WO2024029398A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2024029398A1
WO2024029398A1 PCT/JP2023/027163 JP2023027163W WO2024029398A1 WO 2024029398 A1 WO2024029398 A1 WO 2024029398A1 JP 2023027163 W JP2023027163 W JP 2023027163W WO 2024029398 A1 WO2024029398 A1 WO 2024029398A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
region
sub
finger
semiconductor device
Prior art date
Application number
PCT/JP2023/027163
Other languages
French (fr)
Japanese (ja)
Inventor
啓示 クレンデネン
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024029398A1 publication Critical patent/WO2024029398A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present disclosure relates to a semiconductor device.
  • Patent Document 1 discloses a semiconductor device having a trench gate structure in which a gate electrode is embedded in a gate trench.
  • the semiconductor device described in Patent Document 1 includes a gate main surface electrode that integrally includes a gate pad electrode and a gate finger electrode.
  • the gate finger electrode is electrically connected to the gate electrodes of the plurality of trench gate structures via the plurality of gate plug electrodes.
  • the shorter the length of the gate trench the lower the resistance of the electrode (eg, gate electrode) embedded in the gate trench.
  • resistance and parasitic capacitance caused by wiring layout (eg, gate fingers) to reduce the length of the gate trench may adversely affect the switching characteristics of the semiconductor device.
  • a semiconductor device includes a semiconductor substrate, a semiconductor layer formed on the semiconductor substrate, and including an outer peripheral region and an inner region having a rectangular outer edge surrounded by the outer peripheral region in plan view. , a plurality of gate trenches formed in the semiconductor layer, an insulating layer formed on the semiconductor layer, and a plurality of gate electrodes, each of which is connected to a corresponding one of the plurality of gate trenches.
  • a plurality of gate electrodes and a plurality of field plate electrodes are embedded through an insulating layer, each of which is embedded in a corresponding one of the plurality of gate trenches while being spaced apart from the gate electrode.
  • the gate wiring includes a plurality of outer circumference gate fingers arranged in the outer circumference region, the plurality of outer circumference gate fingers spaced apart from each other by a plurality of gaps arranged along the outer edge of the inner region, and the inner region. a plurality of inner gate fingers disposed in the plurality of outer circumferential gate fingers, each inner gate finger being connected to at least one of the plurality of outer circumferential gate fingers.
  • the inner region includes a plurality of sub-regions separated by at least two intersecting inner gate fingers among the plurality of inner gate fingers.
  • the source wiring includes a plurality of inner segments arranged in each of the plurality of sub-regions and an outer peripheral segment arranged in the outer peripheral region.
  • the outer peripheral segment is continuous with at least two of the plurality of inner segments, and each of the at least two inner segments is adjacent to a sub-region of the plurality of gaps in which the inner segment is disposed. It is connected to the outer peripheral segment via a gap.
  • switching characteristics can be improved by reducing resistance and parasitic capacitance caused by wiring layout.
  • FIG. 1 is a schematic plan view of an exemplary semiconductor device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the semiconductor device taken along line F2-F2 in FIG.
  • FIG. 3 is a schematic cross-sectional view of the semiconductor device taken along line F3-F3 in FIG.
  • FIG. 4 is a schematic plan view of an exemplary semiconductor device according to a comparative example.
  • FIG. 5 is a graph showing the feedback capacitance of a semiconductor device.
  • FIG. 6 is a schematic plan view of an exemplary semiconductor device according to the second embodiment.
  • FIG. 7 is a schematic plan view of an exemplary semiconductor device according to the third embodiment.
  • FIG. 8 is a schematic cross-sectional view of an exemplary semiconductor device for explaining a modification of the trench gate structure.
  • FIG. 1 is a schematic plan view of an exemplary semiconductor device 10 according to the first embodiment.
  • the semiconductor device 10 may be, for example, a MISFET having a trench gate structure.
  • the semiconductor device 10 includes a semiconductor substrate 12, a semiconductor layer 14 formed on the semiconductor substrate 12, a plurality of gate trenches 16 formed in the semiconductor layer 14, and an insulating layer 18 formed on the semiconductor layer 14. include.
  • the Z-axis direction of the mutually orthogonal XYZ axes shown in FIG. 1 is a direction orthogonal to the surface of the semiconductor substrate 12. Note that the term "planar view" used in this specification refers to viewing the semiconductor device 10 from above along the Z-axis direction, unless explicitly stated otherwise.
  • the semiconductor substrate 12 may be a Si substrate.
  • the semiconductor layer 14 may be a Si epitaxial layer.
  • numerals 12 and 14 indicate rectangular outer edges of the semiconductor substrate 12 and the semiconductor layer 14.
  • the area defined by the outer edge of semiconductor substrate 12 shown in FIG. 1 may correspond to one chip (die).
  • Insulating layer 18 may include at least one of a silicon oxide (SiO 2 ) layer and a silicon nitride (SiN) layer.
  • FIG. 2 is a schematic cross-sectional view of the semiconductor device 10 taken along line F2-F2 in FIG.
  • FIG. 2 shows a cross section of the gate trench 16 of the first group S1 in the YZ plane
  • the cross sections of the gate trench 16 of the third group S3 and the gate trench 16 of the fifth group S5 are also similar to FIG. It's fine.
  • the cross sections of the gate trenches 16 of the second group S2 and the gate trenches 16 of the fourth group S4 in the XZ plane may also be similar to those in FIG. 2 .
  • FIG. 2 shows a schematic cross-sectional view of the semiconductor device 10 taken along line F2-F2 in FIG.
  • the semiconductor substrate 12 may include a top surface 12A and a bottom surface 12B opposite to the top surface 12A.
  • the semiconductor substrate 12 may correspond to a drain region of a MISFET.
  • the Z-axis direction is a direction perpendicular to the top surface 12A and bottom surface 12B of the semiconductor substrate 12.
  • the semiconductor layer 14 includes a drift region 20 formed on the semiconductor substrate (drain region) 12, a body region 22 formed on the drift region 20, and a source region 24 formed on the body region 22.
  • the drain region formed by the semiconductor substrate 12 may be an n-type region containing n-type impurities.
  • the n-type impurity concentration of the semiconductor substrate 12 may be 1 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the semiconductor substrate 12 may have a thickness of 50 ⁇ m or more and 450 ⁇ m or less.
  • the drift region 20 may be an n-type region containing n-type impurities at a lower concentration than the semiconductor substrate (drain region) 12.
  • the n-type impurity concentration of the drift region 20 may be 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • Drift region 20 may have a thickness of 1 ⁇ m or more and 25 ⁇ m or less.
  • Body region 22 may be a p-type region containing p-type impurities.
  • the p-type impurity concentration of body region 22 may be 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • Body region 22 may have a thickness of 0.2 ⁇ m or more and 1.0 ⁇ m or less.
  • Source region 24 may be an n-type region containing a higher concentration of n-type impurities than drift region 20 .
  • the n-type impurity concentration of the source region 24 may be 1 ⁇ 10 19 cm ⁇ 3 or more and 1 ⁇ 10 21 cm ⁇ 3 or less.
  • the source region 24 may have a thickness of 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the n-type is also referred to as a first conductivity type, and the p-type is also referred to as a second conductivity type.
  • the n-type impurity may be, for example, phosphorus (P) or arsenic (As).
  • the p-type impurity may be, for example, boron (B), aluminum (Al), or the like.
  • the semiconductor device 10 can further include a drain electrode 26 formed on the bottom surface 12B of the semiconductor substrate 12.
  • the drain electrode 26 is electrically connected to the semiconductor substrate (drain region) 12.
  • Drain electrode 26 may be formed from at least one of titanium (Ti), nickel (Ni), gold (Au), silver (Ag), copper (Cu), Al, Cu alloy, and Al alloy. .
  • the gate trench 16 has an opening in the upper surface 14A of the semiconductor layer 14 and has a depth in the Z-axis direction. Gate trench 16 has sidewalls 16A and bottom walls 16B. Gate trench 16 penetrates source region 24 and body region 22 of semiconductor layer 14 to reach drift region 20 . Therefore, the bottom wall 16B of the gate trench 16 is adjacent to the drift region 20.
  • the gate trench 16 may have a depth of 1 ⁇ m or more and 10 ⁇ m or less. Note that the depth of the gate trench 16 may correspond to the distance from the top surface 14A of the semiconductor layer 14 to the bottom wall 16B of the gate trench 16 in the Z-axis direction.
  • the sidewall 16A of the gate trench 16 may extend in the Z-axis direction (direction perpendicular to the upper surface 14A of the semiconductor layer 14), or may be inclined with respect to the Z-axis direction. In one example, the sidewall 16A may be inclined with respect to the Z-axis direction so that the width of the gate trench 16 becomes smaller toward the bottom wall 16B. Further, the bottom wall 16B of the gate trench 16 does not necessarily have to be flat, and may be partially or entirely curved, for example.
  • the semiconductor device 10 includes a plurality of gate electrodes 28 and a plurality of field plate electrodes 30.
  • Each of the plurality of gate electrodes 28 is embedded in a corresponding one of the plurality of gate trenches 16 with an insulating layer 18 interposed therebetween.
  • Each of the plurality of field plate electrodes 30 is embedded in a corresponding one of the plurality of gate trenches 16 with an insulating layer 18 interposed therebetween while being separated from the gate electrode 28 .
  • Gate electrode 28 may be configured to have a gate voltage applied to it, and field plate electrode 30 may be configured to have a reference voltage (or source voltage) applied to it.
  • Gate electrode 28 and field plate electrode 30 may be formed from conductive polysilicon, in one example.
  • the gate electrode 28 may include a top surface 28A covered with the insulating layer 18 and a bottom surface 28B opposite to the top surface 28A.
  • Field plate electrode 30 is arranged below gate electrode 28 in gate trench 16 . More specifically, the field plate electrode 30 may be arranged between the bottom surface 28B of the gate electrode 28 and the bottom wall 16B of the gate trench 16. At least a portion of the bottom surface 28B of the gate electrode 28 faces the field plate electrode 30 with the insulating layer 18 in between.
  • Gate electrode 28 further includes a side surface 28C that faces sidewall 16A of gate trench 16.
  • the upper surface 28A of the gate electrode 28 may be located below the upper surface 14A of the semiconductor layer 14. Further, the bottom surface 28B of the gate electrode 28 is located near the interface between the drift region 20 and the body region 22 in the Z-axis direction, and preferably may be located below the interface.
  • the top surface 28A and bottom surface 28B of the gate electrode 28 may be flat or curved.
  • the gate electrode 28 and the field plate electrode 30 are surrounded by the insulating layer 18.
  • Field plate electrode 30 may have a smaller width than gate electrode 28. Due to the relatively small width of field plate electrode 30, the thickness of insulating layer 18 surrounding field plate electrode 30 is relatively large.
  • the semiconductor device 10 may further include a source contact plug 32 that penetrates the insulating layer 18.
  • the source contact plug 32 extends parallel to the gate trenches 16 in plan view, and may be disposed between the two gate trenches 16 (see FIG. 1).
  • the semiconductor device 10 further includes a source wiring 34 formed on the insulating layer 18.
  • the source wiring 34 may be configured to be applied with a reference voltage (or source voltage).
  • the source wiring 34 is connected to the source contact plug 32.
  • Semiconductor layer 14 may further include contact region 36 .
  • Contact region 36 may be a p-type region containing p-type impurities.
  • the p-type impurity concentration of the contact region 36 is higher than that of the body region 22, and may be 1 ⁇ 10 19 cm ⁇ 3 or more and 1 ⁇ 10 21 cm ⁇ 3 or less.
  • Source contact plug 32 extends through insulating layer 18 and source region 24 to contact contact region 36 .
  • Contact region 36 is electrically connected to source wiring 34 via source contact plug 32 .
  • the insulating layer 18 includes a gate insulating portion 38 that is interposed between the gate electrode 28 and the semiconductor layer 14 and covers the side wall 16A of the gate trench 16.
  • the gate insulating portion 38 is a part of the insulating layer 18 between the side surface 28C of the gate electrode 28 and the side wall 16A of the gate trench 16.
  • Gate electrode 28 faces semiconductor layer 14 with gate insulating section 38 in between.
  • a channel is formed in the p-type body region 22 adjacent to the gate insulating portion 38.
  • the semiconductor device 10 can control the flow of electrons in the Z-axis direction between the n-type source region 24 and the n-type drift region 20 via this channel. Further, since the source wiring 34 is electrically connected to the field plate electrode 30, the electric field concentration within the gate trench 16 can be alleviated, and the withstand voltage of the semiconductor device 10 can be improved.
  • the semiconductor layer 14 includes an outer peripheral region 40 and an inner region 42 having a rectangular outer edge surrounded by the outer peripheral region 40 in plan view.
  • the boundary between the outer circumferential region 40 and the inner region 42 is indicated by a chain double-dashed line in FIG.
  • the outer edge of the outer peripheral region 40 may coincide with the outer edge of the semiconductor layer 14 in plan view, or may be located inside the outer edge of the semiconductor layer 14. In one example, the outer peripheral region 40 may be located between the outer edge of the semiconductor layer 14 and the inner region 42.
  • the rectangular outer edge of the inner region 42 has two sides extending in the Y-axis direction and two sides extending in the X-axis direction in plan view.
  • the Y-axis direction may be referred to as a first direction
  • the X-axis direction may be referred to as a second direction.
  • the second direction is a direction perpendicular to the first direction in plan view.
  • the semiconductor device 10 further includes a gate wiring 44 formed on the insulating layer 18 and electrically connected to the plurality of gate electrodes 28 (see FIG. 2).
  • the source wiring 34 is formed on the insulating layer 18 and is spaced apart from the gate wiring 44.
  • the source wiring 34 may be separated from the gate wiring 44 by a predetermined distance (determined in consideration of breakdown voltage, etc.). As described above, the source wiring 34 is electrically connected to the plurality of field plate electrodes 30 (see FIG. 2).
  • the gate wiring 44 includes a plurality of outer peripheral gate fingers 46 arranged in the outer peripheral region 40.
  • the plurality of peripheral gate fingers 46 are spaced apart from each other by a plurality of gaps 48 located along the outer edge of the inner region 42 .
  • the plurality of peripheral gate fingers 46 may include four peripheral gate fingers 46A, 46B, 46C, and 46D. More specifically, the plurality of outer circumferential gate fingers 46 include a first outer circumferential gate finger 46A and a second outer circumferential gate finger 46B extending in the Y-axis direction, and a third outer circumferential gate finger 46C and a fourth outer circumferential gate finger extending in the X-axis direction.
  • the finger 46D may be included.
  • the gate wiring 44 further includes a plurality of inner gate fingers 50 arranged in the inner region 42.
  • Each of the plurality of inner gate fingers 50 is connected to at least one of the plurality of outer circumferential gate fingers 46.
  • the plurality of inner gate fingers 50 may include a first inner gate finger 50A extending in the Y-axis direction and a second inner gate finger 50B extending in the X-axis direction.
  • the inner region 42 includes a plurality of sub-regions 52 separated by at least two of the plurality of inner gate fingers 50 that intersect with each other. Each of the plurality of sub-regions 52 is adjacent to at least one of the plurality of peripheral gate fingers 46 . In the example of FIG. 1, the first inner gate finger 50A and the second inner gate finger 50B cross each other.
  • the plurality of sub-regions 52 include four sub-regions 52A, 52B, 52C, and 52D.
  • the four sub-regions 52A, 52B, 52C, 52D are separated by a first inner gate finger 50A and a second inner gate finger 50B that intersect with each other.
  • Each of the four sub-regions 52A, 52B, 52C, and 52D is adjacent to the first inner gate finger 50A and the second inner gate finger 50B in plan view. Further, in the example of FIG. 1, four gaps 48A, 48B, 48C, and 48D are adjacent to four sub-regions 52A, 52B, 52C, and 52D, respectively.
  • the first inner gate finger 50A is connected to the third outer gate finger 46C and the fourth outer gate finger 46D.
  • the second inner gate finger 50B is connected to the first outer gate finger 46A and the second outer gate finger 46B.
  • the gate wiring 44 may further include a gate pad 54.
  • gate pad 54 is connected to first inner gate finger 50A and fourth outer gate finger 46D.
  • the sub-region 52A is surrounded by the first inner gate finger 50A, the second inner gate finger 50B, and the first outer peripheral gate finger 46A in plan view.
  • a gap 48A adjacent to the sub-region 52A is formed between the first outer circumferential gate finger 46A and the third outer circumferential gate finger 46C.
  • the sub-region 52B is surrounded by the first inner gate finger 50A, the second inner gate finger 50B, and the third outer peripheral gate finger 46C in plan view.
  • a gap 48B adjacent to the sub-region 52B is formed between the third outer circumferential gate finger 46C and the second outer circumferential gate finger 46B.
  • the sub-region 52C is surrounded by the first inner gate finger 50A, the second inner gate finger 50B, and the fourth outer peripheral gate finger 46D in plan view.
  • a gap 48C adjacent to the sub-region 52C is formed between the fourth outer circumferential gate finger 46D and the first outer circumferential gate finger 46A.
  • the sub-region 52D is surrounded by the first inner gate finger 50A, the second inner gate finger 50B, the second outer circumferential gate finger 46B, the fourth outer circumferential gate finger 46D, and the gate pad 54 in plan view.
  • a gap 48D adjacent to the sub-region 52D is formed between the second outer circumferential gate finger 46B and the fourth outer circumferential gate finger 46D.
  • each sub-region 52 is surrounded by the gate wiring 44 except for the portion adjacent to the gap 48.
  • Each sub-region 52 is rectangular in plan view and has four sides. At least two of the plurality of gaps 48 may be formed over a length at least equal to one side of the sub-region 52 to which the gaps 48 are adjacent. In the example of FIG. 1, three of the plurality of gaps 48 are formed over a length equivalent to one side of the sub-region 52 (52A, 52B, 52C) to which the gaps 48 are adjacent. In other words, each of the sub-regions 52A, 52B, and 52C is surrounded by the gate wiring 44 on three sides.
  • the source wiring 34 includes a plurality of inner segments 56 arranged in each of the plurality of sub-regions 52 and an outer peripheral segment 58 arranged in the outer peripheral region 40 .
  • the outer circumferential segment 58 is continuous with at least two of the plurality of inner segments 56.
  • Each of the at least two inner segments 56 is connected to the outer peripheral segment 58 via a gap 48 of the plurality of gaps 48 adjacent to the sub-region 52 in which the inner segment 56 is disposed.
  • the plurality of inner segments 56 includes four inner segments 56A, 56B, 56C, and 56D arranged in four sub-regions 52A, 52B, 52C, and 52D, respectively.
  • the outer circumferential segment 58 is continuous with the four inner segments 56A, 56B, 56C, 56D.
  • Each of the four inner segments 56A, 56B, 56C, and 56D connects to the outer circumferential segment 58 through a gap 48 adjacent to the sub-region 52 in which the inner segment 56 is disposed among the four gaps 48A, 48B, 48C, and 48D. It is connected to the.
  • the inner segment 56A is connected to the outer peripheral segment 58 via the gap 48A adjacent to the sub-region 52A in which the inner segment 56A is arranged.
  • Inner segment 56B is connected to outer circumferential segment 58 via gap 48B adjacent to sub-region 52B in which inner segment 56B is located.
  • Inner segment 56C is connected to outer circumferential segment 58 via gap 48C adjacent to sub-region 52C in which inner segment 56C is located.
  • Inner segment 56D is connected to outer circumferential segment 58 via gap 48D adjacent sub-region 52D in which inner segment 56D is located.
  • the outer circumferential segment 58 may be continuous with (all of) the plurality of inner segments 56.
  • each of the plurality of inner segments 56 may be connected to the outer peripheral segment 58 through a plurality of gaps 48 that are adjacent to the sub-region 52 in which the inner segment 56 is arranged.
  • the outer peripheral segment 58 may extend along the outer edge of the semiconductor layer 14 in plan view, except for the region where the gate pad 54 is arranged.
  • Each of the plurality of gate trenches 16 can be arranged to intersect one of the plurality of outer circumferential gate fingers 46 or one of the plurality of inner gate fingers 50 in a plan view.
  • the semiconductor device 10 may further include a plurality of gate contact plugs 60.
  • the gate electrode 28 (see FIG. 2) embedded in each gate trench 16 connects one or more inner gates of the plurality of outer circumferential gate fingers 46 via at least one of the plurality of gate contact plugs 60. It may be connected to one of the fingers 50.
  • the gate contact plug 60 can be arranged in a region where each of the plurality of gate trenches 16 intersects one of the plurality of outer peripheral gate fingers 46 or one of the plurality of inner gate fingers 50 in a plan view.
  • the plurality of gate trenches 16 may include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16.
  • Each gate trench 16 of the first set S1 extends in the Y-axis direction in plan view.
  • Each gate trench 16 of the second set S2 extends in the X-axis direction in plan view.
  • Each gate trench 16 of the first set S1 and the second set S2 intersects with one of the plurality of outer circumferential gate fingers 46 in plan view.
  • the gate trenches 16 of the first set S1 and the second set S2 are arranged across the inner region 42 and the outer peripheral region 40.
  • the plurality of gate trenches 16 may include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16.
  • Each gate trench 16 of the third group S3 extends in the Y-axis direction in plan view.
  • Each gate trench 16 of the fourth group S4 extends in the X-axis direction in plan view.
  • Each gate trench 16 of the third set S3 and the fourth set S4 intersects with one of the plurality of inner gate fingers 50 in plan view.
  • the gate trenches 16 of the third set S3 and the fourth set S4 are entirely disposed within the inner region 42.
  • each gate trench 16 of the first set S1 excluding the ends
  • the main portions of each gate trench 16 of the second set S2, excluding the ends, are arranged in the sub-region 52A or the sub-region 52D.
  • the main portions of each gate trench 16 of the third group S3, excluding the ends, are arranged in the sub-region 52B or the sub-region 52C.
  • the main portions of each gate trench 16 of the fourth set S4, excluding the ends, are arranged in the sub-region 52A or the sub-region 52D.
  • the plurality of gate trenches 16 may include a fifth set S5 of gate trenches 16 (in FIG. 1 only one gate trench 16 is shown, but the fifth set includes a plurality of gate trenches 16). trench 16).
  • Each gate trench 16 of the fifth set S5 extends in the Y-axis direction in a plan view, and intersects with the fourth outer circumferential gate finger 46D in a plan view.
  • the main portion of each gate trench 16 of the fifth set S5, excluding the end portion, is arranged next to the gate pad 54 in the sub-region 52D.
  • Each set S1, S2, S3, S4, S5 may include one or more gate trenches 16. Some of the plurality of gate trenches 16 included in each set S1, S2, S3, S4, S5 may be arranged parallel to each other at equal intervals. The number of gate trenches included in each set S1, S2, S3, S4, S5 can be determined as appropriate depending on the layout.
  • the semiconductor device 10 may further include a field plate trench 62.
  • An electrode having the same potential as the field plate electrode 30 can be placed within the field plate trench 62.
  • Field plate trenches 62 can be configured to communicate with aligned gate trenches 16 whose main portions are located in the same sub-region 52.
  • the field plate trench 62 may include a portion 62A that communicates with the gate trench 16 and two portions 62B that extend parallel to the gate trench 16. Portion 62A may extend perpendicularly to gate trench 16. The two portions 62B may be provided on both sides of the gate trench 16 to be communicated with each other.
  • the electrode placed in the field plate trench 62 may be integrally connected to the field plate electrode 30 (see FIG. 2) placed in the gate trench 16 communicating with the field plate trench 62.
  • FIG. 3 is a schematic cross-sectional view of the semiconductor device taken along line F3-F3 in FIG. 1.
  • FIG. 3 shows a cross section in the YZ plane of two gate trenches 16 (one of the first set S1 and one of the third set S3) located below the inner segment 56C.
  • a gate electrode 28 and a field plate electrode 30 are arranged within each gate trench 16. Gate electrode 28 is arranged above field plate electrode 30 and connected to gate wiring 44 via gate contact plug 60 .
  • the semiconductor device 10 may further include a plurality of field plate contact plugs 64.
  • the field plate electrode 30 embedded in each gate trench 16 of the first set S1 has a first end 66 connected to the outer peripheral segment 58 via at least one of the plurality of field plate contact plugs 64; a second end 68 connected to one of the plurality of inner segments 56 (inner segment 56C in the example of FIG. 3) via at least one of the plurality of field plate contact plugs 64; good.
  • the field plate electrode 30 embedded in each gate trench 16 of the third set S3 is connected to one of the plurality of inner segments 56 (FIG. 3) via at least one of the plurality of field plate contact plugs 64.
  • a first end 70 connected to another one of the plurality of inner segments 56 (in the example shown in FIG. In the example, the inner segment 56A) may include a second end 72 connected to the inner segment 56A).
  • the gate wiring 44 includes a plurality of outer circumferential gate fingers 46 arranged in the outer circumferential region 40 .
  • the plurality of peripheral gate fingers 46 are spaced apart from each other by a plurality of gaps 48 located along the outer edge of the inner region 42 . If each of the plurality of outer peripheral gate fingers 46 were to be extended and connected to each other so that the gap 48 would be eliminated, the extended portion would generate an extra gate-drain capacitance C gd .
  • the gate-drain capacitance C gd corresponds to the feedback capacitance C rss of the semiconductor device 10 .
  • the feedback capacitance C rss is large, the switching speed of the semiconductor device 10 may decrease. Therefore, by arranging the plurality of gaps 48 along the outer edge of the inner region 42, the excess gate-drain capacitance C gd can be suppressed.
  • each of the plurality of gate trenches 16 is arranged to intersect with one of the plurality of outer circumferential gate fingers 46 or one of the plurality of inner gate fingers 50 in plan view. . Therefore, it is possible to connect the gate electrode 28 embedded in each gate trench 16 to the gate wiring 44 even if the gate finger does not extend into the region where the gap 48 is arranged.
  • the source wiring 34 includes a plurality of inner segments 56 arranged in each of the plurality of sub-regions 52 and an outer peripheral segment 58 arranged in the outer peripheral region 40.
  • the outer peripheral segment 58 is continuous with at least two of the plurality of inner segments 56, and each of the at least two inner segments 56 is connected to a subregion 52 of the plurality of gaps 48 in which the inner segment 56 is disposed. It is connected to the outer peripheral segment 58 via an adjacent gap 48 . Therefore, the resistance caused by the source wiring 34 can be reduced.
  • gate wiring 44 includes a plurality of inner gate fingers 50 arranged in inner region 42 .
  • Each of the plurality of inner gate fingers 50 is connected to at least one of the plurality of outer circumferential gate fingers 46. Therefore, the area where the gate trench 16 can be placed can be expanded, and the on-resistance R on of the semiconductor device 10 can be reduced.
  • FIG. 4 is a schematic plan view of an exemplary semiconductor device 100 according to a comparative example.
  • the same components as those of the semiconductor device 10 shown in FIG. 1 are given the same reference numerals. Furthermore, detailed description of the same components as those of the semiconductor device 10 will be omitted.
  • the semiconductor device 100 includes a gate wiring 102 and a source wiring 104 that are different from the gate wiring 44 and source wiring 34 of the semiconductor device 10 of this embodiment.
  • the gate wiring 102 is formed on the insulating layer 18 and is electrically connected to the plurality of gate electrodes 28 (see FIG. 2).
  • the source wiring 104 is formed on the insulating layer 18 and is spaced apart from the gate wiring 102.
  • the source wiring 104 is electrically connected to a plurality of field plate electrodes 30 (see FIG. 2).
  • the gate wiring 102 includes a peripheral gate finger 106 arranged in the peripheral region 40 and a gate pad 108 connected to the peripheral gate finger 106.
  • the outer peripheral gate finger 106 extends along the outer edge of the inner region 42, but does not completely surround the inner region 42 in plan view.
  • Peripheral gate fingers 106 are interrupted by a gap 110 located in peripheral region 40 .
  • the outer circumferential gate finger 106 includes a first portion 106A and a second portion 106B extending in the Y-axis direction, and a third portion 106C and a fourth portion 106D extending in the X-axis direction.
  • the first portion 106A is connected between the third portion 106C and the fourth portion 106D.
  • the second portion 106B is connected to the fourth portion 106D.
  • the second portion 106B is not connected to the third portion 106C.
  • a gap 110 is formed between the second portion 106B and the third portion 106C.
  • the gate wiring 102 further includes a first inner gate finger 112A and a second inner gate finger 112B arranged in the inner region 42.
  • the first inner gate finger 112A extends in the Y-axis direction
  • the second inner gate finger 112B extends in the X-axis direction.
  • the first inner gate finger 112A and the second inner gate finger 112B cross each other.
  • First inner gate finger 112A is connected to outer gate finger 106 and gate pad 108.
  • the second inner gate finger 112B is not connected to the outer circumferential gate finger 106, but only to the first inner gate finger 112A.
  • first inner gate finger 112A and both ends of the second inner gate finger 112B are spaced apart from the outer circumferential gate finger 106. More specifically, one end of the first inner gate finger 112A is spaced apart from the third portion 106C of the outer circumferential gate finger 106 by a gap 114. Additionally, one end of the second inner gate finger 112B is separated from the first portion 106A of the outer circumferential gate finger 106 by a gap 116. The other end of the second inner gate finger 112B is spaced from the second portion 106B of the outer circumferential gate finger 106 by a gap 118. Thus, in the semiconductor device 10 of the comparative example, three gaps 114, 116, and 118 exist in the inner region 42.
  • the inner region 42 includes four sub-regions 120A, 120B, 120C, and 120D separated by a first inner gate finger 112A and a second inner gate finger 112B that intersect with each other. Each of the four sub-regions 120A, 120B, 120C, and 120D is adjacent to the first inner gate finger 112A and the second inner gate finger 112B in plan view. Gap 110 arranged in outer peripheral region 40 is adjacent only to sub-region 120A. There is no gap in the outer peripheral region 40 adjacent to the other sub-regions 120B, 120C, and 120D.
  • the source wiring 104 includes four inner segments 122A, 122B, 122C, and 122D arranged in four sub-regions 120A, 120B, 120C, and 120D, respectively, and an outer peripheral segment 124 arranged in the outer peripheral region 40.
  • the outer circumferential segment 124 is continuous only with the inner segment 122A.
  • Inner segment 122A is connected to outer circumferential segment 124 via gap 110 adjacent sub-region 120A in which inner segment 122A is located.
  • the other inner segments 122B, 122C, 122D are not directly connected to the outer circumferential segment 124, and the inner segment 122B is connected to the inner segment 122A through a gap 114 located in the inner region 42.
  • Inner segment 122C is connected to inner segment 122A via gap 118 located in inner region 42.
  • Inner segment 122D is connected to inner segment 122B via gap 116 located in inner region 42.
  • outer peripheral segment 124 extends along the outer edge of the semiconductor layer 14 in plan view, except for the region where the gate pad 108 is arranged. Since outer circumferential segment 124 is directly connected only to inner segment 122A, there is a relatively long distance from a portion of outer circumferential segment 124 located near gate pad 108 to inner segment 122A.
  • Each of the plurality of gate trenches 16 can be arranged to intersect with the outer peripheral gate finger 106, the first inner gate finger 112A, or the second inner gate finger 112B in plan view.
  • the plurality of gate trenches 16 include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16.
  • Each gate trench 16 of the first set S1 extends in the Y-axis direction in plan view.
  • Each gate trench 16 of the second set S2 extends in the X-axis direction in plan view.
  • Each gate trench 16 of the first set S1 and the second set S2 intersects with the outer peripheral gate finger 106 in plan view.
  • the gate trenches 16 of the first set S1 and the second set S2 are arranged across the inner region 42 and the outer peripheral region 40.
  • the plurality of gate trenches 16 include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16.
  • Each gate trench 16 of the third group S3 extends in the Y-axis direction in plan view.
  • Each gate trench 16 of the fourth group S4 extends in the X-axis direction in plan view.
  • Each gate trench 16 of the third set S3 intersects with the second inner gate finger 112B in plan view.
  • Each gate trench 16 of the fourth set S4 intersects with the first inner gate finger 112A in plan view.
  • the gate trenches 16 of the third set S3 and the fourth set S4 are entirely disposed within the inner region 42.
  • the plurality of gate trenches 16 include the fifth set S5 of gate trenches 16 (although only one gate trench 16 is shown in FIG. 4, it may include a plurality of gate trenches 16).
  • Each gate trench 16 of the fifth set S5 extends in the Y-axis direction in a plan view, and intersects with the outer peripheral gate finger 106 in a plan view.
  • the main portion of each gate trench 16 of the fifth set S5, excluding the end portion, is arranged next to the gate pad 108 in the sub-region 120D.
  • the outer peripheral gate fingers 106 extend to regions that do not intersect with the gate trenches 16. Specifically, the first portion 106A of the outer peripheral gate finger 106 adjacent to the sub-region 120B does not intersect with the gate trench 16. Further, the second portion 106B of the outer peripheral gate finger adjacent to the sub-region 120C does not intersect with the gate trench 16. Since the gate wiring 102 exists in a region that does not intersect with the gate trench 16, an extra gate-drain capacitance C gd may occur in the semiconductor device 100.
  • the plurality of outer peripheral gate fingers 46 are separated from each other by a plurality of gaps 48 arranged along the outer edge of the inner region 42.
  • a plurality of gaps 48 arranged along the outer edge of the inner region 42.
  • FIG. 5 is a graph showing the feedback capacitance C rss of the semiconductor devices of the example and the comparative example.
  • the vertical axis represents the feedback capacitance
  • the horizontal axis represents the drain-source voltage. Note that the vertical and horizontal axes are logarithmic axes.
  • the example corresponds to the semiconductor device 10 of the first embodiment
  • the comparative example corresponds to the semiconductor device 100 shown in FIG. 4.
  • the outer peripheral segment 124 of the source wiring 104 is directly connected only to the inner segment 122A.
  • the distance from the field plate contact plug 64 disposed in the area where the gate trench 16 and the outer peripheral segment 124 intersect, which are included in the fifth set S5 shown in FIG. It is relatively long, about 40% of the length. Therefore, in the semiconductor device 100, the resistance may increase due to the layout of the source wiring 104.
  • the outer peripheral segment 58 is continuous with at least two of the plurality of inner segments 56, and each of the at least two inner segments 56 is connected to one of the plurality of gaps 48. , is connected to the outer peripheral segment 58 via a gap 48 adjacent to the sub-region 52 in which the inner segment 56 is arranged. Therefore, the resistance caused by the source wiring 34 can be reduced.
  • one end of the first inner gate finger 112A and both ends of the second inner gate finger 112B are spaced apart from the outer peripheral gate finger 106.
  • the lengths of the first inner gate finger 112A and the second inner gate finger 112B are reduced by the three gaps 114, 116, 118 located in the inner region 42. This reduces the number of gate trenches 16 that can be placed across the first inner gate finger 112A or the second inner gate finger 112B.
  • the gate trench 16 is arranged. The area of possible active area is reduced. This can increase the on-resistance R on of the semiconductor device 100.
  • each of the plurality of inner gate fingers 50 is connected to at least one of the plurality of outer peripheral gate fingers 46. Therefore, the area where the gate trench 16 can be placed can be expanded, and the on-resistance R on of the semiconductor device 10 can be reduced.
  • the semiconductor device 10 of this embodiment has the following advantages.
  • the plurality of outer peripheral gate fingers 46 are separated from each other by a plurality of gaps 48 arranged along the outer edge of the inner region 42.
  • Each of the plurality of inner gate fingers 50 is connected to at least one of the plurality of outer circumferential gate fingers 46.
  • the outer peripheral segment 58 is continuous with at least two of the plurality of inner segments 56, and each of the at least two inner segments 56 is connected to a subregion 52 of the plurality of gaps 48 in which the inner segment 56 is disposed. It is connected to the outer peripheral segment 58 via an adjacent gap 48 .
  • At least two of the plurality of gaps 48 may be formed over a length at least equivalent to one side of the sub-region 52 to which the gaps 48 are adjacent. By making the length of gap 48 relatively large, resistance and parasitic capacitance due to wiring layout can be further reduced.
  • Each of the plurality of sub-regions 52 may be adjacent to at least one of the plurality of outer peripheral gate fingers 46. Thereby, the gate trench 16 that intersects the outer peripheral gate finger 46 in plan view can be arranged in each sub-region 52.
  • the outer peripheral segment 58 is continuous with the plurality of inner segments 56, and each of the plurality of inner segments 56 is adjacent to the sub-region 52 in which the inner segment 56 is arranged among the plurality of gaps 48.
  • the outer circumferential segment 58 may be connected to the outer circumferential segment 58 via a gap 48 .
  • Each of the plurality of gate trenches 16 may be arranged to intersect with one of the plurality of outer circumferential gate fingers 46 or one of the plurality of inner gate fingers 50 in plan view. This makes it possible to connect the gate electrode 28 in each gate trench 16 to the gate wiring 44.
  • the plurality of gate trenches 16 may include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16.
  • Each gate trench 16 of the first group S1 extends in the Y-axis direction (first direction) in plan view
  • each gate trench 16 of the second group S2 extends in the X-axis direction (second direction) in plan view.
  • Each of the gate trenches 16 of the first set S1 and the second set S2 may intersect with one of the plurality of outer circumferential gate fingers 46 in plan view. This makes it possible to reduce warpage of the semiconductor substrate 12 during wafer processing, compared to the case where only the gate trenches 16 extending in the same direction are arranged so as to intersect the outer peripheral gate fingers 46.
  • the plurality of gate trenches 16 may further include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16.
  • Each gate trench 16 of the third group S3 extends in the Y-axis direction (first direction) in a plan view
  • each gate trench 16 of the fourth group S4 extends in the X-axis direction (second direction) in a plan view.
  • Each gate trench 16 of the third set S3 and the fourth set S4 may intersect with one of the plurality of inner gate fingers 50 in plan view. Thereby, warping of the semiconductor substrate 12 during wafer processing can be reduced compared to the case where only the gate trenches 16 extending in the same direction are arranged so as to intersect the inner gate fingers 50.
  • the field plate electrode 30 embedded in each gate trench 16 of the first set S1 is connected to the outer peripheral segment 58 through at least one of the plurality of field plate contact plugs 64. and a second end 68 connected to one of the plurality of inner segments 56 via at least one of the plurality of field plate contact plugs 64 .
  • the field plate electrode 30 embedded in each gate trench 16 of the third set S3 is connected to one of the plurality of inner segments 56 via at least one of the plurality of field plate contact plugs 64. a first end 70 and a second end 72 connected to another one of the plurality of inner segments 56 via at least one of the plurality of field plate contact plugs 64. good.
  • FIG. 6 is a schematic cross-sectional view of an exemplary semiconductor device 200 according to the second embodiment.
  • the same components as those of the semiconductor device 10 shown in FIGS. 1 to 3 are given the same reference numerals. Furthermore, detailed description of the same components as those of the semiconductor device 10 will be omitted.
  • the semiconductor device 200 may be a MISFET having a trench gate structure as shown in FIG. 2, for example.
  • the semiconductor device 200 includes a gate wiring 202 and a source wiring 204 that are different from the gate wiring 44 and the source wiring 34 of the semiconductor device 10 of the first embodiment.
  • the gate wiring 202 is formed on the insulating layer 18 and is electrically connected to the plurality of gate electrodes 28 (see FIG. 2).
  • the source wiring 204 is formed on the insulating layer 18 and is spaced apart from the gate wiring 202.
  • the source wiring 204 is electrically connected to a plurality of field plate electrodes 30 (see FIG. 2).
  • the gate wiring 202 includes a plurality of outer peripheral gate fingers 206 arranged in the outer peripheral region 40.
  • the plurality of peripheral gate fingers 206 are spaced apart from each other by a plurality of gaps 208 located along the outer edge of the inner region 42 .
  • the plurality of circumferential gate fingers 206 may include six circumferential gate fingers 206A, 206B, 206C, 206D, 206E, and 206F.
  • the plurality of outer circumferential gate fingers 206 include a first outer circumferential gate finger 206A, a second outer circumferential gate finger 206B, and a third outer circumferential gate finger 206C extending in the Y-axis direction, and a fourth outer circumferential gate finger extending in the X-axis direction. It may include a gate finger 206D and a fifth outer gate finger 206E. The plurality of outer circumferential gate fingers 206 may further include a sixth outer circumferential gate finger 206F that is continuous with a second inner gate finger 210B, which will be described later.
  • the gate wiring 202 further includes a plurality of inner gate fingers 210 arranged in the inner region 42.
  • Each of the plurality of inner gate fingers 210 is connected to at least one of the plurality of outer circumferential gate fingers 206.
  • the plurality of inner gate fingers 210 may include a first inner gate finger 210A extending in the Y-axis direction, and a second inner gate finger 210B and a third inner gate finger 210C extending in the X-axis direction.
  • the inner region 42 includes a plurality of sub-regions 212 separated by at least two of the inner gate fingers 210 that intersect with each other.
  • the first inner gate finger 210A intersects the second inner gate finger 210B and the third inner gate finger 210C.
  • the plurality of sub-regions 212 include six sub-regions 212A, 212B, 212C, 212D, 212E, and 212F.
  • Each of the six sub-regions 212A, 212B, 212C, 212D, 212E, and 212F is adjacent to the first inner gate finger 210A in plan view, and is also adjacent to the second inner gate finger 210B or the third inner gate finger 210C.
  • six gaps 208 are adjacent to six sub-regions 212A, 212B, 212C, 212D, 212E, and 212F, respectively.
  • the first inner gate finger 210A is connected to the fourth outer gate finger 206D and the fifth outer gate finger 206E.
  • the second inner gate finger 210B is connected to the first outer gate finger 206A and the sixth outer gate finger 206F.
  • Third inner gate finger 210C is connected to second outer circumferential gate finger 206B and third outer circumferential gate finger 206C.
  • the gate wiring 202 may further include a gate pad 214.
  • gate pad 214 is connected to first inner gate finger 210A and fifth outer gate finger 206E.
  • the sub-region 212A is surrounded by the first inner gate finger 210A, the second inner gate finger 210B, and the first outer peripheral gate finger 206A in plan view.
  • a gap 208A adjacent to the sub-region 212A is formed between the first outer gate finger 206A and the fourth outer gate finger 206D.
  • the sub-region 212B is surrounded by the first inner gate finger 210A, the second inner gate finger 210B, and the fourth outer circumferential gate finger 206D in plan view.
  • a gap 208B adjacent to the sub-region 212B is formed between the fourth outer circumferential gate finger 206D and the sixth outer circumferential gate finger 206F.
  • the sub-region 212C is surrounded by the first inner gate finger 210A, the second inner gate finger 210B, and the third inner gate finger 210C in plan view.
  • a gap 208C adjacent to the sub-region 212C is formed between the first outer gate finger 206A and the third outer gate finger 206C.
  • the sub-region 212D is surrounded by the first inner gate finger 210A, the second inner gate finger 210B, the third inner gate finger 210C, and the second outer peripheral gate finger 206B in plan view.
  • a gap 208D adjacent to the sub-region 212D is formed between the second inner gate finger 210B and the second outer circumferential gate finger 206B.
  • the sub-region 212E is surrounded by the first inner gate finger 210A, the third inner gate finger 210C, the third outer gate finger 206C, the fifth outer gate finger 206E, and the gate pad 214 in plan view.
  • a gap 208E adjacent to the sub-region 212E is formed between the third outer gate finger 206C and the fifth outer gate finger 206E.
  • the sub-region 212F is surrounded by the first inner gate finger 210A, the third inner gate finger 210C, and the fifth outer circumferential gate finger 206E in plan view.
  • a gap 208F adjacent to the sub-region 212F is formed between the second outer circumferential gate finger 206B and the fifth outer circumferential gate finger 206E.
  • One of the six sub-regions 212 is not adjacent to any of the plurality of outer circumferential gate fingers 206 and is adjacent to the first inner gate finger 210A, the second inner gate finger 210B, and the third inner gate finger 210B. It is adjacent to gate finger 210C.
  • the other five of the six sub-regions 212 are adjacent to at least one of the plurality of outer gate fingers 206.
  • each sub-region 212 is surrounded by the gate wiring 202 except for the portion adjacent to the gap 208.
  • Each sub-region 212 is rectangular in plan view and has four sides. At least two of the plurality of gaps 208 may be formed over a length at least equal to one side of the sub-region 212 to which the gaps 208 are adjacent. In the example of FIG. 6, four of the plurality of gaps 208 are formed over a length equivalent to one side of the sub-region 212 (212A, 212B, 212C, 212F) to which the gaps 208 are adjacent. In other words, each of the sub-regions 212A, 212B, 212C, and 212F is surrounded by the gate wiring 202 on three sides.
  • the source wiring 204 includes a plurality of inner segments 216 arranged in each of the plurality of sub-regions 212 and an outer peripheral segment 218 arranged in the outer peripheral region 40.
  • the outer circumferential segment 218 is continuous with at least two of the plurality of inner segments 216.
  • Each of the at least two inner segments 216 is connected to the outer peripheral segment 58 via a gap 208 of the plurality of gaps 208 that is adjacent to the sub-region 212 in which the inner segment 216 is located.
  • the plurality of inner segments 216 includes six inner segments 216A, 216B, 216C, 216D, 216E, 216F, respectively located in six sub-regions 212A, 212B, 212C, 212D, 212E, 212F.
  • the outer circumferential segment 218 is continuous with six inner segments 216A, 216B, 216C, 216D, 216E, 216F.
  • Each of the six inner segments 216A, 216B, 216C, 216D, 216E, 216F is adjacent to the sub-region 212 in which the inner segment 216 is located among the six gaps 208A, 208B, 208C, 208D, 208E, 208F.
  • inner segment 216A is connected to outer circumferential segment 218 via gap 208A adjacent to sub-region 212A in which inner segment 216A is located.
  • Inner segment 216B is connected to outer circumferential segment 218 via gap 208B adjacent sub-region 212B in which inner segment 216B is located.
  • Inner segment 216C is connected to outer circumferential segment 218 via gap 208C adjacent to sub-region 212C in which inner segment 216C is located.
  • Inner segment 216D is connected to outer circumferential segment 218 via gap 208D adjacent sub-region 212D in which inner segment 216D is located.
  • Inner segment 216E is connected to outer circumferential segment 218 via gap 208E adjacent sub-region 212E in which inner segment 216E is located.
  • Inner segment 216F is connected to outer circumferential segment 218 via gap 208F adjacent to sub-region 212F in which inner segment 216F is located.
  • the outer circumferential segment 218 may be continuous with (all of) the plurality of inner segments 216.
  • each of the plurality of inner segments 216 may be connected to the outer peripheral segment 218 through a plurality of gaps 208 that are adjacent to the sub-region 212 in which the inner segment 216 is disposed.
  • the outer peripheral segment 218 may extend along the outer edge of the semiconductor layer 14 in plan view, except for the region where the gate pad 214 is arranged.
  • Each of the plurality of gate trenches 16 can be arranged to intersect one of the plurality of outer circumferential gate fingers 206 or one of the plurality of inner gate fingers 210 in plan view.
  • the semiconductor device 200 may further include a plurality of gate contact plugs 60.
  • the gate electrode 28 (see FIG. 2) embedded in each gate trench 16 connects one or more inner gates of the plurality of outer circumferential gate fingers 206 via at least one of the plurality of gate contact plugs 60. It may be connected to one of the fingers 210.
  • the gate contact plug 60 can be arranged in a region where each of the plurality of gate trenches 16 intersects one of the plurality of outer circumferential gate fingers 206 or one of the plurality of inner gate fingers 210 in a plan view.
  • the plurality of gate trenches 16 may include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16.
  • Each gate trench 16 of the first set S1 extends in the Y-axis direction in plan view.
  • Each gate trench 16 of the second set S2 extends in the X-axis direction in plan view.
  • Each gate trench 16 of the first set S1 and the second set S2 intersects with one of the plurality of outer circumferential gate fingers 206 in a plan view.
  • the gate trenches 16 of the first set S1 and the second set S2 are arranged across the inner region 42 and the outer peripheral region 40.
  • the plurality of gate trenches 16 may include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16.
  • Each gate trench 16 of the third group S3 extends in the Y-axis direction in plan view.
  • Each gate trench 16 of the fourth group S4 extends in the X-axis direction in plan view.
  • Each gate trench 16 of the third set S3 and the fourth set S4 intersects with one of the plurality of inner gate fingers 210 in plan view.
  • the gate trenches 16 of the third set S3 and the fourth set S4 are entirely disposed within the inner region 42.
  • each gate trench 16 of the first set S1 excluding the ends
  • the main portion of each gate trench 16 of the second set S2, excluding the end, is arranged in the sub-region 212A, the sub-region 212D, or the sub-region 212E.
  • the main portions of each gate trench 16 of the third group S3, excluding the ends, are arranged in the sub-region 212B, the sub-region 212C, or the sub-region 212F.
  • the main portions of each gate trench 16 of the fourth set S4, excluding the ends, are arranged in the sub-region 212A, the sub-region 212D, or the sub-region 212E.
  • the plurality of gate trenches 16 may include a fifth set S5 of gate trenches 16 (in FIG. 6 only one gate trench 16 is shown, but the fifth set S5 includes a plurality of gate trenches 16). (may include a gate trench 16).
  • Each gate trench 16 of the fifth set S5 extends in the Y-axis direction in a plan view, and intersects with the fifth outer circumferential gate finger 206E in a plan view.
  • the main portion of each gate trench 16 of the fifth set S5, excluding the end, is arranged next to the gate pad 214 in the sub-region 212E.
  • Each set S1, S2, S3, S4, S5 may include one or more gate trenches 16. Some of the plurality of gate trenches 16 included in each set S1, S2, S3, S4, S5 may be arranged parallel to each other at equal intervals. The number of gate trenches included in each set S1, S2, S3, S4, S5 can be determined as appropriate depending on the layout.
  • the semiconductor device 200 may further include a field plate trench 62.
  • An electrode having the same potential as the field plate electrode 30 can be placed within the field plate trench 62.
  • Field plate trenches 62 can be configured to communicate with aligned gate trenches 16 whose main portions are located in the same sub-region 212.
  • the field plate trench 62 may include a portion 62A that communicates with the gate trench 16 and two portions 62B that extend parallel to the gate trench 16. Portion 62A may extend perpendicularly to gate trench 16. The two portions 62B may be provided on both sides of the gate trench 16 to be communicated with each other.
  • the electrode placed in the field plate trench 62 may be integrally connected to the field plate electrode 30 (see FIG. 2) placed in the gate trench 16 communicating with the field plate trench 62.
  • the semiconductor device 200 may further include a plurality of field plate contact plugs 64.
  • the field plate electrode 30 (see FIG. 2) embedded in each gate trench 16 is connected to one of the outer circumferential segment 218 or one of the plurality of inner segments 216 via at least one of the plurality of field plate contact plugs 64. It may include two ends connected to.
  • Gate wiring 202 includes a plurality of outer circumferential gate fingers 206 arranged in outer circumferential region 40 .
  • the plurality of peripheral gate fingers 206 are spaced apart from each other by a plurality of gaps 208 located along the outer edge of the inner region 42 . If each of the plurality of outer circumferential gate fingers 206 is extended and connected to each other so that the gap 208 is eliminated, the extended portion causes an extra gate-drain capacitance C gd .
  • the gate-drain capacitance C gd corresponds to the feedback capacitance C rss of the semiconductor device 200.
  • the feedback capacitance C rss is large, the switching speed of the semiconductor device 200 may decrease. Therefore, by arranging the plurality of gaps 208 along the outer edge of the inner region 42, the excess gate-drain capacitance C gd can be suppressed.
  • each of the plurality of gate trenches 16 is arranged to intersect with one of the plurality of outer circumferential gate fingers 206 or one of the plurality of inner gate fingers 210 in plan view. . Therefore, it is possible to connect the gate electrode 28 embedded in each gate trench 16 to the gate wiring 202 even if the gate finger does not extend into the region where the gap 208 is arranged.
  • the source wiring 204 includes a plurality of inner segments 216 arranged in each of the plurality of sub-regions 212 and an outer peripheral segment 218 arranged in the outer peripheral region 40 .
  • the outer circumferential segment 218 is continuous with at least two of the plurality of inner segments 216, and each of the at least two inner segments 216 is connected to a subregion 212 of the plurality of gaps 208 in which the inner segment 216 is disposed. It is connected to outer circumferential segment 218 via an adjacent gap 208 . Therefore, the resistance caused by the source wiring 204 can be reduced.
  • the gate wiring 202 includes a plurality of inner gate fingers 210 arranged in the inner region 42 .
  • Each of the plurality of inner gate fingers 210 is connected to at least one of the plurality of outer circumferential gate fingers 206. Therefore, the area where the gate trench 16 can be placed can be expanded, and the on-resistance R on of the semiconductor device 200 can be reduced.
  • the semiconductor device 200 of this embodiment has the following advantages.
  • the plurality of outer peripheral gate fingers 206 are separated from each other by a plurality of gaps 208 arranged along the outer edge of the inner region 42.
  • Each of the plurality of inner gate fingers 210 is connected to at least one of the plurality of outer circumferential gate fingers 206.
  • the outer circumferential segment 218 is continuous with at least two of the plurality of inner segments 216, and each of the at least two inner segments 216 is connected to a subregion 212 of the plurality of gaps 208 in which the inner segment 216 is disposed. It is connected to outer circumferential segment 218 via an adjacent gap 208 .
  • At least two of the plurality of gaps 208 may be formed over a length at least equivalent to one side of the sub-region 212 to which the gaps 208 are adjacent. By making the length of gap 208 relatively large, resistance and parasitic capacitance due to wiring layout can be further reduced.
  • the outer peripheral segment 218 is continuous with the plurality of inner segments 216, and each of the plurality of inner segments 216 is adjacent to the sub-region 212 in which the inner segment 216 is arranged among the plurality of gaps 208.
  • the outer peripheral segment 218 may be connected to the outer circumferential segment 218 via a gap 208 .
  • Each of the plurality of gate trenches 16 may be arranged to intersect with one of the plurality of outer circumferential gate fingers 206 or one of the plurality of inner gate fingers 210 in plan view. This makes it possible to connect the gate electrode 28 in each gate trench 16 to the gate wiring 202.
  • the plurality of gate trenches 16 may include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16.
  • Each gate trench 16 of the first group S1 extends in the Y-axis direction (first direction) in plan view
  • each gate trench 16 of the second group S2 extends in the X-axis direction (second direction) in plan view.
  • Each gate trench 16 of the first set S1 and the second set S2 may intersect with one of the plurality of outer circumferential gate fingers 206 in plan view. This makes it possible to reduce warping of the semiconductor substrate 12 during wafer processing, compared to the case where only the gate trenches 16 extending in the same direction are arranged so as to intersect the outer gate fingers 206.
  • the plurality of gate trenches 16 may further include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16.
  • Each gate trench 16 of the third group S3 extends in the Y-axis direction (first direction) in a plan view
  • each gate trench 16 of the fourth group S4 extends in the X-axis direction (second direction) in a plan view.
  • Each gate trench 16 of the third set S3 and the fourth set S4 may intersect with one of the plurality of inner gate fingers 210 in plan view. This makes it possible to reduce warping of the semiconductor substrate 12 during wafer processing, compared to the case where only the gate trenches 16 extending in the same direction are arranged so as to intersect the inner gate fingers 210.
  • the field plate electrode 30 embedded in each gate trench 16 is connected to one of the outer circumferential segment 218 or one of the plurality of inner segments 216 via at least one of the plurality of field plate contact plugs 64. It may include two ends connected to. Since two ends of the field plate electrode 30 are connected to the source wiring 204, the resistance due to the length of the field plate electrode 30 is reduced compared to the case where only one end is connected. I can do it.
  • FIG. 7 is a schematic cross-sectional view of an exemplary semiconductor device 300 according to the third embodiment.
  • the same components as those of the semiconductor device 10 shown in FIGS. 1 to 3 are given the same reference numerals. Furthermore, detailed description of the same components as those of the semiconductor device 10 will be omitted.
  • the semiconductor device 300 may be a MISFET having a trench gate structure as shown in FIG. 2, for example.
  • the semiconductor device 300 includes a gate wiring 302 and a source wiring 304 that are different from the gate wiring 44 and source wiring 34 of the semiconductor device 10 of the first embodiment.
  • the gate wiring 302 is formed on the insulating layer 18 and is electrically connected to the plurality of gate electrodes 28 (see FIG. 2).
  • the source wiring 304 is formed on the insulating layer 18 and is spaced apart from the gate wiring 302.
  • the source wiring 304 is electrically connected to a plurality of field plate electrodes 30 (see FIG. 2).
  • the gate wiring 302 includes a plurality of outer peripheral gate fingers 306 arranged in the outer peripheral region 40.
  • the plurality of peripheral gate fingers 306 are spaced apart from each other by a plurality of gaps 308 located along the outer edge of the inner region 42 .
  • the plurality of circumferential gate fingers 306 may include three circumferential gate fingers 306A, 306B, and 306C.
  • the plurality of outer circumferential gate fingers 306 include a first outer circumferential gate finger 306A extending in the Y-axis direction, a second outer circumferential gate finger 306B extending in the X-axis direction, and a portion extending in the Y-axis direction and a portion extending in the X-axis direction. and a third outer circumferential gate finger 306C including a portion extending to The third outer circumferential gate finger 306C may be L-shaped in plan view. Gate pads 314, which will be described later, may be arranged at the corners of the third outer circumferential gate finger 306C so as to overlap with each other.
  • the gate wiring 302 further includes a plurality of inner gate fingers 310 arranged in the inner region 42.
  • Each of the plurality of inner gate fingers 310 is connected to at least one of the plurality of outer circumferential gate fingers 306.
  • the plurality of inner gate fingers 310 may include a first inner gate finger 310A extending in the Y-axis direction and a second inner gate finger 310B extending in the X-axis direction.
  • the inner region 42 includes a plurality of sub-regions 312 separated by at least two of the plurality of inner gate fingers 310 that intersect with each other. Each of the plurality of sub-regions 312 is adjacent to at least one of the plurality of peripheral gate fingers 306. In the example of FIG. 7, the first inner gate fingers 310A and the second inner gate fingers 310B intersect with each other.
  • the plurality of sub-regions 312 include four sub-regions 312A, 312B, 312C, and 312D. The four sub-regions 312A, 312B, 312C, 312D are separated by a first inner gate finger 310A and a second inner gate finger 310B that intersect with each other.
  • Each of the four sub-regions 312A, 312B, 312C, and 312D is adjacent to the first inner gate finger 310A and the second inner gate finger 310B in plan view. Further, in the example of FIG. 7, three gaps 308 are adjacent to three sub-regions 312A, 312B, and 312C, respectively. The sub-region 312D is not adjacent to the gap arranged in the outer peripheral region 40.
  • the first inner gate finger 310A is connected to the second outer circumferential gate finger 306B.
  • the second inner gate finger 310B is connected to the first outer circumferential gate finger 306A and the third outer circumferential gate finger 306C.
  • the gate wiring 302 may further include a gate pad 314.
  • gate pad 314 is connected to third outer gate finger 306C.
  • the gate pad 314 is arranged so as to overlap a corner of the L-shaped third outer peripheral gate finger 306C. Thereby, in the semiconductor device 300, the gate pad 314 can be placed near the corner of the inner region 42 in plan view.
  • the sub-region 312A is surrounded by the first inner gate finger 310A, the second inner gate finger 310B, and the first outer peripheral gate finger 306A in plan view.
  • a gap 308A adjacent to the sub-region 312A is formed between the first outer circumferential gate finger 306A and the second outer circumferential gate finger 306B.
  • the sub-region 312B is surrounded by the first inner gate finger 310A, the second inner gate finger 310B, and the second outer peripheral gate finger 206B in plan view.
  • a gap 308B adjacent to the sub-region 312B is formed between the second outer circumferential gate finger 306B and the third outer circumferential gate finger 306C.
  • the sub-region 312C is surrounded by the first inner gate finger 310A, the second inner gate finger 310B, and the third outer peripheral gate finger 306C in plan view.
  • a gap 308C adjacent to the sub-region 312C is formed between the first outer gate finger 306A and the third outer gate finger 306C.
  • the sub-region 312C is also adjacent to the gap 316 located in the inner region 42.
  • a gap 316 is formed between the first inner gate finger 310A and the third outer gate finger 306C.
  • the sub-region 312D is surrounded by the first inner gate finger 310A, the second inner gate finger 310B, the third outer peripheral gate finger 306C, and the gate pad 314 in plan view. As described above, the sub-region 312D is not adjacent to the gap arranged in the outer peripheral region 40. Instead, sub-region 312D is adjacent to gap 316 located in inner region 42.
  • each sub-region 312 is surrounded by the gate wiring 302 except for the portions adjacent to the gaps 308 and 316.
  • Each sub-region 312 is rectangular in plan view and has four sides. At least two of the plurality of gaps 308 may be formed over a length at least equal to one side of the sub-region 312 to which the gaps 308 are adjacent. In the example of FIG. 7, three gaps 308A, 308B, and 308C are formed over a length equivalent to one side of the sub-region 312 (312A, 312B, 312C) to which the gaps 308 are adjacent.
  • the source wiring 304 includes a plurality of inner segments 318 arranged in each of the plurality of sub-regions 312 and an outer peripheral segment 320 arranged in the outer peripheral region 40 .
  • the outer circumferential segment 320 is continuous with at least two of the plurality of inner segments 318.
  • Each of the at least two inner segments 318 is connected to the outer peripheral segment 320 through a gap 308 of the plurality of gaps 308 that is adjacent to the sub-region 312 in which the inner segment 318 is disposed.
  • the plurality of inner segments 318 include a first inner segment 318A, a second inner segment 318B, and a third inner segment 318C arranged in four sub-regions 312A, 312B, 312C, and 312D, respectively. a fourth inner segment 318D.
  • the outer circumferential segment 320 is continuous with the first inner segment 318A, the second inner segment 318B, and the third inner segment 318C.
  • Each of the first inner segment 318A, the second inner segment 318B, and the third inner segment 318C defines a gap 308 of the plurality of gaps 308A, 308B, and 308C that is adjacent to the sub-region 312 in which the inner segment 318 is disposed.
  • the outer circumferential segment 320 is connected to the outer peripheral segment 320 via the outer peripheral segment 320 . That is, the first inner segment 318A is connected to the outer peripheral segment 320 via the gap 308A adjacent to the sub-region 312A in which the first inner segment 318A is disposed.
  • the second inner segment 318B is connected to the outer circumferential segment 320 via a gap 308B adjacent to the sub-region 312B in which the second inner segment 318B is located.
  • the third inner segment 318C is connected to the outer circumferential segment 320 via a gap 308C adjacent to the sub-region 312C in which the third inner segment 318C is located.
  • fourth inner segment 318D is connected to one of the first inner segment 318A, the second inner segment 318B, and the third inner segment 318C in the inner region 42.
  • fourth inner segment 318D is connected to third inner segment 318C via gap 316 located in inner region 42.
  • the outer peripheral segment 320 may extend along the outer edge of the semiconductor layer 14 in plan view, except for the region where the gate pad 314 is arranged.
  • Each of the plurality of gate trenches 16 can be arranged to intersect one of the plurality of outer circumferential gate fingers 306 or one of the plurality of inner gate fingers 310 in plan view.
  • the semiconductor device 300 may further include a plurality of gate contact plugs 60.
  • the gate electrode 28 (see FIG. 2) embedded in each gate trench 16 connects to one or more inner gates of the plurality of outer circumferential gate fingers 306 via at least one of the plurality of gate contact plugs 60. It may be connected to one of the fingers 310.
  • the gate contact plug 60 can be arranged in a region where each of the plurality of gate trenches 16 intersects one of the plurality of outer circumferential gate fingers 306 or one of the plurality of inner gate fingers 310 in a plan view.
  • the plurality of gate trenches 16 may include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16.
  • Each gate trench 16 of the first set S1 extends in the Y-axis direction in plan view.
  • Each gate trench 16 of the second set S2 extends in the X-axis direction in plan view.
  • Each gate trench 16 of the first set S1 and the second set S2 intersects with one of the plurality of outer circumferential gate fingers 306 in a plan view.
  • the gate trenches 16 of the first set S1 and the second set S2 are arranged across the inner region 42 and the outer peripheral region 40.
  • the plurality of gate trenches 16 may include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16.
  • Each gate trench 16 of the third group S3 extends in the Y-axis direction in plan view.
  • Each gate trench 16 of the fourth group S4 extends in the X-axis direction in plan view.
  • Each gate trench 16 of the third set S3 and the fourth set S4 intersects with one of the plurality of inner gate fingers 310 in plan view.
  • the gate trenches 16 of the third set S3 and the fourth set S4 are entirely disposed within the inner region 42.
  • each gate trench 16 of the first set S1 excluding the ends
  • the main portions of each gate trench 16 of the second set S2, excluding the ends, are arranged in the sub-region 312A or the sub-region 312D.
  • the main portions of each gate trench 16 of the third set S3, excluding the ends, are arranged in the sub-region 312B or the sub-region 312C.
  • the main portions of each gate trench 16 of the fourth set S4, excluding the ends, are arranged in the sub-region 312A or the sub-region 312D.
  • the plurality of gate trenches 16 may include a fifth set S5 of gate trenches 16.
  • Each gate trench 16 of the fifth set S5 extends in the Y-axis direction in a plan view, and intersects with the third outer peripheral gate finger 306C in a plan view.
  • the main portion of each gate trench 16 of the fifth set S5, excluding the end portion, is arranged next to the gate pad 314 in the sub-region 312D.
  • Each set S1, S2, S3, S4, S5 may include one or more gate trenches 16. Some of the plurality of gate trenches 16 included in each set S1, S2, S3, S4, S5 may be arranged parallel to each other at equal intervals. The number of gate trenches included in each set S1, S2, S3, S4, S5 can be determined as appropriate depending on the layout.
  • the semiconductor device 300 may further include a field plate trench 62.
  • An electrode having the same potential as the field plate electrode 30 can be placed within the field plate trench 62.
  • Field plate trenches 62 can be configured to communicate with aligned gate trenches 16 whose main portions are located in the same sub-region 312.
  • the field plate trench 62 may include a portion 62A that communicates with the gate trench 16 and two portions 62B that extend parallel to the gate trench 16. Portion 62A may extend perpendicularly to gate trench 16.
  • the two portions 62B may be provided on both sides of the gate trench 16 to be communicated with each other.
  • the electrode placed in the field plate trench 62 may be integrally connected to the field plate electrode 30 (see FIG. 2) placed in the gate trench 16 communicating with the field plate trench 62.
  • the semiconductor device 300 may further include a plurality of field plate contact plugs 64.
  • the field plate electrode 30 (see FIG. 2) embedded in each gate trench 16 is connected to one of the outer circumferential segment 320 or one of the plurality of inner segments 318 via at least one of the plurality of field plate contact plugs 64. It may include two ends connected to.
  • Gate wiring 302 includes a plurality of outer peripheral gate fingers 306 arranged in outer peripheral region 40 .
  • the plurality of peripheral gate fingers 306 are spaced apart from each other by a plurality of gaps 308 located along the outer edge of the inner region 42 . If each of the plurality of outer peripheral gate fingers 306 were to be extended and connected to each other so that the gap 308 is eliminated, the extended portion would generate an extra gate-drain capacitance C gd .
  • the gate-drain capacitance C gd corresponds to the feedback capacitance C rss of the semiconductor device 300. If the feedback capacitance C rss is large, the switching speed of the semiconductor device 300 may decrease. Therefore, by arranging the plurality of gaps 308 along the outer edge of the inner region 42, the excess gate-drain capacitance C gd can be suppressed.
  • each of the plurality of gate trenches 16 is arranged to intersect with one of the plurality of outer circumferential gate fingers 306 or one of the plurality of inner gate fingers 310 in plan view. . Therefore, it is possible to connect the gate electrode 28 embedded in each gate trench 16 to the gate wiring 302 even if the gate finger does not extend into the region where the gap 308 is arranged.
  • the source wiring 304 includes a plurality of inner segments 318 arranged in each of the plurality of sub-regions 312 and an outer peripheral segment 320 arranged in the outer peripheral region 40 .
  • the outer circumferential segment 320 is continuous with at least two of the plurality of inner segments 318, and each of the at least two inner segments 318 is connected to a subregion 312 of the plurality of gaps 308 in which the inner segment 318 is disposed. It is connected to the peripheral segment 320 via an adjacent gap 308 . Therefore, the resistance caused by the source wiring 304 can be reduced.
  • gate wiring 302 includes a plurality of inner gate fingers 310 disposed in inner region 42 .
  • Each of the plurality of inner gate fingers 310 is connected to at least one of the plurality of outer circumferential gate fingers 306. Therefore, the area where the gate trench 16 can be placed can be expanded, and the on-resistance R on of the semiconductor device 300 can be reduced.
  • the semiconductor device 300 of this embodiment has the following advantages.
  • the plurality of outer peripheral gate fingers 306 are separated from each other by a plurality of gaps 308 arranged along the outer edge of the inner region 42.
  • Each of the plurality of inner gate fingers 310 is connected to at least one of the plurality of outer circumferential gate fingers 306.
  • the outer circumferential segment 320 is continuous with at least two of the plurality of inner segments 318, and each of the at least two inner segments 318 is connected to a subregion 312 of the plurality of gaps 308 in which the inner segment 318 is disposed. It is connected to the peripheral segment 320 via an adjacent gap 308 .
  • At least two of the plurality of gaps 308 may be formed over a length at least equivalent to one side of the sub-region 312 to which the gaps 308 are adjacent. By making the length of gap 308 relatively large, resistance and parasitic capacitance due to wiring layout can be further reduced.
  • Each of the plurality of sub-regions 312 may be adjacent to at least one of the plurality of outer peripheral gate fingers 306. Thereby, the gate trench 16 that intersects the outer peripheral gate finger 306 in plan view can be arranged in each sub-region 52.
  • Each of the plurality of gate trenches 16 may be arranged to intersect with one of the plurality of outer circumferential gate fingers 306 or one of the plurality of inner gate fingers 310 in plan view. This makes it possible to connect the gate electrode 28 in each gate trench 16 to the gate wiring 302.
  • the plurality of gate trenches 16 may include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16.
  • Each gate trench 16 of the first group S1 extends in the Y-axis direction (first direction) in plan view
  • each gate trench 16 of the second group S2 extends in the X-axis direction (second direction) in plan view.
  • Each of the gate trenches 16 of the first set S1 and the second set S2 may intersect with one of the plurality of outer circumferential gate fingers 306 in plan view. Thereby, warping of the semiconductor substrate 12 during wafer processing can be reduced compared to a case where only the gate trenches 16 extending in the same direction are arranged so as to intersect the outer peripheral gate fingers 306.
  • the plurality of gate trenches 16 may further include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16.
  • Each gate trench 16 of the third group S3 extends in the Y-axis direction (first direction) in a plan view
  • each gate trench 16 of the fourth group S4 extends in the X-axis direction (second direction) in a plan view.
  • Each gate trench 16 of the third set S3 and the fourth set S4 may intersect with one of the plurality of inner gate fingers 310 in plan view. Thereby, warping of the semiconductor substrate 12 during wafer processing can be reduced compared to the case where only the gate trenches 16 extending in the same direction are arranged so as to intersect the inner gate fingers 310.
  • the field plate electrode 30 embedded in each gate trench 16 is connected to one of the outer circumferential segment 320 or one of the plurality of inner segments 318 via at least one of the plurality of field plate contact plugs 64. It may include two ends connected to. Since two ends of the field plate electrode 30 are connected to the source wiring 304, the resistance due to the length of the field plate electrode 30 is reduced compared to the case where only one end is connected. I can do it.
  • FIG. 8 is a schematic cross-sectional view of an exemplary semiconductor device 400 for explaining a modification of the trench gate structure.
  • the semiconductor device 400 may be a MISFET using a SiC substrate.
  • the semiconductor device 400 includes a semiconductor substrate 402, a semiconductor layer 404 formed on the semiconductor substrate 402, a plurality of gate trenches 406 formed in the semiconductor layer 404, and a plurality of source trenches 408 formed in the semiconductor layer 404. including. Gate trenches 406 and source trenches 408 may be arranged alternately.
  • Semiconductor substrate 402 may be a SiC substrate. Furthermore, the semiconductor layer 404 may be a SiC epitaxial layer.
  • the semiconductor substrate 402 may include a top surface 402A and a bottom surface 402B opposite the top surface 402A.
  • the semiconductor substrate 402 may correspond to a drain region of a MISFET.
  • the Z-axis direction is a direction perpendicular to the top surface 402A and bottom surface 402B of the semiconductor substrate 402.
  • the semiconductor layer 404 includes a drift region 410 formed on a semiconductor substrate (drain region) 402, a body region 412 formed on the drift region 410, and a source region 414 formed on the body region 412.
  • the drain region formed by the semiconductor substrate 402 may be an n-type region containing n-type impurities.
  • the n-type impurity concentration of the semiconductor substrate 402 may be 1 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 21 cm ⁇ 3 or less.
  • the semiconductor substrate 402 may have a thickness of 5 ⁇ m or more and 300 ⁇ m or less.
  • Drift region 410 may be an n-type region containing n-type impurities at a lower concentration than semiconductor substrate (drain region) 402.
  • the n-type impurity concentration of the drift region 410 may be 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • Drift region 410 may have a thickness of 5 ⁇ m or more and 20 ⁇ m or less.
  • the drift region 410 is formed on the semiconductor substrate 402 and has a relatively low concentration first concentration region 416 (low concentration region), and is formed on the first concentration region 416 and has a higher concentration than the first concentration region 416.
  • a second concentration region 418 (high concentration region) may be included.
  • the n-type impurity concentration of the first concentration region 416 may be 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 17 cm ⁇ 3 or less.
  • the n-type impurity concentration of the second concentration region 418 may be greater than or equal to 1 ⁇ 10 16 cm ⁇ 3 and less than or equal to 1 ⁇ 10 18 cm ⁇ 3 .
  • a buffer region may be formed between the semiconductor substrate 402 and the drift region 410.
  • the buffer region may have a concentration gradient in which the n-type impurity concentration gradually decreases from the n-type impurity concentration of the semiconductor substrate 402 to the n-type impurity concentration of the drift region 410.
  • Body region 412 may be a p-type region containing p-type impurities.
  • the p-type impurity concentration of body region 412 may be 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • Source region 414 may be an n-type region containing n-type impurities at a higher concentration than second concentration region 418 .
  • the n-type impurity concentration of the source region 414 may be greater than or equal to 1 ⁇ 10 18 cm ⁇ 3 and less than or equal to 1 ⁇ 10 21 cm ⁇ 3 .
  • the n-type is also referred to as a first conductivity type, and the p-type is also referred to as a second conductivity type.
  • the n-type impurity may be, for example, phosphorus (P) or arsenic (As).
  • the p-type impurity may be, for example, boron (B) or aluminum (Al).
  • the semiconductor device 400 may further include a drain electrode 420 formed on the bottom surface 402B of the semiconductor substrate 402.
  • Drain electrode 420 is electrically connected to semiconductor substrate (drain region) 402.
  • Drain electrode 420 may be formed of at least one of titanium (Ti), nickel (Ni), palladium (Pd), gold (Au), and silver (Ag).
  • the gate trench 406 has an opening in the upper surface 404A of the semiconductor layer 404 and has a depth in the Z-axis direction.
  • the gate trench 406 may have a depth of 0.1 ⁇ m or more and 3 ⁇ m or less.
  • Gate trench 406 has side walls 406A and bottom wall 406B.
  • Gate trench 406 penetrates source region 414 and body region 412 of semiconductor layer 404 .
  • the semiconductor layer 404 may further include a first well region 422 formed between the second concentration region 418 and the sidewalls 406A and bottom walls 406B of the gate trench 406.
  • the first well region 422 may be a p-type region containing p-type impurities at a higher concentration than the body region 412.
  • the p-type impurity concentration of the first well region 422 may be 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the source trench 408 has an opening in the upper surface 404A of the semiconductor layer 404 and has a depth in the Z-axis direction.
  • Source trench 408 may have a depth of 0.5 ⁇ m or more and 10 ⁇ m or less.
  • Source trench 408 has sidewalls 408A and bottom wall 408B.
  • Source trench 408 penetrates source region 414 and body region 412 of semiconductor layer 404 .
  • Semiconductor layer 404 may further include a second well region 424 formed between second concentration region 418 and sidewall 408A and bottom wall 408B of source trench 408.
  • the second well region 424 may be a p-type region containing p-type impurities at a higher concentration than the body region 412.
  • the p-type impurity concentration of the second well region 424 may be 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the semiconductor device 400 further includes an insulating layer 426 formed on the semiconductor layer 404 and a plurality of gate electrodes 428.
  • Each of the plurality of gate electrodes 428 is embedded in a corresponding one of the plurality of gate trenches 406 with an insulating layer 426 interposed therebetween.
  • the semiconductor device 400 further includes a plurality of source electrodes 430.
  • Each of the plurality of source electrodes 430 is embedded in a corresponding one of the plurality of source trenches 408 with an insulating layer 426 interposed therebetween.
  • the gate electrode 428 may be configured to have a gate voltage applied to it, and the source electrode 430 may be configured to have a reference voltage (or source voltage) applied to it.
  • Gate electrode 428 and source electrode 430 may be formed from conductive polysilicon, in one example.
  • the semiconductor device 400 may further include a plurality of gate contact electrodes 432.
  • the plurality of gate contact electrodes 432 cover a portion of the upper surface 404A of the semiconductor layer 404, and are connected to the plurality of gate electrodes 428, respectively.
  • the semiconductor device 400 may further include an insulating layer 434 formed on the upper surface 404A of the semiconductor layer 404.
  • the insulating layer 434 is formed thicker than the gate contact electrode 432.
  • the insulating layer 434 has a plurality of gate openings 434A that expose the plurality of gate contact electrodes 432, respectively.
  • the semiconductor device 400 may further include a gate wiring 436 formed on the insulating layer 434.
  • Gate wiring 436 includes a barrier layer 438 formed on insulating layer 434 and a wiring layer 440 formed on barrier layer 438.
  • Barrier layer 438 may include at least one of a Ti layer and a TiN layer.
  • the barrier layer 438 may have a thickness of 10 nm or more and 500 nm or less.
  • the wiring layer 440 may include at least one of a Cu layer, an Al layer, an AlCu alloy layer, an AlSi alloy layer, and an AlSiCu alloy layer.
  • the wiring layer 440 may have a thickness of 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the gate trench 406 of the semiconductor device 400 using SiC as described above can be arranged in the planar layout of the semiconductor device 10 of the first embodiment shown in FIG. Specifically, the gate trench 406 shown in FIG. 8 can be placed at the position of the gate trench 16 shown in FIG. In that case, the gate wiring 436 corresponds to the gate wiring 44 shown in FIG. 1, and therefore, FIG. 8 shows a cross section in a region where the gate wiring 436 formed as a gate finger is arranged.
  • the source electrode 430 can be electrically connected to a source wiring (not shown) corresponding to the source wiring 34 shown in FIG.
  • each of the above embodiments and modified examples can be modified and implemented as follows. -
  • the length of each gate trench 16 in the first group S1 may be the same as or different from the length of each gate trench 16 in the third group S3.
  • the length of each gate trench 16 in the second set S2 may be the same as or different from the length of each gate trench 16 in the fourth set S4.
  • the number of the plurality of inner gate fingers 50 may be four or more.
  • Some of the plurality of gaps 48 may be formed over a small length that is shorter than one side of the sub-region 52 to which the gap 48 is adjacent.
  • a structure in which the conductivity type of each region in the semiconductor layer 14 is reversed may be adopted. That is, the p-type region may be made into an n-type region, and the n-type region may be made into a p-type region.
  • An additional wiring structure may be formed on the layer including the source wiring 34 and the gate wiring 44.
  • An additional electrode structure may be formed outside the outer peripheral segment 58 of the source wiring 34 in plan view.
  • the plurality of outer circumferential gate fingers 206 may not include the sixth outer circumferential gate finger 206F. In this case, one gap may be formed between the second outer circumferential gate finger 206B and the fourth outer circumferential gate finger 206D.
  • the term “on” includes the meanings of “on” and “over” unless the context clearly dictates otherwise.
  • the phrase “the first layer is formed on the second layer” refers to the fact that in some embodiments the first layer may be directly disposed on the second layer in contact with the second layer, but in other embodiments. It is contemplated that the first layer may be placed above the second layer without contacting the second layer. That is, the term “on” does not exclude structures in which other layers are formed between the first layer and the second layer.
  • the Z-axis direction used in the present disclosure does not necessarily need to be a vertical direction, nor does it need to completely coincide with the vertical direction.
  • the X-axis direction may be a vertical direction
  • the Y-axis direction may be a vertical direction.
  • (Appendix A1) a semiconductor substrate (12); A semiconductor layer (14) formed on the semiconductor substrate (12) and including an outer peripheral region (40) and an inner region (42) having a rectangular outer edge surrounded by the outer peripheral region (40) in plan view. and, a plurality of gate trenches (16) formed in the semiconductor layer (14); an insulating layer (18) formed on the semiconductor layer (14); a plurality of gate electrodes (28), each of which is embedded in a corresponding one of the plurality of gate trenches (16) via the insulating layer (18); and, a plurality of field plate electrodes (30) each connected to a corresponding one of the plurality of gate trenches (16) and spaced apart from the gate electrode (28) through the insulating layer (18); a plurality of embedded field plate electrodes (30); a gate wiring (44) formed on the insulating layer (18) and electrically connected to the plurality of gate electrodes (28); a source wiring (34) formed on the insulating layer (18), separated from the gate wiring (44), and electrically
  • Each sub-region (52) is rectangular in plan view and has four sides, The semiconductor according to appendix A1, wherein at least two of the plurality of gaps (48) are formed over a length at least equivalent to one side of an adjacent sub-region (52). Device.
  • the outer peripheral segment (58) is continuous with the plurality of inner segments (56), and each of the plurality of inner segments (56) is connected to the inner segment (56) of the plurality of gaps (48).
  • the semiconductor device according to any one of appendices A1 to A3, wherein the semiconductor device is connected to the outer peripheral segment (58) via a gap (48) adjacent to a sub-region (52) in which a semiconductor device is arranged.
  • the rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view.
  • the plurality of inner gate fingers (50) include a first inner gate finger (50A) extending in the first direction and a second inner gate finger (50B) extending in the second direction.
  • a semiconductor device according to any one of the above.
  • the plurality of sub-regions (52) include four sub-regions (52A, 52B, 52C, 52D), and each of the four sub-regions (52A, 52B, 52C, 52D) is different from the first one in plan view.
  • the plurality of inner segments (56) include four inner segments (56A, 56B, 56C, 56D) arranged in the four sub-regions (52A, 52B, 52C, 52D), respectively.
  • the plurality of gaps (48) include four gaps (48A, 48B, 48C, 48C) adjacent to the four sub-regions (52A, 52B, 52C, 52D), respectively.
  • the outer peripheral segment (58) is continuous with the four inner segments (56A, 56B, 56C, 56D), and each of the four inner segments (56A, 56B, 56C, 56D) is connected to the four gaps. (48A, 48B, 48C, 48C), which is connected to the outer peripheral segment (58) through a gap (48) adjacent to the sub-region (52) in which the inner segment (56) is arranged.
  • the plurality of outer circumferential gate fingers (46) include a first outer circumferential gate finger (46A) and a second outer circumferential gate finger (46B) extending in the first direction, and a third outer circumferential gate finger (46C) extending in the second direction. and a fourth outer peripheral gate finger (46D),
  • the first inner gate finger (50A) is connected to the third outer gate finger (46C) and the fourth outer gate finger (46D)
  • the second inner gate finger (50B) is connected to the first outer circumferential gate finger (46A) and the second outer circumferential gate finger (46B), according to any one of appendices A5 to A7. Semiconductor equipment.
  • the plurality of inner segments (318) include first, second, third, and fourth inner segments (318A, 318B, 318C, 318D) arranged in the four sub-regions (312), respectively; the outer circumferential segment (320) is continuous with the first, second, and third inner segments (318A, 318B, 318C); Each of the first, second, and third inner segments (318A, 318B, 318C) is adjacent to a sub-region (312) in which the inner segment (318) is located in the plurality of gaps (308).
  • the fourth inner segment (318D) is connected to one of the first, second and third inner segments (318A, 318B, 318C) in the inner region (42), according to appendix A6 or A7.
  • the gate wiring (302) includes a gate pad (314),
  • the plurality of outer circumferential gate fingers (306) include a first outer circumferential gate finger (306A) extending in the first direction, a second outer circumferential gate finger (306B) extending in the second direction, and a portion extending in the first direction.
  • the first inner gate finger (310A) is connected to the second outer circumferential gate finger (306B);
  • the second inner gate finger (310B) is connected to the first outer gate finger (306A) and the third outer gate finger (306C),
  • the rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view,
  • the plurality of inner gate fingers (210) include a first inner gate finger (210A) extending in the first direction, a second inner gate finger (210B) extending in the second direction, and a second inner gate finger (210B) extending in the second direction.
  • the plurality of sub-regions (212) include six sub-regions (212A, 212B, 212C, 212D, 212E, 212F), and each of the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F) is adjacent to the first inner gate finger (210A) in plan view, and is adjacent to the second inner gate finger (210B) or the third inner gate finger (210C) in plan view, according to appendix A11.
  • the plurality of inner segments (216) include six inner segments (216A, 216B, 216C, 216D, 216E, 216F) arranged in the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F), respectively.
  • the plurality of gaps (208) include six gaps (208A, 208B, 208C, 208D, 208E, 208F) adjacent to the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F),
  • the outer peripheral segment (218) is continuous with the six inner segments (216A, 216B, 216C, 216D, 216E, 216F); of the six gaps (208A, 208B, 208C, 208D, 208E, 208F) through the gap (208) adjacent to the sub-region (212) in which the inner segment (216) is located
  • the semiconductor device according to appendix A12 which is connected to the outer peripheral segment (218).
  • One of the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F) is not adjacent to any of the plurality of outer peripheral gate fingers (206) and is 2, and the semiconductor device according to appendix A12 or A13, which is adjacent to the third inner gate finger (210A, 210B, 210C).
  • Each of the plurality of gate trenches (16) is arranged to intersect with one of the plurality of outer peripheral gate fingers (46) or one of the plurality of inner gate fingers (50) in plan view.
  • Appendix A16 further comprising a plurality of gate contact plugs (60)
  • the gate electrode (28) embedded in each gate trench (16) is connected to one of the plurality of outer peripheral gate fingers (46) via at least one of the plurality of gate contact plugs (60).
  • the semiconductor device according to any one of Appendices A1 to A14, which is connected to one of the plurality of inner gate fingers (50).
  • the rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view,
  • the plurality of gate trenches (16) include a first set (S1) of gate trenches and a second set (S2) of gate trenches, and each gate trench of the first set (S1) is different from the first set (S1) of gate trenches in plan view.
  • Each gate trench of the second set (S2) extends in one direction, and each gate trench of the first set (S1) and the second set (S2) extends in the second direction in plan view.
  • the semiconductor device according to any one of appendices A1 to A14, which intersects one of the plurality of outer peripheral gate fingers (46) when viewed.
  • the plurality of gate trenches (16) further include a third set (S3) of gate trenches and a fourth set (S4) of gate trenches, and each gate trench of the third set (S3) has the same shape as the gate trench in plan view.
  • Each gate trench of the fourth group (S4) extends in the first direction, and each gate trench of the third group (S3) and the fourth group (S4) extends in the second direction in plan view.
  • the semiconductor device according to appendix A17 which intersects with one of the plurality of inner gate fingers (50) in plan view.
  • (Appendix A20) further comprising a plurality of field plate contact plugs (64);
  • the field plate electrode (30) embedded in each gate trench of the first set (S1) is connected to the outer peripheral segment (58) via at least one of the plurality of field plate contact plugs (64).
  • a first end (66) connected to one of said plurality of inner segments (56) via at least one of said plurality of field plate contact plugs (64); an end (68);
  • the field plate electrode (30) embedded in each gate trench of the third set (S3) connects to the plurality of inner segments (56) via at least one of the plurality of field plate contact plugs (64). ) of the plurality of inner segments (56) through at least one of the plurality of field plate contact plugs (64). and a second end (72) connected to another one, the semiconductor device according to appendix A18 or A19.
  • the semiconductor layer (14) includes a first conductivity type drift region (20), a second conductivity type body region (22) formed on the drift region (20), and a second conductivity type body region (22) formed on the body region (22). a first conductivity type source region (24) formed in The gate trench (16) penetrates the source region (24) and the body region (22) and reaches the drift region (20), according to any one of appendices A1 to A20. semiconductor devices.
  • (Appendix B1) a semiconductor substrate (12); A semiconductor layer (14) formed on the semiconductor substrate (12) and including an outer peripheral region (40) and an inner region (42) having a rectangular outer edge surrounded by the outer peripheral region (40) in plan view. and, a plurality of gate trenches (16) formed in the semiconductor layer (14); an insulating layer (18) formed on the semiconductor layer (14); a plurality of gate electrodes (28), each of which is embedded in a corresponding one of the plurality of gate trenches (16) via the insulating layer (18); and, a plurality of field plate electrodes (30) each connected to a corresponding one of the plurality of gate trenches (16) and spaced apart from the gate electrode (28) through the insulating layer (18); a plurality of embedded field plate electrodes (30); a gate wiring (44) formed on the insulating layer (18) and electrically connected to the plurality of gate electrodes (28); a source wiring (34) formed on the insulating layer (18), separated from the gate wiring (44), and electrically
  • Each sub-region (52) is rectangular in plan view and has four sides, The semiconductor according to appendix B1, wherein at least two of the plurality of gaps (48) are formed over a length at least equal to one side of an adjacent sub-region (52). Device.
  • Appendix B3 The semiconductor device according to appendix B1 or B2, wherein each of the plurality of sub-regions (52) is adjacent to at least one of the plurality of outer peripheral gate fingers (46).
  • the rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view.
  • the plurality of inner gate fingers (50) include a first inner gate finger (50A) extending in the first direction and a second inner gate finger (50B) extending in the second direction.
  • a semiconductor device according to any one of the above.
  • the plurality of sub-regions (52) include four sub-regions (52A, 52B, 52C, 52D), and each of the four sub-regions (52A, 52B, 52C, 52D) is different from the first one in plan view.
  • the semiconductor device according to appendix B4 which is adjacent to the inner gate finger (50A) and the second inner gate finger (50B).
  • the plurality of inner segments (56) include four inner segments (56A, 56B, 56C, 56D) arranged in the four sub-regions (52A, 52B, 52C, 52D), respectively.
  • the plurality of gaps (48) include four gaps (48A, 48B, 48C, 48C) adjacent to the four sub-regions (52A, 52B, 52C, 52D), respectively.
  • the outer peripheral segment (58) is continuous with the four inner segments (56A, 56B, 56C, 56D), and each of the four inner segments (56A, 56B, 56C, 56D) is connected to the four gaps. (48A, 48B, 48C, 48C), which is connected to the outer peripheral segment (58) through a gap (48) adjacent to the sub-region (52) in which the inner segment (56) is arranged.
  • the plurality of outer circumferential gate fingers (46) include a first outer circumferential gate finger (46A) and a second outer circumferential gate finger (46B) extending in the first direction, and a third outer circumferential gate finger (46C) extending in the second direction. and a fourth outer peripheral gate finger (46D),
  • the first inner gate finger (50A) is connected to the third outer gate finger (46C) and the fourth outer gate finger (46D)
  • the second inner gate finger (50B) is connected to the first outer circumferential gate finger (46A) and the second outer circumferential gate finger (46B), according to any one of appendices B4 to B6.
  • the rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view,
  • the plurality of inner gate fingers (210) include a first inner gate finger (210A) extending in the first direction, a second inner gate finger (210B) extending in the second direction, and a second inner gate finger (210B) extending in the second direction.
  • the plurality of sub-regions (212) include six sub-regions (212A, 212B, 212C, 212D, 212E, 212F), and each of the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F) is adjacent to the first inner gate finger (210A) in plan view, and is adjacent to the second inner gate finger (210B) or the third inner gate finger (210C) in plan view, according to appendix B8.
  • the plurality of inner segments (216) include six inner segments (216A, 216B, 216C, 216D, 216E, 216F) arranged in the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F), respectively.
  • the plurality of gaps (208) include six gaps (208A, 208B, 208C, 208D, 208E, 208F) adjacent to the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F),
  • the outer peripheral segment (218) is continuous with the six inner segments (216A, 216B, 216C, 216D, 216E, 216F);
  • each of the outer peripheral segments ( 218) the semiconductor device according to appendix B9.
  • Appendix B11 One of the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F) is not adjacent to any of the plurality of outer peripheral gate fingers (206) and is 2, and the semiconductor device according to appendix B9 or B10, which is adjacent to the third inner gate finger (210A, 210B, 210C).
  • Each of the plurality of gate trenches (16) is arranged to intersect with one of the plurality of outer peripheral gate fingers (46) or one of the plurality of inner gate fingers (50) in plan view.
  • Appendix B13 further comprising a plurality of gate contact plugs (60)
  • the gate electrode (28) embedded in each gate trench (16) is connected to one of the plurality of outer peripheral gate fingers (46) via at least one of the plurality of gate contact plugs (60).
  • the rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view
  • the plurality of gate trenches (16) include a first set (S1) of gate trenches and a second set (S2) of gate trenches, and each gate trench of the first set (S1) is different from the first set (S1) of gate trenches in plan view.
  • Each gate trench of the second set (S2) extends in one direction, and each gate trench of the first set (S1) and the second set (S2) extends in the second direction in plan view.
  • the semiconductor device according to any one of appendices B1 to B13, which intersects one of the plurality of outer peripheral gate fingers (46) when viewed.
  • the plurality of gate trenches (16) further include a third set (S3) of gate trenches and a fourth set (S4) of gate trenches, and each gate trench of the third set (S3) has the same shape as the gate trench in plan view.
  • Each gate trench of the fourth group (S4) extends in the first direction, and each gate trench of the third group (S3) and the fourth group (S4) extends in the second direction in plan view.
  • the semiconductor device according to appendix B14 which intersects with one of the plurality of inner gate fingers (50) in plan view.
  • (Appendix B17) further comprising a plurality of field plate contact plugs (64);
  • the field plate electrode (30) embedded in each gate trench of the first set (S1) is connected to the outer peripheral segment (58) via at least one of the plurality of field plate contact plugs (64).
  • a first end (66) connected to one of said plurality of inner segments (56) via at least one of said plurality of field plate contact plugs (64); an end (68);
  • the field plate electrode (30) embedded in each gate trench of the third set (S3) connects to the plurality of inner segments (56) via at least one of the plurality of field plate contact plugs (64). ) of the plurality of inner segments (56) through at least one of the plurality of field plate contact plugs (64). and a second end (72) connected to another one, the semiconductor device according to appendix B15 or B16.
  • the semiconductor layer (14) includes a first conductivity type drift region (20), a second conductivity type body region (22) formed on the drift region (20), and a second conductivity type body region (22) formed on the body region (22). a first conductivity type source region (24) formed in The gate trench (16) penetrates the source region (24) and the body region (22) and reaches the drift region (20), according to any one of appendices B1 to B17. semiconductor devices.
  • (Appendix C1) a semiconductor substrate (12); A semiconductor layer (14) formed on the semiconductor substrate (12) and including an outer peripheral region (40) and an inner region (42) having a rectangular outer edge surrounded by the outer peripheral region (40) in plan view. and, a plurality of gate trenches (16) formed in the semiconductor layer (14); an insulating layer (18) formed on the semiconductor layer (14); a plurality of gate electrodes (28), each of which is embedded in a corresponding one of the plurality of gate trenches (16) via the insulating layer (18); and, a plurality of field plate electrodes (30) each connected to a corresponding one of the plurality of gate trenches (16) and spaced apart from the gate electrode (28) through the insulating layer (18); a plurality of embedded field plate electrodes (30); a gate wiring (302) formed on the insulating layer (18) and electrically connected to the plurality of gate electrodes (28); a source wiring (304) formed on the insulating layer (18), separated from the gate wiring (302), and electrically
  • Each sub-region (312) is rectangular in plan view and has four sides, At least two of the three gaps (308A, 308B, 308C) are formed over a length at least equivalent to one side of the sub-region (312) to which the gap (308) is adjacent.
  • Appendix C3 The semiconductor according to appendix C1 or C2, wherein each of the four sub-regions (312A, 312B, 312C, 312D) is adjacent to at least one of the three peripheral gate fingers (306A, 306B, 306C). Device.
  • the rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view.
  • the two inner gate fingers (310A, 310B) include a first inner gate finger (310A) extending in the first direction and a second inner gate finger (310B) extending in the second direction.
  • the semiconductor device according to any one of C4.
  • the gate wiring (302) includes a gate pad
  • the three outer circumferential gate fingers (306A, 306B, 306C) include a first outer circumferential gate finger (306A) extending in the first direction, a second outer circumferential gate finger (306B) extending in the second direction, and a second outer circumferential gate finger (306B) extending in the second direction.
  • Each of the plurality of gate trenches (16) is connected to one of the three outer gate fingers (306A, 306B, 306C) or one of the two inner gate fingers (310A, 310B) in plan view.
  • the semiconductor device according to any one of appendices C1 to C6, which are arranged so as to cross each other.
  • Appendix C8 further comprising a plurality of gate contact plugs (60)
  • the gate electrode (28) embedded in each gate trench (16) is connected to the three outer gate fingers (306A, 306B, 306C) through at least one of the plurality of gate contact plugs (60). or one of the two inner gate fingers (310A, 310B), the semiconductor device according to any one of appendices C1 to C7.
  • the rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view,
  • the plurality of gate trenches (16) include a first set (S1) of gate trenches and a second set (S2) of gate trenches, and each gate trench of the first set (S1) is different from the first set (S1) of gate trenches in plan view.
  • Each gate trench of the second set (S2) extends in one direction, and each gate trench of the first set (S1) and the second set (S2) extends in the second direction in plan view.
  • the semiconductor device according to any one of appendices C1 to C8, which visually intersects one of the three outer peripheral gate fingers (306A, 306B, 306C).
  • the plurality of gate trenches (16) further include a third set (S3) of gate trenches and a fourth set (S4) of gate trenches, and each gate trench of the third set (S3) has the same shape as the gate trench in plan view.
  • Each gate trench of the fourth group (S4) extends in the first direction, and each gate trench of the third group (S3) and the fourth group (S4) extends in the second direction in plan view.
  • the semiconductor device according to appendix C9 which intersects with one of the two inner gate fingers (310A, 310B) in plan view.
  • (Appendix C12) further comprising a plurality of field plate contact plugs (64);
  • the field plate electrode (30) embedded in each gate trench of the first set (S1) is connected to the outer peripheral segment (320) through at least one of the plurality of field plate contact plugs (64).
  • said first, second, third, and fourth inner segments (318A, 318B, 318C) via a connected first end and at least one of said plurality of field plate contact plugs (64).
  • the field plate electrode (30) embedded in each gate trench of the third set (S3) connects the first, second, a first end connected to one of the third and fourth inner segments (318A, 318B, 318C, 318D) and through at least one of the plurality of field plate contact plugs (64); and a second end connected to another one of said first, second, third, and fourth inner segments (318A, 318B, 318C, 318D).
  • the semiconductor layer (14) includes a first conductivity type drift region (20), a second conductivity type body region (22) formed on the drift region (20), and a second conductivity type body region (22) formed on the body region (22). a first conductivity type source region (24) formed in The gate trench (16) penetrates the source region (24) and the body region (22) and reaches the drift region (20), as described in any one of appendices C1 to C12. semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor device (10) comprises: a semiconductor layer (14) including a peripheral region (40) and an inner region (42); a gate wire (44); and a source wire (34). A plurality of peripheral gate fingers (46) of the gate wire (44) are spaced apart from each other by a plurality of gaps (48) disposed along the outer edge of the inner region (42). The inner region (42) includes a plurality of sub-regions (52) divided by at least two mutually intersecting inner gate fingers (50) of the gate wire (44). A peripheral segment (58) of the source wire (34) is continuous with at least two of a plurality of inner segments (56) that are respectively disposed in the plurality of sub-regions (52). Each of the at least two inner segments (56) is connected to the peripheral segment (58) via a gap (48), among the plurality of gaps (48), that is adjacent to the sub-region (52) in which the inner segment (56) is disposed.

Description

半導体装置semiconductor equipment
 本開示は、半導体装置に関する。 The present disclosure relates to a semiconductor device.
 特許文献1は、ゲートトレンチ内にゲート電極が埋め込まれたトレンチゲート構造を有する半導体装置を開示している。特許文献1に記載の半導体装置は、ゲートパッド電極およびゲートフィンガー電極を一体的に含むゲート主面電極を含んでいる。ゲートフィンガー電極は、複数のゲートプラグ電極を介して複数のトレンチゲート構造のゲート電極に電気的に接続されている。 Patent Document 1 discloses a semiconductor device having a trench gate structure in which a gate electrode is embedded in a gate trench. The semiconductor device described in Patent Document 1 includes a gate main surface electrode that integrally includes a gate pad electrode and a gate finger electrode. The gate finger electrode is electrically connected to the gate electrodes of the plurality of trench gate structures via the plurality of gate plug electrodes.
特開2021-125649号公報JP 2021-125649 Publication
 トレンチゲート構造を有する半導体装置において、ゲートトレンチの長さが短いほど、ゲートトレンチに埋め込まれた電極(例えば、ゲート電極)の抵抗を低減することができる。しかしながら、ゲートトレンチの長さを低減するための配線レイアウト(例えば、ゲートフィンガー)に起因する抵抗および寄生容量は、半導体装置のスイッチング特性に悪影響を及ぼすことがある。 In a semiconductor device having a trench gate structure, the shorter the length of the gate trench, the lower the resistance of the electrode (eg, gate electrode) embedded in the gate trench. However, resistance and parasitic capacitance caused by wiring layout (eg, gate fingers) to reduce the length of the gate trench may adversely affect the switching characteristics of the semiconductor device.
 本開示の一態様による半導体装置は、半導体基板と、前記半導体基板上に形成され、外周領域と、平面視で前記外周領域に囲まれた矩形状の外縁を有する内側領域とを含む半導体層と、前記半導体層に形成された複数のゲートトレンチと、前記半導体層上に形成された絶縁層と、複数のゲート電極であって、各々が前記複数のゲートトレンチのうちの対応する1つに前記絶縁層を介して埋め込まれている、複数のゲート電極と、複数のフィールドプレート電極であって、各々が前記複数のゲートトレンチのうちの対応する1つに、前記ゲート電極と離隔されつつ前記絶縁層を介して埋め込まれている、複数のフィールドプレート電極と、前記絶縁層上に形成され、前記複数のゲート電極に電気的に接続されたゲート配線と、前記絶縁層上に形成され、前記ゲート配線から離隔されるとともに、前記複数のフィールドプレート電極に電気的に接続されたソース配線とを備えている。前記ゲート配線は、前記外周領域に配置された複数の外周ゲートフィンガーであって、前記内側領域の外縁に沿って配置された複数の間隙によって互いに離隔された複数の外周ゲートフィンガーと、前記内側領域に配置された複数の内側ゲートフィンガーであって、各々が前記複数の外周ゲートフィンガーのうちの少なくとも1つに接続されている、複数の内側ゲートフィンガーとを含む。前記内側領域は、前記複数の内側ゲートフィンガーのうち、互いに交差する少なくとも2つの内側ゲートフィンガーによって区切られた複数のサブ領域を含む。前記ソース配線は、前記複数のサブ領域にそれぞれ配置された複数の内側セグメントと、前記外周領域に配置された外周セグメントとを含む。前記外周セグメントは、前記複数の内側セグメントのうちの少なくとも2つと連続しており、前記少なくとも2つの内側セグメントの各々は、前記複数の間隙のうち、当該内側セグメントが配置されるサブ領域に隣接する間隙を介して前記外周セグメントに接続されている。 A semiconductor device according to one aspect of the present disclosure includes a semiconductor substrate, a semiconductor layer formed on the semiconductor substrate, and including an outer peripheral region and an inner region having a rectangular outer edge surrounded by the outer peripheral region in plan view. , a plurality of gate trenches formed in the semiconductor layer, an insulating layer formed on the semiconductor layer, and a plurality of gate electrodes, each of which is connected to a corresponding one of the plurality of gate trenches. A plurality of gate electrodes and a plurality of field plate electrodes are embedded through an insulating layer, each of which is embedded in a corresponding one of the plurality of gate trenches while being spaced apart from the gate electrode. a plurality of field plate electrodes embedded through the layer, a gate wiring formed on the insulating layer and electrically connected to the plurality of gate electrodes, and a gate wiring formed on the insulating layer and electrically connected to the plurality of gate electrodes; The source wiring is separated from the wiring and electrically connected to the plurality of field plate electrodes. The gate wiring includes a plurality of outer circumference gate fingers arranged in the outer circumference region, the plurality of outer circumference gate fingers spaced apart from each other by a plurality of gaps arranged along the outer edge of the inner region, and the inner region. a plurality of inner gate fingers disposed in the plurality of outer circumferential gate fingers, each inner gate finger being connected to at least one of the plurality of outer circumferential gate fingers. The inner region includes a plurality of sub-regions separated by at least two intersecting inner gate fingers among the plurality of inner gate fingers. The source wiring includes a plurality of inner segments arranged in each of the plurality of sub-regions and an outer peripheral segment arranged in the outer peripheral region. The outer peripheral segment is continuous with at least two of the plurality of inner segments, and each of the at least two inner segments is adjacent to a sub-region of the plurality of gaps in which the inner segment is disposed. It is connected to the outer peripheral segment via a gap.
 本開示の半導体装置によれば、配線レイアウトに起因する抵抗および寄生容量を低減して、スイッチング特性を改善することができる。 According to the semiconductor device of the present disclosure, switching characteristics can be improved by reducing resistance and parasitic capacitance caused by wiring layout.
図1は、第1実施形態に係る例示的な半導体装置の概略平面図である。FIG. 1 is a schematic plan view of an exemplary semiconductor device according to the first embodiment. 図2は、図1のF2-F2線に沿った半導体装置の概略断面図である。FIG. 2 is a schematic cross-sectional view of the semiconductor device taken along line F2-F2 in FIG. 図3は、図1のF3-F3線に沿った半導体装置の概略断面図である。FIG. 3 is a schematic cross-sectional view of the semiconductor device taken along line F3-F3 in FIG. 図4は、比較例に係る例示的な半導体装置の概略平面図である。FIG. 4 is a schematic plan view of an exemplary semiconductor device according to a comparative example. 図5は、半導体装置の帰還容量を表すグラフである。FIG. 5 is a graph showing the feedback capacitance of a semiconductor device. 図6は、第2実施形態に係る例示的な半導体装置の概略平面図である。FIG. 6 is a schematic plan view of an exemplary semiconductor device according to the second embodiment. 図7は、第3実施形態に係る例示的な半導体装置の概略平面図である。FIG. 7 is a schematic plan view of an exemplary semiconductor device according to the third embodiment. 図8は、トレンチゲート構造の変更例を説明するための例示的な半導体装置の概略断面図である。FIG. 8 is a schematic cross-sectional view of an exemplary semiconductor device for explaining a modification of the trench gate structure.
 以下、添付図面を参照して本開示の半導体装置のいくつかの実施形態を説明する。なお、説明を簡単かつ明確にするために、図面に示される構成要素は必ずしも一定の縮尺で描かれていない。また、理解を容易にするために、断面図では、ハッチング線が省略されている場合がある。添付の図面は、本開示の実施形態を例示するに過ぎず、本開示を制限するものとみなされるべきではない。 Hereinafter, some embodiments of the semiconductor device of the present disclosure will be described with reference to the accompanying drawings. It should be noted that, for simplicity and clarity of explanation, the components shown in the drawings are not necessarily drawn to scale. Further, in order to facilitate understanding, hatching lines may be omitted in the cross-sectional views. The accompanying drawings are merely illustrative of embodiments of the disclosure and should not be considered as limiting the disclosure.
 以下の詳細な記載は、本開示の例示的な実施形態を具体化する装置、システム、および方法を含む。この詳細な記載は本来説明のためのものに過ぎず、本開示の実施形態またはこのような実施形態の適用および使用を限定することを意図しない。 The following detailed description includes devices, systems, and methods that embody example embodiments of the present disclosure. This detailed description is illustrative in nature and is not intended to limit the embodiments of the disclosure or the application and uses of such embodiments.
 [第1実施形態]
 図1は、第1実施形態に係る例示的な半導体装置10の概略平面図である。半導体装置10は、例えばトレンチゲート構造を有するMISFETであってよい。半導体装置10は、半導体基板12と、半導体基板12上に形成された半導体層14と、半導体層14に形成された複数のゲートトレンチ16と、半導体層14上に形成された絶縁層18とを含む。図1に示される互いに直交するXYZ軸のZ軸方向は、半導体基板12の面と直交する方向である。なお、本明細書において使用される「平面視」という用語は、明示的に別段の記載がない限り、Z軸方向に沿って上方から半導体装置10を視ることをいう。
[First embodiment]
FIG. 1 is a schematic plan view of an exemplary semiconductor device 10 according to the first embodiment. The semiconductor device 10 may be, for example, a MISFET having a trench gate structure. The semiconductor device 10 includes a semiconductor substrate 12, a semiconductor layer 14 formed on the semiconductor substrate 12, a plurality of gate trenches 16 formed in the semiconductor layer 14, and an insulating layer 18 formed on the semiconductor layer 14. include. The Z-axis direction of the mutually orthogonal XYZ axes shown in FIG. 1 is a direction orthogonal to the surface of the semiconductor substrate 12. Note that the term "planar view" used in this specification refers to viewing the semiconductor device 10 from above along the Z-axis direction, unless explicitly stated otherwise.
 本実施形態において、半導体基板12はSi基板であってよい。また、半導体層14は、Siエピタキシャル層であってよい。図1において、符号12および14は、半導体基板12および半導体層14の矩形状の外縁を指し示している。図1に示される半導体基板12の外縁により画定される領域は、1つのチップ(ダイ)に相当し得る。絶縁層18は、酸化シリコン(SiO)層および窒化シリコン(SiN)層のうちの少なくとも1つを含んでいてよい。 In this embodiment, the semiconductor substrate 12 may be a Si substrate. Further, the semiconductor layer 14 may be a Si epitaxial layer. In FIG. 1, numerals 12 and 14 indicate rectangular outer edges of the semiconductor substrate 12 and the semiconductor layer 14. In FIG. The area defined by the outer edge of semiconductor substrate 12 shown in FIG. 1 may correspond to one chip (die). Insulating layer 18 may include at least one of a silicon oxide (SiO 2 ) layer and a silicon nitride (SiN) layer.
 (トレンチゲート構造の一例)
 図2は、図1のF2-F2線に沿った半導体装置10の概略断面図である。図2では、第1組S1のゲートトレンチ16のYZ平面における断面が示されているが、第3組S3のゲートトレンチ16および第5組S5のゲートトレンチ16の断面も図2と同様であってよい。また、第2組S2のゲートトレンチ16および第4組S4のゲートトレンチ16のXZ平面における断面も図2と同様であってよい。以下、主に1つのゲートトレンチ16および関連する構成が説明されるが、そのような説明は、他のゲートトレンチおよび関連する構成に同様に適用され得ることに留意されたい。
(Example of trench gate structure)
FIG. 2 is a schematic cross-sectional view of the semiconductor device 10 taken along line F2-F2 in FIG. Although FIG. 2 shows a cross section of the gate trench 16 of the first group S1 in the YZ plane, the cross sections of the gate trench 16 of the third group S3 and the gate trench 16 of the fifth group S5 are also similar to FIG. It's fine. Further, the cross sections of the gate trenches 16 of the second group S2 and the gate trenches 16 of the fourth group S4 in the XZ plane may also be similar to those in FIG. 2 . It should be noted that although primarily one gate trench 16 and associated configuration will be described below, such description may be applied to other gate trenches and associated configurations as well.
 半導体基板12は、上面12A、および上面12Aと反対の底面12Bを含んでいてよい。半導体基板12は、MISFETのドレイン領域に相当し得る。Z軸方向は、半導体基板12の上面12Aおよび底面12Bと直交する方向である。 The semiconductor substrate 12 may include a top surface 12A and a bottom surface 12B opposite to the top surface 12A. The semiconductor substrate 12 may correspond to a drain region of a MISFET. The Z-axis direction is a direction perpendicular to the top surface 12A and bottom surface 12B of the semiconductor substrate 12.
 半導体層14は、半導体基板(ドレイン領域)12上に形成されたドリフト領域20と、ドリフト領域20上に形成されたボディ領域22と、ボディ領域22上に形成されたソース領域24とを含む。 The semiconductor layer 14 includes a drift region 20 formed on the semiconductor substrate (drain region) 12, a body region 22 formed on the drift region 20, and a source region 24 formed on the body region 22.
 半導体基板12により形成されるドレイン領域は、n型不純物を含むn型領域であってよい。半導体基板12のn型不純物濃度は、1×1018cm-3以上1×1020cm-3以下であってよい。半導体基板12は、50μm以上450μm以下の厚さを有していてよい。 The drain region formed by the semiconductor substrate 12 may be an n-type region containing n-type impurities. The n-type impurity concentration of the semiconductor substrate 12 may be 1×10 18 cm −3 or more and 1×10 20 cm −3 or less. The semiconductor substrate 12 may have a thickness of 50 μm or more and 450 μm or less.
 ドリフト領域20は、半導体基板(ドレイン領域)12よりも低い濃度のn型不純物を含むn型領域であってよい。ドリフト領域20のn型不純物濃度は、1×1015cm-3以上1×1018cm-3以下であってよい。ドリフト領域20は、1μm以上25μm以下の厚さを有していてよい。 The drift region 20 may be an n-type region containing n-type impurities at a lower concentration than the semiconductor substrate (drain region) 12. The n-type impurity concentration of the drift region 20 may be 1×10 15 cm −3 or more and 1×10 18 cm −3 or less. Drift region 20 may have a thickness of 1 μm or more and 25 μm or less.
 ボディ領域22は、p型不純物を含むp型領域であってよい。ボディ領域22のp型不純物濃度は、1×1016cm-3以上1×1018cm-3以下であってよい。ボディ領域22は、0.2μm以上1.0μm以下の厚さを有していてよい。 Body region 22 may be a p-type region containing p-type impurities. The p-type impurity concentration of body region 22 may be 1×10 16 cm −3 or more and 1×10 18 cm −3 or less. Body region 22 may have a thickness of 0.2 μm or more and 1.0 μm or less.
 ソース領域24は、ドリフト領域20よりも高い濃度のn型不純物を含むn型領域であってよい。ソース領域24のn型不純物濃度は、1×1019cm-3以上1×1021cm-3以下であってよい。ソース領域24は、0.1μm以上1μm以下の厚さを有していてよい。 Source region 24 may be an n-type region containing a higher concentration of n-type impurities than drift region 20 . The n-type impurity concentration of the source region 24 may be 1×10 19 cm −3 or more and 1×10 21 cm −3 or less. The source region 24 may have a thickness of 0.1 μm or more and 1 μm or less.
 なお、本開示において、n型を第1導電型、およびp型を第2導電型ともいう。n型不純物は、例えば、リン(P)、ヒ素(As)などであってよい。また、p型不純物は、例えば、ホウ素(B)、アルミニウム(Al)などであってよい。 Note that in this disclosure, the n-type is also referred to as a first conductivity type, and the p-type is also referred to as a second conductivity type. The n-type impurity may be, for example, phosphorus (P) or arsenic (As). Furthermore, the p-type impurity may be, for example, boron (B), aluminum (Al), or the like.
 半導体装置10は、半導体基板12の底面12Bに形成されたドレイン電極26をさらに含むことができる。ドレイン電極26は、半導体基板(ドレイン領域)12と電気的に接続されている。ドレイン電極26は、チタン(Ti)、ニッケル(Ni)、金(Au)、銀(Ag)、銅(Cu)、Al、Cu合金、およびAl合金のうちの少なくとも1つから形成されてもよい。 The semiconductor device 10 can further include a drain electrode 26 formed on the bottom surface 12B of the semiconductor substrate 12. The drain electrode 26 is electrically connected to the semiconductor substrate (drain region) 12. Drain electrode 26 may be formed from at least one of titanium (Ti), nickel (Ni), gold (Au), silver (Ag), copper (Cu), Al, Cu alloy, and Al alloy. .
 ゲートトレンチ16は、半導体層14の上面14Aに開口を有するとともに、Z軸方向に深さを有している。ゲートトレンチ16は、側壁16Aおよび底壁16Bを有している。ゲートトレンチ16は、半導体層14のソース領域24およびボディ領域22を貫通してドリフト領域20に達している。したがって、ゲートトレンチ16の底壁16Bは、ドリフト領域20に隣接している。ゲートトレンチ16は、1μm以上10μm以下の深さを有していてよい。なお、ゲートトレンチ16の深さは、半導体層14の上面14Aからゲートトレンチ16の底壁16BまでのZ軸方向における距離に相当し得る。 The gate trench 16 has an opening in the upper surface 14A of the semiconductor layer 14 and has a depth in the Z-axis direction. Gate trench 16 has sidewalls 16A and bottom walls 16B. Gate trench 16 penetrates source region 24 and body region 22 of semiconductor layer 14 to reach drift region 20 . Therefore, the bottom wall 16B of the gate trench 16 is adjacent to the drift region 20. The gate trench 16 may have a depth of 1 μm or more and 10 μm or less. Note that the depth of the gate trench 16 may correspond to the distance from the top surface 14A of the semiconductor layer 14 to the bottom wall 16B of the gate trench 16 in the Z-axis direction.
 ゲートトレンチ16の側壁16Aは、Z軸方向(半導体層14の上面14Aに対して垂直な方向)に延びていてもよいし、Z軸方向に対して傾斜していてもよい。一例では、側壁16Aは、ゲートトレンチ16の幅が底壁16Bに向かって小さくなるようにZ軸方向に対して傾斜していてもよい。また、ゲートトレンチ16の底壁16Bは、必ずしも平坦でなくてもよく、例えば、その一部または全体が湾曲していてもよい。 The sidewall 16A of the gate trench 16 may extend in the Z-axis direction (direction perpendicular to the upper surface 14A of the semiconductor layer 14), or may be inclined with respect to the Z-axis direction. In one example, the sidewall 16A may be inclined with respect to the Z-axis direction so that the width of the gate trench 16 becomes smaller toward the bottom wall 16B. Further, the bottom wall 16B of the gate trench 16 does not necessarily have to be flat, and may be partially or entirely curved, for example.
 半導体装置10は、複数のゲート電極28と、複数のフィールドプレート電極30とを含んでいる。複数のゲート電極28の各々は、複数のゲートトレンチ16のうちの対応する1つに絶縁層18を介して埋め込まれている。複数のフィールドプレート電極30の各々は、複数のゲートトレンチ16のうちの対応する1つに、ゲート電極28と離隔されつつ絶縁層18を介して埋め込まれている。ゲート電極28は、ゲート電圧が印加されるように構成されていてよく、フィールドプレート電極30は、基準電圧(またはソース電圧)が印加されるように構成されていてよい。ゲート電極28およびフィールドプレート電極30は、一例では、導電性のポリシリコンから形成されていてよい。 The semiconductor device 10 includes a plurality of gate electrodes 28 and a plurality of field plate electrodes 30. Each of the plurality of gate electrodes 28 is embedded in a corresponding one of the plurality of gate trenches 16 with an insulating layer 18 interposed therebetween. Each of the plurality of field plate electrodes 30 is embedded in a corresponding one of the plurality of gate trenches 16 with an insulating layer 18 interposed therebetween while being separated from the gate electrode 28 . Gate electrode 28 may be configured to have a gate voltage applied to it, and field plate electrode 30 may be configured to have a reference voltage (or source voltage) applied to it. Gate electrode 28 and field plate electrode 30 may be formed from conductive polysilicon, in one example.
 ゲート電極28は、絶縁層18に覆われた上面28A、および上面28Aと反対の底面28Bを含んでいてよい。フィールドプレート電極30は、ゲートトレンチ16内において、ゲート電極28の下方に配置されている。より詳細には、フィールドプレート電極30は、ゲート電極28の底面28Bとゲートトレンチ16の底壁16Bとの間に配置されていてよい。ゲート電極28の底面28Bの少なくとも一部は、絶縁層18を挟んでフィールドプレート電極30と対向している。ゲート電極28は、ゲートトレンチ16の側壁16Aと対向する側面28Cをさらに含む。 The gate electrode 28 may include a top surface 28A covered with the insulating layer 18 and a bottom surface 28B opposite to the top surface 28A. Field plate electrode 30 is arranged below gate electrode 28 in gate trench 16 . More specifically, the field plate electrode 30 may be arranged between the bottom surface 28B of the gate electrode 28 and the bottom wall 16B of the gate trench 16. At least a portion of the bottom surface 28B of the gate electrode 28 faces the field plate electrode 30 with the insulating layer 18 in between. Gate electrode 28 further includes a side surface 28C that faces sidewall 16A of gate trench 16.
 ゲート電極28の上面28Aは、半導体層14の上面14Aよりも下方に位置していてよい。また、ゲート電極28の底面28Bは、Z軸方向において、ドリフト領域20とボディ領域22との界面との近くに位置しており、好ましくは、当該界面よりも下方にあってよい。ゲート電極28の上面28Aおよび底面28Bは、平坦であってもよいし、湾曲していてもよい。 The upper surface 28A of the gate electrode 28 may be located below the upper surface 14A of the semiconductor layer 14. Further, the bottom surface 28B of the gate electrode 28 is located near the interface between the drift region 20 and the body region 22 in the Z-axis direction, and preferably may be located below the interface. The top surface 28A and bottom surface 28B of the gate electrode 28 may be flat or curved.
 ゲート電極28およびフィールドプレート電極30は、周囲を絶縁層18によって囲まれている。フィールドプレート電極30は、ゲート電極28よりも小さい幅を有していてよい。フィールドプレート電極30が比較的小さい幅を有することにより、フィールドプレート電極30を囲む絶縁層18の厚さは比較的大きい。 The gate electrode 28 and the field plate electrode 30 are surrounded by the insulating layer 18. Field plate electrode 30 may have a smaller width than gate electrode 28. Due to the relatively small width of field plate electrode 30, the thickness of insulating layer 18 surrounding field plate electrode 30 is relatively large.
 半導体装置10は、絶縁層18を貫通するソースコンタクトプラグ32をさらに含んでいてよい。ソースコンタクトプラグ32は、平面視でゲートトレンチ16と平行に延びるとともに、2つのゲートトレンチ16の間に配置されていてよい(図1参照)。半導体装置10は、絶縁層18上に形成されたソース配線34をさらに含んでいる。ソース配線34は、基準電圧(またはソース電圧)が印加されるように構成されていてよい。ソース配線34は、ソースコンタクトプラグ32に接続されている。 The semiconductor device 10 may further include a source contact plug 32 that penetrates the insulating layer 18. The source contact plug 32 extends parallel to the gate trenches 16 in plan view, and may be disposed between the two gate trenches 16 (see FIG. 1). The semiconductor device 10 further includes a source wiring 34 formed on the insulating layer 18. The source wiring 34 may be configured to be applied with a reference voltage (or source voltage). The source wiring 34 is connected to the source contact plug 32.
 半導体層14は、コンタクト領域36をさらに含んでいてよい。コンタクト領域36は、p型不純物を含むp型領域であってよい。コンタクト領域36のp型不純物濃度は、ボディ領域22よりも高く、1×1019cm-3以上1×1021cm-3以下であってよい。ソースコンタクトプラグ32は、絶縁層18およびソース領域24を貫通して、コンタクト領域36に接するように延びている。コンタクト領域36は、ソースコンタクトプラグ32を介してソース配線34に電気的に接続されている。 Semiconductor layer 14 may further include contact region 36 . Contact region 36 may be a p-type region containing p-type impurities. The p-type impurity concentration of the contact region 36 is higher than that of the body region 22, and may be 1×10 19 cm −3 or more and 1×10 21 cm −3 or less. Source contact plug 32 extends through insulating layer 18 and source region 24 to contact contact region 36 . Contact region 36 is electrically connected to source wiring 34 via source contact plug 32 .
 絶縁層18は、ゲート電極28と半導体層14との間に介在してゲートトレンチ16の側壁16Aを覆うゲート絶縁部38を含む。ゲート絶縁部38は、ゲート電極28の側面28Cとゲートトレンチ16の側壁16Aとの間にある絶縁層18の一部である。ゲート電極28は、ゲート絶縁部38を介して半導体層14と対向している。ゲート電極28に所定の電圧が印加されると、ゲート絶縁部38と隣接するp型のボディ領域22内にチャネルが形成される。半導体装置10は、このチャネルを介したn型のソース領域24とn型のドリフト領域20との間のZ軸方向の電子の流れの制御を可能とすることができる。また、ソース配線34は、フィールドプレート電極30に電気的に接続されているので、ゲートトレンチ16内の電界集中を緩和して半導体装置10の耐圧を向上させることができる。 The insulating layer 18 includes a gate insulating portion 38 that is interposed between the gate electrode 28 and the semiconductor layer 14 and covers the side wall 16A of the gate trench 16. The gate insulating portion 38 is a part of the insulating layer 18 between the side surface 28C of the gate electrode 28 and the side wall 16A of the gate trench 16. Gate electrode 28 faces semiconductor layer 14 with gate insulating section 38 in between. When a predetermined voltage is applied to the gate electrode 28, a channel is formed in the p-type body region 22 adjacent to the gate insulating portion 38. The semiconductor device 10 can control the flow of electrons in the Z-axis direction between the n-type source region 24 and the n-type drift region 20 via this channel. Further, since the source wiring 34 is electrically connected to the field plate electrode 30, the electric field concentration within the gate trench 16 can be alleviated, and the withstand voltage of the semiconductor device 10 can be improved.
 (半導体装置の平面レイアウト)
 次に、再び図1を参照して、半導体装置10の平面レイアウトについて説明する。半導体層14は、外周領域40と、平面視で外周領域40に囲まれた矩形状の外縁を有する内側領域42とを含んでいる。外周領域40と内側領域42との境界は、図1において二点鎖線で示されている。外周領域40の外縁は、平面視において、半導体層14の外縁と一致していてもよいし、或いは、半導体層14の外縁の内側にあってもよい。一例では、外周領域40は、半導体層14の外縁と、内側領域42との間に位置していてよい。内側領域42の矩形状の外縁は、平面視でY軸方向に延びる2つの辺と、X軸方向に延びる2つの辺とを有している。なお、本明細書において、Y軸方向を第1方向と呼び、X軸方向を第2方向と呼ぶ場合がある。第2方向は、平面視で第1方向に直交する方向である。
(Planar layout of semiconductor device)
Next, referring again to FIG. 1, the planar layout of the semiconductor device 10 will be described. The semiconductor layer 14 includes an outer peripheral region 40 and an inner region 42 having a rectangular outer edge surrounded by the outer peripheral region 40 in plan view. The boundary between the outer circumferential region 40 and the inner region 42 is indicated by a chain double-dashed line in FIG. The outer edge of the outer peripheral region 40 may coincide with the outer edge of the semiconductor layer 14 in plan view, or may be located inside the outer edge of the semiconductor layer 14. In one example, the outer peripheral region 40 may be located between the outer edge of the semiconductor layer 14 and the inner region 42. The rectangular outer edge of the inner region 42 has two sides extending in the Y-axis direction and two sides extending in the X-axis direction in plan view. Note that in this specification, the Y-axis direction may be referred to as a first direction, and the X-axis direction may be referred to as a second direction. The second direction is a direction perpendicular to the first direction in plan view.
 半導体装置10は、絶縁層18上に形成されるとともに、複数のゲート電極28(図2参照)に電気的に接続されたゲート配線44をさらに含む。ソース配線34は、絶縁層18上に形成されるとともに、ゲート配線44から離隔されている。ソース配線34は、ゲート配線44から(例えば耐圧等を考慮して定められる)所定の距離だけ離隔されていてよい。前述の通り、ソース配線34は、複数のフィールドプレート電極30(図2参照)に電気的に接続されている。 The semiconductor device 10 further includes a gate wiring 44 formed on the insulating layer 18 and electrically connected to the plurality of gate electrodes 28 (see FIG. 2). The source wiring 34 is formed on the insulating layer 18 and is spaced apart from the gate wiring 44. The source wiring 34 may be separated from the gate wiring 44 by a predetermined distance (determined in consideration of breakdown voltage, etc.). As described above, the source wiring 34 is electrically connected to the plurality of field plate electrodes 30 (see FIG. 2).
 ゲート配線44は、外周領域40に配置された複数の外周ゲートフィンガー46を含む。複数の外周ゲートフィンガー46は、内側領域42の外縁に沿って配置された複数の間隙48によって互いに離隔されている。図1の例では、複数の外周ゲートフィンガー46は、4つの外周ゲートフィンガー46A,46B,46C,46Dを含んでいてよい。より具体的には、複数の外周ゲートフィンガー46は、Y軸方向に延びる第1外周ゲートフィンガー46Aおよび第2外周ゲートフィンガー46Bと、X軸方向に延びる第3外周ゲートフィンガー46Cおよび第4外周ゲートフィンガー46Dとを含んでいてよい。 The gate wiring 44 includes a plurality of outer peripheral gate fingers 46 arranged in the outer peripheral region 40. The plurality of peripheral gate fingers 46 are spaced apart from each other by a plurality of gaps 48 located along the outer edge of the inner region 42 . In the example of FIG. 1, the plurality of peripheral gate fingers 46 may include four peripheral gate fingers 46A, 46B, 46C, and 46D. More specifically, the plurality of outer circumferential gate fingers 46 include a first outer circumferential gate finger 46A and a second outer circumferential gate finger 46B extending in the Y-axis direction, and a third outer circumferential gate finger 46C and a fourth outer circumferential gate finger extending in the X-axis direction. The finger 46D may be included.
 ゲート配線44は、内側領域42に配置された複数の内側ゲートフィンガー50をさらに含む。複数の内側ゲートフィンガー50の各々は、複数の外周ゲートフィンガー46のうちの少なくとも1つに接続されている。複数の内側ゲートフィンガー50は、Y軸方向に延びる第1内側ゲートフィンガー50Aと、X軸方向に延びる第2内側ゲートフィンガー50Bとを含んでいてよい。 The gate wiring 44 further includes a plurality of inner gate fingers 50 arranged in the inner region 42. Each of the plurality of inner gate fingers 50 is connected to at least one of the plurality of outer circumferential gate fingers 46. The plurality of inner gate fingers 50 may include a first inner gate finger 50A extending in the Y-axis direction and a second inner gate finger 50B extending in the X-axis direction.
 内側領域42は、複数の内側ゲートフィンガー50のうち、互いに交差する少なくとも2つの内側ゲートフィンガーによって区切られた複数のサブ領域52を含む。複数のサブ領域52の各々は、複数の外周ゲートフィンガー46のうちの少なくとも1つと隣接している。図1の例の場合、第1内側ゲートフィンガー50Aと第2内側ゲートフィンガー50Bとが互いに交差している。複数のサブ領域52は、4つのサブ領域52A,52B,52C,52Dを含む。4つのサブ領域52A,52B,52C,52Dは、互いに交差する第1内側ゲートフィンガー50Aおよび第2内側ゲートフィンガー50Bによって区切られている。4つのサブ領域52A,52B,52C,52Dの各々は、平面視で第1内側ゲートフィンガー50Aおよび第2内側ゲートフィンガー50Bに隣接している。また、図1の例では、4つの間隙48A,48B,48C,48Dが、4つのサブ領域52A,52B,52C,52Dにそれぞれ隣接している。 The inner region 42 includes a plurality of sub-regions 52 separated by at least two of the plurality of inner gate fingers 50 that intersect with each other. Each of the plurality of sub-regions 52 is adjacent to at least one of the plurality of peripheral gate fingers 46 . In the example of FIG. 1, the first inner gate finger 50A and the second inner gate finger 50B cross each other. The plurality of sub-regions 52 include four sub-regions 52A, 52B, 52C, and 52D. The four sub-regions 52A, 52B, 52C, 52D are separated by a first inner gate finger 50A and a second inner gate finger 50B that intersect with each other. Each of the four sub-regions 52A, 52B, 52C, and 52D is adjacent to the first inner gate finger 50A and the second inner gate finger 50B in plan view. Further, in the example of FIG. 1, four gaps 48A, 48B, 48C, and 48D are adjacent to four sub-regions 52A, 52B, 52C, and 52D, respectively.
 第1内側ゲートフィンガー50Aは、第3外周ゲートフィンガー46Cおよび第4外周ゲートフィンガー46Dに接続されている。第2内側ゲートフィンガー50Bは、第1外周ゲートフィンガー46Aおよび第2外周ゲートフィンガー46Bに接続されている。 The first inner gate finger 50A is connected to the third outer gate finger 46C and the fourth outer gate finger 46D. The second inner gate finger 50B is connected to the first outer gate finger 46A and the second outer gate finger 46B.
 ゲート配線44は、ゲートパッド54をさらに含んでいてよい。図1の例では、ゲートパッド54は、第1内側ゲートフィンガー50Aおよび第4外周ゲートフィンガー46Dに接続されている。 The gate wiring 44 may further include a gate pad 54. In the example of FIG. 1, gate pad 54 is connected to first inner gate finger 50A and fourth outer gate finger 46D.
 サブ領域52Aは、平面視で、第1内側ゲートフィンガー50A、第2内側ゲートフィンガー50B、および第1外周ゲートフィンガー46Aに囲まれている。サブ領域52Aに隣接する間隙48Aは、第1外周ゲートフィンガー46Aと、第3外周ゲートフィンガー46Cとの間に形成されている。 The sub-region 52A is surrounded by the first inner gate finger 50A, the second inner gate finger 50B, and the first outer peripheral gate finger 46A in plan view. A gap 48A adjacent to the sub-region 52A is formed between the first outer circumferential gate finger 46A and the third outer circumferential gate finger 46C.
 サブ領域52Bは、平面視で、第1内側ゲートフィンガー50A、第2内側ゲートフィンガー50B、および第3外周ゲートフィンガー46Cに囲まれている。サブ領域52Bに隣接する間隙48Bは、第3外周ゲートフィンガー46Cと、第2外周ゲートフィンガー46Bとの間に形成されている。 The sub-region 52B is surrounded by the first inner gate finger 50A, the second inner gate finger 50B, and the third outer peripheral gate finger 46C in plan view. A gap 48B adjacent to the sub-region 52B is formed between the third outer circumferential gate finger 46C and the second outer circumferential gate finger 46B.
 サブ領域52Cは、平面視で、第1内側ゲートフィンガー50A、第2内側ゲートフィンガー50B、および第4外周ゲートフィンガー46Dに囲まれている。サブ領域52Cに隣接する間隙48Cは、第4外周ゲートフィンガー46Dと、第1外周ゲートフィンガー46Aとの間に形成されている。 The sub-region 52C is surrounded by the first inner gate finger 50A, the second inner gate finger 50B, and the fourth outer peripheral gate finger 46D in plan view. A gap 48C adjacent to the sub-region 52C is formed between the fourth outer circumferential gate finger 46D and the first outer circumferential gate finger 46A.
 サブ領域52Dは、平面視で、第1内側ゲートフィンガー50A、第2内側ゲートフィンガー50B、第2外周ゲートフィンガー46B、第4外周ゲートフィンガー46D、およびゲートパッド54に囲まれている。サブ領域52Dに隣接する間隙48Dは、第2外周ゲートフィンガー46Bと、第4外周ゲートフィンガー46Dとの間に形成されている。 The sub-region 52D is surrounded by the first inner gate finger 50A, the second inner gate finger 50B, the second outer circumferential gate finger 46B, the fourth outer circumferential gate finger 46D, and the gate pad 54 in plan view. A gap 48D adjacent to the sub-region 52D is formed between the second outer circumferential gate finger 46B and the fourth outer circumferential gate finger 46D.
 このように、各サブ領域52の外縁は、間隙48と隣接している部分を除いて、ゲート配線44に囲まれている。各サブ領域52は、平面視で矩形状であり、4つの辺を有している。複数の間隙48のうちの少なくとも2つは、当該間隙48が隣接するサブ領域52の1つの辺と少なくとも同等の長さにわたって形成されていてよい。図1の例では、複数の間隙48のうちの3つが、当該間隙48が隣接するサブ領域52(52A,52B,52C)の1つの辺と同等の長さにわたって形成されている。換言すると、サブ領域52A,52B,52Cの各々は、その3つの辺をゲート配線44によって囲まれている。 In this way, the outer edge of each sub-region 52 is surrounded by the gate wiring 44 except for the portion adjacent to the gap 48. Each sub-region 52 is rectangular in plan view and has four sides. At least two of the plurality of gaps 48 may be formed over a length at least equal to one side of the sub-region 52 to which the gaps 48 are adjacent. In the example of FIG. 1, three of the plurality of gaps 48 are formed over a length equivalent to one side of the sub-region 52 (52A, 52B, 52C) to which the gaps 48 are adjacent. In other words, each of the sub-regions 52A, 52B, and 52C is surrounded by the gate wiring 44 on three sides.
 ソース配線34は、複数のサブ領域52にそれぞれ配置された複数の内側セグメント56と、外周領域40に配置された外周セグメント58とを含む。外周セグメント58は、複数の内側セグメント56のうちの少なくとも2つと連続している。少なくとも2つの内側セグメント56の各々は、複数の間隙48のうち、当該内側セグメント56が配置されるサブ領域52に隣接する間隙48を介して外周セグメント58に接続されている。 The source wiring 34 includes a plurality of inner segments 56 arranged in each of the plurality of sub-regions 52 and an outer peripheral segment 58 arranged in the outer peripheral region 40 . The outer circumferential segment 58 is continuous with at least two of the plurality of inner segments 56. Each of the at least two inner segments 56 is connected to the outer peripheral segment 58 via a gap 48 of the plurality of gaps 48 adjacent to the sub-region 52 in which the inner segment 56 is disposed.
 図1の例では、複数の内側セグメント56は、4つのサブ領域52A,52B,52C,52Dにそれぞれ配置された4つの内側セグメント56A,56B,56C,56Dを含む。外周セグメント58は、4つの内側セグメント56A,56B,56C,56Dと連続している。4つの内側セグメント56A,56B,56C,56Dの各々は、4つの間隙48A,48B,48C,48Dのうち、当該内側セグメント56が配置されるサブ領域52に隣接する間隙48を介して外周セグメント58に接続されている。すなわち、内側セグメント56Aは、内側セグメント56Aが配置されるサブ領域52Aに隣接する間隙48Aを介して外周セグメント58に接続されている。内側セグメント56Bは、内側セグメント56Bが配置されるサブ領域52Bに隣接する間隙48Bを介して外周セグメント58に接続されている。内側セグメント56Cは、内側セグメント56Cが配置されるサブ領域52Cに隣接する間隙48Cを介して外周セグメント58に接続されている。内側セグメント56Dは、内側セグメント56Dが配置されるサブ領域52Dに隣接する間隙48Dを介して外周セグメント58に接続されている。 In the example of FIG. 1, the plurality of inner segments 56 includes four inner segments 56A, 56B, 56C, and 56D arranged in four sub-regions 52A, 52B, 52C, and 52D, respectively. The outer circumferential segment 58 is continuous with the four inner segments 56A, 56B, 56C, 56D. Each of the four inner segments 56A, 56B, 56C, and 56D connects to the outer circumferential segment 58 through a gap 48 adjacent to the sub-region 52 in which the inner segment 56 is disposed among the four gaps 48A, 48B, 48C, and 48D. It is connected to the. That is, the inner segment 56A is connected to the outer peripheral segment 58 via the gap 48A adjacent to the sub-region 52A in which the inner segment 56A is arranged. Inner segment 56B is connected to outer circumferential segment 58 via gap 48B adjacent to sub-region 52B in which inner segment 56B is located. Inner segment 56C is connected to outer circumferential segment 58 via gap 48C adjacent to sub-region 52C in which inner segment 56C is located. Inner segment 56D is connected to outer circumferential segment 58 via gap 48D adjacent sub-region 52D in which inner segment 56D is located.
 このように、外周セグメント58は、複数の内側セグメント56(の全て)と連続していてもよい。この場合、複数の内側セグメント56の各々が、複数の間隙48のうち、当該内側セグメント56が配置されるサブ領域52に隣接する間隙48を介して外周セグメント58に接続され得る。 In this way, the outer circumferential segment 58 may be continuous with (all of) the plurality of inner segments 56. In this case, each of the plurality of inner segments 56 may be connected to the outer peripheral segment 58 through a plurality of gaps 48 that are adjacent to the sub-region 52 in which the inner segment 56 is arranged.
 外周セグメント58は、ゲートパッド54が配置されている領域を除いて、平面視で半導体層14の外縁に沿って延びていてよい。
 (ゲートトレンチの配置)
 複数のゲートトレンチ16の各々は、平面視で、複数の外周ゲートフィンガー46のうちの1つまたは複数の内側ゲートフィンガー50のうちの1つと交差するように配置することができる。半導体装置10は、複数のゲートコンタクトプラグ60をさらに含んでいてよい。各ゲートトレンチ16に埋め込まれたゲート電極28(図2参照)は、複数のゲートコンタクトプラグ60のうちの少なくとも1つを介して、複数の外周ゲートフィンガー46のうちの1つまたは複数の内側ゲートフィンガー50のうちの1つに接続され得る。ゲートコンタクトプラグ60は、複数のゲートトレンチ16の各々が平面視で複数の外周ゲートフィンガー46のうちの1つまたは複数の内側ゲートフィンガー50のうちの1つと交差する領域に配置することができる。
The outer peripheral segment 58 may extend along the outer edge of the semiconductor layer 14 in plan view, except for the region where the gate pad 54 is arranged.
(Gate trench arrangement)
Each of the plurality of gate trenches 16 can be arranged to intersect one of the plurality of outer circumferential gate fingers 46 or one of the plurality of inner gate fingers 50 in a plan view. The semiconductor device 10 may further include a plurality of gate contact plugs 60. The gate electrode 28 (see FIG. 2) embedded in each gate trench 16 connects one or more inner gates of the plurality of outer circumferential gate fingers 46 via at least one of the plurality of gate contact plugs 60. It may be connected to one of the fingers 50. The gate contact plug 60 can be arranged in a region where each of the plurality of gate trenches 16 intersects one of the plurality of outer peripheral gate fingers 46 or one of the plurality of inner gate fingers 50 in a plan view.
 複数のゲートトレンチ16は、第1組S1のゲートトレンチ16および第2組S2のゲートトレンチ16を含んでいてよい。第1組S1の各ゲートトレンチ16は、平面視でY軸方向に延びている。第2組S2の各ゲートトレンチ16は、平面視でX軸方向に延びている。第1組S1および第2組S2の各ゲートトレンチ16は、平面視で複数の外周ゲートフィンガー46のうちの1つと交差している。第1組S1および第2組S2のゲートトレンチ16は、内側領域42と外周領域40とに跨って配置されている。 The plurality of gate trenches 16 may include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16. Each gate trench 16 of the first set S1 extends in the Y-axis direction in plan view. Each gate trench 16 of the second set S2 extends in the X-axis direction in plan view. Each gate trench 16 of the first set S1 and the second set S2 intersects with one of the plurality of outer circumferential gate fingers 46 in plan view. The gate trenches 16 of the first set S1 and the second set S2 are arranged across the inner region 42 and the outer peripheral region 40.
 複数のゲートトレンチ16は、第3組S3のゲートトレンチ16および第4組S4のゲートトレンチ16を含んでいてよい。第3組S3の各ゲートトレンチ16は、平面視でY軸方向に延びている。第4組S4の各ゲートトレンチ16は、平面視でX軸方向に延びている。第3組S3および第4組S4の各ゲートトレンチ16は、平面視で複数の内側ゲートフィンガー50のうちの1つと交差している。第3組S3および第4組S4のゲートトレンチ16は、内側領域42内にその全体が配置されている。 The plurality of gate trenches 16 may include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16. Each gate trench 16 of the third group S3 extends in the Y-axis direction in plan view. Each gate trench 16 of the fourth group S4 extends in the X-axis direction in plan view. Each gate trench 16 of the third set S3 and the fourth set S4 intersects with one of the plurality of inner gate fingers 50 in plan view. The gate trenches 16 of the third set S3 and the fourth set S4 are entirely disposed within the inner region 42.
 図1の例では、第1組S1の各ゲートトレンチ16の端部を除く主要部分は、サブ領域52Bまたはサブ領域52Cに配置されている。第2組S2の各ゲートトレンチ16の端部を除く主要部分は、サブ領域52Aまたはサブ領域52Dに配置されている。第3組S3の各ゲートトレンチ16の端部を除く主要部分は、サブ領域52Bまたはサブ領域52Cに配置されている。第4組S4の各ゲートトレンチ16の端部を除く主要部分は、サブ領域52Aまたはサブ領域52Dに配置されている。 In the example of FIG. 1, the main portions of each gate trench 16 of the first set S1, excluding the ends, are arranged in the sub-region 52B or the sub-region 52C. The main portions of each gate trench 16 of the second set S2, excluding the ends, are arranged in the sub-region 52A or the sub-region 52D. The main portions of each gate trench 16 of the third group S3, excluding the ends, are arranged in the sub-region 52B or the sub-region 52C. The main portions of each gate trench 16 of the fourth set S4, excluding the ends, are arranged in the sub-region 52A or the sub-region 52D.
 任意選択的に、複数のゲートトレンチ16は、第5組S5のゲートトレンチ16を含んでいてよい(図1では、1つのゲートトレンチ16のみが示されているが、第5組は複数のゲートトレンチ16を含んでいてよい)。第5組S5の各ゲートトレンチ16は、平面視でY軸方向に延びるとともに、平面視で第4外周ゲートフィンガー46Dと交差している。第5組S5の各ゲートトレンチ16の端部を除く主要部分は、サブ領域52Dにおいて、ゲートパッド54の隣に配置されている。 Optionally, the plurality of gate trenches 16 may include a fifth set S5 of gate trenches 16 (in FIG. 1 only one gate trench 16 is shown, but the fifth set includes a plurality of gate trenches 16). trench 16). Each gate trench 16 of the fifth set S5 extends in the Y-axis direction in a plan view, and intersects with the fourth outer circumferential gate finger 46D in a plan view. The main portion of each gate trench 16 of the fifth set S5, excluding the end portion, is arranged next to the gate pad 54 in the sub-region 52D.
 各組S1,S2,S3,S4,S5は、1つまたは複数のゲートトレンチ16を含んでいてよい。各組S1,S2,S3,S4,S5に含まれる複数のゲートトレンチ16のいくつかは、等間隔で互いに平行に整列されていてもよい。各組S1,S2,S3,S4,S5に含まれるゲートトレンチの数は、レイアウトに応じて適宜定めることができる。 Each set S1, S2, S3, S4, S5 may include one or more gate trenches 16. Some of the plurality of gate trenches 16 included in each set S1, S2, S3, S4, S5 may be arranged parallel to each other at equal intervals. The number of gate trenches included in each set S1, S2, S3, S4, S5 can be determined as appropriate depending on the layout.
 半導体装置10は、フィールドプレートトレンチ62をさらに含んでいてよい。フィールドプレートトレンチ62内には、フィールドプレート電極30(図2参照)と同じ電位の電極を配置することができる。フィールドプレートトレンチ62は、同じサブ領域52に主要部分が配置される整列されたゲートトレンチ16同士を連通させるように構成することができる。フィールドプレートトレンチ62は、ゲートトレンチ16を連通させる部分62Aと、ゲートトレンチ16と平行に延びる2つの部分62Bを含んでいてよい。部分62Aは、ゲートトレンチ16に対して垂直に延びていてよい。2つの部分62Bは、連通されるゲートトレンチ16の両側に設けられていてよい。フィールドプレートトレンチ62内に配置された電極は、フィールドプレートトレンチ62と連通するゲートトレンチ16に配置されたフィールドプレート電極30(図2参照)に一体的に接続されていてよい。 The semiconductor device 10 may further include a field plate trench 62. An electrode having the same potential as the field plate electrode 30 (see FIG. 2) can be placed within the field plate trench 62. Field plate trenches 62 can be configured to communicate with aligned gate trenches 16 whose main portions are located in the same sub-region 52. The field plate trench 62 may include a portion 62A that communicates with the gate trench 16 and two portions 62B that extend parallel to the gate trench 16. Portion 62A may extend perpendicularly to gate trench 16. The two portions 62B may be provided on both sides of the gate trench 16 to be communicated with each other. The electrode placed in the field plate trench 62 may be integrally connected to the field plate electrode 30 (see FIG. 2) placed in the gate trench 16 communicating with the field plate trench 62.
 図3は、図1のF3-F3線に沿った半導体装置の概略断面図である。図3では、内側セグメント56Cの下方に位置する2つのゲートトレンチ16(第1組S1のうちの1つおよび第3組S3のうちの1つ)のYZ平面における断面が示されている。 FIG. 3 is a schematic cross-sectional view of the semiconductor device taken along line F3-F3 in FIG. 1. FIG. 3 shows a cross section in the YZ plane of two gate trenches 16 (one of the first set S1 and one of the third set S3) located below the inner segment 56C.
 ゲート電極28およびフィールドプレート電極30が、各ゲートトレンチ16内に配置されている。ゲート電極28は、フィールドプレート電極30の上方に配置されるとともに、ゲートコンタクトプラグ60を介してゲート配線44に接続されている。 A gate electrode 28 and a field plate electrode 30 are arranged within each gate trench 16. Gate electrode 28 is arranged above field plate electrode 30 and connected to gate wiring 44 via gate contact plug 60 .
 半導体装置10は、複数のフィールドプレートコンタクトプラグ64をさらに含んでいてよい。第1組S1の各ゲートトレンチ16に埋め込まれたフィールドプレート電極30は、複数のフィールドプレートコンタクトプラグ64のうちの少なくとも1つを介して、外周セグメント58に接続された第1端部66と、複数のフィールドプレートコンタクトプラグ64のうちの少なくとも1つを介して、複数の内側セグメント56のうち1つ(図3の例では内側セグメント56C)に接続された第2端部68とを含んでいてよい。第3組S3の各ゲートトレンチ16に埋め込まれたフィールドプレート電極30は、複数のフィールドプレートコンタクトプラグ64のうちの少なくとも1つを介して、複数の内側セグメント56のうちの1つ(図3の例では内側セグメント56C)に接続された第1端部70と、複数のフィールドプレートコンタクトプラグ64のうちの少なくとも1つを介して、複数の内側セグメント56のうちの別の1つ(図3の例では内側セグメント56A)に接続された第2端部72とを含んでいてよい。 The semiconductor device 10 may further include a plurality of field plate contact plugs 64. The field plate electrode 30 embedded in each gate trench 16 of the first set S1 has a first end 66 connected to the outer peripheral segment 58 via at least one of the plurality of field plate contact plugs 64; a second end 68 connected to one of the plurality of inner segments 56 (inner segment 56C in the example of FIG. 3) via at least one of the plurality of field plate contact plugs 64; good. The field plate electrode 30 embedded in each gate trench 16 of the third set S3 is connected to one of the plurality of inner segments 56 (FIG. 3) via at least one of the plurality of field plate contact plugs 64. A first end 70 connected to another one of the plurality of inner segments 56 (in the example shown in FIG. In the example, the inner segment 56A) may include a second end 72 connected to the inner segment 56A).
 端部66,68,70,72の上方にはゲート電極28は存在していない。端部66,68,70,72は、ゲートトレンチ16の底部から開口部付近までZ軸方向に延びているので、フィールドプレートコンタクトプラグ64を介して、その上方に位置するソース配線34に接続することができる。 There is no gate electrode 28 above the ends 66, 68, 70, 72. Since the ends 66, 68, 70, and 72 extend in the Z-axis direction from the bottom of the gate trench 16 to near the opening, they are connected to the source wiring 34 located above via the field plate contact plug 64. be able to.
 (半導体装置の作用)
 以下、本実施形態の半導体装置10の作用について説明する。
 ゲート配線44は、外周領域40に配置された複数の外周ゲートフィンガー46を含んでいる。複数の外周ゲートフィンガー46は、内側領域42の外縁に沿って配置された複数の間隙48によって互いに離隔されている。仮に、複数の外周ゲートフィンガー46の各々が、間隙48が無くなるように延長されて互いに接続されるとすると、その延長部分は、余分なゲート・ドレイン間容量Cgdを生じさせる。ゲート・ドレイン間容量Cgdは、半導体装置10の帰還容量Crssに相当する。帰還容量Crssが大きいと、半導体装置10のスイッチング速度が低下し得る。したがって、複数の間隙48を内側領域42の外縁に沿って配置することにより、余分なゲート・ドレイン間容量Cgdを抑制することができる。
(Function of semiconductor device)
The operation of the semiconductor device 10 of this embodiment will be explained below.
The gate wiring 44 includes a plurality of outer circumferential gate fingers 46 arranged in the outer circumferential region 40 . The plurality of peripheral gate fingers 46 are spaced apart from each other by a plurality of gaps 48 located along the outer edge of the inner region 42 . If each of the plurality of outer peripheral gate fingers 46 were to be extended and connected to each other so that the gap 48 would be eliminated, the extended portion would generate an extra gate-drain capacitance C gd . The gate-drain capacitance C gd corresponds to the feedback capacitance C rss of the semiconductor device 10 . If the feedback capacitance C rss is large, the switching speed of the semiconductor device 10 may decrease. Therefore, by arranging the plurality of gaps 48 along the outer edge of the inner region 42, the excess gate-drain capacitance C gd can be suppressed.
 なお、本実施形態において、複数のゲートトレンチ16の各々は、平面視で複数の外周ゲートフィンガー46のうちの1つまたは複数の内側ゲートフィンガー50のうちの1つと交差するように配置されている。したがって、間隙48が配置される領域にゲートフィンガーが延びていなくても、各ゲートトレンチ16に埋め込まれたゲート電極28をゲート配線44に接続することが可能である。 Note that in this embodiment, each of the plurality of gate trenches 16 is arranged to intersect with one of the plurality of outer circumferential gate fingers 46 or one of the plurality of inner gate fingers 50 in plan view. . Therefore, it is possible to connect the gate electrode 28 embedded in each gate trench 16 to the gate wiring 44 even if the gate finger does not extend into the region where the gap 48 is arranged.
 また、ソース配線34は、複数のサブ領域52にそれぞれ配置された複数の内側セグメント56と、外周領域40に配置された外周セグメント58とを含んでいる。外周セグメント58は、複数の内側セグメント56のうちの少なくとも2つと連続しており、少なくとも2つの内側セグメント56の各々は、複数の間隙48のうち、当該内側セグメント56が配置されるサブ領域52に隣接する間隙48を介して外周セグメント58に接続されている。したがって、ソース配線34により生じる抵抗を低減することができる。 Further, the source wiring 34 includes a plurality of inner segments 56 arranged in each of the plurality of sub-regions 52 and an outer peripheral segment 58 arranged in the outer peripheral region 40. The outer peripheral segment 58 is continuous with at least two of the plurality of inner segments 56, and each of the at least two inner segments 56 is connected to a subregion 52 of the plurality of gaps 48 in which the inner segment 56 is disposed. It is connected to the outer peripheral segment 58 via an adjacent gap 48 . Therefore, the resistance caused by the source wiring 34 can be reduced.
 さらに、ゲート配線44は、内側領域42に配置された複数の内側ゲートフィンガー50を含んでいる。複数の内側ゲートフィンガー50の各々は、複数の外周ゲートフィンガー46のうちの少なくとも1つに接続されている。したがって、ゲートトレンチ16を配置可能な領域を拡大して、半導体装置10のオン抵抗Ronを低減することができる。 Further, gate wiring 44 includes a plurality of inner gate fingers 50 arranged in inner region 42 . Each of the plurality of inner gate fingers 50 is connected to at least one of the plurality of outer circumferential gate fingers 46. Therefore, the area where the gate trench 16 can be placed can be expanded, and the on-resistance R on of the semiconductor device 10 can be reduced.
 (比較例の半導体装置)
 以下、図4を参照して、半導体装置10による抵抗および寄生容量の低減について、さらに詳しく説明する。図4は、比較例に係る例示的な半導体装置100の概略平面図である。図4において、図1に示す半導体装置10と同様の構成要素には同じ符号が付されている。また、半導体装置10と同様な構成要素については詳細な説明を省略する。
(Comparative example semiconductor device)
Hereinafter, the reduction in resistance and parasitic capacitance by the semiconductor device 10 will be described in more detail with reference to FIG. 4. FIG. 4 is a schematic plan view of an exemplary semiconductor device 100 according to a comparative example. In FIG. 4, the same components as those of the semiconductor device 10 shown in FIG. 1 are given the same reference numerals. Furthermore, detailed description of the same components as those of the semiconductor device 10 will be omitted.
 半導体装置100は、本実施形態の半導体装置10のゲート配線44およびソース配線34とは異なるゲート配線102およびソース配線104を含んでいる。
 ゲート配線102は、絶縁層18上に形成されるとともに、複数のゲート電極28(図2参照)に電気的に接続されている。ソース配線104は、絶縁層18上に形成されるとともに、ゲート配線102から離隔されている。ソース配線104は、複数のフィールドプレート電極30(図2参照)に電気的に接続されている。
The semiconductor device 100 includes a gate wiring 102 and a source wiring 104 that are different from the gate wiring 44 and source wiring 34 of the semiconductor device 10 of this embodiment.
The gate wiring 102 is formed on the insulating layer 18 and is electrically connected to the plurality of gate electrodes 28 (see FIG. 2). The source wiring 104 is formed on the insulating layer 18 and is spaced apart from the gate wiring 102. The source wiring 104 is electrically connected to a plurality of field plate electrodes 30 (see FIG. 2).
 ゲート配線102は、外周領域40に配置された外周ゲートフィンガー106と、外周ゲートフィンガー106に接続されたゲートパッド108とを含む。外周ゲートフィンガー106は、内側領域42の外縁に沿って延びているが、平面視で内側領域42を完全には囲んでいない。外周ゲートフィンガー106は、外周領域40に配置された1つの間隙110によって途切れている。外周ゲートフィンガー106は、Y軸方向に延びる第1部分106Aおよび第2部分106Bと、X軸方向に延びる第3部分106Cおよび第4部分106Dとを含んでいる。第1部分106Aは、第3部分106Cと第4部分106Dとの間に接続されている。第2部分106Bは、第4部分106Dに接続されている。第2部分106Bは、第3部分106Cには接続されていない。第2部分106Bと第3部分106Cとの間に間隙110が形成されている。 The gate wiring 102 includes a peripheral gate finger 106 arranged in the peripheral region 40 and a gate pad 108 connected to the peripheral gate finger 106. The outer peripheral gate finger 106 extends along the outer edge of the inner region 42, but does not completely surround the inner region 42 in plan view. Peripheral gate fingers 106 are interrupted by a gap 110 located in peripheral region 40 . The outer circumferential gate finger 106 includes a first portion 106A and a second portion 106B extending in the Y-axis direction, and a third portion 106C and a fourth portion 106D extending in the X-axis direction. The first portion 106A is connected between the third portion 106C and the fourth portion 106D. The second portion 106B is connected to the fourth portion 106D. The second portion 106B is not connected to the third portion 106C. A gap 110 is formed between the second portion 106B and the third portion 106C.
 ゲート配線102は、内側領域42に配置された第1内側ゲートフィンガー112Aおよび第2内側ゲートフィンガー112Bをさらに含む。第1内側ゲートフィンガー112Aは、Y軸方向に延び、第2内側ゲートフィンガー112Bは、X軸方向に延びている。第1内側ゲートフィンガー112Aおよび第2内側ゲートフィンガー112Bは互いに交差している。第1内側ゲートフィンガー112Aは、外周ゲートフィンガー106およびゲートパッド108に接続されている。一方、第2内側ゲートフィンガー112Bは、外周ゲートフィンガー106には接続されておらず、第1内側ゲートフィンガー112Aにのみ接続されている。また、第1内側ゲートフィンガー112Aの一端および第2内側ゲートフィンガー112Bの両端は、外周ゲートフィンガー106から離隔されている。より具体的には、第1内側ゲートフィンガー112Aの一端は、外周ゲートフィンガー106の第3部分106Cから、間隙114によって離隔されている。また、第2内側ゲートフィンガー112Bの一端は、外周ゲートフィンガー106の第1部分106Aから、間隙116によって離隔されている。第2内側ゲートフィンガー112Bの他端は、外周ゲートフィンガー106の第2部分106Bから、間隙118によって離隔されている。このように、比較例の半導体装置10においては、内側領域42に3つの間隙114,116,118が存在している。 The gate wiring 102 further includes a first inner gate finger 112A and a second inner gate finger 112B arranged in the inner region 42. The first inner gate finger 112A extends in the Y-axis direction, and the second inner gate finger 112B extends in the X-axis direction. The first inner gate finger 112A and the second inner gate finger 112B cross each other. First inner gate finger 112A is connected to outer gate finger 106 and gate pad 108. On the other hand, the second inner gate finger 112B is not connected to the outer circumferential gate finger 106, but only to the first inner gate finger 112A. Further, one end of the first inner gate finger 112A and both ends of the second inner gate finger 112B are spaced apart from the outer circumferential gate finger 106. More specifically, one end of the first inner gate finger 112A is spaced apart from the third portion 106C of the outer circumferential gate finger 106 by a gap 114. Additionally, one end of the second inner gate finger 112B is separated from the first portion 106A of the outer circumferential gate finger 106 by a gap 116. The other end of the second inner gate finger 112B is spaced from the second portion 106B of the outer circumferential gate finger 106 by a gap 118. Thus, in the semiconductor device 10 of the comparative example, three gaps 114, 116, and 118 exist in the inner region 42.
 内側領域42は、互いに交差する第1内側ゲートフィンガー112Aおよび第2内側ゲートフィンガー112Bによって区切られた4つのサブ領域120A,120B,120C,120Dを含む。4つのサブ領域120A,120B,120C,120Dの各々は、平面視で第1内側ゲートフィンガー112Aおよび第2内側ゲートフィンガー112Bに隣接している。外周領域40に配置された間隙110は、サブ領域120Aにのみ隣接している。外周領域40には、他のサブ領域120B,120C,120Dに隣接する間隙は存在しない。 The inner region 42 includes four sub-regions 120A, 120B, 120C, and 120D separated by a first inner gate finger 112A and a second inner gate finger 112B that intersect with each other. Each of the four sub-regions 120A, 120B, 120C, and 120D is adjacent to the first inner gate finger 112A and the second inner gate finger 112B in plan view. Gap 110 arranged in outer peripheral region 40 is adjacent only to sub-region 120A. There is no gap in the outer peripheral region 40 adjacent to the other sub-regions 120B, 120C, and 120D.
 ソース配線104は、4つのサブ領域120A,120B,120C,120Dにそれぞれ配置された4つの内側セグメント122A,122B,122C,122Dと、外周領域40に配置された外周セグメント124とを含む。外周セグメント124は、内側セグメント122Aとのみ連続している。内側セグメント122Aは、内側セグメント122Aが配置されるサブ領域120Aに隣接する間隙110を介して外周セグメント124に接続されている。他の内側セグメント122B,122C,122Dは、外周セグメント124には直接接続されておらず、内側セグメント122Bは、内側領域42に配置された間隙114を介して内側セグメント122Aに接続されている。内側セグメント122Cは、内側領域42に配置された間隙118を介して内側セグメント122Aに接続されている。内側セグメント122Dは、内側領域42に配置された間隙116を介して内側セグメント122Bに接続されている。 The source wiring 104 includes four inner segments 122A, 122B, 122C, and 122D arranged in four sub-regions 120A, 120B, 120C, and 120D, respectively, and an outer peripheral segment 124 arranged in the outer peripheral region 40. The outer circumferential segment 124 is continuous only with the inner segment 122A. Inner segment 122A is connected to outer circumferential segment 124 via gap 110 adjacent sub-region 120A in which inner segment 122A is located. The other inner segments 122B, 122C, 122D are not directly connected to the outer circumferential segment 124, and the inner segment 122B is connected to the inner segment 122A through a gap 114 located in the inner region 42. Inner segment 122C is connected to inner segment 122A via gap 118 located in inner region 42. Inner segment 122D is connected to inner segment 122B via gap 116 located in inner region 42.
 外周セグメント124は、ゲートパッド108が配置されている領域を除いて、平面視で半導体層14の外縁に沿って延びている。外周セグメント124は、内側セグメント122Aにのみ直接接続されているので、外周セグメント124のうち、例えばゲートパッド108の近くに位置する部分から内側セグメント122Aまでは、比較的長い距離がある。 The outer peripheral segment 124 extends along the outer edge of the semiconductor layer 14 in plan view, except for the region where the gate pad 108 is arranged. Since outer circumferential segment 124 is directly connected only to inner segment 122A, there is a relatively long distance from a portion of outer circumferential segment 124 located near gate pad 108 to inner segment 122A.
 複数のゲートトレンチ16の各々は、平面視で、外周ゲートフィンガー106、第1内側ゲートフィンガー112A、または第2内側ゲートフィンガー112Bと交差するように配置することができる。 Each of the plurality of gate trenches 16 can be arranged to intersect with the outer peripheral gate finger 106, the first inner gate finger 112A, or the second inner gate finger 112B in plan view.
 複数のゲートトレンチ16は、第1組S1のゲートトレンチ16および第2組S2のゲートトレンチ16を含んでいる。第1組S1の各ゲートトレンチ16は、平面視でY軸方向に延びている。第2組S2の各ゲートトレンチ16は、平面視でX軸方向に延びている。第1組S1および第2組S2の各ゲートトレンチ16は、平面視で外周ゲートフィンガー106と交差している。第1組S1および第2組S2のゲートトレンチ16は、内側領域42と外周領域40とに跨って配置されている。 The plurality of gate trenches 16 include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16. Each gate trench 16 of the first set S1 extends in the Y-axis direction in plan view. Each gate trench 16 of the second set S2 extends in the X-axis direction in plan view. Each gate trench 16 of the first set S1 and the second set S2 intersects with the outer peripheral gate finger 106 in plan view. The gate trenches 16 of the first set S1 and the second set S2 are arranged across the inner region 42 and the outer peripheral region 40.
 複数のゲートトレンチ16は、第3組S3のゲートトレンチ16および第4組S4のゲートトレンチ16を含んでいる。第3組S3の各ゲートトレンチ16は、平面視でY軸方向に延びている。第4組S4の各ゲートトレンチ16は、平面視でX軸方向に延びている。第3組S3の各ゲートトレンチ16は、平面視で第2内側ゲートフィンガー112Bと交差している。第4組S4の各ゲートトレンチ16は、平面視で第1内側ゲートフィンガー112Aと交差している。第3組S3および第4組S4のゲートトレンチ16は、内側領域42内にその全体が配置されている。 The plurality of gate trenches 16 include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16. Each gate trench 16 of the third group S3 extends in the Y-axis direction in plan view. Each gate trench 16 of the fourth group S4 extends in the X-axis direction in plan view. Each gate trench 16 of the third set S3 intersects with the second inner gate finger 112B in plan view. Each gate trench 16 of the fourth set S4 intersects with the first inner gate finger 112A in plan view. The gate trenches 16 of the third set S3 and the fourth set S4 are entirely disposed within the inner region 42.
 複数のゲートトレンチ16は、第5組S5のゲートトレンチ16を含んでいる(図4では、1つのゲートトレンチ16のみが示されているが、複数のゲートトレンチ16を含んでいてよい)。第5組S5の各ゲートトレンチ16は、平面視でY軸方向に延びるとともに、平面視で外周ゲートフィンガー106と交差している。第5組S5の各ゲートトレンチ16の端部を除く主要部分は、サブ領域120Dにおいて、ゲートパッド108の隣に配置されている。 The plurality of gate trenches 16 include the fifth set S5 of gate trenches 16 (although only one gate trench 16 is shown in FIG. 4, it may include a plurality of gate trenches 16). Each gate trench 16 of the fifth set S5 extends in the Y-axis direction in a plan view, and intersects with the outer peripheral gate finger 106 in a plan view. The main portion of each gate trench 16 of the fifth set S5, excluding the end portion, is arranged next to the gate pad 108 in the sub-region 120D.
 このように、比較例の半導体装置100では、外周ゲートフィンガー106は、ゲートトレンチ16と交差しない領域にも延びている。具体的には、サブ領域120Bに隣接する外周ゲートフィンガー106の第1部分106Aは、ゲートトレンチ16と交差していない。また、サブ領域120Cに隣接する外周ゲートフィンガーの第2部分106Bは、ゲートトレンチ16と交差していない。ゲートトレンチ16と交差していない領域にゲート配線102が存在することで、半導体装置100においては、余分なゲート・ドレイン間容量Cgdが生じ得る。 In this manner, in the semiconductor device 100 of the comparative example, the outer peripheral gate fingers 106 extend to regions that do not intersect with the gate trenches 16. Specifically, the first portion 106A of the outer peripheral gate finger 106 adjacent to the sub-region 120B does not intersect with the gate trench 16. Further, the second portion 106B of the outer peripheral gate finger adjacent to the sub-region 120C does not intersect with the gate trench 16. Since the gate wiring 102 exists in a region that does not intersect with the gate trench 16, an extra gate-drain capacitance C gd may occur in the semiconductor device 100.
 この点、本実施形態の半導体装置10においては、複数の外周ゲートフィンガー46は、内側領域42の外縁に沿って配置された複数の間隙48によって互いに離隔されている。複数の間隙48を内側領域42の外縁に沿って配置することにより、余分なゲート・ドレイン間容量Cgdを抑制することができる。 In this regard, in the semiconductor device 10 of this embodiment, the plurality of outer peripheral gate fingers 46 are separated from each other by a plurality of gaps 48 arranged along the outer edge of the inner region 42. By arranging the plurality of gaps 48 along the outer edge of the inner region 42, excess gate-drain capacitance C gd can be suppressed.
 図5は、実施例および比較例の半導体装置の帰還容量Crssを表すグラフである。縦軸は帰還容量、横軸はドレイン・ソース間電圧を表している。なお、縦軸および横軸は対数軸である。実施例は、第1実施形態の半導体装置10に対応し、比較例は、図4に示す半導体装置100に対応している。ドレイン・ソース間電圧Vdsが比較的大きい場合、実施例の帰還容量Crss(=Cgd)は、比較例よりも約20%低減されている。 FIG. 5 is a graph showing the feedback capacitance C rss of the semiconductor devices of the example and the comparative example. The vertical axis represents the feedback capacitance, and the horizontal axis represents the drain-source voltage. Note that the vertical and horizontal axes are logarithmic axes. The example corresponds to the semiconductor device 10 of the first embodiment, and the comparative example corresponds to the semiconductor device 100 shown in FIG. 4. When the drain-source voltage V ds is relatively large, the feedback capacitance C rss (=C gd ) of the example is reduced by about 20% than that of the comparative example.
 また、比較例の半導体装置100では、ソース配線104の外周セグメント124は、内側セグメント122Aにのみ直接接続されている。外周セグメント124のうち、例えばゲートパッド108の近くに位置する部分から内側セグメント122Aまでは、比較的長い距離がある。特に、図4に示す第5組S5に含まれるゲートトレンチ16と外周セグメント124とが交差する領域に配置されたフィールドプレートコンタクトプラグ64から内側セグメント122Aまでの距離は、内側領域42の外縁の周長の4割程度と比較的長い。したがって、半導体装置100においては、ソース配線104のレイアウトに起因して抵抗が上昇し得る。 Furthermore, in the semiconductor device 100 of the comparative example, the outer peripheral segment 124 of the source wiring 104 is directly connected only to the inner segment 122A. There is a relatively long distance from the portion of outer circumferential segment 124 located near gate pad 108 to inner segment 122A, for example. In particular, the distance from the field plate contact plug 64 disposed in the area where the gate trench 16 and the outer peripheral segment 124 intersect, which are included in the fifth set S5 shown in FIG. It is relatively long, about 40% of the length. Therefore, in the semiconductor device 100, the resistance may increase due to the layout of the source wiring 104.
 この点、本実施形態の半導体装置10においては、外周セグメント58は、複数の内側セグメント56のうちの少なくとも2つと連続しており、少なくとも2つの内側セグメント56の各々は、複数の間隙48のうち、当該内側セグメント56が配置されるサブ領域52に隣接する間隙48を介して外周セグメント58に接続されている。したがって、ソース配線34により生じる抵抗を低減することができる。 In this regard, in the semiconductor device 10 of the present embodiment, the outer peripheral segment 58 is continuous with at least two of the plurality of inner segments 56, and each of the at least two inner segments 56 is connected to one of the plurality of gaps 48. , is connected to the outer peripheral segment 58 via a gap 48 adjacent to the sub-region 52 in which the inner segment 56 is arranged. Therefore, the resistance caused by the source wiring 34 can be reduced.
 さらに、比較例の半導体装置100では、第1内側ゲートフィンガー112Aの一端および第2内側ゲートフィンガー112Bの両端は、外周ゲートフィンガー106から離隔されている。第1内側ゲートフィンガー112Aおよび第2内側ゲートフィンガー112Bの長さは、内側領域42に配置された3つの間隙114,116,118の分だけ小さくなる。これは、第1内側ゲートフィンガー112Aまたは第2内側ゲートフィンガー112Bと交差するように配置可能なゲートトレンチ16の数を低減させる。半導体装置100では、4つの内側セグメント122A,122B,122C,122D間の接続が、内側領域42に配置された3つの間隙114,116,118を介して行われているため、ゲートトレンチ16を配置可能なアクティブ領域の面積が縮小される。これは、半導体装置100のオン抵抗Ronを上昇させ得る。 Furthermore, in the semiconductor device 100 of the comparative example, one end of the first inner gate finger 112A and both ends of the second inner gate finger 112B are spaced apart from the outer peripheral gate finger 106. The lengths of the first inner gate finger 112A and the second inner gate finger 112B are reduced by the three gaps 114, 116, 118 located in the inner region 42. This reduces the number of gate trenches 16 that can be placed across the first inner gate finger 112A or the second inner gate finger 112B. In the semiconductor device 100, since the connection between the four inner segments 122A, 122B, 122C, and 122D is made through the three gaps 114, 116, and 118 arranged in the inner region 42, the gate trench 16 is arranged. The area of possible active area is reduced. This can increase the on-resistance R on of the semiconductor device 100.
 この点、本実施形態の半導体装置10においては、複数の内側ゲートフィンガー50の各々は、複数の外周ゲートフィンガー46のうちの少なくとも1つに接続されている。したがって、ゲートトレンチ16を配置可能な領域を拡大して、半導体装置10のオン抵抗Ronを低減することができる。 In this regard, in the semiconductor device 10 of this embodiment, each of the plurality of inner gate fingers 50 is connected to at least one of the plurality of outer peripheral gate fingers 46. Therefore, the area where the gate trench 16 can be placed can be expanded, and the on-resistance R on of the semiconductor device 10 can be reduced.
 このように、本実施形態の半導体装置10によれば、配線レイアウトに起因する抵抗および寄生容量を低減して、スイッチング特性を改善することができる。
 本実施形態の半導体装置10は、以下の利点を有する。
In this way, according to the semiconductor device 10 of this embodiment, the resistance and parasitic capacitance caused by the wiring layout can be reduced, and the switching characteristics can be improved.
The semiconductor device 10 of this embodiment has the following advantages.
 (1-1)複数の外周ゲートフィンガー46は、内側領域42の外縁に沿って配置された複数の間隙48によって互いに離隔されている。複数の内側ゲートフィンガー50の各々は、複数の外周ゲートフィンガー46のうちの少なくとも1つに接続されている。外周セグメント58は、複数の内側セグメント56のうちの少なくとも2つと連続しており、少なくとも2つの内側セグメント56の各々は、複数の間隙48のうち、当該内側セグメント56が配置されるサブ領域52に隣接する間隙48を介して外周セグメント58に接続されている。 (1-1) The plurality of outer peripheral gate fingers 46 are separated from each other by a plurality of gaps 48 arranged along the outer edge of the inner region 42. Each of the plurality of inner gate fingers 50 is connected to at least one of the plurality of outer circumferential gate fingers 46. The outer peripheral segment 58 is continuous with at least two of the plurality of inner segments 56, and each of the at least two inner segments 56 is connected to a subregion 52 of the plurality of gaps 48 in which the inner segment 56 is disposed. It is connected to the outer peripheral segment 58 via an adjacent gap 48 .
 したがって、配線レイアウトに起因する抵抗および寄生容量を低減して、半導体装置10のスイッチング特性を改善することができる。
 (1-2)複数の間隙48のうちの少なくとも2つは、当該間隙48が隣接するサブ領域52の1つの辺と少なくとも同等の長さにわたって形成されていてよい。間隙48の長さを比較的大きくすることによって、配線レイアウトに起因する抵抗および寄生容量をさらに低減することができる。
Therefore, the resistance and parasitic capacitance caused by the wiring layout can be reduced, and the switching characteristics of the semiconductor device 10 can be improved.
(1-2) At least two of the plurality of gaps 48 may be formed over a length at least equivalent to one side of the sub-region 52 to which the gaps 48 are adjacent. By making the length of gap 48 relatively large, resistance and parasitic capacitance due to wiring layout can be further reduced.
 (1-3)複数のサブ領域52の各々は、複数の外周ゲートフィンガー46のうちの少なくとも1つと隣接していてよい。これにより、平面視で外周ゲートフィンガー46と交差するゲートトレンチ16を各サブ領域52に配置することができるようになる。 (1-3) Each of the plurality of sub-regions 52 may be adjacent to at least one of the plurality of outer peripheral gate fingers 46. Thereby, the gate trench 16 that intersects the outer peripheral gate finger 46 in plan view can be arranged in each sub-region 52.
 (1-4)外周セグメント58は、複数の内側セグメント56と連続しており、複数の内側セグメント56の各々は、複数の間隙48のうち、当該内側セグメント56が配置されるサブ領域52に隣接する間隙48を介して外周セグメント58に接続されていてよい。複数のサブ領域52にそれぞれ配置された複数の内側セグメント56の全てが外周セグメント58に接続されることによって、配線レイアウトに起因する抵抗および寄生容量をさらに低減することができる。 (1-4) The outer peripheral segment 58 is continuous with the plurality of inner segments 56, and each of the plurality of inner segments 56 is adjacent to the sub-region 52 in which the inner segment 56 is arranged among the plurality of gaps 48. The outer circumferential segment 58 may be connected to the outer circumferential segment 58 via a gap 48 . By connecting all of the plurality of inner segments 56 arranged in the plurality of sub-regions 52 to the outer peripheral segment 58, the resistance and parasitic capacitance caused by the wiring layout can be further reduced.
 (1-5)複数のゲートトレンチ16の各々は、平面視で複数の外周ゲートフィンガー46のうちの1つまたは複数の内側ゲートフィンガー50のうちの1つと交差するように配置されていてよい。これにより、各ゲートトレンチ16内のゲート電極28をゲート配線44に接続することが可能となる。 (1-5) Each of the plurality of gate trenches 16 may be arranged to intersect with one of the plurality of outer circumferential gate fingers 46 or one of the plurality of inner gate fingers 50 in plan view. This makes it possible to connect the gate electrode 28 in each gate trench 16 to the gate wiring 44.
 (1-6)複数のゲートトレンチ16は、第1組S1のゲートトレンチ16および第2組S2のゲートトレンチ16を含んでいてよい。第1組S1の各ゲートトレンチ16は、平面視でY軸方向(第1方向)に延び、第2組S2の各ゲートトレンチ16は、平面視でX軸方向(第2方向)に延びている。第1組S1および第2組S2の各ゲートトレンチ16は、平面視で複数の外周ゲートフィンガー46のうちの1つと交差していてよい。これにより、同一方向に延びるゲートトレンチ16のみが外周ゲートフィンガー46と交差するように配置される場合と比較して、ウェハプロセス中の半導体基板12の反りを低減することができる。 (1-6) The plurality of gate trenches 16 may include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16. Each gate trench 16 of the first group S1 extends in the Y-axis direction (first direction) in plan view, and each gate trench 16 of the second group S2 extends in the X-axis direction (second direction) in plan view. There is. Each of the gate trenches 16 of the first set S1 and the second set S2 may intersect with one of the plurality of outer circumferential gate fingers 46 in plan view. This makes it possible to reduce warpage of the semiconductor substrate 12 during wafer processing, compared to the case where only the gate trenches 16 extending in the same direction are arranged so as to intersect the outer peripheral gate fingers 46.
 (1-7)複数のゲートトレンチ16は、第3組S3のゲートトレンチ16および第4組S4のゲートトレンチ16をさらに含んでいてよい。第3組S3の各ゲートトレンチ16は、平面視でY軸方向(第1方向)に延び、第4組S4の各ゲートトレンチ16は、平面視でX軸方向(第2方向)に延びている。第3組S3および第4組S4の各ゲートトレンチ16は、平面視で複数の内側ゲートフィンガー50のうちの1つと交差していてよい。これにより、同一方向に延びるゲートトレンチ16のみが内側ゲートフィンガー50と交差するように配置される場合と比較して、ウェハプロセス中の半導体基板12の反りを低減することができる。 (1-7) The plurality of gate trenches 16 may further include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16. Each gate trench 16 of the third group S3 extends in the Y-axis direction (first direction) in a plan view, and each gate trench 16 of the fourth group S4 extends in the X-axis direction (second direction) in a plan view. There is. Each gate trench 16 of the third set S3 and the fourth set S4 may intersect with one of the plurality of inner gate fingers 50 in plan view. Thereby, warping of the semiconductor substrate 12 during wafer processing can be reduced compared to the case where only the gate trenches 16 extending in the same direction are arranged so as to intersect the inner gate fingers 50.
 (1-8)第1組S1の各ゲートトレンチ16に埋め込まれたフィールドプレート電極30は、複数のフィールドプレートコンタクトプラグ64のうちの少なくとも1つを介して、外周セグメント58に接続された第1端部66と、複数のフィールドプレートコンタクトプラグ64のうちの少なくとも1つを介して、複数の内側セグメント56のうち1つに接続された第2端部68とを含んでいてよい。第3組S3の各ゲートトレンチ16に埋め込まれたフィールドプレート電極30は、複数のフィールドプレートコンタクトプラグ64のうちの少なくとも1つを介して、複数の内側セグメント56のうちの1つに接続された第1端部70と、複数のフィールドプレートコンタクトプラグ64のうちの少なくとも1つを介して、複数の内側セグメント56のうちの別の1つに接続された第2端部72とを含んでいてよい。 (1-8) The field plate electrode 30 embedded in each gate trench 16 of the first set S1 is connected to the outer peripheral segment 58 through at least one of the plurality of field plate contact plugs 64. and a second end 68 connected to one of the plurality of inner segments 56 via at least one of the plurality of field plate contact plugs 64 . The field plate electrode 30 embedded in each gate trench 16 of the third set S3 is connected to one of the plurality of inner segments 56 via at least one of the plurality of field plate contact plugs 64. a first end 70 and a second end 72 connected to another one of the plurality of inner segments 56 via at least one of the plurality of field plate contact plugs 64. good.
 フィールドプレート電極30の2つの端部がソース配線34に接続されるので、1つの端部のみが接続されている場合と比較して、フィールドプレート電極30の長さに起因する抵抗を低減することができる。 Since two ends of the field plate electrode 30 are connected to the source wiring 34, the resistance due to the length of the field plate electrode 30 is reduced compared to the case where only one end is connected. I can do it.
 [第2実施形態]
 図6は、第2実施形態に係る例示的な半導体装置200の概略断面図である。図6において、図1~図3に示す半導体装置10と同様の構成要素には同じ符号が付されている。また、半導体装置10と同様な構成要素については詳細な説明を省略する。
[Second embodiment]
FIG. 6 is a schematic cross-sectional view of an exemplary semiconductor device 200 according to the second embodiment. In FIG. 6, the same components as those of the semiconductor device 10 shown in FIGS. 1 to 3 are given the same reference numerals. Furthermore, detailed description of the same components as those of the semiconductor device 10 will be omitted.
 半導体装置200は、例えば図2に示すようなトレンチゲート構造を有するMISFETであってよい。半導体装置200は、第1実施形態の半導体装置10のゲート配線44およびソース配線34とは異なるゲート配線202およびソース配線204を含んでいる。 The semiconductor device 200 may be a MISFET having a trench gate structure as shown in FIG. 2, for example. The semiconductor device 200 includes a gate wiring 202 and a source wiring 204 that are different from the gate wiring 44 and the source wiring 34 of the semiconductor device 10 of the first embodiment.
 ゲート配線202は、絶縁層18上に形成されるとともに、複数のゲート電極28(図2参照)に電気的に接続されている。ソース配線204は、絶縁層18上に形成されるとともに、ゲート配線202から離隔されている。ソース配線204は、複数のフィールドプレート電極30(図2参照)に電気的に接続されている。 The gate wiring 202 is formed on the insulating layer 18 and is electrically connected to the plurality of gate electrodes 28 (see FIG. 2). The source wiring 204 is formed on the insulating layer 18 and is spaced apart from the gate wiring 202. The source wiring 204 is electrically connected to a plurality of field plate electrodes 30 (see FIG. 2).
 ゲート配線202は、外周領域40に配置された複数の外周ゲートフィンガー206を含む。複数の外周ゲートフィンガー206は、内側領域42の外縁に沿って配置された複数の間隙208によって互いに離隔されている。図6の例では、複数の外周ゲートフィンガー206は、6つの外周ゲートフィンガー206A,206B,206C,206D,206E,206Fを含んでいてよい。より具体的には、複数の外周ゲートフィンガー206は、Y軸方向に延びる第1外周ゲートフィンガー206A、第2外周ゲートフィンガー206B、および第3外周ゲートフィンガー206Cと、X軸方向に延びる第4外周ゲートフィンガー206Dおよび第5外周ゲートフィンガー206Eとを含んでいてよい。複数の外周ゲートフィンガー206は、後述する第2内側ゲートフィンガー210Bと連続する第6外周ゲートフィンガー206Fをさらに含んでいてよい。 The gate wiring 202 includes a plurality of outer peripheral gate fingers 206 arranged in the outer peripheral region 40. The plurality of peripheral gate fingers 206 are spaced apart from each other by a plurality of gaps 208 located along the outer edge of the inner region 42 . In the example of FIG. 6, the plurality of circumferential gate fingers 206 may include six circumferential gate fingers 206A, 206B, 206C, 206D, 206E, and 206F. More specifically, the plurality of outer circumferential gate fingers 206 include a first outer circumferential gate finger 206A, a second outer circumferential gate finger 206B, and a third outer circumferential gate finger 206C extending in the Y-axis direction, and a fourth outer circumferential gate finger extending in the X-axis direction. It may include a gate finger 206D and a fifth outer gate finger 206E. The plurality of outer circumferential gate fingers 206 may further include a sixth outer circumferential gate finger 206F that is continuous with a second inner gate finger 210B, which will be described later.
 ゲート配線202は、内側領域42に配置された複数の内側ゲートフィンガー210をさらに含む。複数の内側ゲートフィンガー210の各々は、複数の外周ゲートフィンガー206のうちの少なくとも1つに接続されている。複数の内側ゲートフィンガー210は、Y軸方向に延びる第1内側ゲートフィンガー210Aと、X軸方向に延びる第2内側ゲートフィンガー210Bおよび第3内側ゲートフィンガー210Cとを含んでいてよい。 The gate wiring 202 further includes a plurality of inner gate fingers 210 arranged in the inner region 42. Each of the plurality of inner gate fingers 210 is connected to at least one of the plurality of outer circumferential gate fingers 206. The plurality of inner gate fingers 210 may include a first inner gate finger 210A extending in the Y-axis direction, and a second inner gate finger 210B and a third inner gate finger 210C extending in the X-axis direction.
 内側領域42は、複数の内側ゲートフィンガー210のうち、互いに交差する少なくとも2つの内側ゲートフィンガーによって区切られた複数のサブ領域212を含む。図6の例の場合、第1内側ゲートフィンガー210Aは、第2内側ゲートフィンガー210Bおよび第3内側ゲートフィンガー210Cと交差している。複数のサブ領域212は、6つのサブ領域212A,212B,212C,212D,212E,212Fを含む。6つのサブ領域212A,212B,212C,212D,212E,212Fの各々は、平面視で第1内側ゲートフィンガー210Aに隣接するとともに、第2内側ゲートフィンガー210Bまたは第3内側ゲートフィンガー210Cに隣接している。また、図6の例では、6つの間隙208が、6つのサブ領域212A,212B,212C,212D,212E,212Fにそれぞれ隣接している。 The inner region 42 includes a plurality of sub-regions 212 separated by at least two of the inner gate fingers 210 that intersect with each other. In the example of FIG. 6, the first inner gate finger 210A intersects the second inner gate finger 210B and the third inner gate finger 210C. The plurality of sub-regions 212 include six sub-regions 212A, 212B, 212C, 212D, 212E, and 212F. Each of the six sub-regions 212A, 212B, 212C, 212D, 212E, and 212F is adjacent to the first inner gate finger 210A in plan view, and is also adjacent to the second inner gate finger 210B or the third inner gate finger 210C. There is. Further, in the example of FIG. 6, six gaps 208 are adjacent to six sub-regions 212A, 212B, 212C, 212D, 212E, and 212F, respectively.
 第1内側ゲートフィンガー210Aは、第4外周ゲートフィンガー206Dおよび第5外周ゲートフィンガー206Eに接続されている。第2内側ゲートフィンガー210Bは、第1外周ゲートフィンガー206Aおよび第6外周ゲートフィンガー206Fに接続されている。第3内側ゲートフィンガー210Cは、第2外周ゲートフィンガー206Bおよび第3外周ゲートフィンガー206Cに接続されている。 The first inner gate finger 210A is connected to the fourth outer gate finger 206D and the fifth outer gate finger 206E. The second inner gate finger 210B is connected to the first outer gate finger 206A and the sixth outer gate finger 206F. Third inner gate finger 210C is connected to second outer circumferential gate finger 206B and third outer circumferential gate finger 206C.
 ゲート配線202は、ゲートパッド214をさらに含んでいてよい。図6の例では、ゲートパッド214は、第1内側ゲートフィンガー210Aおよび第5外周ゲートフィンガー206Eに接続されている。 The gate wiring 202 may further include a gate pad 214. In the example of FIG. 6, gate pad 214 is connected to first inner gate finger 210A and fifth outer gate finger 206E.
 サブ領域212Aは、平面視で、第1内側ゲートフィンガー210A、第2内側ゲートフィンガー210B、および第1外周ゲートフィンガー206Aに囲まれている。サブ領域212Aに隣接する間隙208Aは、第1外周ゲートフィンガー206Aと、第4外周ゲートフィンガー206Dとの間に形成されている。 The sub-region 212A is surrounded by the first inner gate finger 210A, the second inner gate finger 210B, and the first outer peripheral gate finger 206A in plan view. A gap 208A adjacent to the sub-region 212A is formed between the first outer gate finger 206A and the fourth outer gate finger 206D.
 サブ領域212Bは、平面視で、第1内側ゲートフィンガー210A、第2内側ゲートフィンガー210B、および第4外周ゲートフィンガー206Dに囲まれている。サブ領域212Bに隣接する間隙208Bは、第4外周ゲートフィンガー206Dと、第6外周ゲートフィンガー206Fとの間に形成されている。 The sub-region 212B is surrounded by the first inner gate finger 210A, the second inner gate finger 210B, and the fourth outer circumferential gate finger 206D in plan view. A gap 208B adjacent to the sub-region 212B is formed between the fourth outer circumferential gate finger 206D and the sixth outer circumferential gate finger 206F.
 サブ領域212Cは、平面視で、第1内側ゲートフィンガー210A、第2内側ゲートフィンガー210B、および第3内側ゲートフィンガー210Cに囲まれている。サブ領域212Cに隣接する間隙208Cは、第1外周ゲートフィンガー206Aと、第3外周ゲートフィンガー206Cとの間に形成されている。 The sub-region 212C is surrounded by the first inner gate finger 210A, the second inner gate finger 210B, and the third inner gate finger 210C in plan view. A gap 208C adjacent to the sub-region 212C is formed between the first outer gate finger 206A and the third outer gate finger 206C.
 サブ領域212Dは、平面視で、第1内側ゲートフィンガー210A、第2内側ゲートフィンガー210B、第3内側ゲートフィンガー210C、および第2外周ゲートフィンガー206Bに囲まれている。サブ領域212Dに隣接する間隙208Dは、第2内側ゲートフィンガー210Bと、第2外周ゲートフィンガー206Bとの間に形成されている。 The sub-region 212D is surrounded by the first inner gate finger 210A, the second inner gate finger 210B, the third inner gate finger 210C, and the second outer peripheral gate finger 206B in plan view. A gap 208D adjacent to the sub-region 212D is formed between the second inner gate finger 210B and the second outer circumferential gate finger 206B.
 サブ領域212Eは、平面視で、第1内側ゲートフィンガー210A、第3内側ゲートフィンガー210C、第3外周ゲートフィンガー206C、第5外周ゲートフィンガー206E、およびゲートパッド214に囲まれている。サブ領域212Eに隣接する間隙208Eは、第3外周ゲートフィンガー206Cと、第5外周ゲートフィンガー206Eとの間に形成されている。 The sub-region 212E is surrounded by the first inner gate finger 210A, the third inner gate finger 210C, the third outer gate finger 206C, the fifth outer gate finger 206E, and the gate pad 214 in plan view. A gap 208E adjacent to the sub-region 212E is formed between the third outer gate finger 206C and the fifth outer gate finger 206E.
 サブ領域212Fは、平面視で、第1内側ゲートフィンガー210A、第3内側ゲートフィンガー210C、および第5外周ゲートフィンガー206Eに囲まれている。サブ領域212Fに隣接する間隙208Fは、第2外周ゲートフィンガー206Bと、第5外周ゲートフィンガー206Eとの間に形成されている。 The sub-region 212F is surrounded by the first inner gate finger 210A, the third inner gate finger 210C, and the fifth outer circumferential gate finger 206E in plan view. A gap 208F adjacent to the sub-region 212F is formed between the second outer circumferential gate finger 206B and the fifth outer circumferential gate finger 206E.
 6つのサブ領域212のうちの1つ(212C)は、複数の外周ゲートフィンガー206のうちのいずれとも隣接しておらず、第1内側ゲートフィンガー210A、第2内側ゲートフィンガー210B、および第3内側ゲートフィンガー210Cと隣接している。6つのサブ領域212のうちの他の5つ(212A,212B,212D,212E,212F)は、複数の外周ゲートフィンガー206のうちの少なくとも1つと隣接している。 One of the six sub-regions 212 (212C) is not adjacent to any of the plurality of outer circumferential gate fingers 206 and is adjacent to the first inner gate finger 210A, the second inner gate finger 210B, and the third inner gate finger 210B. It is adjacent to gate finger 210C. The other five of the six sub-regions 212 (212A, 212B, 212D, 212E, 212F) are adjacent to at least one of the plurality of outer gate fingers 206.
 このように、各サブ領域212の外縁は、間隙208と隣接している部分を除いて、ゲート配線202に囲まれている。各サブ領域212は、平面視で矩形状であり、4つの辺を有している。複数の間隙208のうちの少なくとも2つは、当該間隙208が隣接するサブ領域212の1つの辺と少なくとも同等の長さにわたって形成されていてよい。図6の例では、複数の間隙208のうちの4つが、当該間隙208が隣接するサブ領域212(212A,212B,212C,212F)の1つの辺と同等の長さにわたって形成されている。換言すると、サブ領域212A,212B,212C,212Fの各々は、その3つの辺をゲート配線202によって囲まれている。 In this way, the outer edge of each sub-region 212 is surrounded by the gate wiring 202 except for the portion adjacent to the gap 208. Each sub-region 212 is rectangular in plan view and has four sides. At least two of the plurality of gaps 208 may be formed over a length at least equal to one side of the sub-region 212 to which the gaps 208 are adjacent. In the example of FIG. 6, four of the plurality of gaps 208 are formed over a length equivalent to one side of the sub-region 212 (212A, 212B, 212C, 212F) to which the gaps 208 are adjacent. In other words, each of the sub-regions 212A, 212B, 212C, and 212F is surrounded by the gate wiring 202 on three sides.
 ソース配線204は、複数のサブ領域212にそれぞれ配置された複数の内側セグメント216と、外周領域40に配置された外周セグメント218とを含む。外周セグメント218は、複数の内側セグメント216のうちの少なくとも2つと連続している。少なくとも2つの内側セグメント216の各々は、複数の間隙208のうち、当該内側セグメント216が配置されるサブ領域212に隣接する間隙208を介して外周セグメント58に接続されている。 The source wiring 204 includes a plurality of inner segments 216 arranged in each of the plurality of sub-regions 212 and an outer peripheral segment 218 arranged in the outer peripheral region 40. The outer circumferential segment 218 is continuous with at least two of the plurality of inner segments 216. Each of the at least two inner segments 216 is connected to the outer peripheral segment 58 via a gap 208 of the plurality of gaps 208 that is adjacent to the sub-region 212 in which the inner segment 216 is located.
 図6の例では、複数の内側セグメント216は、6つのサブ領域212A,212B,212C,212D,212E,212Fにそれぞれ配置された6つの内側セグメント216A,216B,216C,216D,216E,216Fを含む。外周セグメント218は、6つの内側セグメント216A,216B,216C,216D,216E,216Fと連続している。6つの内側セグメント216A,216B,216C,216D,216E,216Fの各々は、6つの間隙208A,208B,208C,208D,208E,208Fのうち、当該内側セグメント216が配置されるサブ領域212に隣接する間隙208を介して外周セグメント218に接続されている。すなわち、内側セグメント216Aは、内側セグメント216Aが配置されるサブ領域212Aに隣接する間隙208Aを介して外周セグメント218に接続されている。内側セグメント216Bは、内側セグメント216Bが配置されるサブ領域212Bに隣接する間隙208Bを介して外周セグメント218に接続されている。内側セグメント216Cは、内側セグメント216Cが配置されるサブ領域212Cに隣接する間隙208Cを介して外周セグメント218に接続されている。内側セグメント216Dは、内側セグメント216Dが配置されるサブ領域212Dに隣接する間隙208Dを介して外周セグメント218に接続されている。内側セグメント216Eは、内側セグメント216Eが配置されるサブ領域212Eに隣接する間隙208Eを介して外周セグメント218に接続されている。内側セグメント216Fは、内側セグメント216Fが配置されるサブ領域212Fに隣接する間隙208Fを介して外周セグメント218に接続されている。 In the example of FIG. 6, the plurality of inner segments 216 includes six inner segments 216A, 216B, 216C, 216D, 216E, 216F, respectively located in six sub-regions 212A, 212B, 212C, 212D, 212E, 212F. . The outer circumferential segment 218 is continuous with six inner segments 216A, 216B, 216C, 216D, 216E, 216F. Each of the six inner segments 216A, 216B, 216C, 216D, 216E, 216F is adjacent to the sub-region 212 in which the inner segment 216 is located among the six gaps 208A, 208B, 208C, 208D, 208E, 208F. It is connected to outer circumferential segment 218 via gap 208 . That is, inner segment 216A is connected to outer circumferential segment 218 via gap 208A adjacent to sub-region 212A in which inner segment 216A is located. Inner segment 216B is connected to outer circumferential segment 218 via gap 208B adjacent sub-region 212B in which inner segment 216B is located. Inner segment 216C is connected to outer circumferential segment 218 via gap 208C adjacent to sub-region 212C in which inner segment 216C is located. Inner segment 216D is connected to outer circumferential segment 218 via gap 208D adjacent sub-region 212D in which inner segment 216D is located. Inner segment 216E is connected to outer circumferential segment 218 via gap 208E adjacent sub-region 212E in which inner segment 216E is located. Inner segment 216F is connected to outer circumferential segment 218 via gap 208F adjacent to sub-region 212F in which inner segment 216F is located.
 このように、外周セグメント218は、複数の内側セグメント216(の全て)と連続していてもよい。この場合、複数の内側セグメント216の各々が、複数の間隙208のうち、当該内側セグメント216が配置されるサブ領域212に隣接する間隙208を介して外周セグメント218に接続され得る。 In this way, the outer circumferential segment 218 may be continuous with (all of) the plurality of inner segments 216. In this case, each of the plurality of inner segments 216 may be connected to the outer peripheral segment 218 through a plurality of gaps 208 that are adjacent to the sub-region 212 in which the inner segment 216 is disposed.
 外周セグメント218は、ゲートパッド214が配置されている領域を除いて、平面視で半導体層14の外縁に沿って延びていてよい。
 (ゲートトレンチの配置)
 複数のゲートトレンチ16の各々は、平面視で、複数の外周ゲートフィンガー206のうちの1つまたは複数の内側ゲートフィンガー210のうちの1つと交差するように配置することができる。半導体装置200は、複数のゲートコンタクトプラグ60をさらに含んでいてよい。各ゲートトレンチ16に埋め込まれたゲート電極28(図2参照)は、複数のゲートコンタクトプラグ60のうちの少なくとも1つを介して、複数の外周ゲートフィンガー206のうちの1つまたは複数の内側ゲートフィンガー210のうちの1つに接続され得る。ゲートコンタクトプラグ60は、複数のゲートトレンチ16の各々が平面視で複数の外周ゲートフィンガー206のうちの1つまたは複数の内側ゲートフィンガー210のうちの1つと交差する領域に配置することができる。
The outer peripheral segment 218 may extend along the outer edge of the semiconductor layer 14 in plan view, except for the region where the gate pad 214 is arranged.
(Gate trench arrangement)
Each of the plurality of gate trenches 16 can be arranged to intersect one of the plurality of outer circumferential gate fingers 206 or one of the plurality of inner gate fingers 210 in plan view. The semiconductor device 200 may further include a plurality of gate contact plugs 60. The gate electrode 28 (see FIG. 2) embedded in each gate trench 16 connects one or more inner gates of the plurality of outer circumferential gate fingers 206 via at least one of the plurality of gate contact plugs 60. It may be connected to one of the fingers 210. The gate contact plug 60 can be arranged in a region where each of the plurality of gate trenches 16 intersects one of the plurality of outer circumferential gate fingers 206 or one of the plurality of inner gate fingers 210 in a plan view.
 複数のゲートトレンチ16は、第1組S1のゲートトレンチ16および第2組S2のゲートトレンチ16を含んでいてよい。第1組S1の各ゲートトレンチ16は、平面視でY軸方向に延びている。第2組S2の各ゲートトレンチ16は、平面視でX軸方向に延びている。第1組S1および第2組S2の各ゲートトレンチ16は、平面視で複数の外周ゲートフィンガー206のうちの1つと交差している。第1組S1および第2組S2のゲートトレンチ16は、内側領域42と外周領域40とに跨って配置されている。 The plurality of gate trenches 16 may include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16. Each gate trench 16 of the first set S1 extends in the Y-axis direction in plan view. Each gate trench 16 of the second set S2 extends in the X-axis direction in plan view. Each gate trench 16 of the first set S1 and the second set S2 intersects with one of the plurality of outer circumferential gate fingers 206 in a plan view. The gate trenches 16 of the first set S1 and the second set S2 are arranged across the inner region 42 and the outer peripheral region 40.
 複数のゲートトレンチ16は、第3組S3のゲートトレンチ16および第4組S4のゲートトレンチ16を含んでいてよい。第3組S3の各ゲートトレンチ16は、平面視でY軸方向に延びている。第4組S4の各ゲートトレンチ16は、平面視でX軸方向に延びている。第3組S3および第4組S4の各ゲートトレンチ16は、平面視で複数の内側ゲートフィンガー210のうちの1つと交差している。第3組S3および第4組S4のゲートトレンチ16は、内側領域42内にその全体が配置されている。 The plurality of gate trenches 16 may include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16. Each gate trench 16 of the third group S3 extends in the Y-axis direction in plan view. Each gate trench 16 of the fourth group S4 extends in the X-axis direction in plan view. Each gate trench 16 of the third set S3 and the fourth set S4 intersects with one of the plurality of inner gate fingers 210 in plan view. The gate trenches 16 of the third set S3 and the fourth set S4 are entirely disposed within the inner region 42.
 図6の例では、第1組S1の各ゲートトレンチ16の端部を除く主要部分は、サブ領域212Bまたはサブ領域212Fに配置されている。第2組S2の各ゲートトレンチ16の端部を除く主要部分は、サブ領域212A、サブ領域212D、またはサブ領域212Eに配置されている。第3組S3の各ゲートトレンチ16の端部を除く主要部分は、サブ領域212B、サブ領域212C、またはサブ領域212Fに配置されている。第4組S4の各ゲートトレンチ16の端部を除く主要部分は、サブ領域212A、サブ領域212D、またはサブ領域212Eに配置されている。 In the example of FIG. 6, the main portions of each gate trench 16 of the first set S1, excluding the ends, are arranged in the sub-region 212B or the sub-region 212F. The main portion of each gate trench 16 of the second set S2, excluding the end, is arranged in the sub-region 212A, the sub-region 212D, or the sub-region 212E. The main portions of each gate trench 16 of the third group S3, excluding the ends, are arranged in the sub-region 212B, the sub-region 212C, or the sub-region 212F. The main portions of each gate trench 16 of the fourth set S4, excluding the ends, are arranged in the sub-region 212A, the sub-region 212D, or the sub-region 212E.
 任意選択的に、複数のゲートトレンチ16は、第5組S5のゲートトレンチ16を含んでいてよい(図6では、1つのゲートトレンチ16のみが示されているが、第5組S5は複数のゲートトレンチ16を含んでいてよい)。第5組S5の各ゲートトレンチ16は、平面視でY軸方向に延びるとともに、平面視で第5外周ゲートフィンガー206Eと交差している。第5組S5の各ゲートトレンチ16の端部を除く主要部分は、サブ領域212Eにおいて、ゲートパッド214の隣に配置されている。 Optionally, the plurality of gate trenches 16 may include a fifth set S5 of gate trenches 16 (in FIG. 6 only one gate trench 16 is shown, but the fifth set S5 includes a plurality of gate trenches 16). (may include a gate trench 16). Each gate trench 16 of the fifth set S5 extends in the Y-axis direction in a plan view, and intersects with the fifth outer circumferential gate finger 206E in a plan view. The main portion of each gate trench 16 of the fifth set S5, excluding the end, is arranged next to the gate pad 214 in the sub-region 212E.
 各組S1,S2,S3,S4,S5は、1つまたは複数のゲートトレンチ16を含んでいてよい。各組S1,S2,S3,S4,S5に含まれる複数のゲートトレンチ16のいくつかは、等間隔で互いに平行に整列されていてもよい。各組S1,S2,S3,S4,S5に含まれるゲートトレンチの数は、レイアウトに応じて適宜定めることができる。 Each set S1, S2, S3, S4, S5 may include one or more gate trenches 16. Some of the plurality of gate trenches 16 included in each set S1, S2, S3, S4, S5 may be arranged parallel to each other at equal intervals. The number of gate trenches included in each set S1, S2, S3, S4, S5 can be determined as appropriate depending on the layout.
 半導体装置200は、フィールドプレートトレンチ62をさらに含んでいてよい。フィールドプレートトレンチ62内には、フィールドプレート電極30(図2参照)と同じ電位の電極を配置することができる。フィールドプレートトレンチ62は、同じサブ領域212に主要部分が配置される整列されたゲートトレンチ16同士を連通させるように構成することができる。フィールドプレートトレンチ62は、ゲートトレンチ16を連通させる部分62Aと、ゲートトレンチ16と平行に延びる2つの部分62Bを含んでいてよい。部分62Aは、ゲートトレンチ16に対して垂直に延びていてよい。2つの部分62Bは、連通されるゲートトレンチ16の両側に設けられていてよい。フィールドプレートトレンチ62内に配置された電極は、フィールドプレートトレンチ62と連通するゲートトレンチ16に配置されたフィールドプレート電極30(図2参照)に一体的に接続されていてよい。 The semiconductor device 200 may further include a field plate trench 62. An electrode having the same potential as the field plate electrode 30 (see FIG. 2) can be placed within the field plate trench 62. Field plate trenches 62 can be configured to communicate with aligned gate trenches 16 whose main portions are located in the same sub-region 212. The field plate trench 62 may include a portion 62A that communicates with the gate trench 16 and two portions 62B that extend parallel to the gate trench 16. Portion 62A may extend perpendicularly to gate trench 16. The two portions 62B may be provided on both sides of the gate trench 16 to be communicated with each other. The electrode placed in the field plate trench 62 may be integrally connected to the field plate electrode 30 (see FIG. 2) placed in the gate trench 16 communicating with the field plate trench 62.
 半導体装置200は、複数のフィールドプレートコンタクトプラグ64をさらに含んでいてよい。各ゲートトレンチ16に埋め込まれたフィールドプレート電極30(図2参照)は、複数のフィールドプレートコンタクトプラグ64のうちの少なくとも1つを介して、外周セグメント218または複数の内側セグメント216のうちの1つに接続された2つの端部を含んでいてよい。 The semiconductor device 200 may further include a plurality of field plate contact plugs 64. The field plate electrode 30 (see FIG. 2) embedded in each gate trench 16 is connected to one of the outer circumferential segment 218 or one of the plurality of inner segments 216 via at least one of the plurality of field plate contact plugs 64. It may include two ends connected to.
 (半導体装置の作用)
 以下、本実施形態の半導体装置200の作用について説明する。
 ゲート配線202は、外周領域40に配置された複数の外周ゲートフィンガー206を含んでいる。複数の外周ゲートフィンガー206は、内側領域42の外縁に沿って配置された複数の間隙208によって互いに離隔されている。仮に、複数の外周ゲートフィンガー206の各々が、間隙208が無くなるように延長されて互いに接続されるとすると、その延長部分は、余分なゲート・ドレイン間容量Cgdを生じさせる。ゲート・ドレイン間容量Cgdは、半導体装置200の帰還容量Crssに相当する。帰還容量Crssが大きいと、半導体装置200のスイッチング速度が低下し得る。したがって、複数の間隙208を内側領域42の外縁に沿って配置することにより、余分なゲート・ドレイン間容量Cgdを抑制することができる。
(Function of semiconductor device)
The operation of the semiconductor device 200 of this embodiment will be described below.
Gate wiring 202 includes a plurality of outer circumferential gate fingers 206 arranged in outer circumferential region 40 . The plurality of peripheral gate fingers 206 are spaced apart from each other by a plurality of gaps 208 located along the outer edge of the inner region 42 . If each of the plurality of outer circumferential gate fingers 206 is extended and connected to each other so that the gap 208 is eliminated, the extended portion causes an extra gate-drain capacitance C gd . The gate-drain capacitance C gd corresponds to the feedback capacitance C rss of the semiconductor device 200. If the feedback capacitance C rss is large, the switching speed of the semiconductor device 200 may decrease. Therefore, by arranging the plurality of gaps 208 along the outer edge of the inner region 42, the excess gate-drain capacitance C gd can be suppressed.
 なお、本実施形態において、複数のゲートトレンチ16の各々は、平面視で複数の外周ゲートフィンガー206のうちの1つまたは複数の内側ゲートフィンガー210のうちの1つと交差するように配置されている。したがって、間隙208が配置される領域にゲートフィンガーが延びていなくても、各ゲートトレンチ16に埋め込まれたゲート電極28をゲート配線202に接続することが可能である。 Note that in this embodiment, each of the plurality of gate trenches 16 is arranged to intersect with one of the plurality of outer circumferential gate fingers 206 or one of the plurality of inner gate fingers 210 in plan view. . Therefore, it is possible to connect the gate electrode 28 embedded in each gate trench 16 to the gate wiring 202 even if the gate finger does not extend into the region where the gap 208 is arranged.
 また、ソース配線204は、複数のサブ領域212にそれぞれ配置された複数の内側セグメント216と、外周領域40に配置された外周セグメント218とを含んでいる。外周セグメント218は、複数の内側セグメント216のうちの少なくとも2つと連続しており、少なくとも2つの内側セグメント216の各々は、複数の間隙208のうち、当該内側セグメント216が配置されるサブ領域212に隣接する間隙208を介して外周セグメント218に接続されている。したがって、ソース配線204により生じる抵抗を低減することができる。 Further, the source wiring 204 includes a plurality of inner segments 216 arranged in each of the plurality of sub-regions 212 and an outer peripheral segment 218 arranged in the outer peripheral region 40 . The outer circumferential segment 218 is continuous with at least two of the plurality of inner segments 216, and each of the at least two inner segments 216 is connected to a subregion 212 of the plurality of gaps 208 in which the inner segment 216 is disposed. It is connected to outer circumferential segment 218 via an adjacent gap 208 . Therefore, the resistance caused by the source wiring 204 can be reduced.
 さらに、ゲート配線202は、内側領域42に配置された複数の内側ゲートフィンガー210を含んでいる。複数の内側ゲートフィンガー210の各々は、複数の外周ゲートフィンガー206のうちの少なくとも1つに接続されている。したがって、ゲートトレンチ16を配置可能な領域を拡大して、半導体装置200のオン抵抗Ronを低減することができる。 Further, the gate wiring 202 includes a plurality of inner gate fingers 210 arranged in the inner region 42 . Each of the plurality of inner gate fingers 210 is connected to at least one of the plurality of outer circumferential gate fingers 206. Therefore, the area where the gate trench 16 can be placed can be expanded, and the on-resistance R on of the semiconductor device 200 can be reduced.
 このように、本実施形態の半導体装置200によれば、配線レイアウトに起因する抵抗および寄生容量を低減して、スイッチング特性を改善することができる。
 本実施形態の半導体装置200は、以下の利点を有する。
In this way, according to the semiconductor device 200 of this embodiment, the resistance and parasitic capacitance caused by the wiring layout can be reduced, and the switching characteristics can be improved.
The semiconductor device 200 of this embodiment has the following advantages.
 (2-1)複数の外周ゲートフィンガー206は、内側領域42の外縁に沿って配置された複数の間隙208によって互いに離隔されている。複数の内側ゲートフィンガー210の各々は、複数の外周ゲートフィンガー206のうちの少なくとも1つに接続されている。外周セグメント218は、複数の内側セグメント216のうちの少なくとも2つと連続しており、少なくとも2つの内側セグメント216の各々は、複数の間隙208のうち、当該内側セグメント216が配置されるサブ領域212に隣接する間隙208を介して外周セグメント218に接続されている。 (2-1) The plurality of outer peripheral gate fingers 206 are separated from each other by a plurality of gaps 208 arranged along the outer edge of the inner region 42. Each of the plurality of inner gate fingers 210 is connected to at least one of the plurality of outer circumferential gate fingers 206. The outer circumferential segment 218 is continuous with at least two of the plurality of inner segments 216, and each of the at least two inner segments 216 is connected to a subregion 212 of the plurality of gaps 208 in which the inner segment 216 is disposed. It is connected to outer circumferential segment 218 via an adjacent gap 208 .
 したがって、配線レイアウトに起因する抵抗および寄生容量を低減して、半導体装置200のスイッチング特性を改善することができる。
 (2-2)複数の間隙208のうちの少なくとも2つは、当該間隙208が隣接するサブ領域212の1つの辺と少なくとも同等の長さにわたって形成されていてよい。間隙208の長さを比較的大きくすることによって、配線レイアウトに起因する抵抗および寄生容量をさらに低減することができる。
Therefore, the resistance and parasitic capacitance caused by the wiring layout can be reduced, and the switching characteristics of the semiconductor device 200 can be improved.
(2-2) At least two of the plurality of gaps 208 may be formed over a length at least equivalent to one side of the sub-region 212 to which the gaps 208 are adjacent. By making the length of gap 208 relatively large, resistance and parasitic capacitance due to wiring layout can be further reduced.
 (2-3)外周セグメント218は、複数の内側セグメント216と連続しており、複数の内側セグメント216の各々は、複数の間隙208のうち、当該内側セグメント216が配置されるサブ領域212に隣接する間隙208を介して外周セグメント218に接続されていてよい。複数のサブ領域212にそれぞれ配置された複数の内側セグメント216の全てが外周セグメント218に接続されることによって、配線レイアウトに起因する抵抗および寄生容量をさらに低減することができる。 (2-3) The outer peripheral segment 218 is continuous with the plurality of inner segments 216, and each of the plurality of inner segments 216 is adjacent to the sub-region 212 in which the inner segment 216 is arranged among the plurality of gaps 208. The outer peripheral segment 218 may be connected to the outer circumferential segment 218 via a gap 208 . By connecting all of the plurality of inner segments 216 arranged in the plurality of sub-regions 212 to the outer peripheral segment 218, the resistance and parasitic capacitance caused by the wiring layout can be further reduced.
 (2-4)複数のゲートトレンチ16の各々は、平面視で複数の外周ゲートフィンガー206のうちの1つまたは複数の内側ゲートフィンガー210のうちの1つと交差するように配置されていてよい。これにより、各ゲートトレンチ16内のゲート電極28をゲート配線202に接続することが可能となる。 (2-4) Each of the plurality of gate trenches 16 may be arranged to intersect with one of the plurality of outer circumferential gate fingers 206 or one of the plurality of inner gate fingers 210 in plan view. This makes it possible to connect the gate electrode 28 in each gate trench 16 to the gate wiring 202.
 (2-5)複数のゲートトレンチ16は、第1組S1のゲートトレンチ16および第2組S2のゲートトレンチ16を含んでいてよい。第1組S1の各ゲートトレンチ16は、平面視でY軸方向(第1方向)に延び、第2組S2の各ゲートトレンチ16は、平面視でX軸方向(第2方向)に延びている。第1組S1および第2組S2の各ゲートトレンチ16は、平面視で複数の外周ゲートフィンガー206のうちの1つと交差していてよい。これにより、同一方向に延びるゲートトレンチ16のみが外周ゲートフィンガー206と交差するように配置される場合と比較して、ウェハプロセス中の半導体基板12の反りを低減することができる。 (2-5) The plurality of gate trenches 16 may include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16. Each gate trench 16 of the first group S1 extends in the Y-axis direction (first direction) in plan view, and each gate trench 16 of the second group S2 extends in the X-axis direction (second direction) in plan view. There is. Each gate trench 16 of the first set S1 and the second set S2 may intersect with one of the plurality of outer circumferential gate fingers 206 in plan view. This makes it possible to reduce warping of the semiconductor substrate 12 during wafer processing, compared to the case where only the gate trenches 16 extending in the same direction are arranged so as to intersect the outer gate fingers 206.
 (2-6)複数のゲートトレンチ16は、第3組S3のゲートトレンチ16および第4組S4のゲートトレンチ16をさらに含んでいてよい。第3組S3の各ゲートトレンチ16は、平面視でY軸方向(第1方向)に延び、第4組S4の各ゲートトレンチ16は、平面視でX軸方向(第2方向)に延びている。第3組S3および第4組S4の各ゲートトレンチ16は、平面視で複数の内側ゲートフィンガー210のうちの1つと交差していてよい。これにより、同一方向に延びるゲートトレンチ16のみが内側ゲートフィンガー210と交差するように配置される場合と比較して、ウェハプロセス中の半導体基板12の反りを低減することができる。 (2-6) The plurality of gate trenches 16 may further include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16. Each gate trench 16 of the third group S3 extends in the Y-axis direction (first direction) in a plan view, and each gate trench 16 of the fourth group S4 extends in the X-axis direction (second direction) in a plan view. There is. Each gate trench 16 of the third set S3 and the fourth set S4 may intersect with one of the plurality of inner gate fingers 210 in plan view. This makes it possible to reduce warping of the semiconductor substrate 12 during wafer processing, compared to the case where only the gate trenches 16 extending in the same direction are arranged so as to intersect the inner gate fingers 210.
 (2-7)各ゲートトレンチ16に埋め込まれたフィールドプレート電極30は、複数のフィールドプレートコンタクトプラグ64のうちの少なくとも1つを介して、外周セグメント218または複数の内側セグメント216のうちの1つに接続された2つの端部を含んでいてよい。フィールドプレート電極30の2つの端部がソース配線204に接続されるので、1つの端部のみが接続されている場合と比較して、フィールドプレート電極30の長さに起因する抵抗を低減することができる。 (2-7) The field plate electrode 30 embedded in each gate trench 16 is connected to one of the outer circumferential segment 218 or one of the plurality of inner segments 216 via at least one of the plurality of field plate contact plugs 64. It may include two ends connected to. Since two ends of the field plate electrode 30 are connected to the source wiring 204, the resistance due to the length of the field plate electrode 30 is reduced compared to the case where only one end is connected. I can do it.
 [第3実施形態]
 図7は、第3実施形態に係る例示的な半導体装置300の概略断面図である。図7において、図1~図3に示す半導体装置10と同様の構成要素には同じ符号が付されている。また、半導体装置10と同様な構成要素については詳細な説明を省略する。
[Third embodiment]
FIG. 7 is a schematic cross-sectional view of an exemplary semiconductor device 300 according to the third embodiment. In FIG. 7, the same components as those of the semiconductor device 10 shown in FIGS. 1 to 3 are given the same reference numerals. Furthermore, detailed description of the same components as those of the semiconductor device 10 will be omitted.
 半導体装置300は、例えば図2に示すようなトレンチゲート構造を有するMISFETであってよい。半導体装置300は、第1実施形態の半導体装置10のゲート配線44およびソース配線34とは異なるゲート配線302およびソース配線304を含んでいる。 The semiconductor device 300 may be a MISFET having a trench gate structure as shown in FIG. 2, for example. The semiconductor device 300 includes a gate wiring 302 and a source wiring 304 that are different from the gate wiring 44 and source wiring 34 of the semiconductor device 10 of the first embodiment.
 ゲート配線302は、絶縁層18上に形成されるとともに、複数のゲート電極28(図2参照)に電気的に接続されている。ソース配線304は、絶縁層18上に形成されるとともに、ゲート配線302から離隔されている。ソース配線304は、複数のフィールドプレート電極30(図2参照)に電気的に接続されている。 The gate wiring 302 is formed on the insulating layer 18 and is electrically connected to the plurality of gate electrodes 28 (see FIG. 2). The source wiring 304 is formed on the insulating layer 18 and is spaced apart from the gate wiring 302. The source wiring 304 is electrically connected to a plurality of field plate electrodes 30 (see FIG. 2).
 ゲート配線302は、外周領域40に配置された複数の外周ゲートフィンガー306を含む。複数の外周ゲートフィンガー306は、内側領域42の外縁に沿って配置された複数の間隙308によって互いに離隔されている。図7の例では、複数の外周ゲートフィンガー306は、3つの外周ゲートフィンガー306A,306B,306Cを含んでいてよい。より具体的には、複数の外周ゲートフィンガー306は、Y軸方向に延びる第1外周ゲートフィンガー306Aと、X軸方向に延びる第2外周ゲートフィンガー306Bと、Y軸方向に延びる部分およびX軸方向に延びる部分を含む第3外周ゲートフィンガー306Cとを含んでいてよい。第3外周ゲートフィンガー306Cは、平面視でL字状であってよい。第3外周ゲートフィンガー306Cのコーナーには、後述するゲートパッド314が重なるように配置されていてよい。 The gate wiring 302 includes a plurality of outer peripheral gate fingers 306 arranged in the outer peripheral region 40. The plurality of peripheral gate fingers 306 are spaced apart from each other by a plurality of gaps 308 located along the outer edge of the inner region 42 . In the example of FIG. 7, the plurality of circumferential gate fingers 306 may include three circumferential gate fingers 306A, 306B, and 306C. More specifically, the plurality of outer circumferential gate fingers 306 include a first outer circumferential gate finger 306A extending in the Y-axis direction, a second outer circumferential gate finger 306B extending in the X-axis direction, and a portion extending in the Y-axis direction and a portion extending in the X-axis direction. and a third outer circumferential gate finger 306C including a portion extending to The third outer circumferential gate finger 306C may be L-shaped in plan view. Gate pads 314, which will be described later, may be arranged at the corners of the third outer circumferential gate finger 306C so as to overlap with each other.
 ゲート配線302は、内側領域42に配置された複数の内側ゲートフィンガー310をさらに含む。複数の内側ゲートフィンガー310の各々は、複数の外周ゲートフィンガー306のうちの少なくとも1つに接続されている。複数の内側ゲートフィンガー310は、Y軸方向に延びる第1内側ゲートフィンガー310Aと、X軸方向に延びる第2内側ゲートフィンガー310Bとを含んでいてよい。 The gate wiring 302 further includes a plurality of inner gate fingers 310 arranged in the inner region 42. Each of the plurality of inner gate fingers 310 is connected to at least one of the plurality of outer circumferential gate fingers 306. The plurality of inner gate fingers 310 may include a first inner gate finger 310A extending in the Y-axis direction and a second inner gate finger 310B extending in the X-axis direction.
 内側領域42は、複数の内側ゲートフィンガー310のうち、互いに交差する少なくとも2つの内側ゲートフィンガーによって区切られた複数のサブ領域312を含む。複数のサブ領域312の各々は、複数の外周ゲートフィンガー306のうちの少なくとも1つと隣接している。図7の例の場合、第1内側ゲートフィンガー310Aと第2内側ゲートフィンガー310Bとが互いに交差している。複数のサブ領域312は、4つのサブ領域312A,312B,312C,312Dを含む。4つのサブ領域312A,312B,312C,312Dは、互いに交差する第1内側ゲートフィンガー310Aおよび第2内側ゲートフィンガー310Bによって区切られている。4つのサブ領域312A,312B,312C,312Dの各々は、平面視で第1内側ゲートフィンガー310Aおよび第2内側ゲートフィンガー310Bに隣接している。また、図7の例では、3つの間隙308が、3つのサブ領域312A,312B,312Cにそれぞれ隣接している。サブ領域312Dは、外周領域40に配置された間隙とは隣接していない。 The inner region 42 includes a plurality of sub-regions 312 separated by at least two of the plurality of inner gate fingers 310 that intersect with each other. Each of the plurality of sub-regions 312 is adjacent to at least one of the plurality of peripheral gate fingers 306. In the example of FIG. 7, the first inner gate fingers 310A and the second inner gate fingers 310B intersect with each other. The plurality of sub-regions 312 include four sub-regions 312A, 312B, 312C, and 312D. The four sub-regions 312A, 312B, 312C, 312D are separated by a first inner gate finger 310A and a second inner gate finger 310B that intersect with each other. Each of the four sub-regions 312A, 312B, 312C, and 312D is adjacent to the first inner gate finger 310A and the second inner gate finger 310B in plan view. Further, in the example of FIG. 7, three gaps 308 are adjacent to three sub-regions 312A, 312B, and 312C, respectively. The sub-region 312D is not adjacent to the gap arranged in the outer peripheral region 40.
 第1内側ゲートフィンガー310Aは、第2外周ゲートフィンガー306Bに接続されている。第2内側ゲートフィンガー310Bは、第1外周ゲートフィンガー306Aおよび第3外周ゲートフィンガー306Cに接続されている。 The first inner gate finger 310A is connected to the second outer circumferential gate finger 306B. The second inner gate finger 310B is connected to the first outer circumferential gate finger 306A and the third outer circumferential gate finger 306C.
 ゲート配線302は、ゲートパッド314をさらに含んでいてよい。図7の例では、ゲートパッド314は、第3外周ゲートフィンガー306Cに接続されている。ゲートパッド314は、L字状の第3外周ゲートフィンガー306Cのコーナーと重なるように配置されている。これにより、半導体装置300では、平面視で内側領域42のコーナー付近にゲートパッド314を配置することができる。 The gate wiring 302 may further include a gate pad 314. In the example of FIG. 7, gate pad 314 is connected to third outer gate finger 306C. The gate pad 314 is arranged so as to overlap a corner of the L-shaped third outer peripheral gate finger 306C. Thereby, in the semiconductor device 300, the gate pad 314 can be placed near the corner of the inner region 42 in plan view.
 サブ領域312Aは、平面視で、第1内側ゲートフィンガー310A、第2内側ゲートフィンガー310B、および第1外周ゲートフィンガー306Aに囲まれている。サブ領域312Aに隣接する間隙308Aは、第1外周ゲートフィンガー306Aと、第2外周ゲートフィンガー306Bとの間に形成されている。 The sub-region 312A is surrounded by the first inner gate finger 310A, the second inner gate finger 310B, and the first outer peripheral gate finger 306A in plan view. A gap 308A adjacent to the sub-region 312A is formed between the first outer circumferential gate finger 306A and the second outer circumferential gate finger 306B.
 サブ領域312Bは、平面視で、第1内側ゲートフィンガー310A、第2内側ゲートフィンガー310B、および第2外周ゲートフィンガー206Bに囲まれている。サブ領域312Bに隣接する間隙308Bは、第2外周ゲートフィンガー306Bと、第3外周ゲートフィンガー306Cとの間に形成されている。 The sub-region 312B is surrounded by the first inner gate finger 310A, the second inner gate finger 310B, and the second outer peripheral gate finger 206B in plan view. A gap 308B adjacent to the sub-region 312B is formed between the second outer circumferential gate finger 306B and the third outer circumferential gate finger 306C.
 サブ領域312Cは、平面視で、第1内側ゲートフィンガー310A、第2内側ゲートフィンガー310B、および第3外周ゲートフィンガー306Cに囲まれている。サブ領域312Cに隣接する間隙308Cは、第1外周ゲートフィンガー306Aと、第3外周ゲートフィンガー306Cとの間に形成されている。サブ領域312Cは、内側領域42に配置される間隙316とも隣接している。間隙316は、第1内側ゲートフィンガー310Aと、第3外周ゲートフィンガー306Cとの間に形成されている。 The sub-region 312C is surrounded by the first inner gate finger 310A, the second inner gate finger 310B, and the third outer peripheral gate finger 306C in plan view. A gap 308C adjacent to the sub-region 312C is formed between the first outer gate finger 306A and the third outer gate finger 306C. The sub-region 312C is also adjacent to the gap 316 located in the inner region 42. A gap 316 is formed between the first inner gate finger 310A and the third outer gate finger 306C.
 サブ領域312Dは、平面視で、第1内側ゲートフィンガー310A、第2内側ゲートフィンガー310B、第3外周ゲートフィンガー306C、およびゲートパッド314に囲まれている。前述の通り、サブ領域312Dは、外周領域40に配置される間隙とは隣接していない。代わりに、サブ領域312Dは、内側領域42に配置される間隙316と隣接している。 The sub-region 312D is surrounded by the first inner gate finger 310A, the second inner gate finger 310B, the third outer peripheral gate finger 306C, and the gate pad 314 in plan view. As described above, the sub-region 312D is not adjacent to the gap arranged in the outer peripheral region 40. Instead, sub-region 312D is adjacent to gap 316 located in inner region 42.
 このように、各サブ領域312の外縁は、間隙308,316と隣接している部分を除いて、ゲート配線302に囲まれている。各サブ領域312は、平面視で矩形状であり、4つの辺を有している。複数の間隙308のうちの少なくとも2つは、当該間隙308が隣接するサブ領域312の1つの辺と少なくとも同等の長さにわたって形成されていてよい。図7の例では、3つの間隙308A,308B,308Cが、当該間隙308が隣接するサブ領域312(312A,312B,312C)の1つの辺と同等の長さにわたって形成されている。 In this way, the outer edge of each sub-region 312 is surrounded by the gate wiring 302 except for the portions adjacent to the gaps 308 and 316. Each sub-region 312 is rectangular in plan view and has four sides. At least two of the plurality of gaps 308 may be formed over a length at least equal to one side of the sub-region 312 to which the gaps 308 are adjacent. In the example of FIG. 7, three gaps 308A, 308B, and 308C are formed over a length equivalent to one side of the sub-region 312 (312A, 312B, 312C) to which the gaps 308 are adjacent.
 ソース配線304は、複数のサブ領域312にそれぞれ配置された複数の内側セグメント318と、外周領域40に配置された外周セグメント320とを含む。外周セグメント320は、複数の内側セグメント318のうちの少なくとも2つと連続している。少なくとも2つの内側セグメント318の各々は、複数の間隙308のうち、当該内側セグメント318が配置されるサブ領域312に隣接する間隙308を介して外周セグメント320に接続されている。 The source wiring 304 includes a plurality of inner segments 318 arranged in each of the plurality of sub-regions 312 and an outer peripheral segment 320 arranged in the outer peripheral region 40 . The outer circumferential segment 320 is continuous with at least two of the plurality of inner segments 318. Each of the at least two inner segments 318 is connected to the outer peripheral segment 320 through a gap 308 of the plurality of gaps 308 that is adjacent to the sub-region 312 in which the inner segment 318 is disposed.
 図7の例では、複数の内側セグメント318は、4つのサブ領域312A,312B,312C,312Dにそれぞれ配置された第1内側セグメント318Aと、第2内側セグメント318Bと、第3内側セグメント318Cと、第4内側セグメント318Dとを含む。外周セグメント320は、第1内側セグメント318A、第2内側セグメント318B、および第3内側セグメント318Cと連続している。第1内側セグメント318A、第2内側セグメント318B、および第3内側セグメント318Cの各々は、複数の間隙308A,308B,308Cのうち、当該内側セグメント318が配置されるサブ領域312に隣接する間隙308を介して外周セグメント320に接続されている。すなわち、第1内側セグメント318Aは、第1内側セグメント318Aが配置されるサブ領域312Aに隣接する間隙308Aを介して外周セグメント320に接続されている。第2内側セグメント318Bは、第2内側セグメント318Bが配置されるサブ領域312Bに隣接する間隙308Bを介して外周セグメント320に接続されている。第3内側セグメント318Cは、第3内側セグメント318Cが配置されるサブ領域312Cに隣接する間隙308Cを介して外周セグメント320に接続されている。 In the example of FIG. 7, the plurality of inner segments 318 include a first inner segment 318A, a second inner segment 318B, and a third inner segment 318C arranged in four sub-regions 312A, 312B, 312C, and 312D, respectively. a fourth inner segment 318D. The outer circumferential segment 320 is continuous with the first inner segment 318A, the second inner segment 318B, and the third inner segment 318C. Each of the first inner segment 318A, the second inner segment 318B, and the third inner segment 318C defines a gap 308 of the plurality of gaps 308A, 308B, and 308C that is adjacent to the sub-region 312 in which the inner segment 318 is disposed. The outer circumferential segment 320 is connected to the outer peripheral segment 320 via the outer peripheral segment 320 . That is, the first inner segment 318A is connected to the outer peripheral segment 320 via the gap 308A adjacent to the sub-region 312A in which the first inner segment 318A is disposed. The second inner segment 318B is connected to the outer circumferential segment 320 via a gap 308B adjacent to the sub-region 312B in which the second inner segment 318B is located. The third inner segment 318C is connected to the outer circumferential segment 320 via a gap 308C adjacent to the sub-region 312C in which the third inner segment 318C is located.
 一方、第4内側セグメント318Dは、内側領域42において第1内側セグメント318A、第2内側セグメント318B、および第3内側セグメント318Cのうちの1つに接続されている。図7の例では、第4内側セグメント318Dは、内側領域42に配置された間隙316を介して第3内側セグメント318Cに接続されている。 On the other hand, the fourth inner segment 318D is connected to one of the first inner segment 318A, the second inner segment 318B, and the third inner segment 318C in the inner region 42. In the example of FIG. 7, fourth inner segment 318D is connected to third inner segment 318C via gap 316 located in inner region 42. In the example of FIG.
 外周セグメント320は、ゲートパッド314が配置されている領域を除いて、平面視で半導体層14の外縁に沿って延びていてよい。
 (ゲートトレンチの配置)
 複数のゲートトレンチ16の各々は、平面視で、複数の外周ゲートフィンガー306のうちの1つまたは複数の内側ゲートフィンガー310のうちの1つと交差するように配置することができる。半導体装置300は、複数のゲートコンタクトプラグ60をさらに含んでいてよい。各ゲートトレンチ16に埋め込まれたゲート電極28(図2参照)は、複数のゲートコンタクトプラグ60のうちの少なくとも1つを介して、複数の外周ゲートフィンガー306のうちの1つまたは複数の内側ゲートフィンガー310のうちの1つに接続され得る。ゲートコンタクトプラグ60は、複数のゲートトレンチ16の各々が平面視で複数の外周ゲートフィンガー306のうちの1つまたは複数の内側ゲートフィンガー310のうちの1つと交差する領域に配置することができる。
The outer peripheral segment 320 may extend along the outer edge of the semiconductor layer 14 in plan view, except for the region where the gate pad 314 is arranged.
(Gate trench arrangement)
Each of the plurality of gate trenches 16 can be arranged to intersect one of the plurality of outer circumferential gate fingers 306 or one of the plurality of inner gate fingers 310 in plan view. The semiconductor device 300 may further include a plurality of gate contact plugs 60. The gate electrode 28 (see FIG. 2) embedded in each gate trench 16 connects to one or more inner gates of the plurality of outer circumferential gate fingers 306 via at least one of the plurality of gate contact plugs 60. It may be connected to one of the fingers 310. The gate contact plug 60 can be arranged in a region where each of the plurality of gate trenches 16 intersects one of the plurality of outer circumferential gate fingers 306 or one of the plurality of inner gate fingers 310 in a plan view.
 複数のゲートトレンチ16は、第1組S1のゲートトレンチ16および第2組S2のゲートトレンチ16を含んでいてよい。第1組S1の各ゲートトレンチ16は、平面視でY軸方向に延びている。第2組S2の各ゲートトレンチ16は、平面視でX軸方向に延びている。第1組S1および第2組S2の各ゲートトレンチ16は、平面視で複数の外周ゲートフィンガー306のうちの1つと交差している。第1組S1および第2組S2のゲートトレンチ16は、内側領域42と外周領域40とに跨って配置されている。 The plurality of gate trenches 16 may include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16. Each gate trench 16 of the first set S1 extends in the Y-axis direction in plan view. Each gate trench 16 of the second set S2 extends in the X-axis direction in plan view. Each gate trench 16 of the first set S1 and the second set S2 intersects with one of the plurality of outer circumferential gate fingers 306 in a plan view. The gate trenches 16 of the first set S1 and the second set S2 are arranged across the inner region 42 and the outer peripheral region 40.
 複数のゲートトレンチ16は、第3組S3のゲートトレンチ16および第4組S4のゲートトレンチ16を含んでいてよい。第3組S3の各ゲートトレンチ16は、平面視でY軸方向に延びている。第4組S4の各ゲートトレンチ16は、平面視でX軸方向に延びている。第3組S3および第4組S4の各ゲートトレンチ16は、平面視で複数の内側ゲートフィンガー310のうちの1つと交差している。第3組S3および第4組S4のゲートトレンチ16は、内側領域42内にその全体が配置されている。 The plurality of gate trenches 16 may include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16. Each gate trench 16 of the third group S3 extends in the Y-axis direction in plan view. Each gate trench 16 of the fourth group S4 extends in the X-axis direction in plan view. Each gate trench 16 of the third set S3 and the fourth set S4 intersects with one of the plurality of inner gate fingers 310 in plan view. The gate trenches 16 of the third set S3 and the fourth set S4 are entirely disposed within the inner region 42.
 図7の例では、第1組S1の各ゲートトレンチ16の端部を除く主要部分は、サブ領域312Bまたはサブ領域312Cに配置されている。第2組S2の各ゲートトレンチ16の端部を除く主要部分は、サブ領域312Aまたはサブ領域312Dに配置されている。第3組S3の各ゲートトレンチ16の端部を除く主要部分は、サブ領域312Bまたはサブ領域312Cに配置されている。第4組S4の各ゲートトレンチ16の端部を除く主要部分は、サブ領域312Aまたはサブ領域312Dに配置されている。 In the example of FIG. 7, the main portions of each gate trench 16 of the first set S1, excluding the ends, are arranged in the sub-region 312B or the sub-region 312C. The main portions of each gate trench 16 of the second set S2, excluding the ends, are arranged in the sub-region 312A or the sub-region 312D. The main portions of each gate trench 16 of the third set S3, excluding the ends, are arranged in the sub-region 312B or the sub-region 312C. The main portions of each gate trench 16 of the fourth set S4, excluding the ends, are arranged in the sub-region 312A or the sub-region 312D.
 任意選択的に、複数のゲートトレンチ16は、第5組S5のゲートトレンチ16を含んでいてよい。第5組S5の各ゲートトレンチ16は、平面視でY軸方向に延びるとともに、平面視で第3外周ゲートフィンガー306Cと交差している。第5組S5の各ゲートトレンチ16の端部を除く主要部分は、サブ領域312Dにおいて、ゲートパッド314の隣に配置されている。 Optionally, the plurality of gate trenches 16 may include a fifth set S5 of gate trenches 16. Each gate trench 16 of the fifth set S5 extends in the Y-axis direction in a plan view, and intersects with the third outer peripheral gate finger 306C in a plan view. The main portion of each gate trench 16 of the fifth set S5, excluding the end portion, is arranged next to the gate pad 314 in the sub-region 312D.
 各組S1,S2,S3,S4,S5は、1つまたは複数のゲートトレンチ16を含んでいてよい。各組S1,S2,S3,S4,S5に含まれる複数のゲートトレンチ16のいくつかは、等間隔で互いに平行に整列されていてもよい。各組S1,S2,S3,S4,S5に含まれるゲートトレンチの数は、レイアウトに応じて適宜定めることができる。 Each set S1, S2, S3, S4, S5 may include one or more gate trenches 16. Some of the plurality of gate trenches 16 included in each set S1, S2, S3, S4, S5 may be arranged parallel to each other at equal intervals. The number of gate trenches included in each set S1, S2, S3, S4, S5 can be determined as appropriate depending on the layout.
 半導体装置300は、フィールドプレートトレンチ62をさらに含んでいてよい。フィールドプレートトレンチ62内には、フィールドプレート電極30(図2参照)と同じ電位の電極を配置することができる。フィールドプレートトレンチ62は、同じサブ領域312に主要部分が配置される整列されたゲートトレンチ16同士を連通させるように構成することができる。フィールドプレートトレンチ62は、ゲートトレンチ16を連通させる部分62Aと、ゲートトレンチ16と平行に延びる2つの部分62Bを含んでいてよい。部分62Aは、ゲートトレンチ16に対して垂直に延びていてよい。2つの部分62Bは、連通されるゲートトレンチ16の両側に設けられていてよい。フィールドプレートトレンチ62内に配置された電極は、フィールドプレートトレンチ62と連通するゲートトレンチ16に配置されたフィールドプレート電極30(図2参照)に一体的に接続されていてよい。 The semiconductor device 300 may further include a field plate trench 62. An electrode having the same potential as the field plate electrode 30 (see FIG. 2) can be placed within the field plate trench 62. Field plate trenches 62 can be configured to communicate with aligned gate trenches 16 whose main portions are located in the same sub-region 312. The field plate trench 62 may include a portion 62A that communicates with the gate trench 16 and two portions 62B that extend parallel to the gate trench 16. Portion 62A may extend perpendicularly to gate trench 16. The two portions 62B may be provided on both sides of the gate trench 16 to be communicated with each other. The electrode placed in the field plate trench 62 may be integrally connected to the field plate electrode 30 (see FIG. 2) placed in the gate trench 16 communicating with the field plate trench 62.
 半導体装置300は、複数のフィールドプレートコンタクトプラグ64をさらに含んでいてよい。各ゲートトレンチ16に埋め込まれたフィールドプレート電極30(図2参照)は、複数のフィールドプレートコンタクトプラグ64のうちの少なくとも1つを介して、外周セグメント320または複数の内側セグメント318のうちの1つに接続された2つの端部を含んでいてよい。 The semiconductor device 300 may further include a plurality of field plate contact plugs 64. The field plate electrode 30 (see FIG. 2) embedded in each gate trench 16 is connected to one of the outer circumferential segment 320 or one of the plurality of inner segments 318 via at least one of the plurality of field plate contact plugs 64. It may include two ends connected to.
 (半導体装置の作用)
 以下、本実施形態の半導体装置300の作用について説明する。
 ゲート配線302は、外周領域40に配置された複数の外周ゲートフィンガー306を含んでいる。複数の外周ゲートフィンガー306は、内側領域42の外縁に沿って配置された複数の間隙308によって互いに離隔されている。仮に、複数の外周ゲートフィンガー306の各々が、間隙308が無くなるように延長されて互いに接続されるとすると、その延長部分は、余分なゲート・ドレイン間容量Cgdを生じさせる。ゲート・ドレイン間容量Cgdは、半導体装置300の帰還容量Crssに相当する。帰還容量Crssが大きいと、半導体装置300のスイッチング速度が低下し得る。したがって、複数の間隙308を内側領域42の外縁に沿って配置することにより、余分なゲート・ドレイン間容量Cgdを抑制することができる。
(Function of semiconductor device)
The operation of the semiconductor device 300 of this embodiment will be described below.
Gate wiring 302 includes a plurality of outer peripheral gate fingers 306 arranged in outer peripheral region 40 . The plurality of peripheral gate fingers 306 are spaced apart from each other by a plurality of gaps 308 located along the outer edge of the inner region 42 . If each of the plurality of outer peripheral gate fingers 306 were to be extended and connected to each other so that the gap 308 is eliminated, the extended portion would generate an extra gate-drain capacitance C gd . The gate-drain capacitance C gd corresponds to the feedback capacitance C rss of the semiconductor device 300. If the feedback capacitance C rss is large, the switching speed of the semiconductor device 300 may decrease. Therefore, by arranging the plurality of gaps 308 along the outer edge of the inner region 42, the excess gate-drain capacitance C gd can be suppressed.
 なお、本実施形態において、複数のゲートトレンチ16の各々は、平面視で複数の外周ゲートフィンガー306のうちの1つまたは複数の内側ゲートフィンガー310のうちの1つと交差するように配置されている。したがって、間隙308が配置される領域にゲートフィンガーが延びていなくても、各ゲートトレンチ16に埋め込まれたゲート電極28をゲート配線302に接続することが可能である。 Note that in this embodiment, each of the plurality of gate trenches 16 is arranged to intersect with one of the plurality of outer circumferential gate fingers 306 or one of the plurality of inner gate fingers 310 in plan view. . Therefore, it is possible to connect the gate electrode 28 embedded in each gate trench 16 to the gate wiring 302 even if the gate finger does not extend into the region where the gap 308 is arranged.
 また、ソース配線304は、複数のサブ領域312にそれぞれ配置された複数の内側セグメント318と、外周領域40に配置された外周セグメント320とを含んでいる。外周セグメント320は、複数の内側セグメント318のうちの少なくとも2つと連続しており、少なくとも2つの内側セグメント318の各々は、複数の間隙308のうち、当該内側セグメント318が配置されるサブ領域312に隣接する間隙308を介して外周セグメント320に接続されている。したがって、ソース配線304により生じる抵抗を低減することができる。 Further, the source wiring 304 includes a plurality of inner segments 318 arranged in each of the plurality of sub-regions 312 and an outer peripheral segment 320 arranged in the outer peripheral region 40 . The outer circumferential segment 320 is continuous with at least two of the plurality of inner segments 318, and each of the at least two inner segments 318 is connected to a subregion 312 of the plurality of gaps 308 in which the inner segment 318 is disposed. It is connected to the peripheral segment 320 via an adjacent gap 308 . Therefore, the resistance caused by the source wiring 304 can be reduced.
 さらに、ゲート配線302は、内側領域42に配置された複数の内側ゲートフィンガー310を含んでいる。複数の内側ゲートフィンガー310の各々は、複数の外周ゲートフィンガー306のうちの少なくとも1つに接続されている。したがって、ゲートトレンチ16を配置可能な領域を拡大して、半導体装置300のオン抵抗Ronを低減することができる。 Furthermore, gate wiring 302 includes a plurality of inner gate fingers 310 disposed in inner region 42 . Each of the plurality of inner gate fingers 310 is connected to at least one of the plurality of outer circumferential gate fingers 306. Therefore, the area where the gate trench 16 can be placed can be expanded, and the on-resistance R on of the semiconductor device 300 can be reduced.
 このように、本実施形態の半導体装置300によれば、配線レイアウトに起因する抵抗および寄生容量を低減して、スイッチング特性を改善することができる。
 本実施形態の半導体装置300は、以下の利点を有する。
In this way, according to the semiconductor device 300 of this embodiment, the resistance and parasitic capacitance caused by the wiring layout can be reduced, and the switching characteristics can be improved.
The semiconductor device 300 of this embodiment has the following advantages.
 (3-1)複数の外周ゲートフィンガー306は、内側領域42の外縁に沿って配置された複数の間隙308によって互いに離隔されている。複数の内側ゲートフィンガー310の各々は、複数の外周ゲートフィンガー306のうちの少なくとも1つに接続されている。外周セグメント320は、複数の内側セグメント318のうちの少なくとも2つと連続しており、少なくとも2つの内側セグメント318の各々は、複数の間隙308のうち、当該内側セグメント318が配置されるサブ領域312に隣接する間隙308を介して外周セグメント320に接続されている。 (3-1) The plurality of outer peripheral gate fingers 306 are separated from each other by a plurality of gaps 308 arranged along the outer edge of the inner region 42. Each of the plurality of inner gate fingers 310 is connected to at least one of the plurality of outer circumferential gate fingers 306. The outer circumferential segment 320 is continuous with at least two of the plurality of inner segments 318, and each of the at least two inner segments 318 is connected to a subregion 312 of the plurality of gaps 308 in which the inner segment 318 is disposed. It is connected to the peripheral segment 320 via an adjacent gap 308 .
 したがって、配線レイアウトに起因する抵抗および寄生容量を低減して、半導体装置300のスイッチング特性を改善することができる。
 (3-2)複数の間隙308のうちの少なくとも2つは、当該間隙308が隣接するサブ領域312の1つの辺と少なくとも同等の長さにわたって形成されていてよい。間隙308の長さを比較的大きくすることによって、配線レイアウトに起因する抵抗および寄生容量をさらに低減することができる。
Therefore, the resistance and parasitic capacitance caused by the wiring layout can be reduced, and the switching characteristics of the semiconductor device 300 can be improved.
(3-2) At least two of the plurality of gaps 308 may be formed over a length at least equivalent to one side of the sub-region 312 to which the gaps 308 are adjacent. By making the length of gap 308 relatively large, resistance and parasitic capacitance due to wiring layout can be further reduced.
 (3-3)複数のサブ領域312の各々は、複数の外周ゲートフィンガー306のうちの少なくとも1つと隣接していてよい。これにより、平面視で外周ゲートフィンガー306と交差するゲートトレンチ16を各サブ領域52に配置することができるようになる。 (3-3) Each of the plurality of sub-regions 312 may be adjacent to at least one of the plurality of outer peripheral gate fingers 306. Thereby, the gate trench 16 that intersects the outer peripheral gate finger 306 in plan view can be arranged in each sub-region 52.
 (3-4)複数のゲートトレンチ16の各々は、平面視で複数の外周ゲートフィンガー306のうちの1つまたは複数の内側ゲートフィンガー310のうちの1つと交差するように配置されていてよい。これにより、各ゲートトレンチ16内のゲート電極28をゲート配線302に接続することが可能となる。 (3-4) Each of the plurality of gate trenches 16 may be arranged to intersect with one of the plurality of outer circumferential gate fingers 306 or one of the plurality of inner gate fingers 310 in plan view. This makes it possible to connect the gate electrode 28 in each gate trench 16 to the gate wiring 302.
 (3-5)複数のゲートトレンチ16は、第1組S1のゲートトレンチ16および第2組S2のゲートトレンチ16を含んでいてよい。第1組S1の各ゲートトレンチ16は、平面視でY軸方向(第1方向)に延び、第2組S2の各ゲートトレンチ16は、平面視でX軸方向(第2方向)に延びている。第1組S1および第2組S2の各ゲートトレンチ16は、平面視で複数の外周ゲートフィンガー306のうちの1つと交差していてよい。これにより、同一方向に延びるゲートトレンチ16のみが外周ゲートフィンガー306と交差するように配置される場合と比較して、ウェハプロセス中の半導体基板12の反りを低減することができる。 (3-5) The plurality of gate trenches 16 may include a first set S1 of gate trenches 16 and a second set S2 of gate trenches 16. Each gate trench 16 of the first group S1 extends in the Y-axis direction (first direction) in plan view, and each gate trench 16 of the second group S2 extends in the X-axis direction (second direction) in plan view. There is. Each of the gate trenches 16 of the first set S1 and the second set S2 may intersect with one of the plurality of outer circumferential gate fingers 306 in plan view. Thereby, warping of the semiconductor substrate 12 during wafer processing can be reduced compared to a case where only the gate trenches 16 extending in the same direction are arranged so as to intersect the outer peripheral gate fingers 306.
 (3-6)複数のゲートトレンチ16は、第3組S3のゲートトレンチ16および第4組S4のゲートトレンチ16をさらに含んでいてよい。第3組S3の各ゲートトレンチ16は、平面視でY軸方向(第1方向)に延び、第4組S4の各ゲートトレンチ16は、平面視でX軸方向(第2方向)に延びている。第3組S3および第4組S4の各ゲートトレンチ16は、平面視で複数の内側ゲートフィンガー310のうちの1つと交差していてよい。これにより、同一方向に延びるゲートトレンチ16のみが内側ゲートフィンガー310と交差するように配置される場合と比較して、ウェハプロセス中の半導体基板12の反りを低減することができる。 (3-6) The plurality of gate trenches 16 may further include a third group S3 of gate trenches 16 and a fourth group S4 of gate trenches 16. Each gate trench 16 of the third group S3 extends in the Y-axis direction (first direction) in a plan view, and each gate trench 16 of the fourth group S4 extends in the X-axis direction (second direction) in a plan view. There is. Each gate trench 16 of the third set S3 and the fourth set S4 may intersect with one of the plurality of inner gate fingers 310 in plan view. Thereby, warping of the semiconductor substrate 12 during wafer processing can be reduced compared to the case where only the gate trenches 16 extending in the same direction are arranged so as to intersect the inner gate fingers 310.
 (3-7)各ゲートトレンチ16に埋め込まれたフィールドプレート電極30は、複数のフィールドプレートコンタクトプラグ64のうちの少なくとも1つを介して、外周セグメント320または複数の内側セグメント318のうちの1つに接続された2つの端部を含んでいてよい。フィールドプレート電極30の2つの端部がソース配線304に接続されるので、1つの端部のみが接続されている場合と比較して、フィールドプレート電極30の長さに起因する抵抗を低減することができる。 (3-7) The field plate electrode 30 embedded in each gate trench 16 is connected to one of the outer circumferential segment 320 or one of the plurality of inner segments 318 via at least one of the plurality of field plate contact plugs 64. It may include two ends connected to. Since two ends of the field plate electrode 30 are connected to the source wiring 304, the resistance due to the length of the field plate electrode 30 is reduced compared to the case where only one end is connected. I can do it.
 [トレンチゲート構造の変更例]
 図8は、トレンチゲート構造の変更例を説明するための例示的な半導体装置400の概略断面図である。
[Example of change in trench gate structure]
FIG. 8 is a schematic cross-sectional view of an exemplary semiconductor device 400 for explaining a modification of the trench gate structure.
 半導体装置400は、SiC基板を用いたMISFETであってよい。半導体装置400は、半導体基板402と、半導体基板402上に形成された半導体層404と、半導体層404に形成された複数のゲートトレンチ406と、半導体層404に形成された複数のソーストレンチ408とを含む。ゲートトレンチ406とソーストレンチ408とは交互に配置されていてよい。 The semiconductor device 400 may be a MISFET using a SiC substrate. The semiconductor device 400 includes a semiconductor substrate 402, a semiconductor layer 404 formed on the semiconductor substrate 402, a plurality of gate trenches 406 formed in the semiconductor layer 404, and a plurality of source trenches 408 formed in the semiconductor layer 404. including. Gate trenches 406 and source trenches 408 may be arranged alternately.
 半導体基板402は、SiC基板であってよい。また、半導体層404は、SiCエピタキシャル層であってよい。
 半導体基板402は、上面402A、および上面402Aと反対の底面402Bを含んでいてよい。半導体基板402は、MISFETのドレイン領域に相当し得る。Z軸方向は、半導体基板402の上面402Aおよび底面402Bと直交する方向である。
Semiconductor substrate 402 may be a SiC substrate. Furthermore, the semiconductor layer 404 may be a SiC epitaxial layer.
The semiconductor substrate 402 may include a top surface 402A and a bottom surface 402B opposite the top surface 402A. The semiconductor substrate 402 may correspond to a drain region of a MISFET. The Z-axis direction is a direction perpendicular to the top surface 402A and bottom surface 402B of the semiconductor substrate 402.
 半導体層404は、半導体基板(ドレイン領域)402上に形成されたドリフト領域410と、ドリフト領域410上に形成されたボディ領域412と、ボディ領域412上に形成されたソース領域414とを含む。 The semiconductor layer 404 includes a drift region 410 formed on a semiconductor substrate (drain region) 402, a body region 412 formed on the drift region 410, and a source region 414 formed on the body region 412.
 半導体基板402により形成されるドレイン領域は、n型不純物を含むn型領域であってよい。半導体基板402のn型不純物濃度は、1×1018cm-3以上1×1021cm-3以下であってよい。半導体基板402は、5μm以上300μm以下の厚さを有していてよい。 The drain region formed by the semiconductor substrate 402 may be an n-type region containing n-type impurities. The n-type impurity concentration of the semiconductor substrate 402 may be 1×10 18 cm −3 or more and 1×10 21 cm −3 or less. The semiconductor substrate 402 may have a thickness of 5 μm or more and 300 μm or less.
 ドリフト領域410は、半導体基板(ドレイン領域)402よりも低い濃度のn型不純物を含むn型領域であってよい。ドリフト領域410のn型不純物濃度は、1×1015cm-3以上1×1018cm-3以下であってよい。ドリフト領域410は、5μm以上20μm以下の厚さを有していてよい。 Drift region 410 may be an n-type region containing n-type impurities at a lower concentration than semiconductor substrate (drain region) 402. The n-type impurity concentration of the drift region 410 may be 1×10 15 cm −3 or more and 1×10 18 cm −3 or less. Drift region 410 may have a thickness of 5 μm or more and 20 μm or less.
 ドリフト領域410は、半導体基板402上に形成された比較的低濃度な第1濃度領域416(低濃度領域)と、第1濃度領域416上に形成されるとともに、第1濃度領域416よりも高濃度な第2濃度領域418(高濃度領域)とを含んでいてよい。第1濃度領域416のn型不純物濃度は、1×1015cm-3以上1×1017cm-3以下であってよい。第2濃度領域418のn型不純物濃度は、1×1016cm-3以上1×1018cm-3以下であってよい。 The drift region 410 is formed on the semiconductor substrate 402 and has a relatively low concentration first concentration region 416 (low concentration region), and is formed on the first concentration region 416 and has a higher concentration than the first concentration region 416. A second concentration region 418 (high concentration region) may be included. The n-type impurity concentration of the first concentration region 416 may be 1×10 15 cm −3 or more and 1×10 17 cm −3 or less. The n-type impurity concentration of the second concentration region 418 may be greater than or equal to 1×10 16 cm −3 and less than or equal to 1×10 18 cm −3 .
 なお、図示は省略するが、半導体基板402とドリフト領域410との間にバッファ領域が形成されていてもよい。バッファ領域は、半導体基板402のn型不純物濃度からドリフト領域410のn型不純物濃度に向けてn型不純物濃度が漸減する濃度勾配を有していてよい。 Although not shown, a buffer region may be formed between the semiconductor substrate 402 and the drift region 410. The buffer region may have a concentration gradient in which the n-type impurity concentration gradually decreases from the n-type impurity concentration of the semiconductor substrate 402 to the n-type impurity concentration of the drift region 410.
 ボディ領域412は、p型不純物を含むp型領域であってよい。ボディ領域412のp型不純物濃度は、1×1016cm-3以上1×1018cm-3以下であってよい。
 ソース領域414は、第2濃度領域418よりも高い濃度のn型不純物を含むn型領域であってよい。ソース領域414のn型不純物濃度は、1×1018cm-3以上1×1021cm-3以下であってよい。
Body region 412 may be a p-type region containing p-type impurities. The p-type impurity concentration of body region 412 may be 1×10 16 cm −3 or more and 1×10 18 cm −3 or less.
Source region 414 may be an n-type region containing n-type impurities at a higher concentration than second concentration region 418 . The n-type impurity concentration of the source region 414 may be greater than or equal to 1×10 18 cm −3 and less than or equal to 1×10 21 cm −3 .
 なお、本開示において、n型を第1導電型、およびp型を第2導電型ともいう。n型不純物は、例えば、リン(P)、ヒ素(As)などであってよい。また、p型不純物は、例えば、ホウ素(B)、アルミニウム(Al)などであってよい。 Note that in this disclosure, the n-type is also referred to as a first conductivity type, and the p-type is also referred to as a second conductivity type. The n-type impurity may be, for example, phosphorus (P) or arsenic (As). Furthermore, the p-type impurity may be, for example, boron (B) or aluminum (Al).
 半導体装置400は、半導体基板402の底面402Bに形成されたドレイン電極420をさらに含むことができる。ドレイン電極420は、半導体基板(ドレイン領域)402と電気的に接続されている。ドレイン電極420は、チタン(Ti)、ニッケル(Ni)、パラジウム(Pd)、金(Au)、銀(Ag)のうちの少なくとも1つから形成されてもよい。 The semiconductor device 400 may further include a drain electrode 420 formed on the bottom surface 402B of the semiconductor substrate 402. Drain electrode 420 is electrically connected to semiconductor substrate (drain region) 402. Drain electrode 420 may be formed of at least one of titanium (Ti), nickel (Ni), palladium (Pd), gold (Au), and silver (Ag).
 ゲートトレンチ406は、半導体層404の上面404Aに開口を有するとともに、Z軸方向に深さを有している。ゲートトレンチ406は、0.1μm以上3μm以下の深さを有していてよい。ゲートトレンチ406は、側壁406Aおよび底壁406Bを有している。ゲートトレンチ406は、半導体層404のソース領域414およびボディ領域412を貫通している。半導体層404は、第2濃度領域418と、ゲートトレンチ406の側壁406Aおよび底壁406Bとの間に形成された第1ウェル領域422をさらに含んでいてよい。第1ウェル領域422は、ボディ領域412よりも高い濃度のp型不純物を含むp型領域であってよい。第1ウェル領域422のp型不純物濃度は、1×1016cm-3以上1×1018cm-3以下であってよい。 The gate trench 406 has an opening in the upper surface 404A of the semiconductor layer 404 and has a depth in the Z-axis direction. The gate trench 406 may have a depth of 0.1 μm or more and 3 μm or less. Gate trench 406 has side walls 406A and bottom wall 406B. Gate trench 406 penetrates source region 414 and body region 412 of semiconductor layer 404 . The semiconductor layer 404 may further include a first well region 422 formed between the second concentration region 418 and the sidewalls 406A and bottom walls 406B of the gate trench 406. The first well region 422 may be a p-type region containing p-type impurities at a higher concentration than the body region 412. The p-type impurity concentration of the first well region 422 may be 1×10 16 cm −3 or more and 1×10 18 cm −3 or less.
 ソーストレンチ408は、半導体層404の上面404Aに開口を有するとともに、Z軸方向に深さを有している。ソーストレンチ408は、0.5μm以上10μm以下の深さを有していてよい。ソーストレンチ408は、側壁408Aおよび底壁408Bを有している。ソーストレンチ408は、半導体層404のソース領域414およびボディ領域412を貫通している。半導体層404は、第2濃度領域418と、ソーストレンチ408の側壁408Aおよび底壁408Bとの間に形成された第2ウェル領域424をさらに含んでいてよい。第2ウェル領域424は、ボディ領域412よりも高い濃度のp型不純物を含むp型領域であってよい。第2ウェル領域424のp型不純物濃度は、1×1016cm-3以上1×1018cm-3以下であってよい。 The source trench 408 has an opening in the upper surface 404A of the semiconductor layer 404 and has a depth in the Z-axis direction. Source trench 408 may have a depth of 0.5 μm or more and 10 μm or less. Source trench 408 has sidewalls 408A and bottom wall 408B. Source trench 408 penetrates source region 414 and body region 412 of semiconductor layer 404 . Semiconductor layer 404 may further include a second well region 424 formed between second concentration region 418 and sidewall 408A and bottom wall 408B of source trench 408. The second well region 424 may be a p-type region containing p-type impurities at a higher concentration than the body region 412. The p-type impurity concentration of the second well region 424 may be 1×10 16 cm −3 or more and 1×10 18 cm −3 or less.
 半導体装置400は、半導体層404上に形成された絶縁層426と、複数のゲート電極428をさらに含んでいる。複数のゲート電極428の各々は、複数のゲートトレンチ406のうちの対応する1つに絶縁層426を介して埋め込まれている。 The semiconductor device 400 further includes an insulating layer 426 formed on the semiconductor layer 404 and a plurality of gate electrodes 428. Each of the plurality of gate electrodes 428 is embedded in a corresponding one of the plurality of gate trenches 406 with an insulating layer 426 interposed therebetween.
 半導体装置400は、複数のソース電極430をさらに含んでいる。複数のソース電極430の各々は、複数のソーストレンチ408のうちの対応する1つに絶縁層426を介して埋め込まれている。 The semiconductor device 400 further includes a plurality of source electrodes 430. Each of the plurality of source electrodes 430 is embedded in a corresponding one of the plurality of source trenches 408 with an insulating layer 426 interposed therebetween.
 ゲート電極428は、ゲート電圧が印加されるように構成されていてよく、ソース電極430は、基準電圧(またはソース電圧)が印加されるように構成されていてよい。ゲート電極428およびソース電極430は、一例では、導電性のポリシリコンから形成されていてよい。 The gate electrode 428 may be configured to have a gate voltage applied to it, and the source electrode 430 may be configured to have a reference voltage (or source voltage) applied to it. Gate electrode 428 and source electrode 430 may be formed from conductive polysilicon, in one example.
 半導体装置400は、複数のゲートコンタクト電極432をさらに含んでいてよい。複数のゲートコンタクト電極432は、半導体層404の上面404Aの一部を覆うとともに、複数のゲート電極428にそれぞれ接続されている。 The semiconductor device 400 may further include a plurality of gate contact electrodes 432. The plurality of gate contact electrodes 432 cover a portion of the upper surface 404A of the semiconductor layer 404, and are connected to the plurality of gate electrodes 428, respectively.
 半導体装置400は、半導体層404の上面404A上に形成された絶縁層434をさらに含んでいてよい。絶縁層434は、ゲートコンタクト電極432よりも厚く形成されている。絶縁層434は、複数のゲートコンタクト電極432をそれぞれ露出させる複数のゲート開口434Aを有している。 The semiconductor device 400 may further include an insulating layer 434 formed on the upper surface 404A of the semiconductor layer 404. The insulating layer 434 is formed thicker than the gate contact electrode 432. The insulating layer 434 has a plurality of gate openings 434A that expose the plurality of gate contact electrodes 432, respectively.
 半導体装置400は、絶縁層434上に形成されたゲート配線436をさらに含んでいてよい。ゲート配線436は、絶縁層434上に形成されたバリア層438と、バリア層438上に形成された配線層440とを含む。バリア層438は、Ti層およびTiN層のうちの少なくとも一方を含んでいてよい。バリア層438は、10nm以上500nm以下の厚さを有していてよい。配線層440は、Cu層、Al層、AlCu合金層、AlSi合金層、およびAlSiCu合金層のうちの少なくとも1つを含んでいてよい。配線層440は、0.5μm以上10μm以下の厚さを有していてよい。 The semiconductor device 400 may further include a gate wiring 436 formed on the insulating layer 434. Gate wiring 436 includes a barrier layer 438 formed on insulating layer 434 and a wiring layer 440 formed on barrier layer 438. Barrier layer 438 may include at least one of a Ti layer and a TiN layer. The barrier layer 438 may have a thickness of 10 nm or more and 500 nm or less. The wiring layer 440 may include at least one of a Cu layer, an Al layer, an AlCu alloy layer, an AlSi alloy layer, and an AlSiCu alloy layer. The wiring layer 440 may have a thickness of 0.5 μm or more and 10 μm or less.
 上述のような、SiCを用いた半導体装置400のゲートトレンチ406を、図1に示す第1実施形態の半導体装置10の平面レイアウトで配置することができる。具体的には、図1に示すゲートトレンチ16の位置に、図8に示すゲートトレンチ406を配置することができる。その場合、ゲート配線436は、図1に示すゲート配線44に対応し、したがって、図8は、ゲートフィンガーとして形成されたゲート配線436が配置される領域における断面を示している。ソース電極430は、図1に示すソース配線34に対応するソース配線(図示略)に電気的に接続することができる。また、半導体装置400のゲートトレンチ406を、図6に示す第2実施形態の半導体装置200の平面レイアウト、または図7に示す第3実施形態の半導体装置300の平面レイアウトで配置することも可能である。これにより、SiCを用いた半導体装置400においても、配線レイアウトに起因する抵抗および寄生容量を低減して、スイッチング特性を改善することができる。 The gate trench 406 of the semiconductor device 400 using SiC as described above can be arranged in the planar layout of the semiconductor device 10 of the first embodiment shown in FIG. Specifically, the gate trench 406 shown in FIG. 8 can be placed at the position of the gate trench 16 shown in FIG. In that case, the gate wiring 436 corresponds to the gate wiring 44 shown in FIG. 1, and therefore, FIG. 8 shows a cross section in a region where the gate wiring 436 formed as a gate finger is arranged. The source electrode 430 can be electrically connected to a source wiring (not shown) corresponding to the source wiring 34 shown in FIG. Furthermore, it is also possible to arrange the gate trench 406 of the semiconductor device 400 according to the planar layout of the semiconductor device 200 of the second embodiment shown in FIG. 6 or the planar layout of the semiconductor device 300 of the third embodiment shown in FIG. be. Thereby, even in the semiconductor device 400 using SiC, the resistance and parasitic capacitance caused by the wiring layout can be reduced, and the switching characteristics can be improved.
 [他の変更例]
 上記実施形態および変更例の各々は、以下のように変更して実施することができる。
 ・第1組S1の各ゲートトレンチ16の長さは、第3組S3の各ゲートトレンチ16の長さと同じであってもよいし、異なっていてもよい。同様に、第2組S2の各ゲートトレンチ16の長さは、第4組S4の各ゲートトレンチ16の長さと同じであってもよいし、異なっていてもよい。
[Other change examples]
Each of the above embodiments and modified examples can be modified and implemented as follows.
- The length of each gate trench 16 in the first group S1 may be the same as or different from the length of each gate trench 16 in the third group S3. Similarly, the length of each gate trench 16 in the second set S2 may be the same as or different from the length of each gate trench 16 in the fourth set S4.
 ・複数の内側ゲートフィンガー50の数は、4つ以上であってもよい。
 ・複数の間隙48のうちのいくつかは、当該間隙48が隣接するサブ領域52の1つの辺よりも短い小さい長さにわたって形成されていてもよい。
- The number of the plurality of inner gate fingers 50 may be four or more.
- Some of the plurality of gaps 48 may be formed over a small length that is shorter than one side of the sub-region 52 to which the gap 48 is adjacent.
 ・半導体層14内の各領域の導電型が反転された構造が採用されてもよい。すなわち、p型の領域がn型の領域とされ、n型の領域がp型の領域とされてもよい。
 ・ソース配線34およびゲート配線44を含む層の上に、さらなる配線構造が形成されていてもよい。
- A structure in which the conductivity type of each region in the semiconductor layer 14 is reversed may be adopted. That is, the p-type region may be made into an n-type region, and the n-type region may be made into a p-type region.
- An additional wiring structure may be formed on the layer including the source wiring 34 and the gate wiring 44.
 ・平面視でソース配線34の外周セグメント58の外側にさらなる電極構造が形成されていてもよい。
 ・図6に示す例において、複数の外周ゲートフィンガー206は、第6外周ゲートフィンガー206Fを含んでいなくてもよい。この場合、第2外周ゲートフィンガー206Bと、第4外周ゲートフィンガー206Dとの間に、1つの間隙が形成されてよい。
- An additional electrode structure may be formed outside the outer peripheral segment 58 of the source wiring 34 in plan view.
- In the example shown in FIG. 6, the plurality of outer circumferential gate fingers 206 may not include the sixth outer circumferential gate finger 206F. In this case, one gap may be formed between the second outer circumferential gate finger 206B and the fourth outer circumferential gate finger 206D.
 本明細書に記載の様々な例のうちの1つまたは複数を、技術的に矛盾しない範囲で組み合わせることができる。
 本明細書において、「AおよびBのうちの少なくとも1つ」とは、「Aのみ、または、Bのみ、または、AおよびBの両方」を意味するものとして理解されるべきである。
One or more of the various examples described herein can be combined to the extent not technically inconsistent.
As used herein, "at least one of A and B" should be understood to mean "A only, or B only, or both A and B."
 本開示で使用される「~上に」という用語は、文脈によって明らかにそうでないことが示されない限り、「~上に」と「~の上方に」の意味を含む。したがって、「第1層が第2層上に形成される」という表現は、或る実施形態では第1層が第2層に接触して第2層上に直接配置され得るが、他の実施形態では第1層が第2層に接触することなく第2層の上方に配置され得ることが意図される。すなわち、「~上に」という用語は、第1層と第2層との間に他の層が形成される構造を排除しない。 As used in this disclosure, the term "on" includes the meanings of "on" and "over" unless the context clearly dictates otherwise. Thus, the phrase "the first layer is formed on the second layer" refers to the fact that in some embodiments the first layer may be directly disposed on the second layer in contact with the second layer, but in other embodiments. It is contemplated that the first layer may be placed above the second layer without contacting the second layer. That is, the term "on" does not exclude structures in which other layers are formed between the first layer and the second layer.
 本開示で使用される「垂直」、「水平」、「上方」、「下方」、「上」、「下」、「前方」、「後方」、「縦」、「横」、「左」、「右」、「前」、「後」などの方向を示す用語は、説明および図示された装置の特定の向きに依存する。本開示においては、様々な代替的な向きを想定することができ、したがって、これらの方向を示す用語は、狭義に解釈されるべきではない。 "Vertical", "horizontal", "above", "downward", "above", "below", "front", "rear", "portrait", "lateral", "left", as used in this disclosure; Directional terms such as "right", "front", "rear", etc. depend on the particular orientation of the device as described and illustrated. Various alternative orientations may be envisioned in this disclosure, and therefore, these directional terms should not be construed narrowly.
 例えば、本開示で使用されるZ軸方向は必ずしも鉛直方向である必要はなく、鉛直方向に完全に一致している必要もない。例えば、X軸方向が鉛直方向であってもよく、またはY軸方向が鉛直方向であってもよい。 For example, the Z-axis direction used in the present disclosure does not necessarily need to be a vertical direction, nor does it need to completely coincide with the vertical direction. For example, the X-axis direction may be a vertical direction, or the Y-axis direction may be a vertical direction.
 [付記]
 上記実施形態および各変更例から把握できる技術的思想を以下に記載する。なお、限定する意図ではなく理解の補助のために、付記に記載した構成について実施形態中の対応する符号を括弧書きで示す。符号は、理解の補助のために例として示すものであり、各付記に記載された構成要素は、符号で示される構成要素に限定されるべきではない。
[Additional notes]
The technical ideas that can be understood from the above embodiment and each modification example will be described below. It should be noted that, for the purpose of assisting understanding rather than with the intention of limiting, the corresponding reference numerals in the embodiments for the configurations described in the supplementary notes are shown in parentheses. The symbols are shown as examples to aid understanding, and the components described in each appendix should not be limited to the components indicated by the symbols.
 (付記A1)
 半導体基板(12)と、
 前記半導体基板(12)上に形成され、外周領域(40)と、平面視で前記外周領域(40)に囲まれた矩形状の外縁を有する内側領域(42)とを含む半導体層(14)と、
 前記半導体層(14)に形成された複数のゲートトレンチ(16)と、
 前記半導体層(14)上に形成された絶縁層(18)と、
 複数のゲート電極(28)であって、各々が前記複数のゲートトレンチ(16)のうちの対応する1つに前記絶縁層(18)を介して埋め込まれている、複数のゲート電極(28)と、
 複数のフィールドプレート電極(30)であって、各々が前記複数のゲートトレンチ(16)のうちの対応する1つに、前記ゲート電極(28)と離隔されつつ前記絶縁層(18)を介して埋め込まれている、複数のフィールドプレート電極(30)と、
 前記絶縁層(18)上に形成され、前記複数のゲート電極(28)に電気的に接続されたゲート配線(44)と、
 前記絶縁層(18)上に形成され、前記ゲート配線(44)から離隔されるとともに、前記複数のフィールドプレート電極(30)に電気的に接続されたソース配線(34)と
 を備え、
 前記ゲート配線(44)は、
 前記外周領域(40)に配置された複数の外周ゲートフィンガー(46)であって、前記内側領域(42)の外縁に沿って配置された複数の間隙(48)によって互いに離隔された複数の外周ゲートフィンガー(46)と、
 前記内側領域(42)に配置された複数の内側ゲートフィンガー(50)であって、各々が前記複数の外周ゲートフィンガー(46)のうちの少なくとも1つに接続されている、複数の内側ゲートフィンガー(50)と
 を含み、
 前記内側領域(42)は、前記複数の内側ゲートフィンガー(50)のうち、互いに交差する少なくとも2つの内側ゲートフィンガー(50)によって区切られた複数のサブ領域(52)を含み、
 前記ソース配線(34)は、
 前記複数のサブ領域(52)にそれぞれ配置された複数の内側セグメント(56)と、
 前記外周領域(40)に配置された外周セグメント(58)と
 を含み、
 前記外周セグメント(58)は、前記複数の内側セグメント(56)のうちの少なくとも2つと連続しており、前記少なくとも2つの内側セグメント(56)の各々は、前記複数の間隙(48)のうち、当該内側セグメント(56)が配置されるサブ領域(52)に隣接する間隙(48)を介して前記外周セグメント(58)に接続されている、半導体装置。
(Appendix A1)
a semiconductor substrate (12);
A semiconductor layer (14) formed on the semiconductor substrate (12) and including an outer peripheral region (40) and an inner region (42) having a rectangular outer edge surrounded by the outer peripheral region (40) in plan view. and,
a plurality of gate trenches (16) formed in the semiconductor layer (14);
an insulating layer (18) formed on the semiconductor layer (14);
a plurality of gate electrodes (28), each of which is embedded in a corresponding one of the plurality of gate trenches (16) via the insulating layer (18); and,
a plurality of field plate electrodes (30) each connected to a corresponding one of the plurality of gate trenches (16) and spaced apart from the gate electrode (28) through the insulating layer (18); a plurality of embedded field plate electrodes (30);
a gate wiring (44) formed on the insulating layer (18) and electrically connected to the plurality of gate electrodes (28);
a source wiring (34) formed on the insulating layer (18), separated from the gate wiring (44), and electrically connected to the plurality of field plate electrodes (30);
The gate wiring (44) is
a plurality of circumferential gate fingers (46) disposed in the outer circumferential region (40), the plurality of circumferential gate fingers (46) being spaced apart from each other by a plurality of gaps (48) disposed along the outer edge of the inner region (42); Gate finger (46) and
a plurality of inner gate fingers (50) disposed in the inner region (42), each inner gate finger being connected to at least one of the plurality of outer circumferential gate fingers (46); (50) and
The inner region (42) includes a plurality of sub-regions (52) separated by at least two intersecting inner gate fingers (50) among the plurality of inner gate fingers (50),
The source wiring (34) is
a plurality of inner segments (56) respectively arranged in the plurality of sub-regions (52);
a peripheral segment (58) disposed in the peripheral region (40);
The outer circumferential segment (58) is continuous with at least two of the plurality of inner segments (56), and each of the at least two inner segments (56) has one of the plurality of gaps (48). A semiconductor device connected to the outer peripheral segment (58) via a gap (48) adjacent to the sub-region (52) in which the inner segment (56) is arranged.
 (付記A2)
 各サブ領域(52)は、平面視で矩形状であり、4つの辺を有し、
 前記複数の間隙(48)のうちの少なくとも2つは、当該間隙(48)が隣接するサブ領域(52)の1つの辺と少なくとも同等の長さにわたって形成されている、付記A1に記載の半導体装置。
(Appendix A2)
Each sub-region (52) is rectangular in plan view and has four sides,
The semiconductor according to appendix A1, wherein at least two of the plurality of gaps (48) are formed over a length at least equivalent to one side of an adjacent sub-region (52). Device.
 (付記3)
 前記複数のサブ領域(52)の各々は、前記複数の外周ゲートフィンガー(46)のうちの少なくとも1つと隣接している、付記A1またはA2に記載の半導体装置。
(Additional note 3)
The semiconductor device according to appendix A1 or A2, wherein each of the plurality of sub-regions (52) is adjacent to at least one of the plurality of outer peripheral gate fingers (46).
 (付記A4)
 前記外周セグメント(58)は、前記複数の内側セグメント(56)と連続しており、前記複数の内側セグメント(56)の各々は、前記複数の間隙(48)のうち、当該内側セグメント(56)が配置されるサブ領域(52)に隣接する間隙(48)を介して前記外周セグメント(58)に接続されている、付記A1~A3のうちのいずれか1つに記載の半導体装置。
(Appendix A4)
The outer peripheral segment (58) is continuous with the plurality of inner segments (56), and each of the plurality of inner segments (56) is connected to the inner segment (56) of the plurality of gaps (48). The semiconductor device according to any one of appendices A1 to A3, wherein the semiconductor device is connected to the outer peripheral segment (58) via a gap (48) adjacent to a sub-region (52) in which a semiconductor device is arranged.
 (付記A5)
 前記内側領域(42)の矩形状の外縁は、平面視で第1方向に延びる2つの辺と、平面視で前記第1方向と直交する第2方向に延びる2つの辺とを有しており、
 前記複数の内側ゲートフィンガー(50)は、前記第1方向に延びる第1内側ゲートフィンガー(50A)と、前記第2方向に延びる第2内側ゲートフィンガー(50B)とを含む、付記A1~A4のうちのいずれか1つに記載の半導体装置。
(Appendix A5)
The rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view. ,
The plurality of inner gate fingers (50) include a first inner gate finger (50A) extending in the first direction and a second inner gate finger (50B) extending in the second direction. A semiconductor device according to any one of the above.
 (付記A6)
 前記複数のサブ領域(52)は、4つのサブ領域(52A,52B,52C,52D)を含み、前記4つのサブ領域(52A,52B,52C,52D)の各々は、平面視で前記第1内側ゲートフィンガー(50A)および前記第2内側ゲートフィンガー(50B)に隣接している、付記5に記載の半導体装置。
(Appendix A6)
The plurality of sub-regions (52) include four sub-regions (52A, 52B, 52C, 52D), and each of the four sub-regions (52A, 52B, 52C, 52D) is different from the first one in plan view. The semiconductor device according to appendix 5, which is adjacent to the inner gate finger (50A) and the second inner gate finger (50B).
 (付記A7)
 前記複数の内側セグメント(56)は、前記4つのサブ領域(52A,52B,52C,52D)にそれぞれ配置された4つの内側セグメント(56A,56B,56C,56D)を含み、
 前記複数の間隙(48)は、前記4つのサブ領域(52A,52B,52C,52D)にそれぞれ隣接する4つの間隙(48A,48B,48C,48C)を含み、
 前記外周セグメント(58)は、前記4つの内側セグメント(56A,56B,56C,56D)と連続しており、前記4つの内側セグメント(56A,56B,56C,56D)の各々は、前記4つの間隙(48A,48B,48C,48C)のうち、当該内側セグメント(56)が配置されるサブ領域(52)に隣接する間隙(48)を介して前記外周セグメント(58)に接続されている、付記A6に記載の半導体装置。
(Appendix A7)
The plurality of inner segments (56) include four inner segments (56A, 56B, 56C, 56D) arranged in the four sub-regions (52A, 52B, 52C, 52D), respectively,
The plurality of gaps (48) include four gaps (48A, 48B, 48C, 48C) adjacent to the four sub-regions (52A, 52B, 52C, 52D), respectively,
The outer peripheral segment (58) is continuous with the four inner segments (56A, 56B, 56C, 56D), and each of the four inner segments (56A, 56B, 56C, 56D) is connected to the four gaps. (48A, 48B, 48C, 48C), which is connected to the outer peripheral segment (58) through a gap (48) adjacent to the sub-region (52) in which the inner segment (56) is arranged. The semiconductor device according to A6.
 (付記A8)
 前記複数の外周ゲートフィンガー(46)は、前記第1方向に延びる第1外周ゲートフィンガー(46A)および第2外周ゲートフィンガー(46B)と、前記第2方向に延びる第3外周ゲートフィンガー(46C)および第4外周ゲートフィンガー(46D)とを含み、
 前記第1内側ゲートフィンガー(50A)は、前記第3外周ゲートフィンガー(46C)および前記第4外周ゲートフィンガー(46D)に接続されており、
 前記第2内側ゲートフィンガー(50B)は、前記第1外周ゲートフィンガー(46A)および前記第2外周ゲートフィンガー(46B)に接続されている、付記A5~A7のうちのいずれか1つに記載の半導体装置。
(Appendix A8)
The plurality of outer circumferential gate fingers (46) include a first outer circumferential gate finger (46A) and a second outer circumferential gate finger (46B) extending in the first direction, and a third outer circumferential gate finger (46C) extending in the second direction. and a fourth outer peripheral gate finger (46D),
The first inner gate finger (50A) is connected to the third outer gate finger (46C) and the fourth outer gate finger (46D),
The second inner gate finger (50B) is connected to the first outer circumferential gate finger (46A) and the second outer circumferential gate finger (46B), according to any one of appendices A5 to A7. Semiconductor equipment.
 (付記A9)
 前記複数の内側セグメント(318)は、前記4つのサブ領域(312)にそれぞれ配置された第1、第2、第3、および第4内側セグメント(318A,318B,318C,318D)を含み、
 前記外周セグメント(320)は、前記第1、第2、および第3内側セグメント(318A,318B,318C)と連続しており、
 前記第1、第2、および第3内側セグメント(318A,318B,318C)の各々は、前記複数の間隙(308)のうち、当該内側セグメント(318)が配置されるサブ領域(312)に隣接する間隙(308)を介して前記外周セグメント(320)に接続されており、
 前記第4内側セグメント(318D)は、前記内側領域(42)において前記第1、第2、および第3内側セグメント(318A,318B,318C)のうちの1つと接続されている、付記A6またはA7に記載の半導体装置。
(Appendix A9)
The plurality of inner segments (318) include first, second, third, and fourth inner segments (318A, 318B, 318C, 318D) arranged in the four sub-regions (312), respectively;
the outer circumferential segment (320) is continuous with the first, second, and third inner segments (318A, 318B, 318C);
Each of the first, second, and third inner segments (318A, 318B, 318C) is adjacent to a sub-region (312) in which the inner segment (318) is located in the plurality of gaps (308). connected to the outer peripheral segment (320) via a gap (308),
The fourth inner segment (318D) is connected to one of the first, second and third inner segments (318A, 318B, 318C) in the inner region (42), according to appendix A6 or A7. The semiconductor device described in .
 (付記A10)
 前記ゲート配線(302)は、ゲートパッド(314)を含み、
 前記複数の外周ゲートフィンガー(306)は、前記第1方向に延びる第1外周ゲートフィンガー(306A)と、前記第2方向に延びる第2外周ゲートフィンガー(306B)と、前記第1方向に延びる部分および前記第2方向に延びる部分を含む第3外周ゲートフィンガー(306C)とを含み、
 前記第1内側ゲートフィンガー(310A)は、前記第2外周ゲートフィンガー(306B)に接続され、
 前記第2内側ゲートフィンガー(310B)は、前記第1外周ゲートフィンガー(306A)および前記第3外周ゲートフィンガー(306C)に接続され、
 前記ゲートパッド(314)は、前記第3外周ゲートフィンガー(306C)に接続されている、付記A9に記載の半導体装置。
(Appendix A10)
The gate wiring (302) includes a gate pad (314),
The plurality of outer circumferential gate fingers (306) include a first outer circumferential gate finger (306A) extending in the first direction, a second outer circumferential gate finger (306B) extending in the second direction, and a portion extending in the first direction. and a third outer peripheral gate finger (306C) including a portion extending in the second direction,
the first inner gate finger (310A) is connected to the second outer circumferential gate finger (306B);
The second inner gate finger (310B) is connected to the first outer gate finger (306A) and the third outer gate finger (306C),
The semiconductor device according to appendix A9, wherein the gate pad (314) is connected to the third outer peripheral gate finger (306C).
 (付記A11)
 前記内側領域(42)の矩形状の外縁は、平面視で第1方向に延びる2つの辺と、平面視で前記第1方向と直交する第2方向に延びる2つの辺とを有し、
 前記複数の内側ゲートフィンガー(210)は、前記第1方向に延びる第1内側ゲートフィンガー(210A)と、前記第2方向に延びる第2内側ゲートフィンガー(210B)と、前記第2方向に延びる第3内側ゲートフィンガー(210C)とを含み、
 前記第1内側ゲートフィンガー(210A)は、前記第2内側ゲートフィンガー(210B)および前記第3内側ゲートフィンガー(210C)と交差している、付記A1またはA2に記載の半導体装置。
(Appendix A11)
The rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view,
The plurality of inner gate fingers (210) include a first inner gate finger (210A) extending in the first direction, a second inner gate finger (210B) extending in the second direction, and a second inner gate finger (210B) extending in the second direction. 3 inner gate fingers (210C);
The semiconductor device according to appendix A1 or A2, wherein the first inner gate finger (210A) intersects the second inner gate finger (210B) and the third inner gate finger (210C).
 (付記A12)
 前記複数のサブ領域(212)は、6つのサブ領域(212A,212B,212C,212D,212E,212F)を含み、前記6つのサブ領域(212A,212B,212C,212D,212E,212F)の各々は、平面視で前記第1内側ゲートフィンガー(210A)に隣接するとともに、平面視で前記第2内側ゲートフィンガー(210B)または前記第3内側ゲートフィンガー(210C)に隣接している、付記A11に記載の半導体装置。
(Appendix A12)
The plurality of sub-regions (212) include six sub-regions (212A, 212B, 212C, 212D, 212E, 212F), and each of the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F) is adjacent to the first inner gate finger (210A) in plan view, and is adjacent to the second inner gate finger (210B) or the third inner gate finger (210C) in plan view, according to appendix A11. The semiconductor device described.
 (付記A13)
 前記複数の内側セグメント(216)は、前記6つのサブ領域(212A,212B,212C,212D,212E,212F)にそれぞれ配置された6つの内側セグメント(216A,216B,216C,216D,216E,216F)を含み、
 前記複数の間隙(208)は、前記6つのサブ領域(212A,212B,212C,212D,212E,212F)にそれぞれ隣接する6つの間隙(208A,208B,208C,208D,208E,208F)を含み、
 前記外周セグメント(218)は、前記6つの内側セグメント(216A,216B,216C,216D,216E,216F)と連続しており、前記6つの内側セグメント(216A,216B,216C,216D,216E,216F)の各々は、前記6つの間隙(208A,208B,208C,208D,208E,208F)のうち、当該内側セグメント(216)が配置されるサブ領域(212)に隣接する間隙(208)を介して前記外周セグメント(218)に接続されている、付記A12に記載の半導体装置。
(Appendix A13)
The plurality of inner segments (216) include six inner segments (216A, 216B, 216C, 216D, 216E, 216F) arranged in the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F), respectively. including;
The plurality of gaps (208) include six gaps (208A, 208B, 208C, 208D, 208E, 208F) adjacent to the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F),
The outer peripheral segment (218) is continuous with the six inner segments (216A, 216B, 216C, 216D, 216E, 216F); of the six gaps (208A, 208B, 208C, 208D, 208E, 208F) through the gap (208) adjacent to the sub-region (212) in which the inner segment (216) is located The semiconductor device according to appendix A12, which is connected to the outer peripheral segment (218).
 (付記A14)
 前記6つのサブ領域(212A,212B,212C,212D,212E,212F)のうちの1つは、前記複数の外周ゲートフィンガー(206)のうちのいずれとも隣接しておらず、前記第1、第2、および第3内側ゲートフィンガー(210A,210B,210C)と隣接している、付記A12またはA13に記載の半導体装置。
(Appendix A14)
One of the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F) is not adjacent to any of the plurality of outer peripheral gate fingers (206) and is 2, and the semiconductor device according to appendix A12 or A13, which is adjacent to the third inner gate finger (210A, 210B, 210C).
 (付記A15)
 前記複数のゲートトレンチ(16)の各々は、平面視で前記複数の外周ゲートフィンガー(46)のうちの1つまたは前記複数の内側ゲートフィンガー(50)のうちの1つと交差するように配置されている、付記A1~A14のうちのいずれか1つに記載の半導体装置。
(Appendix A15)
Each of the plurality of gate trenches (16) is arranged to intersect with one of the plurality of outer peripheral gate fingers (46) or one of the plurality of inner gate fingers (50) in plan view. The semiconductor device according to any one of Appendices A1 to A14.
 (付記A16)
 複数のゲートコンタクトプラグ(60)をさらに備え、
 各ゲートトレンチ(16)に埋め込まれたゲート電極(28)は、前記複数のゲートコンタクトプラグ(60)のうちの少なくとも1つを介して、前記複数の外周ゲートフィンガー(46)のうちの1つまたは前記複数の内側ゲートフィンガー(50)のうちの1つに接続されている、付記A1~A14のうちのいずれか1つに記載の半導体装置。
(Appendix A16)
further comprising a plurality of gate contact plugs (60),
The gate electrode (28) embedded in each gate trench (16) is connected to one of the plurality of outer peripheral gate fingers (46) via at least one of the plurality of gate contact plugs (60). Alternatively, the semiconductor device according to any one of Appendices A1 to A14, which is connected to one of the plurality of inner gate fingers (50).
 (付記A17)
 前記内側領域(42)の矩形状の外縁は、平面視で第1方向に延びる2つの辺と、平面視で前記第1方向と直交する第2方向に延びる2つの辺とを有し、
 前記複数のゲートトレンチ(16)は、第1組(S1)のゲートトレンチおよび第2組(S2)のゲートトレンチを含み、前記第1組(S1)の各ゲートトレンチは、平面視で前記第1方向に延び、前記第2組(S2)の各ゲートトレンチは、平面視で前記第2方向に延び、前記第1組(S1)および前記第2組(S2)の各ゲートトレンチは、平面視で前記複数の外周ゲートフィンガー(46)のうちの1つと交差している、付記A1~A14のうちのいずれか1つに記載の半導体装置。
(Appendix A17)
The rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view,
The plurality of gate trenches (16) include a first set (S1) of gate trenches and a second set (S2) of gate trenches, and each gate trench of the first set (S1) is different from the first set (S1) of gate trenches in plan view. Each gate trench of the second set (S2) extends in one direction, and each gate trench of the first set (S1) and the second set (S2) extends in the second direction in plan view. The semiconductor device according to any one of appendices A1 to A14, which intersects one of the plurality of outer peripheral gate fingers (46) when viewed.
 (付記A18)
 前記複数のゲートトレンチ(16)は、第3組(S3)のゲートトレンチおよび第4組(S4)のゲートトレンチをさらに含み、前記第3組(S3)の各ゲートトレンチは、平面視で前記第1方向に延び、前記第4組(S4)の各ゲートトレンチは、平面視で前記第2方向に延び、前記第3組(S3)および前記第4組(S4)の各ゲートトレンチは、平面視で前記複数の内側ゲートフィンガー(50)のうちの1つと交差している、付記A17に記載の半導体装置。
(Appendix A18)
The plurality of gate trenches (16) further include a third set (S3) of gate trenches and a fourth set (S4) of gate trenches, and each gate trench of the third set (S3) has the same shape as the gate trench in plan view. Each gate trench of the fourth group (S4) extends in the first direction, and each gate trench of the third group (S3) and the fourth group (S4) extends in the second direction in plan view. The semiconductor device according to appendix A17, which intersects with one of the plurality of inner gate fingers (50) in plan view.
 (付記A19)
 前記第1組(S1)および前記第2組(S2)のゲートトレンチは、前記内側領域(42)と前記外周領域(40)とに跨って配置されており、
 前記第3組(S3)および前記第4組(S4)のゲートトレンチは、前記内側領域(42)内にその全体が配置されている、付記A18に記載の半導体装置。
(Appendix A19)
The first set (S1) and the second set (S2) of gate trenches are arranged across the inner region (42) and the outer peripheral region (40),
The semiconductor device according to appendix A18, wherein the third set (S3) and the fourth set (S4) of gate trenches are entirely disposed within the inner region (42).
 (付記A20)
 複数のフィールドプレートコンタクトプラグ(64)をさらに備え、
 前記第1組(S1)の各ゲートトレンチに埋め込まれたフィールドプレート電極(30)は、前記複数のフィールドプレートコンタクトプラグ(64)のうちの少なくとも1つを介して、前記外周セグメント(58)に接続された第1端部(66)と、前記複数のフィールドプレートコンタクトプラグ(64)のうちの少なくとも1つを介して、前記複数の内側セグメント(56)のうち1つに接続された第2端部(68)とを含み、
 前記第3組(S3)の各ゲートトレンチに埋め込まれたフィールドプレート電極(30)は、前記複数のフィールドプレートコンタクトプラグ(64)のうちの少なくとも1つを介して、前記複数の内側セグメント(56)のうちの1つに接続された第1端部(70)と、前記複数のフィールドプレートコンタクトプラグ(64)のうちの少なくとも1つを介して、前記複数の内側セグメント(56)のうちの別の1つに接続された第2端部(72)とを含む、付記A18またはA19に記載の半導体装置。
(Appendix A20)
further comprising a plurality of field plate contact plugs (64);
The field plate electrode (30) embedded in each gate trench of the first set (S1) is connected to the outer peripheral segment (58) via at least one of the plurality of field plate contact plugs (64). a first end (66) connected to one of said plurality of inner segments (56) via at least one of said plurality of field plate contact plugs (64); an end (68);
The field plate electrode (30) embedded in each gate trench of the third set (S3) connects to the plurality of inner segments (56) via at least one of the plurality of field plate contact plugs (64). ) of the plurality of inner segments (56) through at least one of the plurality of field plate contact plugs (64). and a second end (72) connected to another one, the semiconductor device according to appendix A18 or A19.
 (付記A21)
 前記半導体層(14)は、第1導電型のドリフト領域(20)と、前記ドリフト領域(20)上に形成された第2導電型のボディ領域(22)と、前記ボディ領域(22)上に形成された第1導電型のソース領域(24)とを含み、
 前記ゲートトレンチ(16)は、前記ソース領域(24)および前記ボディ領域(22)を貫通するとともに、前記ドリフト領域(20)に達している、付記A1~A20のうちのいずれか1つに記載の半導体装置。
(Appendix A21)
The semiconductor layer (14) includes a first conductivity type drift region (20), a second conductivity type body region (22) formed on the drift region (20), and a second conductivity type body region (22) formed on the body region (22). a first conductivity type source region (24) formed in
The gate trench (16) penetrates the source region (24) and the body region (22) and reaches the drift region (20), according to any one of appendices A1 to A20. semiconductor devices.
 (付記B1)
 半導体基板(12)と、
 前記半導体基板(12)上に形成され、外周領域(40)と、平面視で前記外周領域(40)に囲まれた矩形状の外縁を有する内側領域(42)とを含む半導体層(14)と、
 前記半導体層(14)に形成された複数のゲートトレンチ(16)と、
 前記半導体層(14)上に形成された絶縁層(18)と、
 複数のゲート電極(28)であって、各々が前記複数のゲートトレンチ(16)のうちの対応する1つに前記絶縁層(18)を介して埋め込まれている、複数のゲート電極(28)と、
 複数のフィールドプレート電極(30)であって、各々が前記複数のゲートトレンチ(16)のうちの対応する1つに、前記ゲート電極(28)と離隔されつつ前記絶縁層(18)を介して埋め込まれている、複数のフィールドプレート電極(30)と、
 前記絶縁層(18)上に形成され、前記複数のゲート電極(28)に電気的に接続されたゲート配線(44)と、
 前記絶縁層(18)上に形成され、前記ゲート配線(44)から離隔されるとともに、前記複数のフィールドプレート電極(30)に電気的に接続されたソース配線(34)と
 を備え、
 前記ゲート配線(44)は、
 前記外周領域(40)に配置された複数の外周ゲートフィンガー(46)であって、前記内側領域(42)の外縁に沿って配置された複数の間隙(48)によって互いに離隔された複数の外周ゲートフィンガー(46)と、
 前記内側領域(42)に配置された複数の内側ゲートフィンガー(50)であって、各々が前記複数の外周ゲートフィンガー(46)のうちの少なくとも1つに接続されている、複数の内側ゲートフィンガー(50)と
 を含み、
 前記内側領域(42)は、前記複数の内側ゲートフィンガー(50)のうち、互いに交差する少なくとも2つの内側ゲートフィンガー(50)によって区切られた複数のサブ領域(52)を含み、
 前記ソース配線(34)は、
 前記複数のサブ領域(52)にそれぞれ配置された複数の内側セグメント(56)と、
 前記外周領域(40)に配置された外周セグメント(58)と
 を含み、
 前記外周セグメント(58)は、前記複数の内側セグメント(56)と連続しており、前記複数の内側セグメント(56)の各々は、前記複数の間隙(48)のうち、当該内側セグメント(56)が配置されるサブ領域(52)に隣接する間隙(48)を介して前記外周セグメント(58)に接続されている、半導体装置。
(Appendix B1)
a semiconductor substrate (12);
A semiconductor layer (14) formed on the semiconductor substrate (12) and including an outer peripheral region (40) and an inner region (42) having a rectangular outer edge surrounded by the outer peripheral region (40) in plan view. and,
a plurality of gate trenches (16) formed in the semiconductor layer (14);
an insulating layer (18) formed on the semiconductor layer (14);
a plurality of gate electrodes (28), each of which is embedded in a corresponding one of the plurality of gate trenches (16) via the insulating layer (18); and,
a plurality of field plate electrodes (30) each connected to a corresponding one of the plurality of gate trenches (16) and spaced apart from the gate electrode (28) through the insulating layer (18); a plurality of embedded field plate electrodes (30);
a gate wiring (44) formed on the insulating layer (18) and electrically connected to the plurality of gate electrodes (28);
a source wiring (34) formed on the insulating layer (18), separated from the gate wiring (44), and electrically connected to the plurality of field plate electrodes (30);
The gate wiring (44) is
a plurality of circumferential gate fingers (46) disposed in the outer circumferential region (40), the plurality of circumferential gate fingers (46) being spaced apart from each other by a plurality of gaps (48) disposed along the outer edge of the inner region (42); Gate finger (46) and
a plurality of inner gate fingers (50) disposed in the inner region (42), each inner gate finger being connected to at least one of the plurality of outer circumferential gate fingers (46); (50) and
The inner region (42) includes a plurality of sub-regions (52) separated by at least two intersecting inner gate fingers (50) among the plurality of inner gate fingers (50),
The source wiring (34) is
a plurality of inner segments (56) respectively arranged in the plurality of sub-regions (52);
a peripheral segment (58) disposed in the peripheral region (40);
The outer peripheral segment (58) is continuous with the plurality of inner segments (56), and each of the plurality of inner segments (56) is connected to the inner segment (56) of the plurality of gaps (48). The semiconductor device is connected to the outer peripheral segment (58) via a gap (48) adjacent to a sub-region (52) in which a semiconductor device is arranged.
 (付記B2)
 各サブ領域(52)は、平面視で矩形状であり、4つの辺を有し、
 前記複数の間隙(48)のうちの少なくとも2つは、当該間隙(48)が隣接するサブ領域(52)の1つの辺と少なくとも同等の長さにわたって形成されている、付記B1に記載の半導体装置。
(Appendix B2)
Each sub-region (52) is rectangular in plan view and has four sides,
The semiconductor according to appendix B1, wherein at least two of the plurality of gaps (48) are formed over a length at least equal to one side of an adjacent sub-region (52). Device.
 (付記B3)
 前記複数のサブ領域(52)の各々は、前記複数の外周ゲートフィンガー(46)のうちの少なくとも1つと隣接している、付記B1またはB2に記載の半導体装置。
(Appendix B3)
The semiconductor device according to appendix B1 or B2, wherein each of the plurality of sub-regions (52) is adjacent to at least one of the plurality of outer peripheral gate fingers (46).
 (付記B4)
 前記内側領域(42)の矩形状の外縁は、平面視で第1方向に延びる2つの辺と、平面視で前記第1方向と直交する第2方向に延びる2つの辺とを有しており、
 前記複数の内側ゲートフィンガー(50)は、前記第1方向に延びる第1内側ゲートフィンガー(50A)と、前記第2方向に延びる第2内側ゲートフィンガー(50B)とを含む、付記B1~B3のうちのいずれか1つに記載の半導体装置。
(Appendix B4)
The rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view. ,
The plurality of inner gate fingers (50) include a first inner gate finger (50A) extending in the first direction and a second inner gate finger (50B) extending in the second direction. A semiconductor device according to any one of the above.
 (付記B5)
 前記複数のサブ領域(52)は、4つのサブ領域(52A,52B,52C,52D)を含み、前記4つのサブ領域(52A,52B,52C,52D)の各々は、平面視で前記第1内側ゲートフィンガー(50A)および前記第2内側ゲートフィンガー(50B)に隣接している、付記B4に記載の半導体装置。
(Appendix B5)
The plurality of sub-regions (52) include four sub-regions (52A, 52B, 52C, 52D), and each of the four sub-regions (52A, 52B, 52C, 52D) is different from the first one in plan view. The semiconductor device according to appendix B4, which is adjacent to the inner gate finger (50A) and the second inner gate finger (50B).
 (付記B6)
 前記複数の内側セグメント(56)は、前記4つのサブ領域(52A,52B,52C,52D)にそれぞれ配置された4つの内側セグメント(56A,56B,56C,56D)を含み、
 前記複数の間隙(48)は、前記4つのサブ領域(52A,52B,52C,52D)にそれぞれ隣接する4つの間隙(48A,48B,48C,48C)を含み、
 前記外周セグメント(58)は、前記4つの内側セグメント(56A,56B,56C,56D)と連続しており、前記4つの内側セグメント(56A,56B,56C,56D)の各々は、前記4つの間隙(48A,48B,48C,48C)のうち、当該内側セグメント(56)が配置されるサブ領域(52)に隣接する間隙(48)を介して前記外周セグメント(58)に接続されている、付記B5に記載の半導体装置。
(Appendix B6)
The plurality of inner segments (56) include four inner segments (56A, 56B, 56C, 56D) arranged in the four sub-regions (52A, 52B, 52C, 52D), respectively,
The plurality of gaps (48) include four gaps (48A, 48B, 48C, 48C) adjacent to the four sub-regions (52A, 52B, 52C, 52D), respectively,
The outer peripheral segment (58) is continuous with the four inner segments (56A, 56B, 56C, 56D), and each of the four inner segments (56A, 56B, 56C, 56D) is connected to the four gaps. (48A, 48B, 48C, 48C), which is connected to the outer peripheral segment (58) through a gap (48) adjacent to the sub-region (52) in which the inner segment (56) is arranged. The semiconductor device according to B5.
 (付記B7)
 前記複数の外周ゲートフィンガー(46)は、前記第1方向に延びる第1外周ゲートフィンガー(46A)および第2外周ゲートフィンガー(46B)と、前記第2方向に延びる第3外周ゲートフィンガー(46C)および第4外周ゲートフィンガー(46D)とを含み、
 前記第1内側ゲートフィンガー(50A)は、前記第3外周ゲートフィンガー(46C)および前記第4外周ゲートフィンガー(46D)に接続されており、
 前記第2内側ゲートフィンガー(50B)は、前記第1外周ゲートフィンガー(46A)および前記第2外周ゲートフィンガー(46B)に接続されている、付記B4~B6のうちのいずれか1つに記載の半導体装置。
(Appendix B7)
The plurality of outer circumferential gate fingers (46) include a first outer circumferential gate finger (46A) and a second outer circumferential gate finger (46B) extending in the first direction, and a third outer circumferential gate finger (46C) extending in the second direction. and a fourth outer peripheral gate finger (46D),
The first inner gate finger (50A) is connected to the third outer gate finger (46C) and the fourth outer gate finger (46D),
The second inner gate finger (50B) is connected to the first outer circumferential gate finger (46A) and the second outer circumferential gate finger (46B), according to any one of appendices B4 to B6. Semiconductor equipment.
 (付記B8)
 前記内側領域(42)の矩形状の外縁は、平面視で第1方向に延びる2つの辺と、平面視で前記第1方向と直交する第2方向に延びる2つの辺とを有し、
 前記複数の内側ゲートフィンガー(210)は、前記第1方向に延びる第1内側ゲートフィンガー(210A)と、前記第2方向に延びる第2内側ゲートフィンガー(210B)と、前記第2方向に延びる第3内側ゲートフィンガー(210C)とを含み、
 前記第1内側ゲートフィンガー(210A)は、前記第2内側ゲートフィンガー(210B)および前記第3内側ゲートフィンガー(210C)と交差している、付記B1またはB2に記載の半導体装置。
(Appendix B8)
The rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view,
The plurality of inner gate fingers (210) include a first inner gate finger (210A) extending in the first direction, a second inner gate finger (210B) extending in the second direction, and a second inner gate finger (210B) extending in the second direction. 3 inner gate fingers (210C);
The semiconductor device according to appendix B1 or B2, wherein the first inner gate finger (210A) intersects the second inner gate finger (210B) and the third inner gate finger (210C).
 (付記B9)
 前記複数のサブ領域(212)は、6つのサブ領域(212A,212B,212C,212D,212E,212F)を含み、前記6つのサブ領域(212A,212B,212C,212D,212E,212F)の各々は、平面視で前記第1内側ゲートフィンガー(210A)に隣接するとともに、平面視で前記第2内側ゲートフィンガー(210B)または前記第3内側ゲートフィンガー(210C)に隣接している、付記B8に記載の半導体装置。
(Appendix B9)
The plurality of sub-regions (212) include six sub-regions (212A, 212B, 212C, 212D, 212E, 212F), and each of the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F) is adjacent to the first inner gate finger (210A) in plan view, and is adjacent to the second inner gate finger (210B) or the third inner gate finger (210C) in plan view, according to appendix B8. The semiconductor device described.
 (付記B10)
 前記複数の内側セグメント(216)は、前記6つのサブ領域(212A,212B,212C,212D,212E,212F)にそれぞれ配置された6つの内側セグメント(216A,216B,216C,216D,216E,216F)を含み、
 前記複数の間隙(208)は、前記6つのサブ領域(212A,212B,212C,212D,212E,212F)にそれぞれ隣接する6つの間隙(208A,208B,208C,208D,208E,208F)を含み、
 前記外周セグメント(218)は、前記6つの内側セグメント(216A,216B,216C,216D,216E,216F)と連続しており、前記6つの内側セグメント(216A,216B,216C,216D,216E,216F)の各々は、前記6つの間隙(208A,208B,208C,208D,208E,208F)のうち、当該内側セグメント(216)が配置されるサブ領域に隣接する間隙(208)を介して前記外周セグメント(218)に接続されている、付記B9に記載の半導体装置。
(Appendix B10)
The plurality of inner segments (216) include six inner segments (216A, 216B, 216C, 216D, 216E, 216F) arranged in the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F), respectively. including;
The plurality of gaps (208) include six gaps (208A, 208B, 208C, 208D, 208E, 208F) adjacent to the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F),
The outer peripheral segment (218) is continuous with the six inner segments (216A, 216B, 216C, 216D, 216E, 216F); Of the six gaps (208A, 208B, 208C, 208D, 208E, 208F), each of the outer peripheral segments ( 218), the semiconductor device according to appendix B9.
 (付記B11)
 前記6つのサブ領域(212A,212B,212C,212D,212E,212F)のうちの1つは、前記複数の外周ゲートフィンガー(206)のうちのいずれとも隣接しておらず、前記第1、第2、および第3内側ゲートフィンガー(210A,210B,210C)と隣接している、付記B9またはB10に記載の半導体装置。
(Appendix B11)
One of the six sub-regions (212A, 212B, 212C, 212D, 212E, 212F) is not adjacent to any of the plurality of outer peripheral gate fingers (206) and is 2, and the semiconductor device according to appendix B9 or B10, which is adjacent to the third inner gate finger (210A, 210B, 210C).
 (付記B12)
 前記複数のゲートトレンチ(16)の各々は、平面視で前記複数の外周ゲートフィンガー(46)のうちの1つまたは前記複数の内側ゲートフィンガー(50)のうちの1つと交差するように配置されている、付記B1~B11のうちのいずれか1つに記載の半導体装置。
(Appendix B12)
Each of the plurality of gate trenches (16) is arranged to intersect with one of the plurality of outer peripheral gate fingers (46) or one of the plurality of inner gate fingers (50) in plan view. The semiconductor device according to any one of Appendices B1 to B11.
 (付記B13)
 複数のゲートコンタクトプラグ(60)をさらに備え、
 各ゲートトレンチ(16)に埋め込まれたゲート電極(28)は、前記複数のゲートコンタクトプラグ(60)のうちの少なくとも1つを介して、前記複数の外周ゲートフィンガー(46)のうちの1つまたは前記複数の内側ゲートフィンガー(50)のうちの1つに接続されている、付記B1~B12のうちのいずれか1つに記載の半導体装置。
(Appendix B13)
further comprising a plurality of gate contact plugs (60),
The gate electrode (28) embedded in each gate trench (16) is connected to one of the plurality of outer peripheral gate fingers (46) via at least one of the plurality of gate contact plugs (60). Alternatively, the semiconductor device according to any one of Appendices B1 to B12, which is connected to one of the plurality of inner gate fingers (50).
 (付記B14)
 前記内側領域(42)の矩形状の外縁は、平面視で第1方向に延びる2つの辺と、平面視で前記第1方向と直交する第2方向に延びる2つの辺とを有し、
 前記複数のゲートトレンチ(16)は、第1組(S1)のゲートトレンチおよび第2組(S2)のゲートトレンチを含み、前記第1組(S1)の各ゲートトレンチは、平面視で前記第1方向に延び、前記第2組(S2)の各ゲートトレンチは、平面視で前記第2方向に延び、前記第1組(S1)および前記第2組(S2)の各ゲートトレンチは、平面視で前記複数の外周ゲートフィンガー(46)のうちの1つと交差している、付記B1~B13のうちのいずれか1つに記載の半導体装置。
(Appendix B14)
The rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view,
The plurality of gate trenches (16) include a first set (S1) of gate trenches and a second set (S2) of gate trenches, and each gate trench of the first set (S1) is different from the first set (S1) of gate trenches in plan view. Each gate trench of the second set (S2) extends in one direction, and each gate trench of the first set (S1) and the second set (S2) extends in the second direction in plan view. The semiconductor device according to any one of appendices B1 to B13, which intersects one of the plurality of outer peripheral gate fingers (46) when viewed.
 (付記B15)
 前記複数のゲートトレンチ(16)は、第3組(S3)のゲートトレンチおよび第4組(S4)のゲートトレンチをさらに含み、前記第3組(S3)の各ゲートトレンチは、平面視で前記第1方向に延び、前記第4組(S4)の各ゲートトレンチは、平面視で前記第2方向に延び、前記第3組(S3)および前記第4組(S4)の各ゲートトレンチは、平面視で前記複数の内側ゲートフィンガー(50)のうちの1つと交差している、付記B14に記載の半導体装置。
(Appendix B15)
The plurality of gate trenches (16) further include a third set (S3) of gate trenches and a fourth set (S4) of gate trenches, and each gate trench of the third set (S3) has the same shape as the gate trench in plan view. Each gate trench of the fourth group (S4) extends in the first direction, and each gate trench of the third group (S3) and the fourth group (S4) extends in the second direction in plan view. The semiconductor device according to appendix B14, which intersects with one of the plurality of inner gate fingers (50) in plan view.
 (付記B16)
 前記第1組(S1)および前記第2組(S2)のゲートトレンチは、前記内側領域(42)と前記外周領域(40)とに跨って配置されており、
 前記第3組(S3)および前記第4組(S4)のゲートトレンチは、前記内側領域(42)内にその全体が配置されている、付記B15に記載の半導体装置。
(Appendix B16)
The first set (S1) and the second set (S2) of gate trenches are arranged across the inner region (42) and the outer peripheral region (40),
The semiconductor device according to appendix B15, wherein the third set (S3) and the fourth set (S4) of gate trenches are entirely disposed within the inner region (42).
 (付記B17)
 複数のフィールドプレートコンタクトプラグ(64)をさらに備え、
 前記第1組(S1)の各ゲートトレンチに埋め込まれたフィールドプレート電極(30)は、前記複数のフィールドプレートコンタクトプラグ(64)のうちの少なくとも1つを介して、前記外周セグメント(58)に接続された第1端部(66)と、前記複数のフィールドプレートコンタクトプラグ(64)のうちの少なくとも1つを介して、前記複数の内側セグメント(56)のうち1つに接続された第2端部(68)とを含み、
 前記第3組(S3)の各ゲートトレンチに埋め込まれたフィールドプレート電極(30)は、前記複数のフィールドプレートコンタクトプラグ(64)のうちの少なくとも1つを介して、前記複数の内側セグメント(56)のうちの1つに接続された第1端部(70)と、前記複数のフィールドプレートコンタクトプラグ(64)のうちの少なくとも1つを介して、前記複数の内側セグメント(56)のうちの別の1つに接続された第2端部(72)とを含む、付記B15またはB16に記載の半導体装置。
(Appendix B17)
further comprising a plurality of field plate contact plugs (64);
The field plate electrode (30) embedded in each gate trench of the first set (S1) is connected to the outer peripheral segment (58) via at least one of the plurality of field plate contact plugs (64). a first end (66) connected to one of said plurality of inner segments (56) via at least one of said plurality of field plate contact plugs (64); an end (68);
The field plate electrode (30) embedded in each gate trench of the third set (S3) connects to the plurality of inner segments (56) via at least one of the plurality of field plate contact plugs (64). ) of the plurality of inner segments (56) through at least one of the plurality of field plate contact plugs (64). and a second end (72) connected to another one, the semiconductor device according to appendix B15 or B16.
 (付記B18)
 前記半導体層(14)は、第1導電型のドリフト領域(20)と、前記ドリフト領域(20)上に形成された第2導電型のボディ領域(22)と、前記ボディ領域(22)上に形成された第1導電型のソース領域(24)とを含み、
 前記ゲートトレンチ(16)は、前記ソース領域(24)および前記ボディ領域(22)を貫通するとともに、前記ドリフト領域(20)に達している、付記B1~B17のうちのいずれか1つに記載の半導体装置。
(Appendix B18)
The semiconductor layer (14) includes a first conductivity type drift region (20), a second conductivity type body region (22) formed on the drift region (20), and a second conductivity type body region (22) formed on the body region (22). a first conductivity type source region (24) formed in
The gate trench (16) penetrates the source region (24) and the body region (22) and reaches the drift region (20), according to any one of appendices B1 to B17. semiconductor devices.
 (付記C1)
 半導体基板(12)と、
 前記半導体基板(12)上に形成され、外周領域(40)と、平面視で前記外周領域(40)に囲まれた矩形状の外縁を有する内側領域(42)とを含む半導体層(14)と、
 前記半導体層(14)に形成された複数のゲートトレンチ(16)と、
 前記半導体層(14)上に形成された絶縁層(18)と、
 複数のゲート電極(28)であって、各々が前記複数のゲートトレンチ(16)のうちの対応する1つに前記絶縁層(18)を介して埋め込まれている、複数のゲート電極(28)と、
 複数のフィールドプレート電極(30)であって、各々が前記複数のゲートトレンチ(16)のうちの対応する1つに、前記ゲート電極(28)と離隔されつつ前記絶縁層(18)を介して埋め込まれている、複数のフィールドプレート電極(30)と、
 前記絶縁層(18)上に形成され、前記複数のゲート電極(28)に電気的に接続されたゲート配線(302)と、
 前記絶縁層(18)上に形成され、前記ゲート配線(302)から離隔されるとともに、前記複数のフィールドプレート電極(30)に電気的に接続されたソース配線(304)と
 を備え、
 前記ゲート配線(302)は、
 前記外周領域(40)に配置された3つの外周ゲートフィンガー(306A,306B,306C)であって、前記内側領域(42)の外縁に沿って配置された3つの間隙(308A,308B,308C)によって互いに離隔された3つの外周ゲートフィンガー(306A,306B,306C)と、
 前記内側領域(42)に配置された2つの内側ゲートフィンガー(310A,310B)であって、各々が前記3つの外周ゲートフィンガー(306A,306B,306C)のうちの少なくとも1つに接続されている、2つ内側ゲートフィンガー(310A,310B)と
 を含み、
 前記内側領域(42)は、互いに交差する前記2つの内側ゲートフィンガー(310A,310B)によって区切られた4つのサブ領域(312A,312B,312C,312D)を含み、
 前記ソース配線(304)は、
 前記4つのサブ領域(312A,312B,312C,312D)にそれぞれ配置された第1、第2、第3、および第4内側セグメント(318A,318B,318C,318D)と、
 前記外周領域(40)に配置された外周セグメント(320)と
 を含み、
 前記外周セグメント(320)は、前記第1、第2、および第3内側セグメント(318A,318B,318C)と連続しており、前記第1、第2、および第3内側セグメント(318A,318B,318C)の各々は、前記3つの間隙(308A,308B,308C)のうち、当該内側セグメント(318)が配置されるサブ領域(312)に隣接する間隙(308)を介して前記外周セグメント(320)に接続されている、半導体装置。
(Appendix C1)
a semiconductor substrate (12);
A semiconductor layer (14) formed on the semiconductor substrate (12) and including an outer peripheral region (40) and an inner region (42) having a rectangular outer edge surrounded by the outer peripheral region (40) in plan view. and,
a plurality of gate trenches (16) formed in the semiconductor layer (14);
an insulating layer (18) formed on the semiconductor layer (14);
a plurality of gate electrodes (28), each of which is embedded in a corresponding one of the plurality of gate trenches (16) via the insulating layer (18); and,
a plurality of field plate electrodes (30) each connected to a corresponding one of the plurality of gate trenches (16) and spaced apart from the gate electrode (28) through the insulating layer (18); a plurality of embedded field plate electrodes (30);
a gate wiring (302) formed on the insulating layer (18) and electrically connected to the plurality of gate electrodes (28);
a source wiring (304) formed on the insulating layer (18), separated from the gate wiring (302), and electrically connected to the plurality of field plate electrodes (30);
The gate wiring (302) is
three outer peripheral gate fingers (306A, 306B, 306C) arranged in the outer peripheral region (40), and three gaps (308A, 308B, 308C) arranged along the outer edge of the inner region (42); three peripheral gate fingers (306A, 306B, 306C) spaced apart from each other by;
two inner gate fingers (310A, 310B) disposed in the inner region (42), each connected to at least one of the three outer circumferential gate fingers (306A, 306B, 306C); , two inner gate fingers (310A, 310B);
The inner region (42) includes four sub-regions (312A, 312B, 312C, 312D) separated by the two inner gate fingers (310A, 310B) that intersect with each other,
The source wiring (304) is
first, second, third, and fourth inner segments (318A, 318B, 318C, 318D) arranged in the four sub-regions (312A, 312B, 312C, 312D), respectively;
a peripheral segment (320) disposed in the peripheral region (40);
The outer circumferential segment (320) is continuous with the first, second, and third inner segments (318A, 318B, 318C), and is continuous with the first, second, and third inner segments (318A, 318B, Of the three gaps (308A, 308B, 308C), each of the outer peripheral segments (318C) connects the outer circumferential segment (320 ) is connected to a semiconductor device.
 (付記C2)
 各サブ領域(312)は、平面視で矩形状であり、4つの辺を有し、
 前記3つの間隙(308A,308B,308C)のうちの少なくとも2つは、当該間隙(308)が隣接するサブ領域(312)の1つの辺と少なくとも同等の長さにわたって形成されている、付記C1に記載の半導体装置。
(Appendix C2)
Each sub-region (312) is rectangular in plan view and has four sides,
At least two of the three gaps (308A, 308B, 308C) are formed over a length at least equivalent to one side of the sub-region (312) to which the gap (308) is adjacent. The semiconductor device described in .
 (付記C3)
 前記4つのサブ領域(312A,312B,312C,312D)の各々は、前記3つの外周ゲートフィンガー(306A,306B,306C)のうちの少なくとも1つと隣接している、付記C1またはC2に記載の半導体装置。
(Appendix C3)
The semiconductor according to appendix C1 or C2, wherein each of the four sub-regions (312A, 312B, 312C, 312D) is adjacent to at least one of the three peripheral gate fingers (306A, 306B, 306C). Device.
 (付記C4)
 前記第4内側セグメント(318D)は、前記内側領域(42)において前記第1、第2、および第3内側セグメント(318A,318B,318C)のうちの1つと接続されている、付記C1~C3のうちのいずれか1つに記載の半導体装置。
(Appendix C4)
Notes C1-C3, wherein the fourth inner segment (318D) is connected to one of the first, second and third inner segments (318A, 318B, 318C) in the inner region (42). The semiconductor device according to any one of the above.
 (付記C5)
 前記内側領域(42)の矩形状の外縁は、平面視で第1方向に延びる2つの辺と、平面視で前記第1方向と直交する第2方向に延びる2つの辺とを有しており、
 前記2つの内側ゲートフィンガー(310A,310B)は、前記第1方向に延びる第1内側ゲートフィンガー(310A)と、前記第2方向に延びる第2内側ゲートフィンガー(310B)とを含む、付記C1~C4のうちのいずれか1つに記載の半導体装置。
(Appendix C5)
The rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view. ,
The two inner gate fingers (310A, 310B) include a first inner gate finger (310A) extending in the first direction and a second inner gate finger (310B) extending in the second direction. The semiconductor device according to any one of C4.
 (付記C6)
 前記ゲート配線(302)は、ゲートパッドを含み、
 前記3つの外周ゲートフィンガー(306A,306B,306C)は、前記第1方向に延びる第1外周ゲートフィンガー(306A)と、前記第2方向に延びる第2外周ゲートフィンガー(306B)と、前記第1方向に延びる部分および前記第2方向に延びる部分を含む第3外周ゲートフィンガー(306C)とを含み、
 前記第1内側ゲートフィンガー(310A)は、前記第2外周ゲートフィンガー(306B)に接続され、
 前記第2内側ゲートフィンガー(310B)は、前記第1外周ゲートフィンガー(306A)および前記第3外周ゲートフィンガー(306C)に接続され、
 前記ゲートパッドは、前記第3外周ゲートフィンガー(306C)に接続されている、付記C5に記載の半導体装置。
(Appendix C6)
The gate wiring (302) includes a gate pad,
The three outer circumferential gate fingers (306A, 306B, 306C) include a first outer circumferential gate finger (306A) extending in the first direction, a second outer circumferential gate finger (306B) extending in the second direction, and a second outer circumferential gate finger (306B) extending in the second direction. a third outer circumferential gate finger (306C) including a portion extending in the direction and a portion extending in the second direction;
the first inner gate finger (310A) is connected to the second outer circumferential gate finger (306B);
The second inner gate finger (310B) is connected to the first outer gate finger (306A) and the third outer gate finger (306C),
The semiconductor device according to appendix C5, wherein the gate pad is connected to the third outer peripheral gate finger (306C).
 (付記C7)
 前記複数のゲートトレンチ(16)の各々は、平面視で前記3つの外周ゲートフィンガー(306A,306B,306C)のうちの1つまたは前記2つの内側ゲートフィンガー(310A,310B)のうちの1つと交差するように配置されている、付記C1~C6のうちのいずれか1つに記載の半導体装置。
(Appendix C7)
Each of the plurality of gate trenches (16) is connected to one of the three outer gate fingers (306A, 306B, 306C) or one of the two inner gate fingers (310A, 310B) in plan view. The semiconductor device according to any one of appendices C1 to C6, which are arranged so as to cross each other.
 (付記C8)
 複数のゲートコンタクトプラグ(60)をさらに備え、
 各ゲートトレンチ(16)に埋め込まれたゲート電極(28)は、前記複数のゲートコンタクトプラグ(60)のうちの少なくとも1つを介して、前記3つの外周ゲートフィンガー(306A,306B,306C)のうちの1つまたは前記2つの内側ゲートフィンガー(310A,310B)のうちの1つに接続されている、付記C1~C7のうちのいずれか1つに記載の半導体装置。
(Appendix C8)
further comprising a plurality of gate contact plugs (60),
The gate electrode (28) embedded in each gate trench (16) is connected to the three outer gate fingers (306A, 306B, 306C) through at least one of the plurality of gate contact plugs (60). or one of the two inner gate fingers (310A, 310B), the semiconductor device according to any one of appendices C1 to C7.
 (付記C9)
 前記内側領域(42)の矩形状の外縁は、平面視で第1方向に延びる2つの辺と、平面視で前記第1方向と直交する第2方向に延びる2つの辺とを有し、
 前記複数のゲートトレンチ(16)は、第1組(S1)のゲートトレンチおよび第2組(S2)のゲートトレンチを含み、前記第1組(S1)の各ゲートトレンチは、平面視で前記第1方向に延び、前記第2組(S2)の各ゲートトレンチは、平面視で前記第2方向に延び、前記第1組(S1)および前記第2組(S2)の各ゲートトレンチは、平面視で前記3つの外周ゲートフィンガー(306A,306B,306C)のうちの1つと交差している、付記C1~C8のうちのいずれか1つに記載の半導体装置。
(Appendix C9)
The rectangular outer edge of the inner region (42) has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view,
The plurality of gate trenches (16) include a first set (S1) of gate trenches and a second set (S2) of gate trenches, and each gate trench of the first set (S1) is different from the first set (S1) of gate trenches in plan view. Each gate trench of the second set (S2) extends in one direction, and each gate trench of the first set (S1) and the second set (S2) extends in the second direction in plan view. The semiconductor device according to any one of appendices C1 to C8, which visually intersects one of the three outer peripheral gate fingers (306A, 306B, 306C).
 (付記C10)
 前記複数のゲートトレンチ(16)は、第3組(S3)のゲートトレンチおよび第4組(S4)のゲートトレンチをさらに含み、前記第3組(S3)の各ゲートトレンチは、平面視で前記第1方向に延び、前記第4組(S4)の各ゲートトレンチは、平面視で前記第2方向に延び、前記第3組(S3)および前記第4組(S4)の各ゲートトレンチは、平面視で前記2つの内側ゲートフィンガー(310A,310B)のうちの1つと交差している、付記C9に記載の半導体装置。
(Appendix C10)
The plurality of gate trenches (16) further include a third set (S3) of gate trenches and a fourth set (S4) of gate trenches, and each gate trench of the third set (S3) has the same shape as the gate trench in plan view. Each gate trench of the fourth group (S4) extends in the first direction, and each gate trench of the third group (S3) and the fourth group (S4) extends in the second direction in plan view. The semiconductor device according to appendix C9, which intersects with one of the two inner gate fingers (310A, 310B) in plan view.
 (付記C11)
 前記第1組(S1)および前記第2組(S2)のゲートトレンチは、前記内側領域(42)と前記外周領域(40)とに跨って配置されており、
 前記第3組(S3)および前記第4組(S4)のゲートトレンチは、前記内側領域(42)内にその全体が配置されている、付記C10に記載の半導体装置。
(Appendix C11)
The first set (S1) and the second set (S2) of gate trenches are arranged across the inner region (42) and the outer peripheral region (40),
The semiconductor device according to appendix C10, wherein the third set (S3) and the fourth set (S4) of gate trenches are entirely disposed within the inner region (42).
 (付記C12)
 複数のフィールドプレートコンタクトプラグ(64)をさらに備え、
 前記第1組(S1)の各ゲートトレンチに埋め込まれたフィールドプレート電極(30)は、前記複数のフィールドプレートコンタクトプラグ(64)のうちの少なくとも1つを介して、前記外周セグメント(320)に接続された第1端部と、前記複数のフィールドプレートコンタクトプラグ(64)のうちの少なくとも1つを介して、前記第1、第2、第3、および第4内側セグメント(318A,318B,318C,318D)のうち1つに接続された第2端部とを含み、
 前記第3組(S3)の各ゲートトレンチに埋め込まれたフィールドプレート電極(30)は、前記複数のフィールドプレートコンタクトプラグ(64)のうちの少なくとも1つを介して、前記第1、第2、第3、および第4内側セグメント(318A,318B,318C,318D)のうちの1つに接続された第1端部と、前記複数のフィールドプレートコンタクトプラグ(64)のうちの少なくとも1つを介して、前記第1、第2、第3、および第4内側セグメント(318A,318B,318C,318D)のうちの別の1つに接続された第2端部とを含む、付記C10またはC11に記載の半導体装置。
(Appendix C12)
further comprising a plurality of field plate contact plugs (64);
The field plate electrode (30) embedded in each gate trench of the first set (S1) is connected to the outer peripheral segment (320) through at least one of the plurality of field plate contact plugs (64). said first, second, third, and fourth inner segments (318A, 318B, 318C) via a connected first end and at least one of said plurality of field plate contact plugs (64). , 318D);
The field plate electrode (30) embedded in each gate trench of the third set (S3) connects the first, second, a first end connected to one of the third and fourth inner segments (318A, 318B, 318C, 318D) and through at least one of the plurality of field plate contact plugs (64); and a second end connected to another one of said first, second, third, and fourth inner segments (318A, 318B, 318C, 318D). The semiconductor device described.
 (付記C13)
 前記半導体層(14)は、第1導電型のドリフト領域(20)と、前記ドリフト領域(20)上に形成された第2導電型のボディ領域(22)と、前記ボディ領域(22)上に形成された第1導電型のソース領域(24)とを含み、
 前記ゲートトレンチ(16)は、前記ソース領域(24)および前記ボディ領域(22)を貫通するとともに、前記ドリフト領域(20)に達している、付記C1~C12のうちのいずれか1つに記載の半導体装置。
(Appendix C13)
The semiconductor layer (14) includes a first conductivity type drift region (20), a second conductivity type body region (22) formed on the drift region (20), and a second conductivity type body region (22) formed on the body region (22). a first conductivity type source region (24) formed in
The gate trench (16) penetrates the source region (24) and the body region (22) and reaches the drift region (20), as described in any one of appendices C1 to C12. semiconductor devices.
 10,100,200,300,400…半導体装置
 12,402…半導体基板
 12A,402A…上面
 12B,402B…底面
 14,404…半導体層
 16,406…ゲートトレンチ
 18,426,434…絶縁層
 20,410…ドリフト領域
 22,412…ボディ領域
 24,414…ソース領域
 26,420…ドレイン電極
 28,428…ゲート電極
 28A…上面
 28B…底面
 28C…側面
 30…フィールドプレート電極
 32…ソースコンタクトプラグ
 34,104,204…ソース配線
 36…コンタクト領域
 38…ゲート絶縁部
 40…外周領域
 42…内側領域
 44,102,202,302,436…ゲート配線
 46,106,206,306…外周ゲートフィンガー
 46A,206A,306A…第1外周ゲートフィンガー
 46B,206B,306B…第2外周ゲートフィンガー
 46C,206C,306C…第3外周ゲートフィンガー
 46D,206D…第4外周ゲートフィンガー
 206E…第5外周ゲートフィンガー
 206F…第6外周ゲートフィンガー
 48,48A,48B,48C,48D,110,114,116,118,208,208A,208B,208C,208D,208E,208F,308,308A,208B,308C,316…間隙
 50,112,210,310…内側ゲートフィンガー
 50A,112A,210A,310A…第1内側ゲートフィンガー
 50B,112B,210B,310B…第2内側ゲートフィンガー
 210C…第3内側ゲートフィンガー
 52,52A,52B,52C,52D,120A,120B,120C,120D,212,212A,212B,212C,212D,212E,212F,312,312A,312B,312C,312D…サブ領域
 54,108,214,314…ゲートパッド
 56,56A,56B,56C,56D,122A,122B,122C,122D,216,216A,216B,216C,216D,216E,216F,318,318A,318B,318C,318D…内側セグメント
 58,124,218,320…外周セグメント
 60…ゲートコンタクトプラグ
 62…フィールドプレートトレンチ
 64…フィールドプレートコンタクトプラグ
 66,68,70,72…端部
 408…ソーストレンチ
 422…第1ウェル領域
 424…第2ウェル領域
 430…ソース電極
 432…ゲートコンタクト電極
 438…バリア層
 440…配線層
 S1…第1組
 S2…第2組
 S3…第3組
 S4…第4組
10,100,200,300,400...Semiconductor device 12,402...Semiconductor substrate 12A, 402A...Top surface 12B, 402B...Bottom surface 14,404...Semiconductor layer 16,406...Gate trench 18,426,434...Insulating layer 20, 410...Drift region 22,412...Body region 24,414...Source region 26,420...Drain electrode 28,428...Gate electrode 28A...Top surface 28B...Bottom surface 28C...Side surface 30...Field plate electrode 32...Source contact plug 34,104 , 204...Source wiring 36...Contact region 38...Gate insulating part 40...Outer peripheral region 42...Inner region 44,102,202,302,436...Gate wiring 46,106,206,306...Outer periphery gate finger 46A, 206A, 306A ...First outer circumference gate finger 46B, 206B, 306B...Second outer circumference gate finger 46C, 206C, 306C...Third outer circumference gate finger 46D, 206D...Fourth outer circumference gate finger 206E...Fifth outer circumference gate finger 206F...Sixth outer circumference gate Finger 48, 48A, 48B, 48C, 48D, 110, 114, 116, 118, 208, 208A, 208B, 208C, 208D, 208E, 208F, 308, 308A, 208B, 308C, 316...Gap 50, 112, 210, 310...Inner gate finger 50A, 112A, 210A, 310A...First inner gate finger 50B, 112B, 210B, 310B...Second inner gate finger 210C...Third inner gate finger 52, 52A, 52B, 52C, 52D, 120A, 120B, 120C, 120D, 212, 212A, 212B, 212C, 212D, 212E, 212F, 312, 312A, 312B, 312C, 312D... Sub-region 54, 108, 214, 314... Gate pad 56, 56A, 56B, 56C, 56D, 122A, 122B, 122C, 122D, 216, 216A, 216B, 216C, 216D, 216E, 216F, 318, 318A, 318B, 318C, 318D... Inner segment 58, 124, 218, 320... Outer segment 60... Gate contact Plug 62... Field plate trench 64... Field plate contact plug 66, 68, 70, 72... End portion 408... Source trench 422... First well region 424... Second well region 430... Source electrode 432... Gate contact electrode 438... Barrier Layer 440...Wiring layer S1...First set S2...Second set S3...Third set S4...Fourth set

Claims (20)

  1.  半導体基板と、
     前記半導体基板上に形成され、外周領域と、平面視で前記外周領域に囲まれた矩形状の外縁を有する内側領域とを含む半導体層と、
     前記半導体層に形成された複数のゲートトレンチと、
     前記半導体層上に形成された絶縁層と、
     複数のゲート電極であって、各々が前記複数のゲートトレンチのうちの対応する1つに前記絶縁層を介して埋め込まれている、複数のゲート電極と、
     複数のフィールドプレート電極であって、各々が前記複数のゲートトレンチのうちの対応する1つに、前記ゲート電極と離隔されつつ前記絶縁層を介して埋め込まれている、複数のフィールドプレート電極と、
     前記絶縁層上に形成され、前記複数のゲート電極に電気的に接続されたゲート配線と、
     前記絶縁層上に形成され、前記ゲート配線から離隔されるとともに、前記複数のフィールドプレート電極に電気的に接続されたソース配線と
     を備え、
     前記ゲート配線は、
      前記外周領域に配置された複数の外周ゲートフィンガーであって、前記内側領域の外縁に沿って配置された複数の間隙によって互いに離隔された複数の外周ゲートフィンガーと、
      前記内側領域に配置された複数の内側ゲートフィンガーであって、各々が前記複数の外周ゲートフィンガーのうちの少なくとも1つに接続されている、複数の内側ゲートフィンガーと
     を含み、
     前記内側領域は、前記複数の内側ゲートフィンガーのうち、互いに交差する少なくとも2つの内側ゲートフィンガーによって区切られた複数のサブ領域を含み、
     前記ソース配線は、
      前記複数のサブ領域にそれぞれ配置された複数の内側セグメントと、
      前記外周領域に配置された外周セグメントと
     を含み、
     前記外周セグメントは、前記複数の内側セグメントのうちの少なくとも2つと連続しており、前記少なくとも2つの内側セグメントの各々は、前記複数の間隙のうち、当該内側セグメントが配置されるサブ領域に隣接する間隙を介して前記外周セグメントに接続されている、半導体装置。
    a semiconductor substrate;
    a semiconductor layer formed on the semiconductor substrate and including an outer peripheral region and an inner region having a rectangular outer edge surrounded by the outer peripheral region in plan view;
    a plurality of gate trenches formed in the semiconductor layer;
    an insulating layer formed on the semiconductor layer;
    a plurality of gate electrodes, each of which is embedded in a corresponding one of the plurality of gate trenches via the insulating layer;
    a plurality of field plate electrodes, each of which is embedded in a corresponding one of the plurality of gate trenches through the insulating layer while being spaced apart from the gate electrode;
    a gate wiring formed on the insulating layer and electrically connected to the plurality of gate electrodes;
    a source wiring formed on the insulating layer, separated from the gate wiring, and electrically connected to the plurality of field plate electrodes;
    The gate wiring is
    a plurality of outer circumferential gate fingers disposed in the outer circumferential region, the plurality of outer circumferential gate fingers being separated from each other by a plurality of gaps disposed along an outer edge of the inner region;
    a plurality of inner gate fingers disposed in the inner region, each inner gate finger being connected to at least one of the plurality of outer circumferential gate fingers;
    The inner region includes a plurality of sub-regions separated by at least two inner gate fingers intersecting each other among the plurality of inner gate fingers,
    The source wiring is
    a plurality of inner segments respectively arranged in the plurality of sub-regions;
    a peripheral segment disposed in the peripheral region;
    The outer peripheral segment is continuous with at least two of the plurality of inner segments, and each of the at least two inner segments is adjacent to a sub-region of the plurality of gaps in which the inner segment is disposed. A semiconductor device connected to the outer peripheral segment via a gap.
  2.  各サブ領域は、平面視で矩形状であり、4つの辺を有し、
     前記複数の間隙のうちの少なくとも2つは、当該間隙が隣接するサブ領域の1つの辺と少なくとも同等の長さにわたって形成されている、請求項1に記載の半導体装置。
    Each sub-region is rectangular in plan view and has four sides,
    2. The semiconductor device according to claim 1, wherein at least two of the plurality of gaps are formed over a length at least equal to one side of an adjacent sub-region.
  3.  前記複数のサブ領域の各々は、前記複数の外周ゲートフィンガーのうちの少なくとも1つと隣接している、請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein each of the plurality of sub-regions is adjacent to at least one of the plurality of outer peripheral gate fingers.
  4.  前記外周セグメントは、前記複数の内側セグメントと連続しており、前記複数の内側セグメントの各々は、前記複数の間隙のうち、当該内側セグメントが配置されるサブ領域に隣接する間隙を介して前記外周セグメントに接続されている、請求項1~3のうちのいずれか一項に記載の半導体装置。 The outer circumferential segment is continuous with the plurality of inner segments, and each of the plurality of inner segments connects to the outer circumference through a gap adjacent to a sub-region in which the inner segment is arranged among the plurality of gaps. 4. The semiconductor device according to claim 1, wherein the semiconductor device is connected to a segment.
  5.  前記内側領域の矩形状の外縁は、平面視で第1方向に延びる2つの辺と、平面視で前記第1方向と直交する第2方向に延びる2つの辺とを有しており、
     前記複数の内側ゲートフィンガーは、前記第1方向に延びる第1内側ゲートフィンガーと、前記第2方向に延びる第2内側ゲートフィンガーとを含む、請求項1~4のうちのいずれか一項に記載の半導体装置。
    The rectangular outer edge of the inner region has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view,
    5. The plurality of inner gate fingers include a first inner gate finger extending in the first direction and a second inner gate finger extending in the second direction. semiconductor devices.
  6.  前記複数のサブ領域は、4つのサブ領域を含み、前記4つのサブ領域の各々は、平面視で前記第1内側ゲートフィンガーおよび前記第2内側ゲートフィンガーに隣接している、請求項5に記載の半導体装置。 The plurality of sub-regions include four sub-regions, and each of the four sub-regions is adjacent to the first inner gate finger and the second inner gate finger in plan view. semiconductor devices.
  7.  前記複数の内側セグメントは、前記4つのサブ領域にそれぞれ配置された4つの内側セグメントを含み、
     前記複数の間隙は、前記4つのサブ領域にそれぞれ隣接する4つの間隙を含み、
     前記外周セグメントは、前記4つの内側セグメントと連続しており、前記4つの内側セグメントの各々は、前記4つの間隙のうち、当該内側セグメントが配置されるサブ領域に隣接する間隙を介して前記外周セグメントに接続されている、請求項6に記載の半導体装置。
    The plurality of inner segments include four inner segments respectively arranged in the four sub-regions,
    The plurality of gaps include four gaps adjacent to each of the four sub-regions,
    The outer circumferential segment is continuous with the four inner segments, and each of the four inner segments connects to the outer circumference through a gap adjacent to a sub-region in which the inner segment is arranged among the four gaps. 7. The semiconductor device according to claim 6, wherein the semiconductor device is connected to a segment.
  8.  前記複数の外周ゲートフィンガーは、前記第1方向に延びる第1外周ゲートフィンガーおよび第2外周ゲートフィンガーと、前記第2方向に延びる第3外周ゲートフィンガーおよび第4外周ゲートフィンガーとを含み、
     前記第1内側ゲートフィンガーは、前記第3外周ゲートフィンガーおよび前記第4外周ゲートフィンガーに接続されており、
     前記第2内側ゲートフィンガーは、前記第1外周ゲートフィンガーおよび前記第2外周ゲートフィンガーに接続されている、請求項5~7のうちのいずれか一項に記載の半導体装置。
    The plurality of outer circumferential gate fingers include a first outer circumferential gate finger and a second outer circumferential gate finger extending in the first direction, and a third outer circumferential gate finger and a fourth outer circumferential gate finger extending in the second direction,
    The first inner gate finger is connected to the third outer gate finger and the fourth outer gate finger,
    8. The semiconductor device according to claim 5, wherein the second inner gate finger is connected to the first outer gate finger and the second outer gate finger.
  9.  前記複数の内側セグメントは、前記4つのサブ領域にそれぞれ配置された第1、第2、第3、および第4内側セグメントを含み、
     前記外周セグメントは、前記第1、第2、および第3内側セグメントと連続しており、
     前記第1、第2、および第3内側セグメントの各々は、前記複数の間隙のうち、当該内側セグメントが配置されるサブ領域に隣接する間隙を介して前記外周セグメントに接続されており、
     前記第4内側セグメントは、前記内側領域において前記第1、第2、および第3内側セグメントのうちの1つと接続されている、請求項6または7に記載の半導体装置。
    The plurality of inner segments include first, second, third, and fourth inner segments arranged in the four sub-regions, respectively,
    the outer circumferential segment is continuous with the first, second, and third inner segments;
    Each of the first, second, and third inner segments is connected to the outer peripheral segment through a gap adjacent to a sub-region in which the inner segment is arranged among the plurality of gaps,
    8. The semiconductor device according to claim 6, wherein the fourth inner segment is connected to one of the first, second, and third inner segments in the inner region.
  10.  前記ゲート配線は、ゲートパッドを含み、
     前記複数の外周ゲートフィンガーは、前記第1方向に延びる第1外周ゲートフィンガーと、前記第2方向に延びる第2外周ゲートフィンガーと、前記第1方向に延びる部分および前記第2方向に延びる部分を含む第3外周ゲートフィンガーとを含み、
     前記第1内側ゲートフィンガーは、前記第2外周ゲートフィンガーに接続され、
     前記第2内側ゲートフィンガーは、前記第1外周ゲートフィンガーおよび前記第3外周ゲートフィンガーに接続され、
     前記ゲートパッドは、前記第3外周ゲートフィンガーに接続されている、請求項9に記載の半導体装置。
    The gate wiring includes a gate pad,
    The plurality of outer circumferential gate fingers include a first outer circumferential gate finger extending in the first direction, a second outer circumferential gate finger extending in the second direction, a portion extending in the first direction, and a portion extending in the second direction. and a third outer circumferential gate finger,
    the first inner gate finger is connected to the second outer circumferential gate finger;
    the second inner gate finger is connected to the first outer gate finger and the third outer gate finger;
    10. The semiconductor device according to claim 9, wherein the gate pad is connected to the third outer peripheral gate finger.
  11.  前記内側領域の矩形状の外縁は、平面視で第1方向に延びる2つの辺と、平面視で前記第1方向と直交する第2方向に延びる2つの辺とを有し、
     前記複数の内側ゲートフィンガーは、前記第1方向に延びる第1内側ゲートフィンガーと、前記第2方向に延びる第2内側ゲートフィンガーと、前記第2方向に延びる第3内側ゲートフィンガーとを含み、
     前記第1内側ゲートフィンガーは、前記第2内側ゲートフィンガーおよび前記第3内側ゲートフィンガーと交差している、請求項1または2に記載の半導体装置。
    The rectangular outer edge of the inner region has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view,
    The plurality of inner gate fingers include a first inner gate finger extending in the first direction, a second inner gate finger extending in the second direction, and a third inner gate finger extending in the second direction,
    3. The semiconductor device according to claim 1, wherein the first inner gate finger intersects with the second inner gate finger and the third inner gate finger.
  12.  前記複数のサブ領域は、6つのサブ領域を含み、前記6つのサブ領域の各々は、平面視で前記第1内側ゲートフィンガーに隣接するとともに、平面視で前記第2内側ゲートフィンガーまたは前記第3内側ゲートフィンガーに隣接している、請求項11に記載の半導体装置。 The plurality of sub-regions include six sub-regions, and each of the six sub-regions is adjacent to the first inner gate finger in plan view and is adjacent to the second inner gate finger or the third inner gate finger in plan view. 12. The semiconductor device of claim 11, adjacent the inner gate finger.
  13.  前記複数の内側セグメントは、前記6つのサブ領域にそれぞれ配置された6つの内側セグメントを含み、
     前記複数の間隙は、前記6つのサブ領域にそれぞれ隣接する6つの間隙を含み、
     前記外周セグメントは、前記6つの内側セグメントと連続しており、前記6つの内側セグメントの各々は、前記6つの間隙のうち、当該内側セグメントが配置されるサブ領域に隣接する間隙を介して前記外周セグメントに接続されている、請求項12に記載の半導体装置。
    The plurality of inner segments include six inner segments respectively arranged in the six sub-regions,
    The plurality of gaps include six gaps adjacent to each of the six sub-regions,
    The outer circumferential segment is continuous with the six inner segments, and each of the six inner segments connects to the outer circumference through a gap adjacent to a sub-region in which the inner segment is arranged among the six gaps. 13. The semiconductor device according to claim 12, wherein the semiconductor device is connected to a segment.
  14.  前記6つのサブ領域のうちの1つは、前記複数の外周ゲートフィンガーのうちのいずれとも隣接しておらず、前記第1、第2、および第3内側ゲートフィンガーと隣接している、請求項12または13に記載の半導体装置。 5. One of the six sub-regions is not adjacent to any of the plurality of outer circumferential gate fingers and is adjacent to the first, second, and third inner gate fingers. 14. The semiconductor device according to 12 or 13.
  15.  前記複数のゲートトレンチの各々は、平面視で前記複数の外周ゲートフィンガーのうちの1つまたは前記複数の内側ゲートフィンガーのうちの1つと交差するように配置されている、請求項1~14のうちのいずれか一項に記載の半導体装置。 15. The gate trench according to claim 1, wherein each of the plurality of gate trenches is arranged to intersect one of the plurality of outer circumferential gate fingers or one of the plurality of inner gate fingers in a plan view. The semiconductor device according to any one of the above.
  16.  複数のゲートコンタクトプラグをさらに備え、
     各ゲートトレンチに埋め込まれたゲート電極は、前記複数のゲートコンタクトプラグのうちの少なくとも1つを介して、前記複数の外周ゲートフィンガーのうちの1つまたは前記複数の内側ゲートフィンガーのうちの1つに接続されている、請求項1~14のうちのいずれか一項に記載の半導体装置。
    Further includes multiple gate contact plugs,
    The gate electrode embedded in each gate trench is connected to one of the plurality of outer circumferential gate fingers or one of the plurality of inner gate fingers via at least one of the plurality of gate contact plugs. 15. The semiconductor device according to claim 1, wherein the semiconductor device is connected to.
  17.  前記内側領域の矩形状の外縁は、平面視で第1方向に延びる2つの辺と、平面視で前記第1方向と直交する第2方向に延びる2つの辺とを有し、
     前記複数のゲートトレンチは、第1組のゲートトレンチおよび第2組のゲートトレンチを含み、前記第1組の各ゲートトレンチは、平面視で前記第1方向に延び、前記第2組の各ゲートトレンチは、平面視で前記第2方向に延び、前記第1組および前記第2組の各ゲートトレンチは、平面視で前記複数の外周ゲートフィンガーのうちの1つと交差している、請求項1~14のうちのいずれか一項に記載の半導体装置。
    The rectangular outer edge of the inner region has two sides extending in a first direction in plan view and two sides extending in a second direction orthogonal to the first direction in plan view,
    The plurality of gate trenches include a first set of gate trenches and a second set of gate trenches, each gate trench of the first set extending in the first direction in plan view, and each gate trench of the second set extending in the first direction. 1 . The trench extends in the second direction in a plan view, and each gate trench of the first set and the second set intersects with one of the plurality of outer circumferential gate fingers in a plan view. 15. The semiconductor device according to any one of 14 to 14.
  18.  前記複数のゲートトレンチは、第3組のゲートトレンチおよび第4組のゲートトレンチをさらに含み、前記第3組の各ゲートトレンチは、平面視で前記第1方向に延び、前記第4組の各ゲートトレンチは、平面視で前記第2方向に延び、前記第3組および前記第4組の各ゲートトレンチは、平面視で前記複数の内側ゲートフィンガーのうちの1つと交差している、請求項17に記載の半導体装置。 The plurality of gate trenches further include a third set of gate trenches and a fourth set of gate trenches, each gate trench of the third set extending in the first direction in plan view, and each gate trench of the fourth set extending in the first direction. The gate trench extends in the second direction in a plan view, and each gate trench of the third set and the fourth set intersects with one of the plurality of inner gate fingers in a plan view. 18. The semiconductor device according to 17.
  19.  前記第1組および前記第2組のゲートトレンチは、前記内側領域と前記外周領域とに跨って配置されており、
     前記第3組および前記第4組のゲートトレンチは、前記内側領域内にその全体が配置されている、請求項18に記載の半導体装置。
    The first set and the second set of gate trenches are arranged across the inner region and the outer peripheral region,
    19. The semiconductor device according to claim 18, wherein the third set and the fourth set of gate trenches are entirely disposed within the inner region.
  20.  複数のフィールドプレートコンタクトプラグをさらに備え、
     前記第1組の各ゲートトレンチに埋め込まれたフィールドプレート電極は、前記複数のフィールドプレートコンタクトプラグのうちの少なくとも1つを介して、前記外周セグメントに接続された第1端部と、前記複数のフィールドプレートコンタクトプラグのうちの少なくとも1つを介して、前記複数の内側セグメントのうち1つに接続された第2端部とを含み、
     前記第3組の各ゲートトレンチに埋め込まれたフィールドプレート電極は、前記複数のフィールドプレートコンタクトプラグのうちの少なくとも1つを介して、前記複数の内側セグメントのうちの1つに接続された第1端部と、前記複数のフィールドプレートコンタクトプラグのうちの少なくとも1つを介して、前記複数の内側セグメントのうちの別の1つに接続された第2端部とを含む、請求項18または19に記載の半導体装置。
    Further equipped with multiple field plate contact plugs,
    A field plate electrode embedded in each gate trench of the first set has a first end connected to the outer peripheral segment via at least one of the plurality of field plate contact plugs, and a first end connected to the outer peripheral segment through at least one of the plurality of field plate contact plugs. a second end connected to one of the plurality of inner segments via at least one of a field plate contact plug;
    A field plate electrode embedded in each gate trench of the third set has a first electrode connected to one of the plurality of inner segments via at least one of the plurality of field plate contact plugs. and a second end connected to another one of the plurality of inner segments via at least one of the plurality of field plate contact plugs. The semiconductor device described in .
PCT/JP2023/027163 2022-08-01 2023-07-25 Semiconductor device WO2024029398A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022122690 2022-08-01
JP2022-122690 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024029398A1 true WO2024029398A1 (en) 2024-02-08

Family

ID=89848983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027163 WO2024029398A1 (en) 2022-08-01 2023-07-25 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2024029398A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161792A1 (en) * 2011-12-27 2013-06-27 Maxim Integrated Products, Inc. Semiconductor device having trench capacitor structure integrated therein
JP2014003191A (en) * 2012-06-20 2014-01-09 Hitachi Ltd Semiconductor device
JP2017147431A (en) * 2016-02-12 2017-08-24 富士電機株式会社 Semiconductor device
JP2019140169A (en) * 2018-02-07 2019-08-22 パナソニックIpマネジメント株式会社 Silicon carbide semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161792A1 (en) * 2011-12-27 2013-06-27 Maxim Integrated Products, Inc. Semiconductor device having trench capacitor structure integrated therein
JP2014003191A (en) * 2012-06-20 2014-01-09 Hitachi Ltd Semiconductor device
JP2017147431A (en) * 2016-02-12 2017-08-24 富士電機株式会社 Semiconductor device
JP2019140169A (en) * 2018-02-07 2019-08-22 パナソニックIpマネジメント株式会社 Silicon carbide semiconductor device

Similar Documents

Publication Publication Date Title
US7652307B2 (en) Semiconductor device with two overlapping diffusion layers held at floating voltage for improving withstand voltage
JP4491875B2 (en) Trench type MOS semiconductor device
US9299788B2 (en) Multi-gate VDMOS transistor
JP7482198B2 (en) Semiconductor Device
US11664448B2 (en) Semiconductor device
JP7327672B2 (en) semiconductor equipment
WO2024029398A1 (en) Semiconductor device
CN115053352A (en) Semiconductor device with a plurality of semiconductor chips
JP7443673B2 (en) silicon carbide semiconductor device
US11908912B2 (en) Semiconductor device
CN116805653A (en) transistor device
JP5269389B2 (en) Semiconductor device
CN112531028B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
US20230145576A1 (en) Semiconductor device
US20240154007A1 (en) Semiconductor device
CN114467181A (en) Semiconductor device with a plurality of semiconductor chips
WO2023135896A1 (en) Semiconductor device
US20240055474A1 (en) Semiconductor device
WO2023203894A1 (en) Semiconductor device
WO2023176118A1 (en) Semiconductor device
WO2024053267A1 (en) Semiconductor device
US20230215944A1 (en) Semiconductor device
WO2023188755A1 (en) Semiconductor device
US20240096972A1 (en) Semiconductor device
WO2023188756A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849953

Country of ref document: EP

Kind code of ref document: A1