WO2024029432A1 - 医療機器及び医療機器システム - Google Patents

医療機器及び医療機器システム Download PDF

Info

Publication number
WO2024029432A1
WO2024029432A1 PCT/JP2023/027481 JP2023027481W WO2024029432A1 WO 2024029432 A1 WO2024029432 A1 WO 2024029432A1 JP 2023027481 W JP2023027481 W JP 2023027481W WO 2024029432 A1 WO2024029432 A1 WO 2024029432A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
medical device
light
section
emitting section
Prior art date
Application number
PCT/JP2023/027481
Other languages
English (en)
French (fr)
Inventor
妻木翔太
横田崇之
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2024029432A1 publication Critical patent/WO2024029432A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin

Definitions

  • the present invention relates to medical equipment and medical equipment systems.
  • Japanese Patent No. 6942687 discloses a medical device system including a medical device, a light source, and a visualization member.
  • a medical device includes a device body that can be implanted in a living body and a light emitting section provided in the device body.
  • the light emitting section includes a light emitting material that emits fluorescence when irradiated with excitation light from the light source.
  • the visualization member visualizes the fluorescence emitted by the luminescent material.
  • the visualization member is, for example, an imaging section and a display section.
  • the imaging section converts the light emitted by the luminescent material into light with a visible wavelength and displays the converted image information on the display section.
  • Japanese Patent No. 6942687 exemplifies a filter that converts light emitted by a luminescent material into visible light as a visualization member. According to such a medical device system, the user can visually recognize the device main body through the visualization member, and therefore can specify the position of the device main body in the living body without palpation.
  • the medical device system tends to become large-sized. Furthermore, since the device body is visually recognized through the visualization member, it is complicated to specify the position of the device body implanted in the living body.
  • the present invention aims to solve the above-mentioned problems.
  • One aspect of the present invention is a medical device including a device main body that can be implanted in a living body, wherein the device main body includes a light emitting part that emits visible light when irradiated with near-infrared light.
  • the light emitting section includes a wavelength conversion material that converts the near-infrared light into the visible light.
  • the wavelength conversion material converts the near-infrared light having a wavelength of 650 nm or more and 2500 nm or less into the visible light having a wavelength of 450 nm or more and less than 650 nm. .
  • the wavelength conversion material converts the near-infrared light having a wavelength of 650 nm or more and 2500 nm or less into the visible light having a wavelength of 550 nm or more and less than 650 nm. .
  • the light emitting part is made of a material in which at least a part of the device body contains the wavelength conversion material or the wavelength conversion material It is preferable that it is formed by molding by chisel.
  • the device main body has a puncture target portion into which a needle can be inserted.
  • the light emitting part is provided in the punctured part.
  • the light-emitting section is provided on the outer periphery of the punctured part, and the light-emitting part is not provided in the center of the punctured part. is preferred.
  • the light emitting part extends in an annular shape.
  • the light-emitting section includes a first light-emitting ring section surrounding the central portion of the puncture target section and a spaced space between the first light-emitting ring section and the outside of the first light-emitting ring section. It is preferable that the light emitting device further includes a second light emitting ring portion positioned and surrounding the first light emitting ring portion.
  • the light emitting section extends in a grid pattern.
  • Another aspect of the present invention is a medical device system, which includes the medical device according to any one of items (1) to (13) and irradiating the near-infrared light onto the light emitting section. An irradiation section.
  • the irradiation section is capable of adjusting the brightness of the near-infrared light.
  • visible light is emitted from the light emitting part by irradiating the light emitting part with near-infrared light, so the user can directly confirm the visible light emitted by the light emitting part.
  • the position of the device main body implanted in the living body can be efficiently specified.
  • a visualization member that converts the light emitted by the light emitting section into visible light
  • a battery or the like for causing the medical device to emit light from the light emitting section. Therefore, a medical device system including medical devices can be made smaller.
  • FIG. 1 is a schematic cross-sectional view of a medical device system including a medical device according to an embodiment of the present invention.
  • FIG. 2 is an explanatory plan view of the medical device shown in FIG. 1.
  • FIG. 3 is an explanatory diagram of the use of the medical device system of FIG. 1.
  • FIG. 4A is an explanatory plan view of a light emitting section according to a first modification.
  • FIG. 4B is an explanatory plan view of a light emitting section according to a second modification.
  • FIG. 5A is an explanatory plan view of a light emitting section according to a third modification.
  • FIG. 5B is an explanatory plan view of a light emitting section according to a fourth modification.
  • a medical device system 10 includes a medical device 12 and an irradiation unit 14.
  • Medical device 12 is implanted within a living body.
  • the medical device 12 is a subcutaneously implantable central venous access port (CV port) for continuously administering a medical solution (drug) to a blood vessel.
  • the medical device 12 is implanted, for example, inside the skin S of the anterior chest, upper arm, or forearm (in vivo).
  • the drug solution include anticancer drugs, high-calorie infusions, and the like.
  • the medical device 12 is not limited to a CV port, and may be a device implanted in the body, such as an artificial blood vessel shunt or a pacemaker. Note that an artificial blood vessel shunt connects an artery and a vein to each other.
  • the medical device 12 includes a device main body 18, a catheter 20, and a light emitting section 22.
  • the device main body 18 includes a base portion 24 and a puncture target portion 26 (septum).
  • the base portion 24 includes a base body 28 and a connecting portion 30.
  • the base portion 24 is integrally molded from a hard resin material.
  • the base body 28 has a bottom surface 32, a top surface 34, and an outer peripheral surface 36.
  • the outer circumferential surface 36 of the base body 28 extends annularly and is curved so as not to damage the tissue in the living body.
  • the base body 28 has an inner chamber 38 and a mounting hole 40 formed therein.
  • a medical solution is introduced into the inner chamber 38 .
  • Mounting hole 40 extends from interior chamber 38 to upper surface 34 of base body 28 . That is, the mounting hole 40 is open to the upper surface 34 of the base body 28.
  • the opening 42 of the mounting hole 40 that opens in the upper surface 34 of the base body 28 has a circular shape (see FIG. 2).
  • the connecting portion 30 is a tubular portion that protrudes outward from the outer peripheral surface 36 of the base body 28.
  • the inner hole 44 of the connecting portion 30 communicates with the inner chamber 38 .
  • the punctured part 26 is arranged in the mounting hole 40 of the base part 24.
  • the part to be punctured 26 is configured such that the needle body 206 (see FIG. 3) of the drug solution introduction device 200 can be punctured therein.
  • the punctured portion 26 is made of a soft resin material such as silicone rubber.
  • the punctured part 26 covers the inner chamber 38 from above in a fluid-tight manner.
  • the catheter 20 is a flexible tubular portion. One end of the catheter 20 is fixed to the inner peripheral surface of the connecting portion 30. The other end of the catheter 20 is placed in a blood vessel (not shown). The lumen 46 of the catheter 20 communicates with the interior chamber 38 of the base portion 24 via the lumen 44 of the connection portion 30 . The catheter 20 introduces the medical solution introduced into the inner chamber 38 into the blood vessel.
  • the light emitting section 22 is provided in the device main body 18.
  • the light emitting unit 22 emits visible light L2 when irradiated with near-infrared light L1.
  • the light emitting section 22 includes a wavelength conversion material 48 that converts near-infrared light L1 into visible light L2.
  • the wavelength conversion material 48 converts near-infrared light L1 having a wavelength of 650 nm or more and 2500 nm or less into visible light L2 having a wavelength of 450 nm or more and less than 650 nm.
  • the wavelength conversion material 48 converts the near-infrared light L1 having a wavelength of 650 nm or more and 2500 nm or less into visible light L2 having a wavelength of 550 nm or more and less than 650 nm.
  • the wavelength conversion material 48 includes, for example, an inorganic light up-conversion light emitter or an organic light up-conversion light emitter.
  • the inorganic optical upconversion light emitter includes, for example, a rare earth element.
  • the organic light upconversion light emitter includes, for example, an organometallic complex or a polycyclic aromatic compound.
  • the light emitting section 22 is formed by coating the surface of the device main body 18 with a wavelength conversion material 48.
  • the light emitting section 22 may be formed in a sheet shape or a film shape. In this case, the light emitting section 22 is attached to the surface of the device main body 18.
  • the light emitting section 22 is provided only at the puncture target section 26. In other words, the light emitting section 22 is not provided on the base section 24.
  • the light emitting part 22 extends annularly around the outer periphery of the punctured part 26 .
  • the light emitting section 22 is not provided at the center of the puncture target section 26 .
  • the light emitting section 22 includes a first light emitting ring section 50 and a second light emitting ring section 52.
  • the first light emitting ring section 50 and the second light emitting ring section 52 are arranged concentrically. That is, the first light emitting ring portion 50 extends in an annular shape so as to surround the center portion of the punctured portion 26 .
  • the second light emitting ring portion 52 is located outside the first light emitting ring portion 50 with a space therebetween, and extends in an annular shape so as to surround the first light emitting ring portion 50 .
  • the second light emitting ring portion 52 extends along the opening 42 of the base portion 24 .
  • the first width W1 of the first light emitting ring portion 50 and the second width W2 of the second light emitting ring portion 52 are the same (substantially the same). However, the first width W1 may be wider or narrower than the second width W2.
  • the light emitting part 22 is not limited to a double circular shape in which two light emitting ring parts (the first light emitting ring part 50 and the second light emitting ring part 52) are arranged concentrically; It may also be a multiple circular shape arranged in Further, the light emitting section 22 may be formed by omitting either the first light emitting ring section 50 or the second light emitting ring section 52.
  • the irradiation unit 14 emits near-infrared light L1 with a wavelength of 650 nm or more and 2500 nm or less.
  • the irradiation unit 14 can adjust the brightness of the near-infrared light L1.
  • detailed illustrations are omitted, it is more preferable that the irradiation unit 14 is configured to be portable by being held by hand.
  • the medical device 12 is implanted into the skin S in an initial state.
  • the catheter 20 is placed in a blood vessel (vein) not shown.
  • the surface of the skin S is irradiated with near-infrared light L1 from the irradiation unit 14.
  • the near-infrared light L1 passes through the skin S, so that the light emitting section 22 provided in the device body 18 is irradiated with the near-infrared light L1.
  • the wavelength conversion material 48 of the light emitting section 22 converts the near infrared light L1 into visible light L2.
  • the visible light L2 passes through the skin S from the light emitting section 22 and is led out of the body. Therefore, the user can directly confirm the visible light L2 emitted by the light emitting section 22. In other words, by irradiating the device main body 18 with the near-infrared light L1, the user can visually recognize the double circular light emitting section 22 through the skin S (see FIG. 2).
  • the drug solution introduction device 200 includes an introduction catheter 202, an operating section 204, a needle body 206, and the like.
  • the introduction catheter 202 is connected to a drug solution bag (not shown).
  • the other end of the introduction catheter 202 is connected to an operating section 204.
  • the operation unit 204 has a size and shape that makes it easy to operate manually.
  • a proximal end portion of a needle body 206 is fixed to the operating portion 204 .
  • the needle body 206 is formed into a tubular shape so that a medical solution can flow therethrough.
  • the lumen of the needle body 206 communicates with the lumen of the introduction catheter 202 through the interior of the operating section 204 .
  • the needle body 206 is a so-called Huber needle. Therefore, the punctured part 26 is not hollowed out by the needle body 206.
  • the needle body 206 has a sharp needle tip 208.
  • the user pinches the operating section 204 and punctures the punctured part 26 of the device main body 18 with the needle body 206 from above the skin S.
  • the user can easily position the needle body 206 at the center of the punctured part 26 by puncturing the needle body 206 into the center of the double-circular light emitting part 22 that is visible through the skin S. I can do it.
  • the user positions the needle tip 208 (the opening at the tip of the needle body 206 ) of the needle body 206 in the inner chamber 38 of the base portion 24 .
  • a medicinal solution is introduced from a medicinal solution bag (not shown) into the inner chamber 38 of the base portion 24 via the introduction catheter 202 and the needle body 206.
  • the medical solution introduced into the inner chamber 38 is guided to a blood vessel (vein) via the catheter 20.
  • the needle body 206 of the medicinal solution introduction tool 200 is removed from the punctured part 26.
  • This embodiment has the following effects.
  • the visible light L2 is emitted from the light emitting section 22 by irradiating the light emitting section 22 with the near infrared light L1, so the user can directly confirm the visible light L2 emitted by the light emitting section 22.
  • the position of the device main body 18 embedded in the skin S can be efficiently specified.
  • a visualization member that converts the light emitted by the light emitting section 22 into visible light L2
  • a battery or the like for causing the light emitting section 22 in the medical device 12 to emit light. Therefore, the medical device system 10 including the medical device 12 can be made smaller.
  • the wavelength conversion material 48 converts near-infrared light L1 with a wavelength of 650 nm or more and 2500 nm or less into visible light L2 with a wavelength of 450 nm or more and less than 650 nm.
  • the wavelength conversion material 48 preferably converts near-infrared light L1 with a wavelength of 650 nm or more and 2500 nm or less into visible light L2 with a wavelength of 550 nm or more and less than 650 nm.
  • the light emitting section 22 is formed by coating the surface of the device body 18 with a material containing the wavelength conversion material 48. Further, the light emitting section 22 may be formed in a sheet shape or a film shape, and the light emitting section 22 may be attached to the surface of the device main body 18.
  • the medical device 12 can be manufactured easily.
  • the device main body 18 has a punctured part 26 into which a needle body 206 can be punctured.
  • the light emitting section 22 is provided in the puncture target section 26 .
  • the position of the punctured part 26 can be specified by the visible light L2 emitted by the light emitting section 22, so that it becomes easier to puncture the punctured part 26 with the needle body 206.
  • the light emitting section 22 is provided on the outer periphery of the punctured section 26, and the light emitting section 22 is not provided at the center of the punctured section 26.
  • the central part of the puncture target part 26 can be easily grasped by the visible light L2 emitted by the light emitting part 22. Therefore, it becomes easier to puncture the needle body 206 into the center of the punctured part 26. Furthermore, since the light emitting part 22 is not provided in the center of the punctured part 26, there is a possibility that the wavelength conversion material 48 will enter the inner chamber 38 together with the needle 206 when the needle body 206 is punctured in the central part of the punctured part 26. can be reduced.
  • the light emitting section 22 extends annularly.
  • the light-emitting section 22 includes a first light-emitting ring section 50 that surrounds the center of the puncture target section 26 and a second light-emitting ring that surrounds the first light-emitting ring section 50 and is located outside the first light-emitting ring section 50 with an interval. 52.
  • the irradiation unit 14 can adjust the brightness of the near-infrared light L1.
  • the brightness of the visible light L2 emitted by the light emitting section 22 can be adjusted by adjusting the brightness of the near-infrared light L1.
  • the brightness of the visible light L2 emitted by the light emitting section 22 can be changed accordingly.
  • the light emitting section 22a according to the first modification will be explained.
  • the light emitting part 22a according to this modification is provided only in the punctured part 26.
  • the light emitting section 22a is not provided on the base section 24.
  • the light emitting parts 22a extend in a grid pattern.
  • the light emitting section 22a is formed by arranging a plurality of light emitting linear sections 60 in a grid pattern. The thickness and number of each light-emitting linear portion 60 (the interval between adjacent light-emitting linear portions 60), etc. can be set as appropriate.
  • the light emitting portions 22a extend in a grid pattern.
  • the punctured part 26 can be easily grasped by the light emitting part 22a.
  • the shape (linear pattern) of the light emitting section 22a can be set as appropriate.
  • the light emitting part 22b according to this modification is provided only in the punctured part 26.
  • the light emitting section 22b is not provided on the base section 24.
  • the light emitting part 22b is formed by molding the punctured part 26 from a material containing the wavelength conversion material 48 or only from the wavelength conversion material 48. In this case, the punctured part 26 also functions as the light emitting part 22b.
  • the light emitting part 22b is formed by molding the punctured part 26 from a material containing the wavelength conversion material 48 or only from the wavelength conversion material 48.
  • the entire part to be punctured 26 can be made to emit light, so the position of the part to be punctured 26 can be easily specified. Further, the light emitting section 22b can be easily provided in the device main body 18.
  • the light emitting part 22b may be formed by coating the entire portion of the punctured part 26 exposed from the base part 24 with the wavelength conversion material 48. Further, the light emitting section 22b may be formed by pasting a sheet-like or film-like wavelength conversion material 48 on the entire portion of the puncture target section 26 that is exposed from the base section 24. The light emitting part 22b may be provided in a part of the part of the punctured part 26 that is exposed from the base part 24 (for example, in a circular shape only in the central part).
  • the light emitting section 22c according to this modification is provided only on the base section 24.
  • the light emitting part 22c is not provided in the punctured part 26.
  • the light emitting part 22c is formed by molding the base part 24 from a material containing the wavelength conversion material 48 or only from the wavelength conversion material 48. In this case, the base portion 24 also functions as the light emitting portion 22c.
  • the light emitting part 22c is formed by molding the base part 24 from a material containing the wavelength conversion material 48 or only from the wavelength conversion material 48.
  • the entire base portion 24 can be made to emit light
  • the position of the device main body 18 can be easily specified.
  • the light emitting section 22c can be easily provided in the device main body 18.
  • the position of the punctured part 26 can be easily identified based on the visible light L2 emitted by the base part 24 (light emitting part 22c).
  • the light emitting part 22c may be formed by coating the entire outer surface of the base part 24 with the wavelength conversion material 48. Further, the light emitting section 22c may be formed by attaching a sheet-like or film-like wavelength conversion material 48 to the entire outer surface of the base section 24.
  • the light emitting section 22d according to this modification is provided in the entire device main body 18 (base section 24 and punctured section 26).
  • the light emitting part 22d is formed by molding the base part 24 and the punctured part 26 from a material containing the wavelength conversion material 48 or only from the wavelength conversion material 48.
  • the base portion 24 and the puncture target portion 26 also function as the light emitting portion 22d.
  • the entire device body 18 (base portion 24 and punctured portion 26) can be emitted, so the position of the device body 18 can be easily identified. Further, the light emitting section 22d can be easily provided in the device main body 18.
  • the light-emitting portion 22d is formed by coating the entire portion of the puncture target portion 26 exposed from the base portion 24 and the entire outer surface of the base portion 24 with the wavelength conversion material 48. Good too. Furthermore, the light emitting part 22d is formed by pasting a sheet-like or film-like wavelength conversion material 48 on the entire part of the punctured part 26 that is exposed from the base part 24 and the entire outer surface of the base part 24. may be formed.
  • the light emitting part may be formed by providing a wavelength conversion material on a part of the part of the punctured part exposed from the base part and on the entire or part of the outer surface of the base part.
  • the portion of the light emitting section provided at the puncture target portion may have the same shape as the light emitting sections 22 and 22a described above.
  • the portion of the light emitting section provided in the punctured part may be located only in the center of the punctured part and may be formed in a circular shape.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

医療機器システム(10)は、医療機器(12)と照射部(14)とを備える。医療機器(12)は、生体内に埋め込み可能な機器本体(18)を備える。機器本体(18)には、近赤外光(L1)が照射された場合に可視光(L2)を発する発光部(22)が設けられている。発光部(22)は、近赤外光(L1)を可視光(L2)に変換する波長変換材料(48)を含む。波長変換材料(48)は、650nm以上2500nm以下の波長の近赤外光(L1)を450nm以上650nm未満の波長の可視光(L2)に変換する。

Description

医療機器及び医療機器システム
 本発明は、医療機器及び医療機器システムに関する。
 特許第6942687号公報には、医療機器、光源及び可視化部材を備えた医療機器システムが開示されている。医療機器は、生体内に埋め込み可能な機器本体と、機器本体に設けられた発光部とを有する。発光部は、光源から励起光が照射された場合に蛍光を発する発光材を含んでいる。
 可視化部材は、発光材が発した蛍光を可視化する。可視化部材は、例えば、撮像部及び表示部である。この場合、撮像部は、発光材が発した光を視認可能な波長の光に変換させて画像情報として表示部に表示させる。また、特許第6942687号公報には、可視化部材として、発光材が発した光を可視光に変換するフィルタが例示されている。このような医療機器システムによれば、ユーザは、可視化部材を介して機器本体を視認することができるため、触診をしなくても生体内における機器本体の位置を特定できる。
 上述した従来技術では、可視化部材が必要であるため、医療機器システムが大型になり易い。また、可視化部材を介して機器本体を視認するため、生体内に埋め込まれた機器本体の位置の特定が煩雑である。
 本発明は、上述した課題を解決することを目的とする。
(1)本発明の一態様は、生体内に埋め込み可能な機器本体を備えた医療機器であって、前記機器本体には、近赤外光が照射された場合に可視光を発する発光部が設けられ、前記発光部は、前記近赤外光を前記可視光に変換する波長変換材料を含む。
(2)項目(1)記載の医療機器であって、前記波長変換材料は、650nm以上2500nm以下の波長の前記近赤外光を450nm以上650nm未満の波長の前記可視光に変換することが好ましい。
(3)項目(2)記載の医療機器であって、前記波長変換材料は、650nm以上2500nm以下の波長の前記近赤外光を550nm以上650nm未満の波長の前記可視光に変換することが好ましい。
(4)項目(1)~(3)のいずれか1つに記載の医療機器であって、前記発光部は、前記機器本体の少なくとも一部が前記波長変換材料を含む材料又は前記波長変換材料のみによって成形されることにより形成されていることが好ましい。
(5)項目(1)~(3)のいずれか1つに記載の医療機器であって、前記発光部は、前記機器本体の表面に前記波長変換材料を含む材料がコーティングされることにより形成されていることが好ましい。
(6)項目(1)~(3)のいずれか1つに記載の医療機器であって、前記発光部は、シート状又はフィルム状に形成され、前記機器本体の表面には、前記発光部が貼り付けられていることが好ましい。
(7)項目(1)~(6)のいずれか1つに記載の医療機器であって、前記機器本体は、針を穿刺可能な被穿刺部を有することが好ましい。
(8)項目(7)記載の医療機器であって、前記発光部は、前記被穿刺部に設けられていることが好ましい。
(9)項目(8)記載の医療機器であって、前記発光部は、前記被穿刺部の外周部に設けられ、前記被穿刺部の中央部には、前記発光部が設けられていないことが好ましい。
(10)項目(9)記載の医療機器であって、前記発光部は、環状に延在していることが好ましい。
(11)項目(10)記載の医療機器であって、前記発光部は、前記被穿刺部の前記中央部を囲む第1発光リング部と、前記第1発光リング部の外側に間隔を空けて位置して前記第1発光リング部を囲む第2発光リング部と、を含むことが好ましい。
(12)項目(8)記載の医療機器であって、前記発光部は、格子状に延在していることが好ましい。
(13)項目(7)記載の医療機器であって、前記機器本体は、前記被穿刺部を囲むように延在したベース部を有し、前記発光部は、前記ベース部に設けられていることが好ましい。
(14)本発明の他の態様は、医療機器システムであって、項目(1)~(13)のいずれか1つに記載の医療機器と、前記発光部に前記近赤外光を照射する照射部と、を備える。
(15)項目(14)記載の医療機器システムであって、前記照射部は、前記近赤外光の輝度を調整可能であることが好ましい。
 本発明によれば、発光部に近赤外光を照射することにより当該発光部から可視光が発するため、ユーザは、発光部が発した可視光を直接確認できる。これにより、生体内に埋め込まれた機器本体の位置を効率よく特定できる。また、発光部が発した光を可視光に変換する可視化部材が不要であり、医療機器に発光部を発光させるための電池等も必要ない。よって、医療機器を備えた医療機器システムを小型にできる。
図1は、本発明の一実施形態に係る医療機器を備えた医療機器システムの模式的断面図である。 図2は、図1の医療機器の平面説明図である。 図3は、図1の医療機器システムの使用説明図である。 図4Aは、第1変形例に係る発光部の平面説明図である。図4Bは、第2変形例に係る発光部の平面説明図である。 図5Aは、第3変形例に係る発光部の平面説明図である。図5Bは、第4変形例に係る発光部の平面説明図である。
 図1に示すように、本発明の一実施形態に係る医療機器システム10は、医療機器12及び照射部14を備える。医療機器12は、生体内に埋め込まれる。具体的に、医療機器12は、薬液(薬剤)を血管に持続的に投与するための皮下埋め込み型中心静脈アクセスポート(CVポート)である。この場合、医療機器12は、例えば、前胸部、上腕部又は前腕部の皮膚Sの内部(生体内)に埋め込まれる。薬液としては、例えば、抗がん剤、高カロリー輸液等が挙げられる。
 医療機器12は、CVポートに限定されず、人工血管シャント、ペースメーカー等の体内に埋め込まれる機器であってもよい。なお、人工血管シャントは、動脈と静脈とを互いに連結する。
 図1及び図2に示すように、医療機器12は、機器本体18、カテーテル20及び発光部22を有する。機器本体18は、ベース部24及び被穿刺部26(セプタム)を含む。ベース部24は、ベース本体28及び接続部30を有する。ベース部24は、硬質な樹脂材料により一体成形されている。ベース本体28は、底面32、上面34及び外周面36を有する。ベース本体28の外周面36は、環状に延在すると共に生体内の組織を傷つけないように湾曲している。
 図1において、ベース本体28には、内室38及び装着孔40が形成されている。内室38には、薬液が導入される。装着孔40は、内室38からベース本体28の上面34まで延在している。すなわち、装着孔40は、ベース本体28の上面34に開口している。ベース本体28の上面34に開口する装着孔40の開口部42は、円形状である(図2参照)。
 接続部30は、ベース本体28の外周面36から外方に突出した管状部である。接続部30の内孔44は、内室38に連通している。
 被穿刺部26は、ベース部24の装着孔40に配置されている。被穿刺部26は、薬液導入具200の針体206(図3参照)を穿刺可能に構成されている。被穿刺部26は、シリコーンゴム等の軟質な樹脂材料によって構成されている。被穿刺部26は、内室38を上方から液密に覆っている。
 カテーテル20は、可撓性を有する管状部である。カテーテル20の一端部は、接続部30の内周面に固着されている。カテーテル20の他端部は、図示しない血管に留置されている。カテーテル20の内腔46は、接続部30の内孔44を介してベース部24の内室38に連通している。カテーテル20は、内室38に導入された薬液を血管に導入する。
 図1及び図2において、発光部22は、機器本体18に設けられている。発光部22は、近赤外光L1が照射された場合に可視光L2を発する。発光部22は、近赤外光L1を可視光L2に変換する波長変換材料48を含む。波長変換材料48は、650nm以上2500nm以下の波長の近赤外光L1を450nm以上650nm未満の波長の可視光L2に変換する。波長変換材料48は、650nm以上2500nm以下の波長の近赤外光L1を550nm以上650nm未満の波長の可視光L2に変換するのがより好ましい。
 波長変換材料48は、例えば、無機系光アップコンバージョン発光体又は有機系光アップコンバージョン発光体を含む。無機系光アップコンバージョン発光体は、例えば、希土類元素を有する。有機系光アップコンバージョン発光体は、例えば、有機金属錯体又は多環芳香族化合物等を有する。
 発光部22は、機器本体18の表面に波長変換材料48がコーティングされることにより形成される。ただし、発光部22は、シート状又はフィルム状に形成されてもよい。この場合、発光部22は、機器本体18の表面に貼り付けられる。
 図2において、発光部22は、被穿刺部26にのみ設けられている。換言すれば、発光部22は、ベース部24に設けられていない。発光部22は、被穿刺部26の外周部に環状に延在している。被穿刺部26の中央部には、発光部22が設けられていない。
 発光部22は、第1発光リング部50及び第2発光リング部52を含む。第1発光リング部50及び第2発光リング部52は、同心円状に配置されている。すなわち、第1発光リング部50は、被穿刺部26の中央部を囲むように円環状に延在している。第2発光リング部52は、第1発光リング部50の外側に間隔を空けて位置して第1発光リング部50を囲むように円環状に延在している。第2発光リング部52は、ベース部24の開口部42に沿って延在している。
 第1発光リング部50の第1幅W1と第2発光リング部52の第2幅W2とは、互いに同一(実質的に同一)である。ただし、第1幅W1は、第2幅W2よりも広くても狭くてもよい。発光部22は、2つの発光リング部(第1発光リング部50及び第2発光リング部52)を同心円状に配置した二重円形状に限定されず、3つ以上の発光リング部を同心円状に配置した多重円形状であってもよい。また、発光部22は、第1発光リング部50及び第2発光リング部52のいずれかを省略して形成してもよい。
 図1に示すように、照射部14は、650nm以上2500nm以下の波長の近赤外光L1を発する。照射部14は、近赤外光L1の輝度を調整可能である。詳細な図示は省略するが、照射部14は、人手によって把持して持ち運び可能に構成されていることがより好ましい。
 次に、医療機器システム10の使用方法について説明する。図1に示すように、初期状態で、医療機器12は、皮膚S内に埋め込まれる。この状態で、カテーテル20は、図示しない血管(静脈)に留置される。続いて、照射部14から皮膚Sの表面に近赤外光L1を照射する。そうすると、近赤外光L1は、皮膚Sを透過するので、機器本体18に設けられた発光部22に照射される。
 発光部22に近赤外光L1が照射されると、発光部22の波長変換材料48は、近赤外光L1を可視光L2に変換する。可視光L2は、発光部22から皮膚Sを透過して体外に導出される。そのため、ユーザは、発光部22が発した可視光L2を直接確認できる。換言すれば、ユーザは、近赤外光L1を機器本体18に照射することにより、皮膚Sを介して二重円形状の発光部22を視認できる(図2参照)。
 その後、ユーザは、薬液導入具200を用いて薬液を体内に投与する。図3に示すように、薬液導入具200は、導入カテーテル202、操作部204及び針体206等を有する。
 導入カテーテル202の一端部は、図示しない薬液バッグに接続される。導入カテーテル202の他端部は、操作部204に接続されている。操作部204は、人手によって操作し易い大きさ及び形状を有する。操作部204には、針体206の基端部が固着されている。針体206は、薬液が流通可能なように管状に形成されている。針体206の内腔は、操作部204の内部を介して導入カテーテル202の内腔に連通している。針体206は、いわゆるヒューバー針である。そのため、針体206によって被穿刺部26がくり抜かれることはない。針体206は、鋭利な針先208を有する。
 具体的に、ユーザは、操作部204を摘まみ、皮膚Sの上から機器本体18の被穿刺部26に針体206を穿刺する。この時、ユーザは、皮膚Sを介して視認できる二重円形状の発光部22の中心に針体206を穿刺することにより、針体206を被穿刺部26の中央部に簡単に位置させることができる。なお、ユーザは、針体206の針先208(針体206の先端開口)をベース部24の内室38に位置させる。
 続いて、図示しない薬液バッグから導入カテーテル202及び針体206を介してベース部24の内室38に薬液を導入する。内室38に導入された薬液は、カテーテル20を介して血管(静脈)に導かれる。血管内への薬液の投与が完了すると、薬液導入具200の針体206を被穿刺部26から抜去する。
 本実施形態は、以下の効果を奏する。
 本実施形態によれば、発光部22に近赤外光L1を照射することにより当該発光部22から可視光L2が発するため、ユーザは、発光部22が発した可視光L2を直接確認できる。これにより、皮膚S内に埋め込まれた機器本体18の位置を効率よく特定できる。また、発光部22が発した光を可視光L2に変換する可視化部材が不要であり、医療機器12に発光部22を発光させるための電池等も必要ない。よって、医療機器12を備えた医療機器システム10を小型にできる。
 波長変換材料48は、650nm以上2500nm以下の波長の近赤外光L1を450nm以上650nm未満の波長の可視光L2に変換する。
 このような構成によれば、発光部22が発した可視光L2を確認し易くなる。
 波長変換材料48は、650nm以上2500nm以下の波長の近赤外光L1を550nm以上650nm未満の波長の可視光L2に変換するのが好ましい。
 この場合、発光部22が発した可視光L2を一層確認し易くなる。
 発光部22は、機器本体18の表面に波長変換材料48を含む材料がコーティングされることにより形成されている。また、発光部22は、シート状又はフィルム状に形成され、機器本体18の表面には、発光部22が貼り付けられてもよい。
 このような構成によれば、医療機器12を簡単に製造できる。
 機器本体18は、針体206を穿刺可能な被穿刺部26を有する。発光部22は、被穿刺部26に設けられている。
 このような構成によれば、発光部22が発した可視光L2により被穿刺部26の位置を特定できるため、針体206を被穿刺部26に穿刺し易くなる。
 発光部22は、被穿刺部26の外周部に設けられ、被穿刺部26の中央部には、発光部22が設けられていない。
 このような構成によれば、発光部22が発した可視光L2により被穿刺部26の中央部を把握し易くなる。そのため、針体206を被穿刺部26の中央部に穿刺し易くなる。また、被穿刺部26の中央部に発光部22を設けていないため、針体206を被穿刺部26の中央部に穿刺した時に波長変換材料48が針体206と共に内室38に入り込む可能性を低減できる。
 発光部22は、環状に延在している。
 このような構成によれば、被穿刺部26の中央部を一層把握し易くなる。
 発光部22は、被穿刺部26の中央部を囲む第1発光リング部50と、第1発光リング部50の外側に間隔を空けて位置して第1発光リング部50を囲む第2発光リング部52と、を含む。
 このような構成によれば、被穿刺部26の中央部をより一層把握し易くなる。
 医療機器システム10において、照射部14は、近赤外光L1の輝度を調整可能である。
 このような構成によれば、近赤外光L1の輝度を調整することにより発光部22が発する可視光L2の輝度を調整できるので、例えば、医療機器12が埋め込まれる位置(深さ等)に応じて発光部22が発する可視光L2の輝度を変更できる。
(第1変形例)
 次に、第1変形例に係る発光部22aについて説明する。図4Aに示すように、本変形例に係る発光部22aは、被穿刺部26にのみ設けられている。換言すれば、発光部22aは、ベース部24に設けられていない。発光部22aは、格子状に延在している。具体的に、発光部22aは、複数の発光線状部60が格子状に配置されることによって形成されている。各発光線状部60の太さ及び本数(互いに隣接する発光線状部60の間隔)等は、適宜設定可能である。
 本変形例において、発光部22aは、格子状に延在している。
 このような構成によれば、発光部22aによって被穿刺部26を容易に把握できる。
 本変形例において、発光部22aの形状(線状パターン)は、適宜設定可能である。
 (第2変形例)
 次に、第2変形例に係る発光部22bについて説明する。図4Bに示すように、本変形例に係る発光部22bは、被穿刺部26にのみ設けられている。換言すれば、発光部22bは、ベース部24に設けられていない。具体的に、発光部22bは、被穿刺部26が波長変換材料48を含む材料又は波長変換材料48のみによって成形されることにより形成されている。この場合、被穿刺部26は、発光部22bとしても機能する。
 本変形例において、発光部22bは、被穿刺部26が波長変換材料48を含む材料又は波長変換材料48のみによって成形されることにより形成されている。
 このような構成によれば、被穿刺部26の全体を発光させることができるため、被穿刺部26の位置を容易に特定できる。また、機器本体18に発光部22bを簡単に設けることができる。
 本変形例において、発光部22bは、被穿刺部26のうちベース部24から露出している部分の全体に波長変換材料48をコーティングすることにより形成されてもよい。また、発光部22bは、シート状又はフィルム状の波長変換材料48を被穿刺部26のうちベース部24から露出している部分の全体に貼り付けることにより形成されてもよい。発光部22bは、被穿刺部26のうちベース部24から露出している部分の一部(例えば、中央部分にのみ円形状に)設けられてもよい。
 (第3変形例)
 次に、第3変形例に係る発光部22cについて説明する。図5Aに示すように、本変形例に係る発光部22cは、ベース部24にのみ設けられている。換言すれば、発光部22cは、被穿刺部26に設けられていない。具体的に、発光部22cは、ベース部24が波長変換材料48を含む材料又は波長変換材料48のみによって成形されることにより形成されている。この場合、ベース部24は、発光部22cとしても機能する。
 本変形例において、発光部22cは、ベース部24が波長変換材料48を含む材料又は波長変換材料48のみによって成形されることにより形成されている。
 このような構成によれば、ベース部24の全体を発光させることができるため、機器本体18の位置を容易に特定できる。また、機器本体18に発光部22cを簡単に設けることができる。さらに、ベース部24(発光部22c)が発した可視光L2に基づいて、被穿刺部26の位置を容易に特定できる。
 本変形例において、発光部22cは、ベース部24の外表面の全体に波長変換材料48をコーティングすることにより形成されてもよい。また、発光部22cは、シート状又はフィルム状の波長変換材料48をベース部24の外表面の全体に貼り付けることにより形成されてもよい。
 (第4変形例)
 次に、第4変形例に係る発光部22dについて説明する。図5Bに示すように、本変形例に係る発光部22dは、機器本体18の全体(ベース部24及び被穿刺部26)に設けられている。具体的に、発光部22dは、ベース部24及び被穿刺部26が波長変換材料48を含む材料又は波長変換材料48のみによって成形されることにより形成されている。この場合、ベース部24及び被穿刺部26は、発光部22dとしても機能する。
 このような構成によれば、機器本体18の全体(ベース部24及び被穿刺部26)を発光させることができるため、機器本体18の位置を容易に特定できる。また、機器本体18に発光部22dを簡単に設けることができる。
 本変形例において、発光部22dは、被穿刺部26のうちベース部24から露出している部分の全体とベース部24の外表面の全体とに波長変換材料48をコーティングすることにより形成されてもよい。また、発光部22dは、シート状又はフィルム状の波長変換材料48を被穿刺部26のうちベース部24から露出している部分の全体とベース部24の外表面の全体とに貼り付けることにより形成されてもよい。
 本発明において、発光部は、被穿刺部のうちベース部から露出している部分の一部とベース部の外表面の全体又は一部とに波長変換材料を設けることによって形成されてもよい。この場合、発光部のうち被穿刺部に設けられる部分は、上述した発光部22、22aと同様の形状を有してもよい。また、発光部のうち被穿刺部に設けられる部分は、被穿刺部の中央部分にのみ位置すると共に円形状に形成されてもよい。
 なお、本発明は、上述した開示に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得る。

Claims (15)

  1.  生体内に埋め込み可能な機器本体を備えた医療機器であって、
     前記機器本体には、近赤外光が照射された場合に可視光を発する発光部が設けられ、
     前記発光部は、前記近赤外光を前記可視光に変換する波長変換材料を含む、医療機器。
  2.  請求項1記載の医療機器であって、
     前記波長変換材料は、650nm以上2500nm以下の波長の前記近赤外光を450nm以上650nm未満の波長の前記可視光に変換する、医療機器。
  3.  請求項2記載の医療機器であって、
     前記波長変換材料は、650nm以上2500nm以下の波長の前記近赤外光を550nm以上650nm未満の波長の前記可視光に変換する、医療機器。
  4.  請求項1記載の医療機器であって、
     前記発光部は、前記機器本体の少なくとも一部が前記波長変換材料を含む材料又は前記波長変換材料のみによって成形されることにより形成されている、医療機器。
  5.  請求項1記載の医療機器であって、
     前記発光部は、前記機器本体の表面に前記波長変換材料を含む材料がコーティングされることにより形成されている、医療機器。
  6.  請求項1記載の医療機器であって、
     前記発光部は、シート状又はフィルム状に形成され、
     前記機器本体の表面には、前記発光部が貼り付けられている、医療機器。
  7.  請求項1記載の医療機器であって、
     前記機器本体は、針を穿刺可能な被穿刺部を有する、医療機器。
  8.  請求項7記載の医療機器であって、
     前記発光部は、前記被穿刺部に設けられている、医療機器。
  9.  請求項8記載の医療機器であって、
     前記発光部は、前記被穿刺部の外周部に設けられ、
     前記被穿刺部の中央部には、前記発光部が設けられていない、医療機器。
  10.  請求項9記載の医療機器であって、
     前記発光部は、環状に延在している、医療機器。
  11.  請求項10記載の医療機器であって、
     前記発光部は、
     前記被穿刺部の前記中央部を囲む第1発光リング部と、
     前記第1発光リング部の外側に間隔を空けて位置して前記第1発光リング部を囲む第2発光リング部と、を含む、医療機器。
  12.  請求項8記載の医療機器であって、
     前記発光部は、格子状に延在している、医療機器。
  13.  請求項7記載の医療機器であって、
     前記機器本体は、前記被穿刺部を囲むように延在したベース部を有し、
     前記発光部は、前記ベース部に設けられている、医療機器。
  14.  請求項1~13のいずれか1項に記載の医療機器と、
     前記発光部に前記近赤外光を照射する照射部と、を備えた医療機器システム。
  15.  請求項14記載の医療機器システムであって、
     前記照射部は、前記近赤外光の輝度を調整可能である、医療機器システム。
PCT/JP2023/027481 2022-08-02 2023-07-27 医療機器及び医療機器システム WO2024029432A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022123030 2022-08-02
JP2022-123030 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024029432A1 true WO2024029432A1 (ja) 2024-02-08

Family

ID=89848988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027481 WO2024029432A1 (ja) 2022-08-02 2023-07-27 医療機器及び医療機器システム

Country Status (1)

Country Link
WO (1) WO2024029432A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060568A (ja) * 2011-09-15 2013-04-04 Tokai Univ アップコンバージョン型蛍光体
JP2013531999A (ja) * 2010-05-05 2013-08-15 シー・アール・バード・インコーポレーテッド 埋め込まれた装置を識別し、位置を特定するためのシステムおよび方法
JP2017507764A (ja) * 2014-02-04 2017-03-23 メディカル コンポーネンツ,インコーポレイテッド 移植された医療デバイスの光に基づく位置づけおよび識別
JP2020074905A (ja) * 2018-11-07 2020-05-21 古河電気工業株式会社 医療器具、医療器具確認システム及び医療器具確認方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531999A (ja) * 2010-05-05 2013-08-15 シー・アール・バード・インコーポレーテッド 埋め込まれた装置を識別し、位置を特定するためのシステムおよび方法
JP2013060568A (ja) * 2011-09-15 2013-04-04 Tokai Univ アップコンバージョン型蛍光体
JP2017507764A (ja) * 2014-02-04 2017-03-23 メディカル コンポーネンツ,インコーポレイテッド 移植された医療デバイスの光に基づく位置づけおよび識別
JP2020074905A (ja) * 2018-11-07 2020-05-21 古河電気工業株式会社 医療器具、医療器具確認システム及び医療器具確認方法

Similar Documents

Publication Publication Date Title
KR101887096B1 (ko) 피하 정맥 접근 포트 및 이를 가지는 약물 주입 장치
ES2577502T3 (es) Dispositivos implantables de administración de fármacos y aparato para recargar los dispositivos
US5843132A (en) Self-contained, self-powered temporary intravenous pacing catheter assembly
US20070078391A1 (en) Implantable medical device
KR20210016443A (ko) 다수의 어레이들을 사용하는 의료 이미징 방법
US20200188577A1 (en) Medical port locator system and method
WO2021039705A1 (ja) 医療装置、体外ユニット、送電シートおよび医療器具
WO2024029432A1 (ja) 医療機器及び医療機器システム
US20130237812A1 (en) Appliance for an Electromagnetic Spectrum Sensor Monitoring an Intravascular Infusion
DE102015122016B4 (de) Port und Portortungsvorrichtung
AU2019202806B2 (en) Appliance for an electromagnetic spectrum sensor monitoring an intravascular infusion
JP7129543B2 (ja) 医療装置、体外ユニット、送電シートおよび医療器具
JP7129541B2 (ja) 医療装置、体外ユニット、送電シートおよび医療器具
JP7129544B2 (ja) 医療装置、体外ユニット、送電シートおよび医療器具
JP7129542B2 (ja) 医療装置、体外ユニット、送電シートおよび医療器具
CN211301665U (zh) 一种ct、核磁介入引导架
JP7233514B2 (ja) 医療装置、体外ユニット、送電シートおよび医療器具
US20210361821A1 (en) Medical device having a photosensitizer and related methods
CN216777052U (zh) 一种便捷式血管显影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849987

Country of ref document: EP

Kind code of ref document: A1