timing. It is possible to peel it off.
- the external stimulus is, for example, at least one selected from the group consisting of light, heat, electricity, magnetic force, and external force. These external stimuli allow easier peeling and are less likely to cause direct damage to the living body.
- a plurality of stimuli may be combined as external stimuli.
- light for example, ultraviolet light, visible light, near-infrared light, infrared light, far-infrared light, etc.
- heat a heat source, warm air, near-infrared light, infrared light, far-infrared light, microwaves, or the like may be used as the means for applying heat.
- the degree of external stimulation applied is not particularly limited.
- the degree of external stimulation applied depends on at least one selected from the group consisting of the type and content ratio of the acid generator that generates acid upon external stimulation, which is contained in the biological resin composition in this embodiment. It may be adjusted as appropriate.
- the biological resin composition in this embodiment includes an azide compound and an acid generator that generates acid upon external stimulation.
- the azide compound examples include azide polymers such as glycidyl azide polymer, organic azide compounds such as alkyl azide, phenyl azide, sulfonyl azide, diphenyl phosphoric azide, and inorganic azides.
- azide polymers such as glycidyl azide polymer
- organic azide compounds such as alkyl azide, phenyl azide, sulfonyl azide, diphenyl phosphoric azide, and inorganic azides.
- the azide compound one type may be contained, or a plurality of types may be mixed and contained.
- the acid generator that generates acid in response to an external stimulus may be, for example, a photoacid generator that generates acid in response to light, or a thermal acid generator that generates acid in response to heat.
- the photoacid generator may be at least one selected from the group consisting of sulfonium salts, iodonium salts, diazonium salts, sulfonyldiazomethanes, imidosulfonates, oxime sulfonates, and arylsulfonate esters.
- the thermal acid generator include sulfonium salts and iodonium salts.
- One type of acid generator that generates acid upon external stimulation may be included, or a plurality of types may be included in a mixture.
- the acid generator that generates acid upon external stimulation may be a photoacid generator that generates acid upon exposure to light.
- a photoacid generator has the property of generating a decomposed acid when irradiated with light.
- the biological resin composition of this embodiment light can be used as an external stimulus to reduce the adhesive strength. Therefore, it is possible to easily reduce the adhesive strength with simple equipment. For example, by appropriately selecting the wavelength, high safety for living organisms can be ensured and direct damage to living organisms can be suppressed.
- the biological resin composition in this embodiment may further contain a polymeric material that serves as a base material of the resin composition.
- the polymeric material contained in the biological resin composition in this embodiment is selected from materials with high biocompatibility.
- materials with high biocompatibility For example, as a base polymer material, highly biocompatible acrylic material, cyanoacrylate material, silicone material, urethane material, urethane (meth)acrylate material, styrene material, epoxy material, elastomer etc. may be included.
- highly biocompatible acrylic material, cyanoacrylate material, silicone material, urethane material, urethane (meth)acrylate material, styrene material, epoxy material, elastomer etc. may be included.
- One type of these materials may be included, or a mixture of a plurality of types may be included.
- urethane (meth)acrylate-based materials are the main materials for soak-off gel nails, and are excellent in terms of adhesion to nails, safety, and flexibility.
- cyanoacrylate materials have high biosafety and also have high adhesion to hair and the like. Therefore, when the biological resin composition of this embodiment is used in a cosmetic that adheres to hair, cyanoacrylate materials can be suitably used.
- the biological resin composition in this embodiment may contain other additives other than the azide compound, the acid generator, and the polymeric material that is the base material of the resin composition.
- Additives include polymerization initiators, sensitizers, curing agents, curing accelerators, thickeners, leveling agents, deodorants, moisture absorbers, preservatives, foaming agents, colorants, silane coupling agents, organic solvents, Examples include water, organic salts, inorganic salts, inorganic powders, organic powders, beauty ingredients, and medicinal ingredients.
- the resin composition for biological use in this embodiment is a resin composition that does not substantially contain additives that are highly toxic to living organisms.
- materials that are highly toxic to living organisms include benzene, ethylene dichloride, acetylene dichloride, monochlorobenzene, ethylbenzene, styrene, lead, mercury, and arsenic.
- the content of these materials in the biological resin composition in this embodiment is, for example, 10 ppm or less, or below the detection limit.
- the resin composition for living bodies of this embodiment may be, for example, a resin composition for cosmetics used in cosmetics that adhere to a part of a living body.
- the biological resin composition of this embodiment can be firmly adhered to a part of a living body, and can be easily peeled off from the living body at any timing. Therefore, according to the resin composition for biological use of the present embodiment, cosmetics that are worn continuously on a living body for a period of several days to several weeks, such as gel nails and eyelash extensions, can be applied to a living body. It can be used with reduced load.
- the living body resin composition of this embodiment may be, for example, a medical resin composition that adheres to a part of a living body.
- the biological resin composition of this embodiment can be firmly adhered to a part of a living body, and can be easily peeled off from the living body at any timing. Therefore, the biological resin composition of the present embodiment can be used as an adhesive for a medical skin patch that is continuously attached to a living body for a period of several days to several weeks while reducing the burden on the living body. It can be suitably used as a layer or the like.
- the cosmetic that adheres to a part of a living body may be a cosmetic that is directly adhered to a part of a living body, or may be a cosmetic that is directly adhered to a part of a living body, or may be a cosmetic that is bonded to a part of a living body by a thin film or the like. It may also be a cosmetic that indirectly adheres to a living body through another layer.
- the thin film as another layer may be, for example, at least one selected from the group consisting of a primer, a base gel, and a base coat.
- the solidified product of the biological resin composition in this embodiment is, for example, a resin composition in which the biological resin composition contains a solvent and can form a solid substance such as a film by volatilizing the solvent. In some cases, it refers to a solid substance such as a film obtained by volatilizing the solvent of the biological resin composition.
- the biological resin composition in this embodiment is, for example, a curable resin composition that contains a polymerizable compound and can be cured by light or heat
- the biological resin composition in this embodiment The solidified product means a cured product of a biological resin composition that is cured by being irradiated with light or heat.
- the solidified product of the biological resin composition in this embodiment has a contact angle with water of 30° or more and 110° or less.
- Contact angle can be measured using a contact angle meter.
- the contact angle with water is measured by the droplet method. Specifically, it can be obtained by dropping, for example, 5 ⁇ L of water onto the flat surface of a solidified product of the biological resin composition and measuring the angle between the surface of the solidified product and the water using a contact angle meter.
- the contact angle of water can generally represent a permutation of hydrophilic and hydrophobic properties of a material, and can also be correlated to some extent with physical properties of the material such as solubility parameter (hereinafter referred to as "SP value").
- the solidified resin composition for biological use according to the present embodiment has a high adhesion force to the living body, and can be stably adhered to the living body for a long period of time.
- the contact angle of water with respect to the surface of the solidified product of the biological resin composition in this embodiment is 40° or more and 110° or less, it becomes possible to more strongly adhere to the living body.
- the contact angle of water with respect to the surface of the solidified product of the biological resin composition in this embodiment is 60° or more and 100° or less, it becomes possible to more strongly adhere to the living body.
- the light used as an external stimulus to reduce the adhesiveness between the solidified biological resin composition and the living body may have a wavelength within a range of less than 400 nm, for example.
- the light has a wavelength within a certain specific range means that the light includes light with a wavelength within the specific range.
- light contains light of multiple wavelengths (that is, light with a spectral distribution)
- it is sufficient that the light contains at least light of wavelengths within that specific range, and light that is outside of that range is sufficient.
- the fact that light having a wavelength in the range of less than 400 nm can be used as an external stimulus can prevent the adhesive strength from decreasing in normal life such as general visible light illumination.
- the photoacid generator may have light absorption in a wavelength region of at least less than 400 nm.
- the solidified material of the biological resin composition is capable of absorbing acid by light having a wavelength of less than 400 nm.
- a substance that generates gas and causes a change in volume when using light having a wavelength within a range of less than 400 nm, and when the photoacid generator contained in the biological resin composition has light absorption in the wavelength region of less than 400 nm, the biological resin composition may be used in daily life.
- the amount of light absorption in the wavelength range of 400 nm or more in the photoacid generator may be 20% or less of the total light absorption in the photoacid generator.
- the biological resin composition can be considered to be a substance that is unlikely to undergo a volume change that would reduce the adhesive strength with the biological body when exposed to light having a wavelength of 400 nm or more. Therefore, such a biological resin composition can better prevent adhesive strength from decreasing in normal life such as general lighting.
- the light used as an external stimulus to reduce the adhesion between the solidified biological resin composition and the living body is, for example, light having a wavelength in the range of 280 nm or more and less than 400 nm.
- the light used as an external stimulus may include, for example, light with a wavelength in the range of 280 nm or more and less than 400 nm.
- Light having a wavelength of 280 nm or more is highly safe for living organisms.
- the fact that light having a wavelength of less than 400 nm can be used as an external stimulus can prevent the adhesive strength from decreasing in normal life such as general visible light illumination.
- the photoacid generator may have light absorption in a wavelength region of at least 280 nm or more and less than 400 nm.
- the photoacid generator contained in the biological resin composition in this embodiment has light absorption in a wavelength range of at least 280 nm or more and less than 400 nm
- the solidified material of the biological resin composition has a wavelength range of at least 280 nm or more and less than 400 nm. It is a substance that generates acid and gas when exposed to light with a wavelength of less than 100 mL, causing a change in volume.
- the light used as an external stimulus to reduce the adhesion between the solidified biological resin composition and the living body is, for example, light having a peak wavelength in the range of 280 nm or more and less than 400 nm. There may be.
- the solidified product and the living body can be bonded to the living body using a simple method and more efficiently. It is possible to achieve separation from the skin and further suppress damage to living organisms.
- the light used as an external stimulus may include, for example, light with a wavelength in the range of 280 nm or more and 380 nm or less.
- the photoacid generator may have light absorption in a wavelength range of at least 280 nm or more and 380 nm or less.
- the light applied as an external stimulus has a wavelength within the range of 380 nm or less, it is possible to provide a stimulus with high energy with a wavelength of about 380 nm, and it is also possible to use biological resins in everyday life such as general lighting. It is possible to more reliably prevent the adhesive strength of the solidified composition from decreasing. In other words, when light having a wavelength in the range of 280 nm or more and 380 nm or less is used as an external stimulus, it is possible to more reliably prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. At the same time, it is possible to achieve efficient separation of the solidified material from the living body at any desired timing using a simpler method, and to further suppress damage to the living body.
- the light used as an external stimulus to reduce the adhesion between the solidified biological resin composition and the living body is, for example, light having a peak wavelength in the range of 280 nm or more and 380 nm or less. There may be.
- the solidified product and the living body can be bonded to the living body using a simple method and more efficiently. It is possible to achieve separation from the skin and further suppress damage to living organisms.
- the adhesive strength of the gel nails decreases when the gel nails are cured. This also has the effect of being able to more reliably prevent this.
- light having a wavelength in the range of 280 nm or more and 370 nm or less is used as the external stimulus to reduce the adhesiveness between the solidified biological resin composition and the living body.
- light having a wavelength within the range of 280 nm or more and 365 nm or less may be used.
- the light used as an external stimulus may be, for example, light having a peak wavelength in the range of 280 nm or more and 370 nm or less, or light having a peak wavelength in the range of 280 nm or more and 365 nm or less. Good too.
- the adhesive strength between the solidified biological resin composition and the living body can be more reliably prevented from decreasing in normal life. It is possible to achieve efficient separation of the solidified material from the living body at any desired timing using a simpler method, and to further suppress damage to the living body. Furthermore, by using light of the above wavelength, for example, when the biological resin composition of this embodiment is used as a base coat agent for gel nails, the adhesive strength of gel nails is prevented from decreasing during curing of gel nails. You can also get the effect that you can.
- the light used as an external stimulus may be, for example, light having a peak wavelength within a range of 280 nm or more and 350 nm or less. Since the peak wavelength of the light used as an external stimulus is 350 nm or less, more volume changes occur by irradiating with higher energy. Thereby, it becomes possible to more efficiently peel off the solidified product of the biological resin composition in this embodiment from the biological body.
- a photoacid generator may be used to generate acid to improve the adhesion between the solidified biological resin composition and the living body.
- the light used for the reduction may be light having a peak wavelength within a range of, for example, 280 nm or more and less than 390 nm.
- the light used when curing the biological resin composition in this embodiment by light irradiation may have a wavelength of, for example, 390 nm or more and 450 nm or less.
- the biological resin composition may contain an azide compound, for example, in a range of 0.5% by mass or more and 50% by mass or less.
- an azide compound for example, in a range of 0.5% by mass or more and 50% by mass or less.
- the solidified product of the resin composition for biological use in this embodiment can improve the releasability of nitrogen from living organisms when irradiated with light, which is an external stimulus.
- the azide compound is contained in an amount of 50% by mass or less, it is possible to easily maintain the physical properties of a polymeric material, etc., which is a base material in a resin composition for biological use. Therefore, for example, the effect of improving the adhesive strength between the solidified biological resin composition and the living body before irradiation with light, which is an external stimulus, can be obtained.
- the concentration of the azide compound in the biological resin composition may be 10% by mass or more. Since the concentration of the azide compound in the biological resin composition is 10% by mass or more, the solidified product of the biological resin composition in this embodiment has better removability from the biological body when irradiated with light, which is an external stimulus. It becomes possible to improve the performance. Moreover, the concentration of the azide compound in the biological resin composition may be 30% by mass or less. Since the concentration of the azide compound in the biological resin composition is 30% by mass or less, the biological resin composition according to the present embodiment is able to absorb the solidified product of the biological resin composition before irradiation with light, which is an external stimulus. It is possible to obtain both properties of high adhesiveness to living organisms and excellent releasability when exposed to light, which is an external stimulus.
- the content ratio of the azide compound in the biological resin composition can be determined by, for example, nuclear magnetic resonance (hereinafter referred to as "NMR"), infrared spectroscopy (hereinafter referred to as “IR”), mass spectrometry (hereinafter referred to as "MS”).
- NMR nuclear magnetic resonance
- IR infrared spectroscopy
- MS mass spectrometry
- SIMS secondary ion mass spectrometry
- ICP-MS inductively coupled plasma mass spectrometry
- SEM scanning electron microscopy
- the biological resin composition may contain a photoacid generator in a range of, for example, 0.05% by mass or more and 10% by mass or less.
- a photoacid generator in an amount of 0.05% by mass or more
- the resin composition for biological use in this embodiment can further improve the releasability from the living body upon irradiation with light, which is an external stimulus.
- the photoacid generator compound in an amount of 10% by mass or less, the compatibility with the polymer material serving as the base material in the biological resin composition increases, and the polymer material serving as the base material in the biological resin composition increases.
- the concentration of the photoacid generator in the biological resin composition may be 0.1% by mass or more. Since the concentration of the azide compound in the resin composition for biological use is 0.1% by mass or more, the resin composition for biological use in this embodiment can cause the solidified resin composition for biological use to absorb It becomes possible to further improve the releasability from the substrate.
- the resin composition for biological use in this embodiment can obtain both the characteristics of high adhesion to living organisms of the solidified resin composition for biological use before external stimulation is applied and excellent releasability when external stimulation is applied. It is possible.
- the content ratio of the photoacid generator in the biological resin composition can be determined by, for example, nuclear magnetic resonance method (i.e., NMR), infrared spectroscopy (i.e., IR), mass spectrometry (i.e., MS), secondary ion mass spectrometry, etc. (i.e., SIMS), Inductively Coupled Plasma Mass Spectrometry (i.e., ICP-MS), Scanning Electron Microscopy (i.e., SEM), Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (i.e., SEM) -EDX), liquid chromatography, spectrophotometry, etc.
- NMR nuclear magnetic resonance method
- IR infrared spectroscopy
- MS mass spectrometry
- SIMS secondary ion mass spectrometry
- ICP-MS Inductively Coupled Plasma Mass Spectrometry
- SEM Scanning Electron Microscopy
- SEM
- the photoacid generator is dissolved or uniformly dispersed in the biological resin composition can be confirmed by the uniformity of light transmission. It is also possible to confirm whether the photoacid generator is dissolved or uniformly dispersed in the biological resin composition using the refractive index. Furthermore, it is also possible to evaluate solubility using filter permeability or viscosity.
- the azide compound contained in the biological resin composition in this embodiment may be a glycidyl azide polymer.
- Glycidyl azide polymer has a property of decomposing and releasing nitrogen gas when it is irradiated with light in a wavelength range of about 400 nm or less, for example. Therefore, when the biological resin composition in this embodiment includes a glycidyl azide polymer, the solidified biological resin composition is irradiated with light to generate nitrogen gas and photoacid due to the photoreaction of the glycidyl azide polymer itself. Nitrogen gas is generated by the reaction between the acid generated from the agent and the glydylyl azide polymer, and the two reactions.
- the volume change of the solidified product of the resin composition for biological use becomes large, and it becomes possible to further improve the releasability from the living body.
- light having a wavelength within the range of 280 nm or more and 380 nm or less can be used as an external stimulus.
- Light in such a wavelength range is excellent in safety for living organisms.
- by responding with light in such a wavelength range it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life.
- efficient peeling can be achieved at any timing using a simpler method.
- the photoacid generator contained in the biological resin composition in this embodiment may be a sulfonium salt. It is possible to generate acid in response to light of any wavelength using a photoacid generator in which the structure of the sulfonium ion, which is the cation site of the sulfonium salt, has been changed. Thereby, light having a wavelength within the range of 280 nm or more and 400 nm or less can be used as an external stimulus. Light in such a wavelength range is excellent in safety for living organisms. Furthermore, by responding with light in such a wavelength range, it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. Furthermore, since light in such a wavelength range can be used as an external stimulus, efficient peeling can be achieved at any timing using a simpler method.
- a cover coat layer may be provided on the side opposite to the living body with respect to the solidified product of the biological resin composition. That is, the cover coat layer may be installed such that the solidified body resin composition is located between the living body and the cover coat layer.
- This cover coat layer preferably has a porosity of 40% or less, for example.
- the force of volume change of the solidified material can be efficiently utilized for interfacial peeling between the living body and the solidified material of the resin composition for biological use. Therefore, according to this configuration, it is possible to efficiently reduce the adhesive strength between the solidified product of the biological resin composition and a part of the biological body. Therefore, the solidified material of the biological resin composition in this embodiment can be easily peeled off from the living body by irradiating light at any desired timing to peel the solid material from the living body.
- the adhesive strength between the cover coat layer and the solidified biological resin composition is preferably, for example, 0.05 N/cm 2 or more. Since the adhesive strength between the cover coat layer and the solidified biological resin composition is 0.05 N/cm 2 or more, even if the solidified biological resin composition undergoes a volume change due to external stimulation, , the adhesion or adhesion between the cover coat layer and the solidified product of the resin composition for metamorphoses is easily maintained. Thereby, the stress due to the volume change of the solidified body-use resin composition can be efficiently applied to the interface between the solidified body-use resin composition and the living body. Therefore, it is possible to obtain the effect that the solidified product of the resin composition for living body is more easily peeled off at the interface with the living body.
- the adhesion strength in the plane direction between the cover coat layer and the solidified biological resin composition is determined by adhering the cover coat layer and the solidified biological resin composition in an area of 1 cm 2 and testing the adhesion surface using a tensile tester or the like.
- the adhesive strength is the maximum load when the adhesive is pulled at a rate of 60 mm/min in a direction perpendicular to . It is desirable that the adhesive force between the cover coat layer and the solidified product of the biological resin composition be as strong as possible.
- the adhesive strength between the cover coat layer and the solidified biological resin composition is, for example, 0.5 N/cm 2 or more, the stress due to the volume change of the solidified biological resin composition is more efficiently absorbed into the biological resin.
- the adhesive strength between the cover coat layer and the solidified biomaterial resin composition is, for example, 100 kN/cm 2 or less.
- the tensile modulus of the cover coat layer is preferably 5 MPa or more. Since the tensile modulus of the cover coat layer is 5 MPa or more, for example, when the volume of the solidified body of the biological resin composition increases due to the application of an external stimulus, the solidified body of the biological resin composition is opposite to that of the biological body. It becomes difficult to expand on the side surface. As a result, the effect that the solidified product of the biological resin composition is easily peeled off at the interface with the biological body can be obtained. In particular, when gas is generated by application of an external stimulus, it is thought that an effect can be obtained in which the gas tends to spread in the plane direction of the interface between the solidified product of the biological resin composition and the living body. Therefore, the effect that the solidified product of the biological resin composition is more easily peeled off at the interface with the biological body can be obtained.
- the tensile modulus of the cover coat layer can be determined, for example, by a method according to JIS K 7113.
- the tensile modulus of the cover coat layer may be 40 MPa or more so that the solidified product of the biological resin composition is more easily peeled off at the interface with the biological body.
- the tensile modulus of the cover coat layer is 100 MPa or more.
- the tensile modulus of the cover coat layer is, for example, 400 GPa or less.
- the cover coat layer desirably has a gas permeability of 1.5 ⁇ 10 8 cc/m 2 ⁇ 24 hr ⁇ atm or less. Gas permeability can be measured, for example, by an isobaric method (Japanese Industrial Standards K7126-2), a differential pressure method (Japanese Industrial Standards K7126-1), or the like.
- the gas permeability of the cover coat layer is 1.5 ⁇ 10 8 cc/m 2 ⁇ 24 hr ⁇ atm or less, gas generated by external stimulation is difficult to be released to the outside. This provides the effect that the solidified product of the resin composition for biological use can be more easily peeled off from the living body.
- the covercoat layer may not be completely gas permeable. Therefore, the gas permeability of the cover coat layer is, for example, 0 cc/m 2 ⁇ 24 hr ⁇ atm or less.
- JIS Japanese Industrial Standards
- the part of the living body to which it is attached may be at least one selected from the group consisting of nails, hair, and skin. .
- the part of the living body to which the biological resin composition in this embodiment adheres may be at least one selected from the group consisting of nails and hair. Nails or hair do not have a thin, stratum corneum structure that easily peels off like skin. Therefore, by applying the biological resin composition of this embodiment after degreasing the surface, cosmetics such as nails or eyelash extensions formed with the biological resin composition of this embodiment can be applied. It is possible to obtain strong adhesive strength that allows continuous placement on living organisms for several weeks.
- the biological resin composition in this embodiment may be applied to a nail base coat agent such as a gel nail base coat agent, It may be an adhesive for bonding the nail tip and the natural nail, or a nail resin composition such as a nail agent such as a gel nail agent.
- the biological resin composition according to this embodiment is particularly suitable for use as a base coat agent for gel nails.
- gel nails are firmly adhered to the natural nail using a photo-curing resin, etc., so when removing gel nails from the nail, choose from the group consisting of solvents and polishing. At least one of them is required, and the damage to the natural nail is extremely large.
- the biological resin composition according to the present embodiment as a base coating agent for gel nails, gel nails can be firmly adhered to natural nails for a necessary period of time, and when it is desired to peel off, external stimulation can be applied. To easily remove gel nails and base coat from natural nails while suppressing damage to natural nails.
- the base coat agent for gel nails may be made of the biological resin composition according to this embodiment.
- the base coat agent for gel nails of the present disclosure may contain materials included in known base coat agents for gel nails, selected as appropriate, as materials other than the azide compound and the acid generator.
- FIG. 1 shows a state in which a solidified product of the biological resin composition as a base coat and a gel nail are adhered to a nail when the biological resin composition according to the present embodiment is used as a base coat agent for gel nails.
- FIG. 1 represents a nail
- 2 represents a solidified biological resin composition as a base coat
- 3 represents a gel nail.
- a solidified product 2 of a biological resin composition is adhered onto the nail 1 as a base coat
- a gel nail 3 is adhered onto the solidified product 2 of the biological resin composition.
- FIG. 2 shows a solidified product of the biological resin composition as a base coat, a colored gel nail, and a top gel nail on a nail when the biological resin composition of this embodiment is used as a base coat agent for gel nails.
- FIG. 3 is a schematic cross-sectional view showing a state in which the two are bonded together.
- the gel nail 3 may have a two-layer structure including a color gel nail 3a and a top gel nail 3b.
- the gel nail 3 has a two-layer structure, but the gel nail 3 may have a multi-layer structure of three or more layers including, for example, a plurality of colored gel layers.
- FIG. 1 is a schematic cross-sectional view showing a state in which the two are bonded together.
- the gel nail 3 may have a two-layer structure including a color gel nail 3a and a top gel nail 3b.
- the gel nail 3 has a two-layer structure, but the gel nail 3 may have a multi-layer structure of three or more layers including, for example
- FIG. 3 shows a state in which a solidified product of the biological resin composition as a base coat and a top gel nail are adhered to the nail when the biological resin composition of this embodiment is used as a base coat agent for gel nails.
- FIG. 3 only the top gel nail 3b may be provided on the solidified material 2 of the biological resin composition as a base coat without providing the color gel nail.
- FIG. 4 illustrates an example of the principle of the decrease in adhesive strength between the solidified product 2 of the biological resin composition and the nail 1 when the biological resin composition according to the present embodiment is used as a base coat agent for gel nails.
- FIG. 4(a) before light is applied, the solidified material 2 of the biological resin composition is firmly adhered to the surface of the nail 1. Gel nail 3 is glued on top.
- FIG. 4(b) when light is applied to the solidified material 2 of the biological resin composition by the light generator 10, the azide compound contained in the base coat generates gas, and the biological resin composition Bubbles 21 are generated in the solidified material 2, causing a change in volume of the solidified material 2 of the biological resin composition.
- Air bubbles 21 are also generated at the interface 4 between the solidified material 2 of the biological resin composition and the nail 1, causing a volume change of the solidified material 2 of the biological resin composition at the bonded portion with the nail 1, and as a result, The substantial contact area between the solidified material 2 of the biological resin composition and the nail 1 is reduced. As a result, as shown in FIG. 4(c), the adhesive strength between the solidified biological resin composition 2 and the nail 1 decreases, and the solidified biological resin composition 2 and gel nail 3 are removed from the nail 1. It becomes easier to remove. Note that when the nail 1 and the solidified product 2 of the resin composition for living body are separated at the interface, the solidified product 2 of the resin composition for living body and the gel nail 3 may be separated at the interface at the same time.
- the living body resin composition in this embodiment may be, for example, an adhesive for eyelash extensions.
- the adhesive for eyelash extensions of the present disclosure may contain materials included in known adhesives for eyelash extensions, selected as appropriate, as materials other than the azide compound and the photoacid generator.
- the biological resin composition in this embodiment is not limited to cosmetics, and may be used for medical purposes.
- the biological resin composition of this embodiment can be used as an adhesive layer of a medical skin patch.
- the biological resin composition in Embodiment 1 is a biological resin composition that adheres to living organisms, and the biological resin composition includes an azide compound and an acid that generates an acid upon external stimulation.
- a generating agent is a biological resin composition that adheres to living organisms, and the biological resin composition includes an azide compound and an acid that generates an acid upon external stimulation.
- the biological resin composition in this embodiment can reduce the adhesion strength of the solidified biological resin composition to the biological body at any timing, and easily peel it off from the biological body. It is.
- the solidified body resin composition may generate gas and change its volume when external stimulation is applied, thereby reducing the adhesive strength with the body.
- the biological resin composition according to the present embodiment allows the solidified biological resin composition that is firmly adhered to a part of the biological body to be easily peeled off from the biological body at any timing. is possible.
- the external stimulus may be at least one selected from the group consisting of light, heat, magnetism, electricity, and external force.
- the acid generator may be a photoacid generator that generates acid when exposed to light, and the external stimulus may include light.
- the light may have a wavelength within a range of less than 400 nm
- the photoacid generator may have light absorption in a wavelength range of less than 400 nm.
- the biological resin composition may contain a photoacid generator in a range of 0.05% by mass or more and 10% by mass or less.
- the photoacid generator in an amount of 0.05% by mass or more, the resin composition for biological use in this embodiment can further improve the releasability from the living body upon irradiation with light, which is an external stimulus.
- the photoacid generator compound in an amount of 10% by mass or less, the compatibility with the polymer material serving as the base material in the biological resin composition increases, and the polymer material serving as the base material in the biological resin composition increases. The effect of easily maintaining physical properties such as Therefore, for example, the effect of improving the adhesive strength between the solidified biomaterial resin composition and the living body before external stimulation is applied can be obtained.
- the photoacid generator may be at least one selected from the group consisting of sulfonium salts, iodonium salts, diazonium salts, sulfonyldiazomethanes, imidosulfonates, oxime sulfonates, and arylsulfonic acid esters. .
- sulfonium salts iodonium salts
- diazonium salts sulfonyldiazomethanes
- imidosulfonates oxime sulfonates
- arylsulfonic acid esters arylsulfonic acid esters.
- the photoacid generator contained in the biological resin composition in this embodiment may be a sulfonium salt.
- light having a wavelength in the range of less than 400 nm can be used as an external stimulus.
- By responding with light in such a wavelength range it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life.
- efficient peeling can be achieved at any timing using a simpler method.
- the contact angle of water with respect to the surface of the solidified product of the biological resin composition may be 30° or more and 110° or less.
- the solidified resin composition for biological use according to the present embodiment has a high adhesion force to the living body, and can stably adhere to the living body for a long time.
- the biological resin composition may contain an azide compound in a range of 0.5% by mass or more and 50% by mass or less.
- the solidified product of the resin composition for biological use in this embodiment can improve the releasability of nitrogen from living organisms when irradiated with light, which is an external stimulus.
- the azide compound is contained in an amount of 50% by mass or less, it is possible to easily maintain the physical properties of a polymeric material, etc., which is a base material in a resin composition for biological use. For this reason, for example, the effect of improving the adhesive strength between the solidified product of the biological resin composition and the living body before irradiation with light can be obtained.
- the azide compound may include a glycidyl azide polymer.
- the biological resin composition in this embodiment includes a glycidyl azide polymer
- the solidified biological resin composition is irradiated with light to generate nitrogen gas through a photoreaction of the glycidyl azide polymer itself, and from the photoacid generator. Nitrogen gas is generated by the reaction between the generated acid and gsyridyl azide polymer, and nitrogen gas is generated by the two reactions, so the volume change of the solidified biomaterial resin composition increases, making it easier to remove it from the living body. It becomes possible to improve the performance.
- the living body resin composition in this embodiment may be a cosmetic resin composition used in a cosmetic that adheres to a part of a living body.
- the biological resin composition according to the present embodiment can be firmly adhered to a part of a living body, and can be easily peeled off from the living body at any timing. Therefore, according to the resin composition for biological use in this embodiment, cosmetics that are worn continuously on a living body for a period of several days to several weeks, such as gel nails and eyelash extensions, can be applied to a living body. It can be used with reduced load.
- the biological resin composition in this embodiment may be a medical resin composition that adheres to a part of a living body.
- the biological resin composition of this embodiment can be firmly adhered to a part of a living body, and can be easily peeled off from the living body at any timing. Therefore, the biological resin composition of the present embodiment can be used as an adhesive for a medical skin patch that is continuously attached to a living body for a period of several days to several weeks while reducing the burden on the living body. It can be suitably used as a layer or the like.
- the biological resin composition includes: an azide compound; an acid generator that generates acid upon external stimulation; A biological resin composition containing.
- the biological resin composition in technique 1 can be easily peeled off from the living body by reducing the adhesive strength of the solidified material of the biological resin composition to the living body at any timing.
- the biological resin composition according to technique 3 wherein the acid generator is a photoacid generator that generates acid in response to light, and the external stimulus includes light.
- the biological resin composition in technology 4 can be used in a simpler manner at any timing while preventing the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. It is possible to achieve highly efficient peeling and to further suppress damage to living organisms.
- the biological resin composition of technique 6 can further improve the releasability from the living body upon irradiation with light, which is an external stimulus.
- the photoacid generator compound in an amount of 10% by mass or less, the compatibility with the polymer material serving as the base material in the biological resin composition increases, and the polymer material serving as the base material in the biological resin composition increases.
- the effect of easily maintaining physical properties such as Therefore, for example, the effect of improving the adhesive strength between the solidified biomaterial resin composition and the living body before external stimulation is applied can be obtained.
- the photoacid generator is at least one selected from the group consisting of sulfonium salts, iodonium salts, diazonium salts, sulfonyldiazomethanes, imidosulfonates, oxime sulfonates, and arylsulfonate esters.
- the biological resin composition according to item 1. With this configuration, the biological resin composition of technology 7 can use light having a wavelength within a range of less than 400 nm as an external stimulus. By responding with light in such a wavelength range, it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. Furthermore, since light in such a wavelength range can be used as an external stimulus, efficient peeling can be achieved at any timing using a simpler method.
- the biological resin composition according to any one of techniques 4 to 7, wherein the photoacid generator is a sulfonium salt.
- the biological resin composition of technology 8 can use light having a wavelength within a range of less than 400 nm as an external stimulus. By responding with light in such a wavelength range, it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. Furthermore, since light in such a wavelength range can be used as an external stimulus, efficient peeling can be achieved at any timing using a simpler method.
- the solidified material of the resin composition for biological use according to technique 10 can improve the releasability of nitrogen from living organisms when irradiated with light, which is an external stimulus.
- the azide compound is contained in an amount of 50% by mass or less, it is possible to easily maintain the physical properties of a polymeric material, etc., which is a base material in a resin composition for biological use. For this reason, for example, the effect of improving the adhesive strength between the solidified product of the biological resin composition and the living body before irradiation with light can be obtained.
- the biological resin composition according to any one of Techniques 1 to 10, wherein the azide compound includes a glycidyl azide polymer.
- the biological resin composition contains a glycidyl azide polymer
- nitrogen gas is generated by the photoreaction of the glycidyl azide polymer itself, and acid and gas generated from the photoacid generator are generated.
- Nitrogen gas is generated by the reaction of the lysyl azide polymer and nitrogen gas is generated by the two reactions, so the volume change of the solidified biomaterial resin composition becomes large, making it possible to further improve the releasability from the living body. becomes.
- the biological resin composition in technique 12 can be firmly adhered to a part of a living body, and can be easily peeled off from the living body at any timing. Therefore, according to the resin composition for biological use in technology 12, cosmetics that are worn continuously on a living body for a period of several days to several weeks, such as gel nails and eyelash extensions, can be applied to a living body without causing a load on the living body. can be used to reduce the
- the biological resin composition of the present disclosure will be explained in more detail with reference to Examples.
- the biological resin composition of the present disclosure is not limited to the following examples.
- Example 1 [Adhesion evaluation before and after UV irradiation] (Sample 1) 19.8% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation) as the azide compound, 1% by mass of a sulfonium salt photoacid generator (CP-310B manufactured by San-Apro Corporation) as the photoacid generator, and commercially available urethane.
- GAP glycidyl azide polymer
- CP-310B sulfonium salt photoacid generator
- commercially available urethane urethane.
- PREGEL base gel nails manufactured by PRIAMPHA which is mainly composed of acrylate oligomers, were mixed to a concentration of 79.2% by mass, and the mixture was sufficiently mixed to be homogeneous to prepare a biological resin composition.
- the sulfonium salt photoacid generator CP-310B has light absorption in a wavelength range of 280 nm or more and less than 400 nm.
- the biological resin composition of this sample was applied onto a glass substrate as a base material by performing gap coating to a thickness of 200 ⁇ m.
- the obtained coating film was irradiated with light emitting diode output light (hereinafter referred to as "LED output light") having a wavelength of 390 nm to 400 nm for 2 minutes using a gel nail curing light.
- LED output light light emitting diode output light
- the coating film formed of the biological resin composition on the base material was cured, and a solidified product of the biological resin composition was obtained.
- PREGEL base gel nail manufactured by Preampa which has a commercially available urethane acrylate oligomer as its main component, was applied by gap coating to a thickness of 100 ⁇ m.
- the obtained coating film was irradiated with LED output light having a wavelength of 390 nm to 400 nm for 2 minutes using a gel nail curing light.
- the gel nail base was cured, and an evaluation sample was obtained in which the surface of the solidified body-use resin composition was coated with gel nail. That is, in the evaluation sample, a laminate of the solidified biological resin composition and the gel nail was formed on the glass substrate.
- ⁇ Adhesiveness evaluation before UV light irradiation> Place a cutter knife on the top surface of the above evaluation sample so that it is perpendicular to the surface of the laminate, make four cuts at 3 mm intervals on the surface of the laminate, and then Four orthogonal cuts were made at different angles, and a lattice-like crosscut of 9 squares of 3 mm square was made.
- Cellophane tape Scotch Transparent Tape, manufactured by 3M
- Cross-cutting was performed on the evaluation sample irradiated with ultraviolet light in the same manner as above, cellophane tape was strongly pressed against the cross-cut surface, and the tape was peeled off.
- the adhesion of the solidified biological resin composition after irradiation with ultraviolet light was evaluated by checking the presence or absence of peeling of the sample at the cross-cut portion of 9 squares when the tape was peeled off. In the laminate of this sample, peeling was observed in 9 out of 9 squares.
- Example 2 19.6% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation) as the azide compound, 2% by mass of a sulfonium salt photoacid generator (CP-310B manufactured by San-Apro Co., Ltd.) as the photoacid generator, and commercially available urethane.
- An evaluation sample was prepared in the same manner as Sample 1, except that a biological resin composition containing 78.4% by mass of PREGEL base gel nail manufactured by Preampa, whose main component was an acrylate oligomer, was used. Using the evaluation sample, adhesiveness evaluation before ultraviolet irradiation was performed in the same manner as Sample 1.
- Example 3 20% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation) as the azide compound, 0.1% by mass of a sulfonium salt photoacid generator (CP-310B manufactured by San-Apro Co., Ltd.) as the photoacid generator, and commercially available urethane.
- GAP glycidyl azide polymer
- CP-310B sulfonium salt photoacid generator
- Example 4 As the azide compound, 19.0% by mass of glycidyl azide polymer (GAP, manufactured by NOF Corporation), and 5% by mass of a sulfonium salt-based photoacid generator (CP-210S, manufactured by San-Apro Corporation) as the photoacid generator.
- GAP glycidyl azide polymer
- CP-210S a sulfonium salt-based photoacid generator
- PREGEL base gel nails manufactured by PRIAMPHA whose main component is urethane acrylate oligomer, were mixed to a concentration of 76.0% by mass, and the mixture was sufficiently mixed to be homogeneous to prepare a biological resin composition.
- the sulfonium salt photoacid generator CP-210S has light absorption in a wavelength range of 280 nm or more and less than 400 nm.
- Example 5 The same method as Sample 1 was used except that a 365 nm center peak LED light (manufactured by DOWA) was used for ultraviolet light irradiation, and the amount of ultraviolet light irradiation was set to 40 J/cm 2 by adjusting the irradiation time. Adhesion was evaluated before UV irradiation. As a result, there were no peeled parts in the 9 squares before UV irradiation. Next, foaming evaluation after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, it was confirmed that gas was generated and foamed at the light irradiated area of the sample, and when adhesiveness was evaluated, peeling was observed in 6 out of 9 squares.
- a 365 nm center peak LED light manufactured by DOWA
- Example 6 As the azide compound, 9.9% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation), 1% by mass of the sulfonium salt photoacid generator CP-310B (manufactured by San-Apro Co., Ltd.) as the photoacid generator, and 1% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation). Adhesiveness before UV irradiation was determined in the same manner as Sample 1, except that a biological resin composition containing 89.1% by mass of PREGEL base gel nails manufactured by Preampa, whose main component is urethane acrylate oligomer, was used. An evaluation was conducted.
- GAP glycidyl azide polymer
- CP-310B manufactured by San-Apro Co., Ltd.
- Example 7 As the azide compound, 49.5% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation), 1% by mass of the sulfonium salt photoacid generator CP-310B (manufactured by San-Apro Co., Ltd.) as the photoacid generator, and commercially available Adhesiveness before UV irradiation was measured in the same manner as Sample 1, except that a biological resin composition containing 49.5% by mass of PREGEL base gel nails manufactured by Preampa, whose main component is urethane acrylate oligomer, was used. An evaluation was conducted. As a result, peeling was observed in 3 out of 9 squares before UV irradiation.
- GAP glycidyl azide polymer
- CP-310B manufactured by San-Apro Co., Ltd.
- Example 9 Other than using only the solidified body-use resin composition as an evaluation sample, without placing a commercially available PREGEL base gel nail made by PRIAMPHA, whose main component is a urethane acrylate oligomer, on the solidified body-use resin composition.
- foaming evaluation after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, it was confirmed that gas was generated and foamed at the light irradiated area of the sample, and when adhesiveness was evaluated, peeling was observed in 9 out of 9 squares.
- Example 22 As the azide compound, 20.0% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation) and 80.0% by mass of PREGEL base gel nail manufactured by Preampa, whose main component is a commercially available urethane acrylate oligomer, were mixed. Adhesiveness evaluation before ultraviolet irradiation was performed in the same manner as Sample 1 except for using the resin composition for biological use. As a result, there were no peeled parts in the 9 squares before UV irradiation. Next, foaming evaluation after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, it was confirmed that gas was generated and foamed at the light irradiated area of the sample, and when adhesiveness was evaluated, peeling was observed in 3 out of 9 squares.
- GAP glycidyl azide polymer
- PREGEL base gel nail manufactured by Preampa whose main component is a commercially available urethane acrylate oligomer
- the solidified biological resin composition When the biological resin composition contains neither an azide compound nor a photoacid generator (sample 21), the solidified biological resin composition has high adhesiveness before irradiation with ultraviolet light, but after irradiation with ultraviolet light, No foaming was observed, no decrease in adhesion was observed, and the releasability was low. In addition, when the biological resin composition contained only an azide compound (sample 22), the adhesiveness of the solidified biological resin composition before ultraviolet light irradiation was high, and foaming was confirmed after ultraviolet light irradiation. The result was a lower releasability than when a photoacid generator was included.
- Example 10 A biological resin composition prepared in the same manner as Sample 1 was applied to the entire surface of the nail with a nail brush, and the biological resin composition was placed on the nail. By irradiating the biological resin composition on the nail with LED output light with a wavelength of 390 nm to 400 nm for 5 minutes using a gel nail curing light, the biological resin composition on the nail is cured and the biological resin is cured. A solidified product of the composition was obtained. Furthermore, in order to install a top gel nail layer on the outermost layer as in the case of general gel nails, a top gel nail (manufactured by Nail Lab, PRESTO TOPGEL) is placed on the top surface of the obtained solidified biological resin composition.
- a top gel nail manufactured by Nail Lab, PRESTO TOPGEL
- Peelability was evaluated by measuring the time required to peel off the layered layer of the solidified biological resin composition and top gel nail from the nail using tweezers.
- the film of the solidified biological resin composition could not be peeled off without acetone.
- a similarly prepared sample was irradiated with 20 J/cm 2 of ultraviolet light in the same manner as Sample 1.
- the film of the solidified biological resin composition could be peeled off from the nail in 30 seconds without acetone.
- Example 11 Using a biological resin composition produced in the same manner as Sample 6, the releasability of the film of the solidified biological resin composition from the nail was evaluated in the same manner as Sample 10. As a result, for the sample before irradiation with ultraviolet light, the film of the solidified biological resin composition could not be peeled off without acetone. A similarly prepared sample was irradiated with 20 J/cm 2 of ultraviolet light in the same manner as Sample 1. Regarding the sample after ultraviolet light irradiation, the film of the solidified biological resin composition could be peeled off from the nail in 120 seconds without acetone.
- Example 23 Using a biological resin composition produced in the same manner as Sample 21, the releasability of the film of the solidified biological resin composition from the nail was evaluated in the same manner as Sample 10. As a result, for the sample before irradiation with ultraviolet light, the film of the solidified biological resin composition could not be peeled off without acetone. A similarly prepared sample was irradiated with 20 J/cm 2 of ultraviolet light in the same manner as Sample 1. Regarding the sample after irradiation with ultraviolet light, the film of the solidified biological resin composition could not be peeled off from the nail even after 10 minutes or more. Also, the use of acetone was required for stripping.
- Example 24 Using a biological resin composition produced in the same manner as Sample 22, the releasability of the film of the solidified biological resin composition from the nail was evaluated in the same manner as Sample 10. As a result, for the sample before irradiation with ultraviolet light, the film of the solidified biological resin composition could not be peeled off without acetone. A similarly prepared sample was irradiated with 20 J/cm 2 of ultraviolet light in the same manner as Sample 1. Regarding the sample after ultraviolet light irradiation, the film of the solidified biological resin composition could be peeled off from the nail in 180 seconds without acetone.
- the biological resin composition was coated on a slide glass by gap coating, and cured by irradiating it with LED output light with a wavelength of 390 nm to 400 nm for 2 minutes using a gel nail curing light.
- a sheet was produced.
- the contact angle of water on the surface of this film-like sheet was evaluated.
- the contact angle was measured by a droplet method using DROPMASTER DMO-501 manufactured by Kyowa Interface Science Co., Ltd.
- the contact angle was evaluated by dropping 5 ⁇ L of water.
- the analysis was performed using the ⁇ /2 method.
- the contact angle was measured five times and the average value was calculated.
- the contact angle of water with the surface of this film-like sheet that is, the surface of the solidified biomaterial resin composition, was 76.1°.
- Example 13 Using a biological resin composition prepared in the same manner as Sample 4, a film of the solidified biological resin composition was placed on the nail in the same manner as Sample 12. After curing, the surface was wiped with ethanol, and then normal life was carried out. It was confirmed that the coating did not peel off from the nail for 24 hours or more. Further, after applying the biological resin composition to the nail, the nail was rubbed 100 times with a cotton swab, but no peeling was observed.
- the biological resin composition of the present disclosure can be used, for example, as a base coat for nails. Moreover, the biological resin composition of the present disclosure can be further used for applications such as eyelash extension adhesives and hair adhesives.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Cosmetics (AREA)
- Materials For Medical Uses (AREA)
Abstract
The present disclosure provides a resin composition for a living body, said resin composition being able to adhere strongly to a part of a living body, and being able to be easily peeled from the living body at an arbitrary timing. This resin composition for a living body includes an azide compound and an acid generating agent that generates an acid as a result of an external stimulus. A solidified product of this resin composition for a living body, for example, generates a gas as a result of being irradiated with light, causing a change in volume, and thereby reducing the adhesion strength to a living body. This resin composition for a living body can be used in a cosmetic that adheres to a part of a living body, for example.
Description
本開示は、生体用樹脂組成物に関する。
The present disclosure relates to a biological resin composition.
近年、多くの人が、ジェルネイルおよびまつ毛エクステンションなどのような、数日から数週間程度の期間、連続して生体に装着可能な化粧料を利用している。従来の技術では、例えばジェルネイルのような爪用化粧料は、光硬化樹脂などを用いて自爪に強接着されていた。また、まつ毛エクステンションのような毛用化粧料は、湿度硬化樹脂などを用いてまつ毛などに強接着されていた。これらの化粧料を生体から剥離する時には、アセトンなどの溶剤を用いることが一般的である。爪用化粧料を生体から剥離する際には、溶剤を用いる前または後に、研磨を行うことが多い。
In recent years, many people have been using cosmetics, such as gel nails and eyelash extensions, that can be worn continuously on the body for a period of several days to several weeks. In conventional techniques, nail cosmetics such as gel nails are strongly adhered to natural nails using a photocurable resin or the like. Furthermore, hair cosmetics such as eyelash extensions have been strongly adhered to eyelashes using moisture-curing resins. When removing these cosmetics from living bodies, it is common to use a solvent such as acetone. When removing nail cosmetics from a living body, polishing is often performed before or after using a solvent.
特許文献1には、ラジカル重合を用いて人工爪を自爪に強接着する人工爪組成物が提案されている。
Patent Document 1 proposes an artificial nail composition that uses radical polymerization to strongly adhere an artificial nail to a natural nail.
特許文献2には、ラジカル重合性化合物、チオール基を有する多官能チオール化合物、および光重合開始剤を含む人工爪原料組成物が開示されている。この人工爪原料組成物を用いることで、接着剤およびプライマーを用いることなく、人工爪と自爪との接着性を長期間保つことができる。この人工爪原料組成物を硬化させて得られた人工爪を除去する時には、まず人工爪を削って傷をつけた後、アセトンに浸したコットンを人工爪上に10分程度設置し、さらにその後にスティックなどを用いて人工爪を自爪から剥がす、という方法が用いられる。
Patent Document 2 discloses an artificial nail raw material composition containing a radically polymerizable compound, a polyfunctional thiol compound having a thiol group, and a photopolymerization initiator. By using this artificial nail raw material composition, the adhesiveness between the artificial nail and the natural nail can be maintained for a long period of time without using an adhesive or a primer. When removing the artificial nail obtained by curing this artificial nail raw material composition, first scrape and scratch the artificial nail, then place cotton soaked in acetone on the artificial nail for about 10 minutes, and then The method used is to use a stick or similar tool to peel off the artificial nail from the natural nail.
特許文献3には、紫外線の照射により重合可能なイオン性モノマーを含有する人工爪組成物が開示されている。この人工爪組成物を硬化させて得られた人工爪は、pH3.5以下の酸により自爪から除去可能である。
Patent Document 3 discloses an artificial nail composition containing an ionic monomer that can be polymerized by irradiation with ultraviolet rays. The artificial nail obtained by curing this artificial nail composition can be removed from the natural nail with an acid having a pH of 3.5 or less.
特許文献4には、20分未満の溶剤浸漬、剥離、またはその組み合わせにより、爪表面に適用されたカバー(例えば、ジェルネイルまたは人工爪)を除去可能な、爪表面を処理するための方法およびキットが提案されている。
WO 2005/000003 discloses a method for treating a nail surface, in which a covering applied to the nail surface (e.g., a gel nail or an artificial nail) can be removed by solvent soaking, peeling, or a combination thereof for less than 20 minutes, and A kit is proposed.
まつ毛エクステンション用の接着剤としては、一般にシアノアクリレートなどが用いられる。シアノアクリレートは、空気中などの湿度により重合することで硬化して接着する、接着力が強い接着剤である。シアノアクリレートは、瞬間接着剤と呼ばれ、工業用途および医療用途だけでなく、一般家庭においても広く使用されている。まつ毛エクステンションなどにおいても、シアノアクリレート接着剤を用いて毛と人工毛とを強く接着させることで、数週間の期間人工毛をまつ毛に接着させることができる。特許文献5には、シアノアクリレートとフラーレンとを含むシアノアクリレート含有組成物が開示されている。このシアノアクリレート含有組成物は、まつ毛エクステンションなどを用途とした接着剤組成物として使用されることができ、かつ貯蔵安定性にも優れている。
Cyanoacrylate and the like are generally used as adhesives for eyelash extensions. Cyanoacrylate is an adhesive with strong adhesive strength that hardens and adheres by polymerizing due to humidity in the air. Cyanoacrylate is called an instant adhesive and is widely used not only in industrial and medical applications but also in general households. In eyelash extensions and the like, cyanoacrylate adhesives can be used to strongly bond hair and artificial hair, allowing artificial hair to adhere to eyelashes for several weeks. Patent Document 5 discloses a cyanoacrylate-containing composition containing cyanoacrylate and fullerene. This cyanoacrylate-containing composition can be used as an adhesive composition for eyelash extensions and the like, and has excellent storage stability.
ジェルネイルで用いられる光硬化樹脂およびまつ毛エクステンションで用いられる湿度硬化樹脂のシアノアクリレートなどの生体用樹脂組成物は、爪および毛などの生体に高い強度で接着することが可能である。しかし、それらを生体から剥離するためには、研磨を行ったり、アセトンなどの溶剤、酸などを用いたりする必要があり、剥離処理は爪および毛などの生体への負担が大きかった。一方、剥離処理を容易にするために、生体用樹脂組成物の生体への接着性を低下させるなどした場合、所望の期間連続して化粧料を生体に装着させることができないという問題が生じる。
Biological resin compositions such as photo-curable resins used in gel nails and cyanoacrylate moisture-curable resins used in eyelash extensions are capable of adhering to living organisms such as nails and hair with high strength. However, in order to peel them off from living organisms, it is necessary to perform polishing or use solvents such as acetone, acids, etc., and the peeling process places a heavy burden on living organisms such as nails and hair. On the other hand, if the adhesiveness of the biological resin composition to the living body is reduced in order to facilitate the peeling process, a problem arises in that the cosmetic cannot be applied to the living body continuously for a desired period of time.
本開示は、生体の一部に強固に接着可能であって、かつ任意のタイミングで生体から簡易に剥離することが可能な、生体用樹脂組成物を提供する。
The present disclosure provides a biological resin composition that can be firmly adhered to a part of a living body and can be easily peeled off from the living body at any timing.
本開示は、生体の一部に接着する生体用樹脂組成物であって、
前記生体用樹脂組成物は、
アジド化合物と、
外部刺激により酸を発生する酸発生剤と、
を含む。 The present disclosure provides a biological resin composition that adheres to a part of a living body, comprising:
The biological resin composition includes:
an azide compound;
an acid generator that generates acid upon external stimulation;
including.
前記生体用樹脂組成物は、
アジド化合物と、
外部刺激により酸を発生する酸発生剤と、
を含む。 The present disclosure provides a biological resin composition that adheres to a part of a living body, comprising:
The biological resin composition includes:
an azide compound;
an acid generator that generates acid upon external stimulation;
including.
本開示における生体用樹脂組成物は、生体の一部に強固に接着可能であって、かつ任意のタイミングで生体から簡易に剥離することが可能である。
The resin composition for biological use in the present disclosure can be firmly adhered to a part of a living body, and can be easily peeled off from the living body at any timing.
以下、図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。
Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted. This is to avoid making the following description unnecessarily redundant and to facilitate understanding by those skilled in the art.
なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより請求の範囲に記載の主題を限定することを意図していない。
The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter recited in the claims.
(実施の形態)
以下、図1から図3を用いて、実施の形態を説明する。 (Embodiment)
Hereinafter, embodiments will be described using FIGS. 1 to 3.
以下、図1から図3を用いて、実施の形態を説明する。 (Embodiment)
Hereinafter, embodiments will be described using FIGS. 1 to 3.
[1-1.構成]
実施の形態における生体用樹脂組成物は、生体に接着する生体用樹脂組成物である。本実施の形態における生体用樹脂組成物は、アジド化合物と、外部刺激により酸を発生する酸発生剤と、を含む。アジド化合物は、アジド基を有する有機または無機化合物であり、外部刺激(例えば、光)が付与されることによって分解して窒素ガスを発生させる。また、アジド化合物は、酸と反応して窒素ガスを放出する特性を有する。外部刺激により酸を発生する酸発生剤は、外部刺激が与えられた場合に分解して酸を発生する特性を有する。本実施の形態における生体用樹脂組成物の固化物が生体の一部に接着している状態において、当該固化物に対して外部刺激が与えられた場合に、外部刺激により酸を発生する酸発生剤から酸が生成する。生成した酸とアジド化合物とが反応することにより、窒素ガスが発生する。この窒素ガスによって、本実施の形態における生体用樹脂組成物の固化物が体積変化を起こして、接着している生体の一部との接着強度を低下させる。なお、発生する窒素ガスには、アジド化合物に外部刺激(例えば、光)が付与されることによって当該アジド化合物が分解して発生した窒素ガスも含まれうる。本実施の形態における生体用樹脂組成物は、このような構成を有することにより、任意のタイミングで生体用樹脂組成物の固化物の生体への接着強度を効率よく低下させて、生体から簡易に剥離することが可能である。 [1-1. composition]
The biological resin composition in the embodiment is a biological resin composition that adheres to a biological body. The biological resin composition in this embodiment includes an azide compound and an acid generator that generates acid upon external stimulation. The azide compound is an organic or inorganic compound having an azide group, and decomposes to generate nitrogen gas when external stimulation (for example, light) is applied. Furthermore, the azide compound has the property of releasing nitrogen gas by reacting with an acid. An acid generator that generates acid upon external stimulation has the property of decomposing and generating acid when external stimulation is applied. Acid generation that generates acid due to external stimulation when external stimulation is applied to the solidified material of the biological resin composition in this embodiment in a state where the solidified material is adhered to a part of the living body. Acid is produced from the agent. Nitrogen gas is generated by the reaction between the generated acid and the azide compound. This nitrogen gas causes a volume change in the solidified resin composition for living organisms in this embodiment, reducing the adhesive strength with the part of the living body to which it is adhered. Note that the nitrogen gas generated may also include nitrogen gas generated by decomposition of the azide compound when an external stimulus (for example, light) is applied to the azide compound. By having such a configuration, the resin composition for biological use in the present embodiment can efficiently reduce the adhesive strength of the solidified resin composition for biological use to the living body at any timing, and easily remove it from the living body. It is possible to peel it off.
実施の形態における生体用樹脂組成物は、生体に接着する生体用樹脂組成物である。本実施の形態における生体用樹脂組成物は、アジド化合物と、外部刺激により酸を発生する酸発生剤と、を含む。アジド化合物は、アジド基を有する有機または無機化合物であり、外部刺激(例えば、光)が付与されることによって分解して窒素ガスを発生させる。また、アジド化合物は、酸と反応して窒素ガスを放出する特性を有する。外部刺激により酸を発生する酸発生剤は、外部刺激が与えられた場合に分解して酸を発生する特性を有する。本実施の形態における生体用樹脂組成物の固化物が生体の一部に接着している状態において、当該固化物に対して外部刺激が与えられた場合に、外部刺激により酸を発生する酸発生剤から酸が生成する。生成した酸とアジド化合物とが反応することにより、窒素ガスが発生する。この窒素ガスによって、本実施の形態における生体用樹脂組成物の固化物が体積変化を起こして、接着している生体の一部との接着強度を低下させる。なお、発生する窒素ガスには、アジド化合物に外部刺激(例えば、光)が付与されることによって当該アジド化合物が分解して発生した窒素ガスも含まれうる。本実施の形態における生体用樹脂組成物は、このような構成を有することにより、任意のタイミングで生体用樹脂組成物の固化物の生体への接着強度を効率よく低下させて、生体から簡易に剥離することが可能である。 [1-1. composition]
The biological resin composition in the embodiment is a biological resin composition that adheres to a biological body. The biological resin composition in this embodiment includes an azide compound and an acid generator that generates acid upon external stimulation. The azide compound is an organic or inorganic compound having an azide group, and decomposes to generate nitrogen gas when external stimulation (for example, light) is applied. Furthermore, the azide compound has the property of releasing nitrogen gas by reacting with an acid. An acid generator that generates acid upon external stimulation has the property of decomposing and generating acid when external stimulation is applied. Acid generation that generates acid due to external stimulation when external stimulation is applied to the solidified material of the biological resin composition in this embodiment in a state where the solidified material is adhered to a part of the living body. Acid is produced from the agent. Nitrogen gas is generated by the reaction between the generated acid and the azide compound. This nitrogen gas causes a volume change in the solidified resin composition for living organisms in this embodiment, reducing the adhesive strength with the part of the living body to which it is adhered. Note that the nitrogen gas generated may also include nitrogen gas generated by decomposition of the azide compound when an external stimulus (for example, light) is applied to the azide compound. By having such a configuration, the resin composition for biological use in the present embodiment can efficiently reduce the adhesive strength of the solidified resin composition for biological use to the living body at any timing, and easily remove it from the living body. It is possible to peel it off.
上記のとおり、本実施形態における生体用樹脂組成物の固化物は、外部刺激が与えられることにより気体を発生して体積変化を起こし、生体との接着強度を低減させる。本実施の形態における生体用樹脂組成物は、このような構成を有することにより、生体の一部に強固に接着している生体用樹脂組成物の固化物を、任意のタイミングで生体から簡易に剥離することが可能である。
As described above, the solidified material of the biological resin composition in this embodiment generates gas and causes a volume change when external stimulation is applied, reducing the adhesive strength with the living body. By having such a configuration, the resin composition for biological use in this embodiment allows the solidified product of the resin composition for biological use that is firmly adhered to a part of the living body to be easily removed from the living body at any timing. It is possible to peel it off.
外部刺激は、例えば光、熱、電気、磁力、および外力からなる群より選ばれる少なくとも一つである。これらの外部刺激によれば、より簡易な剥離が可能であり、かつ生体に直接的なダメージが及びにくい。外部刺激として複数の刺激が組み合わされても良い。外部刺激として光が用いられる場合、例えば、紫外光、可視光、近赤外光、赤外光、または遠赤外光などが用いられ得る。外部刺激として熱が用いられる場合、熱を付与する手段として、例えば、熱源、温風、近赤外光、赤外光、遠赤外光、またはマイクロ波などが用いられ得る。
The external stimulus is, for example, at least one selected from the group consisting of light, heat, electricity, magnetic force, and external force. These external stimuli allow easier peeling and are less likely to cause direct damage to the living body. A plurality of stimuli may be combined as external stimuli. When light is used as an external stimulus, for example, ultraviolet light, visible light, near-infrared light, infrared light, far-infrared light, etc. can be used. When heat is used as the external stimulus, a heat source, warm air, near-infrared light, infrared light, far-infrared light, microwaves, or the like may be used as the means for applying heat.
付与される外部刺激の程度は、特に限定されない。本実施の形態における生体用樹脂組成物に含まれる外部刺激により酸を発生する酸発生剤の種類および含有割合からなる群から選択される少なくとも1つに応じて、付与される外部刺激の程度が適宜調整されてもよい。
The degree of external stimulation applied is not particularly limited. The degree of external stimulation applied depends on at least one selected from the group consisting of the type and content ratio of the acid generator that generates acid upon external stimulation, which is contained in the biological resin composition in this embodiment. It may be adjusted as appropriate.
上述のとおり、本実施の形態における生体用樹脂組成物は、アジド化合物と、外部刺激により酸を発生する酸発生剤とを含む。
As described above, the biological resin composition in this embodiment includes an azide compound and an acid generator that generates acid upon external stimulation.
アジド化合物は、例えば、グリシジルアジドポリマーなどのアジドポリマー、アルキルアジド、フェニルアジド、スルホニルアジド、ジフェニルリン酸アジドなどの有機アジド化合物、または無機アジドが挙げられる。アジド化合物として、1種類が含まれていてもよいし、複数の種類が混合して含まれていてもよい。
Examples of the azide compound include azide polymers such as glycidyl azide polymer, organic azide compounds such as alkyl azide, phenyl azide, sulfonyl azide, diphenyl phosphoric azide, and inorganic azides. As the azide compound, one type may be contained, or a plurality of types may be mixed and contained.
外部刺激により酸を発生する酸発生剤は、例えば、光により酸を発生する光酸発生剤、または、熱により酸を発生する熱酸発生剤であってもよい。光酸発生剤は、スルホニウム塩、ヨードニウム塩、ジアゾニウム塩、スルホニルジアゾメタン、イミドスルホネート、オキシムスルホネート、およびアリールスルホン酸エステルからなる群より選択される少なくとも1つであってもよい。熱酸発生剤は、スルホニウム塩およびヨードニウム塩等が挙げられる。外部刺激により酸を発生する酸発生剤として、1種類が含まれていてもよいし、複数の種類が混合して含まれていてもよい。
The acid generator that generates acid in response to an external stimulus may be, for example, a photoacid generator that generates acid in response to light, or a thermal acid generator that generates acid in response to heat. The photoacid generator may be at least one selected from the group consisting of sulfonium salts, iodonium salts, diazonium salts, sulfonyldiazomethanes, imidosulfonates, oxime sulfonates, and arylsulfonate esters. Examples of the thermal acid generator include sulfonium salts and iodonium salts. One type of acid generator that generates acid upon external stimulation may be included, or a plurality of types may be included in a mixture.
実施の形態における外部刺激により酸を発生する酸発生剤は、光により酸を発生する光酸発生剤であってもよい。光酸発生剤は光を照射した場合に分解した酸を発生する特性を有する。このような構成を有することにより、外部刺激として光を照射した場合、生成した酸とアジド化合物とが反応することにより、窒素ガスが発生し、本実施の形態における生体用樹脂組成物の固化物が体積変化を起こして、接着している生体の一部との接着強度を低下させる。また、アジド化合物は、酸との反応によって生成する窒素ガスに加えて、光が付与されることによるアジド化合物自体の分解によっても窒素ガスを発生させる。したがって、本実施の形態における生体用樹脂組成物は、外部刺激として光が用いられることにより、より効率良く、生体用樹脂組成物の固化物と生体の一部との接着強度を低下させることができる。
In the embodiment, the acid generator that generates acid upon external stimulation may be a photoacid generator that generates acid upon exposure to light. A photoacid generator has the property of generating a decomposed acid when irradiated with light. With such a configuration, when light is irradiated as an external stimulus, the generated acid reacts with the azide compound to generate nitrogen gas, and the solidified biological resin composition in this embodiment causes a volume change, reducing the adhesive strength with the part of the living body to which it is attached. Furthermore, in addition to the nitrogen gas generated by reaction with an acid, the azide compound also generates nitrogen gas by decomposition of the azide compound itself when exposed to light. Therefore, the biological resin composition of this embodiment can more efficiently reduce the adhesive strength between the solidified material of the biological resin composition and a part of the living body by using light as an external stimulus. can.
上記のとおり、本実施の形態における生体用樹脂組成物では、接着強度を低下させるための外部刺激として、光が用いられうる。したがって、簡易な設備で容易に接着強度を低下させることが可能である。例えば、波長を適宜選択することによって、生体に対する高い安全性を確保でき、生体への直接的なダメージを抑えることができる。
As described above, in the biological resin composition of this embodiment, light can be used as an external stimulus to reduce the adhesive strength. Therefore, it is possible to easily reduce the adhesive strength with simple equipment. For example, by appropriately selecting the wavelength, high safety for living organisms can be ensured and direct damage to living organisms can be suppressed.
本実施の形態における生体用樹脂組成物は、アジド化合物と上記酸発生剤以外に、樹脂組成物の基材となる高分子材料をさらに含んでいてもよい。本実施の形態における生体用樹脂組成物に含まれる高分子材料は、生体適合性が高い材料から選択される。例えば、基材となる高分子材料として、生体適合性が高いアクリル系材料、シアノアクリレート系材料、シリコーン系材料、ウレタン系材料、ウレタン(メタ)アクリレート系材料、スチレン系材料、エポキシ系材料、エラストマーなどが含まれていてもよい。これらの材料の中の1種類が含まれていてもよいし、複数の種類が混合して含まれていてもよい。特に、ウレタン(メタ)アクリレート系材料は、ソークオフジェルネイルの主材料であり、爪への接着性、安全性、および柔軟性の観点で優れている。また、シアノアクリレート系材料は、生体安全性が高く、更に毛などとの接着力が高い。したがって、本実施の形態における生体用樹脂組成物が毛に接着する化粧料に用いられる場合、シアノアクリレート系材料は好適に用いられ得る。
In addition to the azide compound and the acid generator, the biological resin composition in this embodiment may further contain a polymeric material that serves as a base material of the resin composition. The polymeric material contained in the biological resin composition in this embodiment is selected from materials with high biocompatibility. For example, as a base polymer material, highly biocompatible acrylic material, cyanoacrylate material, silicone material, urethane material, urethane (meth)acrylate material, styrene material, epoxy material, elastomer etc. may be included. One type of these materials may be included, or a mixture of a plurality of types may be included. In particular, urethane (meth)acrylate-based materials are the main materials for soak-off gel nails, and are excellent in terms of adhesion to nails, safety, and flexibility. Furthermore, cyanoacrylate materials have high biosafety and also have high adhesion to hair and the like. Therefore, when the biological resin composition of this embodiment is used in a cosmetic that adheres to hair, cyanoacrylate materials can be suitably used.
本実施の形態における生体用樹脂組成物は、アジド化合物、上記酸発生剤、および樹脂組成物の基材となる高分子材料以外の、その他の添加剤が含まれていてもよい。添加剤として、重合開始剤、増感剤、硬化剤、硬化促進剤、増粘剤、レベリング剤、消臭剤、吸湿剤、防腐剤、発泡剤、着色剤、シランカップリング剤、有機溶媒、水、有機塩、無機塩、無機粉体、有機粉体、美容成分、薬効成分などが例示される。
The biological resin composition in this embodiment may contain other additives other than the azide compound, the acid generator, and the polymeric material that is the base material of the resin composition. Additives include polymerization initiators, sensitizers, curing agents, curing accelerators, thickeners, leveling agents, deodorants, moisture absorbers, preservatives, foaming agents, colorants, silane coupling agents, organic solvents, Examples include water, organic salts, inorganic salts, inorganic powders, organic powders, beauty ingredients, and medicinal ingredients.
本実施の形態における生体用樹脂組成物は、生体への毒性が高い添加剤が実質的に含まれていない樹脂組成物である。生体への毒性が高い材料は、ベンゼン、二塩化エチレン、二塩化アセチレン、モノクロロベンゼン、エチルベンゼン、スチレン、鉛、水銀、ヒ素などが挙げられる。本実施の形態における生体用樹脂組成物におけるこれらの材料の含有量は、例えば、10ppm以下、または検出限界以下である。
The resin composition for biological use in this embodiment is a resin composition that does not substantially contain additives that are highly toxic to living organisms. Examples of materials that are highly toxic to living organisms include benzene, ethylene dichloride, acetylene dichloride, monochlorobenzene, ethylbenzene, styrene, lead, mercury, and arsenic. The content of these materials in the biological resin composition in this embodiment is, for example, 10 ppm or less, or below the detection limit.
本実施の形態の生体用樹脂組成物は、例えば、生体の一部に接着する化粧料に用いられる化粧料用樹脂組成物であってもよい。上述のとおり、本実施の形態の生体用樹脂組成物は、生体の一部に強固に接着可能であって、かつ任意のタイミングで生体から簡易に剥離することが可能である。したがって、本実施の形態の生体用樹脂組成物によれば、ジェルネイルおよびまつ毛エクステンションなどのような、数日から数週間程度の期間、連続して生体に装着するような化粧料を、生体への負荷を低減させて利用することができる。
The resin composition for living bodies of this embodiment may be, for example, a resin composition for cosmetics used in cosmetics that adhere to a part of a living body. As described above, the biological resin composition of this embodiment can be firmly adhered to a part of a living body, and can be easily peeled off from the living body at any timing. Therefore, according to the resin composition for biological use of the present embodiment, cosmetics that are worn continuously on a living body for a period of several days to several weeks, such as gel nails and eyelash extensions, can be applied to a living body. It can be used with reduced load.
本実施の形態の生体用樹脂組成物は、例えば、生体の一部に接着する医療用樹脂組成物であってもよい。上述のとおり、本実施の形態の生体用樹脂組成物は、生体の一部に強固に接着可能であって、かつ任意のタイミングで生体から簡易に剥離することが可能である。したがって、本実施の形態の生体用樹脂組成物は、生体への負荷を低減させつつ、数日から数週間程度の期間、連続して生体に装着するような医療用の皮膚貼付剤の接着剤層などとして、好適に利用することができる。
The living body resin composition of this embodiment may be, for example, a medical resin composition that adheres to a part of a living body. As described above, the biological resin composition of this embodiment can be firmly adhered to a part of a living body, and can be easily peeled off from the living body at any timing. Therefore, the biological resin composition of the present embodiment can be used as an adhesive for a medical skin patch that is continuously attached to a living body for a period of several days to several weeks while reducing the burden on the living body. It can be suitably used as a layer or the like.
本実施の形態における生体用樹脂組成物において、生体の一部に接着する化粧料とは、生体の一部に直接接着される化粧料であってもよいし、生体との間に薄膜などの他の層を介して間接的に生体に接着する化粧料であってもよい。例えば化粧料が爪用化粧料である場合、他の層としての薄膜は、例えばプライマー、ベースジェル、およびベースコートからなる群より選択される少なくとも1つであってもよい。
In the biological resin composition of the present embodiment, the cosmetic that adheres to a part of a living body may be a cosmetic that is directly adhered to a part of a living body, or may be a cosmetic that is directly adhered to a part of a living body, or may be a cosmetic that is bonded to a part of a living body by a thin film or the like. It may also be a cosmetic that indirectly adheres to a living body through another layer. For example, when the cosmetic is a nail cosmetic, the thin film as another layer may be, for example, at least one selected from the group consisting of a primer, a base gel, and a base coat.
本実施の形態における生体用樹脂組成物の固化物とは、例えば、生体用樹脂組成物が溶媒を含んでおり、この溶媒を揮発させることによって被膜などの固体物を形成し得る樹脂組成物である場合は、生体用樹脂組成物の溶剤を揮発させることによって得られた被膜などの固体物を意味する。また、本実施の形態における生体用樹脂組成物が、例えば、重合性化合物を含み、光または熱により硬化し得る硬化性の樹脂組成物である場合は、本実施の形態における生体用樹脂組成物の固化物とは、光または熱が照射されることによって硬化した生体用樹脂組成物の硬化物を意味する。
The solidified product of the biological resin composition in this embodiment is, for example, a resin composition in which the biological resin composition contains a solvent and can form a solid substance such as a film by volatilizing the solvent. In some cases, it refers to a solid substance such as a film obtained by volatilizing the solvent of the biological resin composition. In addition, when the biological resin composition in this embodiment is, for example, a curable resin composition that contains a polymerizable compound and can be cured by light or heat, the biological resin composition in this embodiment The solidified product means a cured product of a biological resin composition that is cured by being irradiated with light or heat.
本実施の形態における生体用樹脂組成物の固化物は、30°以上かつ110°以下の水との接触角を有することが望ましい。接触角は、接触角計を用いて測定することができる。水との接触角は、液滴法によって測定される。具体的には、生体用樹脂組成物の固化物の平坦な表面に、例えば5μLの水を滴下した場合の固化物の表面と水との角度を、接触角計で測定することにより得られる。水の接触角は、一般的に材料の親水性および疎水性の特性の順列を表すことができ、溶解度パラメータ(以下、「SP値」という)などの材料物性ともある程度の相関が得られる。親水性および疎水性の特性が近い材料およびSP値の近い材料は、材料間の馴染み性が良く接着力が強くなる傾向があることが一般的に知られている。水の接触角が30°以上かつ110°以下である材料は、爪および毛などの生体と接触角特性が近い。したがって、本実施の形態における生体用樹脂組成物の固化物は生体との接着力が高く、長時間安定に生体に接着することが可能である。本実施の形態における生体用樹脂組成物の固化物の表面に対する水の接触角が40°以上かつ110°以下の場合はより強力に生体と接着することが可能となる。本実施の形態における生体用樹脂組成物の固化物の表面に対する水の接触角が60°以上かつ100°以下の場合はより強力に生体と接着することが可能となる。
It is desirable that the solidified product of the biological resin composition in this embodiment has a contact angle with water of 30° or more and 110° or less. Contact angle can be measured using a contact angle meter. The contact angle with water is measured by the droplet method. Specifically, it can be obtained by dropping, for example, 5 μL of water onto the flat surface of a solidified product of the biological resin composition and measuring the angle between the surface of the solidified product and the water using a contact angle meter. The contact angle of water can generally represent a permutation of hydrophilic and hydrophobic properties of a material, and can also be correlated to some extent with physical properties of the material such as solubility parameter (hereinafter referred to as "SP value"). It is generally known that materials with similar hydrophilic and hydrophobic properties and materials with similar SP values tend to have good compatibility between the materials and strong adhesive strength. A material having a water contact angle of 30° or more and 110° or less has contact angle characteristics similar to those of living organisms such as nails and hair. Therefore, the solidified resin composition for biological use according to the present embodiment has a high adhesion force to the living body, and can be stably adhered to the living body for a long period of time. When the contact angle of water with respect to the surface of the solidified product of the biological resin composition in this embodiment is 40° or more and 110° or less, it becomes possible to more strongly adhere to the living body. When the contact angle of water with respect to the surface of the solidified product of the biological resin composition in this embodiment is 60° or more and 100° or less, it becomes possible to more strongly adhere to the living body.
本実施の形態において、生体用樹脂組成物の固化物と生体との接着性を低下させるために外部刺激として用いられる光は、例えば、400nm未満の範囲内の波長を有していてもよい。ここで、本明細書において、「光が、ある特定の範囲内の波長を有する」とは、光がその特定の範囲内の波長の光を含むことを意味する。すなわち、光が複数の波長の光を含む場合(すなわち、スペクトル分布を有する光である場合)は、その特定の範囲内の波長の光が少なくとも含まれている光であればよく、当該範囲外の波長の光がさらに含まれていてもよい。400nm未満の範囲内に波長を有する光が外部刺激として使用可能であることは、一般の可視光の照明などの通常の生活において、接着強度が下がるのを防ぐことができる。この場合、光酸発生剤は、少なくとも400nm未満の波長領域に光吸収をもつものであってもよい。
In the present embodiment, the light used as an external stimulus to reduce the adhesiveness between the solidified biological resin composition and the living body may have a wavelength within a range of less than 400 nm, for example. Here, in this specification, "the light has a wavelength within a certain specific range" means that the light includes light with a wavelength within the specific range. In other words, when light contains light of multiple wavelengths (that is, light with a spectral distribution), it is sufficient that the light contains at least light of wavelengths within that specific range, and light that is outside of that range is sufficient. may further include light having a wavelength of . The fact that light having a wavelength in the range of less than 400 nm can be used as an external stimulus can prevent the adhesive strength from decreasing in normal life such as general visible light illumination. In this case, the photoacid generator may have light absorption in a wavelength region of at least less than 400 nm.
実施の形態における生体用樹脂組成物に含まれる光酸発生剤が400nm未満の波長範囲に光吸収をもつ場合、生体用樹脂組成物は、その固化物が400nm未満の波長を有する光によって酸を生成して気体を発生して体積変化を起こす物質である。このように400nm未満の範囲内に波長を有する光を用い、生体用樹脂組成物に含まれる光酸発生剤が400nm未満の波長領域に光吸収をもつ場合、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぎつつ、簡易な方法で任意のタイミングでの効率のよい上記固化物と生体との剥離を実現し、かつ生体へのダメージもより抑えることができる。
When the photoacid generator contained in the biological resin composition in the embodiment has light absorption in a wavelength range of less than 400 nm, the solidified material of the biological resin composition is capable of absorbing acid by light having a wavelength of less than 400 nm. A substance that generates gas and causes a change in volume. In this way, when using light having a wavelength within a range of less than 400 nm, and when the photoacid generator contained in the biological resin composition has light absorption in the wavelength region of less than 400 nm, the biological resin composition may be used in daily life. To achieve efficient separation of the solidified material from the living body using a simple method at any timing while preventing the adhesive strength between the solidified material and the living body from decreasing, and to further suppress damage to the living body. I can do it.
更に、光酸発生剤における400nm以上の波長領域の光吸収量は、光酸発生剤における光吸収全体の20%以下であってもよい。この場合、生体用樹脂組成物は、波長が400nm以上の光では生体との接着強度を低下させる程度の体積変化を起こしにくい物質であるとみなすことができる。したがって、このような生体用樹脂組成物は、一般の照明などの通常の生活において、接着強度が下がるのをより防ぐことができる。
Furthermore, the amount of light absorption in the wavelength range of 400 nm or more in the photoacid generator may be 20% or less of the total light absorption in the photoacid generator. In this case, the biological resin composition can be considered to be a substance that is unlikely to undergo a volume change that would reduce the adhesive strength with the biological body when exposed to light having a wavelength of 400 nm or more. Therefore, such a biological resin composition can better prevent adhesive strength from decreasing in normal life such as general lighting.
本実施の形態において、生体用樹脂組成物の固化物と生体との接着性を低下させるために外部刺激として用いられる光は、例えば、280nm以上かつ400nm未満の範囲内に波長を有する光であってもよい。すなわち、外部刺激として用いられる光は、例えば、280nm以上かつ400nm未満の範囲内の波長の光を含んでいてもよい。280nm以上に波長を有する光は生体に対する安全性が高い。また400nm未満に波長を有する光が外部刺激として使用可能であることは、一般の可視光の照明などの通常の生活において、接着強度が下がるのを防ぐことができる。この場合、光酸発生剤は、少なくとも280nm以上かつ400nm未満の波長領域に光吸収をもつものであってもよい。本実施の形態における生体用樹脂組成物に含まれる光酸発生剤が少なくとも280nm以上かつ400nm未満の波長範囲に光吸収をもつ場合、生体用樹脂組成物は、その固化物が少なくとも280nm以上かつ400nm未満の波長を有する光によって酸を生成して気体を発生して体積変化を起こす物質である。このように、280nm以上かつ400nm未満の範囲内に波長を有する光を用い、生体用樹脂組成物に含まれる光酸発生剤が少なくとも280nm以上かつ400nm未満の波長領域に光吸収をもつ場合、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぎつつ、簡易な方法で任意のタイミングでの効率のよい上記固化物と生体との剥離を実現し、かつ生体へのダメージもより抑えることができる。
In this embodiment, the light used as an external stimulus to reduce the adhesion between the solidified biological resin composition and the living body is, for example, light having a wavelength in the range of 280 nm or more and less than 400 nm. You can. That is, the light used as an external stimulus may include, for example, light with a wavelength in the range of 280 nm or more and less than 400 nm. Light having a wavelength of 280 nm or more is highly safe for living organisms. Furthermore, the fact that light having a wavelength of less than 400 nm can be used as an external stimulus can prevent the adhesive strength from decreasing in normal life such as general visible light illumination. In this case, the photoacid generator may have light absorption in a wavelength region of at least 280 nm or more and less than 400 nm. When the photoacid generator contained in the biological resin composition in this embodiment has light absorption in a wavelength range of at least 280 nm or more and less than 400 nm, the solidified material of the biological resin composition has a wavelength range of at least 280 nm or more and less than 400 nm. It is a substance that generates acid and gas when exposed to light with a wavelength of less than 100 mL, causing a change in volume. In this way, when using light having a wavelength in the range of 280 nm or more and less than 400 nm, and when the photoacid generator contained in the biological resin composition has light absorption in the wavelength range of at least 280 nm or more and less than 400 nm, Achieving efficient separation of the solidified material from the living body at any time using a simple method while preventing the adhesive strength between the solidified material of the resin composition for biological use and the living body from decreasing in daily life, and Damage to living organisms can also be further suppressed.
本実施の形態において、生体用樹脂組成物の固化物と生体との接着性を低下させるために外部刺激として用いられる光は、例えば、280nm以上かつ400nm未満の範囲内にピーク波長を有する光であってもよい。この場合、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することをより確実に防ぎつつ、簡易な方法で任意のタイミングでのより効率のよい上記固化物と生体との剥離を実現し、かつ生体へのダメージもより一層抑えることができる。
In this embodiment, the light used as an external stimulus to reduce the adhesion between the solidified biological resin composition and the living body is, for example, light having a peak wavelength in the range of 280 nm or more and less than 400 nm. There may be. In this case, while more reliably preventing the adhesive strength between the solidified product of the biological resin composition and the living body from decreasing in normal life, the solidified product and the living body can be bonded to the living body using a simple method and more efficiently. It is possible to achieve separation from the skin and further suppress damage to living organisms.
本実施の形態において、生体用樹脂組成物の固化物と生体との接着性を低下させるために外部刺激として用いられる光として、例えば、280nm以上かつ380nm以下の範囲内の波長を有する光が用いられてもよい。すなわち、外部刺激として用いられる光は、例えば、280nm以上かつ380nm以下の範囲内の波長の光を含んでいてもよい。この場合、光酸発生剤は、少なくとも280nm以上かつ380nm以下の波長領域に光吸収をもつものであってもよい。外部刺激として付与される光が380nm以下の範囲内の波長を有することにより、波長が380nm程度である高いエネルギーを持つ刺激の付与を実現しながら、一般の照明などの通常の生活において生体用樹脂組成物の固化物の接着強度が下がることをより確実に防ぐことができる。すなわち、外部刺激として280nm以上かつ380nm以下の範囲内の波長を有する光が用いられる場合、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することをより確実に防ぎつつ、より簡易な方法で任意のタイミングでの効率のよい上記固化物と生体との剥離を実現し、かつ生体へのダメージもより抑えることができる。さらに、380nm以下の範囲内の波長を有する光が用いられることで、例えば本実施の形態における生体用樹脂組成物をジェルネイル用のベースコート剤に利用する場合に、ジェルネイル硬化時にジェルネイルの接着強度が下がるのを防ぐことができるという効果も得られる。
In the present embodiment, light having a wavelength in the range of 280 nm or more and 380 nm or less is used as the external stimulus to reduce the adhesiveness between the solidified biological resin composition and the living body. It's okay to be hit. That is, the light used as an external stimulus may include, for example, light with a wavelength in the range of 280 nm or more and 380 nm or less. In this case, the photoacid generator may have light absorption in a wavelength range of at least 280 nm or more and 380 nm or less. Since the light applied as an external stimulus has a wavelength within the range of 380 nm or less, it is possible to provide a stimulus with high energy with a wavelength of about 380 nm, and it is also possible to use biological resins in everyday life such as general lighting. It is possible to more reliably prevent the adhesive strength of the solidified composition from decreasing. In other words, when light having a wavelength in the range of 280 nm or more and 380 nm or less is used as an external stimulus, it is possible to more reliably prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. At the same time, it is possible to achieve efficient separation of the solidified material from the living body at any desired timing using a simpler method, and to further suppress damage to the living body. Furthermore, since light having a wavelength within the range of 380 nm or less is used, for example, when the biological resin composition of this embodiment is used as a base coat agent for gel nails, gel nails can be bonded during curing of gel nails. This also has the effect of preventing the strength from decreasing.
本実施の形態において、生体用樹脂組成物の固化物と生体との接着性を低下させるために外部刺激として用いられる光は、例えば、280nm以上かつ380nm以下の範囲内にピーク波長を有する光であってもよい。この場合、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することをより確実に防ぎつつ、簡易な方法で任意のタイミングでのより効率のよい上記固化物と生体との剥離を実現し、かつ生体へのダメージもより一層抑えることができる。さらに、ピーク波長が380nm以下の光が用いられることで、例えば本実施の形態における生体用樹脂組成物をジェルネイル用のベースコート剤に利用する場合に、ジェルネイル硬化時にジェルネイルの接着強度が下がるのをより確実に防ぐことができるという効果も得られる。
In this embodiment, the light used as an external stimulus to reduce the adhesion between the solidified biological resin composition and the living body is, for example, light having a peak wavelength in the range of 280 nm or more and 380 nm or less. There may be. In this case, while more reliably preventing the adhesive strength between the solidified product of the biological resin composition and the living body from decreasing in normal life, the solidified product and the living body can be bonded to the living body using a simple method and more efficiently. It is possible to achieve separation from the skin and further suppress damage to living organisms. Furthermore, since light with a peak wavelength of 380 nm or less is used, for example, when the biological resin composition of this embodiment is used as a base coat agent for gel nails, the adhesive strength of the gel nails decreases when the gel nails are cured. This also has the effect of being able to more reliably prevent this.
本実施の形態において、生体用樹脂組成物の固化物と生体との接着性を低下させるために外部刺激として用いられる光として、例えば、280nm以上かつ370nm以下の範囲内の波長を有する光が用いられてもよいし、280nm以上かつ365nm以下の範囲内の波長を有する光が用いられてもよい。また、外部刺激として用いられる光は、例えば、280nm以上かつ370nm以下の範囲内のピーク波長を有する光であってもよいし、280nm以上かつ365nm以下の範囲内のピーク波長を有する光であってもよい。外部刺激として用いられる光のピーク波長が370nm以下、あるいは365nm以下であることにより、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することをより確実に防ぎつつ、より簡易な方法で任意のタイミングでの効率のよい上記固化物と生体との剥離を実現し、かつ生体へのダメージもより抑えることができる。さらに、上記波長の光が用いられることで、例えば本実施の形態における生体用樹脂組成物をジェルネイル用のベースコート剤に利用する場合に、ジェルネイル硬化時にジェルネイルの接着強度が下がるのを防ぐことができるという効果も得られる。
In the present embodiment, light having a wavelength in the range of 280 nm or more and 370 nm or less is used as the external stimulus to reduce the adhesiveness between the solidified biological resin composition and the living body. Alternatively, light having a wavelength within the range of 280 nm or more and 365 nm or less may be used. Further, the light used as an external stimulus may be, for example, light having a peak wavelength in the range of 280 nm or more and 370 nm or less, or light having a peak wavelength in the range of 280 nm or more and 365 nm or less. Good too. By setting the peak wavelength of the light used as an external stimulus to be 370 nm or less or 365 nm or less, the adhesive strength between the solidified biological resin composition and the living body can be more reliably prevented from decreasing in normal life. It is possible to achieve efficient separation of the solidified material from the living body at any desired timing using a simpler method, and to further suppress damage to the living body. Furthermore, by using light of the above wavelength, for example, when the biological resin composition of this embodiment is used as a base coat agent for gel nails, the adhesive strength of gel nails is prevented from decreasing during curing of gel nails. You can also get the effect that you can.
外部刺激として用いられる光は、例えば、280nm以上かつ350nm以下の範囲内のピーク波長を有する光であってもよい。外部刺激として用いられる光のピーク波長が350nm以下であることにより、より高いエネルギーを照射することで、より多くの体積変化が起こる。これにより、本実施の形態における生体用樹脂組成物の固化物をより効率良く生体から剥離することが可能となる。
The light used as an external stimulus may be, for example, light having a peak wavelength within a range of 280 nm or more and 350 nm or less. Since the peak wavelength of the light used as an external stimulus is 350 nm or less, more volume changes occur by irradiating with higher energy. Thereby, it becomes possible to more efficiently peel off the solidified product of the biological resin composition in this embodiment from the biological body.
一例として、本実施の形態における生体用樹脂組成物が、光照射によって硬化するものである場合、光酸発生剤に酸を生成させて生体用樹脂組成物の固化物と生体との接着性を低下させるために用いられる光は、例えば280nm以上かつ390nm未満の範囲内にピーク波長を有する光であってもよい。この場合、本実施の形態における生体用樹脂組成物を光照射によって硬化させる際に用いられる光は、例えば390nm以上かつ450nm以下であってもよい。
As an example, if the biological resin composition in this embodiment is one that is cured by light irradiation, a photoacid generator may be used to generate acid to improve the adhesion between the solidified biological resin composition and the living body. The light used for the reduction may be light having a peak wavelength within a range of, for example, 280 nm or more and less than 390 nm. In this case, the light used when curing the biological resin composition in this embodiment by light irradiation may have a wavelength of, for example, 390 nm or more and 450 nm or less.
本実施の形態において、生体用樹脂組成物はアジド化合物を、例えば0.5質量%以上かつ50質量%以下の範囲で含んでいてもよい。アジド化合物が0.5質量%以上含まれることにより、本実施の形態における生体用樹脂組成物の固化物は、外部刺激である光照射時に窒素生体からの剥離性を向上させることが可能となる。アジド化合物が50質量%以下で含まれることにより、生体用樹脂組成物における基材となる高分子材料などの物性を維持しやすい効果が得られる。このため、例えば外部刺激である光照射前の、生体用樹脂組成物の固化物と生体との接着強度を向上させる効果が得られる。生体用樹脂組成物中のアジド化合物の濃度は、10質量%以上であってもよい。生体用樹脂組成物中のアジド化合物の濃度が10質量%以上であることにより、本実施の形態における生体用樹脂組成物の固化物は、外部刺激である光照射時に生体からの剥離性をより向上させることが可能となる。また、生体用樹脂組成物中のアジド化合物の濃度は、30質量%以下であってもよい。生体用樹脂組成物中のアジド化合物の濃度が30質量%以下であることにより、本実施の形態における生体用樹脂組成物は、外部刺激である光照射前に生体用樹脂組成物の固化物の生体に対する高い接着性と外部刺激である光照射時の優れた剥離性との双方の特性を得ることが可能である。
In the present embodiment, the biological resin composition may contain an azide compound, for example, in a range of 0.5% by mass or more and 50% by mass or less. By containing 0.5% by mass or more of the azide compound, the solidified product of the resin composition for biological use in this embodiment can improve the releasability of nitrogen from living organisms when irradiated with light, which is an external stimulus. . When the azide compound is contained in an amount of 50% by mass or less, it is possible to easily maintain the physical properties of a polymeric material, etc., which is a base material in a resin composition for biological use. Therefore, for example, the effect of improving the adhesive strength between the solidified biological resin composition and the living body before irradiation with light, which is an external stimulus, can be obtained. The concentration of the azide compound in the biological resin composition may be 10% by mass or more. Since the concentration of the azide compound in the biological resin composition is 10% by mass or more, the solidified product of the biological resin composition in this embodiment has better removability from the biological body when irradiated with light, which is an external stimulus. It becomes possible to improve the performance. Moreover, the concentration of the azide compound in the biological resin composition may be 30% by mass or less. Since the concentration of the azide compound in the biological resin composition is 30% by mass or less, the biological resin composition according to the present embodiment is able to absorb the solidified product of the biological resin composition before irradiation with light, which is an external stimulus. It is possible to obtain both properties of high adhesiveness to living organisms and excellent releasability when exposed to light, which is an external stimulus.
生体用樹脂組成物中のアジド化合物の含有割合は、例えば核磁気共鳴法(以下、「NMR」という)、赤外分光法(以下、「IR」という)、質量分析法(以下、「MS」という)、二次イオン質量分析法(以下、「SIMS」という)、誘導結合プラズマ質量分析法(以下、「ICP-MS」という)、走査型電子顕微鏡分析法(以下、「SEM」という)、走査型電子顕微鏡-エネルギー分散型X線分析法(以下、「SEM-EDX」という)、液体クロマトグラフィー法、分光光度計法などにより確認することができる。また、アジド化合物が生体用樹脂組成物中で溶解または均一に分散しているかは、光の透過の均一性で確認できる。アジド化合物が生体用樹脂組成物中で溶解または均一に分散しているかは、屈折率を用いて確認することも可能である。さらに、フィルターの透過性または粘度を用いて溶解性を評価することも可能である。
The content ratio of the azide compound in the biological resin composition can be determined by, for example, nuclear magnetic resonance (hereinafter referred to as "NMR"), infrared spectroscopy (hereinafter referred to as "IR"), mass spectrometry (hereinafter referred to as "MS"). ), secondary ion mass spectrometry (hereinafter referred to as "SIMS"), inductively coupled plasma mass spectrometry (hereinafter referred to as "ICP-MS"), scanning electron microscopy (hereinafter referred to as "SEM"), It can be confirmed by a scanning electron microscope-energy dispersive X-ray analysis method (hereinafter referred to as "SEM-EDX"), a liquid chromatography method, a spectrophotometer method, or the like. Further, whether the azide compound is dissolved or uniformly dispersed in the biological resin composition can be confirmed by the uniformity of light transmission. It is also possible to confirm whether the azide compound is dissolved or uniformly dispersed in the biological resin composition using the refractive index. Furthermore, it is also possible to evaluate solubility using filter permeability or viscosity.
本実施の形態において、生体用樹脂組成物は光酸発生剤を、例えば0.05質量%以上かつ10質量%以下の範囲で含んでいてもよい。光酸発生剤が0.05質量%以上含まれることにより、本実施の形態における生体用樹脂組成物は、外部刺激である光照射時に生体からの剥離性をより向上させることが可能となる。光酸発生剤化合物が10質量%以下で含まれることにより、生体用樹脂組成物における基材となる高分子材料との相溶性が高くなり、生体用樹脂組成物における基材となる高分子材料などの物性を維持しやすい効果が得られる。このため、例えば外部刺激付与前の、生体用樹脂組成物の固化物と生体との接着強度を向上させる効果が得られる。生体用樹脂組成物の光酸発生剤の濃度は、0.1質量%以上であってもよい。生体用樹脂組成物中のアジド化合物の濃度が0.1質量%以上であることにより、本実施の形態における生体用樹脂組成物は、外部刺激の付与時に生体用樹脂組成物の固化物の生体からの剥離性をより向上させることが可能となる。本実施の形態における生体用樹脂組成物は、外部刺激付与前の生体用樹脂組成物の固化物の生体に対する高い接着性と外部刺激付与時の優れた剥離性との双方の特性を得ることが可能である。
In the present embodiment, the biological resin composition may contain a photoacid generator in a range of, for example, 0.05% by mass or more and 10% by mass or less. By containing the photoacid generator in an amount of 0.05% by mass or more, the resin composition for biological use in this embodiment can further improve the releasability from the living body upon irradiation with light, which is an external stimulus. By containing the photoacid generator compound in an amount of 10% by mass or less, the compatibility with the polymer material serving as the base material in the biological resin composition increases, and the polymer material serving as the base material in the biological resin composition increases. The effect of easily maintaining physical properties such as Therefore, for example, the effect of improving the adhesive strength between the solidified biomaterial resin composition and the living body before external stimulation is applied can be obtained. The concentration of the photoacid generator in the biological resin composition may be 0.1% by mass or more. Since the concentration of the azide compound in the resin composition for biological use is 0.1% by mass or more, the resin composition for biological use in this embodiment can cause the solidified resin composition for biological use to absorb It becomes possible to further improve the releasability from the substrate. The resin composition for biological use in this embodiment can obtain both the characteristics of high adhesion to living organisms of the solidified resin composition for biological use before external stimulation is applied and excellent releasability when external stimulation is applied. It is possible.
生体用樹脂組成物中の光酸発生剤の含有割合は、例えば核磁気共鳴法(すなわち、NMR)、赤外分光法(すなわち、IR)、質量分析法(すなわち、MS)、二次イオン質量分析法(すなわち、SIMS)、誘導結合プラズマ質量分析法(すなわち、ICP-MS)、走査型電子顕微鏡分析法(すなわち、SEM)、走査型電子顕微鏡-エネルギー分散型X線分析法(すなわち、SEM-EDX)、液体クロマトグラフィー法、分光光度計法などにより確認することができる。また、光酸発生剤が生体用樹脂組成物中で溶解または均一に分散しているかは、光の透過の均一性で確認できる。光酸発生剤が生体用樹脂組成物中で溶解または均一に分散しているかは、屈折率を用いて確認することも可能である。さらに、フィルターの透過性または粘度を用いて溶解性を評価することも可能である。
The content ratio of the photoacid generator in the biological resin composition can be determined by, for example, nuclear magnetic resonance method (i.e., NMR), infrared spectroscopy (i.e., IR), mass spectrometry (i.e., MS), secondary ion mass spectrometry, etc. (i.e., SIMS), Inductively Coupled Plasma Mass Spectrometry (i.e., ICP-MS), Scanning Electron Microscopy (i.e., SEM), Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (i.e., SEM) -EDX), liquid chromatography, spectrophotometry, etc. Further, whether the photoacid generator is dissolved or uniformly dispersed in the biological resin composition can be confirmed by the uniformity of light transmission. It is also possible to confirm whether the photoacid generator is dissolved or uniformly dispersed in the biological resin composition using the refractive index. Furthermore, it is also possible to evaluate solubility using filter permeability or viscosity.
本実施の形態における生体用樹脂組成物に含まれるアジド化合物はグリシジルアジドポリマーであってもよい。グリシジルアジドポリマーは、例えば400nm以下程度の波長領域の光が照射された場合に、分解して窒素ガスを放出する特性を持つ。したがって、本実施の形態における生体用樹脂組成物がグリシジルアジドポリマーを含む場合、生体用樹脂組成物の固化物に対する光照射により、グリシジルアジドポリマー自体の光反応による窒素ガスの生成と、光酸発生剤から発生した酸とグシリジルアジドポリマーの反応による窒素ガスの生成と、二つの反応により窒素ガスが生成する。そのため、生体用樹脂組成物の固化物の体積変化が大きくなり、生体からの剥離性をより向上させることが可能となる。また、グリシジルアジドポリマーの光反応に対しては、外部刺激として280nm以上かつ380nm以下の範囲内の波長を有する光を用いることができる。このような波長範囲の光は、生体への安全性に優れている。また、このような波長範囲の光によって応答することにより、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぐことができる。さらに、このような波長範囲の光を外部刺激として用いることができるので、より簡易な方法で任意のタイミングでの効率のよい剥離を実現できる。
The azide compound contained in the biological resin composition in this embodiment may be a glycidyl azide polymer. Glycidyl azide polymer has a property of decomposing and releasing nitrogen gas when it is irradiated with light in a wavelength range of about 400 nm or less, for example. Therefore, when the biological resin composition in this embodiment includes a glycidyl azide polymer, the solidified biological resin composition is irradiated with light to generate nitrogen gas and photoacid due to the photoreaction of the glycidyl azide polymer itself. Nitrogen gas is generated by the reaction between the acid generated from the agent and the glydylyl azide polymer, and the two reactions. Therefore, the volume change of the solidified product of the resin composition for biological use becomes large, and it becomes possible to further improve the releasability from the living body. Furthermore, for the photoreaction of the glycidyl azide polymer, light having a wavelength within the range of 280 nm or more and 380 nm or less can be used as an external stimulus. Light in such a wavelength range is excellent in safety for living organisms. Furthermore, by responding with light in such a wavelength range, it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. Furthermore, since light in such a wavelength range can be used as an external stimulus, efficient peeling can be achieved at any timing using a simpler method.
本実施の形態における生体用樹脂組成物に含まれる光酸発生剤は、スルホニウム塩であってもよい。スルホニウム塩のカチオン部位であるスルホニウムイオンの構造を変化させた光酸発生剤により任意の波長の光に対して酸を発生することが可能である。これにより、外部刺激として280nm以上かつ400nm以下の範囲内の波長を有する光を用いることができる。このような波長範囲の光は、生体への安全性に優れている。また、このような波長範囲の光によって応答することにより、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぐことができる。さらに、このような波長範囲の光を外部刺激として用いることができるので、より簡易な方法で任意のタイミングでの効率のよい剥離を実現できる。
The photoacid generator contained in the biological resin composition in this embodiment may be a sulfonium salt. It is possible to generate acid in response to light of any wavelength using a photoacid generator in which the structure of the sulfonium ion, which is the cation site of the sulfonium salt, has been changed. Thereby, light having a wavelength within the range of 280 nm or more and 400 nm or less can be used as an external stimulus. Light in such a wavelength range is excellent in safety for living organisms. Furthermore, by responding with light in such a wavelength range, it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. Furthermore, since light in such a wavelength range can be used as an external stimulus, efficient peeling can be achieved at any timing using a simpler method.
本実施の形態における生体用樹脂組成物の固化物が生体に接着された状態において、生体用樹脂組成物の固化物に対して生体と反対側に、カバーコート層が設置されていてもよい。すなわち、生体とカバーコート層との間に生体用樹脂組成物の固化物が位置するように、カバーコート層が設置されてもよい。このカバーコート層は、例えば、開孔率が40%以下であることが望ましい。このような構成により、本実施の形態における生体用樹脂組成物の固化物は、光照射されることにより体積変化を起こす場合に、カバーコート層側の面、すなわち生体と逆の面において体積変化を起こしにくくなる。したがって、生体と生体用樹脂組成物の固化物との界面剥離に、固化物の体積変化の力を効率良く利用することができる。そのため、この構成によれば、効率的に、生体用樹脂組成物の固化物と生体の一部との接着強度を低下させることができる。そのため、本実施の形態における生体用樹脂組成物の固化物は、当該固形物を生体から剥離したい任意のタイミングで光を照射すれば、生体から簡易に剥離されることが可能である。
In the state where the solidified product of the biological resin composition in this embodiment is adhered to the living body, a cover coat layer may be provided on the side opposite to the living body with respect to the solidified product of the biological resin composition. That is, the cover coat layer may be installed such that the solidified body resin composition is located between the living body and the cover coat layer. This cover coat layer preferably has a porosity of 40% or less, for example. With such a configuration, when the solidified biological resin composition in this embodiment undergoes a volume change due to light irradiation, the volume change occurs on the surface on the cover coat layer side, that is, the surface opposite to the biological body. becomes less likely to occur. Therefore, the force of volume change of the solidified material can be efficiently utilized for interfacial peeling between the living body and the solidified material of the resin composition for biological use. Therefore, according to this configuration, it is possible to efficiently reduce the adhesive strength between the solidified product of the biological resin composition and a part of the biological body. Therefore, the solidified material of the biological resin composition in this embodiment can be easily peeled off from the living body by irradiating light at any desired timing to peel the solid material from the living body.
上記カバーコート層と生体用樹脂組成物の固化物との接着強度は、例えば、0.05N/cm2以上が望ましい。カバーコート層と生体用樹脂組成物の固化物との接着強度が0.05N/cm2以上であることにより、外部刺激の付与により生体用樹脂組成物の固化物が体積変化を起こした場合でも、カバーコート層と化生体用樹脂組成物の固化物との接着または粘着が維持されやすくなる。これにより、生体用樹脂組成物の固化物の体積変化による応力が、効率良く生体用樹脂組成物の固化物と生体との界面に与えられることができる。したがって、生体用樹脂組成物の固化物が生体との界面でより剥離しやすくなるという効果が得られる。カバーコート層と生体用樹脂組成物の固化物との面方向の接着強度は、1cm2の面積でカバーコート層と生体用樹脂組成物の固化物とを接着させ、引張試験機などで接着面に垂直の方向に60mm/minで引っ張り、剥離時の最大荷重を接着強度として示している。カバーコート層と生体用樹脂組成物の固化物との接着力は強いほど望ましい。カバーコート層と生体用樹脂組成物の固化物との接着強度が例えば0.5N/cm2以上である場合、生体用樹脂組成物の固化物の体積変化による応力が、より効率良く生体用樹脂組成物の固化物と生体との界面に与えられることができる。したがって、生体用樹脂組成物の固化物が生体との界面でより剥離しやすくなるという効果が得られる。カバーコート層と生体用樹脂組成物の固化物との接着強度は、例えば100kN/cm2以下である。
The adhesive strength between the cover coat layer and the solidified biological resin composition is preferably, for example, 0.05 N/cm 2 or more. Since the adhesive strength between the cover coat layer and the solidified biological resin composition is 0.05 N/cm 2 or more, even if the solidified biological resin composition undergoes a volume change due to external stimulation, , the adhesion or adhesion between the cover coat layer and the solidified product of the resin composition for metamorphoses is easily maintained. Thereby, the stress due to the volume change of the solidified body-use resin composition can be efficiently applied to the interface between the solidified body-use resin composition and the living body. Therefore, it is possible to obtain the effect that the solidified product of the resin composition for living body is more easily peeled off at the interface with the living body. The adhesion strength in the plane direction between the cover coat layer and the solidified biological resin composition is determined by adhering the cover coat layer and the solidified biological resin composition in an area of 1 cm 2 and testing the adhesion surface using a tensile tester or the like. The adhesive strength is the maximum load when the adhesive is pulled at a rate of 60 mm/min in a direction perpendicular to . It is desirable that the adhesive force between the cover coat layer and the solidified product of the biological resin composition be as strong as possible. When the adhesive strength between the cover coat layer and the solidified biological resin composition is, for example, 0.5 N/cm 2 or more, the stress due to the volume change of the solidified biological resin composition is more efficiently absorbed into the biological resin. It can be applied to the interface between the solidified composition and the living body. Therefore, it is possible to obtain the effect that the solidified product of the resin composition for living body is more easily peeled off at the interface with the living body. The adhesive strength between the cover coat layer and the solidified biomaterial resin composition is, for example, 100 kN/cm 2 or less.
カバーコート層の引張弾性率は、5MPa以上であることが望ましい。カバーコート層の引張弾性率が5MPa以上であることにより、例えば外部刺激の付与により生体用樹脂組成物の固化物の体積が増えた場合に、生体用樹脂組成物の固化物が生体とは反対側の面に膨張しにくくなる。その結果、生体用樹脂組成物の固化物が生体との界面で剥離しやすくなるという効果が得られる。特に外部刺激の付与により気体が発生する場合は、生体用樹脂組成物の固化物と生体との界面の面方向に気体が広がりやすい効果が得られると考えられる。このため、生体用樹脂組成物の固化物が生体との界面でより剥離しやすくなるという効果が得られる。カバーコート層の引張弾性率は、例えばJIS K 7113に準じた方法で求めることができる。
The tensile modulus of the cover coat layer is preferably 5 MPa or more. Since the tensile modulus of the cover coat layer is 5 MPa or more, for example, when the volume of the solidified body of the biological resin composition increases due to the application of an external stimulus, the solidified body of the biological resin composition is opposite to that of the biological body. It becomes difficult to expand on the side surface. As a result, the effect that the solidified product of the biological resin composition is easily peeled off at the interface with the biological body can be obtained. In particular, when gas is generated by application of an external stimulus, it is thought that an effect can be obtained in which the gas tends to spread in the plane direction of the interface between the solidified product of the biological resin composition and the living body. Therefore, the effect that the solidified product of the biological resin composition is more easily peeled off at the interface with the biological body can be obtained. The tensile modulus of the cover coat layer can be determined, for example, by a method according to JIS K 7113.
生体用樹脂組成物の固化物が生体との界面でより剥離しやすくなるように、カバーコート層の引張弾性率は、40MPa以上であってもよい。
The tensile modulus of the cover coat layer may be 40 MPa or more so that the solidified product of the biological resin composition is more easily peeled off at the interface with the biological body.
また、カバーコート層の引張弾性率は、100MPa以上であることがより望ましい。100MPa以上であることにより、より面方向に力が伝わりやすくなり、剥離し易くなる効果が得られる。
Moreover, it is more desirable that the tensile modulus of the cover coat layer is 100 MPa or more. By setting the pressure to 100 MPa or more, force is more easily transmitted in the planar direction, and an effect that peeling becomes easier can be obtained.
カバーコート層の引張弾性率は、例えば400GPa以下である。
The tensile modulus of the cover coat layer is, for example, 400 GPa or less.
生体用樹脂組成物の固化物が、外部刺激が付与されることにより気体が発生することによって体積変化を起こす場合、すなわち外部刺激の付与による気体の発生によって生体用樹脂組成物の固化物が体積変化を起こす場合、カバーコート層は、1.5×108cc/m2・24hr・atm以下のガス透過度を有することが望ましい。ガス透過度は、例えば等圧法(日本産業規格 K7126-2)、差圧法(日本産業規格 K7126-1)などにより測定することができる。カバーコート層のガス透過度が1.5×108cc/m2・24hr・atm以下であることにより、外部刺激により発生した気体が外部に放出されにくくなる。これにより、生体用樹脂組成物の固化物が生体からより剥離しやすくなるという効果が得られる。カバーコート層は、全くガスを透過しなくてもよい。そのため、カバーコート層のガス透過度は、例えば0cc/m2・24hr・atm以下である。以下、日本産業規格は「JIS」と呼ばれる。
When the volume of the solidified biological resin composition changes due to the generation of gas when an external stimulus is applied, that is, the volume of the solidified biological resin composition changes due to the generation of gas due to the external stimulation. When a change is made, the cover coat layer desirably has a gas permeability of 1.5×10 8 cc/m 2 ·24 hr ·atm or less. Gas permeability can be measured, for example, by an isobaric method (Japanese Industrial Standards K7126-2), a differential pressure method (Japanese Industrial Standards K7126-1), or the like. When the gas permeability of the cover coat layer is 1.5×10 8 cc/m 2 ·24 hr · atm or less, gas generated by external stimulation is difficult to be released to the outside. This provides the effect that the solidified product of the resin composition for biological use can be more easily peeled off from the living body. The covercoat layer may not be completely gas permeable. Therefore, the gas permeability of the cover coat layer is, for example, 0 cc/m 2 ·24 hr ·atm or less. Hereinafter, Japanese Industrial Standards will be referred to as "JIS".
本実施の形態における生体用樹脂組成物が化粧料用樹脂組成物として用いられる場合、接着する生体の一部は、爪、毛、および皮膚からなる群より選ばれる少なくとも1つであってもよい。
When the resin composition for living bodies in this embodiment is used as a resin composition for cosmetics, the part of the living body to which it is attached may be at least one selected from the group consisting of nails, hair, and skin. .
本実施の形態における生体用樹脂組成物が接着する生体の一部は、爪および毛からなる群より選ばれる少なくとも1つであってもよい。爪または毛は、皮膚のように剥離しやすい、薄い層状の角質層構造を持たない。そのため、表面の脱脂処理を行った後、本実施の形態における生体用樹脂組成物を設置することで、本実施の形態における生体用樹脂組成物によって形成されたネイルまたはまつ毛エクステンションなどの化粧料を数週間継続して生体に設置可能な、強力な接着強度を得ることができる。
The part of the living body to which the biological resin composition in this embodiment adheres may be at least one selected from the group consisting of nails and hair. Nails or hair do not have a thin, stratum corneum structure that easily peels off like skin. Therefore, by applying the biological resin composition of this embodiment after degreasing the surface, cosmetics such as nails or eyelash extensions formed with the biological resin composition of this embodiment can be applied. It is possible to obtain strong adhesive strength that allows continuous placement on living organisms for several weeks.
本実施の形態における生体用樹脂組成物が接着する生体の一部が爪である場合、本実施の形態における生体用樹脂組成物は、例えば、ジェルネイル用ベースコート剤のようなネイル用ベースコート剤、ネイルチップと自爪とを接着する接着剤、またはジェルネイル剤のようなネイル剤などのネイル用樹脂組成物であってもよい。
When the part of the living body to which the biological resin composition in this embodiment adheres is a nail, the biological resin composition in this embodiment may be applied to a nail base coat agent such as a gel nail base coat agent, It may be an adhesive for bonding the nail tip and the natural nail, or a nail resin composition such as a nail agent such as a gel nail agent.
本実施の形態による生体用樹脂組成物は、特に、ジェルネイル用ベースコート剤として好適に用いられる。背景技術の欄において説明したように、ジェルネイルは光硬化樹脂などを用いて自爪に強固に接着されているので、ジェルネイルを爪から剥離する際には、溶剤および研磨からなる群から選択される少なくとも1つが必要となり、自爪へのダメージが非常に大きい。しかし、本実施の形態による生体用樹脂組成物をジェルネイル用ベースコート剤として用いることにより、必要な期間はジェルネイルを自爪に強固に接着でき、かつ剥離したい時には外部刺激を付与することにより、簡易にそして自爪へのダメージを抑えながら、自爪からジェルネイルおよびベースコートを剥離することができる。したがって、ジェルネイル用ベースコート剤は、本実施の形態による生体用樹脂組成物からなっていてもよい。この場合、本開示のジェルネイル用ベースコート剤は、アジド化合物および酸発生剤以外の材料として、公知のジェルネイル用ベースコート剤に含まれる材料を適宜選択して含み得る。
The biological resin composition according to this embodiment is particularly suitable for use as a base coat agent for gel nails. As explained in the background technology section, gel nails are firmly adhered to the natural nail using a photo-curing resin, etc., so when removing gel nails from the nail, choose from the group consisting of solvents and polishing. At least one of them is required, and the damage to the natural nail is extremely large. However, by using the biological resin composition according to the present embodiment as a base coating agent for gel nails, gel nails can be firmly adhered to natural nails for a necessary period of time, and when it is desired to peel off, external stimulation can be applied. To easily remove gel nails and base coat from natural nails while suppressing damage to natural nails. Therefore, the base coat agent for gel nails may be made of the biological resin composition according to this embodiment. In this case, the base coat agent for gel nails of the present disclosure may contain materials included in known base coat agents for gel nails, selected as appropriate, as materials other than the azide compound and the acid generator.
以下に、本実施の形態による生体用樹脂組成物が、ジェルネイル用ベースコート剤として用いられる例について説明する。
An example in which the biological resin composition according to the present embodiment is used as a base coat agent for gel nails will be described below.
図1は、本実施の形態における生体用樹脂組成物をジェルネイル用ベースコート剤として用いた際の、爪に、ベースコートとしての生体用樹脂組成物の固化物と、ジェルネイルとを接着した状態を示す概略断面図である。図1において、1は爪を表し、2はベースコートとしての生体用樹脂組成物の固化物を示し、3はジェルネイルを示している。爪1の上にベースコートとして生体用樹脂組成物の固化物2が接着され、生体用樹脂組成物の固化物2の上にジェルネイル3が接着されている。図2は、本実施の形態における生体用樹脂組成物をジェルネイル用ベースコート剤として用いた際の、爪に、ベースコートとしての生体用樹脂組成物の固化物と、カラージェルネイルと、トップジェルネイルとを接着した状態を示す概略断面図である。図2に示されるように、ジェルネイル3は、カラージェルネイル3aおよびトップジェルネイル3bを含む2層構造を有していてもよい。図2では、ジェルネイル3は2層構造を有しているが、ジェルネイル3は、例えば複数のカラージェルの層を含む3層以上の多層構造を有していてもよい。図3は、本実施の形態における生体用樹脂組成物をジェルネイル用ベースコート剤として用いた際の、爪に、ベースコートとしての生体用樹脂組成物の固化物と、トップジェルネイルとを接着した状態を示す概略断面図である。図3に示されるように、ベースコートとしての生体用樹脂組成物の固化物2の上に、カラージェルネイルを設けずにトップジェルネイル3bのみを設けてもよい。
FIG. 1 shows a state in which a solidified product of the biological resin composition as a base coat and a gel nail are adhered to a nail when the biological resin composition according to the present embodiment is used as a base coat agent for gel nails. FIG. In FIG. 1, 1 represents a nail, 2 represents a solidified biological resin composition as a base coat, and 3 represents a gel nail. A solidified product 2 of a biological resin composition is adhered onto the nail 1 as a base coat, and a gel nail 3 is adhered onto the solidified product 2 of the biological resin composition. FIG. 2 shows a solidified product of the biological resin composition as a base coat, a colored gel nail, and a top gel nail on a nail when the biological resin composition of this embodiment is used as a base coat agent for gel nails. FIG. 3 is a schematic cross-sectional view showing a state in which the two are bonded together. As shown in FIG. 2, the gel nail 3 may have a two-layer structure including a color gel nail 3a and a top gel nail 3b. In FIG. 2, the gel nail 3 has a two-layer structure, but the gel nail 3 may have a multi-layer structure of three or more layers including, for example, a plurality of colored gel layers. FIG. 3 shows a state in which a solidified product of the biological resin composition as a base coat and a top gel nail are adhered to the nail when the biological resin composition of this embodiment is used as a base coat agent for gel nails. FIG. As shown in FIG. 3, only the top gel nail 3b may be provided on the solidified material 2 of the biological resin composition as a base coat without providing the color gel nail.
図4は、本実施の形態における生体用樹脂組成物をジェルネイル用ベースコート剤として用いた際の、生体用樹脂組成物の固化物2と爪1との接着強度の低下の原理の一例を説明する概略断面図である。図4(a)に示すように、光が付与される前は、爪1の表面に生体用樹脂組成物の固化物2が強固に接着されており、生体用樹脂組成物の固化物2の上にジェルネイル3が接着されている。図4(b)に示すように、光発生器10によって光が生体用樹脂組成物の固化物2に付与されると、ベースコートに含まれるアジド化合物が気体を発生し、生体用樹脂組成物の固化物2中に気泡21が発生して生体用樹脂組成物の固化物2の体積変化が生じる。気泡21は、生体用樹脂組成物の固化物2と爪1との界面4においても発生し、爪1との接着部分における生体用樹脂組成物の固化物2の体積変化も起こし、その結果、生体用樹脂組成物の固化物2と爪1との実質的な接触面積を減少させる。これにより、図4(c)に示すように、生体用樹脂組成物の固化物2と爪1との接着強度が低下し、爪1から生体用樹脂組成物の固化物2およびジェルネイル3を除去することが容易になる。なお、爪1と生体用樹脂組成物の固化物2とが界面剥離する時に、同時に、生体用樹脂組成物の固化物2とジェルネイル3とが界面剥離してもよい。
FIG. 4 illustrates an example of the principle of the decrease in adhesive strength between the solidified product 2 of the biological resin composition and the nail 1 when the biological resin composition according to the present embodiment is used as a base coat agent for gel nails. FIG. As shown in FIG. 4(a), before light is applied, the solidified material 2 of the biological resin composition is firmly adhered to the surface of the nail 1. Gel nail 3 is glued on top. As shown in FIG. 4(b), when light is applied to the solidified material 2 of the biological resin composition by the light generator 10, the azide compound contained in the base coat generates gas, and the biological resin composition Bubbles 21 are generated in the solidified material 2, causing a change in volume of the solidified material 2 of the biological resin composition. Air bubbles 21 are also generated at the interface 4 between the solidified material 2 of the biological resin composition and the nail 1, causing a volume change of the solidified material 2 of the biological resin composition at the bonded portion with the nail 1, and as a result, The substantial contact area between the solidified material 2 of the biological resin composition and the nail 1 is reduced. As a result, as shown in FIG. 4(c), the adhesive strength between the solidified biological resin composition 2 and the nail 1 decreases, and the solidified biological resin composition 2 and gel nail 3 are removed from the nail 1. It becomes easier to remove. Note that when the nail 1 and the solidified product 2 of the resin composition for living body are separated at the interface, the solidified product 2 of the resin composition for living body and the gel nail 3 may be separated at the interface at the same time.
本実施の形態における生体用樹脂組成物が接着する生体の一部が毛である場合、本実施の形態における生体用樹脂組成物は、例えば、まつ毛エクステンション用接着剤であってもよい。この場合、本開示のまつ毛エクステンション用接着剤は、アジド化合物および光酸発生剤以外の材料として、公知のまつ毛エクステンション用接着剤に含まれる材料を適宜選択して含み得る。
If the part of the living body to which the living body resin composition in this embodiment adheres is hair, the living body resin composition in this embodiment may be, for example, an adhesive for eyelash extensions. In this case, the adhesive for eyelash extensions of the present disclosure may contain materials included in known adhesives for eyelash extensions, selected as appropriate, as materials other than the azide compound and the photoacid generator.
本実施の形態における生体用樹脂組成物は、化粧料用に限定されず、医療用として用いられてもよい。例えば、本実施の形態における生体用樹脂組成物は、医療用の皮膚貼付剤の接着剤層などとして利用可能である。
The biological resin composition in this embodiment is not limited to cosmetics, and may be used for medical purposes. For example, the biological resin composition of this embodiment can be used as an adhesive layer of a medical skin patch.
なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
Note that the above-described embodiments are for illustrating the technology of the present disclosure, and therefore various changes, substitutions, additions, omissions, etc. can be made within the scope of the claims or their equivalents.
[1-2.効果等]
以上のように、実施の形態1における生体用樹脂組成物は、生体に接着する生体用樹脂組成物であって、前記生体用樹脂組成物は、アジド化合物と、外部刺激により酸を発生する酸発生剤と、を含む。 [1-2. Effects, etc.]
As described above, the biological resin composition inEmbodiment 1 is a biological resin composition that adheres to living organisms, and the biological resin composition includes an azide compound and an acid that generates an acid upon external stimulation. A generating agent.
以上のように、実施の形態1における生体用樹脂組成物は、生体に接着する生体用樹脂組成物であって、前記生体用樹脂組成物は、アジド化合物と、外部刺激により酸を発生する酸発生剤と、を含む。 [1-2. Effects, etc.]
As described above, the biological resin composition in
このような構成により、本実施の形態における生体用樹脂組成物は、任意のタイミングで生体用樹脂組成物の固化物の生体への接着強度を低下させて、生体から簡易に剥離することが可能である。
With such a configuration, the biological resin composition in this embodiment can reduce the adhesion strength of the solidified biological resin composition to the biological body at any timing, and easily peel it off from the biological body. It is.
本実施の形態において、生体用樹脂組成物の固化物は、外部刺激が与えられることにより気体を発生して体積変化を起こし、生体との接着強度を低減させてもよい。このような構成により、本実施の形態における生体用樹脂組成物は、生体の一部に強固に接着している生体用樹脂組成物の固化物を、任意のタイミングで生体から簡易に剥離することが可能である。
In the present embodiment, the solidified body resin composition may generate gas and change its volume when external stimulation is applied, thereby reducing the adhesive strength with the body. With this configuration, the biological resin composition according to the present embodiment allows the solidified biological resin composition that is firmly adhered to a part of the biological body to be easily peeled off from the biological body at any timing. is possible.
本実施の形態において、外部刺激は、光、熱、磁力、電気および外力からなる群より選ばれる少なくとも1つであってもよい。このような構成によれば、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぎつつ、より簡易な方法で任意のタイミングでの効率の良い剥離を実現し、かつ生体へのダメージもより抑えることができる。
In this embodiment, the external stimulus may be at least one selected from the group consisting of light, heat, magnetism, electricity, and external force. With this configuration, it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life, and to achieve efficient peeling at any timing using a simpler method. Moreover, damage to living organisms can be further suppressed.
本実施の形態において、前記酸発生剤は、光により酸を発生する光酸発生剤であってもよく、前記外部刺激は、光を含んでいてもよい。このような構成によれば、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぎつつ、より簡易な方法で任意のタイミングでの効率の良い剥離を実現し、かつ生体へのダメージもより抑えることができる。
In the present embodiment, the acid generator may be a photoacid generator that generates acid when exposed to light, and the external stimulus may include light. With this configuration, it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life, and to achieve efficient peeling at any timing using a simpler method. Moreover, damage to living organisms can be further suppressed.
本実施の形態において、上記光は、400nm未満の範囲内に波長を有し、上記光酸発生剤は、400nm未満の波長領域に光吸収をもっていてもよい。この構成により、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぎつつ、簡易な方法で任意のタイミングでの効率のよい上記固化物と生体との剥離を実現し、かつ生体へのダメージもより抑えることができる。
In the present embodiment, the light may have a wavelength within a range of less than 400 nm, and the photoacid generator may have light absorption in a wavelength range of less than 400 nm. This configuration prevents the adhesive strength between the solidified resin composition for biological use and the living body from decreasing in normal life, and allows for efficient peeling of the solidified material from the living body at any time using a simple method. can be realized, and damage to living organisms can be further suppressed.
本実施の形態において、生体用樹脂組成物は、光酸発生剤を0.05質量%以上かつ10質量%以下の範囲で含んでいてもよい。光酸発生剤が0.05質量%以上含まれることにより、本実施の形態における生体用樹脂組成物は、外部刺激である光照射時に生体からの剥離性をより向上させることが可能となる。光酸発生剤化合物が10質量%以下で含まれることにより、生体用樹脂組成物における基材となる高分子材料との相溶性が高くなり、生体用樹脂組成物における基材となる高分子材料などの物性を維持しやすい効果が得られる。このため、例えば外部刺激付与前の、生体用樹脂組成物の固化物と生体との接着強度を向上させる効果が得られる。
In the present embodiment, the biological resin composition may contain a photoacid generator in a range of 0.05% by mass or more and 10% by mass or less. By containing the photoacid generator in an amount of 0.05% by mass or more, the resin composition for biological use in this embodiment can further improve the releasability from the living body upon irradiation with light, which is an external stimulus. By containing the photoacid generator compound in an amount of 10% by mass or less, the compatibility with the polymer material serving as the base material in the biological resin composition increases, and the polymer material serving as the base material in the biological resin composition increases. The effect of easily maintaining physical properties such as Therefore, for example, the effect of improving the adhesive strength between the solidified biomaterial resin composition and the living body before external stimulation is applied can be obtained.
本実施の形態において、光酸発生剤は、スルホニウム塩、ヨードニウム塩、ジアゾニウム塩、スルホニルジアゾメタン、イミドスルホネート、オキシムスルホネート、およびアリールスルホン酸エステルからなる群より選択される少なくとも1つであってもよい。この構成により、外部刺激として400nm未満の範囲内の波長を有する光を用いることができる。このような波長範囲の光によって応答することにより、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぐことができる。さらに、このような波長範囲の光を外部刺激として用いることができるので、より簡易な方法で任意のタイミングでの効率のよい剥離を実現できる。
In this embodiment, the photoacid generator may be at least one selected from the group consisting of sulfonium salts, iodonium salts, diazonium salts, sulfonyldiazomethanes, imidosulfonates, oxime sulfonates, and arylsulfonic acid esters. . With this configuration, light having a wavelength in the range of less than 400 nm can be used as an external stimulus. By responding with light in such a wavelength range, it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. Furthermore, since light in such a wavelength range can be used as an external stimulus, efficient peeling can be achieved at any timing using a simpler method.
本実施の形態おける生体用樹脂組成物に含まれる光酸発生剤は、スルホニウム塩であってもよい。この構成により、外部刺激として400nm未満の範囲内の波長を有する光を用いることができる。このような波長範囲の光によって応答することにより、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぐことができる。さらに、このような波長範囲の光を外部刺激として用いることができるので、より簡易な方法で任意のタイミングでの効率のよい剥離を実現できる。
The photoacid generator contained in the biological resin composition in this embodiment may be a sulfonium salt. With this configuration, light having a wavelength in the range of less than 400 nm can be used as an external stimulus. By responding with light in such a wavelength range, it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. Furthermore, since light in such a wavelength range can be used as an external stimulus, efficient peeling can be achieved at any timing using a simpler method.
本実施の形態において、生体用樹脂組成物の固化物の表面に対する水の接触角が、30°以上かつ110°以下であってもよい。このような構成により、本実施の形態における生体用樹脂組成物の固化物は、生体との接着力が高く、長時間安定に生体に接着することが可能である。
In the present embodiment, the contact angle of water with respect to the surface of the solidified product of the biological resin composition may be 30° or more and 110° or less. With such a configuration, the solidified resin composition for biological use according to the present embodiment has a high adhesion force to the living body, and can stably adhere to the living body for a long time.
本実施の形態において、生体用樹脂組成物は、アジド化合物を0.5質量%以上かつ50質量%以下の範囲で含んでいてもよい。アジド化合物が0.5質量%以上含まれることにより、本実施の形態における生体用樹脂組成物の固化物は、外部刺激である光照射時に窒素生体からの剥離性を向上させることが可能となる。アジド化合物が50質量%以下で含まれることにより、生体用樹脂組成物における基材となる高分子材料などの物性を維持しやすい効果が得られる。このため、例えば光照射前の、生体用樹脂組成物の固化物と生体との接着強度を向上させる効果が得られる。
In the present embodiment, the biological resin composition may contain an azide compound in a range of 0.5% by mass or more and 50% by mass or less. By containing 0.5% by mass or more of the azide compound, the solidified product of the resin composition for biological use in this embodiment can improve the releasability of nitrogen from living organisms when irradiated with light, which is an external stimulus. . When the azide compound is contained in an amount of 50% by mass or less, it is possible to easily maintain the physical properties of a polymeric material, etc., which is a base material in a resin composition for biological use. For this reason, for example, the effect of improving the adhesive strength between the solidified product of the biological resin composition and the living body before irradiation with light can be obtained.
本実施の形態おける生体用樹脂組成物において、アジド化合物は、グリシジルアジドポリマーを含んでいてもよい。本実施の形態における生体用樹脂組成物がグリシジルアジドポリマーを含む場合、生体用樹脂組成物の固化物に対する光照射により、グリシジルアジドポリマー自体の光反応による窒素ガスの生成と、光酸発生剤から発生した酸とグシリジルアジドポリマーの反応による窒素ガスの生成と、二つの反応により窒素ガスが生成するため、生体用樹脂組成物の固化物の体積変化が大きくなり、生体からの剥離性をより向上させることが可能となる。
In the biological resin composition of this embodiment, the azide compound may include a glycidyl azide polymer. When the biological resin composition in this embodiment includes a glycidyl azide polymer, the solidified biological resin composition is irradiated with light to generate nitrogen gas through a photoreaction of the glycidyl azide polymer itself, and from the photoacid generator. Nitrogen gas is generated by the reaction between the generated acid and gsyridyl azide polymer, and nitrogen gas is generated by the two reactions, so the volume change of the solidified biomaterial resin composition increases, making it easier to remove it from the living body. It becomes possible to improve the performance.
本実施の形態おける前記生体用樹脂組成物は、生体の一部に接着する化粧料に用いられる化粧料用樹脂組成物であってもよい。この構成によれば、本実施の形態における生体用樹脂組成物は、生体の一部に強固に接着可能であって、かつ任意のタイミングで生体から簡易に剥離することが可能である。したがって、本実施の形態における生体用樹脂組成物によれば、ジェルネイルおよびまつ毛エクステンションなどのような、数日から数週間程度の期間、連続して生体に装着するような化粧料を、生体への負荷を低減させて利用することができる。
The living body resin composition in this embodiment may be a cosmetic resin composition used in a cosmetic that adheres to a part of a living body. According to this configuration, the biological resin composition according to the present embodiment can be firmly adhered to a part of a living body, and can be easily peeled off from the living body at any timing. Therefore, according to the resin composition for biological use in this embodiment, cosmetics that are worn continuously on a living body for a period of several days to several weeks, such as gel nails and eyelash extensions, can be applied to a living body. It can be used with reduced load.
本実施の形態おける前記生体用樹脂組成物は、生体の一部に接着する医療用樹脂組成物であってもよい。この構成によれば、本実施の形態の生体用樹脂組成物は、生体の一部に強固に接着可能であって、かつ任意のタイミングで生体から簡易に剥離することが可能である。したがって、本実施の形態の生体用樹脂組成物は、生体への負荷を低減させつつ、数日から数週間程度の期間、連続して生体に装着するような医療用の皮膚貼付剤の接着剤層などとして、好適に利用することができる。
The biological resin composition in this embodiment may be a medical resin composition that adheres to a part of a living body. According to this configuration, the biological resin composition of this embodiment can be firmly adhered to a part of a living body, and can be easily peeled off from the living body at any timing. Therefore, the biological resin composition of the present embodiment can be used as an adhesive for a medical skin patch that is continuously attached to a living body for a period of several days to several weeks while reducing the burden on the living body. It can be suitably used as a layer or the like.
(付記)
以上の実施形態の記載により、下記の技術が開示される。 (Additional note)
The following technology is disclosed by the description of the above embodiments.
以上の実施形態の記載により、下記の技術が開示される。 (Additional note)
The following technology is disclosed by the description of the above embodiments.
(技術1)
生体の一部に接着する生体用樹脂組成物であって、
前記生体用樹脂組成物は、
アジド化合物と、
外部刺激により酸を発生する酸発生剤と、
を含む、生体用樹脂組成物。 (Technology 1)
A biological resin composition that adheres to a part of a living body,
The biological resin composition includes:
an azide compound;
an acid generator that generates acid upon external stimulation;
A biological resin composition containing.
生体の一部に接着する生体用樹脂組成物であって、
前記生体用樹脂組成物は、
アジド化合物と、
外部刺激により酸を発生する酸発生剤と、
を含む、生体用樹脂組成物。 (Technology 1)
A biological resin composition that adheres to a part of a living body,
The biological resin composition includes:
an azide compound;
an acid generator that generates acid upon external stimulation;
A biological resin composition containing.
この構成により、技術1における生体用樹脂組成物は、任意のタイミングで生体用樹脂組成物の固化物の生体への接着強度を低下させて、生体から簡易に剥離することが可能である。
With this configuration, the biological resin composition in technique 1 can be easily peeled off from the living body by reducing the adhesive strength of the solidified material of the biological resin composition to the living body at any timing.
(技術2)
前記生体用樹脂組成物の固化物は、前記外部刺激が与えられることにより気体を発生して体積変化を起こし、前記生体との接着強度を低減させる、技術1に記載の生体用樹脂組成物。このような構成により、技術2における生体用樹脂組成物は、生体の一部に強固に接着している生体用樹脂組成物の固化物を、任意のタイミングで生体から簡易に剥離することが可能である。 (Technology 2)
The biomaterial resin composition according totechnique 1, wherein the solidified material of the biomaterial resin composition generates gas and causes a volume change when the external stimulus is applied, thereby reducing adhesive strength with the living body. With such a configuration, the biological resin composition in technology 2 can easily peel off the solidified biological resin composition that is firmly adhered to a part of the biological body from the biological body at any timing. It is.
前記生体用樹脂組成物の固化物は、前記外部刺激が与えられることにより気体を発生して体積変化を起こし、前記生体との接着強度を低減させる、技術1に記載の生体用樹脂組成物。このような構成により、技術2における生体用樹脂組成物は、生体の一部に強固に接着している生体用樹脂組成物の固化物を、任意のタイミングで生体から簡易に剥離することが可能である。 (Technology 2)
The biomaterial resin composition according to
(技術3)
前記外部刺激は、光、熱、磁力、電気および外力からなる群より選ばれる少なくとも1つである、技術1または2に記載の生体用樹脂組成物。このような構成により、技術3における生体用樹脂組成物は、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぎつつ、より簡易な方法で任意のタイミングでの効率の良い剥離を実現し、かつ生体へのダメージもより抑えることができる。 (Technology 3)
The biological resin composition according to technique 1 or 2, wherein the external stimulus is at least one selected from the group consisting of light, heat, magnetism, electricity, and external force. With such a configuration, the biological resin composition in Technology 3 can be used in a simpler manner at any timing while preventing the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. It is possible to achieve highly efficient peeling and to further suppress damage to living organisms.
前記外部刺激は、光、熱、磁力、電気および外力からなる群より選ばれる少なくとも1つである、技術1または2に記載の生体用樹脂組成物。このような構成により、技術3における生体用樹脂組成物は、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぎつつ、より簡易な方法で任意のタイミングでの効率の良い剥離を実現し、かつ生体へのダメージもより抑えることができる。 (Technology 3)
The biological resin composition according to
(技術4)
前記酸発生剤は、光により酸を発生する光酸発生剤であり、前記外部刺激は、光を含む、技術3に記載の生体用樹脂組成物。このような構成により、技術4における生体用樹脂組成物は、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぎつつ、より簡易な方法で任意のタイミングでの効率の良い剥離を実現し、かつ生体へのダメージもより抑えることができる。 (Technology 4)
The biological resin composition according totechnique 3, wherein the acid generator is a photoacid generator that generates acid in response to light, and the external stimulus includes light. With such a configuration, the biological resin composition in technology 4 can be used in a simpler manner at any timing while preventing the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. It is possible to achieve highly efficient peeling and to further suppress damage to living organisms.
前記酸発生剤は、光により酸を発生する光酸発生剤であり、前記外部刺激は、光を含む、技術3に記載の生体用樹脂組成物。このような構成により、技術4における生体用樹脂組成物は、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぎつつ、より簡易な方法で任意のタイミングでの効率の良い剥離を実現し、かつ生体へのダメージもより抑えることができる。 (Technology 4)
The biological resin composition according to
(技術5)
前記光は、400nm未満の範囲内に波長を有し、前記光酸発生剤は、400nm未満の波長領域に光吸収をもつ、技術4に記載の生体用樹脂組成物。この構成により、400nm未満の範囲内に波長を有する光、すなわち400nm未満の波長の光を含む光を外部刺激として用いることができるので、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぎつつ、簡易な方法で任意のタイミングでの効率のよい上記固化物と生体との剥離を実現し、かつ生体へのダメージもより抑えることができる。 (Technology 5)
The biological resin composition according totechnique 4, wherein the light has a wavelength within a range of less than 400 nm, and the photoacid generator has light absorption in a wavelength range of less than 400 nm. With this configuration, light having a wavelength within a range of less than 400 nm, that is, light including light with a wavelength of less than 400 nm, can be used as an external stimulus. While preventing the adhesive strength from decreasing, it is possible to achieve efficient peeling of the solidified material from the living body at any desired timing using a simple method, and further suppress damage to the living body.
前記光は、400nm未満の範囲内に波長を有し、前記光酸発生剤は、400nm未満の波長領域に光吸収をもつ、技術4に記載の生体用樹脂組成物。この構成により、400nm未満の範囲内に波長を有する光、すなわち400nm未満の波長の光を含む光を外部刺激として用いることができるので、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぎつつ、簡易な方法で任意のタイミングでの効率のよい上記固化物と生体との剥離を実現し、かつ生体へのダメージもより抑えることができる。 (Technology 5)
The biological resin composition according to
(技術6)
前記生体用樹脂組成物は、前記光酸発生剤を0.05質量%以上かつ10質量%以下の範囲で含む、技術4または技術5に記載の生体用樹脂組成物。光酸発生剤が0.05質量%以上含まれることにより、技術6の生体用樹脂組成物は、外部刺激である光照射時に生体からの剥離性をより向上させることが可能となる。光酸発生剤化合物が10質量%以下で含まれることにより、生体用樹脂組成物における基材となる高分子材料との相溶性が高くなり、生体用樹脂組成物における基材となる高分子材料などの物性を維持しやすい効果が得られる。このため、例えば外部刺激付与前の、生体用樹脂組成物の固化物と生体との接着強度を向上させる効果が得られる。 (Technology 6)
The biological resin composition according totechnique 4 or technique 5, wherein the biological resin composition contains the photoacid generator in a range of 0.05% by mass or more and 10% by mass or less. By containing the photoacid generator in an amount of 0.05% by mass or more, the biological resin composition of technique 6 can further improve the releasability from the living body upon irradiation with light, which is an external stimulus. By containing the photoacid generator compound in an amount of 10% by mass or less, the compatibility with the polymer material serving as the base material in the biological resin composition increases, and the polymer material serving as the base material in the biological resin composition increases. The effect of easily maintaining physical properties such as Therefore, for example, the effect of improving the adhesive strength between the solidified biomaterial resin composition and the living body before external stimulation is applied can be obtained.
前記生体用樹脂組成物は、前記光酸発生剤を0.05質量%以上かつ10質量%以下の範囲で含む、技術4または技術5に記載の生体用樹脂組成物。光酸発生剤が0.05質量%以上含まれることにより、技術6の生体用樹脂組成物は、外部刺激である光照射時に生体からの剥離性をより向上させることが可能となる。光酸発生剤化合物が10質量%以下で含まれることにより、生体用樹脂組成物における基材となる高分子材料との相溶性が高くなり、生体用樹脂組成物における基材となる高分子材料などの物性を維持しやすい効果が得られる。このため、例えば外部刺激付与前の、生体用樹脂組成物の固化物と生体との接着強度を向上させる効果が得られる。 (Technology 6)
The biological resin composition according to
(技術7)
前記光酸発生剤は、スルホニウム塩、ヨードニウム塩、ジアゾニウム塩、スルホニルジアゾメタン、イミドスルホネート、オキシムスルホネート、およびアリールスルホン酸エステルからなる群より選択される少なくとも1つである、技術4から6のいずれか1項に記載の生体用樹脂組成物。この構成により、技術7の生体用樹脂組成物は、外部刺激として400nm未満の範囲内に波長を有する光を用いることができる。このような波長範囲の光によって応答することにより、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぐことができる。さらに、このような波長範囲の光を外部刺激として用いることができるので、より簡易な方法で任意のタイミングでの効率のよい剥離を実現できる。 (Technology 7)
Any one ofTechniques 4 to 6, wherein the photoacid generator is at least one selected from the group consisting of sulfonium salts, iodonium salts, diazonium salts, sulfonyldiazomethanes, imidosulfonates, oxime sulfonates, and arylsulfonate esters. The biological resin composition according to item 1. With this configuration, the biological resin composition of technology 7 can use light having a wavelength within a range of less than 400 nm as an external stimulus. By responding with light in such a wavelength range, it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. Furthermore, since light in such a wavelength range can be used as an external stimulus, efficient peeling can be achieved at any timing using a simpler method.
前記光酸発生剤は、スルホニウム塩、ヨードニウム塩、ジアゾニウム塩、スルホニルジアゾメタン、イミドスルホネート、オキシムスルホネート、およびアリールスルホン酸エステルからなる群より選択される少なくとも1つである、技術4から6のいずれか1項に記載の生体用樹脂組成物。この構成により、技術7の生体用樹脂組成物は、外部刺激として400nm未満の範囲内に波長を有する光を用いることができる。このような波長範囲の光によって応答することにより、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぐことができる。さらに、このような波長範囲の光を外部刺激として用いることができるので、より簡易な方法で任意のタイミングでの効率のよい剥離を実現できる。 (Technology 7)
Any one of
(技術8)
前記光酸発生剤は、スルホニウム塩である、技術4から7のいずれか1項に記載の生体用樹脂組成物。この構成により、技術8の生体用樹脂組成物は、外部刺激として400nm未満の範囲内に波長を有する光を用いることができる。このような波長範囲の光によって応答することにより、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぐことができる。さらに、このような波長範囲の光を外部刺激として用いることができるので、より簡易な方法で任意のタイミングでの効率のよい剥離を実現できる。 (Technology 8)
The biological resin composition according to any one oftechniques 4 to 7, wherein the photoacid generator is a sulfonium salt. With this configuration, the biological resin composition of technology 8 can use light having a wavelength within a range of less than 400 nm as an external stimulus. By responding with light in such a wavelength range, it is possible to prevent the adhesive strength between the solidified biological resin composition and the living body from decreasing in normal life. Furthermore, since light in such a wavelength range can be used as an external stimulus, efficient peeling can be achieved at any timing using a simpler method.
前記光酸発生剤は、スルホニウム塩である、技術4から7のいずれか1項に記載の生体用樹脂組成物。この構成により、技術8の生体用樹脂組成物は、外部刺激として400nm未満の範囲内に波長を有する光を用いることができる。このような波長範囲の光によって応答することにより、通常の生活において生体用樹脂組成物の固化物と生体との接着強度が低下することを防ぐことができる。さらに、このような波長範囲の光を外部刺激として用いることができるので、より簡易な方法で任意のタイミングでの効率のよい剥離を実現できる。 (Technology 8)
The biological resin composition according to any one of
(技術9)
前記生体用樹脂組成物の固化物の表面に対する水の接触角が、30°以上かつ110°以下である、技術1から8のいずれか1項に記載の生体用樹脂組成物。このような構成により、技術9における生体用樹脂組成物の固化物は、生体との接着力が高く、長時間安定に生体に接着することが可能である。 (Technology 9)
The biological resin composition according to any one ofTechniques 1 to 8, wherein the contact angle of water to the surface of the solidified material of the biological resin composition is 30° or more and 110° or less. With such a configuration, the solidified resin composition for living body according to technique 9 has a high adhesive force with the living body, and can stably adhere to the living body for a long time.
前記生体用樹脂組成物の固化物の表面に対する水の接触角が、30°以上かつ110°以下である、技術1から8のいずれか1項に記載の生体用樹脂組成物。このような構成により、技術9における生体用樹脂組成物の固化物は、生体との接着力が高く、長時間安定に生体に接着することが可能である。 (Technology 9)
The biological resin composition according to any one of
(技術10)
前記生体用樹脂組成物は、前記アジド化合物を0.5質量%以上かつ50質量%以下の範囲で含む、技術1から9の何れか1項に記載の生体用樹脂組成物。アジド化合物が0.5質量%以上含まれることにより、技術10における生体用樹脂組成物の固化物は、外部刺激である光照射時に窒素生体からの剥離性を向上させることが可能となる。アジド化合物が50質量%以下で含まれることにより、生体用樹脂組成物における基材となる高分子材料などの物性を維持しやすい効果が得られる。このため、例えば光照射前の、生体用樹脂組成物の固化物と生体との接着強度を向上させる効果が得られる。 (Technology 10)
The biological resin composition according to any one ofTechniques 1 to 9, wherein the biological resin composition contains the azide compound in a range of 0.5% by mass or more and 50% by mass or less. By containing the azide compound in an amount of 0.5% by mass or more, the solidified material of the resin composition for biological use according to technique 10 can improve the releasability of nitrogen from living organisms when irradiated with light, which is an external stimulus. When the azide compound is contained in an amount of 50% by mass or less, it is possible to easily maintain the physical properties of a polymeric material, etc., which is a base material in a resin composition for biological use. For this reason, for example, the effect of improving the adhesive strength between the solidified product of the biological resin composition and the living body before irradiation with light can be obtained.
前記生体用樹脂組成物は、前記アジド化合物を0.5質量%以上かつ50質量%以下の範囲で含む、技術1から9の何れか1項に記載の生体用樹脂組成物。アジド化合物が0.5質量%以上含まれることにより、技術10における生体用樹脂組成物の固化物は、外部刺激である光照射時に窒素生体からの剥離性を向上させることが可能となる。アジド化合物が50質量%以下で含まれることにより、生体用樹脂組成物における基材となる高分子材料などの物性を維持しやすい効果が得られる。このため、例えば光照射前の、生体用樹脂組成物の固化物と生体との接着強度を向上させる効果が得られる。 (Technology 10)
The biological resin composition according to any one of
(技術11)
前記アジド化合物は、グリシジルアジドポリマーを含む、技術1から10のいずれか1項に記載の生体用樹脂組成物。生体用樹脂組成物がグリシジルアジドポリマーを含む場合、生体用樹脂組成物の固化物に対する光照射により、グリシジルアジドポリマー自体の光反応による窒素ガスの生成と、光酸発生剤から発生した酸とグシリジルアジドポリマーの反応による窒素ガスの生成と、二つの反応により窒素ガスが生成するため、生体用樹脂組成物の固化物の体積変化が大きくなり、生体からの剥離性をより向上させることが可能となる。 (Technology 11)
The biological resin composition according to any one ofTechniques 1 to 10, wherein the azide compound includes a glycidyl azide polymer. When the biological resin composition contains a glycidyl azide polymer, when the solidified biological resin composition is irradiated with light, nitrogen gas is generated by the photoreaction of the glycidyl azide polymer itself, and acid and gas generated from the photoacid generator are generated. Nitrogen gas is generated by the reaction of the lysyl azide polymer and nitrogen gas is generated by the two reactions, so the volume change of the solidified biomaterial resin composition becomes large, making it possible to further improve the releasability from the living body. becomes.
前記アジド化合物は、グリシジルアジドポリマーを含む、技術1から10のいずれか1項に記載の生体用樹脂組成物。生体用樹脂組成物がグリシジルアジドポリマーを含む場合、生体用樹脂組成物の固化物に対する光照射により、グリシジルアジドポリマー自体の光反応による窒素ガスの生成と、光酸発生剤から発生した酸とグシリジルアジドポリマーの反応による窒素ガスの生成と、二つの反応により窒素ガスが生成するため、生体用樹脂組成物の固化物の体積変化が大きくなり、生体からの剥離性をより向上させることが可能となる。 (Technology 11)
The biological resin composition according to any one of
(技術12)
前記生体用樹脂組成物は、生体の一部に接着する化粧料に用いられる化粧料用樹脂組成物である、技術1から11のいずれか1項に記載の生体用樹脂組成物。この構成によれば、技術12における生体用樹脂組成物は、生体の一部に強固に接着可能であって、かつ任意のタイミングで生体から簡易に剥離することが可能である。したがって、技術12における生体用樹脂組成物によれば、ジェルネイルおよびまつ毛エクステンションなどのような、数日から数週間程度の期間、連続して生体に装着するような化粧料を、生体への負荷を低減させて利用することができる。 (Technology 12)
The biological resin composition according to any one ofTechniques 1 to 11, wherein the biological resin composition is a cosmetic resin composition used for a cosmetic that adheres to a part of a living body. According to this configuration, the biological resin composition in technique 12 can be firmly adhered to a part of a living body, and can be easily peeled off from the living body at any timing. Therefore, according to the resin composition for biological use in technology 12, cosmetics that are worn continuously on a living body for a period of several days to several weeks, such as gel nails and eyelash extensions, can be applied to a living body without causing a load on the living body. can be used to reduce the
前記生体用樹脂組成物は、生体の一部に接着する化粧料に用いられる化粧料用樹脂組成物である、技術1から11のいずれか1項に記載の生体用樹脂組成物。この構成によれば、技術12における生体用樹脂組成物は、生体の一部に強固に接着可能であって、かつ任意のタイミングで生体から簡易に剥離することが可能である。したがって、技術12における生体用樹脂組成物によれば、ジェルネイルおよびまつ毛エクステンションなどのような、数日から数週間程度の期間、連続して生体に装着するような化粧料を、生体への負荷を低減させて利用することができる。 (Technology 12)
The biological resin composition according to any one of
実施例により、本開示の生体用樹脂組成物を更に詳細に説明する。本開示の生体用樹脂組成物は、以下の実施例に限定されない。
The biological resin composition of the present disclosure will be explained in more detail with reference to Examples. The biological resin composition of the present disclosure is not limited to the following examples.
[紫外線照射前後の接着性評価]
(サンプル1)
アジド化合物としてグリシジルアジドポリマー(日油株式会社製 GAP)が19.8質量%、光酸発生剤としてスルホニウム塩系光酸発生剤(サンアプロ株式会社製 CP-310B)が1質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが79.2質量%となるように混合し、均一になるように十分混ぜ、生体用樹脂組成物を調製した。なお、スルホニウム塩系光酸発生剤CP-310Bは、280nm以上かつ400nm未満の波長領域に光吸収を有する。 [Adhesion evaluation before and after UV irradiation]
(Sample 1)
19.8% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation) as the azide compound, 1% by mass of a sulfonium salt photoacid generator (CP-310B manufactured by San-Apro Corporation) as the photoacid generator, and commercially available urethane. PREGEL base gel nails manufactured by PRIAMPHA, which is mainly composed of acrylate oligomers, were mixed to a concentration of 79.2% by mass, and the mixture was sufficiently mixed to be homogeneous to prepare a biological resin composition. Note that the sulfonium salt photoacid generator CP-310B has light absorption in a wavelength range of 280 nm or more and less than 400 nm.
(サンプル1)
アジド化合物としてグリシジルアジドポリマー(日油株式会社製 GAP)が19.8質量%、光酸発生剤としてスルホニウム塩系光酸発生剤(サンアプロ株式会社製 CP-310B)が1質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが79.2質量%となるように混合し、均一になるように十分混ぜ、生体用樹脂組成物を調製した。なお、スルホニウム塩系光酸発生剤CP-310Bは、280nm以上かつ400nm未満の波長領域に光吸収を有する。 [Adhesion evaluation before and after UV irradiation]
(Sample 1)
19.8% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation) as the azide compound, 1% by mass of a sulfonium salt photoacid generator (CP-310B manufactured by San-Apro Corporation) as the photoacid generator, and commercially available urethane. PREGEL base gel nails manufactured by PRIAMPHA, which is mainly composed of acrylate oligomers, were mixed to a concentration of 79.2% by mass, and the mixture was sufficiently mixed to be homogeneous to prepare a biological resin composition. Note that the sulfonium salt photoacid generator CP-310B has light absorption in a wavelength range of 280 nm or more and less than 400 nm.
基材であるガラス基板上に、200μmの厚みのギャップコーティングを行うことにより本サンプルの生体用樹脂組成物を塗布した。得られた塗布膜に、ジェルネイル硬化用のライトを用いて、波長390nmから400nmの発光ダイオード出力光(以下、「LED出力光」という)を2分間照射した。これによって、基材上の生体用樹脂組成物で形成された塗布膜を硬化させ、生体用樹脂組成物の固化物を得た。
The biological resin composition of this sample was applied onto a glass substrate as a base material by performing gap coating to a thickness of 200 μm. The obtained coating film was irradiated with light emitting diode output light (hereinafter referred to as "LED output light") having a wavelength of 390 nm to 400 nm for 2 minutes using a gel nail curing light. As a result, the coating film formed of the biological resin composition on the base material was cured, and a solidified product of the biological resin composition was obtained.
サンプル1の生体用樹脂組成物の固化物の上面に、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルを、100μmの厚みのギャップコーティングにより塗布した。得られた塗布膜に、ジェルネイル硬化用のライトを用いて、波長390nmから400nmのLED出力光を2分間照射した。これによって、ジェルネイルベースを硬化させ、生体用樹脂組成物の固化物の表面をジェルネイルでコーティングした評価試料を得た。すなわち、評価試料では、ガラス基板上に、生体用樹脂組成物の固化物とジェルネイルとの積層物が形成されていた。
On the top surface of the solidified biological resin composition of Sample 1, PREGEL base gel nail manufactured by Preampa, which has a commercially available urethane acrylate oligomer as its main component, was applied by gap coating to a thickness of 100 μm. The obtained coating film was irradiated with LED output light having a wavelength of 390 nm to 400 nm for 2 minutes using a gel nail curing light. As a result, the gel nail base was cured, and an evaluation sample was obtained in which the surface of the solidified body-use resin composition was coated with gel nail. That is, in the evaluation sample, a laminate of the solidified biological resin composition and the gel nail was formed on the glass substrate.
<紫外光照射前の接着性評価>
上記の評価試料の上面に、カッターナイフを上記積層物の表面に対して垂直になるように刃をあてて、上記積層物の表面に3mmの間隔で4本の切り込みを行い、さらに方向を90°変えて直交する4本の切り込みを行い、3mm角で9マスの格子状のクロスカットを行った。クロスカットした表面に対して、セロハンテープ(3M社製、Scotch Transparent Tape)を強く圧着させ、テープを引きはがした。テープを引きはがした時の9マスのクロスカット部の剥離の有無を確認することで、生体用樹脂組成物の固化物の接着性を評価した。本サンプルの積層物では、9マス中の剥離部分はなかった。 <Adhesiveness evaluation before UV light irradiation>
Place a cutter knife on the top surface of the above evaluation sample so that it is perpendicular to the surface of the laminate, make four cuts at 3 mm intervals on the surface of the laminate, and then Four orthogonal cuts were made at different angles, and a lattice-like crosscut of 9 squares of 3 mm square was made. Cellophane tape (Scotch Transparent Tape, manufactured by 3M) was strongly pressed against the cross-cut surface, and the tape was peeled off. The adhesion of the solidified biological resin composition was evaluated by checking whether or not the nine cross-cut sections were peeled off when the tape was peeled off. In the laminate of this sample, there were no peeled parts in the 9 squares.
上記の評価試料の上面に、カッターナイフを上記積層物の表面に対して垂直になるように刃をあてて、上記積層物の表面に3mmの間隔で4本の切り込みを行い、さらに方向を90°変えて直交する4本の切り込みを行い、3mm角で9マスの格子状のクロスカットを行った。クロスカットした表面に対して、セロハンテープ(3M社製、Scotch Transparent Tape)を強く圧着させ、テープを引きはがした。テープを引きはがした時の9マスのクロスカット部の剥離の有無を確認することで、生体用樹脂組成物の固化物の接着性を評価した。本サンプルの積層物では、9マス中の剥離部分はなかった。 <Adhesiveness evaluation before UV light irradiation>
Place a cutter knife on the top surface of the above evaluation sample so that it is perpendicular to the surface of the laminate, make four cuts at 3 mm intervals on the surface of the laminate, and then Four orthogonal cuts were made at different angles, and a lattice-like crosscut of 9 squares of 3 mm square was made. Cellophane tape (Scotch Transparent Tape, manufactured by 3M) was strongly pressed against the cross-cut surface, and the tape was peeled off. The adhesion of the solidified biological resin composition was evaluated by checking whether or not the nine cross-cut sections were peeled off when the tape was peeled off. In the laminate of this sample, there were no peeled parts in the 9 squares.
<紫外光照射後の発泡評価と接着性評価>
上記と同様に作製した評価試料に対して、紫外光を20J/cm2照射した。紫外光の照射のためには、340nmにセンターピークを有するLEDライト(DOWA製)が用いられた。紫外光の強度は、UV LIGHT METER(株式会社カスタム製 UV-37SD)を用いて測定し、照射時間を調整することで、紫外光の照射量を20J/cm2とした。この紫外光の照射により、評価試料の光照射部位において気体が発生し発泡していることが目視により確認された。紫外光を照射した評価試料に対して、上記と同様の方法でクロスカットを行い、クロスカットした表面に対して、セロハンテープを強く圧着させ、テープを引きはがした。テープを引きはがした時の9マスのクロスカット部の試料の剥離の有無を確認することで、紫外光照射後の生体用樹脂組成物の固化物の接着性を評価した。本サンプルの積層物では、9マス中9マスで剥離が見られた。 <Foaming evaluation and adhesiveness evaluation after ultraviolet light irradiation>
An evaluation sample prepared in the same manner as above was irradiated with ultraviolet light at 20 J/cm 2 . For irradiation with ultraviolet light, an LED light (manufactured by DOWA) having a center peak at 340 nm was used. The intensity of the ultraviolet light was measured using UV LIGHT METER (UV-37SD manufactured by Custom Co., Ltd.), and the irradiation time was adjusted to make the amount of ultraviolet light irradiation 20 J/cm 2 . It was visually confirmed that gas was generated and foamed at the light irradiated site of the evaluation sample due to the ultraviolet light irradiation. Cross-cutting was performed on the evaluation sample irradiated with ultraviolet light in the same manner as above, cellophane tape was strongly pressed against the cross-cut surface, and the tape was peeled off. The adhesion of the solidified biological resin composition after irradiation with ultraviolet light was evaluated by checking the presence or absence of peeling of the sample at the cross-cut portion of 9 squares when the tape was peeled off. In the laminate of this sample, peeling was observed in 9 out of 9 squares.
上記と同様に作製した評価試料に対して、紫外光を20J/cm2照射した。紫外光の照射のためには、340nmにセンターピークを有するLEDライト(DOWA製)が用いられた。紫外光の強度は、UV LIGHT METER(株式会社カスタム製 UV-37SD)を用いて測定し、照射時間を調整することで、紫外光の照射量を20J/cm2とした。この紫外光の照射により、評価試料の光照射部位において気体が発生し発泡していることが目視により確認された。紫外光を照射した評価試料に対して、上記と同様の方法でクロスカットを行い、クロスカットした表面に対して、セロハンテープを強く圧着させ、テープを引きはがした。テープを引きはがした時の9マスのクロスカット部の試料の剥離の有無を確認することで、紫外光照射後の生体用樹脂組成物の固化物の接着性を評価した。本サンプルの積層物では、9マス中9マスで剥離が見られた。 <Foaming evaluation and adhesiveness evaluation after ultraviolet light irradiation>
An evaluation sample prepared in the same manner as above was irradiated with ultraviolet light at 20 J/cm 2 . For irradiation with ultraviolet light, an LED light (manufactured by DOWA) having a center peak at 340 nm was used. The intensity of the ultraviolet light was measured using UV LIGHT METER (UV-37SD manufactured by Custom Co., Ltd.), and the irradiation time was adjusted to make the amount of ultraviolet light irradiation 20 J/cm 2 . It was visually confirmed that gas was generated and foamed at the light irradiated site of the evaluation sample due to the ultraviolet light irradiation. Cross-cutting was performed on the evaluation sample irradiated with ultraviolet light in the same manner as above, cellophane tape was strongly pressed against the cross-cut surface, and the tape was peeled off. The adhesion of the solidified biological resin composition after irradiation with ultraviolet light was evaluated by checking the presence or absence of peeling of the sample at the cross-cut portion of 9 squares when the tape was peeled off. In the laminate of this sample, peeling was observed in 9 out of 9 squares.
(サンプル2)
アジド化合物としてグリシジルアジドポリマー(日油株式会社製 GAP)が19.6質量%、光酸発生剤としてスルホニウム塩系光酸発生剤(サンアプロ株式会社製 CP-310B)が2質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが78.4質量%となるように混合した生体用樹脂組成物を用いたこと以外、サンプル1と同様の方法で評価試料を作製した。評価試料を用いて、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果評価試料の光照射部位において気体が発生し発泡していることが確認された。さらに紫外光照射後の接着性評価を実施したところ、9マス中9マスで剥離が見られた。 (Sample 2)
19.6% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation) as the azide compound, 2% by mass of a sulfonium salt photoacid generator (CP-310B manufactured by San-Apro Co., Ltd.) as the photoacid generator, and commercially available urethane. An evaluation sample was prepared in the same manner asSample 1, except that a biological resin composition containing 78.4% by mass of PREGEL base gel nail manufactured by Preampa, whose main component was an acrylate oligomer, was used. Using the evaluation sample, adhesiveness evaluation before ultraviolet irradiation was performed in the same manner as Sample 1. As a result, there were no peeled parts in the 9 squares before UV irradiation. Next, evaluation of foaming after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, it was confirmed that gas was generated and foamed at the light irradiated area of the evaluation sample. Furthermore, when the adhesiveness was evaluated after irradiation with ultraviolet light, peeling was observed in 9 out of 9 squares.
アジド化合物としてグリシジルアジドポリマー(日油株式会社製 GAP)が19.6質量%、光酸発生剤としてスルホニウム塩系光酸発生剤(サンアプロ株式会社製 CP-310B)が2質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが78.4質量%となるように混合した生体用樹脂組成物を用いたこと以外、サンプル1と同様の方法で評価試料を作製した。評価試料を用いて、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果評価試料の光照射部位において気体が発生し発泡していることが確認された。さらに紫外光照射後の接着性評価を実施したところ、9マス中9マスで剥離が見られた。 (Sample 2)
19.6% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation) as the azide compound, 2% by mass of a sulfonium salt photoacid generator (CP-310B manufactured by San-Apro Co., Ltd.) as the photoacid generator, and commercially available urethane. An evaluation sample was prepared in the same manner as
(サンプル3)
アジド化合物としてグリシジルアジドポリマー(日油株式会社製 GAP)が20質量%、光酸発生剤としてスルホニウム塩系光酸発生剤(サンアプロ株式会社製 CP-310B)が0.1質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが79.9質量%となるように混合した生体用樹脂組成物を用いること以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認され、接着性評価を実施したところ9マス中9マスで剥離が見られた。 (Sample 3)
20% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation) as the azide compound, 0.1% by mass of a sulfonium salt photoacid generator (CP-310B manufactured by San-Apro Co., Ltd.) as the photoacid generator, and commercially available urethane. Adhesion evaluation before UV irradiation using the same method asSample 1 except that a biological resin composition containing 79.9% by mass of PREGEL base gel nails made by Preampa, whose main component is acrylate oligomer, was used. was carried out. As a result, there were no peeled parts in the 9 squares before UV irradiation. Next, foaming evaluation after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, it was confirmed that gas was generated and foamed at the light irradiated area of the sample, and when adhesiveness was evaluated, peeling was observed in 9 out of 9 squares.
アジド化合物としてグリシジルアジドポリマー(日油株式会社製 GAP)が20質量%、光酸発生剤としてスルホニウム塩系光酸発生剤(サンアプロ株式会社製 CP-310B)が0.1質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが79.9質量%となるように混合した生体用樹脂組成物を用いること以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認され、接着性評価を実施したところ9マス中9マスで剥離が見られた。 (Sample 3)
20% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation) as the azide compound, 0.1% by mass of a sulfonium salt photoacid generator (CP-310B manufactured by San-Apro Co., Ltd.) as the photoacid generator, and commercially available urethane. Adhesion evaluation before UV irradiation using the same method as
(サンプル4)
アジド化合物として、グリシジルアジドポリマー(日油株式会社製 GAP)が19.0質量%、光酸発生剤としてスルホニウム塩系光酸発生剤(サンアプロ株式会社製 CP-210S)が5質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが76.0質量%となるように混合し、均一になるように十分混ぜ、生体用樹脂組成物を調整した。なお、スルホニウム塩系光酸発生剤CP-210Sは280nm以上かつ400nm未満の波長領域に光吸収を有する。それ以外は、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、測定試料の光照射部位において気体が発生し発泡していることが確認された。接着性評価を実施したところ、9マス中9マスで剥離が見られた。 (Sample 4)
As the azide compound, 19.0% by mass of glycidyl azide polymer (GAP, manufactured by NOF Corporation), and 5% by mass of a sulfonium salt-based photoacid generator (CP-210S, manufactured by San-Apro Corporation) as the photoacid generator. PREGEL base gel nails manufactured by PRIAMPHA, whose main component is urethane acrylate oligomer, were mixed to a concentration of 76.0% by mass, and the mixture was sufficiently mixed to be homogeneous to prepare a biological resin composition. Note that the sulfonium salt photoacid generator CP-210S has light absorption in a wavelength range of 280 nm or more and less than 400 nm. Other than that, adhesiveness evaluation before UV irradiation was performed in the same manner asSample 1. As a result, there were no peeled parts in the 9 squares before UV irradiation. Next, foaming evaluation after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, it was confirmed that gas was generated and foamed at the light irradiated area of the measurement sample. When adhesiveness was evaluated, peeling was observed in 9 out of 9 squares.
アジド化合物として、グリシジルアジドポリマー(日油株式会社製 GAP)が19.0質量%、光酸発生剤としてスルホニウム塩系光酸発生剤(サンアプロ株式会社製 CP-210S)が5質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが76.0質量%となるように混合し、均一になるように十分混ぜ、生体用樹脂組成物を調整した。なお、スルホニウム塩系光酸発生剤CP-210Sは280nm以上かつ400nm未満の波長領域に光吸収を有する。それ以外は、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、測定試料の光照射部位において気体が発生し発泡していることが確認された。接着性評価を実施したところ、9マス中9マスで剥離が見られた。 (Sample 4)
As the azide compound, 19.0% by mass of glycidyl azide polymer (GAP, manufactured by NOF Corporation), and 5% by mass of a sulfonium salt-based photoacid generator (CP-210S, manufactured by San-Apro Corporation) as the photoacid generator. PREGEL base gel nails manufactured by PRIAMPHA, whose main component is urethane acrylate oligomer, were mixed to a concentration of 76.0% by mass, and the mixture was sufficiently mixed to be homogeneous to prepare a biological resin composition. Note that the sulfonium salt photoacid generator CP-210S has light absorption in a wavelength range of 280 nm or more and less than 400 nm. Other than that, adhesiveness evaluation before UV irradiation was performed in the same manner as
(サンプル5)
紫外光の照射のために365nmセンターピークのLEDライト(DOWA製)を用い、照射時間を調整することで、紫外光の照射量を40J/cm2としたこと以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認され、接着性評価を実施したところ9マス中6マスで剥離が見られた。 (Sample 5)
The same method asSample 1 was used except that a 365 nm center peak LED light (manufactured by DOWA) was used for ultraviolet light irradiation, and the amount of ultraviolet light irradiation was set to 40 J/cm 2 by adjusting the irradiation time. Adhesion was evaluated before UV irradiation. As a result, there were no peeled parts in the 9 squares before UV irradiation. Next, foaming evaluation after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, it was confirmed that gas was generated and foamed at the light irradiated area of the sample, and when adhesiveness was evaluated, peeling was observed in 6 out of 9 squares.
紫外光の照射のために365nmセンターピークのLEDライト(DOWA製)を用い、照射時間を調整することで、紫外光の照射量を40J/cm2としたこと以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認され、接着性評価を実施したところ9マス中6マスで剥離が見られた。 (Sample 5)
The same method as
(サンプル6)
アジド化合物として、グリシジルアジドポリマー(日油株式会社製 GAP)が9.9質量%、光酸発生剤としてスルホニウム塩系光酸発生剤CP-310B(サンアプロ株式会社製)が1質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが89.1質量%となるように混合した生体用樹脂組成物を用いること以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認され、接着性評価を実施したところ9マス中9マスで剥離が見られた。 (Sample 6)
As the azide compound, 9.9% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation), 1% by mass of the sulfonium salt photoacid generator CP-310B (manufactured by San-Apro Co., Ltd.) as the photoacid generator, and 1% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation). Adhesiveness before UV irradiation was determined in the same manner asSample 1, except that a biological resin composition containing 89.1% by mass of PREGEL base gel nails manufactured by Preampa, whose main component is urethane acrylate oligomer, was used. An evaluation was conducted. As a result, there were no peeled parts in the 9 squares before UV irradiation. Next, foaming evaluation after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, it was confirmed that gas was generated and foamed at the light irradiated area of the sample, and when adhesiveness was evaluated, peeling was observed in 9 out of 9 squares.
アジド化合物として、グリシジルアジドポリマー(日油株式会社製 GAP)が9.9質量%、光酸発生剤としてスルホニウム塩系光酸発生剤CP-310B(サンアプロ株式会社製)が1質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが89.1質量%となるように混合した生体用樹脂組成物を用いること以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認され、接着性評価を実施したところ9マス中9マスで剥離が見られた。 (Sample 6)
As the azide compound, 9.9% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation), 1% by mass of the sulfonium salt photoacid generator CP-310B (manufactured by San-Apro Co., Ltd.) as the photoacid generator, and 1% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation). Adhesiveness before UV irradiation was determined in the same manner as
(サンプル7)
アジド化合物として、グリシジルアジドポリマー(日油株式会社製 GAP)が49.5質量%、光酸発生剤としてスルホニウム塩系光酸発生剤CP-310B(サンアプロ株式会社製)が1質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが49.5質量%となるように混合した生体用樹脂組成物を用いること以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中3マスで剥離が見られた。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認され、接着性評価を実施したところ9マス中9マスで剥離が見られた。 (Sample 7)
As the azide compound, 49.5% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation), 1% by mass of the sulfonium salt photoacid generator CP-310B (manufactured by San-Apro Co., Ltd.) as the photoacid generator, and commercially available Adhesiveness before UV irradiation was measured in the same manner asSample 1, except that a biological resin composition containing 49.5% by mass of PREGEL base gel nails manufactured by Preampa, whose main component is urethane acrylate oligomer, was used. An evaluation was conducted. As a result, peeling was observed in 3 out of 9 squares before UV irradiation. Next, foaming evaluation after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, it was confirmed that gas was generated and foamed at the light irradiated area of the sample, and when adhesiveness was evaluated, peeling was observed in 9 out of 9 squares.
アジド化合物として、グリシジルアジドポリマー(日油株式会社製 GAP)が49.5質量%、光酸発生剤としてスルホニウム塩系光酸発生剤CP-310B(サンアプロ株式会社製)が1質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが49.5質量%となるように混合した生体用樹脂組成物を用いること以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中3マスで剥離が見られた。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認され、接着性評価を実施したところ9マス中9マスで剥離が見られた。 (Sample 7)
As the azide compound, 49.5% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation), 1% by mass of the sulfonium salt photoacid generator CP-310B (manufactured by San-Apro Co., Ltd.) as the photoacid generator, and commercially available Adhesiveness before UV irradiation was measured in the same manner as
(サンプル8)
市販のジェルネイルベースに代えて、ウレタンメタクリレートポリマー(共栄社化学株式会社製)59.0質量%、Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide 1質量%、Polyethylene Glycol Monomethyl Ether Methacrylate40.0質量%を混合することで得たジェルネイルを用いること以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中5マスで剥離が見られた。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認された。接着性評価を実施したところ9マス中9マスで剥離が見られた。 (Sample 8)
Instead of a commercially available gel nail base, use 59.0% by mass of urethane methacrylate polymer (manufactured by Kyoeisha Kagaku Co., Ltd.), 1% by mass of Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, and Polyethylene Glycol Monomethyl Ether. Methacrylate 40.0% by mass Adhesiveness evaluation before UV irradiation was carried out in the same manner asSample 1 except that gel nails obtained by mixing were used. As a result, peeling was observed in 5 out of 9 squares before UV irradiation. Next, foaming evaluation after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, it was confirmed that gas was generated and foamed at the light irradiated area of the sample. When adhesiveness was evaluated, peeling was observed in 9 out of 9 squares.
市販のジェルネイルベースに代えて、ウレタンメタクリレートポリマー(共栄社化学株式会社製)59.0質量%、Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide 1質量%、Polyethylene Glycol Monomethyl Ether Methacrylate40.0質量%を混合することで得たジェルネイルを用いること以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中5マスで剥離が見られた。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認された。接着性評価を実施したところ9マス中9マスで剥離が見られた。 (Sample 8)
Instead of a commercially available gel nail base, use 59.0% by mass of urethane methacrylate polymer (manufactured by Kyoeisha Kagaku Co., Ltd.), 1% by mass of Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, and Polyethylene Glycol Monomethyl Ether. Methacrylate 40.0% by mass Adhesiveness evaluation before UV irradiation was carried out in the same manner as
(サンプル9)
生体用樹脂組成物の固化物の上面に、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイル)を設置せず、生体用樹脂組成物の固化物のみを評価試料として用いる以外は、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は剥離が見られなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認され、接着性評価を実施したところ9マス中9マスで剥離が見られた。 (Sample 9)
Other than using only the solidified body-use resin composition as an evaluation sample, without placing a commercially available PREGEL base gel nail made by PRIAMPHA, whose main component is a urethane acrylate oligomer, on the solidified body-use resin composition. conducted adhesive evaluation before UV irradiation using the same method asSample 1. As a result, no peeling was observed before UV irradiation. Next, foaming evaluation after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, it was confirmed that gas was generated and foamed at the light irradiated area of the sample, and when adhesiveness was evaluated, peeling was observed in 9 out of 9 squares.
生体用樹脂組成物の固化物の上面に、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイル)を設置せず、生体用樹脂組成物の固化物のみを評価試料として用いる以外は、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は剥離が見られなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認され、接着性評価を実施したところ9マス中9マスで剥離が見られた。 (Sample 9)
Other than using only the solidified body-use resin composition as an evaluation sample, without placing a commercially available PREGEL base gel nail made by PRIAMPHA, whose main component is a urethane acrylate oligomer, on the solidified body-use resin composition. conducted adhesive evaluation before UV irradiation using the same method as
(サンプル21)
生体用樹脂組成物が市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイル100質量%であること以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において発泡が確認されず、接着性評価を実施したところ9マス中の剥離部分はなかった。 (Sample 21)
Adhesiveness evaluation before UV irradiation was performed in the same manner asSample 1, except that the biological resin composition was 100% by mass of PREGEL base gel nail manufactured by Preampa, whose main component was a commercially available urethane acrylate oligomer. As a result, there were no peeled parts in the 9 squares before UV irradiation. Next, foaming evaluation after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, no foaming was observed in the light irradiated area of the sample, and when adhesiveness was evaluated, there were no peeled parts in 9 squares.
生体用樹脂組成物が市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイル100質量%であること以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において発泡が確認されず、接着性評価を実施したところ9マス中の剥離部分はなかった。 (Sample 21)
Adhesiveness evaluation before UV irradiation was performed in the same manner as
(サンプル22)
アジド化合物として、グリシジルアジドポリマー(日油株式会社製 GAP)が20.0質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが80.0質量%となるように混合した生体用樹脂組成物を用いること以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認され、接着性評価を実施したところ9マス中の3マスで剥離が見られた。 (Sample 22)
As the azide compound, 20.0% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation) and 80.0% by mass of PREGEL base gel nail manufactured by Preampa, whose main component is a commercially available urethane acrylate oligomer, were mixed. Adhesiveness evaluation before ultraviolet irradiation was performed in the same manner asSample 1 except for using the resin composition for biological use. As a result, there were no peeled parts in the 9 squares before UV irradiation. Next, foaming evaluation after irradiation with ultraviolet light was performed in the same manner as in Sample 1. As a result, it was confirmed that gas was generated and foamed at the light irradiated area of the sample, and when adhesiveness was evaluated, peeling was observed in 3 out of 9 squares.
アジド化合物として、グリシジルアジドポリマー(日油株式会社製 GAP)が20.0質量%、市販のウレタンアクリレートオリゴマーを主成分とするプリアンファ製のPREGELベースジェルネイルが80.0質量%となるように混合した生体用樹脂組成物を用いること以外、サンプル1と同様の方法で紫外線照射前の接着性評価を実施した。その結果、紫外線照射前は9マス中の剥離部分はなかった。次いで、サンプル1と同様の方法で紫外光照射後の発泡評価を実施した。その結果、試料の光照射部位において気体が発生し発泡していることが確認され、接着性評価を実施したところ9マス中の3マスで剥離が見られた。 (Sample 22)
As the azide compound, 20.0% by mass of glycidyl azide polymer (GAP manufactured by NOF Corporation) and 80.0% by mass of PREGEL base gel nail manufactured by Preampa, whose main component is a commercially available urethane acrylate oligomer, were mixed. Adhesiveness evaluation before ultraviolet irradiation was performed in the same manner as
サンプル1から7、サンプル21から22の結果を表1Aおよび表1Bにまとめた。紫外線照射前の接着性と、紫外線照射後の剥離性および発泡性については、生体用樹脂組成物の固化物の接着性評価と発泡評価の結果から下記の基準で評価した。
The results of samples 1 to 7 and samples 21 to 22 are summarized in Table 1A and Table 1B. Adhesion before ultraviolet irradiation, releasability and foamability after ultraviolet irradiation were evaluated according to the following criteria based on the results of adhesiveness evaluation and foaming evaluation of the solidified biological resin composition.
・紫外光照射前の接着性
〇:クロスカット部の9マス中全マスで剥離がなかった場合
△:クロスカット部の9マス中5マス以内で剥離した場合
×:クロスカット部の9マス中6マス以上で剥離した場合
・紫外光照射後の発泡性
〇:目視で発泡が確認された
×:目視で発泡が確認されなかった
・紫外光照射後の剥離性
〇:クロスカット部の9マス中6マス以上で剥離した場合
△:クロスカット部の9マス中5マス以内で剥離した場合
×:クロスカット部の9マス中全マスで剥離がなかった場合 ・Adhesiveness before UV light irradiation 〇: When there was no peeling in all of the 9 squares of the cross-cut section △: When there was peeling within 5 of the 9 squares of the cross-cut section ×: When there was peeling within 5 of the 9 squares of the cross-cut section When peeling occurs in 6 squares or more - Foaming property after UV light irradiation ○: Foaming was visually confirmed ×: Foaming was not visually confirmed - Peelability after UV light irradiation ○: 9 squares of the cross-cut part When peeling occurs in 6 squares or more in the middle △: When peeling occurs within 5 of 9 squares in the cross-cut part ×: When there is no peeling in all 9 squares in the cross-cut part
〇:クロスカット部の9マス中全マスで剥離がなかった場合
△:クロスカット部の9マス中5マス以内で剥離した場合
×:クロスカット部の9マス中6マス以上で剥離した場合
・紫外光照射後の発泡性
〇:目視で発泡が確認された
×:目視で発泡が確認されなかった
・紫外光照射後の剥離性
〇:クロスカット部の9マス中6マス以上で剥離した場合
△:クロスカット部の9マス中5マス以内で剥離した場合
×:クロスカット部の9マス中全マスで剥離がなかった場合 ・Adhesiveness before UV light irradiation 〇: When there was no peeling in all of the 9 squares of the cross-cut section △: When there was peeling within 5 of the 9 squares of the cross-cut section ×: When there was peeling within 5 of the 9 squares of the cross-cut section When peeling occurs in 6 squares or more - Foaming property after UV light irradiation ○: Foaming was visually confirmed ×: Foaming was not visually confirmed - Peelability after UV light irradiation ○: 9 squares of the cross-cut part When peeling occurs in 6 squares or more in the middle △: When peeling occurs within 5 of 9 squares in the cross-cut part ×: When there is no peeling in all 9 squares in the cross-cut part
表1Aおよび表1Bに示された結果より、生体用樹脂組成物がアジド化合物と光酸発生剤とを含む場合(サンプル1から7)、生体用樹脂組成物の固化物の紫外光照射前の接着性が高く、紫外光照射後には発泡が確認され、接着性が低下して剥離性が向上する結果となった。サンプル1からベースとなるジェルネイルを変更したサンプル8と、サンプル1の構成において生体用樹脂組成物の固化物の表面をジェルネイルでコーティングしなかったサンプル9とについても、生体用樹脂組成物がアジド化合物と光酸発生剤とを含むことにより、サンプル1から7と同様の結果が得られた。生体用樹脂組成物がアジド化合物と光酸発生剤をいずれも含まない場合(サンプル21)は、生体用樹脂組成物の固化物の紫外光照射前の接着性は高いが、紫外光照射後には発泡が確認されず、接着性の低下がみられず剥離性が低い結果となった。また、生体用樹脂組成物がアジド化合物のみを含む場合(サンプル22)は、生体用樹脂組成物の固化物の紫外光照射前の接着性は高く、紫外光照射後に発泡が確認されたが、光酸発生剤を含む場合より剥離性が低い結果となった。これは、光酸発生剤を含まない場合でもアジド化合物であるグシリジルアジドポリマー自体が光反応により分解して発泡したが、発泡量が多くないために剥離性が低くなったと推定される。
From the results shown in Table 1A and Table 1B, when the biological resin composition contains an azide compound and a photoacid generator (samples 1 to 7), the solidified biological resin composition before irradiation with ultraviolet light Adhesion was high, and foaming was observed after irradiation with ultraviolet light, resulting in decreased adhesion and improved releasability. Sample 8, in which the base gel nail was changed from Sample 1, and Sample 9, in which the surface of the solidified biomaterial resin composition was not coated with gel nail in the configuration of Sample 1, also showed that the biomaterial resin composition The same results as Samples 1 to 7 were obtained by including the azide compound and the photoacid generator. When the biological resin composition contains neither an azide compound nor a photoacid generator (sample 21), the solidified biological resin composition has high adhesiveness before irradiation with ultraviolet light, but after irradiation with ultraviolet light, No foaming was observed, no decrease in adhesion was observed, and the releasability was low. In addition, when the biological resin composition contained only an azide compound (sample 22), the adhesiveness of the solidified biological resin composition before ultraviolet light irradiation was high, and foaming was confirmed after ultraviolet light irradiation. The result was a lower releasability than when a photoacid generator was included. This is presumably because the gsyridyl azide polymer itself, which is an azide compound, decomposed and foamed due to photoreaction even when no photoacid generator was included, but the amount of foaming was not large, resulting in low peelability.
[爪に対する剥離性評価]
(サンプル10)
サンプル1と同様の方法で作製した生体用樹脂組成物を用いて、爪全面にネイル用の刷毛で塗布し、爪上に生体用樹脂組成物を設置した。爪上の生体用樹脂組成物に、ジェルネイル硬化用のライトを用いて、波長390nmから400nmのLED出力光を5分間照射することで、爪上の生体用樹脂組成物を硬化させ生体用樹脂組成物の固化物を得た。さらに、一般的なジェルネイルでの使用例と同様に最表層にトップジェルネイル層を設置するため、得られた生体用樹脂組成物の固化物の上面にトップジェルネイル(ネイルラボ製、PRESTO TOPGEL)を塗布した。次いで、波長390nmから400nmのLED出力光を5分間照射することで、図3に示す生体用樹脂組成物の固化物とトップジェルネイル層の積層被膜を形成し、トップジェルネイル層の表面の未硬化樹脂をエタノールでふき取った。 [Releasability evaluation for nails]
(Sample 10)
A biological resin composition prepared in the same manner asSample 1 was applied to the entire surface of the nail with a nail brush, and the biological resin composition was placed on the nail. By irradiating the biological resin composition on the nail with LED output light with a wavelength of 390 nm to 400 nm for 5 minutes using a gel nail curing light, the biological resin composition on the nail is cured and the biological resin is cured. A solidified product of the composition was obtained. Furthermore, in order to install a top gel nail layer on the outermost layer as in the case of general gel nails, a top gel nail (manufactured by Nail Lab, PRESTO TOPGEL) is placed on the top surface of the obtained solidified biological resin composition. was applied. Next, by irradiating LED output light with a wavelength of 390 nm to 400 nm for 5 minutes, a laminated film of the solidified biological resin composition and the top gel nail layer shown in FIG. 3 is formed, and the unfinished surface of the top gel nail layer is removed. The cured resin was wiped off with ethanol.
(サンプル10)
サンプル1と同様の方法で作製した生体用樹脂組成物を用いて、爪全面にネイル用の刷毛で塗布し、爪上に生体用樹脂組成物を設置した。爪上の生体用樹脂組成物に、ジェルネイル硬化用のライトを用いて、波長390nmから400nmのLED出力光を5分間照射することで、爪上の生体用樹脂組成物を硬化させ生体用樹脂組成物の固化物を得た。さらに、一般的なジェルネイルでの使用例と同様に最表層にトップジェルネイル層を設置するため、得られた生体用樹脂組成物の固化物の上面にトップジェルネイル(ネイルラボ製、PRESTO TOPGEL)を塗布した。次いで、波長390nmから400nmのLED出力光を5分間照射することで、図3に示す生体用樹脂組成物の固化物とトップジェルネイル層の積層被膜を形成し、トップジェルネイル層の表面の未硬化樹脂をエタノールでふき取った。 [Releasability evaluation for nails]
(Sample 10)
A biological resin composition prepared in the same manner as
剥離性は、爪からの生体用樹脂組成物の固化物とトップジェルネイルを積層した被膜をピンセットで剥離するのに必要な時間を計測して評価した。紫外光照射前の試料について、生体用樹脂組成物の固化物の被膜はアセトンなしでは剥離できなかった。同様に作製した試料に対し、サンプル1と同じ方法で、紫外光を20J/cm2照射した。紫外光照射後の試料について、生体用樹脂組成物の固化物の被膜はアセトンなしで30秒で爪から剥離できた。
Peelability was evaluated by measuring the time required to peel off the layered layer of the solidified biological resin composition and top gel nail from the nail using tweezers. Regarding the sample before irradiation with ultraviolet light, the film of the solidified biological resin composition could not be peeled off without acetone. A similarly prepared sample was irradiated with 20 J/cm 2 of ultraviolet light in the same manner as Sample 1. Regarding the sample after ultraviolet light irradiation, the film of the solidified biological resin composition could be peeled off from the nail in 30 seconds without acetone.
(サンプル11)
サンプル6と同様の方法で作製した生体用樹脂組成物を用いて、サンプル10と同様の方法で爪から生体用樹脂組成物の固化物の被膜の剥離性を評価した。その結果、紫外光照射前の試料について、生体用樹脂組成物の固化物の被膜はアセトンなしでは剥離できなかった。同様に作製した試料に対し、サンプル1と同じ方法で、紫外光を20J/cm2照射した。紫外光照射後の試料について、生体用樹脂組成物の固化物の被膜はアセトンなしで120秒で爪から剥離できた。 (Sample 11)
Using a biological resin composition produced in the same manner as Sample 6, the releasability of the film of the solidified biological resin composition from the nail was evaluated in the same manner asSample 10. As a result, for the sample before irradiation with ultraviolet light, the film of the solidified biological resin composition could not be peeled off without acetone. A similarly prepared sample was irradiated with 20 J/cm 2 of ultraviolet light in the same manner as Sample 1. Regarding the sample after ultraviolet light irradiation, the film of the solidified biological resin composition could be peeled off from the nail in 120 seconds without acetone.
サンプル6と同様の方法で作製した生体用樹脂組成物を用いて、サンプル10と同様の方法で爪から生体用樹脂組成物の固化物の被膜の剥離性を評価した。その結果、紫外光照射前の試料について、生体用樹脂組成物の固化物の被膜はアセトンなしでは剥離できなかった。同様に作製した試料に対し、サンプル1と同じ方法で、紫外光を20J/cm2照射した。紫外光照射後の試料について、生体用樹脂組成物の固化物の被膜はアセトンなしで120秒で爪から剥離できた。 (Sample 11)
Using a biological resin composition produced in the same manner as Sample 6, the releasability of the film of the solidified biological resin composition from the nail was evaluated in the same manner as
(サンプル23)
サンプル21と同様の方法で作製した生体用樹脂組成物を用いて、サンプル10と同様の方法で爪から生体用樹脂組成物の固化物の被膜の剥離性を評価した。その結果、紫外光照射前の試料について、生体用樹脂組成物の固化物の被膜はアセトンなしでは剥離できなかった。同様に作製した試料に対し、サンプル1と同じ方法で、紫外光を20J/cm2照射した。紫外光照射後の試料について、生体用樹脂組成物の固化物の被膜は10分以上かかっても爪から剥離できなかった。また、剥離にアセトンの使用が必要であった。 (Sample 23)
Using a biological resin composition produced in the same manner asSample 21, the releasability of the film of the solidified biological resin composition from the nail was evaluated in the same manner as Sample 10. As a result, for the sample before irradiation with ultraviolet light, the film of the solidified biological resin composition could not be peeled off without acetone. A similarly prepared sample was irradiated with 20 J/cm 2 of ultraviolet light in the same manner as Sample 1. Regarding the sample after irradiation with ultraviolet light, the film of the solidified biological resin composition could not be peeled off from the nail even after 10 minutes or more. Also, the use of acetone was required for stripping.
サンプル21と同様の方法で作製した生体用樹脂組成物を用いて、サンプル10と同様の方法で爪から生体用樹脂組成物の固化物の被膜の剥離性を評価した。その結果、紫外光照射前の試料について、生体用樹脂組成物の固化物の被膜はアセトンなしでは剥離できなかった。同様に作製した試料に対し、サンプル1と同じ方法で、紫外光を20J/cm2照射した。紫外光照射後の試料について、生体用樹脂組成物の固化物の被膜は10分以上かかっても爪から剥離できなかった。また、剥離にアセトンの使用が必要であった。 (Sample 23)
Using a biological resin composition produced in the same manner as
(サンプル24)
サンプル22と同様の方法で作製した生体用樹脂組成物を用いて、サンプル10と同様の方法で爪から生体用樹脂組成物の固化物の被膜の剥離性を評価した。その結果、紫外光照射前の試料について、生体用樹脂組成物の固化物の被膜はアセトンなしでは剥離できなかった。同様に作製した試料に対し、サンプル1と同じ方法で、紫外光を20J/cm2照射した。紫外光照射後の試料について、生体用樹脂組成物の固化物の被膜はアセトンなしで180秒で爪から剥離できた。 (Sample 24)
Using a biological resin composition produced in the same manner as Sample 22, the releasability of the film of the solidified biological resin composition from the nail was evaluated in the same manner asSample 10. As a result, for the sample before irradiation with ultraviolet light, the film of the solidified biological resin composition could not be peeled off without acetone. A similarly prepared sample was irradiated with 20 J/cm 2 of ultraviolet light in the same manner as Sample 1. Regarding the sample after ultraviolet light irradiation, the film of the solidified biological resin composition could be peeled off from the nail in 180 seconds without acetone.
サンプル22と同様の方法で作製した生体用樹脂組成物を用いて、サンプル10と同様の方法で爪から生体用樹脂組成物の固化物の被膜の剥離性を評価した。その結果、紫外光照射前の試料について、生体用樹脂組成物の固化物の被膜はアセトンなしでは剥離できなかった。同様に作製した試料に対し、サンプル1と同じ方法で、紫外光を20J/cm2照射した。紫外光照射後の試料について、生体用樹脂組成物の固化物の被膜はアセトンなしで180秒で爪から剥離できた。 (Sample 24)
Using a biological resin composition produced in the same manner as Sample 22, the releasability of the film of the solidified biological resin composition from the nail was evaluated in the same manner as
サンプル10、11、23、24の結果を表2に示す。紫外光照射前後の生体用樹脂組成物の固化物の被膜について、爪に対する剥離性を評価した結果について、紫外光照射前に、アセトンなしでは剥離できなかった場合は〇、アセトンなしでも剥離できた場合を×で示した。紫外光照射後に、3分より早く剥離した場合を〇、剥離に3分以上10分以内かかった場合を△、剥離にアセトンの使用が必要な場合は×とした。
The results for samples 10, 11, 23, and 24 are shown in Table 2. Regarding the results of evaluating the releasability of the solidified biological resin composition to nails before and after irradiation with ultraviolet light, if the film could not be peeled off without acetone before irradiation with ultraviolet light, 〇 indicates that it could be peeled off without acetone. Cases are indicated by ×. After irradiation with ultraviolet light, a case where the film was peeled off sooner than 3 minutes was marked as ○, a case where peeling took more than 3 minutes and less than 10 minutes was marked as △, and a case where the use of acetone was required for peeling was marked as ×.
[爪への接着性の評価]
(サンプル12)
サンプル1と同様の方法で作製した生体用樹脂組成物を用いて、ヒトの手の爪全面にネイル用の刷毛で塗布し、爪上に生体用樹脂組成物を設置し、ジェルネイル硬化用のライトを用いて、波長390nmから400nmのLED出力光を2分照射することで硬化させ、爪上に生体用樹脂組成物の固化物の被膜を設置した。硬化後表面をエタノールでふき取り、その後、そのまま通常の生活を行った。24時間以上、被膜は爪から剥離しないことを確認した。また、爪に生体用樹脂組成物を設置した後、綿棒で100回擦ったが、剥離は確認できなかった。 [Evaluation of adhesion to nails]
(Sample 12)
Using a biogenic resin composition prepared in the same manner asSample 1, it was applied to the entire surface of the nail of a human hand with a nail brush, the biogenic resin composition was placed on the nail, and a gel nail curing gel was applied. Using a light, the nail was cured by irradiating it with LED output light with a wavelength of 390 nm to 400 nm for 2 minutes, and a film of the solidified biological resin composition was placed on the nail. After curing, the surface was wiped with ethanol, and then normal life was carried out. It was confirmed that the coating did not peel off from the nail for 24 hours or more. Further, after applying the biological resin composition to the nail, the nail was rubbed 100 times with a cotton swab, but no peeling was observed.
(サンプル12)
サンプル1と同様の方法で作製した生体用樹脂組成物を用いて、ヒトの手の爪全面にネイル用の刷毛で塗布し、爪上に生体用樹脂組成物を設置し、ジェルネイル硬化用のライトを用いて、波長390nmから400nmのLED出力光を2分照射することで硬化させ、爪上に生体用樹脂組成物の固化物の被膜を設置した。硬化後表面をエタノールでふき取り、その後、そのまま通常の生活を行った。24時間以上、被膜は爪から剥離しないことを確認した。また、爪に生体用樹脂組成物を設置した後、綿棒で100回擦ったが、剥離は確認できなかった。 [Evaluation of adhesion to nails]
(Sample 12)
Using a biogenic resin composition prepared in the same manner as
また、スライドガラス上に生体用樹脂組成物をギャップコーティングにより塗工し、ジェルネイル硬化用のライトを用いて、波長390nmから400nmのLED出力光を2分間照射することで硬化させ、フィルム状のシートを作製した。このフィルム状のシートの表面に対する水の接触角の評価を行った。接触角は、協和界面科学株式会社製DROPMASTER DMO-501を用いて液滴法により測定した。接触角は、5μLの水を滴下することで評価した。解析はθ/2法で行った。接触角は5回測定し平均値を求めた。このフィルム状のシートの表面、すなわち生体用樹脂組成物の固化物の表面に対する水の接触角は、76.1°であった。
In addition, the biological resin composition was coated on a slide glass by gap coating, and cured by irradiating it with LED output light with a wavelength of 390 nm to 400 nm for 2 minutes using a gel nail curing light. A sheet was produced. The contact angle of water on the surface of this film-like sheet was evaluated. The contact angle was measured by a droplet method using DROPMASTER DMO-501 manufactured by Kyowa Interface Science Co., Ltd. The contact angle was evaluated by dropping 5 μL of water. The analysis was performed using the θ/2 method. The contact angle was measured five times and the average value was calculated. The contact angle of water with the surface of this film-like sheet, that is, the surface of the solidified biomaterial resin composition, was 76.1°.
(サンプル13)
サンプル4と同様の方法で作製した生体用樹脂組成物を用いて、サンプル12と同様の方法で爪上に生体用樹脂組成物の固化物の被膜を設置した。硬化後表面をエタノールでふき取り、その後、そのまま通常の生活を行った。24時間以上、被膜は爪から剥離しないことを確認した。また、爪に生体用樹脂組成物を設置した後、綿棒で100回擦ったが、剥離は確認できなかった。 (Sample 13)
Using a biological resin composition prepared in the same manner asSample 4, a film of the solidified biological resin composition was placed on the nail in the same manner as Sample 12. After curing, the surface was wiped with ethanol, and then normal life was carried out. It was confirmed that the coating did not peel off from the nail for 24 hours or more. Further, after applying the biological resin composition to the nail, the nail was rubbed 100 times with a cotton swab, but no peeling was observed.
サンプル4と同様の方法で作製した生体用樹脂組成物を用いて、サンプル12と同様の方法で爪上に生体用樹脂組成物の固化物の被膜を設置した。硬化後表面をエタノールでふき取り、その後、そのまま通常の生活を行った。24時間以上、被膜は爪から剥離しないことを確認した。また、爪に生体用樹脂組成物を設置した後、綿棒で100回擦ったが、剥離は確認できなかった。 (Sample 13)
Using a biological resin composition prepared in the same manner as
また、サンプル12と同様の方法で、サンプル13の生体用樹脂組成物の固化物の表面に対する水の接触角を測定した。水の接触角は67.6°であった。
In addition, in the same manner as Sample 12, the contact angle of water on the surface of the solidified biological resin composition of Sample 13 was measured. The water contact angle was 67.6°.
表3に、各結果が示されている。
Table 3 shows each result.
本開示の生体用樹脂組成物は、例えばネイルのベースコートなどに使用できる。また、本開示の生体用樹脂組成物は、さらに、まつ毛エクステンション用接着剤および毛髪用接着剤などの用途にも使用できる。
The biological resin composition of the present disclosure can be used, for example, as a base coat for nails. Moreover, the biological resin composition of the present disclosure can be further used for applications such as eyelash extension adhesives and hair adhesives.
1 爪
2 生体用樹脂組成物の固化物
3 ジェルネイル
3a カラージェルネイル
3b トップジェルネイル 1Nail 2 Solidified product of biological resin composition 3 Gel nail 3a Color gel nail 3b Top gel nail
2 生体用樹脂組成物の固化物
3 ジェルネイル
3a カラージェルネイル
3b トップジェルネイル 1
Claims (12)
- 生体の一部に接着する生体用樹脂組成物であって、
前記生体用樹脂組成物は、
アジド化合物と、
外部刺激により酸を発生する酸発生剤と
を含む、生体用樹脂組成物。 A biological resin composition that adheres to a part of a living body,
The biological resin composition includes:
an azide compound;
A resin composition for biological use, comprising an acid generator that generates acid upon external stimulation. - 前記生体用樹脂組成物の固化物は、前記外部刺激が与えられることにより気体を発生して体積変化を起こし、前記生体の一部との接着強度を低減させる、
請求項1に記載の生体用樹脂組成物。 The solidified body resin composition generates gas and causes a volume change when the external stimulus is applied, reducing the adhesive strength with the part of the body.
The biological resin composition according to claim 1. - 前記外部刺激は、光、熱、磁力、電気、および外力からなる群より選ばれる少なくとも1つである、
請求項1に記載の生体用樹脂組成物。 The external stimulus is at least one selected from the group consisting of light, heat, magnetism, electricity, and external force.
The biological resin composition according to claim 1. - 前記酸発生剤は、光により酸を発生する光酸発生剤であり、
前記外部刺激は、光を含む、
請求項3に記載の生体用樹脂組成物。 The acid generator is a photoacid generator that generates acid by light,
the external stimulus includes light;
The biological resin composition according to claim 3. - 前記光は、400nm未満の範囲内に波長を有し、
前記光酸発生剤は、400nm未満の波長領域に光吸収をもつ、
請求項4に記載の生体用樹脂組成物。 the light has a wavelength in a range of less than 400 nm;
The photoacid generator has light absorption in a wavelength region of less than 400 nm.
The biological resin composition according to claim 4. - 前記生体用樹脂組成物は、前記光酸発生剤を0.05質量%以上かつ10質量%以下の範囲で含む、
請求項4に記載の生体用樹脂組成物。 The biological resin composition contains the photoacid generator in a range of 0.05% by mass or more and 10% by mass or less,
The biological resin composition according to claim 4. - 前記光酸発生剤は、スルホニウム塩、ヨードニウム塩、ジアゾニウム塩、スルホニルジアゾメタン、イミドスルホネート、オキシムスルホネート、およびアリールスルホン酸エステルからなる群より選択される少なくとも1つである、
請求項4に記載の生体用樹脂組成物。 The photoacid generator is at least one selected from the group consisting of sulfonium salts, iodonium salts, diazonium salts, sulfonyldiazomethanes, imidosulfonates, oxime sulfonates, and arylsulfonate esters.
The biological resin composition according to claim 4. - 前記光酸発生剤は、スルホニウム塩である、
請求項4に記載の生体用樹脂組成物。 the photoacid generator is a sulfonium salt;
The biological resin composition according to claim 4. - 前記生体用樹脂組成物の固化物の表面に対する水の接触角が、30°以上かつ110°以下である、
請求項1に記載の生体用樹脂組成物。 The contact angle of water with respect to the surface of the solidified product of the biological resin composition is 30° or more and 110° or less,
The biological resin composition according to claim 1. - 前記生体用樹脂組成物は、前記アジド化合物を0.5質量%以上かつ50質量%以下の範囲で含む、
請求項1に記載の生体用樹脂組成物。 The biological resin composition contains the azide compound in a range of 0.5% by mass or more and 50% by mass or less,
The biological resin composition according to claim 1. - 前記アジド化合物は、グリシジルアジドポリマーを含む、
請求項1に記載の生体用樹脂組成物。 The azide compound includes a glycidyl azide polymer.
The biological resin composition according to claim 1. - 前記生体用樹脂組成物は、生体の一部に接着する化粧料に用いられる化粧料用樹脂組成物である、
請求項1に記載の生体用樹脂組成物。 The living body resin composition is a cosmetic resin composition used in a cosmetic that adheres to a part of a living body.
The biological resin composition according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-123022 | 2022-08-01 | ||
JP2022123022A JP2024020106A (en) | 2022-08-01 | 2022-08-01 | Resin composition for living body |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024029442A1 true WO2024029442A1 (en) | 2024-02-08 |
Family
ID=89849001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/027518 WO2024029442A1 (en) | 2022-08-01 | 2023-07-27 | Resin composition for living body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024020106A (en) |
WO (1) | WO2024029442A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011074284A (en) * | 2009-09-30 | 2011-04-14 | Sekisui Chem Co Ltd | Adhesive composition |
JP2016060706A (en) * | 2014-09-17 | 2016-04-25 | 富士フイルム株式会社 | Artificial nail composition, artificial nail and formation method thereof, removing method of artificial nail, and nail art kit |
JP2016128546A (en) * | 2015-01-09 | 2016-07-14 | 積水化学工業株式会社 | Adhesive composition, adhesive tape, and method for processing wafer |
JP2021001262A (en) * | 2019-06-21 | 2021-01-07 | 国立研究開発法人産業技術総合研究所 | Release agent for polymer compound, adhesive material, and method for using adhesive material |
-
2022
- 2022-08-01 JP JP2022123022A patent/JP2024020106A/en active Pending
-
2023
- 2023-07-27 WO PCT/JP2023/027518 patent/WO2024029442A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011074284A (en) * | 2009-09-30 | 2011-04-14 | Sekisui Chem Co Ltd | Adhesive composition |
JP2016060706A (en) * | 2014-09-17 | 2016-04-25 | 富士フイルム株式会社 | Artificial nail composition, artificial nail and formation method thereof, removing method of artificial nail, and nail art kit |
JP2016128546A (en) * | 2015-01-09 | 2016-07-14 | 積水化学工業株式会社 | Adhesive composition, adhesive tape, and method for processing wafer |
JP2021001262A (en) * | 2019-06-21 | 2021-01-07 | 国立研究開発法人産業技術総合研究所 | Release agent for polymer compound, adhesive material, and method for using adhesive material |
Also Published As
Publication number | Publication date |
---|---|
JP2024020106A (en) | 2024-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11866619B2 (en) | Polyurethane based switchable adhesives | |
Tay et al. | Adhesive permeability affects composite coupling to dentin treated with a self-etch adhesive | |
CN106170279B (en) | Photo-hardening artificial nail composition | |
Tay et al. | Single-step, self-etch adhesives behave as permeable membranes after polymerization. Part I. Bond strength and morphologic evidence | |
JP5851407B2 (en) | Removable colored layer for artificial nail coating and method therefor | |
EP3357518B1 (en) | Polymeric adhesive for anchoring compliant materials to another surface | |
WO2017082058A1 (en) | Photocurable composition to be used on fingernails or artificial nails, and method for coating by using same | |
JP3443188B2 (en) | Curable composition | |
WO2016006637A1 (en) | Dental prosthesis | |
Vitale et al. | UV-curing of adhesives: A critical review | |
WO2024029442A1 (en) | Resin composition for living body | |
CA1197400A (en) | Dental adhesive system | |
Endo et al. | Effect of oxygen inhibition of self-etching adhesives on enamel-dentin polymer bond. | |
WO2024029441A1 (en) | Cosmetic laminate, cover coat layer, nail production method, and nail removal method | |
WO2022168785A1 (en) | Resin composition for cosmetic, resin composition for nail, base coat agent for gel nail, and adhesive for eyelash extension | |
JP2008509769A (en) | Photopolymerizable material for wound dressing | |
EP3305276B1 (en) | Skin adhesive sheet, and sheet-like external preparation for skin | |
JP2022119698A (en) | Cosmetic resin composition, resin composition for nail, base coating agent for gel nail, and eyelash extension adhesive | |
Yamauti et al. | Microhardness and Young's modulus of a bonding resin cured with different curing units | |
CN116829669A (en) | Resin composition for cosmetics, resin composition for nail beauty, primer for gel nail beauty, and adhesive for extending eyelashes | |
JP2024047659A (en) | Curable artificial nail composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23849997 Country of ref document: EP Kind code of ref document: A1 |