WO2024029394A1 - Method for producing carrier for chromatography, and carrier for chromatography - Google Patents

Method for producing carrier for chromatography, and carrier for chromatography Download PDF

Info

Publication number
WO2024029394A1
WO2024029394A1 PCT/JP2023/027099 JP2023027099W WO2024029394A1 WO 2024029394 A1 WO2024029394 A1 WO 2024029394A1 JP 2023027099 W JP2023027099 W JP 2023027099W WO 2024029394 A1 WO2024029394 A1 WO 2024029394A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
group
substitution
residue
acid sequence
Prior art date
Application number
PCT/JP2023/027099
Other languages
French (fr)
Japanese (ja)
Inventor
透矢 井上
健 宮島
倫敬 上出
浩志 野口
聡 中村
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2024029394A1 publication Critical patent/WO2024029394A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies

Definitions

  • the present invention relates to a method for producing a chromatography carrier, a chromatography carrier, a chromatography column, and a method for isolating an antibody or a fragment thereof.
  • reagents have been widely used as research reagents, antibody drugs, etc. These reagents and antibodies for pharmaceutical use are generally produced through isolation by chromatography.
  • the carrier used for such chromatography is required to have a dynamic binding capacity for antibodies and fragments thereof, to be difficult to leak out of the ligand during isolation, and to be difficult to non-specifically adsorb impurities.
  • a carrier is known in which the dynamic binding capacity for antibodies is increased by adjusting the median particle size to a specific range (Patent Document 1).
  • Step A-1 A method for producing a chromatography carrier (hereinafter also referred to as a method for producing a chromatography carrier of the present invention), comprising the following Step A-1 and Step B.
  • Step A-1 Step of immobilizing one or more kinds of ligands selected from protein A, protein G, protein L, and related substances to porous particles.
  • the compound having the ligand-reactive group is a compound represented by the following formula (1) and its salt, a compound represented by the following formula (2), and a compound represented by the following formula (3).
  • the method for producing a chromatography carrier according to ⁇ 1> which is one or more selected types.
  • R 1 and R 2 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group.
  • R 3 and R 4 independently represent a substituted or unsubstituted hydrocarbon group, and R 3 and R 4 may be bonded to each other to form a cyclic structure.
  • R 5 represents a substituted or unsubstituted hydrocarbon group
  • X represents a cyclic ether group
  • the compound having the ligand-reactive group is 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, a salt of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, N , N'-dicyclohexylcarbodiimide, N,N'-diisopropylcarbodiimide, maleic anhydride, propionic anhydride, acetic anhydride, pivalic anhydride, succinic anhydride, glutaric anhydride, propylene oxide, butylene oxide, glycidyl methyl ether,
  • the method for producing a chromatography carrier according to ⁇ 1> or ⁇ 2> which is one or more compounds selected from ethyl glycidyl ether, glycidol, epichlorohydrin, and epibromohydrin.
  • the compound having a ligand-reactive group is at least one compound selected from the compound represented by the formula (1) and a salt thereof, according to any one of ⁇ 1> to ⁇ 3>.
  • a method for producing a carrier for chromatography Any one of ⁇ 1> to ⁇ 4>, wherein the amount of the compound having a ligand-reactive group used is 0.01 to 15 mmol per 1 g of dry weight of the porous particles on which the ligand is immobilized.
  • ⁇ 6> At least one or two or more substitutions selected from the following (a) to (i) to the amino acid sequence in which the ligand has 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2.
  • the ligand has at least three or more substitutions selected from the following (a) to (i) to the amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2.
  • ⁇ 8> The method for producing a chromatography carrier according to any one of ⁇ 1> to ⁇ 7>, wherein the reaction in step B is carried out in an aqueous medium at a pH of 8 to 14.
  • step A-2 is further provided between step A-1 and step B, and the hydrophilic group-containing ligand-immobilized porous particles obtained in step A-2 are treated with the ligand after step A-1.
  • Step A-2 The porous particles on which the ligand was fixed in Step A-1 are reacted with a compound having a total of two or more hydrophilic groups of at least one type selected from hydroxy groups and mercapto groups in the molecule. process of letting
  • Step A further comprising the following steps A-P1 and A-P2, using porous particles reacted with at least one selected from a crosslinking agent and a hydrophilizing agent in step A-P2 as the porous particles.
  • Step A-P1 A step of dispersing the monomer composition in an aqueous medium and carrying out suspension polymerization.
  • Step A-P2 The porous particles obtained in step A-P1 and at least one selected from a crosslinking agent and a hydrophilizing agent. Step of reacting with one species
  • the ligand is one or more ligands selected from protein A, protein G, protein L and related substances, At least one functional group selected from an amino group and a carboxy group of the ligand is chemically modified with the partial structure,
  • Chemical modification rate (mol%) (number of moles of chemically modified functional groups) / (sum of number of moles of chemically modified functional groups and number of moles of non-chemically modified functional groups) ⁇ 100
  • a chromatography carrier (hereinafter also referred to as the chromatography carrier of the present invention) having a chemical modification rate calculated from 1 to 70 mol%.
  • chromatography carrier according to ⁇ 11>, wherein the amino group of the ligand is chemically modified with the partial structure.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl
  • the chromatograph according to any one of ⁇ 11> to ⁇ 13>, which has a group represented by the following in its molecule: cycloalkyl group, aminoalkyl group, monoalkylaminoalkyl group, or dialkylaminoalkyl group. Carrier for graphics.
  • ⁇ 15> The chromatography carrier according to ⁇ 14>, wherein at least one of R 1 and R 2 is an aminoalkyl group, a monoalkylaminoalkyl group, or a dialkylaminoalkyl group.
  • ⁇ 16> At least one or two or more substitutions selected from the following (a) to (i) to the amino acid sequence in which the ligand has 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2.
  • the ligand has at least three or more substitutions selected from the following (a) to (i) to the amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2.
  • the chromatography carrier according to any one of ⁇ 11> to ⁇ 15>, which is a protein ligand having an amino acid sequence.
  • ⁇ 18> A chromatography column comprising the chromatography carrier according to any one of ⁇ 11> to ⁇ 17>.
  • ⁇ 19> A method for isolating an antibody or a fragment thereof using the chromatography carrier according to any one of ⁇ 11> to ⁇ 17> or the chromatography column according to ⁇ 18> (hereinafter, a method for isolating an antibody or a fragment thereof of the present invention) (also referred to as fragment isolation method).
  • the method for producing a chromatography carrier of the present invention it is possible to easily produce a chromatography carrier that has a large dynamic binding capacity for antibodies or fragments thereof and that is resistant to leakage of protein ligands even when used repeatedly for antibody isolation. Can be manufactured.
  • the chromatography carrier of the present invention has a large dynamic binding capacity for antibodies or fragments thereof, and protein ligands do not easily leak out even when used repeatedly for antibody isolation. Therefore, according to the present invention, it is possible to provide a chromatography column that has a large dynamic binding capacity for antibodies or fragments thereof and that does not leak protein ligands even when used repeatedly for antibody isolation.
  • the method for producing a chromatography carrier of the present invention includes (Step A-1) immobilizing one or more ligands selected from protein A, protein G, protein L, and their related substances onto porous particles. It has a process.
  • Step A-1- Step A-1 is a step of immobilizing one or more ligands selected from protein A, protein G, protein L, and related substances to porous particles.
  • porous particles porous particles containing a polymer are preferred.
  • porous particles may be natural polymer porous particles or synthetic polymer porous particles composed of polysaccharides such as agarose, dextran, cellulose, etc., but in order to increase the dynamic binding capacity or In order to improve the uniformity of particle diameter, synthetic polymer porous particles are preferred. Also, the porous particles are preferably water-insoluble.
  • Porous particles can be produced by a method including a step of dispersing a monomer composition in an aqueous medium and carrying out suspension polymerization (hereinafter also referred to as steps A-P1).
  • the monomer composition used in step A-P1 preferably contains a functional group-containing monomer.
  • the functional group contained in this monomer is preferably one that can be used for additional chemical reactions (such as reaction with a crosslinking agent), and may be one that can immobilize a ligand.
  • Examples include functional groups such as Among these, cyclic ether groups are preferred.
  • cyclic ether group is preferably a cyclic ether group having 3 to 7 ring atoms.
  • the cyclic ether group may have an alkyl group as a substituent.
  • Specific examples of the cyclic ether group include cyclic ether groups represented by the following formulas (4) to (9); is preferred, and a cyclic ether group represented by formula (4) is more preferred.
  • R 11 to R 14 each independently represent a hydrogen atom or an alkyl group, and * represents a bond.
  • the number of carbon atoms in the alkyl group represented by R 11 to R 14 is preferably 1 to 4, more preferably 1 or 2.
  • the alkyl group may be linear or branched, and includes, for example, a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, and the like.
  • R 11 to R 14 are preferably hydrogen atoms.
  • a monomer having a functional group capable of immobilizing a ligand and a polymerizable unsaturated group is preferable.
  • monomers include glycidyl (meth)acrylate, 3-oxiranylpropyl (meth)acrylate, 4-oxiranylbutyl (meth)acrylate, 5-oxiranylpentyl (meth)acrylate, and 6-oxiranylpentyl (meth)acrylate.
  • the total amount of functional group-containing monomers used is preferably 35 parts by mass or more, more preferably 45 parts by mass or more, particularly preferably 55 parts by mass or more, based on 100 parts by mass of the total amount of monomers used in Step A-P1. Also, it is preferably 99 parts by mass or less, more preferably 90 parts by mass or less, particularly preferably 85 parts by mass or less, based on 100 parts by mass of the total amount of monomers used in Step A-P1.
  • the monomer composition used in Step A-P1 may further contain a monomer other than the functional group-containing monomer (hereinafter also referred to as other monomer).
  • Other monomers include polymerizable unsaturated group-containing monomers that do not have a functional group capable of immobilizing a ligand.
  • Other monomers are broadly classified into non-crosslinkable monomers and crosslinkable monomers, and one or both of these monomers may be used.
  • a monomer that does not contain a hydrophilic group such as a hydroxy group is used as another monomer, it is possible to satisfy the stain resistance, and it is applicable to a wide range of monomer compositions. be.
  • non-crosslinking monomer examples include (meth)acrylate non-crosslinking monomer, (meth)acrylamide non-crosslinking monomer, aromatic vinyl non-crosslinking monomer, vinyl ketone non-crosslinking monomer, (meth)acrylonitrile.
  • non-crosslinking monomers examples include non-crosslinking monomers, N-vinylamide non-crosslinking monomers, and the like. These can be used alone or in combination of two or more.
  • non-crosslinking monomers (meth)acrylate non-crosslinking monomers and aromatic vinyl non-crosslinking monomers are preferred.
  • Examples of the (meth)acrylate non-crosslinking monomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 4-tert-butyl (meth)acrylate, and isobutyl (meth)acrylate.
  • n-octyl (meth)acrylate 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, methoxyethyl (meth)acrylate, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, glycerol mono(meth)acrylate , trimethylolethane mono(meth)acrylate, trimethylolpropane mono(meth)acrylate, butanetriol mono(meth)acrylate, polyethylene glycol mono(meth)acrylate, methoxypolyethylene glycol(meth)acrylate, pentaerythritol mono(meth)acrylate , dipentaerythritol mono(meth)acrylate, inositol mono(meth)acrylate, and the like. These can be used alone or in combination of two or more.
  • Examples of the (meth)acrylamide non-crosslinkable monomer include (meth)acrylamide, dimethyl (meth)acrylamide, hydroxyethyl (meth)acrylamide, (meth)acryloylmorpholine, diacetone (meth)acrylamide, etc. It will be done. These can be used alone or in combination of two or more.
  • aromatic vinyl non-crosslinkable monomers examples include styrene, ⁇ -methylstyrene, halogenated styrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,4,6-trimethylstyrene, and ethyl vinyl.
  • examples include styrenes such as benzene, 4-isopropylstyrene, 4-n-butylstyrene, 4-isobutylstyrene, and 4-tert-butylstyrene; and vinylnaphthalenes such as 1-vinylnaphthalene and 2-vinylnaphthalene. These can be used alone or in combination of two or more.
  • Examples of the vinyl ketone non-crosslinkable monomer include ethyl vinyl ketone, propyl vinyl ketone, isopropyl vinyl ketone, and the like. These can be used alone or in combination of two or more.
  • examples of the (meth)acrylonitrile non-crosslinking monomer include acrylonitrile, methacrylonitrile, and the like. These can be used alone or in combination of two or more.
  • examples of the N-vinylamide non-crosslinking monomer include N-vinylacetamide, N-vinylpropionamide, and the like. These can be used alone or in combination of two or more.
  • the total amount of non-crosslinking monomers used is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, particularly preferably 0. .1 parts by mass or more, and preferably 30 parts by mass or less, more preferably 15 parts by mass or less, particularly preferably 5 parts by mass or less, based on 100 parts by mass of the total amount of monomers used in Step A-P1. .
  • crosslinkable monomer examples include (meth)acrylate crosslinkable monomers, aromatic vinyl crosslinkable monomers, allyl crosslinkable monomers, and the like. These can be used alone or in combination of two or more. Further, as the crosslinking monomer, a di- to penta-functional cross-linking monomer is preferable, and a di- or tri-functional cross-linking monomer is more preferable. Among the crosslinking monomers, (meth)acrylate crosslinking monomers and aromatic vinyl crosslinking monomers are preferred.
  • Examples of the (meth)acrylate crosslinking monomer include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, and polyethylene glycol di(meth)acrylate.
  • (meth)acrylate propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1, 4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, glycerin di(meth)acrylate, trimethylolethane di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane Tri(meth)acrylate, butanetriol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, glucose di(meth)acrylate, glucose tri(meth)acrylate
  • aromatic vinyl crosslinking monomers examples include divinylbenzene, trivinylbenzene, divinyltoluene, divinylxylene, divinylethylbenzene, and divinylnaphthalene. These can be used alone or in combination of two or more.
  • allyl crosslinking monomer examples include diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diallyl maleate, diallyl fumarate, diallyl itaconate, diallyl trimellitate, triallyl trimellitate, and triallyl cyanurate. , diallyl isocyanurate, triallyl isocyanurate, and the like. These can be used alone or in combination of two or more.
  • examples of crosslinking monomers include dehydration condensation products of amino alcohols such as diaminopropanol, trishydroxymethylaminomethane, and glucosamine with (meth)acrylic acid, and conjugated monomers such as butadiene and isoprene.
  • examples include olefins.
  • the total amount of crosslinking monomers used is preferably 1 part by mass or more, more preferably 5 parts by mass or more, particularly preferably 10 parts by mass or more, based on 100 parts by mass of the total amount of monomers used in Steps A-P1. Also, it is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, particularly preferably 30 parts by mass or less, based on 100 parts by mass of the total amount of monomers used in Step A-P1.
  • Examples of the aqueous medium used in Step A-P1 include an aqueous solution of a water-soluble polymer, and examples of the water-soluble polymer include hydroxyethyl cellulose, polyvinyl alcohol, carboxymethyl cellulose, polyvinylpyrrolidone, starch, and gelatin.
  • the total amount of the aqueous medium used is usually about 200 parts by mass or more and 7000 parts by mass or less based on 100 parts by mass of the total amount of monomers.
  • a dispersion stabilizer such as sodium carbonate, calcium carbonate, sodium sulfate, calcium phosphate, or sodium chloride may be used.
  • a polymerization initiator is dissolved in a mixed solution (monomer solution) containing a monomer composition and, if necessary, a porosity-forming agent, and suspended in an aqueous medium.
  • a polymerization initiator may be dissolved in a mixed solution (monomer solution) containing a monomer composition and, if necessary, a porosity agent, and then added to an aqueous medium heated to a predetermined temperature.
  • a radical polymerization initiator is preferable.
  • the radical polymerization initiator include azo initiators, peroxide initiators, redox initiators, etc. Specifically, azobisisobutyronitrile, methyl azobisisobutyrate, azobis-2, Examples include 4-dimethylvaleronitrile, benzoyl peroxide, di-tert-butyl peroxide, benzoyl peroxide-dimethylaniline, and the like.
  • the total amount of the polymerization initiator used is usually about 0.01 parts by mass or more and 10 parts by mass or less based on 100 parts by mass of the total amount of monomers.
  • the above-mentioned porosity agent is used to produce porous particles, exists together with the monomer during polymerization within the oil droplets, and has the role of forming pores as a non-polymerized component.
  • the pore-forming agent is not particularly limited as long as it can be easily removed from the porous surface, and examples include linear polymers that are soluble in various organic solvents and mixed monomers. May be used together.
  • the porosity-forming agent examples include aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, and undecane; alicyclic hydrocarbons such as cyclopentane and cyclohexane; benzene, toluene, xylene, naphthalene, and ethylbenzene.
  • Aromatic hydrocarbons such as carbon tetrachloride, 1,2-dichloroethane, tetrachloroethane, chlorobenzene, etc.; halogenated hydrocarbons such as butanol, pentanol, hexanol, heptanol, 4-methyl-2-pentanol, 2- Aliphatic alcohols such as ethyl-1-hexanol; alicyclic alcohols such as cyclohexanol; aromatic alcohols such as 2-phenylethyl alcohol and benzyl alcohol; diethyl ketone, methyl isobutyl ketone, diisobutyl ketone, acetophenone, 2 -Ketones such as octanone and cyclohexanone; ethers such as dibutyl ether, diisobutyl ether, anisole, and ethoxybenzene; esters such as isopentyl acetate, but
  • surfactants including anionic surfactants such as alkyl sulfate salts, alkylaryl sulfate salts, alkyl phosphate salts, and fatty acid salts may be used in Step A-P1.
  • polymerization inhibitors such as nitrite salts such as sodium nitrite, iodide salts such as potassium iodide, tert-butylpyrocatechol, benzoquinone, picric acid, hydroquinone, copper chloride, and ferric chloride can also be used.
  • a polymerization regulator such as dodecyl mercaptan may be used.
  • the polymerization temperature in Steps A-P1 may be determined depending on the polymerization initiator, but is usually about 2 to 100°C, preferably 50 to 100°C.
  • the polymerization time is usually 5 minutes to 48 hours, preferably 10 minutes to 24 hours.
  • step A-P2 a step (hereinafter also referred to as step A-P2) of reacting the porous particles obtained in step A-P1 with at least one selected from a crosslinking agent and a hydrophilic agent is performed. You may go.
  • the hydrophilic reaction may be performed after the crosslinking reaction, or the crosslinking reaction may be performed after the hydrophilic reaction. Further, the crosslinking reaction and the hydrophilization reaction may be performed simultaneously.
  • the crosslinking reaction causes an addition reaction of the crosslinking agent to a part of the functional groups that the porous particles have in the polymer molecules.
  • a partial structure derived from the crosslinking agent is introduced.
  • the residues of the functional groups are crosslinked with each other via the partial structure derived from the crosslinking agent.
  • the hydrophilic agent is attached to a part of the functional groups that the porous particles have in the polymer molecule due to the above hydrophilic reaction.
  • An addition reaction is carried out, and a partial structure derived from the hydrophilizing agent is introduced.
  • the crosslinking agent used in Steps A-P2 may be one that can introduce a crosslinked structure by reacting with a functional group that can immobilize a ligand, but it may also be one that can introduce a crosslinked structure by reacting with a functional group that can immobilize a ligand.
  • a crosslinking agent containing at least two groups represented by -C( O)-NH- in the molecule and at least two carboxy groups as crosslinkable groups in the molecule. I can do it.
  • Dihydrazide glutaric acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, octanedioic acid dihydrazide, nonanedioic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, phthalic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, quinolic acid dihydrazide, etc.
  • Dicarboxylic acid dihydrazides Tricarboxylic acid trihydrazides such as cyclohexanetricarboxylic acid trihydrazide; (alkylenebisimino)bis(oxoalkanoic acids) such as N1,N1-(ethane-1,2-diyl)bis(succinic acid monoamide); etc.
  • One type of crosslinking agent can be used alone or two or more types can be used in combination.
  • dicarboxylic acid dihydrazides and (alkylenebisimino)bis(oxoalkanoic acids) are preferable in order to improve liquid permeability, pressure resistance characteristics during liquid passage, and stain resistance. Dihydrazides are more preferred.
  • crosslinking agents include polyfunctional isocyanate crosslinking agents, polyfunctional epoxy crosslinking agents, polyfunctional aldehyde crosslinking agents, polyfunctional thiol crosslinking agents, polyfunctional oxazoline crosslinking agents, and polyfunctional aziridine crosslinking agents. agent, metal chelate type crosslinking agent, etc.
  • the total amount of the crosslinking agent used is preferably 0.01 molar equivalent or more and 0.8 molar equivalent or less, more preferably 0.05 molar equivalent or more and 0.8 molar equivalent or less, per mole of the functional group derived from the functional group-containing monomer. .7 molar equivalent or less, particularly preferably 0.1 molar equivalent or more and 0.6 molar equivalent or less.
  • the hydrophilic agent used in Steps A-P2 contains a total of two hydrophilic groups of at least one kind selected from hydroxy groups and mercapto groups in the molecule in order to improve antifouling properties and low leakage of protein ligands.
  • Compounds having the above are preferred, and compounds having a total of 2 to 4 at least one kind of hydrophilic group selected from hydroxy groups and mercapto groups in the molecule are more preferred.
  • Examples include alcohols having a mercapto group in the molecule such as mercaptoethanol and thioglycerol; polyhydric alcohols such as glycerol and diglycerol.
  • the hydrophilic agents can be used alone or in combination of two or more. Among these, alcohols having a mercapto group in the molecule are preferred, and thioglycerol is particularly preferred, in order to improve stain resistance and low leakage of protein ligands.
  • the total amount of the hydrophilizing agent used is preferably 0.5 molar equivalent or more and 10 molar equivalent or less, more preferably 1 molar equivalent or more and 8 molar equivalent or less, per mole of the functional group derived from the functional group-containing monomer. and particularly preferably 2 molar equivalents or more and 6 molar equivalents or less.
  • Steps A-P2 may be performed in the presence of a basic catalyst.
  • the basic catalyst include triethylamine, N,N-dimethyl-4-aminopyridine, sodium hydroxide, diisopropylethylamine, etc., and one type can be used alone or two or more types can be used in combination.
  • reaction time of Steps A-P2 is not particularly limited, but is usually about 0.5 to 72 hours, preferably 0.5 to 48 hours. Further, the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 2 to 100°C.
  • the ligand used in step A-1 is one or more ligands selected from protein A, protein G, protein L, and related substances thereof.
  • protein A or a substance analogous to protein A is preferable, and a substance analogous to protein A is more preferable, in order to enhance the binding property with an antibody or a fragment thereof.
  • protein A contains five domains, E, D, A, B, and C, which have the ability to bind to immunoglobulins. Protein A analogs are preferred, and protein A analogs having a modified C domain are more preferred.
  • modified protein A which is a hexamer of the amino acid sequence domain of SEQ ID NO: 1 (SEQ ID NO: 29 of WO2020/040307).
  • modified protein A having a modified domain in which at least one residue has been substituted, it may tend to leak when used repeatedly for antibody isolation. Even when protein ligands are used as ligands, leakage of protein ligands can be suppressed when used repeatedly.
  • modified domains in which one or more amino acid residues in the C domain are replaced with other amino acid residues such as modified protein A, which is a hexamer of amino acid sequence domains of SEQ ID NOs: 3 to 14.
  • modified protein A which is a hexamer of amino acid sequence domains of SEQ ID NOs: 3 to 14.
  • the modified protein A having the above structure also has excellent low leakage of protein ligands when used repeatedly.
  • the protein ligand in order to increase the dynamic binding capacity and improve the low leakage of protein ligands, it has more than 85% homology with the amino acid sequence shown in SEQ ID NO: 2 (C domain of protein A).
  • the protein ligand has an amino acid sequence in which at least one or two or more substitutions selected from (a) to (i) below have been made to the amino acid sequence.
  • substitutions selected from (a) to (i) below those having an amino acid sequence with three or more substitutions selected from (a) to (i) below are preferred, and three to nine substitutions selected from (a) to (i) below are preferable.
  • amino acid sequence with the following substitutions it is more preferable to have an amino acid sequence with the following substitutions, and particularly preferable is an amino acid sequence with 3 to 5 substitutions selected from (a) to (i) below.
  • a ligand having two or more such amino acid sequences is preferred, a ligand having 2 to 12 such amino acid sequences is more preferred, and a ligand having 4 to 7 is particularly preferred.
  • those amino acid sequences may be the same or different.
  • Examples of means for substituting amino acid residues include known means such as site-specific mutation of a polynucleotide encoding a domain.
  • "homology of 85% or more" with respect to an amino acid sequence preferably means a homology of 90% or more, more preferably a homology of 95% or more, still more preferably a homology of 97% or more, and even more preferably a homology of 98% or more. % or more homology, particularly preferably 99% or more homology.
  • a "corresponding position" on an amino acid sequence refers to a position where the target sequence and a reference sequence (e.g., the amino acid sequence of SEQ ID NO: 2) have the greatest homology to the conserved amino acid residues present in each amino acid sequence. It can be determined by alignment to give . Alignment can be performed using known algorithms and procedures are known to those skilled in the art. For example, alignment can be performed using the Clustal W multiple alignment program (Thompson, J. D. et al, 1994, Nucleic Acids Res., 22:4673-4680) with default settings.
  • Clustal W is used, for example, by the European Bioinformatics Institute (EBI [www.ebi.ac.uk/index.html]) and the DNA Data Bank of Japan (DDBJ [www. It can be used on the ddbj.nig.ac.jp/index.html) website.
  • EBI European Bioinformatics Institute
  • DDBJ DNA Data Bank of Japan
  • Amino acid residues are also written herein by the following abbreviations: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C), glutamine (Gln or Q), glutamic acid (Glu or E), glycine (Gly or G), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K) ), methionine (Met or M), phenylalanine (Phe or F), proline (Pro or P), serine (Ser or S), threonine (Thr or T), tryptophan (Trp or W), tyrosine (Tyr or Y) , valine (Val or V), and any amino acid residue (Xaa or X).
  • N-terminus amino terminus
  • C-terminus carboxyl terminus
  • positions "before” and “after” a specific position in an amino acid sequence refer to positions adjacent to the N-terminus and C-terminus, respectively, of the specific position.
  • positions "before” and “after” a specific position refer to positions adjacent to the N-terminus and C-terminus, respectively, of the specific position.
  • the amino acid residues after insertion are placed at positions adjacent to the N-terminus and C-terminus of the specific position. be done.
  • the ligand used in step A-1 is a protein ligand (parent domain) having an amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2, and the above (a). Produced by performing one or more substitutions selected from ⁇ (i).
  • the above substitution may be one or more of the above substitutions (a) to (i), but Two or more substitutions selected from substitution (a), substitution (b), substitution (c), substitution (d), substitution (g), substitution (h), and substitution (i), and substitution (e) and substitution (
  • two or more substitutions include at least a combination with one or more substitutions selected from f), Three or more substitutions selected from substitution (a), substitution (b), substitution (c), substitution (d), substitution (g), substitution (h), and substitution (i), and substitution (e) and substitution
  • two or more substitutions include at least a combination with one or more substitutions selected from f).
  • substitution (f) when substitution (f) is made, protein ligands tend to leak out when used repeatedly; however, according to the present invention, even when substitution (f) is made, even when used repeatedly, It is possible to suppress leakage of protein ligands when the protein is present.
  • step A-1 For the amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2, at least substitution (a), substitution (b), substitution (c), substitution (d), substitution (g), An amino acid sequence in which two or more substitutions have been made, including at least a combination of two or more substitutions selected from substitution (h) and substitution (i), and one or more substitutions selected from substitution (e) and substitution (f).
  • ligands preferably has 2 to 12 ligands
  • two or more substitutions selected from substitution (a), substitution (b), substitution (c), substitution (d), substitution (g), substitution (h), and substitution (i), and substitution (e) and Two or more substitutions including at least a combination with one or more substitutions selected from substitution (f) are:
  • two or more substitutions include at least a combination of one or more substitutions selected from substitution (a) and substitution (d) and one or more substitutions selected from substitution (e) and substitution (f), One or more substitutions selected from substitution (a) and substitution (d), one or more substitutions selected from substitution (e) and substitution (f), substitution (b), substitution (c), substitution (g)
  • three or more substitutions include at least a combination with one or more substitutions selected from , substitution (h), and substitution (i).
  • such a replacement is A combination of substitution (a), substitution (e), substitution (f), and substitution (g); Combination of substitution (d), substitution (e) and substitution (h); Combination of substitution (a), substitution (e) and substitution (g); A combination of substitution (a), substitution (e), substitution (g), and substitution (i); A combination of substitution (a), substitution (b), substitution (c), substitution (e), and substitution (g); A combination of substitution (a), substitution (b), substitution (c), substitution (e), substitution (g), and substitution (i); can be mentioned.
  • substitutions other than two or more substitutions that include at least a combination with one or more substitutions selected from substitution (f) include: A combination of substitution (a), substitution (b) and substitution (g); Combination of substitution (a), substitution (c) and substitution (g); A combination of substitution (a), substitution (b), substitution (c) and substitution (g); Combination of substitution (a), substitution (d) and substitution (g); can be mentioned.
  • a protein ligand (parent domain) having an amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2
  • desired amino acid residues are substituted for the polynucleotide encoding the parent domain.
  • Examples include a method of introducing a mutation so that a substitution occurs.
  • Specific methods for introducing mutations into polynucleotides include site-specific mutation, homologous recombination, SOE (splicing by overlap extension)-PCR method (Gene, 1989, 77:61-68), etc. These detailed procedures are well known to those skilled in the art.
  • the produced ligand has immunoglobulin binding activity and functions as an immunoglobulin binding domain.
  • Preferred examples of the ligand used in step A-1 include at least the following (a) for the amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2 (C domain of protein A). Examples include those in which two or more amino acid sequences with one or more substitutions selected from (i) are connected in a linear chain. Note that the term "linearly connected" amino acid sequences refers to a structure in which two or more amino acid sequences are connected in series with or without a linker.
  • linearly connected means a structure in which the C-terminus of one amino acid sequence and the N-terminus of another amino acid sequence are connected in series via a linker;
  • linearly connected means a structure in which the C-terminus of one amino acid sequence and the N-terminus of another amino acid sequence are connected in series by a peptide bond.
  • the immobilized amount of the ligand is preferably 10 mg or more and 300 mg or less, more preferably 25 mg or more and 150 mg or less per gram of dry weight of the porous particles.
  • the immobilization of the ligand onto the porous particles in step A-1 may be carried out in the same manner as a conventional method.
  • a chemical bonding method is preferable.
  • a method in which a ligand is bonded to a functional group capable of immobilizing the ligand This method may be performed with reference to the descriptions in International Publication No. 2015/119255 pamphlet, International Publication No. 2015/041218 pamphlet, and the like.
  • the ligand immobilization reaction is preferably carried out in a buffer having a pH of 7 to 14 in order to increase reaction efficiency.
  • the reaction time of the ligand immobilization reaction is not particularly limited, but is usually about 0.1 to 72 hours.
  • the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 2 to 100°C.
  • Examples of the compound providing the linker include ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, 1,2-propylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1 Diglycidyl ethers of aliphatic polyhydroxy compounds such as , 4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerol diglycidyl ether; sorbitol polyglycidyl ether, glycerol poly Examples include polyglycidyl ethers of aliphatic polyhydroxy compounds such as glycidyl ether, trimethylolpropane polyglycidyl ether, diglycerol polyglycidyl ether, and
  • the linker introduction reaction is preferably carried out in a buffer having a pH of 7 to 14 in order to increase reaction efficiency.
  • the reaction time of the linker introduction reaction is not particularly limited, but is usually about 0.5 to 72 hours.
  • the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 2 to 100°C.
  • the method for producing a chromatography carrier of the present invention further includes the following step A-2 between step A-1 and step B in order to improve the antifouling property and the low protein ligand leakage property. It is preferable to use the hydrophilic group-containing ligand-immobilized porous particles obtained in Step-2 as the ligand-immobilized porous particles obtained in Step A-1 in Step B. (Step A-2) The porous particles on which the ligand was fixed in Step A-1 are reacted with a compound having a total of two or more hydrophilic groups of at least one kind selected from hydroxy groups and mercapto groups in the molecule. process of letting
  • the compound having a total of two or more hydrophilic groups in the molecule used in step A-2 is at least one type selected from hydroxy groups and mercapto groups in order to improve antifouling properties and low leakage of protein ligands.
  • Compounds having a total of 2 to 4 hydrophilic groups in the molecule are preferred. Examples include alcohols having a mercapto group in the molecule such as mercaptoethanol and thioglycerol; polyhydric alcohols such as glycerol and diglycerol. Compounds having a total of two or more hydrophilic groups in the molecule can be used singly or in combination of two or more. Among these, alcohols having a mercapto group in the molecule are preferred, and thioglycerol is particularly preferred, in order to improve stain resistance and low leakage of protein ligands.
  • the total amount of the compound having two or more hydrophilic groups in the molecule in step A-2 is preferably 1 part by mass or more based on 100 parts by mass of the porous particles (dry weight) on which the ligand is immobilized.
  • the content is 1000 parts by mass or less, more preferably 10 parts by mass or more and 800 parts by mass or less, particularly preferably 100 parts by mass or more and 600 parts by mass or less.
  • Step A-2 may be performed in the presence of a basic catalyst.
  • the basic catalyst include triethylamine, N,N-dimethyl-4-aminopyridine, sodium hydroxide, diisopropylethylamine, etc., and one type can be used alone or two or more types can be used in combination.
  • reaction time in step A-2 is not particularly limited, but is usually about 0.5 to 72 hours, preferably 0.5 to 48 hours. Further, the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 2 to 100°C.
  • the method comprises a step of reacting the compound with a compound having at least one type of ligand-reactive group selected from a group consisting of a group consisting of a group containing a ligand, a carbodiimide group, and a cyclic ether group.
  • Step B uses porous particles on which the ligands obtained in Step A-1 are immobilized.
  • the porous particles may be those to which the ligand after the reaction in step A-1 is immobilized.
  • the porous particles with immobilized ligands obtained in step A-1 may be used, or the porous particles containing a hydrophilic group and immobilized with ligands obtained by further performing step A-2 may be used.
  • the compound represented by the following formula (1) and its salt in order to increase the dynamic binding capacity and improve the low leakage of protein ligand, the compound represented by the following formula (1) and its salt, the following formula
  • One or more compounds selected from the compound represented by (2) and the compound represented by the following formula (3) are preferred, and the compound represented by the formula (1) and its salt and the compound represented by the formula (2) are preferred.
  • One or more types selected from the compounds represented by the formula (1) are more preferred, and one or more types selected from the compounds represented by the formula (1) and salts thereof are particularly preferred.
  • the salts of the compound represented by formula (1) include inorganic acid salts such as hydrochloride, sulfate, nitrate, hydrofluoride, and hydrobromide; acetate, tartrate, and citrate. , organic acid salts such as fumarate, and the like.
  • R 1 and R 2 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group.
  • R 3 and R 4 independently represent a substituted or unsubstituted hydrocarbon group, and R 3 and R 4 may be bonded to each other to form a cyclic structure.
  • R 5 represents a substituted or unsubstituted hydrocarbon group
  • X represents a cyclic ether group
  • the number of carbon atoms in the hydrocarbon groups represented by R 1 to R 5 is preferably 1 to 1 in order to increase dynamic binding capacity and improve low leakage of protein ligands. 30, more preferably 1-14, even more preferably 1-8, particularly preferably 1-4.
  • the "hydrocarbon group" for R 1 to R 5 include an alkyl group, an alkenyl group, a cycloalkyl group, a bridged ring hydrocarbon group, an aryl group, and an aralkyl group.
  • the number of carbon atoms in the alkyl group is preferably 1 to 30, more preferably 1 to 14, even more preferably 1 to 8, particularly preferably 1 to 4.
  • the alkyl group may be linear or branched. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, and heptyl group. , octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group and the like.
  • the alkenyl group preferably has 2 to 30 carbon atoms, more preferably 2 to 14 carbon atoms, still more preferably 2 to 8 carbon atoms, and particularly preferably 2 to 4 carbon atoms.
  • the alkenyl group may be linear or branched. Specific examples of the alkenyl group include a vinyl group, a propenyl group, a butenyl group, and the like.
  • the number of carbon atoms in the cycloalkyl group and the bridged ring hydrocarbon group is preferably 3 to 30, more preferably 3 to 12, particularly preferably 3 to 8.
  • Specific examples of the cycloalkyl group include a cyclopropyl group and a cyclohexyl group.
  • Examples of the bridged ring hydrocarbon group include an isobornyl group and the like.
  • the number of carbon atoms in the aryl group is preferably 6 to 30, more preferably 6 to 12.
  • phenyl group etc. can be mentioned.
  • the aralkyl group preferably has 7 to 30 carbon atoms, more preferably 7 to 13 carbon atoms. Examples include benzyl group and phenethyl group.
  • the "hydrocarbon group" in R 1 to R 5 may have a substituent.
  • the substituent is preferably a substituent containing a heteroatom, such as a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom; a hydroxy group; an alkoxy group such as a methoxy group or an ethoxy group (preferably a carbon number of 1 -4 alkoxy group); Amino group; Monoalkylamino group (preferably mono C 1-4 alkylamino group) such as monomethylamino group, monoethylamino group, mono n-propylamino group; dimethylamino group, diethylamino group , a dialkylamino group (preferably a di-C 1-4 alkylamino group) such as methylethylamino group; a carboxy group; a cyano group; a sulfo group; a nitro
  • a mono-C 1-4 alkylamino group means a mono-alkylamino group in which the alkyl group has 1 to 4 carbon atoms
  • a di-C 1-4 alkylamino group refers to a mono-C 1-4 alkylamino group in which the two alkyl groups have 1 to 4 carbon atoms. 4 dialkylamino group.
  • the number of substituents is preferably 0 to 8, more preferably 0 to 2.
  • R 1 and R 2 in formula (1) are hydrogen atoms, substituted or unsubstituted alkyl groups, or cycloalkyl groups in order to increase dynamic binding capacity and improve low leakage of protein ligands.
  • a hydrogen atom, an alkyl group, a cycloalkyl group, an aminoalkyl group, a monoalkylaminoalkyl group, or a dialkylaminoalkyl group and a hydrogen atom, an alkyl group having 1 to 14 carbon atoms, and a cycloalkyl group having 3 to 12 carbon atoms.
  • Alkyl group aminoalkyl group having 1 to 14 carbon atoms, alkyl group having 1 to 14 carbon atoms having a mono-C 1-4 alkylamino group as a substituent, or carbon having a di-C 1-4 alkylamino group as a substituent More preferred are alkyl groups having 1 to 14 carbon atoms, such as a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aminoalkyl group having 1 to 8 carbon atoms, and a mono-C 1-4 alkylamino group.
  • An alkyl group having 1 to 8 carbon atoms having a group as a substituent, or an alkyl group having 1 to 8 carbon atoms having a diC 1-4 alkylamino group as a substituent is more preferable, and an alkyl group, a cycloalkyl group having 3 to 8 carbon atoms, an aminoalkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 4 carbon atoms having a mono-C 1-4 alkylamino group as a substituent, or a di-C 1- Particularly preferred is an alkyl group having 1 to 4 carbon atoms having a 4-alkylamino group as a substituent.
  • R 1 and R 2 in formula (1) are such that at least one of R 1 and R 2 is an aminoalkyl group or A monoalkylaminoalkyl group or a dialkylaminoalkyl group is preferred.
  • the hydrocarbon groups represented by R 3 and R 4 in formula (2) are substituted or unsubstituted alkyl groups, or substituted or an unsubstituted alkenyl group, more preferably an alkyl group or an alkenyl group, even more preferably an alkyl group having 1 to 14 carbon atoms or an alkenyl group having 1 to 14 carbon atoms, an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 1 to 8 carbon atoms.
  • an alkenyl group having 1 to 8 carbon atoms is more preferred, an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 1 to 4 carbon atoms is even more preferred, an alkyl group having 1 to 4 carbon atoms is even more preferred, an alkyl group having 2 to 4 carbon atoms Particularly preferred are groups.
  • the number of carbon atoms in the cyclic structure formed by R 3 and R 4 bonding to each other is preferably 4 to 8, more preferably 4 to 6.
  • examples of the compound having a ligand-reactive group include succinic anhydride, maleic anhydride, citraconic anhydride, dimethylmaleic anhydride, and glutaric acid.
  • examples include anhydrides.
  • R 5 is preferably a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkyl group having 1 to 1 carbon atoms, in order to increase dynamic binding capacity and improve low leakage of protein ligands. 14 alkyl groups are more preferred, substituted or unsubstituted alkyl groups having 1 to 8 carbon atoms are even more preferred, substituted or unsubstituted alkyl groups having 1 to 4 carbon atoms are even more preferred, and alkyl groups having 1 to 4 carbon atoms are more preferred.
  • an alkyl group having 1 to 4 carbon atoms having a substituent selected from a halogen atom, a hydroxy group, and an alkoxy group more preferably an alkyl group having 1 to 4 carbon atoms, or a halogen atom, a hydroxy group, and a 1 to 4 carbon atoms.
  • An alkyl group having 1 to 4 carbon atoms having a substituent selected from alkoxy groups is more preferred, and an alkyl group having 1 to 4 carbon atoms is particularly preferred.
  • X in formula (3) represents a cyclic ether group.
  • This cyclic ether group is the same as that mentioned as the functional group in Step A-P1, and a cyclic ether group having 3 to 7 atoms constituting the ring is preferable.
  • the cyclic ether group may have an alkyl group as a substituent.
  • Specific examples of the cyclic ether group include cyclic ether groups represented by formulas (4) to (9) listed as functional groups in step A-P1; ) is preferred, and a cyclic ether group represented by formula (4) is more preferred.
  • the compound having a ligand-reactive group used in Step B is 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide in order to increase dynamic binding capacity and improve low leakage of protein ligands.
  • the total amount of the compound having a ligand-reactive group used in Step B is determined per 1 g of dry weight of the porous particles on which the ligand is immobilized.
  • the amount is preferably 0.01 mmol or more and 15 mmol or less, more preferably 0.02 mmol or more and 10 mmol or less, still more preferably 0.05 mmol or more and 5 mmol or less, and even more preferably 0.1 mmol.
  • the amount is 3 mmol or less, particularly preferably 0.3 mmol or more and 3 mmol or less.
  • Step B is preferably carried out in an aqueous medium in order to increase reaction efficiency.
  • the aqueous medium include water and various buffers such as carbonate buffer, CHES buffer, CAPS buffer, TAPS buffer, sodium borate buffer, and phosphate buffer.
  • carbonate buffers and CAPS buffers are preferred, and carbonate buffers are more preferred, in order to improve low leakage of protein ligands.
  • a carbonate buffer or a CAPS buffer is used as the aqueous medium, especially when a carbonate buffer is used, it becomes easier to achieve both dynamic binding capacity and low protein ligand leakage.
  • the reaction pH in Step B is preferably 7 or higher, more preferably 8 to 14, even more preferably 9 to 12, particularly preferably 9, in order to increase the dynamic binding capacity and improve low leakage of protein ligands. ⁇ 11.
  • the reaction pH in Step B is set to 12 or less, particularly when it is set to 11 or less, it becomes easier to achieve both dynamic binding capacity and low protein ligand leakage.
  • the reaction time in step B is not particularly limited, but is usually about 0.1 to 72 hours, preferably 0.3 to 48 hours. Further, the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 2 to 100°C.
  • reaction products obtained in each of the above steps may be purified by separation means such as filtration and washing. Furthermore, it may be classified.
  • a chromatography carrier that has a large dynamic binding capacity for antibodies or fragments thereof and that does not easily leak protein ligands even when used repeatedly for antibody isolation can be obtained. Easy to manufacture. Furthermore, the chromatography carrier thus obtained has a large dynamic binding capacity for antibodies or fragments thereof, and protein ligands are unlikely to leak out even when used repeatedly for antibody isolation. Furthermore, when isolating antibodies, non-specific adsorption of contaminants and the like to protein ligands can be suppressed. It is also suitable for use in affinity chromatography. Next, the chromatography carrier of the present invention obtained in this way will be explained.
  • One or more compounds selected from the compound represented by formula (1) and its salts were used as the compound having a ligand-reactive group used in step B, and a carbonate buffer or CAPS buffer was used as the aqueous medium.
  • one or more compounds selected from the compound represented by formula (1) and its salts are used as the compound having a ligand-reactive group used in step B, and a carbonate buffer or CAPS buffer is used as the aqueous medium.
  • reaction pH in step B when the reaction pH in step B is 12 or less or 11 or less, one or more compounds selected from the compound represented by formula (1) and its salts are used as the compound having a ligand-reactive group used in step B, a carbonate buffer is used as the aqueous medium, and the ligand is
  • the total amount of compounds having reactive groups used is 0.3 mmol or more per 1 g of dry weight of porous particles with immobilized ligands, both dynamic binding capacity and low leakage of protein ligands can be achieved. It becomes easier.
  • Examples of the compound having a ligand-reactive group include those similar to those used in Step B.
  • a partial structure having a group represented by -CH 2 -CH(-OH)- in the molecule -CH 2 A group represented by -CH(-OH)-R 5 is preferred.
  • alkanediyl groups such as ethane-1,2-diyl group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group; ethene-1,2-diyl group;
  • alkenediyl groups such as.
  • the chemical modification rate is preferably 1 mol% or more, more preferably 3 mol% or more, even more preferably 10 mol% or more, in order to increase the dynamic binding capacity and improve the low leakage of protein ligands. More preferably 20 mol% or more, particularly preferably 30 mol% or more, and in order to maintain the function that the protein ligand should have, preferably 70 mol% or less, more preferably 60 mol% or less, More preferably, it is 55 mol% or less, particularly preferably 50 mol% or less.
  • the specific range is preferably 1 mol% or more and 70 mol% or less, more preferably 3 mol% or more and 70 mol% or less, even more preferably 10 mol% or more and 60 mol% or less, and 20 mol% or more and 55 mol% or less. is more preferable, and particularly preferably 30 mol% or more and 50 mol% or less.
  • Chemical modification rate (mol%) (1-Amino group content before step B / amino group content in chromatography carrier) ⁇ 100 It can be calculated by
  • the amino group of the ligand and the compound having the ligand-reactive group react.
  • an amide group can be generated.
  • the volume average particle diameter of the carrier for chromatography of the present invention is preferably 40 to 150 ⁇ m, more preferably 50 to 100 ⁇ m. Further, the coefficient of variation of the volume average particle diameter is preferably 40% or less, more preferably 30% or less. Further, the specific surface area of the carrier for chromatography of the present invention is preferably 1 to 500 m 2 /g, more preferably 10 to 300 m 2 /g. Further, the volume average pore diameter of the chromatography carrier of the present invention is preferably 10 to 300 nm. The volume average particle diameter, coefficient of variation, specific surface area, and volume average pore diameter can be measured by laser diffraction, scattering particle size distribution measurement, or the like.
  • the chromatography column of the present invention is characterized by containing the chromatography carrier of the present invention.
  • the chromatography column of the present invention is similar to a conventional chromatography column except that it contains the chromatography carrier of the present invention.
  • a chromatography column including a column container and the chromatography carrier of the present invention filled in the column container can be mentioned.
  • the chromatography column of the invention is suitable for use in affinity chromatography.
  • the method for isolating antibodies or fragments thereof of the present invention is characterized by using the chromatography carrier of the present invention or the chromatography column of the present invention.
  • the term "antibody” is a concept that includes any class of immunoglobulin, such as IgG, IgA, IgD, IgE, IgM, and subclasses thereof, as well as variants thereof.
  • the term “antibody” may be a chimeric antibody such as a humanized antibody, an antibody complex, or another modified immunoglobulin containing an antigen recognition site.
  • antibody fragment may be an antibody fragment that includes an antigen recognition site or an antibody fragment that does not include an antigen recognition site.
  • antibody fragments that do not contain an antigen recognition site include proteins consisting only of the Fc region of immunoglobulin, Fc fusion proteins, and variants and modifications thereof.
  • the method for isolating the antibody or fragment thereof of the present invention can be carried out in the same manner as the general method for isolating antibodies or fragments thereof, except for using the chromatography carrier of the present invention or the chromatography column of the present invention. good.
  • a method including a step of bringing the chromatography carrier of the present invention into contact with a sample containing an antibody or a fragment thereof can be mentioned.
  • the antibody or its fragment is captured on a chromatography carrier, and after separating impurities (e.g., proteins other than the antibody or its fragment) from the antibody or its fragment, the antibody or its fragment is captured on the chromatography carrier.
  • an elution step is performed to elute the antibody or its fragment.
  • a dissociation solution that dissociates the immunoglobulin binding protein and the antibody or its fragment is usually used. Isolation may also be performed using a chromatography column of the invention.
  • a method includes a method that includes a step of passing a sample containing an antibody or a fragment thereof through the chromatography column of the present invention, and by this step, the antibody or a fragment thereof is captured on a chromatography carrier. After separating contaminants from the antibody or fragment thereof, it is preferable to perform an elution step in the same manner as above.
  • Samples containing antibodies or fragments thereof are not particularly limited, but include, for example, whole blood, serum, plasma, various blood cells, blood components such as blood clots and platelets, urine, semen, breast milk, sweat, interstitial fluid, and interstitial fluid.
  • blood components such as blood clots and platelets
  • urine semen, breast milk, sweat, interstitial fluid, and interstitial fluid.
  • Various liquid samples such as qualitative lymph fluid, bone marrow fluid, tissue fluid, saliva, gastric fluid, joint fluid, pleural effusion, bile, ascites fluid, amniotic fluid, etc., bacterial fluid, cell culture medium, cell culture supernatant, tissue cell disruption fluid, etc. can be mentioned.
  • PrA-0 to PrA-13 Immunoglobulin binding proteins PrA-0 to PrA-13 were obtained.
  • PrA-0 is an immunoglobulin binding protein that contains a homohexamer in which the C domain of Protein A (SEQ ID NO: 2) is linked in tandem.
  • PrA-1 to PrA-13 are mutants in which the mutations listed in Table 1 were introduced into each immunoglobulin binding domain of PrA-0.
  • PrA-0 to PrA-13 Expression and purification of PrA-0 to PrA-13 were performed as follows. Escherichia coli BL21 (DE3) was transformed using the plasmids encoding PrA-0 to PrA-13, and the resulting transformants were cultured in a rich medium at 37°C until the logarithmic growth phase. Thereafter, the target protein was expressed by adding isopropyl- ⁇ -thiogalactopyranoside (manufactured by Wako Pure Chemical Industries, Ltd.) to the medium at a final concentration of 1 mM and culturing at 37° C. for 4 hours.
  • isopropyl- ⁇ -thiogalactopyranoside manufactured by Wako Pure Chemical Industries, Ltd.
  • the culture solution was centrifuged to remove the supernatant, and the resulting bacterial cells were treated with egg white-derived lysozyme (manufactured by Wako Pure Chemical Industries, Ltd.) and polyoxyethylene (10) octylphenyl ether (manufactured by Wako Pure Chemical Industries, Ltd.).
  • the bacterial cells were disrupted by adding 30 mM Tris buffer containing pH 9.5.
  • the obtained cell lysate was subjected to cation exchange chromatography (SP-Sepharose FF, manufactured by GE Healthcare Biosciences) and anion exchange chromatography (Q-Sepharose FF, manufactured by GE Healthcare Biosciences). Globulin binding proteins were purified.
  • the purified immunoglobulin binding protein was dialyzed against 10 mM citrate buffer pH 6.0. The purity of the recombinant immunoglobulin binding protein confirmed by SDS-PAGE was greater than 95%.
  • Example 1 (Step A-1) Immobilization of Ligand 2.69 g of polyvinyl alcohol (PVA-217 manufactured by Kuraray Co., Ltd.) was added to 448 g of pure water, and the mixture was heated and stirred to dissolve the polyvinyl alcohol to obtain an aqueous solution.
  • PVA-217 manufactured by Kuraray Co., Ltd.
  • a monomer consisting of 3.63 g of divinylbenzene (manufactured by Wako Pure Chemical Industries, Ltd.), 0.36 g of 1-ethyl-4-vinylbenzene (manufactured by ChemSampCo), and 14.15 g of glycidyl methacrylate (manufactured by Mitsubishi Gas Chemical Co., Ltd.)
  • the composition was dissolved in 29.38 g of 2-octanone (manufactured by Toyo Gosei Co., Ltd.) to prepare a monomer solution.
  • the entire amount of the aqueous solution was poured into a separable flask, which was equipped with a thermometer, a stirring blade, and a cooling tube, set in a hot water bath, and stirred under a nitrogen atmosphere.
  • Pour the entire amount of the monomer solution into a separable flask warm it with a hot water bath, and when the internal temperature reaches 85°C, 2,2'-azobis(methyl isobutyrate) (manufactured by Wako Pure Chemical Industries, Ltd.) 1.34 g was added, and the internal temperature was brought to 86°C. Thereafter, stirring was performed for 3 hours while maintaining the temperature at 86°C.
  • the reaction solution was filtered and washed with pure water and ethanol.
  • the washed particles were dispersed in pure water and decanted three times to remove small particles.
  • the particles were dispersed in pure water so that the particle concentration was 10% by mass to obtain a porous particle dispersion.
  • porous particles 1 The porous particles contained in this dispersion are referred to as "porous particles 1." Then, 0.956 g of adipic acid dihydrazide (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 8 g of thioglycerol (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 1.418 g of diisopropylethylamine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were then added to 100 g of Porous Particle 1 Dispersion. The mixture was heated to 70°C and stirred for 8 hours while maintaining the temperature at 70°C.
  • adipic acid dihydrazide manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • thioglycerol manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • diisopropylethylamine manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • porous particles 2 The porous particles contained in this dispersion are referred to as "porous particles 2."
  • the thioglycerol-derived hydroxy groups contained in the porous particles 2 were reacted with ethylene glycol diglycidyl ether.
  • porous particles 3 The porous particles contained in this dispersion are referred to as "porous particles 3."
  • a ligand was immobilized on the porous particles 3. That is, 28.8 g of pure water, 5.4 g of sodium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), 0.2 g of sodium hydrogen carbonate (manufactured by Wako Pure Chemical Industries, Ltd.), and 0.2 g of sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.). 16 g were mixed to obtain a carbonate buffer (pH 9.4).
  • porous particles 4 The porous particles contained in this dispersion are referred to as "porous particles 4."
  • Step A-2 Hydrophilization reaction Mix 8.8 g of pure water, 0.1 g of sodium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), and 0.03 g of sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) to create a buffer. After that, 4.5 g of thioglycerol (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added to obtain a hydrophilic reaction solution. 8 mL of the porous particle 4 dispersion obtained in step A-1 was added to this hydrophilization reaction solution, and the mixture was shaken and stirred at 23° C. for 16 hours to perform a hydrophilization reaction.
  • thioglycerol manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • porous particles 5 The porous particles after this hydrophilization reaction were filtered and washed in sequence with a 0.1M aqueous sodium hydroxide solution and a 0.1M sodium citrate buffer (pH 3.2). Next, the particles were dispersed in pure water so that the particle concentration was 50% by volume to obtain a porous particle dispersion.
  • the porous particles contained in this dispersion are referred to as "porous particles 5.”
  • Step B Post-modification reaction 1M sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) and pure water were mixed into a solution in which 67.2 mg of sodium hydrogen carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 6 mL of pure water. 8 mL of carbonate buffer 1 (pH 10 at 23°C) was obtained. To this carbonate buffer 1, 8 mL of the porous particle 5 dispersion obtained in step A-2 and 0.16 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (hereinafter also referred to as EDC) were added. The carrier 1 was obtained by adding the mixture and shaking and stirring at 23° C.
  • EDC 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide
  • This carrier 1 was sequentially filtered and washed with 0.1M aqueous sodium hydroxide solution, 0.1M sodium citrate buffer (pH 3.2), and 16wt% ethanol/50mM phosphate buffer (pH 7.3), and then the carrier 1 was prepared as a carrier for affinity chromatography. A containing liquid (carrier content: 50% by volume) was obtained.
  • Modification rate (mol%) ⁇ (1-number of moles of lysine in the filtrate from which solid components were removed by the above operation) / (number of moles of protein A ligand in porous particles 5 ⁇ protein A ligand in porous particles 5 Number of lysine present per lysine) ⁇ 100 ⁇
  • Example 2 Step A-1 and Step A- of Example 1 except that 0.16 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed to 0.14 g of propionic anhydride.
  • the same operations as in Step 2 and Step B were performed to obtain a carrier-containing liquid for affinity chromatography (carrier content: 50% by volume).
  • the carrier contained in this liquid is referred to as carrier 2.
  • Buffer replacement was performed by suction filtering 10 mL of the carrier 2-containing solution 10 times with 5 mL of 0.01 M NaOH aqueous solution using JIS P3801 standard 5 type A filter paper.
  • the obtained dispersion and pure water were mixed in a bottle so that 0.6 g of carrier, 8 g of 0.01M NaOH aqueous solution, and 30 g of pure water were prepared.
  • the obtained carrier-containing liquid was titrated with a 0.01M aqueous hydrochloric acid solution while stirring with a stirrer. In this titration, the above hydrochloric acid aqueous solution is added dropwise in 0.1 mL increments, pH 7 is set as the neutralization point, and from the amount of hydrochloric acid aqueous solution required to reach the neutralization point, the amino group content per 1 g of carrier solid content is determined as follows. Calculated using the formula.
  • Example 3 Step A-1 and Step A-2 of Example 1 except that 0.16 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed to 0.10 g of acetic anhydride. Then, the same operation as in step B was performed to obtain carrier 3. The modification rate (mol %) was measured in the same manner as in Example 2.
  • Example 4 Step A-1 and Step A- of Example 1 except that 0.16 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed to 0.10 g of succinic anhydride.
  • Carrier 4 was obtained by carrying out the same operations as in Step 2 and Step B.
  • the modification rate (mol %) was measured in the same manner as in Example 2.
  • Example 5 Step A-1 and Step A of Example 1 except that 0.16 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed to 0.19 g of pivalic anhydride. -2 and Step B were performed to obtain carrier 5. The modification rate (mol %) was measured in the same manner as in Example 2.
  • Example 6 (Example 6) Step A-1, Step A-2, and Step A-2 of Example 1 except that 0.16 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed to 0.08 g of glycidol. The same operation as in step B was performed to obtain carrier 6. The modification rate (mol %) was measured in the same manner as in Example 1.
  • Example 7 Step A-1 and Step A- of Example 1 except that the amount of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed from 0.16 g to 0.03 g.
  • Carrier 7 was obtained by carrying out the same operations as in Step 2 and Step B.
  • the modification rate (mol %) was measured in the same manner as in Example 1.
  • Example 8 Step A-1 and Step A- of Example 1 except that the amount of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed from 0.16 g to 0.32 g.
  • Carrier 8 was obtained by carrying out the same operations as in Step 2 and Step B.
  • the modification rate (mol %) was measured in the same manner as in Example 1.
  • Example 9 After dissolving 67.2 mg of sodium hydrogen carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) in 5 mL of pure water, 5M sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) and pure water were mixed with this to create carbonate buffer 2 (23 pH 13) was obtained. The same steps as Step A-1, Step A-2 and Step B of Example 1 were carried out, except that carbonate buffer 1 (pH 10 at 23°C) used in Step B was changed to carbonate buffer 2 (pH 13 at 23°C). The operation was performed to obtain carrier 9. The modification rate (mol %) was measured in the same manner as in Example 1.
  • Example 10 After dissolving 151.0 mg of N-Cyclohexyl-3-aminopropanesulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd., hereinafter also referred to as CAPS) in 5 mL of pure water, 1M sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) and pure Water was mixed to obtain CAPS buffer (pH 10 at 23°C).
  • CAPS buffer pH 10 at 23°C
  • Step B of Example 1 The same operations as Step A-1, Step A-2, and Step B of Example 1 were performed, except that carbonate buffer 1 (pH 10 at 23° C.) used in Step B was changed to CAPS buffer (pH 10 at 23° C.).
  • a carrier 10 was obtained.
  • the modification rate (mol %) was measured in the same manner as in Example 1.
  • Example 11 After dissolving 177.0 mg of N-Cyclohexyl-2-aminoethanesulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd., hereinafter also referred to as CHES) in 5 mL of pure water, 1M sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) and pure Water was mixed to obtain CHES buffer (pH 10 at 23°C). The same operation as in Step A-1, Step A-2, and Step B of Example 1, except that carbonate buffer 1 (pH 10 at 23 °C) used in Step B was changed to CHES buffer (pH 10 at 23 °C). A carrier 11 was obtained. The modification rate (mol %) was measured in the same manner as in Example 1.
  • Examples 12-23 The carrier was prepared and the modification rate (mol%) was calculated in the same manner as in Example 1, except that the immunoglobulin binding protein PrA-1 prepared in Preparation Example was changed to PrA-2 to PrA-13.
  • Comparative example 1 Porous particles 5 were obtained by performing the same operations as in Step A-1 and Step A-2 of Example 1. This porous particle 5 is used as a carrier in Comparative Example 1.
  • DBC Dynamic binding capacity
  • AAA evaluation criteria AAA (excellent): 60 mg/mL or more AA (excellent): 55 mg/mL or more and less than 60 mg/mL A (good): 50 mg/mL or more and less than 55 mg/mL B (poor): less than 50 mg/mL

Abstract

The present invention provides a carrier which is for chromatography, which has a large dynamic binding capacity with respect to an antibody or a fragment thereof, and through which a protein ligand is unlikely to leak even when the carrier is repeatedly used for isolation of an antibody. Provided is a method for producing a carrier for chromatography, said method comprising the following steps A-1 and B. (Step A-1) A step for immobilizing, to porous particles, one or more ligands selected from protein A, protein G, protein L, and analogues thereof. (Step B) A step for reacting the porous particles to which the one or more ligands have been immobilized in the step A-1 and a compound which has at least one ligand reactive group selected from groups represented by -C(=O)-O-C(=O)-, carbodiimide groups, and cyclic ether groups.

Description

クロマトグラフィー用担体の製造方法及びクロマトグラフィー用担体Method for producing chromatography carrier and chromatography carrier
 本発明は、クロマトグラフィー用担体の製造方法、クロマトグラフィー用担体、クロマトグラフィーカラム、及び抗体又はその断片の単離方法に関する。 The present invention relates to a method for producing a chromatography carrier, a chromatography carrier, a chromatography column, and a method for isolating an antibody or a fragment thereof.
 抗体は近年、研究用試薬、抗体医薬などに広く利用されている。これら試薬や医薬用の抗体は、一般にクロマトグラフィーによる単離を経て製造される。このようなクロマトグラフィーに用いる担体には、抗体やその断片に対する動的結合容量を備えることや、単離の際にリガンドが漏出しにくいこと、不純物が非特異吸着しにくいことなどが求められる。例えば、メジアン粒径を特定範囲に調整するなどすることで、抗体に対する動的結合容量を大きくした担体が知られている(特許文献1)。 In recent years, antibodies have been widely used as research reagents, antibody drugs, etc. These reagents and antibodies for pharmaceutical use are generally produced through isolation by chromatography. The carrier used for such chromatography is required to have a dynamic binding capacity for antibodies and fragments thereof, to be difficult to leak out of the ligand during isolation, and to be difficult to non-specifically adsorb impurities. For example, a carrier is known in which the dynamic binding capacity for antibodies is increased by adjusting the median particle size to a specific range (Patent Document 1).
特表2008-523140号公報Special Publication No. 2008-523140 WO2020/040307号公報WO2020/040307 publication 特開2022-62096号公報JP2022-62096A
 また、アルカリ耐性を改善させ、抗体の単離に繰り返し用いた場合でもリガンドが漏出しにくくするために、ポリペプチド鎖を変異させたイムノグロブリン結合タンパク質をリガンドとすることが提案されているが(特許文献2、特許文献3)、タンパク質リガンド低漏出性の更なる改善が求められている。また、上記のようなアルカリ耐性を改善させるためのポリペプチド鎖の変異は、元々のイムノグロブリン結合タンパク質の動的結合容量を低下させ得るため、抗体又はその断片に対する動的結合容量を大きくすることと、タンパク質リガンドの漏出を抑えることとの両立は難しかった。
 本発明が解決しようとする課題は、抗体又はその断片に対する動的結合容量が大きく、且つ抗体の単離に繰り返し用いた場合でもタンパク質リガンドが漏出しにくいクロマトグラフィー用担体を提供することにある。
In addition, it has been proposed to use immunoglobulin-binding proteins with mutated polypeptide chains as ligands in order to improve alkaline tolerance and prevent the ligand from leaking even when used repeatedly for antibody isolation. Patent Document 2, Patent Document 3), there is a need for further improvement in low leakage of protein ligands. In addition, mutations in the polypeptide chain to improve alkaline tolerance as described above can reduce the dynamic binding capacity of the original immunoglobulin binding protein, and thus increase the dynamic binding capacity for antibodies or fragments thereof. It was difficult to achieve both this and suppressing the leakage of protein ligands.
The problem to be solved by the present invention is to provide a chromatography carrier that has a large dynamic binding capacity for antibodies or fragments thereof, and that protein ligands do not easily leak out even when used repeatedly for antibody isolation.
 上記課題は、下記<1>~<19>の手段により解決された。
 <1> 以下の工程A-1及び工程Bを備える、クロマトグラフィー用担体の製造方法(以下、本発明のクロマトグラフィー用担体の製造方法とも称する)。
 (工程A-1)多孔質粒子に、プロテインA、プロテインG、プロテインL及びこれらの類縁物質から選ばれる1種又は2種以上のリガンドを固定する工程
 (工程B)工程A-1後のリガンドが固定された多孔質粒子と、-C(=O)-O-C(=O)-で表される基、カルボジイミド基、及び環状エーテル基から選ばれる少なくとも1種のリガンド反応性基を有する化合物とを反応させる工程
The above problem was solved by the following means <1> to <19>.
<1> A method for producing a chromatography carrier (hereinafter also referred to as a method for producing a chromatography carrier of the present invention), comprising the following Step A-1 and Step B.
(Step A-1) Step of immobilizing one or more kinds of ligands selected from protein A, protein G, protein L, and related substances to porous particles. (Step B) Ligand after step A-1. porous particles on which is fixed, and at least one ligand-reactive group selected from a group represented by -C(=O)-OC(=O)-, a carbodiimide group, and a cyclic ether group. Process of reacting with a compound
 <2> 前記リガンド反応性基を有する化合物が、下記式(1)で表される化合物及びその塩、下記式(2)で表される化合物、並びに下記式(3)で表される化合物から選ばれる1種又は2種以上である、<1>に記載のクロマトグラフィー用担体の製造方法。 <2> The compound having the ligand-reactive group is a compound represented by the following formula (1) and its salt, a compound represented by the following formula (2), and a compound represented by the following formula (3). The method for producing a chromatography carrier according to <1>, which is one or more selected types.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
〔式(1)中、R1及びR2は、相互に独立に、水素原子又は置換若しくは非置換の炭化水素基を示す。〕 [In formula (1), R 1 and R 2 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. ]
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
〔式(2)中、R3及びR4は、相互に独立に、置換又は非置換の炭化水素基を示し、R3及びR4が互いに結合して環状構造を形成してもよい。〕 [In formula (2), R 3 and R 4 independently represent a substituted or unsubstituted hydrocarbon group, and R 3 and R 4 may be bonded to each other to form a cyclic structure. ]
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
〔式(3)中、R5は、置換又は非置換の炭化水素基を示し、Xは、環状エーテル基を示す。〕 [In formula (3), R 5 represents a substituted or unsubstituted hydrocarbon group, and X represents a cyclic ether group. ]
 <3> 前記リガンド反応性基を有する化合物が、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミドの塩、N,N'-ジシクロヘキシルカルボジイミド、N,N'-ジイソプロピルカルボジイミド、無水マレイン酸、無水プロピオン酸、無水酢酸、ピバル酸無水物、無水コハク酸、グルタル酸無水物、プロピレンオキシド、ブチレンオキシド、グリシジルメチルエーテル、エチルグリシジルエーテル、グリシドール、エピクロロヒドリン、及びエピブロモヒドリンから選ばれる1種又は2種以上の化合物である、<1>又は<2>に記載のクロマトグラフィー用担体の製造方法。 <3> The compound having the ligand-reactive group is 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, a salt of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, N , N'-dicyclohexylcarbodiimide, N,N'-diisopropylcarbodiimide, maleic anhydride, propionic anhydride, acetic anhydride, pivalic anhydride, succinic anhydride, glutaric anhydride, propylene oxide, butylene oxide, glycidyl methyl ether, The method for producing a chromatography carrier according to <1> or <2>, which is one or more compounds selected from ethyl glycidyl ether, glycidol, epichlorohydrin, and epibromohydrin.
 <4> 前記リガンド反応性基を有する化合物が、前記式(1)で表される化合物及びその塩から選ばれる少なくとも1種の化合物である、<1>~<3>のいずれかに記載のクロマトグラフィー用担体の製造方法。
 <5> 前記リガンド反応性基を有する化合物の使用量が、リガンドが固定された多孔質粒子の乾燥重量1gに対して0.01~15ミリモルである、<1>~<4>のいずれかに記載のクロマトグラフィー用担体の製造方法。
<4> The compound having a ligand-reactive group is at least one compound selected from the compound represented by the formula (1) and a salt thereof, according to any one of <1> to <3>. A method for producing a carrier for chromatography.
<5> Any one of <1> to <4>, wherein the amount of the compound having a ligand-reactive group used is 0.01 to 15 mmol per 1 g of dry weight of the porous particles on which the ligand is immobilized. A method for producing a chromatography carrier as described in .
 <6> 前記リガンドが、配列番号2で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列に対して、少なくとも、以下の(a)~(i)から選ばれる1又は2以上の置換がされたアミノ酸配列を有するタンパク質リガンドである、<1>~<5>のいずれかに記載のクロマトグラフィー用担体の製造方法。
 (a)配列番号2のアミノ酸配列の1位に相当する位置のアミノ酸残基のバリン残基への置換
 (b)配列番号2のアミノ酸配列の3位に相当する位置のアミノ酸残基のアラニン残基への置換
 (c)配列番号2のアミノ酸配列の6位に相当する位置のアミノ酸残基のアラニン残基又はアスパラギン酸残基への置換
 (d)配列番号2のアミノ酸配列の9位に相当する位置のアミノ酸残基のアラニン残基への置換
 (e)配列番号2のアミノ酸配列の11位に相当する位置のアミノ酸残基のアラニン残基、グルタミン残基又はグルタミン酸残基への置換
 (f)配列番号2のアミノ酸配列の23位に相当する位置のアミノ酸残基のロイシン残基への置換
 (g)配列番号2のアミノ酸配列の29位に相当する位置のアミノ酸残基のアラニン残基への置換
 (h)配列番号2のアミノ酸配列の43位に相当する位置のアミノ酸残基のアラニン残基への置換
 (i)配列番号2のアミノ酸配列の49位に相当する位置のアミノ酸残基のアルギニン残基への置換
<6> At least one or two or more substitutions selected from the following (a) to (i) to the amino acid sequence in which the ligand has 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2. The method for producing a chromatography carrier according to any one of <1> to <5>, which is a protein ligand having an amino acid sequence in which the amino acid sequence has been changed.
(a) Substitution of the amino acid residue at the position corresponding to position 1 of the amino acid sequence of SEQ ID NO: 2 with a valine residue (b) Substitution of the amino acid residue at the position corresponding to position 3 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (c) Substitution of the amino acid residue at the position corresponding to position 6 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue or aspartic acid residue (d) Corresponding to position 9 of the amino acid sequence of SEQ ID NO: 2 (e) Substitution of the amino acid residue at the position corresponding to position 11 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue, glutamine residue, or glutamic acid residue (f ) Substitution of the amino acid residue at the position corresponding to position 23 of the amino acid sequence of SEQ ID NO: 2 with a leucine residue (g) Substitution of the amino acid residue at the position corresponding to position 29 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (h) Substitution of the amino acid residue at the position corresponding to position 43 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (i) Substitution of the amino acid residue at the position corresponding to position 49 of the amino acid sequence of SEQ ID NO: 2 Substitution to arginine residue
 <7> 前記リガンドが、配列番号2で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列に対して、少なくとも、以下の(a)~(i)から選ばれる3以上の置換がされたアミノ酸配列を有するタンパク質リガンドである、<1>~<5>のいずれかに記載のクロマトグラフィー用担体の製造方法。
 (a)配列番号2のアミノ酸配列の1位に相当する位置のアミノ酸残基のバリン残基への置換
 (b)配列番号2のアミノ酸配列の3位に相当する位置のアミノ酸残基のアラニン残基への置換
 (c)配列番号2のアミノ酸配列の6位に相当する位置のアミノ酸残基のアラニン残基又はアスパラギン酸残基への置換
 (d)配列番号2のアミノ酸配列の9位に相当する位置のアミノ酸残基のアラニン残基への置換
 (e)配列番号2のアミノ酸配列の11位に相当する位置のアミノ酸残基のアラニン残基、グルタミン残基又はグルタミン酸残基への置換
 (f)配列番号2のアミノ酸配列の23位に相当する位置のアミノ酸残基のロイシン残基への置換
 (g)配列番号2のアミノ酸配列の29位に相当する位置のアミノ酸残基のアラニン残基への置換
 (h)配列番号2のアミノ酸配列の43位に相当する位置のアミノ酸残基のアラニン残基への置換
 (i)配列番号2のアミノ酸配列の49位に相当する位置のアミノ酸残基のアルギニン残基への置換
<7> The ligand has at least three or more substitutions selected from the following (a) to (i) to the amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2. The method for producing a chromatography carrier according to any one of <1> to <5>, which is a protein ligand having an amino acid sequence.
(a) Substitution of the amino acid residue at the position corresponding to position 1 of the amino acid sequence of SEQ ID NO: 2 with a valine residue (b) Substitution of the amino acid residue at the position corresponding to position 3 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (c) Substitution of the amino acid residue at the position corresponding to position 6 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue or aspartic acid residue (d) Corresponding to position 9 of the amino acid sequence of SEQ ID NO: 2 (e) Substitution of the amino acid residue at the position corresponding to position 11 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue, glutamine residue, or glutamic acid residue (f ) Substitution of the amino acid residue at the position corresponding to position 23 of the amino acid sequence of SEQ ID NO: 2 with a leucine residue (g) Substitution of the amino acid residue at the position corresponding to position 29 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (h) Substitution of the amino acid residue at the position corresponding to position 43 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (i) Substitution of the amino acid residue at the position corresponding to position 49 of the amino acid sequence of SEQ ID NO: 2 Substitution to arginine residue
 <8> 工程Bの反応を、水系媒体中pH8~14で行う、<1>~<7>のいずれかに記載のクロマトグラフィー用担体の製造方法。 <8> The method for producing a chromatography carrier according to any one of <1> to <7>, wherein the reaction in step B is carried out in an aqueous medium at a pH of 8 to 14.
 <9> 工程A-1と工程Bの間に以下の工程A-2を更に備え、工程A-2で得られた親水性基含有リガンド固定多孔質粒子を前記工程A-1後のリガンドが固定された多孔質粒子として工程Bで用いる、<1>~<8>のいずれかに記載のクロマトグラフィー用担体の製造方法。
 (工程A-2)工程A-1でリガンドが固定された多孔質粒子と、ヒドロキシ基及びメルカプト基から選ばれる少なくとも1種の親水性基を分子内に合計で2個以上有する化合物とを反応させる工程
<9> The following step A-2 is further provided between step A-1 and step B, and the hydrophilic group-containing ligand-immobilized porous particles obtained in step A-2 are treated with the ligand after step A-1. The method for producing a chromatography carrier according to any one of <1> to <8>, which is used in Step B as a fixed porous particle.
(Step A-2) The porous particles on which the ligand was fixed in Step A-1 are reacted with a compound having a total of two or more hydrophilic groups of at least one type selected from hydroxy groups and mercapto groups in the molecule. process of letting
 <10> 以下の工程A-P1及び工程A-P2を更に備え、工程A-P2で架橋剤及び親水化剤から選ばれる少なくとも1種を反応させた多孔質粒子を前記多孔質粒子として工程A-1で用いる、<1>~<9>のいずれかに記載のクロマトグラフィー用担体の製造方法。
 (工程A-P1)水系媒体中にモノマー組成物を分散させ懸濁重合させる工程
 (工程A-P2)工程A-P1で得られた多孔質粒子と、架橋剤及び親水化剤から選ばれる少なくとも1種とを反応させる工程
<10> Step A further comprising the following steps A-P1 and A-P2, using porous particles reacted with at least one selected from a crosslinking agent and a hydrophilizing agent in step A-P2 as the porous particles. -1, the method for producing a chromatography carrier according to any one of <1> to <9>.
(Step A-P1) A step of dispersing the monomer composition in an aqueous medium and carrying out suspension polymerization. (Step A-P2) The porous particles obtained in step A-P1 and at least one selected from a crosslinking agent and a hydrophilizing agent. Step of reacting with one species
 <11> 多孔質粒子と、当該多孔質粒子に固定されたリガンドと、-C(=O)-O-C(=O)-で表される基、カルボジイミド基、及び環状エーテル基から選ばれる少なくとも1種のリガンド反応性基を有する化合物に由来する部分構造とを有し、
 前記リガンドが、プロテインA、プロテインG、プロテインL及びこれらの類縁物質から選ばれる1種又は2種以上のリガンドであり、
 前記リガンドのアミノ基及びカルボキシ基から選ばれる少なくとも1種の官能基が、前記部分構造で化学修飾されており、
 下記式:
 化学修飾率(モル%) = (化学修飾された官能基のモル数) / (化学修飾された官能基のモル数と化学修飾されていない官能基のモル数との和) × 100
で算出される化学修飾率が、1~70モル%である、クロマトグラフィー用担体(以下、本発明のクロマトグラフィー用担体とも称する)。
<11> A porous particle, a ligand fixed to the porous particle, and a group selected from -C(=O)-OC(=O)-, a carbodiimide group, and a cyclic ether group and a partial structure derived from a compound having at least one type of ligand-reactive group,
The ligand is one or more ligands selected from protein A, protein G, protein L and related substances,
At least one functional group selected from an amino group and a carboxy group of the ligand is chemically modified with the partial structure,
The following formula:
Chemical modification rate (mol%) = (number of moles of chemically modified functional groups) / (sum of number of moles of chemically modified functional groups and number of moles of non-chemically modified functional groups) × 100
A chromatography carrier (hereinafter also referred to as the chromatography carrier of the present invention) having a chemical modification rate calculated from 1 to 70 mol%.
 <12> 前記リガンドのアミノ基が前記部分構造で化学修飾されている、<11>に記載のクロマトグラフィー用担体。
 <13> 前記部分構造が、-C(=O)-、-NR1-C(=O)-、-C(=NR1)-又は-CH2-CH(-OH)-(R1は、水素原子、アルキル基、シクロアルキル基、アミノアルキル基、モノアルキルアミノアルキル基、又はジアルキルアミノアルキル基を示す。)で表される基を分子内に有する、<11>又は<12>に記載のクロマトグラフィー用担体。
<12> The chromatography carrier according to <11>, wherein the amino group of the ligand is chemically modified with the partial structure.
<13> The partial structure is -C(=O)-, -NR 1 -C(=O)-, -C(=NR 1 )-, or -CH 2 -CH(-OH)- (R 1 is , a hydrogen atom, an alkyl group, a cycloalkyl group, an aminoalkyl group, a monoalkylaminoalkyl group, or a dialkylaminoalkyl group. chromatography carrier.
 <14> 前記部分構造が、-NR1-C(=O)-NR2-又は-C(=NR1)-NR2-(R1及びR2は、相互に独立に、水素原子、アルキル基、シクロアルキル基、アミノアルキル基、モノアルキルアミノアルキル基、又はジアルキルアミノアルキル基を示す。)で表される基を分子内に有する、<11>~<13>のいずれかに記載のクロマトグラフィー用担体。
 <15> R1及びR2のうち少なくとも1つが、アミノアルキル基、モノアルキルアミノアルキル基、又はジアルキルアミノアルキル基である、<14>に記載のクロマトグラフィー用担体。
<14> The partial structure is -NR 1 -C(=O)-NR 2 - or -C(=NR 1 )-NR 2 - (R 1 and R 2 are each independently a hydrogen atom, an alkyl The chromatograph according to any one of <11> to <13>, which has a group represented by the following in its molecule: cycloalkyl group, aminoalkyl group, monoalkylaminoalkyl group, or dialkylaminoalkyl group. Carrier for graphics.
<15> The chromatography carrier according to <14>, wherein at least one of R 1 and R 2 is an aminoalkyl group, a monoalkylaminoalkyl group, or a dialkylaminoalkyl group.
 <16> 前記リガンドが、配列番号2で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列に対して、少なくとも、以下の(a)~(i)から選ばれる1又は2以上の置換がされたアミノ酸配列を有するタンパク質リガンドである、<11>~<15>のいずれかに記載のクロマトグラフィー用担体。
 (a)配列番号2のアミノ酸配列の1位に相当する位置のアミノ酸残基のバリン残基への置換
 (b)配列番号2のアミノ酸配列の3位に相当する位置のアミノ酸残基のアラニン残基への置換
 (c)配列番号2のアミノ酸配列の6位に相当する位置のアミノ酸残基のアラニン残基又はアスパラギン酸残基への置換
 (d)配列番号2のアミノ酸配列の9位に相当する位置のアミノ酸残基のアラニン残基への置換
 (e)配列番号2のアミノ酸配列の11位に相当する位置のアミノ酸残基のアラニン残基、グルタミン残基又はグルタミン酸残基への置換
 (f)配列番号2のアミノ酸配列の23位に相当する位置のアミノ酸残基のロイシン残基への置換
 (g)配列番号2のアミノ酸配列の29位に相当する位置のアミノ酸残基のアラニン残基への置換
 (h)配列番号2のアミノ酸配列の43位に相当する位置のアミノ酸残基のアラニン残基への置換
 (i)配列番号2のアミノ酸配列の49位に相当する位置のアミノ酸残基のアルギニン残基への置換
<16> At least one or two or more substitutions selected from the following (a) to (i) to the amino acid sequence in which the ligand has 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2. The chromatography carrier according to any one of <11> to <15>, which is a protein ligand having an amino acid sequence in which the amino acid sequence has been changed.
(a) Substitution of the amino acid residue at the position corresponding to position 1 of the amino acid sequence of SEQ ID NO: 2 with a valine residue (b) Substitution of the amino acid residue at the position corresponding to position 3 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (c) Substitution of the amino acid residue at the position corresponding to position 6 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue or aspartic acid residue (d) Corresponding to position 9 of the amino acid sequence of SEQ ID NO: 2 (e) Substitution of the amino acid residue at the position corresponding to position 11 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue, glutamine residue, or glutamic acid residue (f ) Substitution of the amino acid residue at the position corresponding to position 23 of the amino acid sequence of SEQ ID NO: 2 with a leucine residue (g) Substitution of the amino acid residue at the position corresponding to position 29 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (h) Substitution of the amino acid residue at the position corresponding to position 43 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (i) Substitution of the amino acid residue at the position corresponding to position 49 of the amino acid sequence of SEQ ID NO: 2 Substitution to arginine residue
 <17> 前記リガンドが、配列番号2で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列に対して、少なくとも、以下の(a)~(i)から選ばれる3以上の置換がされたアミノ酸配列を有するタンパク質リガンドである、<11>~<15>のいずれかに記載のクロマトグラフィー用担体。
 (a)配列番号2のアミノ酸配列の1位に相当する位置のアミノ酸残基のバリン残基への置換
 (b)配列番号2のアミノ酸配列の3位に相当する位置のアミノ酸残基のアラニン残基への置換
 (c)配列番号2のアミノ酸配列の6位に相当する位置のアミノ酸残基のアラニン残基又はアスパラギン酸残基への置換
 (d)配列番号2のアミノ酸配列の9位に相当する位置のアミノ酸残基のアラニン残基への置換
 (e)配列番号2のアミノ酸配列の11位に相当する位置のアミノ酸残基のアラニン残基、グルタミン残基又はグルタミン酸残基への置換
 (f)配列番号2のアミノ酸配列の23位に相当する位置のアミノ酸残基のロイシン残基への置換
 (g)配列番号2のアミノ酸配列の29位に相当する位置のアミノ酸残基のアラニン残基への置換
 (h)配列番号2のアミノ酸配列の43位に相当する位置のアミノ酸残基のアラニン残基への置換
 (i)配列番号2のアミノ酸配列の49位に相当する位置のアミノ酸残基のアルギニン残基への置換
<17> The ligand has at least three or more substitutions selected from the following (a) to (i) to the amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2. The chromatography carrier according to any one of <11> to <15>, which is a protein ligand having an amino acid sequence.
(a) Substitution of the amino acid residue at the position corresponding to position 1 of the amino acid sequence of SEQ ID NO: 2 with a valine residue (b) Substitution of the amino acid residue at the position corresponding to position 3 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (c) Substitution of the amino acid residue at the position corresponding to position 6 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue or aspartic acid residue (d) Corresponding to position 9 of the amino acid sequence of SEQ ID NO: 2 (e) Substitution of the amino acid residue at the position corresponding to position 11 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue, glutamine residue, or glutamic acid residue (f ) Substitution of the amino acid residue at the position corresponding to position 23 of the amino acid sequence of SEQ ID NO: 2 with a leucine residue (g) Substitution of the amino acid residue at the position corresponding to position 29 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (h) Substitution of the amino acid residue at the position corresponding to position 43 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (i) Substitution of the amino acid residue at the position corresponding to position 49 of the amino acid sequence of SEQ ID NO: 2 Substitution to arginine residue
 <18> <11>~<17>のいずれかに記載のクロマトグラフィー用担体を含む、クロマトグラフィーカラム。
 <19> <11>~<17>のいずれかに記載のクロマトグラフィー用担体又は<18>に記載のクロマトグラフィーカラムを用いる、抗体又はその断片の単離方法(以下、本発明の抗体又はその断片の単離方法とも称する)。
<18> A chromatography column comprising the chromatography carrier according to any one of <11> to <17>.
<19> A method for isolating an antibody or a fragment thereof using the chromatography carrier according to any one of <11> to <17> or the chromatography column according to <18> (hereinafter, a method for isolating an antibody or a fragment thereof of the present invention) (also referred to as fragment isolation method).
 本発明のクロマトグラフィー用担体の製造方法によれば、抗体又はその断片に対する動的結合容量が大きく、且つ抗体の単離に繰り返し用いた場合でもタンパク質リガンドが漏出しにくいクロマトグラフィー用担体を簡便に製造できる。
 本発明のクロマトグラフィー用担体は、抗体又はその断片に対する動的結合容量が大きく、且つ抗体の単離に繰り返し用いた場合でもタンパク質リガンドが漏出しにくい。
 したがって、本発明によれば、抗体又はその断片に対する動的結合容量が大きく、且つ抗体の単離に繰り返し用いた場合でもタンパク質リガンドが漏出しにくいクロマトグラフィーカラムを提供できる。
According to the method for producing a chromatography carrier of the present invention, it is possible to easily produce a chromatography carrier that has a large dynamic binding capacity for antibodies or fragments thereof and that is resistant to leakage of protein ligands even when used repeatedly for antibody isolation. Can be manufactured.
The chromatography carrier of the present invention has a large dynamic binding capacity for antibodies or fragments thereof, and protein ligands do not easily leak out even when used repeatedly for antibody isolation.
Therefore, according to the present invention, it is possible to provide a chromatography column that has a large dynamic binding capacity for antibodies or fragments thereof and that does not leak protein ligands even when used repeatedly for antibody isolation.
〔クロマトグラフィー用担体の製造方法〕
 本発明のクロマトグラフィー用担体の製造方法は、(工程A-1)多孔質粒子に、プロテインA、プロテインG、プロテインL及びこれらの類縁物質から選ばれる1種又は2種以上のリガンドを固定する工程を備えるものである。
 -工程A-1-
 工程A-1は、多孔質粒子に、プロテインA、プロテインG、プロテインL及びこれらの類縁物質から選ばれる1種又は2種以上のリガンドを固定する工程である。
 多孔質粒子としては、重合体を含む多孔質粒子が好ましい。このような多孔質粒子としては、アガロース、デキストラン、セルロース等の多糖類で構成される天然高分子系多孔質粒子でも合成高分子系多孔質粒子でもよいが、動的結合容量を大きくするためや粒子径の均一性を改善させるために、好ましくは合成高分子系多孔質粒子である。また、多孔質粒子は、好ましくは水不溶性である。
[Method for manufacturing carrier for chromatography]
The method for producing a chromatography carrier of the present invention includes (Step A-1) immobilizing one or more ligands selected from protein A, protein G, protein L, and their related substances onto porous particles. It has a process.
-Process A-1-
Step A-1 is a step of immobilizing one or more ligands selected from protein A, protein G, protein L, and related substances to porous particles.
As the porous particles, porous particles containing a polymer are preferred. Such porous particles may be natural polymer porous particles or synthetic polymer porous particles composed of polysaccharides such as agarose, dextran, cellulose, etc., but in order to increase the dynamic binding capacity or In order to improve the uniformity of particle diameter, synthetic polymer porous particles are preferred. Also, the porous particles are preferably water-insoluble.
 多孔質粒子は、市販品を用いても常法に従って製造したものを用いてもよい。ここで、多孔質粒子の製造方法について説明する。
 多孔質粒子は、水系媒体中にモノマー組成物を分散させ懸濁重合させる工程(以下、工程A-P1ともいう)を含む方法で製造できる。
As the porous particles, commercially available products or those manufactured according to conventional methods may be used. Here, a method for manufacturing porous particles will be explained.
Porous particles can be produced by a method including a step of dispersing a monomer composition in an aqueous medium and carrying out suspension polymerization (hereinafter also referred to as steps A-P1).
 -工程A-P1-
 工程A-P1で用いるモノマー組成物としては、官能基含有モノマーを含有するものが好ましい。このモノマーが含有する官能基は、追加の化学反応(架橋剤との反応等)に利用できるものが好ましく、リガンドを固定可能なものであってもよい。官能基としては、例えば、環状エーテル基、カルボキシ基、-C(=O)-O-C(=O)-、コハク酸イミドオキシカルボニル基、ホルミル基、水酸基、及びイソシアネート基からなる群より選ばれる官能基が挙げられる。これらの中では、環状エーテル基が好ましい。
 ここで、「環状エーテル基」としては、環を構成する原子数が3~7個の環状エーテル基が好ましい。環状エーテル基は、置換基としてアルキル基を有していてもよい。環状エーテル基の具体例としては、以下の式(4)~(9)で表される環状エーテル基が挙げられるが、式(4)、(6)又は(9)で表される環状エーテル基が好ましく、式(4)で表される環状エーテル基がより好ましい。
-Process A-P1-
The monomer composition used in step A-P1 preferably contains a functional group-containing monomer. The functional group contained in this monomer is preferably one that can be used for additional chemical reactions (such as reaction with a crosslinking agent), and may be one that can immobilize a ligand. Examples of the functional group include a cyclic ether group, a carboxy group, -C(=O)-OC(=O)-, a succinimidoxycarbonyl group, a formyl group, a hydroxyl group, and an isocyanate group. Examples include functional groups such as Among these, cyclic ether groups are preferred.
Here, the "cyclic ether group" is preferably a cyclic ether group having 3 to 7 ring atoms. The cyclic ether group may have an alkyl group as a substituent. Specific examples of the cyclic ether group include cyclic ether groups represented by the following formulas (4) to (9); is preferred, and a cyclic ether group represented by formula (4) is more preferred.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
〔式中、R11~R14は、それぞれ独立して、水素原子又はアルキル基を示し、*は、結合手を示す。〕 [In the formula, R 11 to R 14 each independently represent a hydrogen atom or an alkyl group, and * represents a bond. ]
 R11~R14で示されるアルキル基の炭素数は、好ましくは1~4であり、より好ましくは1又は2である。アルキル基は直鎖状でも分岐鎖状でもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。また、R11~R14としては、水素原子が好ましい。 The number of carbon atoms in the alkyl group represented by R 11 to R 14 is preferably 1 to 4, more preferably 1 or 2. The alkyl group may be linear or branched, and includes, for example, a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, and the like. Furthermore, R 11 to R 14 are preferably hydrogen atoms.
 官能基含有モノマーとしては、リガンドを固定可能な官能基及び重合性不飽和基を有するモノマーが好ましい。このようなモノマーとしては、例えば、グリシジル(メタ)アクリレート、3-オキシラニルプロピル(メタ)アクリレート、4-オキシラニルブチル(メタ)アクリレート、5-オキシラニルペンチル(メタ)アクリレート、6-オキシラニルヘキシル(メタ)アクリレート、7-オキシラニルヘプチル(メタ)アクリレート、8-オキシラニルオクチル(メタ)アクリレート、(3-メチルオキシラニル)メチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、グリセリンモノ(メタ)アクリレートグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、3,4-エポキシシクロヘキシルプロピル(メタ)アクリレート、α-(メタ)アクリル-ω-グリシジルポリエチレングリコール、テトラヒドロフルフリル(メタ)アクリレート等の環状エーテル基を有する(メタ)アクリレート系モノマー;(ビニルベンジル)グリシジルエーテル、(イソプロペニルベンジル)グリシジルエーテル、(ビニルフェネチル)グリシジルエーテル、(ビニルフェニルブチル)グリシジルエーテル、(ビニルベンジルオキシエチル)グリシジルエーテル、(ビニルフェニル)グリシジルエーテル、(イソプロペニルフェニル)グリシジルエーテル、1,2-エポキシ-3-(4-ビニルベンジル)プロパン等の環状エーテル基を有する芳香族ビニル系モノマー;アリルグリシジルエーテル等の環状エーテル基を有するアリルエーテル系モノマー;イソシアナトエチル(メタ)アクリレート等のイソシアネート基を有する(メタ)アクリレート系モノマー;マレイン酸無水物、メチルマレイン酸無水物、グルタコン酸無水物等の不飽和ジカルボン酸無水物系モノマーの他、(メタ)アクリル酸、3,4-エポキシ-1-ブテン、3,4-エポキシ-3-メチル-1-ブテン等が挙げられる。これらモノマーは、1種を単独で又は2種以上を組み合わせて使用できる。
 これらモノマーの中では、環状エーテル基を有する(メタ)アクリレート系モノマーが好ましく、グリシジル(メタ)アクリレートが特に好ましい。
As the functional group-containing monomer, a monomer having a functional group capable of immobilizing a ligand and a polymerizable unsaturated group is preferable. Examples of such monomers include glycidyl (meth)acrylate, 3-oxiranylpropyl (meth)acrylate, 4-oxiranylbutyl (meth)acrylate, 5-oxiranylpentyl (meth)acrylate, and 6-oxiranylpentyl (meth)acrylate. Oxiranylhexyl (meth)acrylate, 7-oxiranylheptyl (meth)acrylate, 8-oxiranyl octyl (meth)acrylate, (3-methyloxiranyl)methyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate ) Acrylate glycidyl ether, glycerin mono(meth)acrylate glycidyl ether, 3,4-epoxycyclohexylmethyl (meth)acrylate, 3,4-epoxycyclohexyl ethyl (meth)acrylate, 3,4-epoxycyclohexylpropyl (meth)acrylate, (Meth)acrylate monomers having a cyclic ether group such as α-(meth)acrylic-ω-glycidyl polyethylene glycol, tetrahydrofurfuryl (meth)acrylate; (vinylbenzyl)glycidyl ether, (isopropenylbenzyl)glycidyl ether, ( Vinylphenethyl)glycidyl ether, (vinylphenylbutyl)glycidyl ether, (vinylbenzyloxyethyl)glycidyl ether, (vinylphenyl)glycidyl ether, (isopropenylphenyl)glycidyl ether, 1,2-epoxy-3-(4-vinyl) Aromatic vinyl monomers having a cyclic ether group such as benzyl) propane; Allyl ether monomers having a cyclic ether group such as allyl glycidyl ether; (meth)acrylate monomers having an isocyanate group such as isocyanatoethyl (meth)acrylate ; In addition to unsaturated dicarboxylic anhydride monomers such as maleic anhydride, methylmaleic anhydride, and glutaconic anhydride, (meth)acrylic acid, 3,4-epoxy-1-butene, 3,4-epoxy -3-methyl-1-butene and the like. These monomers can be used alone or in combination of two or more.
Among these monomers, (meth)acrylate monomers having a cyclic ether group are preferred, and glycidyl (meth)acrylate is particularly preferred.
 官能基含有モノマーの合計使用量としては、工程A-P1で使用するモノマー総量100質量部に対して、好ましくは35質量部以上、より好ましくは45質量部以上、特に好ましくは55質量部以上であり、また、工程A-P1で使用するモノマー総量100質量部に対して、好ましくは99質量部以下、より好ましくは90質量部以下、特に好ましくは85質量部以下である。 The total amount of functional group-containing monomers used is preferably 35 parts by mass or more, more preferably 45 parts by mass or more, particularly preferably 55 parts by mass or more, based on 100 parts by mass of the total amount of monomers used in Step A-P1. Also, it is preferably 99 parts by mass or less, more preferably 90 parts by mass or less, particularly preferably 85 parts by mass or less, based on 100 parts by mass of the total amount of monomers used in Step A-P1.
 また、工程A-P1で用いるモノマー組成物は、上記官能基含有モノマーに加えて、さらに官能基含有モノマー以外のモノマー(以下、他のモノマーともいう)を含有していてもよい。
 他のモノマーとしては、リガンドを固定可能な官能基をもたない重合性不飽和基含有モノマーが挙げられる。他のモノマーは、非架橋性モノマー、架橋性モノマーに大別され、これらのうち一方を用いても併用してもよい。なお、本発明によれば、ヒドロキシ基等の親水性基を含まないモノマーを他のモノマーとして用いた場合であっても、防汚性を満足させることができ、広範なモノマー組成に適用可能である。
In addition to the functional group-containing monomer, the monomer composition used in Step A-P1 may further contain a monomer other than the functional group-containing monomer (hereinafter also referred to as other monomer).
Other monomers include polymerizable unsaturated group-containing monomers that do not have a functional group capable of immobilizing a ligand. Other monomers are broadly classified into non-crosslinkable monomers and crosslinkable monomers, and one or both of these monomers may be used. Furthermore, according to the present invention, even when a monomer that does not contain a hydrophilic group such as a hydroxy group is used as another monomer, it is possible to satisfy the stain resistance, and it is applicable to a wide range of monomer compositions. be.
 上記非架橋性モノマーとしては、例えば、(メタ)アクリレート系非架橋性モノマー、(メタ)アクリルアミド系非架橋性モノマー、芳香族ビニル系非架橋性モノマー、ビニルケトン系非架橋性モノマー、(メタ)アクリロニトリル系非架橋性モノマー、N-ビニルアミド系非架橋性モノマー等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用できる。非架橋性モノマーの中では、(メタ)アクリレート系非架橋性モノマー、芳香族ビニル系非架橋性モノマーが好ましい。 Examples of the non-crosslinking monomer include (meth)acrylate non-crosslinking monomer, (meth)acrylamide non-crosslinking monomer, aromatic vinyl non-crosslinking monomer, vinyl ketone non-crosslinking monomer, (meth)acrylonitrile. Examples include non-crosslinking monomers, N-vinylamide non-crosslinking monomers, and the like. These can be used alone or in combination of two or more. Among the non-crosslinking monomers, (meth)acrylate non-crosslinking monomers and aromatic vinyl non-crosslinking monomers are preferred.
 上記(メタ)アクリレート系非架橋性モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、4-tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、トリメチロールエタンモノ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、ブタントリオールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ジペンタエリスリトールモノ(メタ)アクリレート、イノシトールモノ(メタ)アクリレート等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用できる。 Examples of the (meth)acrylate non-crosslinking monomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 4-tert-butyl (meth)acrylate, and isobutyl (meth)acrylate. , n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, methoxyethyl (meth)acrylate, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, glycerol mono(meth)acrylate , trimethylolethane mono(meth)acrylate, trimethylolpropane mono(meth)acrylate, butanetriol mono(meth)acrylate, polyethylene glycol mono(meth)acrylate, methoxypolyethylene glycol(meth)acrylate, pentaerythritol mono(meth)acrylate , dipentaerythritol mono(meth)acrylate, inositol mono(meth)acrylate, and the like. These can be used alone or in combination of two or more.
 また、上記(メタ)アクリルアミド系非架橋性モノマーとしては、例えば、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ダイアセトン(メタ)アクリルアミド等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用できる。 Examples of the (meth)acrylamide non-crosslinkable monomer include (meth)acrylamide, dimethyl (meth)acrylamide, hydroxyethyl (meth)acrylamide, (meth)acryloylmorpholine, diacetone (meth)acrylamide, etc. It will be done. These can be used alone or in combination of two or more.
 また、上記芳香族ビニル系非架橋性モノマーとしては、例えば、スチレン、α-メチルスチレン、ハロゲン化スチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,4,6-トリメチルスチレン、エチルビニルベンゼン、4-イソプロピルスチレン、4-n-ブチルスチレン、4-イソブチルスチレン、4-tert-ブチルスチレン等のスチレン類;1-ビニルナフタレン、2-ビニルナフタレン等のビニルナフタレン類等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用できる。 Examples of the aromatic vinyl non-crosslinkable monomers include styrene, α-methylstyrene, halogenated styrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,4,6-trimethylstyrene, and ethyl vinyl. Examples include styrenes such as benzene, 4-isopropylstyrene, 4-n-butylstyrene, 4-isobutylstyrene, and 4-tert-butylstyrene; and vinylnaphthalenes such as 1-vinylnaphthalene and 2-vinylnaphthalene. These can be used alone or in combination of two or more.
 また、上記ビニルケトン系非架橋性モノマーとしては、例えば、エチルビニルケトン、プロピルビニルケトン、イソプロピルビニルケトン等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用できる。
 また、上記(メタ)アクリロニトリル系非架橋性モノマーとしては、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用できる。
 また、上記N-ビニルアミド系非架橋性モノマーとしては、例えば、N-ビニルアセトアミド、N-ビニルプロピオンアミド等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用できる。
Examples of the vinyl ketone non-crosslinkable monomer include ethyl vinyl ketone, propyl vinyl ketone, isopropyl vinyl ketone, and the like. These can be used alone or in combination of two or more.
Further, examples of the (meth)acrylonitrile non-crosslinking monomer include acrylonitrile, methacrylonitrile, and the like. These can be used alone or in combination of two or more.
Further, examples of the N-vinylamide non-crosslinking monomer include N-vinylacetamide, N-vinylpropionamide, and the like. These can be used alone or in combination of two or more.
 非架橋性モノマーの合計使用量としては、工程A-P1で使用するモノマー総量100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、特に好ましくは0.1質量部以上であり、また、工程A-P1で使用するモノマー総量100質量部に対して、好ましくは30質量部以下、より好ましくは15質量部以下、特に好ましくは5質量部以下である。 The total amount of non-crosslinking monomers used is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, particularly preferably 0. .1 parts by mass or more, and preferably 30 parts by mass or less, more preferably 15 parts by mass or less, particularly preferably 5 parts by mass or less, based on 100 parts by mass of the total amount of monomers used in Step A-P1. .
 また、上記架橋性モノマーとしては、例えば、(メタ)アクリレート系架橋性モノマー、芳香族ビニル系架橋性モノマー、アリル系架橋性モノマー等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用できる。また、架橋性モノマーとしては、2~5官能の架橋性モノマーが好ましく、2又は3官能の架橋性モノマーがより好ましい。架橋性モノマーの中では、(メタ)アクリレート系架橋性モノマー、芳香族ビニル系架橋性モノマーが好ましい。 Examples of the crosslinkable monomer include (meth)acrylate crosslinkable monomers, aromatic vinyl crosslinkable monomers, allyl crosslinkable monomers, and the like. These can be used alone or in combination of two or more. Further, as the crosslinking monomer, a di- to penta-functional cross-linking monomer is preferable, and a di- or tri-functional cross-linking monomer is more preferable. Among the crosslinking monomers, (meth)acrylate crosslinking monomers and aromatic vinyl crosslinking monomers are preferred.
 上記(メタ)アクリレート系架橋性モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールエタンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ブタントリオールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グルコースジ(メタ)アクリレート、グルコーストリ(メタ)アクリレート、グルコーステトラ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、イノシトールジ(メタ)アクリレート、イノシトールトリ(メタ)アクリレート、イノシトールテトラ(メタ)アクリレート、マンニトールジ(メタ)アクリレート、マンニトールトリ(メタ)アクリレート、マンニトールテトラ(メタ)アクリレート、マンニトールペンタ(メタ)アクリレート等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用できる。 Examples of the (meth)acrylate crosslinking monomer include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, and polyethylene glycol di(meth)acrylate. (meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1, 4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, glycerin di(meth)acrylate, trimethylolethane di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane Tri(meth)acrylate, butanetriol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, glucose di(meth)acrylate, glucose tri(meth)acrylate Acrylate, glucose tetra(meth)acrylate, dipentaerythritol di(meth)acrylate, dipentaerythritol tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, inositol di(meth)acrylate Acrylate, inositol tri(meth)acrylate, inositol tetra(meth)acrylate, mannitol di(meth)acrylate, mannitol tri(meth)acrylate, mannitol tetra(meth)acrylate, mannitol penta(meth)acrylate, and the like. These can be used alone or in combination of two or more.
 また、上記芳香族ビニル系架橋性モノマーとしては、例えば、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ジビニルエチルベンゼン、ジビニルナフタレン等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用できる。 Examples of the aromatic vinyl crosslinking monomers include divinylbenzene, trivinylbenzene, divinyltoluene, divinylxylene, divinylethylbenzene, and divinylnaphthalene. These can be used alone or in combination of two or more.
 また、上記アリル系架橋性モノマーとしては、例えば、フタル酸ジアリル、イソフタル酸ジアリル、テレフタル酸ジアリル、マレイン酸ジアリル、フマル酸ジアリル、イタコン酸ジアリル、トリメリット酸ジアリル、トリメリット酸トリアリル、シアヌル酸トリアリル、イソシアヌル酸ジアリル、イソシアヌル酸トリアリル等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用できる。
 さらに、架橋性モノマーとしては、上記例示したものの他に、ジアミノプロパノール、トリスヒドロキシメチルアミノメタン、グルコサミン等のアミノアルコールと(メタ)アクリル酸との脱水縮合反応物や、ブタジエン、イソプレン等の共役ジオレフィン等を挙げることができる。
Examples of the allyl crosslinking monomer include diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diallyl maleate, diallyl fumarate, diallyl itaconate, diallyl trimellitate, triallyl trimellitate, and triallyl cyanurate. , diallyl isocyanurate, triallyl isocyanurate, and the like. These can be used alone or in combination of two or more.
Furthermore, in addition to the above-mentioned examples, examples of crosslinking monomers include dehydration condensation products of amino alcohols such as diaminopropanol, trishydroxymethylaminomethane, and glucosamine with (meth)acrylic acid, and conjugated monomers such as butadiene and isoprene. Examples include olefins.
 架橋性モノマーの合計使用量としては、工程A-P1で使用するモノマー総量100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、特に好ましくは10質量部以上であり、また、工程A-P1で使用するモノマー総量100質量部に対して、好ましくは50質量部以下、より好ましくは40質量部以下、特に好ましくは30質量部以下である。 The total amount of crosslinking monomers used is preferably 1 part by mass or more, more preferably 5 parts by mass or more, particularly preferably 10 parts by mass or more, based on 100 parts by mass of the total amount of monomers used in Steps A-P1. Also, it is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, particularly preferably 30 parts by mass or less, based on 100 parts by mass of the total amount of monomers used in Step A-P1.
 工程A-P1で用いる水系媒体としては、例えば水溶性高分子水溶液等が挙げられ、水溶性高分子としては、例えばヒドロキシエチルセルロース、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、デンプン、ゼラチン等が挙げられる。
 水系媒体の合計使用量は、通常、モノマー総量100質量部に対して200質量部以上7000質量部以下程度である。
 また、水系媒体の分散媒として水を用いる場合、例えば、炭酸ナトリウム、炭酸カルシウム、硫酸ナトリウム、燐酸カルシウム、塩化ナトリウム等の分散安定剤を使用してもよい。
Examples of the aqueous medium used in Step A-P1 include an aqueous solution of a water-soluble polymer, and examples of the water-soluble polymer include hydroxyethyl cellulose, polyvinyl alcohol, carboxymethyl cellulose, polyvinylpyrrolidone, starch, and gelatin.
The total amount of the aqueous medium used is usually about 200 parts by mass or more and 7000 parts by mass or less based on 100 parts by mass of the total amount of monomers.
Furthermore, when water is used as a dispersion medium in an aqueous medium, a dispersion stabilizer such as sodium carbonate, calcium carbonate, sodium sulfate, calcium phosphate, or sodium chloride may be used.
 また、工程A-P1の具体的な方法としては、例えば、モノマー組成物及び必要に応じて多孔化剤を含む混合溶液(モノマー溶液)に重合開始剤を溶解させ、水系媒体中に懸濁させて所定温度まで加熱して重合させる方法や、モノマー組成物及び必要に応じて多孔化剤を含む混合溶液(モノマー溶液)に重合開始剤を溶解させ、所定温度まで加熱した水系媒体中に添加して重合させる方法、モノマー組成物及び必要に応じて多孔化剤を含む混合溶液(モノマー溶液)を、水系媒体中に懸濁させて所定温度まで加熱して、重合開始剤を添加し重合させる方法等が挙げられる。 Further, as a specific method for Step A-P1, for example, a polymerization initiator is dissolved in a mixed solution (monomer solution) containing a monomer composition and, if necessary, a porosity-forming agent, and suspended in an aqueous medium. Alternatively, a polymerization initiator may be dissolved in a mixed solution (monomer solution) containing a monomer composition and, if necessary, a porosity agent, and then added to an aqueous medium heated to a predetermined temperature. A method in which a mixed solution (monomer solution) containing a monomer composition and, if necessary, a porosity-forming agent is suspended in an aqueous medium, heated to a predetermined temperature, and a polymerization initiator is added and polymerized. etc.
 重合開始剤としてはラジカル重合開始剤が好ましい。ラジカル重合開始剤としては、例えば、アゾ系開始剤、過酸化物系開始剤、レドックス系開始剤等が挙げられ、具体的には、アゾビスイソブチロニトリル、アゾビスイソ酪酸メチル、アゾビス-2,4-ジメチルバレロニトリル、過酸化ベンゾイル、過酸化ジ-tert-ブチル、過酸化ベンゾイル-ジメチルアニリン等が挙げられる。重合開始剤の合計使用量は、通常、モノマー総量100質量部に対して0.01質量部以上10質量部以下程度である。 As the polymerization initiator, a radical polymerization initiator is preferable. Examples of the radical polymerization initiator include azo initiators, peroxide initiators, redox initiators, etc. Specifically, azobisisobutyronitrile, methyl azobisisobutyrate, azobis-2, Examples include 4-dimethylvaleronitrile, benzoyl peroxide, di-tert-butyl peroxide, benzoyl peroxide-dimethylaniline, and the like. The total amount of the polymerization initiator used is usually about 0.01 parts by mass or more and 10 parts by mass or less based on 100 parts by mass of the total amount of monomers.
 上記多孔化剤は、多孔質粒子を製造するために使用され、油滴内の重合において、モノマーと共に存在し、非重合成分として孔を形成する役割を有する。多孔化剤は、多孔質表面において容易に除去可能なものであれば特に限定されるものではなく、例えば、各種の有機溶剤や混合モノマーに可溶な線状重合物等が挙げられ、これらを併用してもよい。 The above-mentioned porosity agent is used to produce porous particles, exists together with the monomer during polymerization within the oil droplets, and has the role of forming pores as a non-polymerized component. The pore-forming agent is not particularly limited as long as it can be easily removed from the porous surface, and examples include linear polymers that are soluble in various organic solvents and mixed monomers. May be used together.
 上記多孔化剤としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン等の脂環式炭化水素類;ベンゼン、トルエン、キシレン、ナフタレン、エチルベンゼン等の芳香族炭化水素類;四塩化炭素、1,2-ジクロロエタン、テトラクロロエタン、クロロベンゼン等のハロゲン化炭化水素類;ブタノール、ペンタノール、ヘキサノール、ヘプタノール、4-メチル-2-ペンタノール、2-エチル-1-ヘキサノール等の脂肪族アルコール類;シクロヘキサノール等の脂環式アルコール類;2-フェニルエチルアルコール、ベンジルアルコール等の芳香族アルコール類;ジエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、アセトフェノン、2-オクタノン、シクロヘキサノン等のケトン類;ジブチルエーテル、ジイソブチルエーテル、アニソール、エトキシベンゼン等のエーテル類;酢酸イソペンチル、酢酸ブチル、酢酸-3-メトキシブチル、マロン酸ジエチル等のエステル類の他、非架橋性ビニルモノマーのホモポリマー等の線状重合物が挙げられる。多孔化剤は単独で又は2種以上を混合して用いることができる。
 上記多孔化剤の合計使用量は、通常、モノマー総量100質量部に対して40質量部以上600質量部以下程度である。
Examples of the porosity-forming agent include aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, and undecane; alicyclic hydrocarbons such as cyclopentane and cyclohexane; benzene, toluene, xylene, naphthalene, and ethylbenzene. Aromatic hydrocarbons such as carbon tetrachloride, 1,2-dichloroethane, tetrachloroethane, chlorobenzene, etc.; halogenated hydrocarbons such as butanol, pentanol, hexanol, heptanol, 4-methyl-2-pentanol, 2- Aliphatic alcohols such as ethyl-1-hexanol; alicyclic alcohols such as cyclohexanol; aromatic alcohols such as 2-phenylethyl alcohol and benzyl alcohol; diethyl ketone, methyl isobutyl ketone, diisobutyl ketone, acetophenone, 2 -Ketones such as octanone and cyclohexanone; ethers such as dibutyl ether, diisobutyl ether, anisole, and ethoxybenzene; esters such as isopentyl acetate, butyl acetate, 3-methoxybutyl acetate, diethyl malonate, and non-crosslinkable Examples include linear polymers such as homopolymers of vinyl monomers. Porosifying agents can be used alone or in combination of two or more.
The total amount of the porosity-forming agent used is usually about 40 parts by mass or more and 600 parts by mass or less based on 100 parts by mass of the total amount of monomers.
 また、工程A-P1には、アルキル硫酸エステル塩、アルキルアリール硫酸エステル塩、アルキルリン酸エステル塩、脂肪酸塩等のアニオン性界面活性剤をはじめとする各種界面活性剤を用いてもよい。また、亜硝酸ナトリウム等の亜硝酸塩、ヨウ化カリウム等のヨウ化物塩、tert-ブチルピロカテコール、ベンゾキノン、ピクリン酸、ハイドロキノン、塩化銅、塩化第二鉄等の重合禁止剤を用いることもできる。また、ドデシルメルカプタン等の重合調製剤を用いてもよい。 Furthermore, various surfactants including anionic surfactants such as alkyl sulfate salts, alkylaryl sulfate salts, alkyl phosphate salts, and fatty acid salts may be used in Step A-P1. Further, polymerization inhibitors such as nitrite salts such as sodium nitrite, iodide salts such as potassium iodide, tert-butylpyrocatechol, benzoquinone, picric acid, hydroquinone, copper chloride, and ferric chloride can also be used. Additionally, a polymerization regulator such as dodecyl mercaptan may be used.
 また、工程A-P1の重合温度は重合開始剤に応じて決定すればよいが、通常2~100℃程度であり、50~100℃が好ましい。また、重合時間は通常5分間~48時間、好ましくは10分間~24時間である。 Further, the polymerization temperature in Steps A-P1 may be determined depending on the polymerization initiator, but is usually about 2 to 100°C, preferably 50 to 100°C. The polymerization time is usually 5 minutes to 48 hours, preferably 10 minutes to 24 hours.
 -工程A-P2-
 また、工程A-1に先立ち、工程A-P1で得られた多孔質粒子と、架橋剤及び親水化剤から選ばれる少なくとも1種とを反応させる工程(以下、工程A-P2ともいう)を行ってもよい。架橋剤及び親水化剤の両方を用いる場合、架橋反応を行った後に親水化反応を行っても親水化反応を行った後に架橋反応を行ってもよい。また、架橋反応と親水化反応を同時に行ってもよい。
 工程A-P1でモノマー組成物として官能基含有モノマーを含有するものを用いた場合、上記架橋反応によって、多孔質粒子が重合体分子内に有する官能基の一部に架橋剤が付加反応され、当該架橋剤由来の部分構造が導入される。これにより、上記官能基の残基同士が架橋剤由来の部分構造を介して架橋される。
 また、工程A-P1でモノマー組成物として官能基含有モノマーを含有するものを用いた場合、上記親水化反応によって、多孔質粒子が重合体分子内に有する官能基の一部に親水化剤が付加反応され、当該親水化剤由来の部分構造が導入される。
-Process A-P2-
Further, prior to step A-1, a step (hereinafter also referred to as step A-P2) of reacting the porous particles obtained in step A-P1 with at least one selected from a crosslinking agent and a hydrophilic agent is performed. You may go. When both a crosslinking agent and a hydrophilic agent are used, the hydrophilic reaction may be performed after the crosslinking reaction, or the crosslinking reaction may be performed after the hydrophilic reaction. Further, the crosslinking reaction and the hydrophilization reaction may be performed simultaneously.
When a monomer composition containing a functional group-containing monomer is used in Step A-P1, the crosslinking reaction causes an addition reaction of the crosslinking agent to a part of the functional groups that the porous particles have in the polymer molecules. A partial structure derived from the crosslinking agent is introduced. As a result, the residues of the functional groups are crosslinked with each other via the partial structure derived from the crosslinking agent.
In addition, when a monomer composition containing a functional group-containing monomer is used in Step A-P1, the hydrophilic agent is attached to a part of the functional groups that the porous particles have in the polymer molecule due to the above hydrophilic reaction. An addition reaction is carried out, and a partial structure derived from the hydrophilizing agent is introduced.
 工程A-P2で用いる架橋剤は、リガンドを固定可能な官能基と反応して架橋構造を導入できるものであればよいが、リガンドを固定可能な官能基と反応して架橋構造を導入できるとともに、-C(=O)-NH-で示される基を分子内に少なくとも2個含む架橋剤が好ましい。 The crosslinking agent used in Steps A-P2 may be one that can introduce a crosslinked structure by reacting with a functional group that can immobilize a ligand, but it may also be one that can introduce a crosslinked structure by reacting with a functional group that can immobilize a ligand. A crosslinking agent containing at least two groups represented by , -C(=O)-NH- in the molecule is preferred.
 工程A-P1で得られた多孔質粒子が環状エーテル基を有する場合には、具体的には、架橋性基として-C(=O)-NH-NH2で示される基を分子内に少なくとも2個含む架橋剤、-C(=O)-NH-で示される基を分子内に少なくとも2個含むとともに、架橋性基としてカルボキシ基を分子内に少なくとも2個含む架橋剤等を使用することができる。
 工程A-P1で得られた多孔質粒子がカルボキシ基、-C(=O)-O-C(=O)-、コハク酸イミドオキシカルボニル基、ホルミル基又はイソシアネート基を有する場合には、具体的には、架橋性基として-C(=O)-NH-NH2で示される基を分子内に少なくとも2個含む架橋剤等を使用することができる。
When the porous particles obtained in step A-P1 have a cyclic ether group, specifically, at least a group represented by -C(=O)-NH-NH 2 is included in the molecule as a crosslinkable group. Use a crosslinking agent containing at least two groups represented by -C(=O)-NH- in the molecule and at least two carboxy groups as crosslinkable groups in the molecule. I can do it.
When the porous particles obtained in step A-P1 have a carboxy group, -C(=O)-OC(=O)-, succinimidoxycarbonyl group, formyl group or isocyanate group, specific Specifically, a crosslinking agent containing at least two groups represented by -C(=O)-NH-NH 2 as crosslinkable groups in the molecule can be used.
 上記のような-C(=O)-NH-で示される基を分子内に少なくとも2個含む架橋剤としては、例えば、オキサリルジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、2,3-ジヒドロキシコハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、オクタン二酸ジヒドラジド、ノナン二酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド、フタル酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、キノリン酸ジヒドラジド等のジカルボン酸ジヒドラジド類;シクロヘキサントリカルボン酸トリヒドラジド等のトリカルボン酸トリヒドラジド類;N1,N1-(エタン-1,2-ジイル)ビス(コハク酸モノアミド)等の(アルキレンビスイミノ)ビス(オキソアルカン酸)類等が挙げられる。架橋剤は、1種を単独で又は2種以上を組み合わせて使用できる。これら架橋剤の中では、通液性、通液時の圧力抵抗特性及び防汚性を改善させるために、ジカルボン酸ジヒドラジド類、(アルキレンビスイミノ)ビス(オキソアルカン酸)類が好ましく、ジカルボン酸ジヒドラジド類がより好ましい。 Examples of crosslinking agents containing at least two groups represented by -C(=O)-NH- in the molecule include oxalyl dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, and 2,3-dihydroxysuccinic acid. Dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, octanedioic acid dihydrazide, nonanedioic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, phthalic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, quinolic acid dihydrazide, etc. Dicarboxylic acid dihydrazides; Tricarboxylic acid trihydrazides such as cyclohexanetricarboxylic acid trihydrazide; (alkylenebisimino)bis(oxoalkanoic acids) such as N1,N1-(ethane-1,2-diyl)bis(succinic acid monoamide); etc. One type of crosslinking agent can be used alone or two or more types can be used in combination. Among these crosslinking agents, dicarboxylic acid dihydrazides and (alkylenebisimino)bis(oxoalkanoic acids) are preferable in order to improve liquid permeability, pressure resistance characteristics during liquid passage, and stain resistance. Dihydrazides are more preferred.
 また、工程A-P2においては、-C(=O)-NH-で示される基を分子内に少なくとも2個含む架橋剤以外の架橋剤を用いることもできる。このような架橋剤としては、例えば、多官能イソシアネート系架橋剤、多官能エポキシ系架橋剤、多官能アルデヒド系架橋剤、多官能チオール系架橋剤、多官能オキサゾリン系架橋剤、多官能アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。 Furthermore, in step A-P2, a crosslinking agent other than the crosslinking agent containing at least two groups represented by -C(=O)-NH- in the molecule can also be used. Examples of such crosslinking agents include polyfunctional isocyanate crosslinking agents, polyfunctional epoxy crosslinking agents, polyfunctional aldehyde crosslinking agents, polyfunctional thiol crosslinking agents, polyfunctional oxazoline crosslinking agents, and polyfunctional aziridine crosslinking agents. agent, metal chelate type crosslinking agent, etc.
 架橋剤の合計使用量は、官能基含有モノマーに由来する官能基1モルに対して、好ましくは0.01モル当量以上0.8モル当量以下であり、より好ましくは0.05モル当量以上0.7モル当量以下であり、特に好ましくは0.1モル当量以上0.6モル当量以下である。 The total amount of the crosslinking agent used is preferably 0.01 molar equivalent or more and 0.8 molar equivalent or less, more preferably 0.05 molar equivalent or more and 0.8 molar equivalent or less, per mole of the functional group derived from the functional group-containing monomer. .7 molar equivalent or less, particularly preferably 0.1 molar equivalent or more and 0.6 molar equivalent or less.
 工程A-P2で用いる親水化剤としては、防汚性やタンパク質リガンド低漏出性を改善させるために、ヒドロキシ基及びメルカプト基から選ばれる少なくとも1種の親水性基を分子内に合計で2個以上有する化合物が好ましく、ヒドロキシ基及びメルカプト基から選ばれる少なくとも1種の親水性基を分子内に合計で2~4個有する化合物がより好ましい。例えば、メルカプトエタノール、チオグリセロール等のメルカプト基を分子内に有するアルコール;グリセロール、ジグリセロール等の多価アルコールが挙げられる。親水化剤は、1種を単独で又は2種以上を組み合わせて使用できる。
 これらの中でも、防汚性やタンパク質リガンド低漏出性を改善させるために、メルカプト基を分子内に有するアルコールが好ましく、チオグリセロールが特に好ましい。
The hydrophilic agent used in Steps A-P2 contains a total of two hydrophilic groups of at least one kind selected from hydroxy groups and mercapto groups in the molecule in order to improve antifouling properties and low leakage of protein ligands. Compounds having the above are preferred, and compounds having a total of 2 to 4 at least one kind of hydrophilic group selected from hydroxy groups and mercapto groups in the molecule are more preferred. Examples include alcohols having a mercapto group in the molecule such as mercaptoethanol and thioglycerol; polyhydric alcohols such as glycerol and diglycerol. The hydrophilic agents can be used alone or in combination of two or more.
Among these, alcohols having a mercapto group in the molecule are preferred, and thioglycerol is particularly preferred, in order to improve stain resistance and low leakage of protein ligands.
 親水化剤の合計使用量は、官能基含有モノマーに由来する官能基1モルに対して、好ましくは0.5モル当量以上10モル当量以下であり、より好ましくは1モル当量以上8モル当量以下であり、特に好ましくは2モル当量以上6モル当量以下である。 The total amount of the hydrophilizing agent used is preferably 0.5 molar equivalent or more and 10 molar equivalent or less, more preferably 1 molar equivalent or more and 8 molar equivalent or less, per mole of the functional group derived from the functional group-containing monomer. and particularly preferably 2 molar equivalents or more and 6 molar equivalents or less.
 工程A-P2は、塩基性触媒存在下で行ってもよい。塩基性触媒としては、トリエチルアミン、N,N-ジメチル-4-アミノピリジン、水酸化ナトリウム、ジイソプロピルエチルアミン等が挙げられ、1種を単独で又は2種以上を組み合わせて使用できる。 Steps A-P2 may be performed in the presence of a basic catalyst. Examples of the basic catalyst include triethylamine, N,N-dimethyl-4-aminopyridine, sodium hydroxide, diisopropylethylamine, etc., and one type can be used alone or two or more types can be used in combination.
 また、工程A-P2の反応時間は特に限定されないが、通常0.5~72時間程度であり、好ましくは0.5~48時間である。また、反応温度は、溶媒の沸点以下で適宜選択すればよいが、通常2~100℃程度である。 Further, the reaction time of Steps A-P2 is not particularly limited, but is usually about 0.5 to 72 hours, preferably 0.5 to 48 hours. Further, the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 2 to 100°C.
 工程A-1で用いるリガンドは、プロテインA、プロテインG、プロテインL及びこれらの類縁物質から選ばれる1種又は2種以上のリガンドである。リガンドとしては、抗体又はその断片との結合性を高めるために、プロテインA、プロテインAの類縁物質が好ましく、プロテインAの類縁物質がより好ましい。
 また、プロテインAにはイムノグロブリンに対して結合能を有する、E、D、A、B及びCの5つのドメインが含まれるが、上記リガンドの中でも、B及びCドメインの改変型ドメインを有するプロテインAの類縁物質が好ましく、Cドメインの改変型ドメインを有するプロテインAの類縁物質がより好ましい。
 また、配列番号1(WO2020/040307号公報の配列番号29)のアミノ酸配列ドメインの6量体である改変プロテインAのような、アミノ酸配列の23位に相当する位置のアミノ酸残基の他のアミノ酸残基への置換が少なくとも行われている改変型ドメインを有する改変プロテインAの場合に、抗体の単離に繰り返し用いたときに漏出しやすくなることがあるが、本発明によれば、このようなものをリガンドとした場合であっても繰り返し用いたときのタンパク質リガンドの漏出を抑えることができる。また、配列番号3~14のアミノ酸配列ドメインの6量体である改変プロテインAのような、Cドメインにおける1以上のアミノ酸残基の他のアミノ酸残基への置換が行われている改変型ドメインを有する改変プロテインAの場合にも、繰り返し用いたときのタンパク質リガンドの低漏出性に優れる。
The ligand used in step A-1 is one or more ligands selected from protein A, protein G, protein L, and related substances thereof. As the ligand, protein A or a substance analogous to protein A is preferable, and a substance analogous to protein A is more preferable, in order to enhance the binding property with an antibody or a fragment thereof.
Furthermore, protein A contains five domains, E, D, A, B, and C, which have the ability to bind to immunoglobulins. Protein A analogs are preferred, and protein A analogs having a modified C domain are more preferred.
In addition, other amino acids of the amino acid residue at the position corresponding to position 23 of the amino acid sequence, such as modified protein A which is a hexamer of the amino acid sequence domain of SEQ ID NO: 1 (SEQ ID NO: 29 of WO2020/040307). In the case of a modified protein A having a modified domain in which at least one residue has been substituted, it may tend to leak when used repeatedly for antibody isolation. Even when protein ligands are used as ligands, leakage of protein ligands can be suppressed when used repeatedly. Also, modified domains in which one or more amino acid residues in the C domain are replaced with other amino acid residues, such as modified protein A, which is a hexamer of amino acid sequence domains of SEQ ID NOs: 3 to 14. The modified protein A having the above structure also has excellent low leakage of protein ligands when used repeatedly.
 また、リガンドの中でも、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、配列番号2(プロテインAのCドメイン)で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列に対して、少なくとも、以下の(a)~(i)から選ばれる1又は2以上の置換がされたアミノ酸配列を有するタンパク質リガンドが好ましい。このようなタンパク質リガンドの中でも、以下の(a)~(i)から選ばれる3以上の置換がされたアミノ酸配列を有するものが好ましく、以下の(a)~(i)から選ばれる3~9の置換がされたアミノ酸配列を有するものがより好ましく、以下の(a)~(i)から選ばれる3~5の置換がされたアミノ酸配列を有するものが特に好ましい。また、このようなアミノ酸配列を2個以上有するリガンドが好ましく、2~12個有するリガンドがより好ましく、4~7個有するリガンドが特に好ましい。アミノ酸配列を2個以上含む場合、それらのアミノ酸配列は同種でも異類でもよい。 In addition, among the ligands, in order to increase the dynamic binding capacity and improve the low leakage of protein ligands, it has more than 85% homology with the amino acid sequence shown in SEQ ID NO: 2 (C domain of protein A). Preferably, the protein ligand has an amino acid sequence in which at least one or two or more substitutions selected from (a) to (i) below have been made to the amino acid sequence. Among such protein ligands, those having an amino acid sequence with three or more substitutions selected from (a) to (i) below are preferred, and three to nine substitutions selected from (a) to (i) below are preferable. It is more preferable to have an amino acid sequence with the following substitutions, and particularly preferable is an amino acid sequence with 3 to 5 substitutions selected from (a) to (i) below. Furthermore, a ligand having two or more such amino acid sequences is preferred, a ligand having 2 to 12 such amino acid sequences is more preferred, and a ligand having 4 to 7 is particularly preferred. When it contains two or more amino acid sequences, those amino acid sequences may be the same or different.
 (a)配列番号2のアミノ酸配列の1位に相当する位置のアミノ酸残基のバリン残基への置換
 (b)配列番号2のアミノ酸配列の3位に相当する位置のアミノ酸残基のアラニン残基への置換
 (c)配列番号2のアミノ酸配列の6位に相当する位置のアミノ酸残基のアラニン残基又はアスパラギン酸残基への置換
 (d)配列番号2のアミノ酸配列の9位に相当する位置のアミノ酸残基のアラニン残基への置換
 (e)配列番号2のアミノ酸配列の11位に相当する位置のアミノ酸残基のアラニン残基、グルタミン残基又はグルタミン酸残基への置換
 (f)配列番号2のアミノ酸配列の23位に相当する位置のアミノ酸残基のロイシン残基への置換
 (g)配列番号2のアミノ酸配列の29位に相当する位置のアミノ酸残基のアラニン残基への置換
 (h)配列番号2のアミノ酸配列の43位に相当する位置のアミノ酸残基のアラニン残基への置換
 (i)配列番号2のアミノ酸配列の49位に相当する位置のアミノ酸残基のアルギニン残基への置換
(a) Substitution of the amino acid residue at the position corresponding to position 1 of the amino acid sequence of SEQ ID NO: 2 with a valine residue (b) Substitution of the amino acid residue at the position corresponding to position 3 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (c) Substitution of the amino acid residue at the position corresponding to position 6 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue or aspartic acid residue (d) Corresponding to position 9 of the amino acid sequence of SEQ ID NO: 2 (e) Substitution of the amino acid residue at the position corresponding to position 11 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue, glutamine residue, or glutamic acid residue (f ) Substitution of the amino acid residue at the position corresponding to position 23 of the amino acid sequence of SEQ ID NO: 2 with a leucine residue (g) Substitution of the amino acid residue at the position corresponding to position 29 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (h) Substitution of the amino acid residue at the position corresponding to position 43 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (i) Substitution of the amino acid residue at the position corresponding to position 49 of the amino acid sequence of SEQ ID NO: 2 Substitution to arginine residue
 アミノ酸残基の置換の手段としては、ドメインをコードするポリヌクレオチドに対する部位特異的突然変異(Site-specific mutaion)等の公知の手段が挙げられる。
 ここで、アミノ酸配列に関する「85%以上の相同性」とは、好ましくは90%以上の相同性、より好ましくは95%以上の相同性、更に好ましくは97%以上の相同性、更に好ましくは98%以上の相同性、特に好ましくは99%以上の相同性をいう。
Examples of means for substituting amino acid residues include known means such as site-specific mutation of a polynucleotide encoding a domain.
Here, "homology of 85% or more" with respect to an amino acid sequence preferably means a homology of 90% or more, more preferably a homology of 95% or more, still more preferably a homology of 97% or more, and even more preferably a homology of 98% or more. % or more homology, particularly preferably 99% or more homology.
 本明細書において、アミノ酸配列上の「相当する位置」は、目的配列と参照配列(例えば、配列番号2のアミノ酸配列)とを、各アミノ酸配列中に存在する保存アミノ酸残基に最大の相同性を与えるように整列(アラインメント)させることにより決定することができる。アラインメントは、公知のアルゴリズムを用いて実行することができ、その手順は当業者に公知である。例えば、アラインメントは、Clustal Wマルチプルアラインメントプログラム(Thompson, J. D. et al, 1994, Nucleic Acids Res., 22:4673-4680)をデフォルト設定で用いることにより行うことができる。Clustal Wは、例えば、欧州バイオインフォマティクス研究所(European Bioinformatics Institute: EBI [www.ebi.ac.uk/index.html])や、国立遺伝学研究所が運営する日本DNAデータバンク(DDBJ [www.ddbj.nig.ac.jp/index.html])のウェブサイト上で利用することができる。 As used herein, a "corresponding position" on an amino acid sequence refers to a position where the target sequence and a reference sequence (e.g., the amino acid sequence of SEQ ID NO: 2) have the greatest homology to the conserved amino acid residues present in each amino acid sequence. It can be determined by alignment to give . Alignment can be performed using known algorithms and procedures are known to those skilled in the art. For example, alignment can be performed using the Clustal W multiple alignment program (Thompson, J. D. et al, 1994, Nucleic Acids Res., 22:4673-4680) with default settings. Clustal W is used, for example, by the European Bioinformatics Institute (EBI [www.ebi.ac.uk/index.html]) and the DNA Data Bank of Japan (DDBJ [www. It can be used on the ddbj.nig.ac.jp/index.html) website.
 本明細書において、アミノ酸残基は次の略号でも記載される:アラニン(Ala又はA)、アルギニン(Arg又はR)、アスパラギン(Asn又はN)、アスパラギン酸(Asp又はD)、システイン(Cys又はC)、グルタミン(Gln又はQ)、グルタミン酸(Glu又はE)、グリシン(Gly又はG)、ヒスチジン(His又はH)、イソロイシン(Ile又はI)、ロイシン(Leu又はL)、リジン(Lys又はK)、メチオニン(Met又はM)、フェニルアラニン(Phe又はF)、プロリン(Pro又はP)、セリン(Ser又はS)、トレオニン(Thr又はT)、トリプトファン(Trp又はW)、チロシン(Tyr又はY)、バリン(Val又はV)、及び任意のアミノ酸残基(Xaa又はX)。また本明細書において、ペプチドのアミノ酸配列は、常法に従って、アミノ末端(以下N末端という)が左側、カルボキシル末端(以下C末端という)が右側に位置するように記載される。 Amino acid residues are also written herein by the following abbreviations: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C), glutamine (Gln or Q), glutamic acid (Glu or E), glycine (Gly or G), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K) ), methionine (Met or M), phenylalanine (Phe or F), proline (Pro or P), serine (Ser or S), threonine (Thr or T), tryptophan (Trp or W), tyrosine (Tyr or Y) , valine (Val or V), and any amino acid residue (Xaa or X). Furthermore, in this specification, the amino acid sequence of a peptide is described in accordance with a conventional method such that the amino terminus (hereinafter referred to as N-terminus) is located on the left side and the carboxyl terminus (hereinafter referred to as C-terminus) is located on the right side.
 本明細書において、アミノ酸配列の特定の位置に対する「前」及び「後」の位置とは、それぞれ、該特定の位置のN末端側及びC末端側に隣接する位置をいう。例えば、特定の位置の「前」及び「後」の位置へアミノ酸残基を挿入する場合、該特定の位置のN末端側及びC末端側に隣接する位置に、挿入後のアミノ酸残基が配置される。 As used herein, the positions "before" and "after" a specific position in an amino acid sequence refer to positions adjacent to the N-terminus and C-terminus, respectively, of the specific position. For example, when inserting an amino acid residue into positions "before" and "after" a specific position, the amino acid residues after insertion are placed at positions adjacent to the N-terminus and C-terminus of the specific position. be done.
 好ましい実施形態において、工程A-1で用いるリガンドは、配列番号2で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列を有するタンパク質リガンド(親ドメイン)に対して、上記の(a)~(i)から選ばれる1又は2以上の置換を行うことによって製造される。 In a preferred embodiment, the ligand used in step A-1 is a protein ligand (parent domain) having an amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2, and the above (a). Produced by performing one or more substitutions selected from ~(i).
 上記置換は、上記の置換(a)~(i)のうち1つでも2つ以上でもよいが、
置換(a)、置換(b)、置換(c)、置換(d)、置換(g)、置換(h)及び置換(i)から選ばれる2以上の置換と、置換(e)及び置換(f)から選ばれる1以上の置換との組み合わせを少なくとも含む2以上の置換が好ましく、
置換(a)、置換(b)、置換(c)、置換(d)、置換(g)、置換(h)及び置換(i)から選ばれる3以上の置換と、置換(e)及び置換(f)から選ばれる1以上の置換との組み合わせを少なくとも含む2以上の置換がより好ましい。
The above substitution may be one or more of the above substitutions (a) to (i), but
Two or more substitutions selected from substitution (a), substitution (b), substitution (c), substitution (d), substitution (g), substitution (h), and substitution (i), and substitution (e) and substitution ( Preferably, two or more substitutions include at least a combination with one or more substitutions selected from f),
Three or more substitutions selected from substitution (a), substitution (b), substitution (c), substitution (d), substitution (g), substitution (h), and substitution (i), and substitution (e) and substitution ( More preferably, two or more substitutions include at least a combination with one or more substitutions selected from f).
 一般に、置換(f)を行った場合に繰り返し用いたときのタンパク質リガンドの漏出が生じやすくなる傾向があるが、本発明によれば、置換(f)を行った場合であっても、繰り返し用いたときのタンパク質リガンドの漏出を抑えることができる。 Generally, when substitution (f) is made, protein ligands tend to leak out when used repeatedly; however, according to the present invention, even when substitution (f) is made, even when used repeatedly, It is possible to suppress leakage of protein ligands when the protein is present.
 また、工程A-1で用いるリガンドとしては、
配列番号2で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列に対して、少なくとも、置換(a)、置換(b)、置換(c)、置換(d)、置換(g)、置換(h)及び置換(i)から選ばれる2以上の置換と、置換(e)及び置換(f)から選ばれる1以上の置換との組み合わせを少なくとも含む2以上の置換がされたアミノ酸配列を、2個~12個有するリガンドが好ましく、
配列番号2で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列に対して、少なくとも、置換(a)、置換(b)、置換(c)、置換(d)、置換(g)、置換(h)及び置換(i)から選ばれる2以上の置換と、置換(e)及び置換(f)から選ばれる1以上の置換との組み合わせを少なくとも含む2以上の置換がされたアミノ酸配列を、4~7個有するリガンドがより好ましい。
In addition, as the ligand used in step A-1,
For the amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2, at least substitution (a), substitution (b), substitution (c), substitution (d), substitution (g), An amino acid sequence in which two or more substitutions have been made, including at least a combination of two or more substitutions selected from substitution (h) and substitution (i), and one or more substitutions selected from substitution (e) and substitution (f). , preferably has 2 to 12 ligands,
For the amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2, at least substitution (a), substitution (b), substitution (c), substitution (d), substitution (g), An amino acid sequence in which two or more substitutions have been made, including at least a combination of two or more substitutions selected from substitution (h) and substitution (i), and one or more substitutions selected from substitution (e) and substitution (f). , 4 to 7 ligands are more preferred.
 また、置換(a)、置換(b)、置換(c)、置換(d)、置換(g)、置換(h)及び置換(i)から選ばれる2以上の置換と、置換(e)及び置換(f)から選ばれる1以上の置換との組み合わせを少なくとも含む2以上の置換としては、
置換(a)及び置換(d)から選ばれる1以上の置換と、置換(e)及び置換(f)から選ばれる1以上の置換との組み合わせを少なくとも含む2以上の置換が好ましく、
置換(a)及び置換(d)から選ばれる1以上の置換と、置換(e)及び置換(f)から選ばれる1以上の置換と、置換(b)、置換(c)、置換(g)、置換(h)及び置換(i)から選ばれる1以上の置換との組み合わせを少なくとも含む3以上の置換がより好ましい。
 このような置換としては、具体的には、
置換(a)と置換(e)と置換(f)と置換(g)との組み合わせ;
置換(d)と置換(e)と置換(h)との組み合わせ;
置換(a)と置換(e)と置換(g)との組み合わせ;
置換(a)と置換(e)と置換(g)と置換(i)との組み合わせ;
置換(a)と置換(b)と置換(c)と置換(e)と置換(g)との組み合わせ;
置換(a)と置換(b)と置換(c)と置換(e)と置換(g)と置換(i)との組み合わせ;
が挙げられる。
In addition, two or more substitutions selected from substitution (a), substitution (b), substitution (c), substitution (d), substitution (g), substitution (h), and substitution (i), and substitution (e) and Two or more substitutions including at least a combination with one or more substitutions selected from substitution (f) are:
Preferably, two or more substitutions include at least a combination of one or more substitutions selected from substitution (a) and substitution (d) and one or more substitutions selected from substitution (e) and substitution (f),
One or more substitutions selected from substitution (a) and substitution (d), one or more substitutions selected from substitution (e) and substitution (f), substitution (b), substitution (c), substitution (g) More preferably, three or more substitutions include at least a combination with one or more substitutions selected from , substitution (h), and substitution (i).
Specifically, such a replacement is
A combination of substitution (a), substitution (e), substitution (f), and substitution (g);
Combination of substitution (d), substitution (e) and substitution (h);
Combination of substitution (a), substitution (e) and substitution (g);
A combination of substitution (a), substitution (e), substitution (g), and substitution (i);
A combination of substitution (a), substitution (b), substitution (c), substitution (e), and substitution (g);
A combination of substitution (a), substitution (b), substitution (c), substitution (e), substitution (g), and substitution (i);
can be mentioned.
 また、置換(a)、置換(b)、置換(c)、置換(d)、置換(g)、置換(h)及び置換(i)から選ばれる2以上の置換と、置換(e)及び置換(f)から選ばれる1以上の置換との組み合わせを少なくとも含む2以上の置換以外の置換としては、具体的には、
置換(a)と置換(b)と置換(g)との組み合わせ;
置換(a)と置換(c)と置換(g)との組み合わせ;
置換(a)と置換(b)と置換(c)と置換(g)との組み合わせ;
置換(a)と置換(d)と置換(g)との組み合わせ;
が挙げられる。
In addition, two or more substitutions selected from substitution (a), substitution (b), substitution (c), substitution (d), substitution (g), substitution (h), and substitution (i), and substitution (e) and Specifically, substitutions other than two or more substitutions that include at least a combination with one or more substitutions selected from substitution (f) include:
A combination of substitution (a), substitution (b) and substitution (g);
Combination of substitution (a), substitution (c) and substitution (g);
A combination of substitution (a), substitution (b), substitution (c) and substitution (g);
Combination of substitution (a), substitution (d) and substitution (g);
can be mentioned.
 配列番号2で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列を有するタンパク質リガンド(親ドメイン)を置換する手段としては、親ドメインをコードするポリヌクレオチドに対して、所望のアミノ酸残基の置換が生じるように変異導入する方法が挙げられる。ポリヌクレオチドに対する変異導入のための具体的な手法としては、部位特異的突然変異、相同組換え法、SOE(splicing by overlap extension)-PCR法(Gene,1989,77:61-68)などを挙げることができ、これらの詳細な手順は当業者に周知である。
 製造されたリガンドは、イムノグロブリン結合活性を有し、イムノグロブリン結合ドメインとして機能する。
As a means of substituting a protein ligand (parent domain) having an amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2, desired amino acid residues are substituted for the polynucleotide encoding the parent domain. Examples include a method of introducing a mutation so that a substitution occurs. Specific methods for introducing mutations into polynucleotides include site-specific mutation, homologous recombination, SOE (splicing by overlap extension)-PCR method (Gene, 1989, 77:61-68), etc. These detailed procedures are well known to those skilled in the art.
The produced ligand has immunoglobulin binding activity and functions as an immunoglobulin binding domain.
 工程A-1で用いるリガンドの好ましい例としては、配列番号2(プロテインAのCドメイン)で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列に対して、少なくとも、以下の(a)~(i)から選ばれる1又は2以上の置換がされたアミノ酸配列が2個以上直鎖状に連結されたものが挙げられる。なお、アミノ酸配列が「直鎖状に連結」とは、2個以上のアミノ酸配列がリンカーを介して又はリンカーを介さずに直列に連結された構造を意味する。例えば、リンカーを介する場合、「直鎖状に連結」とは、1つのアミノ酸配列のC末端と別のアミノ酸配列のN末端とがリンカーを介して直列に連結された構造を意味し、一方、リンカーを介さない場合、「直鎖状に連結」とは、1つのアミノ酸配列のC末端と別のアミノ酸配列のN末端とがペプチド結合によって直列に連結された構造を意味する。 Preferred examples of the ligand used in step A-1 include at least the following (a) for the amino acid sequence having 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2 (C domain of protein A). Examples include those in which two or more amino acid sequences with one or more substitutions selected from (i) are connected in a linear chain. Note that the term "linearly connected" amino acid sequences refers to a structure in which two or more amino acid sequences are connected in series with or without a linker. For example, in the case of using a linker, "linearly connected" means a structure in which the C-terminus of one amino acid sequence and the N-terminus of another amino acid sequence are connected in series via a linker; When not mediated by a linker, "linearly connected" means a structure in which the C-terminus of one amino acid sequence and the N-terminus of another amino acid sequence are connected in series by a peptide bond.
 リガンドの固定量は、動的結合容量を大きくするために、多孔質粒子の乾燥重量1g当たり、好ましくは10mg以上300mg以下、より好ましくは25mg以上150mg以下である。 In order to increase the dynamic binding capacity, the immobilized amount of the ligand is preferably 10 mg or more and 300 mg or less, more preferably 25 mg or more and 150 mg or less per gram of dry weight of the porous particles.
 工程A-1における多孔質粒子へのリガンドの固定は常法と同様にして行えばよい。リガンド固定法としては、化学結合法が好ましい。例えば、リガンドを固定可能な官能基にリガンドを結合させる方法が挙げられる。この方法は、国際公開第2015/119255号パンフレット、国際公開第2015/041218号パンフレット等の記載を参考にして行えばよい。具体的には、多孔質粒子の環状エーテル基やカルボキシ基、-C(=O)-O-C(=O)-、ホルミル基等とリガンドのアミノ基等とを結合させる方法が挙げられる。リガンド固定反応は、反応効率を高めるために、pH7~14のバッファー中で行うのが好ましい。また、リガンド固定反応の反応時間は特に限定されないが、通常0.1~72時間程度である。また、反応温度は、溶媒の沸点以下で適宜選択すればよいが、通常2~100℃程度である。
 また、工程A-1は、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、後述する工程Bで用いる-C(=O)-O-C(=O)-で表される基、カルボジイミド基、及び環状エーテル基から選ばれる少なくとも1種のリガンド反応性基を有する化合物の非存在下で行うことが好ましい。
The immobilization of the ligand onto the porous particles in step A-1 may be carried out in the same manner as a conventional method. As the ligand immobilization method, a chemical bonding method is preferable. For example, there is a method in which a ligand is bonded to a functional group capable of immobilizing the ligand. This method may be performed with reference to the descriptions in International Publication No. 2015/119255 pamphlet, International Publication No. 2015/041218 pamphlet, and the like. Specifically, a method of bonding a cyclic ether group, carboxy group, -C(=O)-OC(=O)-, formyl group, etc. of a porous particle to an amino group, etc. of a ligand may be mentioned. The ligand immobilization reaction is preferably carried out in a buffer having a pH of 7 to 14 in order to increase reaction efficiency. Further, the reaction time of the ligand immobilization reaction is not particularly limited, but is usually about 0.1 to 72 hours. Further, the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 2 to 100°C.
In addition, in step A-1, -C(=O)-O-C(=O)-, which is used in step B described later, is used to increase dynamic binding capacity and improve low leakage of protein ligands. It is preferable to carry out the reaction in the absence of a compound having at least one ligand-reactive group selected from the group shown above, a carbodiimide group, and a cyclic ether group.
 また、リガンドの配向性を制御する方法(米国特許第6,399,750号、LjungquistC.他著,rEur.J.Biochem.」,1989年,186巻,557-561頁)や、リンカー(スペーサー)を介してリガンドを多孔質粒子に固定する方法(米国特許第5,260,373号、特開2010-133733号公報、特開2010-133734号公報)、会合性基によりリガンドを多孔質粒子上に集積させる方法(特開2011-256176号公報)等を利用して固定してもよい。 In addition, methods for controlling the orientation of ligands (US Pat. No. 6,399,750, Ljungquist C. et al., "Eur. J. Biochem.", 1989, vol. 186, pp. 557-561) and linker (spacer) (U.S. Patent No. 5,260,373, JP 2010-133733, JP 2010-133734). It may be fixed using a method such as stacking on top (Japanese Patent Laid-Open No. 2011-256176).
 リンカーを与える化合物としては、例えば、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、1,2-プロピレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセロールジグリシジルエーテル等の脂肪族ポリヒドロキシ化合物のジグリシジルエーテル類;ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等の脂肪族ポリヒドロキシ化合物のポリグリシジルエーテル類等が挙げられる。これらの中でも、工程A-P2で親水化反応を行った場合には、脂肪族ポリヒドロキシ化合物のジグリシジルエーテル類が好ましい。
 リンカー導入反応は、反応効率を高めるために、pH7~14のバッファー中で行うのが好ましい。また、リンカー導入反応の反応時間は特に限定されないが、通常0.5~72時間程度である。また、反応温度は、溶媒の沸点以下で適宜選択すればよいが、通常2~100℃程度である。
Examples of the compound providing the linker include ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, 1,2-propylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1 Diglycidyl ethers of aliphatic polyhydroxy compounds such as , 4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerol diglycidyl ether; sorbitol polyglycidyl ether, glycerol poly Examples include polyglycidyl ethers of aliphatic polyhydroxy compounds such as glycidyl ether, trimethylolpropane polyglycidyl ether, diglycerol polyglycidyl ether, and polyglycerol polyglycidyl ether. Among these, diglycidyl ethers of aliphatic polyhydroxy compounds are preferred when the hydrophilization reaction is carried out in steps A-P2.
The linker introduction reaction is preferably carried out in a buffer having a pH of 7 to 14 in order to increase reaction efficiency. Further, the reaction time of the linker introduction reaction is not particularly limited, but is usually about 0.5 to 72 hours. Further, the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 2 to 100°C.
 -工程A-2-
 本発明のクロマトグラフィー用担体の製造方法としては、防汚性やタンパク質リガンド低漏出性を改善させるために、工程A-1と工程Bの間に以下の工程A-2を更に備え、工程A-2で得られた親水性基含有リガンド固定多孔質粒子を前記工程A-1後のリガンドが固定された多孔質粒子として工程Bで用いる方法が好ましい。
 (工程A-2)工程A-1でリガンドが固定された多孔質粒子と、ヒドロキシ基及びメルカプト基から選ばれる少なくとも1種の親水性基を分子内に合計で2個以上有する化合物とを反応させる工程
-Process A-2-
The method for producing a chromatography carrier of the present invention further includes the following step A-2 between step A-1 and step B in order to improve the antifouling property and the low protein ligand leakage property. It is preferable to use the hydrophilic group-containing ligand-immobilized porous particles obtained in Step-2 as the ligand-immobilized porous particles obtained in Step A-1 in Step B.
(Step A-2) The porous particles on which the ligand was fixed in Step A-1 are reacted with a compound having a total of two or more hydrophilic groups of at least one kind selected from hydroxy groups and mercapto groups in the molecule. process of letting
 工程A-2で用いる親水性基を分子内に合計で2個以上有する化合物としては、防汚性やタンパク質リガンド低漏出性を改善させるために、ヒドロキシ基及びメルカプト基から選ばれる少なくとも1種の親水性基を分子内に合計で2~4個有する化合物が好ましい。例えば、メルカプトエタノール、チオグリセロール等のメルカプト基を分子内に有するアルコール;グリセロール、ジグリセロール等の多価アルコールが挙げられる。親水性基を分子内に合計で2個以上有する化合物は、1種を単独で又は2種以上を組み合わせて使用できる。
 これらの中でも、防汚性やタンパク質リガンド低漏出性を改善させるために、メルカプト基を分子内に有するアルコールが好ましく、チオグリセロールが特に好ましい。
The compound having a total of two or more hydrophilic groups in the molecule used in step A-2 is at least one type selected from hydroxy groups and mercapto groups in order to improve antifouling properties and low leakage of protein ligands. Compounds having a total of 2 to 4 hydrophilic groups in the molecule are preferred. Examples include alcohols having a mercapto group in the molecule such as mercaptoethanol and thioglycerol; polyhydric alcohols such as glycerol and diglycerol. Compounds having a total of two or more hydrophilic groups in the molecule can be used singly or in combination of two or more.
Among these, alcohols having a mercapto group in the molecule are preferred, and thioglycerol is particularly preferred, in order to improve stain resistance and low leakage of protein ligands.
 工程A-2における親水性基を分子内に合計で2個以上有する化合物の合計使用量は、リガンドが固定された多孔質粒子(乾燥重量)100質量部に対して、好ましくは1質量部以上1000質量部以下であり、より好ましくは10質量部以上800質量部以下であり、特に好ましくは100質量部以上600質量部以下である。 The total amount of the compound having two or more hydrophilic groups in the molecule in step A-2 is preferably 1 part by mass or more based on 100 parts by mass of the porous particles (dry weight) on which the ligand is immobilized. The content is 1000 parts by mass or less, more preferably 10 parts by mass or more and 800 parts by mass or less, particularly preferably 100 parts by mass or more and 600 parts by mass or less.
 工程A-2は、塩基性触媒存在下で行ってもよい。塩基性触媒としては、トリエチルアミン、N,N-ジメチル-4-アミノピリジン、水酸化ナトリウム、ジイソプロピルエチルアミン等が挙げられ、1種を単独で又は2種以上を組み合わせて使用できる。 Step A-2 may be performed in the presence of a basic catalyst. Examples of the basic catalyst include triethylamine, N,N-dimethyl-4-aminopyridine, sodium hydroxide, diisopropylethylamine, etc., and one type can be used alone or two or more types can be used in combination.
 また、工程A-2の反応時間は特に限定されないが、通常0.5~72時間程度であり、好ましくは0.5~48時間である。また、反応温度は、溶媒の沸点以下で適宜選択すればよいが、通常2~100℃程度である。 Further, the reaction time in step A-2 is not particularly limited, but is usually about 0.5 to 72 hours, preferably 0.5 to 48 hours. Further, the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 2 to 100°C.
 -工程B-
 本発明のクロマトグラフィー用担体の製造方法は、(工程B)工程A-1後のリガンドが固定された多孔質粒子と、-C(=O)-O-C(=O)-で表される基、カルボジイミド基、及び環状エーテル基から選ばれる少なくとも1種のリガンド反応性基を有する化合物とを反応させる工程を備えるものである。
 上記リガンド反応性基を有する化合物として-C(=O)-O-C(=O)-で表される基及び環状エーテル基から選ばれる少なくとも1種を有するものを用いた場合、当該化合物はリガンドのアミノ基と主に反応する。また、上記リガンド反応性基を有する化合物としてカルボジイミド基を有するものを用いた場合、当該化合物はリガンドのアミノ基と主に反応し、更にカルボキシ基とも反応する。このような工程Bの反応によって、抗体又はその断片に対する動的結合容量が大きくなり、また抗体の単離に繰り返し用いた場合でもタンパク質リガンドが漏出しにくくなるものと本発明者らは推察する。
-Process B-
The method for producing a chromatography carrier of the present invention includes (Step B) porous particles on which the ligand after Step A-1 is immobilized, and -C(=O)-OC(=O)-. The method comprises a step of reacting the compound with a compound having at least one type of ligand-reactive group selected from a group consisting of a group consisting of a group containing a ligand, a carbodiimide group, and a cyclic ether group.
When a compound having at least one selected from a group represented by -C(=O)-OC(=O)- and a cyclic ether group is used as the compound having the above-mentioned ligand-reactive group, the compound has Reacts primarily with the amino group of the ligand. Further, when a compound having a carbodiimide group is used as the compound having a ligand-reactive group, the compound mainly reacts with the amino group of the ligand and also reacts with the carboxy group. The present inventors conjecture that such a reaction in step B increases the dynamic binding capacity for antibodies or fragments thereof, and also makes it difficult for protein ligands to leak out even when used repeatedly to isolate antibodies.
 工程Bは、工程A-1後のリガンドが固定された多孔質粒子を用いるものである。当該多孔質粒子は、工程A-1の反応終了後のリガンドが固定されたものであればよい。工程A-1で得られたリガンドが固定された多孔質粒子でも、更に工程A-2を行うことで得られた親水性基含有リガンド固定多孔質粒子でもよい。 Step B uses porous particles on which the ligands obtained in Step A-1 are immobilized. The porous particles may be those to which the ligand after the reaction in step A-1 is immobilized. The porous particles with immobilized ligands obtained in step A-1 may be used, or the porous particles containing a hydrophilic group and immobilized with ligands obtained by further performing step A-2 may be used.
 工程Bで用いるリガンド反応性基を有する化合物としては、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、下記式(1)で表される化合物及びその塩、下記式(2)で表される化合物、並びに下記式(3)で表される化合物から選ばれる1種又は2種以上が好ましく、式(1)で表される化合物及びその塩並びに式(2)で表される化合物から選ばれる1種又は2種以上がより好ましく、式(1)で表される化合物及びその塩から選ばれる1種又は2種以上が特に好ましい。なお、式(1)で表される化合物の塩としては、塩酸塩、硫酸塩、硝酸塩、フッ化水素酸塩、臭化水素酸塩等の無機酸塩;酢酸塩、酒石酸塩、クエン酸塩、フマル酸塩等の有機酸塩等が挙げられる。
 式(1)で表される化合物及びその塩並びに式(2)で表される化合物から選ばれる1種又は2種以上を用いた場合、特に式(1)で表される化合物及びその塩から選ばれる1種又は2種以上を用いた場合に、動的結合容量とタンパク質リガンド低漏出性を両立しやすくなる。
As the compound having a ligand-reactive group used in step B, in order to increase the dynamic binding capacity and improve the low leakage of protein ligand, the compound represented by the following formula (1) and its salt, the following formula One or more compounds selected from the compound represented by (2) and the compound represented by the following formula (3) are preferred, and the compound represented by the formula (1) and its salt and the compound represented by the formula (2) are preferred. One or more types selected from the compounds represented by the formula (1) are more preferred, and one or more types selected from the compounds represented by the formula (1) and salts thereof are particularly preferred. The salts of the compound represented by formula (1) include inorganic acid salts such as hydrochloride, sulfate, nitrate, hydrofluoride, and hydrobromide; acetate, tartrate, and citrate. , organic acid salts such as fumarate, and the like.
When one or more selected from the compound represented by formula (1) and its salt and the compound represented by formula (2) are used, especially from the compound represented by formula (1) and its salt When one or more selected types are used, it becomes easier to achieve both dynamic binding capacity and low protein ligand leakage.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
〔式(1)中、R1及びR2は、相互に独立に、水素原子又は置換若しくは非置換の炭化水素基を示す。〕 [In formula (1), R 1 and R 2 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. ]
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
〔式(2)中、R3及びR4は、相互に独立に、置換又は非置換の炭化水素基を示し、R3及びR4が互いに結合して環状構造を形成してもよい。〕 [In formula (2), R 3 and R 4 independently represent a substituted or unsubstituted hydrocarbon group, and R 3 and R 4 may be bonded to each other to form a cyclic structure. ]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
〔式(3)中、R5は、置換又は非置換の炭化水素基を示し、Xは、環状エーテル基を示す。〕 [In formula (3), R 5 represents a substituted or unsubstituted hydrocarbon group, and X represents a cyclic ether group. ]
 ここで、式(1)~(3)中の各記号について説明する。
 式(1)~(3)中、R1~R5で示される炭化水素基の炭素数は、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、好ましくは1~30、より好ましくは1~14、更に好ましくは1~8、特に好ましくは1~4である。
 R1~R5における「炭化水素基」としては、アルキル基、アルケニル基、シクロアルキル基、橋かけ環炭化水素基、アリール基、アラルキル基が挙げられる。
Here, each symbol in formulas (1) to (3) will be explained.
In formulas (1) to (3), the number of carbon atoms in the hydrocarbon groups represented by R 1 to R 5 is preferably 1 to 1 in order to increase dynamic binding capacity and improve low leakage of protein ligands. 30, more preferably 1-14, even more preferably 1-8, particularly preferably 1-4.
Examples of the "hydrocarbon group" for R 1 to R 5 include an alkyl group, an alkenyl group, a cycloalkyl group, a bridged ring hydrocarbon group, an aryl group, and an aralkyl group.
 アルキル基の炭素数は、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、好ましくは1~30、より好ましくは1~14、更に好ましくは1~8、特に好ましくは1~4である。アルキル基は、直鎖状でも分岐鎖状でもよい。アルキル基としては、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基等が挙げられる。
 アルケニル基の炭素数は、好ましくは2~30、より好ましくは2~14、更に好ましくは2~8、特に好ましくは2~4である。アルケニル基は、直鎖状でも分岐鎖状でもよい。アルケニル基としては、具体的には、ビニル基、プロペニル基、ブテニル基等が挙げられる。
The number of carbon atoms in the alkyl group is preferably 1 to 30, more preferably 1 to 14, even more preferably 1 to 8, particularly preferably 1 to 4. The alkyl group may be linear or branched. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, and heptyl group. , octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group and the like.
The alkenyl group preferably has 2 to 30 carbon atoms, more preferably 2 to 14 carbon atoms, still more preferably 2 to 8 carbon atoms, and particularly preferably 2 to 4 carbon atoms. The alkenyl group may be linear or branched. Specific examples of the alkenyl group include a vinyl group, a propenyl group, a butenyl group, and the like.
 シクロアルキル基、橋かけ環炭化水素基の炭素数は、好ましくは3~30、より好ましくは3~12、特に好ましくは3~8である。シクロアルキル基としては、具体的には、シクロプロピル基、シクロヘキシル基等が挙げられる。橋かけ環炭化水素基としては、イソボルニル基等が挙げられる。 The number of carbon atoms in the cycloalkyl group and the bridged ring hydrocarbon group is preferably 3 to 30, more preferably 3 to 12, particularly preferably 3 to 8. Specific examples of the cycloalkyl group include a cyclopropyl group and a cyclohexyl group. Examples of the bridged ring hydrocarbon group include an isobornyl group and the like.
 アリール基の炭素数は、好ましくは6~30、より好ましくは6~12である。例えば、フェニル基等が挙げられる。アラルキル基の炭素数は、好ましくは7~30、より好ましくは7~13である。例えば、ベンジル基、フェネチル基等が挙げられる。 The number of carbon atoms in the aryl group is preferably 6 to 30, more preferably 6 to 12. For example, phenyl group etc. can be mentioned. The aralkyl group preferably has 7 to 30 carbon atoms, more preferably 7 to 13 carbon atoms. Examples include benzyl group and phenethyl group.
 また、R1~R5における「炭化水素基」は、置換基を有していてもよい。置換基としては、ヘテロ原子を含む置換基が好ましく、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基;メトキシ基、エトキシ基等のアルコキシ基(好ましくは炭素数1~4のアルコキシ基);アミノ基;モノメチルアミノ基、モノエチルアミノ基、モノn-プロピルアミノ基等のモノアルキルアミノ基(好ましくはモノC1-4アルキルアミノ基);ジメチルアミノ基、ジエチルアミノ基、メチルエチルアミノ基等のジアルキルアミノ基(好ましくはジC1-4アルキルアミノ基);カルボキシ基;シアノ基;スルホ基;ニトロ基等が挙げられる。なお、モノC1-4アルキルアミノ基は、アルキル基の炭素数が1~4のモノアルキルアミノ基を意味し、ジC1-4アルキルアミノ基は、2つのアルキル基の炭素数が1~4のジアルキルアミノ基を意味する。置換基の個数は、好ましくは0~8個、より好ましくは0~2個である。 Furthermore, the "hydrocarbon group" in R 1 to R 5 may have a substituent. The substituent is preferably a substituent containing a heteroatom, such as a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom; a hydroxy group; an alkoxy group such as a methoxy group or an ethoxy group (preferably a carbon number of 1 -4 alkoxy group); Amino group; Monoalkylamino group (preferably mono C 1-4 alkylamino group) such as monomethylamino group, monoethylamino group, mono n-propylamino group; dimethylamino group, diethylamino group , a dialkylamino group (preferably a di-C 1-4 alkylamino group) such as methylethylamino group; a carboxy group; a cyano group; a sulfo group; a nitro group. In addition, a mono-C 1-4 alkylamino group means a mono-alkylamino group in which the alkyl group has 1 to 4 carbon atoms, and a di-C 1-4 alkylamino group refers to a mono-C 1-4 alkylamino group in which the two alkyl groups have 1 to 4 carbon atoms. 4 dialkylamino group. The number of substituents is preferably 0 to 8, more preferably 0 to 2.
 式(1)中のR1及びR2としては、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、水素原子、置換若しくは非置換のアルキル基、又はシクロアルキル基が好ましく、水素原子、アルキル基、シクロアルキル基、アミノアルキル基、モノアルキルアミノアルキル基、又はジアルキルアミノアルキル基がより好ましく、水素原子、炭素数1~14のアルキル基、炭素数3~12のシクロアルキル基、炭素数1~14のアミノアルキル基、モノC1-4アルキルアミノ基を置換基として有する炭素数1~14のアルキル基、又はジC1-4アルキルアミノ基を置換基として有する炭素数1~14のアルキル基が更に好ましく、水素原子、炭素数1~8のアルキル基、炭素数3~8のシクロアルキル基、炭素数1~8のアミノアルキル基、モノC1-4アルキルアミノ基を置換基として有する炭素数1~8のアルキル基、又はジC1-4アルキルアミノ基を置換基として有する炭素数1~8のアルキル基が更に好ましく、水素原子、炭素数1~4のアルキル基、炭素数3~8のシクロアルキル基、炭素数1~4のアミノアルキル基、モノC1-4アルキルアミノ基を置換基として有する炭素数1~4のアルキル基、又はジC1-4アルキルアミノ基を置換基として有する炭素数1~4のアルキル基が特に好ましい。
 また、式(1)中のR1及びR2は、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、R1及びR2のうち少なくとも1つが、アミノアルキル基、モノアルキルアミノアルキル基、又はジアルキルアミノアルキル基であることが好ましい。
R 1 and R 2 in formula (1) are hydrogen atoms, substituted or unsubstituted alkyl groups, or cycloalkyl groups in order to increase dynamic binding capacity and improve low leakage of protein ligands. Preferably, a hydrogen atom, an alkyl group, a cycloalkyl group, an aminoalkyl group, a monoalkylaminoalkyl group, or a dialkylaminoalkyl group, and a hydrogen atom, an alkyl group having 1 to 14 carbon atoms, and a cycloalkyl group having 3 to 12 carbon atoms. Alkyl group, aminoalkyl group having 1 to 14 carbon atoms, alkyl group having 1 to 14 carbon atoms having a mono-C 1-4 alkylamino group as a substituent, or carbon having a di-C 1-4 alkylamino group as a substituent More preferred are alkyl groups having 1 to 14 carbon atoms, such as a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aminoalkyl group having 1 to 8 carbon atoms, and a mono-C 1-4 alkylamino group. An alkyl group having 1 to 8 carbon atoms having a group as a substituent, or an alkyl group having 1 to 8 carbon atoms having a diC 1-4 alkylamino group as a substituent is more preferable, and an alkyl group, a cycloalkyl group having 3 to 8 carbon atoms, an aminoalkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 4 carbon atoms having a mono-C 1-4 alkylamino group as a substituent, or a di-C 1- Particularly preferred is an alkyl group having 1 to 4 carbon atoms having a 4-alkylamino group as a substituent.
Further, R 1 and R 2 in formula (1) are such that at least one of R 1 and R 2 is an aminoalkyl group or A monoalkylaminoalkyl group or a dialkylaminoalkyl group is preferred.
 式(2)中のR3及びR4で示される炭化水素基としては、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、置換若しくは非置換のアルキル基、又は置換若しくは非置換のアルケニル基が好ましく、アルキル基又はアルケニル基がより好ましく、炭素数1~14のアルキル基又は炭素数1~14のアルケニル基が更に好ましく、炭素数1~8のアルキル基又は炭素数1~8のアルケニル基が更に好ましく、炭素数1~4のアルキル基又は炭素数1~4のアルケニル基が更に好ましく、炭素数1~4のアルキル基が更に好ましく、炭素数2~4のアルキル基が特に好ましい。
 また、R3及びR4が互いに結合して形成する環状構造の炭素数は、好ましくは4~8であり、より好ましくは4~6である。R3及びR4が互いに結合して環状構造を形成している場合におけるリガンド反応性基を有する化合物としては、無水コハク酸、無水マレイン酸、シトラコン酸無水物、ジメチルマレイン酸無水物、グルタル酸無水物が挙げられる。
The hydrocarbon groups represented by R 3 and R 4 in formula (2) are substituted or unsubstituted alkyl groups, or substituted or an unsubstituted alkenyl group, more preferably an alkyl group or an alkenyl group, even more preferably an alkyl group having 1 to 14 carbon atoms or an alkenyl group having 1 to 14 carbon atoms, an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 1 to 8 carbon atoms. An alkenyl group having 1 to 8 carbon atoms is more preferred, an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 1 to 4 carbon atoms is even more preferred, an alkyl group having 1 to 4 carbon atoms is even more preferred, an alkyl group having 2 to 4 carbon atoms Particularly preferred are groups.
Furthermore, the number of carbon atoms in the cyclic structure formed by R 3 and R 4 bonding to each other is preferably 4 to 8, more preferably 4 to 6. In the case where R 3 and R 4 are bonded to each other to form a cyclic structure, examples of the compound having a ligand-reactive group include succinic anhydride, maleic anhydride, citraconic anhydride, dimethylmaleic anhydride, and glutaric acid. Examples include anhydrides.
 式(3)中のR5としては、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、置換又は非置換のアルキル基が好ましく、置換又は非置換の炭素数1~14のアルキル基がより好ましく、置換又は非置換の炭素数1~8のアルキル基が更に好ましく、置換又は非置換の炭素数1~4のアルキル基が更に好ましく、炭素数1~4のアルキル基、又はハロゲン原子、ヒドロキシ基及びアルコキシ基から選ばれる置換基を有する炭素数1~4のアルキル基が更に好ましく、炭素数1~4のアルキル基、又はハロゲン原子、ヒドロキシ基及び炭素数1~4のアルコキシ基から選ばれる置換基を有する炭素数1~4のアルキル基が更に好ましく、炭素数1~4のアルキル基が特に好ましい。
 式(3)中のXは、環状エーテル基を示す。この環状エーテル基は、工程A-P1で官能基として挙げたものと同様であり、環を構成する原子数が3~7個の環状エーテル基が好ましい。環状エーテル基は、置換基としてアルキル基を有していてもよい。環状エーテル基の具体例としては、工程A-P1で官能基として挙げた式(4)~(9)で表される環状エーテル基が挙げられるが、式(4)、(6)又は(9)で表される環状エーテル基が好ましく、式(4)で表される環状エーテル基がより好ましい。
In formula (3), R 5 is preferably a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkyl group having 1 to 1 carbon atoms, in order to increase dynamic binding capacity and improve low leakage of protein ligands. 14 alkyl groups are more preferred, substituted or unsubstituted alkyl groups having 1 to 8 carbon atoms are even more preferred, substituted or unsubstituted alkyl groups having 1 to 4 carbon atoms are even more preferred, and alkyl groups having 1 to 4 carbon atoms are more preferred. , or an alkyl group having 1 to 4 carbon atoms having a substituent selected from a halogen atom, a hydroxy group, and an alkoxy group, more preferably an alkyl group having 1 to 4 carbon atoms, or a halogen atom, a hydroxy group, and a 1 to 4 carbon atoms. An alkyl group having 1 to 4 carbon atoms having a substituent selected from alkoxy groups is more preferred, and an alkyl group having 1 to 4 carbon atoms is particularly preferred.
X in formula (3) represents a cyclic ether group. This cyclic ether group is the same as that mentioned as the functional group in Step A-P1, and a cyclic ether group having 3 to 7 atoms constituting the ring is preferable. The cyclic ether group may have an alkyl group as a substituent. Specific examples of the cyclic ether group include cyclic ether groups represented by formulas (4) to (9) listed as functional groups in step A-P1; ) is preferred, and a cyclic ether group represented by formula (4) is more preferred.
 工程Bで用いるリガンド反応性基を有する化合物としては、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミドの塩、N,N'-ジシクロヘキシルカルボジイミド、N,N'-ジイソプロピルカルボジイミド、無水マレイン酸、シトラコン酸無水物、ジメチルマレイン酸無水物、無水プロピオン酸、無水酢酸、ピバル酸無水物、無水コハク酸、グルタル酸無水物、プロピレンオキシド、ブチレンオキシド、グリシジルメチルエーテル、エチルグリシジルエーテル、グリシドール、エピクロロヒドリン、及びエピブロモヒドリンから選ばれる1種又は2種以上の化合物が好ましく、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミドの塩、N,N'-ジシクロヘキシルカルボジイミド、N,N'-ジイソプロピルカルボジイミド、無水マレイン酸、無水プロピオン酸、無水酢酸、ピバル酸無水物、無水コハク酸、グルタル酸無水物、プロピレンオキシド、ブチレンオキシド、グリシジルメチルエーテル、エチルグリシジルエーテル、グリシドール、エピクロロヒドリン、及びエピブロモヒドリンから選ばれる1種又は2種以上の化合物がより好ましく、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミドの塩、N,N'-ジシクロヘキシルカルボジイミド、N,N'-ジイソプロピルカルボジイミド、無水マレイン酸、無水プロピオン酸、無水酢酸、ピバル酸無水物、無水コハク酸、及びグルタル酸無水物から選ばれる1種又は2種以上の化合物が更に好ましく、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミドの塩、N,N'-ジシクロヘキシルカルボジイミド、及びN,N'-ジイソプロピルカルボジイミドから選ばれる1種又は2種以上の化合物が更に好ましく、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド及びその塩から選ばれる化合物が更に好ましく、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド塩酸塩が特に好ましい。
 1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミドの塩、N,N'-ジシクロヘキシルカルボジイミド、N,N'-ジイソプロピルカルボジイミド、無水マレイン酸、無水プロピオン酸、無水酢酸、ピバル酸無水物、無水コハク酸、及びグルタル酸無水物から選ばれる1種又は2種以上の化合物を用いた場合、特に1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミドの塩、N,N'-ジシクロヘキシルカルボジイミド、及びN,N'-ジイソプロピルカルボジイミドから選ばれる1種又は2種以上の化合物を用いた場合に、動的結合容量とタンパク質リガンド低漏出性を両立しやすくなる。
The compound having a ligand-reactive group used in Step B is 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide in order to increase dynamic binding capacity and improve low leakage of protein ligands. , 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide salt, N,N'-dicyclohexylcarbodiimide, N,N'-diisopropylcarbodiimide, maleic anhydride, citraconic anhydride, dimethylmaleic anhydride , propionic anhydride, acetic anhydride, pivalic anhydride, succinic anhydride, glutaric anhydride, propylene oxide, butylene oxide, glycidyl methyl ether, ethyl glycidyl ether, glycidol, epichlorohydrin, and epibromohydrin. 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, a salt of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, N, N'-dicyclohexylcarbodiimide, N,N'-diisopropylcarbodiimide, maleic anhydride, propionic anhydride, acetic anhydride, pivalic anhydride, succinic anhydride, glutaric anhydride, propylene oxide, butylene oxide, glycidyl methyl ether, ethyl One or more compounds selected from glycidyl ether, glycidol, epichlorohydrin, and epibromohydrin are more preferred, and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, 1-[ 3-(dimethylamino)propyl]-3-ethylcarbodiimide salt, N,N'-dicyclohexylcarbodiimide, N,N'-diisopropylcarbodiimide, maleic anhydride, propionic anhydride, acetic anhydride, pivalic anhydride, succinic anhydride One or more compounds selected from acids and glutaric anhydride are more preferred, such as 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, 1-[3-(dimethylamino)propyl] More preferably, one or more compounds selected from a salt of -3-ethylcarbodiimide, N,N'-dicyclohexylcarbodiimide, and N,N'-diisopropylcarbodiimide, and 1-[3-(dimethylamino)propyl] More preferred are compounds selected from -3-ethylcarbodiimide and its salts, and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride is particularly preferred.
1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide salt, N,N'-dicyclohexylcarbodiimide, N,N'-diisopropyl When one or more compounds selected from carbodiimide, maleic anhydride, propionic anhydride, acetic anhydride, pivalic anhydride, succinic anhydride, and glutaric anhydride are used, especially 1-[3-( 1 selected from dimethylamino)propyl]-3-ethylcarbodiimide, a salt of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, N,N'-dicyclohexylcarbodiimide, and N,N'-diisopropylcarbodiimide When a species or two or more kinds of compounds are used, it becomes easier to achieve both dynamic binding capacity and low protein ligand leakage.
 工程Bで用いるリガンド反応性基を有する化合物の合計使用量は、リガンドを十分に修飾させつつ、高い動的結合容量を維持させるために、リガンドが固定された多孔質粒子の乾燥重量1gに対して、好ましくは0.01ミリモル以上15ミリモル以下であり、より好ましくは0.02ミリモル以上10ミリモル以下であり、更に好ましくは0.05ミリモル以上5ミリモル以下であり、更に好ましくは0.1ミリモル以上3ミリモル以下であり、特に好ましくは0.3ミリモル以上3ミリモル以下である。
 リガンド反応性基を有する化合物の合計使用量をリガンドが固定された多孔質粒子の乾燥重量1gに対して、0.3ミリモル以上とした場合に、動的結合容量とタンパク質リガンド低漏出性を両立しやすくなる。
In order to maintain high dynamic binding capacity while sufficiently modifying the ligand, the total amount of the compound having a ligand-reactive group used in Step B is determined per 1 g of dry weight of the porous particles on which the ligand is immobilized. The amount is preferably 0.01 mmol or more and 15 mmol or less, more preferably 0.02 mmol or more and 10 mmol or less, still more preferably 0.05 mmol or more and 5 mmol or less, and even more preferably 0.1 mmol. The amount is 3 mmol or less, particularly preferably 0.3 mmol or more and 3 mmol or less.
Both dynamic binding capacity and low leakage of protein ligands can be achieved when the total amount of compounds having ligand-reactive groups used is 0.3 mmol or more per 1 g of dry weight of porous particles on which ligands are immobilized. It becomes easier.
 工程Bは、反応効率を高めるために、水系媒体中で行うことが好ましい。水系媒体としては、水の他、炭酸緩衝液、CHES緩衝液、CAPS緩衝液、TAPS緩衝液、ホウ酸ナトリウム緩衝液、リン酸緩衝液等の各種緩衝液が挙げられる。これらの中では、タンパク質リガンド低漏出性を改善させるために、炭酸緩衝液、CAPS緩衝液が好ましく、炭酸緩衝液がより好ましい。
 水系媒体として炭酸緩衝液又はCAPS緩衝液を用いた場合、特に炭酸緩衝液を用いた場合に、動的結合容量とタンパク質リガンド低漏出性を両立しやすくなる。
 工程Bの反応pHは、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、好ましくは7以上、より好ましくは8~14、更に好ましくは9~12、特に好ましくは9~11である。
 工程Bの反応pHを12以下とした場合、特に11以下とした場合に、動的結合容量とタンパク質リガンド低漏出性を両立しやすくなる。
Step B is preferably carried out in an aqueous medium in order to increase reaction efficiency. Examples of the aqueous medium include water and various buffers such as carbonate buffer, CHES buffer, CAPS buffer, TAPS buffer, sodium borate buffer, and phosphate buffer. Among these, carbonate buffers and CAPS buffers are preferred, and carbonate buffers are more preferred, in order to improve low leakage of protein ligands.
When a carbonate buffer or a CAPS buffer is used as the aqueous medium, especially when a carbonate buffer is used, it becomes easier to achieve both dynamic binding capacity and low protein ligand leakage.
The reaction pH in Step B is preferably 7 or higher, more preferably 8 to 14, even more preferably 9 to 12, particularly preferably 9, in order to increase the dynamic binding capacity and improve low leakage of protein ligands. ~11.
When the reaction pH in Step B is set to 12 or less, particularly when it is set to 11 or less, it becomes easier to achieve both dynamic binding capacity and low protein ligand leakage.
 工程Bの反応時間は特に限定されないが、通常0.1~72時間程度であり、好ましくは0.3~48時間である。また、反応温度は、溶媒の沸点以下で適宜選択すればよいが、通常2~100℃程度である。 The reaction time in step B is not particularly limited, but is usually about 0.1 to 72 hours, preferably 0.3 to 48 hours. Further, the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 2 to 100°C.
 なお、上記各工程で得られる反応生成物を、ろ過、洗浄等の分離手段で精製してもよい。また、分級してもよい。 Note that the reaction products obtained in each of the above steps may be purified by separation means such as filtration and washing. Furthermore, it may be classified.
 そして、本発明のクロマトグラフィー用担体の製造方法によれば、抗体又はその断片に対する動的結合容量が大きく、且つ抗体の単離に繰り返し用いた場合でもタンパク質リガンドが漏出しにくいクロマトグラフィー用担体を簡便に製造できる。
 また、このようにして得られるクロマトグラフィー用担体は、抗体又はその断片に対する動的結合容量が大きく、抗体の単離に繰り返し用いた場合でもタンパク質リガンドが漏出しにくい。また、抗体の単離を行う際、タンパク質リガンドへの夾雑物等の非特異吸着を抑制することが出来る。また、アフィニティクロマトグラフィーへの使用に適する。次に、このようにして得られる本発明のクロマトグラフィー用担体について説明する。
According to the method for producing a chromatography carrier of the present invention, a chromatography carrier that has a large dynamic binding capacity for antibodies or fragments thereof and that does not easily leak protein ligands even when used repeatedly for antibody isolation can be obtained. Easy to manufacture.
Furthermore, the chromatography carrier thus obtained has a large dynamic binding capacity for antibodies or fragments thereof, and protein ligands are unlikely to leak out even when used repeatedly for antibody isolation. Furthermore, when isolating antibodies, non-specific adsorption of contaminants and the like to protein ligands can be suppressed. It is also suitable for use in affinity chromatography. Next, the chromatography carrier of the present invention obtained in this way will be explained.
 工程Bで用いるリガンド反応性基を有する化合物として式(1)で表される化合物及びその塩から選ばれる1種又は2種以上を使用し、水系媒体として炭酸緩衝液又はCAPS緩衝液を使用した場合に、
更に、工程Bで用いるリガンド反応性基を有する化合物として式(1)で表される化合物及びその塩から選ばれる1種又は2種以上を使用し、水系媒体として炭酸緩衝液又はCAPS緩衝液を使用し、工程Bの反応pHを12以下又は11以下とした場合に、
特に、工程Bで用いるリガンド反応性基を有する化合物として式(1)で表される化合物及びその塩から選ばれる1種又は2種以上を使用し、水系媒体として炭酸緩衝液を使用し、リガンド反応性基を有する化合物の合計使用量をリガンドが固定された多孔質粒子の乾燥重量1gに対して、0.3ミリモル以上とした場合に、動的結合容量とタンパク質リガンド低漏出性を両立しやすくなる。
One or more compounds selected from the compound represented by formula (1) and its salts were used as the compound having a ligand-reactive group used in step B, and a carbonate buffer or CAPS buffer was used as the aqueous medium. In case,
Furthermore, one or more compounds selected from the compound represented by formula (1) and its salts are used as the compound having a ligand-reactive group used in step B, and a carbonate buffer or CAPS buffer is used as the aqueous medium. and when the reaction pH in step B is 12 or less or 11 or less,
In particular, one or more compounds selected from the compound represented by formula (1) and its salts are used as the compound having a ligand-reactive group used in step B, a carbonate buffer is used as the aqueous medium, and the ligand is When the total amount of compounds having reactive groups used is 0.3 mmol or more per 1 g of dry weight of porous particles with immobilized ligands, both dynamic binding capacity and low leakage of protein ligands can be achieved. It becomes easier.
〔クロマトグラフィー用担体〕
 本発明のクロマトグラフィー用担体は、多孔質粒子と、当該多孔質粒子に固定されたリガンドと、-C(=O)-O-C(=O)-で表される基、カルボジイミド基、及び環状エーテル基から選ばれる少なくとも1種のリガンド反応性基を有する化合物に由来する部分構造とを有し、前記リガンドが、プロテインA、プロテインG、プロテインL及びこれらの類縁物質から選ばれる1種又は2種以上のリガンドであり、前記リガンドのアミノ基及びカルボキシ基から選ばれる少なくとも1種の官能基が、前記部分構造で化学修飾されており、下記式:
 化学修飾率(モル%) = (化学修飾された官能基のモル数) / (化学修飾された官能基のモル数と化学修飾されていない官能基のモル数との和) × 100
で算出される化学修飾率が、1~70モル%であることを特徴とする。多孔質粒子、リガンド、リガンド反応性基を有する化合物は、本発明のクロマトグラフィー用担体の製造方法で説明したものと同義である。
[Carrier for chromatography]
The chromatography carrier of the present invention comprises porous particles, a ligand fixed to the porous particles, a group represented by -C(=O)-OC(=O)-, a carbodiimide group, and a partial structure derived from a compound having at least one ligand-reactive group selected from a cyclic ether group, and the ligand is one selected from Protein A, Protein G, Protein L, and related substances thereof; Two or more types of ligands, at least one type of functional group selected from an amino group and a carboxy group of the ligands are chemically modified with the above partial structure, and have the following formula:
Chemical modification rate (mol%) = (number of moles of chemically modified functional groups) / (sum of number of moles of chemically modified functional groups and number of moles of non-chemically modified functional groups) × 100
It is characterized in that the chemical modification rate calculated by is 1 to 70 mol%. The porous particles, the ligand, and the compound having a ligand-reactive group have the same meanings as those explained in the method for producing a chromatography carrier of the present invention.
 リガンド反応性基を有する化合物としては、工程Bで用いるものと同様のものが挙げられる。リガンド反応性基を有する化合物に由来する部分構造としては、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、-C(=O)-、-NR1-C(=O)-、-C(=NR1)-又は-CH2-CH(-OH)-で表される基を分子内に有するものが好ましく、-C(=O)-、-C(=NR1)-、又は-NR1-C(=O)-で表される基を分子内に有するものがより好ましく、-C(=NR1)-又は-NR1-C(=O)-で表される基を分子内に有するものが更に好ましく、-C(=NR1)-で表される基を分子内に有するものが特に好ましい。
 また、-C(=O)-で表される基を分子内に有する部分構造としては、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、-C(=O)-R3で表される基又は-C(=O)-R21-C(=O)OHで表される基が好ましい。
 また、-C(=NR1)-で表される基を分子内に有する部分構造としては、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、-C(=NR1)-NR2-で表される基を分子内に有するものが好ましく、-C(=NR1)-NR2-Hで表される基がより好ましい。
 また、-NR1-C(=O)-で表される基を分子内に有する部分構造としては、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、-NR1-C(=O)-NR2-で表される基を分子内に有するものが好ましく、-NR1-C(=O)-NR2-Hで表される基がより好ましい。
 また、-CH2-CH(-OH)-で表される基を分子内に有する部分構造としては、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、-CH2-CH(-OH)-R5で表される基が好ましい。
 上記部分構造におけるR1、R2、R3及びR5は、式(1)~(3)中のR1、R2、R3及びR5と同義であり、R1及びR2は、相互に独立に、水素原子又は置換若しくは非置換の炭化水素基を示す。また、R3及びR5は、相互に独立に、置換又は非置換の炭化水素基を示す。
 また、-C(=O)-R21-C(=O)OHは、式(2)で表され且つ式(2)中のR3及びR4が互いに結合して環状構造を形成している化合物の開環により形成される基であればよい。R21としては、炭素数2~6の2価の炭化水素基が好ましい。例えば、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基等のアルカンジイル基;エテン-1,2-ジイル等のアルケンジイル基が挙げられる。
Examples of the compound having a ligand-reactive group include those similar to those used in Step B. As partial structures derived from compounds having a ligand-reactive group, -C(=O)-, -NR 1 -C(= Those having a group represented by O)-, -C(=NR 1 )- or -CH 2 -CH(-OH)- in the molecule are preferable, and -C(=O)-, -C(=NR 1 )- or -NR 1 -C(=O)- in the molecule, and -C(=NR 1 )- or -NR 1 -C(=O)-. Those having the group represented by the formula in the molecule are more preferable, and those having the group represented by -C(=NR 1 )- in the molecule are particularly preferable.
In addition, as a partial structure having a group represented by -C(=O)- in the molecule, -C(=O)- A group represented by -R 3 or a group represented by -C(=O)-R 21 -C(=O)OH is preferred.
In addition, as a partial structure having a group represented by -C(=NR 1 )- in the molecule, -C(=NR 1 ) Those having a group represented by --NR 2 -- in the molecule are preferred, and groups represented by --C(=NR 1 )-NR 2 --H are more preferred.
In addition, as a partial structure having a group represented by -NR 1 -C(=O)- in the molecule, -NR 1 Those having a group represented by --C(=O)-NR 2 -- in the molecule are preferred, and groups represented by --NR 1 --C(=O)-NR 2 --H are more preferred.
In addition, as a partial structure having a group represented by -CH 2 -CH(-OH)- in the molecule, -CH 2 A group represented by -CH(-OH)-R 5 is preferred.
R 1 , R 2 , R 3 and R 5 in the above partial structure have the same meanings as R 1 , R 2 , R 3 and R 5 in formulas (1) to (3), and R 1 and R 2 are Each independently represents a hydrogen atom or a substituted or unsubstituted hydrocarbon group. Moreover, R 3 and R 5 each independently represent a substituted or unsubstituted hydrocarbon group.
-C(=O)-R 21 -C(=O)OH is represented by formula (2), and R 3 and R 4 in formula (2) combine with each other to form a cyclic structure. Any group formed by ring opening of a compound may be used. R 21 is preferably a divalent hydrocarbon group having 2 to 6 carbon atoms. For example, alkanediyl groups such as ethane-1,2-diyl group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group; ethene-1,2-diyl group; Examples include alkenediyl groups such as.
 本発明のクロマトグラフィー用担体としては、前記リガンド反応性基を有する化合物が-C(=O)-O-C(=O)-で表される基、カルボジイミド基及び環状エーテル基から選ばれる少なくとも1種を有する場合は、前記リガンドのアミノ基が前記部分構造で化学修飾されているものが好ましい。なお、カルボジイミド基を有する場合には、前記リガンドのアミノ基が前記部分構造で化学修飾されているとともに、更に前記リガンドのカルボキシ基も前記部分構造で化学修飾されていてもよい。 In the chromatography carrier of the present invention, the compound having the ligand-reactive group is at least one selected from a group represented by -C(=O)-OC(=O)-, a carbodiimide group, and a cyclic ether group. If one type is present, it is preferable that the amino group of the ligand is chemically modified with the partial structure. In addition, when it has a carbodiimide group, the amino group of the said ligand may be chemically modified with the said partial structure, and the carboxy group of the said ligand may also be chemically modified with the said partial structure.
 上記化学修飾率としては、動的結合容量を大きくするためやタンパク質リガンド低漏出性を改善させるために、好ましくは1モル%以上、より好ましくは3モル%以上、更に好ましくは10モル%以上、更に好ましくは20モル%以上、特に好ましくは30モル%以上であり、また、タンパク質リガンドが有するべき機能を保持できるようにするために、好ましくは70モル%以下、より好ましくは60モル%以下、更に好ましくは55モル%以下、特に好ましくは50モル%以下である。具体的な範囲としては、1モル%以上70モル%以下が好ましく、3モル%以上70モル%以下がより好ましく、10モル%以上60モル%以下が更に好ましく、20モル%以上55モル%以下が更に好ましく、30モル%以上50モル%以下が特に好ましい。 The chemical modification rate is preferably 1 mol% or more, more preferably 3 mol% or more, even more preferably 10 mol% or more, in order to increase the dynamic binding capacity and improve the low leakage of protein ligands. More preferably 20 mol% or more, particularly preferably 30 mol% or more, and in order to maintain the function that the protein ligand should have, preferably 70 mol% or less, more preferably 60 mol% or less, More preferably, it is 55 mol% or less, particularly preferably 50 mol% or less. The specific range is preferably 1 mol% or more and 70 mol% or less, more preferably 3 mol% or more and 70 mol% or less, even more preferably 10 mol% or more and 60 mol% or less, and 20 mol% or more and 55 mol% or less. is more preferable, and particularly preferably 30 mol% or more and 50 mol% or less.
 上記化学修飾率は、例えば、アミノ酸分析法や中和滴定法、電位差滴定法により下記式にしたがって算出できる。具体的には、前記リガンド反応性基を有する化合物がカルボジイミド基、及び環状エーテル基から選ばれる少なくとも1種を有し、前記リガンドのアミノ基が前記部分構造で化学修飾されている場合は、例えば、アミノ酸分析法に基づき下記式
 化学修飾率(モル%) = {(1-工程B後のタンパク質リガンドのリシンのモル数) / (多孔質粒子5のタンパク質リガンドのモル数 × 多孔質粒子5のタンパク質リガンド1つあたりに存在するリシン個数) × 100}
で算出できる。
 また、前記リガンド反応性基を有する化合物が-C(=O)-O-C(=O)-で表される基を有し、前記リガンドのアミノ基が前記部分構造で化学修飾されている場合は、例えば、中和滴定法に基づき下記式
 化学修飾率(モル%) = (1-工程B前のアミノ基含有量 / クロマトグラフィー用担体中のアミノ基含有量) × 100
で算出できる。なお、リガンド反応性基を有する化合物が-C(=O)-O-C(=O)-で表される基を有する場合、リガンドのアミノ基と前記リガンド反応性基を有する化合物とが反応することで、アミド基が生じ得る。このようなアミド基の発生は、上記のアミノ酸分析法において正確な測定に支障をきたすことがある。よって、リガンド反応性基を有する化合物が-C(=O)-O-C(=O)-で表される基を有する場合には、前記のようにして中和滴定法に基づき算出することが好ましい。
The chemical modification rate can be calculated according to the following formula using, for example, amino acid analysis, neutralization titration, or potentiometric titration. Specifically, when the compound having the ligand-reactive group has at least one selected from a carbodiimide group and a cyclic ether group, and the amino group of the ligand is chemically modified with the partial structure, for example, , based on the amino acid analysis method: Chemical modification rate (mol%) = {(1-Number of moles of protein ligand lysine after step B) / (Number of moles of protein ligand in porous particles 5 × number of moles in porous particles 5) Number of lysines present per protein ligand) × 100}
It can be calculated by
Further, the compound having the ligand-reactive group has a group represented by -C(=O)-OC(=O)-, and the amino group of the ligand is chemically modified with the partial structure. For example, based on the neutralization titration method, the following formula: Chemical modification rate (mol%) = (1-Amino group content before step B / amino group content in chromatography carrier) × 100
It can be calculated by In addition, when the compound having a ligand-reactive group has a group represented by -C(=O)-OC(=O)-, the amino group of the ligand and the compound having the ligand-reactive group react. By doing so, an amide group can be generated. The occurrence of such amide groups may impede accurate measurement in the above amino acid analysis method. Therefore, when a compound having a ligand-reactive group has a group represented by -C(=O)-OC(=O)-, it should be calculated based on the neutralization titration method as described above. is preferred.
 本発明のクロマトグラフィー用担体の体積平均粒子径は、好ましくは40~150μmであり、より好ましくは50~100μmである。また、体積平均粒子径の変動係数は、好ましくは40%以下であり、より好ましくは30%以下である。
 また、本発明のクロマトグラフィー用担体の比表面積は、好ましくは1~500m2/gであり、より好ましくは10~300m2/gである。
 また、本発明のクロマトグラフィー用担体の体積平均細孔径は、好ましくは10~300nmである。
 なお、上記体積平均粒子径、変動係数、比表面積及び体積平均細孔径は、レーザー回析・散乱粒子径分布測定等により測定できる。
The volume average particle diameter of the carrier for chromatography of the present invention is preferably 40 to 150 μm, more preferably 50 to 100 μm. Further, the coefficient of variation of the volume average particle diameter is preferably 40% or less, more preferably 30% or less.
Further, the specific surface area of the carrier for chromatography of the present invention is preferably 1 to 500 m 2 /g, more preferably 10 to 300 m 2 /g.
Further, the volume average pore diameter of the chromatography carrier of the present invention is preferably 10 to 300 nm.
The volume average particle diameter, coefficient of variation, specific surface area, and volume average pore diameter can be measured by laser diffraction, scattering particle size distribution measurement, or the like.
〔クロマトグラフィーカラム〕
 本発明のクロマトグラフィーカラムは、本発明のクロマトグラフィー用担体を含むことを特徴とする。本発明のクロマトグラフィーカラムは、本発明のクロマトグラフィー用担体を含む以外は、通常のクロマトグラフィーカラムと同様である。具体的には、カラム容器と当該カラム容器に充填された本発明のクロマトグラフィー用担体とを備えるクロマトグラフィーカラムが挙げられる。
 本発明のクロマトグラフィーカラムは、アフィニティクロマトグラフィーへの使用に適する。
[Chromatography column]
The chromatography column of the present invention is characterized by containing the chromatography carrier of the present invention. The chromatography column of the present invention is similar to a conventional chromatography column except that it contains the chromatography carrier of the present invention. Specifically, a chromatography column including a column container and the chromatography carrier of the present invention filled in the column container can be mentioned.
The chromatography column of the invention is suitable for use in affinity chromatography.
〔抗体又はその断片の単離方法〕
 本発明の抗体又はその断片の単離方法は、本発明のクロマトグラフィー用担体又は本発明のクロマトグラフィーカラムを用いることを特徴とする。
 本明細書において「抗体」は、例えば、IgG、IgA、IgD、IgE、IgM、及びこれらのサブクラス等の任意のクラスのイムノグロブリン、それらの変異体を包含する概念である。また、本明細書において「抗体」は、ヒト化抗体等のキメラ抗体、抗体複合体、及び抗原認識部位を含む他のイムノグロブリン修飾体などであってもよい。
 また、本明細書において「抗体の断片」は、抗原認識部位を含む抗体の断片であっても、抗原認識部位を含まない抗体の断片であってもよい。抗原認識部位を含まない抗体の断片としては、例えば、イムノグロブリンのFc領域のみからなるタンパク質、Fc融合タンパク質、及びそれらの変異体や修飾体などが挙げられる。
[Method for isolating antibodies or fragments thereof]
The method for isolating antibodies or fragments thereof of the present invention is characterized by using the chromatography carrier of the present invention or the chromatography column of the present invention.
As used herein, the term "antibody" is a concept that includes any class of immunoglobulin, such as IgG, IgA, IgD, IgE, IgM, and subclasses thereof, as well as variants thereof. Furthermore, in this specification, the term "antibody" may be a chimeric antibody such as a humanized antibody, an antibody complex, or another modified immunoglobulin containing an antigen recognition site.
Furthermore, as used herein, the term "antibody fragment" may be an antibody fragment that includes an antigen recognition site or an antibody fragment that does not include an antigen recognition site. Examples of antibody fragments that do not contain an antigen recognition site include proteins consisting only of the Fc region of immunoglobulin, Fc fusion proteins, and variants and modifications thereof.
 本発明の抗体又はその断片の単離方法は、本発明のクロマトグラフィー用担体又は本発明のクロマトグラフィーカラムを用いること以外は、抗体又はその断片の一般的な単離方法と同様にして行えばよい。具体的には、本発明のクロマトグラフィー用担体と、抗体又はその断片を含む試料とを接触させる工程を含む方法が挙げられる。また、この工程によって抗体又はその断片をクロマトグラフィー用担体に捕捉させて抗体又はその断片から夾雑物(例えば、抗体又はその断片以外のタンパク質等)を分離した後、クロマトグラフィー用担体に捕捉された抗体又はその断片を溶出させる溶出工程を行うことが好ましい。この溶出液を回収することで、試料から抗体又はその断片を単離することができる。溶出工程には、イムノグロブリン結合タンパク質と抗体又はその断片とを解離させる解離液が通常使用される。
 また、単離は、本発明のクロマトグラフィーカラムを用いて行ってもよい。このような方法としては、本発明のクロマトグラフィーカラムに、抗体又はその断片を含む試料を通液する工程を含む方法が挙げられ、この工程によって抗体又はその断片をクロマトグラフィー用担体に捕捉させて抗体又はその断片から夾雑物を分離した後、上記と同様に溶出工程を行うことが好ましい。
The method for isolating the antibody or fragment thereof of the present invention can be carried out in the same manner as the general method for isolating antibodies or fragments thereof, except for using the chromatography carrier of the present invention or the chromatography column of the present invention. good. Specifically, a method including a step of bringing the chromatography carrier of the present invention into contact with a sample containing an antibody or a fragment thereof can be mentioned. In addition, in this step, the antibody or its fragment is captured on a chromatography carrier, and after separating impurities (e.g., proteins other than the antibody or its fragment) from the antibody or its fragment, the antibody or its fragment is captured on the chromatography carrier. Preferably, an elution step is performed to elute the antibody or its fragment. By collecting this eluate, antibodies or fragments thereof can be isolated from the sample. In the elution step, a dissociation solution that dissociates the immunoglobulin binding protein and the antibody or its fragment is usually used.
Isolation may also be performed using a chromatography column of the invention. Such a method includes a method that includes a step of passing a sample containing an antibody or a fragment thereof through the chromatography column of the present invention, and by this step, the antibody or a fragment thereof is captured on a chromatography carrier. After separating contaminants from the antibody or fragment thereof, it is preferable to perform an elution step in the same manner as above.
 なお、抗体又はその断片を含む試料は特に限定されないが、例えば、全血、血清、血漿、各種血球、血餅、血小板等の血液組成成分、尿、精液、母乳、汗、間質液、間質性リンパ液、骨髄液、組織液、唾液、胃液、関節液、胸水、胆汁、腹水、羊水等の体液、菌体液、細胞培養の培地、細胞培養上清、組織細胞の破砕液等の各種液体試料が挙げられる。 Samples containing antibodies or fragments thereof are not particularly limited, but include, for example, whole blood, serum, plasma, various blood cells, blood components such as blood clots and platelets, urine, semen, breast milk, sweat, interstitial fluid, and interstitial fluid. Various liquid samples such as qualitative lymph fluid, bone marrow fluid, tissue fluid, saliva, gastric fluid, joint fluid, pleural effusion, bile, ascites fluid, amniotic fluid, etc., bacterial fluid, cell culture medium, cell culture supernatant, tissue cell disruption fluid, etc. can be mentioned.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples.
(調製例 リガンド(イムノグロブリン結合タンパク質)の調製)
 イムノグロブリン結合タンパク質PrA-0~PrA-13を取得した。PrA-0は、プロテインAのCドメイン(配列番号2)が直列に連結したホモヘキサマーを含むイムノグロブリン結合タンパク質である。PrA-1~PrA-13は、PrA-0の各イムノグロブリン結合ドメインに対して表1記載の変異を導入した変異体である。
(Preparation example: Preparation of ligand (immunoglobulin binding protein))
Immunoglobulin binding proteins PrA-0 to PrA-13 were obtained. PrA-0 is an immunoglobulin binding protein that contains a homohexamer in which the C domain of Protein A (SEQ ID NO: 2) is linked in tandem. PrA-1 to PrA-13 are mutants in which the mutations listed in Table 1 were introduced into each immunoglobulin binding domain of PrA-0.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 PrA-0~PrA-13の発現と精製はそれぞれ以下のように行った。PrA-0~PrA-13をコードするプラスミドを用いて大腸菌BL21(DE3)を形質転換し、得られた形質転換体を富栄養培地中37℃で対数増殖期まで培養した。その後、培地に終濃度1mMイソプロピル-β-チオガラクトピラノシド(和光純薬工業社製)を添加して、さらに37℃で4時間培養することにより、目的タンパク質を発現させた。続いて培養液を遠心分離して上清を除き、得られた菌体に卵白由来リゾチーム(和光純薬工業社製)及びポリオキシエチレン(10)オクチルフェニルエーテル(和光純薬工業社製)を含むpH9.5の30mMトリス緩衝液を添加して菌体を破砕した。得られた細胞破砕液から、陽イオン交換クロマトグラフィー(SP-セファロースFF、GEヘルスケアバイオサイエンス社製)及び陰イオン交換クロマトグラフィー(Q-セファロースFF、GEヘルスケアバイオサイエンス社製)によって組み換えイムノグロブリン結合タンパク質を精製した。精製したイムノグロブリン結合タンパク質を、10mMクエン酸緩衝液pH6.0に対して透析した。SDS-PAGEによって確認された組み換え型イムノグロブリン結合タンパク質の純度は95%以上であった。 Expression and purification of PrA-0 to PrA-13 were performed as follows. Escherichia coli BL21 (DE3) was transformed using the plasmids encoding PrA-0 to PrA-13, and the resulting transformants were cultured in a rich medium at 37°C until the logarithmic growth phase. Thereafter, the target protein was expressed by adding isopropyl-β-thiogalactopyranoside (manufactured by Wako Pure Chemical Industries, Ltd.) to the medium at a final concentration of 1 mM and culturing at 37° C. for 4 hours. Next, the culture solution was centrifuged to remove the supernatant, and the resulting bacterial cells were treated with egg white-derived lysozyme (manufactured by Wako Pure Chemical Industries, Ltd.) and polyoxyethylene (10) octylphenyl ether (manufactured by Wako Pure Chemical Industries, Ltd.). The bacterial cells were disrupted by adding 30 mM Tris buffer containing pH 9.5. The obtained cell lysate was subjected to cation exchange chromatography (SP-Sepharose FF, manufactured by GE Healthcare Biosciences) and anion exchange chromatography (Q-Sepharose FF, manufactured by GE Healthcare Biosciences). Globulin binding proteins were purified. The purified immunoglobulin binding protein was dialyzed against 10 mM citrate buffer pH 6.0. The purity of the recombinant immunoglobulin binding protein confirmed by SDS-PAGE was greater than 95%.
(実施例1)
 (工程A-1)リガンドの固定
 448gの純水にポリビニルアルコール(クラレ社製PVA-217)2.69gを添加し、加熱撹拌してポリビニルアルコールを溶解させ、水溶液を得た。一方、ジビニルベンゼン(和光純薬工業社製)3.63g、1-エチル-4-ビニルベンゼン(ChemSampCo社製)0.36g及びグリシジルメタクリレート(三菱ガス化学社製)14.15gからなる単量体組成物を、2-オクタノン(東洋合成社製)29.38gに溶解させ、単量体溶液を調製した。次いで、前記水溶液を、セパラブルフラスコ内に全量投入し、温度計、撹拌翼及び冷却管を装着して、温水バスにセットし、窒素雰囲気下で撹拌を開始した。セパラブルフラスコ内に前記単量体溶液を全量投入して、温水バスにより加温し内温が85℃に到達したところで2,2'-アゾビス(イソ酪酸メチル)(和光純薬工業社製)1.34gを添加し、内温を86℃にした。その後、86℃に温度を維持したまま、3時間撹拌を行った。次いで、反応液を冷却した後、斯かる反応液をろ過し、純水とエタノールで洗浄した。洗浄した粒子を純水に分散させてデカンテーションを3回行い、小粒子を除いた。次いで、粒子の濃度が10質量%となるように粒子を純水に分散させ、多孔質粒子分散体を得た。この分散体に含まれる多孔質粒子を、「多孔質粒子1」と称する。
 その後、多孔質粒子1分散体100gにアジピン酸ジヒドラジド(東京化成工業社製)0.956g、チオグリセロール(東京化成工業社製)8g及びジイソプロピルエチルアミン(東京化成工業社製)1.418gを加え、70℃まで加温し、70℃を維持したまま、8時間撹拌を行った。次いで、反応液を冷却した後、斯かる反応液をろ過し、純水とエタノールで洗浄した。次いで、粒子の濃度が10質量%となるように粒子を純水に分散させ、多孔質粒子分散体を得た。この分散体に含まれる多孔質粒子を、「多孔質粒子2」と称する。
 次に、多孔質粒子2に含まれるチオグリセロール由来ヒドロキシ基にエチレングリコールジグリシジルエーテルを反応させた。すなわち、純水8.7g、硫酸ナトリウム(和光純薬工業社製)1.2g及び炭酸ナトリウム(和光純薬工業社製)0.10gを混合して炭酸バッファー(pH11.2)を得た。この炭酸バッファーに、エチレングリコールジグリシジルエーテル(ナガセケムテックス社製デナコールEX810)0.5g、及び多孔質粒子2分散体8mLを添加し23℃で16時間振とう撹拌した。次いで、粒子の濃度が50体積%となるように粒子を純水に分散させ、多孔質粒子分散体を得た。この分散体に含まれる多孔質粒子を、「多孔質粒子3」と称する。
 次いで、多孔質粒子3にリガンドを固定した。すなわち、純水28.8g、硫酸ナトリウム(和光純薬工業社製)5.4g、炭酸水素ナトリウム(和光純薬工業社製)0.2g、及び炭酸ナトリウム(和光純薬工業社製)0.16gを混合して炭酸バッファー(pH9.4)を得た。この炭酸バッファー34mLに、調製例で調製したイムノグロブリン結合タンパク質PrA-1(配列番号1(WO2020/040307号公報の配列番号29)のアミノ酸配列ドメインの6量体である改変プロテインA)を0.21g、及び多孔質粒子3分散体を8mL添加し、23℃で1.5時間振とう撹拌した。次いで、粒子の濃度が50体積%となるように粒子を純水に分散させ、多孔質粒子分散体を得た。この分散体に含まれる多孔質粒子を、「多孔質粒子4」と称する。
(Example 1)
(Step A-1) Immobilization of Ligand 2.69 g of polyvinyl alcohol (PVA-217 manufactured by Kuraray Co., Ltd.) was added to 448 g of pure water, and the mixture was heated and stirred to dissolve the polyvinyl alcohol to obtain an aqueous solution. On the other hand, a monomer consisting of 3.63 g of divinylbenzene (manufactured by Wako Pure Chemical Industries, Ltd.), 0.36 g of 1-ethyl-4-vinylbenzene (manufactured by ChemSampCo), and 14.15 g of glycidyl methacrylate (manufactured by Mitsubishi Gas Chemical Co., Ltd.) The composition was dissolved in 29.38 g of 2-octanone (manufactured by Toyo Gosei Co., Ltd.) to prepare a monomer solution. Next, the entire amount of the aqueous solution was poured into a separable flask, which was equipped with a thermometer, a stirring blade, and a cooling tube, set in a hot water bath, and stirred under a nitrogen atmosphere. Pour the entire amount of the monomer solution into a separable flask, warm it with a hot water bath, and when the internal temperature reaches 85°C, 2,2'-azobis(methyl isobutyrate) (manufactured by Wako Pure Chemical Industries, Ltd.) 1.34 g was added, and the internal temperature was brought to 86°C. Thereafter, stirring was performed for 3 hours while maintaining the temperature at 86°C. Next, after cooling the reaction solution, the reaction solution was filtered and washed with pure water and ethanol. The washed particles were dispersed in pure water and decanted three times to remove small particles. Next, the particles were dispersed in pure water so that the particle concentration was 10% by mass to obtain a porous particle dispersion. The porous particles contained in this dispersion are referred to as "porous particles 1."
Then, 0.956 g of adipic acid dihydrazide (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 8 g of thioglycerol (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 1.418 g of diisopropylethylamine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were then added to 100 g of Porous Particle 1 Dispersion. The mixture was heated to 70°C and stirred for 8 hours while maintaining the temperature at 70°C. Next, after cooling the reaction solution, the reaction solution was filtered and washed with pure water and ethanol. Next, the particles were dispersed in pure water so that the particle concentration was 10% by mass to obtain a porous particle dispersion. The porous particles contained in this dispersion are referred to as "porous particles 2."
Next, the thioglycerol-derived hydroxy groups contained in the porous particles 2 were reacted with ethylene glycol diglycidyl ether. That is, 8.7 g of pure water, 1.2 g of sodium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), and 0.10 g of sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed to obtain a carbonate buffer (pH 11.2). To this carbonate buffer, 0.5 g of ethylene glycol diglycidyl ether (Denacol EX810 manufactured by Nagase ChemteX) and 8 mL of porous particle 2 dispersion were added and stirred with shaking at 23° C. for 16 hours. Next, the particles were dispersed in pure water so that the particle concentration was 50% by volume to obtain a porous particle dispersion. The porous particles contained in this dispersion are referred to as "porous particles 3."
Next, a ligand was immobilized on the porous particles 3. That is, 28.8 g of pure water, 5.4 g of sodium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), 0.2 g of sodium hydrogen carbonate (manufactured by Wako Pure Chemical Industries, Ltd.), and 0.2 g of sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.). 16 g were mixed to obtain a carbonate buffer (pH 9.4). To 34 mL of this carbonate buffer was added 0.0% of the immunoglobulin binding protein PrA-1 (modified protein A, which is a hexamer of the amino acid sequence domain of SEQ ID NO: 1 (SEQ ID NO: 29 of WO2020/040307)) prepared in the preparation example. 21 g and 8 mL of porous particle 3 dispersion were added, and the mixture was shaken and stirred at 23° C. for 1.5 hours. Next, the particles were dispersed in pure water so that the particle concentration was 50% by volume to obtain a porous particle dispersion. The porous particles contained in this dispersion are referred to as "porous particles 4."
 (工程A-2)親水化反応
 純水8.8g、硫酸ナトリウム(和光純薬工業社製)0.1g、及び水酸化ナトリウム(和光純薬工業社製)0.03gを混合してバッファーを得た後、チオグリセロール(東京化成工業社製)を4.5g添加して親水化反応液を得た。この親水化反応液に工程A-1で得られた多孔質粒子4分散体8mLを添加し、23℃で16時間振とう撹拌することで、親水化反応を行った。この親水化反応後の多孔質粒子を、0.1M 水酸化ナトリウム水溶液及び0.1Mクエン酸ナトリウムバッファー(pH3.2)で順次濾過洗浄した。次いで、粒子の濃度が50体積%となるように粒子を純水に分散させ、多孔質粒子分散体を得た。この分散体に含まれる多孔質粒子を、「多孔質粒子5」と称する。
(Step A-2) Hydrophilization reaction Mix 8.8 g of pure water, 0.1 g of sodium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), and 0.03 g of sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) to create a buffer. After that, 4.5 g of thioglycerol (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added to obtain a hydrophilic reaction solution. 8 mL of the porous particle 4 dispersion obtained in step A-1 was added to this hydrophilization reaction solution, and the mixture was shaken and stirred at 23° C. for 16 hours to perform a hydrophilization reaction. The porous particles after this hydrophilization reaction were filtered and washed in sequence with a 0.1M aqueous sodium hydroxide solution and a 0.1M sodium citrate buffer (pH 3.2). Next, the particles were dispersed in pure water so that the particle concentration was 50% by volume to obtain a porous particle dispersion. The porous particles contained in this dispersion are referred to as "porous particles 5."
 (工程B)後修飾反応
 炭酸水素ナトリウム(和光純薬工業社製)67.2mgを純水6mLに溶解させた溶液に、1M 水酸化ナトリウム(和光純薬工業社製)と純水を混合して炭酸バッファー1(23℃におけるpH10)8mLを得た。この炭酸バッファー1に、工程A-2で得られた多孔質粒子5分散体8mL、及び1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド(以下、EDCともいう)0.16gを添加し、23℃で1.5時間振とう撹拌することで、担体1を得た。この担体1を0.1M 水酸化ナトリウム水溶液、0.1Mクエン酸ナトリウムバッファー(pH3.2)、及び16wt%エタノール/50mMリン酸バッファー(pH7.3)で順次濾過洗浄し、アフィニティクロマトグラフィー用担体含有液(担体含有量50体積%)を得た。
(Step B) Post-modification reaction 1M sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) and pure water were mixed into a solution in which 67.2 mg of sodium hydrogen carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 6 mL of pure water. 8 mL of carbonate buffer 1 (pH 10 at 23°C) was obtained. To this carbonate buffer 1, 8 mL of the porous particle 5 dispersion obtained in step A-2 and 0.16 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (hereinafter also referred to as EDC) were added. The carrier 1 was obtained by adding the mixture and shaking and stirring at 23° C. for 1.5 hours. This carrier 1 was sequentially filtered and washed with 0.1M aqueous sodium hydroxide solution, 0.1M sodium citrate buffer (pH 3.2), and 16wt% ethanol/50mM phosphate buffer (pH 7.3), and then the carrier 1 was prepared as a carrier for affinity chromatography. A containing liquid (carrier content: 50% by volume) was obtained.
 修飾率の算出(アミノ酸分析法)
 工程Bの後修飾反応で得られたアフィニティクロマトグラフィー用担体含有液90μLを2mLチューブ(Eppendolf社、製品番号0030120094)にいれ、12N 塩酸水溶液100μLを用い、110℃で24時間攪拌し加水分解反応させた。加水分解反応終了後、上澄の除去および減圧乾燥により塩酸水溶液を完全に除去した。さらにチューブに0.1N 塩酸水溶液600μLを加えて溶解し、得られた担体含有液を0.22μmフィルターチューブ(Merck Millipore社、製品番号UFC30GV00)に全量移し、遠心装置を用いた遠心により固形成分を除去したろ液を回収した。得られたろ液についてUHPLC測定(Thermo Fisher scientific社、Vanquish HPLCを用い、以下の測定条件に基づいた)を実施した。
カラム:ACQUITY UPLC HSS T3 Column (C18), 100Å, 1.8μm, 2.1mm × 150nm
移動相A:0.4% ヘプタフルオロ酪酸 + 0.02% ギ酸 in H2
移動相B:0.02% ギ酸 in MeCN
グラジエント条件:0-0.75min 移動相B 1%、0.75-1.5min 移動相B 1→5%、1.5-5min 移動相B 5→7.5%、5-17.5min 移動相B 7.5→27.5%、17.5-18min 移動相B 27.5→80%、18-20min 移動相B 80%、20-20.1min 移動相B 80→1%、20.1-25min 移動相B 1%
流量:0.2ml/min
カラム温度:25℃
検出:Thermo Scientific Corona Veo RS (Charged Aerosol Detector:CAD)
注入量:2μl
 得られたクロマトグラムのピーク面積値からロイシンのモル数を定量し、本実施例に用いたプロテインAリガンドのモル数を算出した。次に、クロマトグラムのピーク面積値からリシンのモル数を定量し、本実施例に用いたプロテインAリガンドのリシンの減少率から、以下の式を用いて修飾率(モル%)を算出した。
 修飾率(モル%) = {(1-上記操作により固形成分を除去したろ液中のリシンのモル数) / (多孔質粒子5のプロテインAリガンドのモル数 × 多孔質粒子5のプロテインAリガンド1つあたりに存在するリシン個数) × 100}
Calculation of modification rate (amino acid analysis method)
90 μL of the carrier-containing solution for affinity chromatography obtained in the post-modification reaction of Step B was placed in a 2 mL tube (Eppendorf, product number 0030120094), and using 100 μL of a 12N hydrochloric acid aqueous solution, the mixture was stirred at 110° C. for 24 hours to undergo a hydrolysis reaction. Ta. After the hydrolysis reaction was completed, the aqueous hydrochloric acid solution was completely removed by removing the supernatant and drying under reduced pressure. Furthermore, 600 μL of 0.1N hydrochloric acid aqueous solution was added to the tube to dissolve it, and the entire amount of the resulting carrier-containing solution was transferred to a 0.22 μm filter tube (Merck Millipore, product number UFC30GV00), and solid components were removed by centrifugation using a centrifuge. The removed filtrate was collected. UHPLC measurement (using Thermo Fisher scientific, Vanquish HPLC, based on the following measurement conditions) was performed on the obtained filtrate.
Column: ACQUITY UPLC HSS T3 Column (C18), 100Å, 1.8μm, 2.1mm x 150nm
Mobile phase A: 0.4% heptafluorobutyric acid + 0.02% formic acid in H 2 O
Mobile phase B: 0.02% formic acid in MeCN
Gradient conditions: 0-0.75min Mobile phase B 1%, 0.75-1.5min Mobile phase B 1→5%, 1.5-5min Mobile phase B 5→7.5%, 5-17.5min movement Phase B 7.5→27.5%, 17.5-18 min Mobile phase B 27.5→80%, 18-20 min Mobile phase B 80%, 20-20.1 min Mobile phase B 80→1%, 20. 1-25min Mobile phase B 1%
Flow rate: 0.2ml/min
Column temperature: 25℃
Detection: Thermo Scientific Corona Veo RS (Charged Aerosol Detector: CAD)
Injection volume: 2μl
The number of moles of leucine was determined from the peak area value of the obtained chromatogram, and the number of moles of protein A ligand used in this example was calculated. Next, the number of moles of lysine was quantified from the peak area value of the chromatogram, and the modification rate (mol%) was calculated from the reduction rate of lysine in the protein A ligand used in this example using the following formula.
Modification rate (mol%) = {(1-number of moles of lysine in the filtrate from which solid components were removed by the above operation) / (number of moles of protein A ligand in porous particles 5 × protein A ligand in porous particles 5 Number of lysine present per lysine) × 100}
(実施例2)
 工程Bで用いた1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド0.16gを、無水プロピオン酸0.14gに変更した以外は、実施例1の工程A-1、工程A-2及び工程Bと同様の操作を行い、アフィニティクロマトグラフィー用担体含有液(担体含有量50体積%)を得た。この液に含まれる担体を担体2と称する。
 上記担体2含有液10mLをJIS P3801規格の5種Aのろ紙を用いて0.01M NaOH水溶液5mLで10回吸引ろ過して、バッファー置換を行った。得られた分散体と純水を、担体0.6g、0.01M NaOH水溶液8g、及び純水30gとなるようにボトル中で混合した。得られた担体含有液をスターラーで攪拌しながら0.01M 塩酸水溶液で滴定した。同滴定は、前記塩酸水溶液を0.1mLきざみで滴下していき、pH7を中和点とし、中和点までに要した塩酸水溶液量から、担体固形分1gあたりのアミノ基含有量を以下の式を用いて算出した。
 アミノ基含有量(μmol/g-bz)={中和点までに必要な塩酸水溶液量(mL)×0.01-8×0.01}/0.6
 同様に、工程A-2で得られた多孔質粒子5についても同様の操作を行い、多孔質粒子固形分1gあたりのアミノ基含有量を算出した。次に、修飾率(モル%)を、後修飾前後における固形分1gあたりのアミノ基含有量の比から、以下の式を用いて算出した。
 修飾率(モル%) = (1-担体2中のアミノ基含有量 / 多孔質粒子5中のアミノ基含有量) × 100
(Example 2)
Step A-1 and Step A- of Example 1 except that 0.16 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed to 0.14 g of propionic anhydride. The same operations as in Step 2 and Step B were performed to obtain a carrier-containing liquid for affinity chromatography (carrier content: 50% by volume). The carrier contained in this liquid is referred to as carrier 2.
Buffer replacement was performed by suction filtering 10 mL of the carrier 2-containing solution 10 times with 5 mL of 0.01 M NaOH aqueous solution using JIS P3801 standard 5 type A filter paper. The obtained dispersion and pure water were mixed in a bottle so that 0.6 g of carrier, 8 g of 0.01M NaOH aqueous solution, and 30 g of pure water were prepared. The obtained carrier-containing liquid was titrated with a 0.01M aqueous hydrochloric acid solution while stirring with a stirrer. In this titration, the above hydrochloric acid aqueous solution is added dropwise in 0.1 mL increments, pH 7 is set as the neutralization point, and from the amount of hydrochloric acid aqueous solution required to reach the neutralization point, the amino group content per 1 g of carrier solid content is determined as follows. Calculated using the formula.
Amino group content (μmol/g-bz) = {Amount of hydrochloric acid aqueous solution (mL) required to reach neutralization point x 0.01-8 x 0.01}/0.6
Similarly, the same operation was performed on the porous particles 5 obtained in Step A-2, and the amino group content per 1 g of porous particle solid content was calculated. Next, the modification rate (mol %) was calculated from the ratio of the amino group content per gram of solid content before and after post-modification using the following formula.
Modification rate (mol%) = (1-amino group content in carrier 2/amino group content in porous particles 5) × 100
(実施例3)
 工程Bで用いた1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド0.16gを、無水酢酸0.10gに変更した以外は、実施例1の工程A-1、工程A-2及び工程Bと同様の操作を行い、担体3を得た。修飾率(モル%)の測定は実施例2と同様にして行った。
(Example 3)
Step A-1 and Step A-2 of Example 1 except that 0.16 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed to 0.10 g of acetic anhydride. Then, the same operation as in step B was performed to obtain carrier 3. The modification rate (mol %) was measured in the same manner as in Example 2.
(実施例4)
 工程Bで用いた1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド0.16gを、無水コハク酸0.10gに変更した以外は、実施例1の工程A-1、工程A-2及び工程Bと同様の操作を行い、担体4を得た。修飾率(モル%)の測定は実施例2と同様にして行った。
(Example 4)
Step A-1 and Step A- of Example 1 except that 0.16 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed to 0.10 g of succinic anhydride. Carrier 4 was obtained by carrying out the same operations as in Step 2 and Step B. The modification rate (mol %) was measured in the same manner as in Example 2.
(実施例5)
 工程Bで用いた1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド0.16gを、ピバル酸無水物0.19gに変更した以外は、実施例1の工程A-1、工程A-2及び工程Bと同様の操作を行い、担体5を得た。修飾率(モル%)の測定は実施例2と同様にして行った。
(Example 5)
Step A-1 and Step A of Example 1 except that 0.16 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed to 0.19 g of pivalic anhydride. -2 and Step B were performed to obtain carrier 5. The modification rate (mol %) was measured in the same manner as in Example 2.
(実施例6)
 工程Bで用いた1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド0.16gを、グリシドール0.08gに変更した以外は、実施例1の工程A-1、工程A-2及び工程Bと同様の操作を行い、担体6を得た。修飾率(モル%)の測定は実施例1と同様にして行った。
(Example 6)
Step A-1, Step A-2, and Step A-2 of Example 1 except that 0.16 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed to 0.08 g of glycidol. The same operation as in step B was performed to obtain carrier 6. The modification rate (mol %) was measured in the same manner as in Example 1.
(実施例7)
 工程Bで用いた1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミドの使用量を0.16gから0.03gに変更した以外は、実施例1の工程A-1、工程A-2及び工程Bと同様の操作を行い、担体7を得た。修飾率(モル%)の測定は実施例1と同様にして行った。
(Example 7)
Step A-1 and Step A- of Example 1 except that the amount of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed from 0.16 g to 0.03 g. Carrier 7 was obtained by carrying out the same operations as in Step 2 and Step B. The modification rate (mol %) was measured in the same manner as in Example 1.
(実施例8)
 工程Bで用いた1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミドの使用量を0.16gから0.32gに変更した以外は、実施例1の工程A-1、工程A-2及び工程Bと同様の操作を行い、担体8を得た。修飾率(モル%)の測定は実施例1と同様にして行った。
(Example 8)
Step A-1 and Step A- of Example 1 except that the amount of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide used in Step B was changed from 0.16 g to 0.32 g. Carrier 8 was obtained by carrying out the same operations as in Step 2 and Step B. The modification rate (mol %) was measured in the same manner as in Example 1.
(実施例9)
 炭酸水素ナトリウム(和光純薬工業社製)67.2mgを純水5mLに溶解させた後、これに5M 水酸化ナトリウム(和光純薬工業社製)と純水を混合して炭酸バッファー2(23℃におけるpH13)を得た。
 工程Bで用いた炭酸バッファー1(23℃におけるpH10)を、炭酸バッファー2(23℃におけるpH13)に変更した以外は、実施例1の工程A-1、工程A-2及び工程Bと同様の操作を行い、担体9を得た。修飾率(モル%)の測定は実施例1と同様にして行った。
(Example 9)
After dissolving 67.2 mg of sodium hydrogen carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) in 5 mL of pure water, 5M sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) and pure water were mixed with this to create carbonate buffer 2 (23 pH 13) was obtained.
The same steps as Step A-1, Step A-2 and Step B of Example 1 were carried out, except that carbonate buffer 1 (pH 10 at 23°C) used in Step B was changed to carbonate buffer 2 (pH 13 at 23°C). The operation was performed to obtain carrier 9. The modification rate (mol %) was measured in the same manner as in Example 1.
(実施例10)
 N-Cyclohexyl-3-aminopropanesulfonic acid(和光純薬工業社製、以降CAPSとも呼ぶ)151.0mgを純水5mLに溶解させた後、これに1M 水酸化ナトリウム(和光純薬工業社製)と純水を混合してCAPSバッファー(23℃におけるpH10)を得た。
 工程Bで用いた炭酸バッファー1(23℃におけるpH10)を、CAPSバッファー(23℃におけるpH10)に変更した以外は、実施例1の工程A-1、工程A-2及び工程Bと同様の操作を行い、担体10を得た。修飾率(モル%)の測定は実施例1と同様にして行った。
(Example 10)
After dissolving 151.0 mg of N-Cyclohexyl-3-aminopropanesulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd., hereinafter also referred to as CAPS) in 5 mL of pure water, 1M sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) and pure Water was mixed to obtain CAPS buffer (pH 10 at 23°C).
The same operations as Step A-1, Step A-2, and Step B of Example 1 were performed, except that carbonate buffer 1 (pH 10 at 23° C.) used in Step B was changed to CAPS buffer (pH 10 at 23° C.). A carrier 10 was obtained. The modification rate (mol %) was measured in the same manner as in Example 1.
(実施例11)
 N-Cyclohexyl-2-aminoethanesulfonic acid(和光純薬工業社製、以降CHESとも呼ぶ)177.0mgを純水5mLに溶解させた後、これに1M 水酸化ナトリウム(和光純薬工業社製)と純水を混合してCHESバッファー(23℃におけるpH10)を得た。
 工程Bで用いた炭酸バッファー1(23℃におけるpH10)を、CHESバッファー(23℃におけるpH10)に変更した以外は、実施例1の工程A-1、工程A-2及び工程Bと同様の操作を行い、担体11を得た。修飾率(モル%)の測定は実施例1と同様にして行った。
(Example 11)
After dissolving 177.0 mg of N-Cyclohexyl-2-aminoethanesulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd., hereinafter also referred to as CHES) in 5 mL of pure water, 1M sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) and pure Water was mixed to obtain CHES buffer (pH 10 at 23°C).
The same operation as in Step A-1, Step A-2, and Step B of Example 1, except that carbonate buffer 1 (pH 10 at 23 °C) used in Step B was changed to CHES buffer (pH 10 at 23 °C). A carrier 11 was obtained. The modification rate (mol %) was measured in the same manner as in Example 1.
(実施例12~23)
 調製例で調製したイムノグロブリン結合タンパク質PrA-1をPrA-2~PrA-13に変更した以外は、実施例1と同様にして、担体の作製及び修飾率(モル%)の算出を行った。
(Examples 12-23)
The carrier was prepared and the modification rate (mol%) was calculated in the same manner as in Example 1, except that the immunoglobulin binding protein PrA-1 prepared in Preparation Example was changed to PrA-2 to PrA-13.
(比較例1)
 実施例1の工程A-1及び工程A-2と同様の操作を行い、多孔質粒子5を得た。この多孔質粒子5を比較例1の担体とする。
(Comparative example 1)
Porous particles 5 were obtained by performing the same operations as in Step A-1 and Step A-2 of Example 1. This porous particle 5 is used as a carrier in Comparative Example 1.
(比較例2)
 調製例で調製したイムノグロブリン結合タンパク質PrA-1をPrA-2に変更した以外は、比較例1と同様にして、担体の作製及び修飾率(モル%)の算出を行った。
(Comparative example 2)
The carrier was prepared and the modification rate (mol %) was calculated in the same manner as in Comparative Example 1, except that the immunoglobulin binding protein PrA-1 prepared in Preparation Example was changed to PrA-2.
(試験例1) 動的結合容量(DBC)測定試験
 Cytiva社製AKTA avant25を用いて、保持時間4分におけるタンパク質(ヒトIgG抗体、LGC社製1875-0007)に対する実施例及び比較例の各担体のDBCを測定した。カラム容器は容量4mL(5mmφ×200mm長)のものを、タンパク質は20mM リン酸ナトリウム/150mM 塩化ナトリウム水溶液(pH7.5)にタンパク質を5mg/mL溶解したものをそれぞれ使用し、溶出先端10%ブレークスルーのときのタンパク質捕捉量とカラム充填体積からDBCを求め、以下の基準で評価した。結果を表2~3に示す。
(Test Example 1) Dynamic binding capacity (DBC) measurement test Using AKTA avant25 manufactured by Cytiva, each carrier of Examples and Comparative Examples was measured against protein (human IgG antibody, 1875-0007 manufactured by LGC) at a retention time of 4 minutes. DBC was measured. The column container had a capacity of 4 mL (5 mm φ x 200 mm length), the protein was 5 mg/mL dissolved in 20 mM sodium phosphate/150 mM sodium chloride aqueous solution (pH 7.5), and the elution tip had a 10% break. DBC was determined from the amount of protein captured during through-through and the column packing volume, and evaluated based on the following criteria. The results are shown in Tables 2 and 3.
 (DBCの評価基準)
 AAA(特優):60mg/mL以上
 AA(優)  :55mg/mL以上60mg/mL未満
 A(良)   :50mg/mL以上55mg/mL未満
 B(不良)  :50mg/mL未満
(DBC evaluation criteria)
AAA (excellent): 60 mg/mL or more AA (excellent): 55 mg/mL or more and less than 60 mg/mL A (good): 50 mg/mL or more and less than 55 mg/mL B (poor): less than 50 mg/mL
(試験例2) プロテインA漏出量測定試験
 Cytiva社製AKTA avant25を用いて、保持時間4分で7.5mLの細胞培養液(Herceptin、titer:4.38mg/ml)を実施例及び比較例の各担体にロードし、その後溶出液で抗体を回収した。実使用を考慮し、0.5M NaOHで100cycle相当(25時間)浸漬した担体を使用した。また、カラム容器は容量0.8mL(5mmφ×40mm長)のものを、溶出液は100mM 酢酸ナトリウム水溶液(pH3.3)をそれぞれ使用し、溶出前に20mM リン酸ナトリウム/500mM 塩化ナトリウム水溶液(pH7.5)による洗浄を実施した。
 次に、ProteinA ELISA kit(F740)を使用して溶出液中のプロテインA量を、吸光度から溶出液中の抗体濃度を、それぞれ求めて、これらの値から回収した溶出液中の抗体量当たりのプロテインA漏出量(leach)を算出した。プロテインA漏出量(leach)の値が小さいほど、抗体の単離に繰り返し用いた場合でもタンパク質リガンドが漏出しにくいといえる。結果を表2~3に示す。
(Test Example 2) Protein A Leakage Amount Measurement Test Using AKTA avant 25 manufactured by Cytiva, 7.5 mL of cell culture solution (Herceptin, titer: 4.38 mg/ml) was added to the cells of Examples and Comparative Examples with a holding time of 4 minutes. The antibodies were loaded onto each carrier, and then the antibodies were collected in the eluate. Considering actual use, a carrier soaked in 0.5 M NaOH for 100 cycles (25 hours) was used. In addition, a column container with a capacity of 0.8 mL (5 mm φ x 40 mm length) was used, and the eluent was a 100 mM aqueous sodium acetate solution (pH 3.3). Washing according to .5) was carried out.
Next, use the Protein A ELISA kit (F740) to determine the amount of protein A in the eluate and the antibody concentration in the eluate from the absorbance, and calculate the amount of antibody per amount of antibody in the eluate collected from these values. The amount of protein A leakage (leach) was calculated. It can be said that the smaller the value of protein A leakage (leach), the less likely the protein ligand will leak out even when it is repeatedly used for antibody isolation. The results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014

Claims (19)

  1.  以下の工程A-1及び工程Bを備える、クロマトグラフィー用担体の製造方法。
     (工程A-1)多孔質粒子に、プロテインA、プロテインG、プロテインL及びこれらの類縁物質から選ばれる1種又は2種以上のリガンドを固定する工程
     (工程B)工程A-1後のリガンドが固定された多孔質粒子と、-C(=O)-O-C(=O)-で表される基、カルボジイミド基、及び環状エーテル基から選ばれる少なくとも1種のリガンド反応性基を有する化合物とを反応させる工程
    A method for producing a chromatography carrier, comprising the following steps A-1 and B.
    (Step A-1) Step of immobilizing one or more kinds of ligands selected from protein A, protein G, protein L, and related substances to porous particles. (Step B) Ligand after step A-1. porous particles on which is fixed, and at least one ligand-reactive group selected from a group represented by -C(=O)-OC(=O)-, a carbodiimide group, and a cyclic ether group. Process of reacting with a compound
  2.  前記リガンド反応性基を有する化合物が、下記式(1)で表される化合物及びその塩、下記式(2)で表される化合物、並びに下記式(3)で表される化合物から選ばれる1種又は2種以上である、請求項1に記載のクロマトグラフィー用担体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)中、R1及びR2は、相互に独立に、水素原子又は置換若しくは非置換の炭化水素基を示す。〕
    Figure JPOXMLDOC01-appb-C000002
    〔式(2)中、R3及びR4は、相互に独立に、置換又は非置換の炭化水素基を示し、R3及びR4が互いに結合して環状構造を形成してもよい。〕
    Figure JPOXMLDOC01-appb-C000003
    〔式(3)中、R5は、置換又は非置換の炭化水素基を示し、Xは、環状エーテル基を示す。〕
    The compound having the ligand-reactive group is selected from a compound represented by the following formula (1) and its salt, a compound represented by the following formula (2), and a compound represented by the following formula (3). The method for producing a chromatography carrier according to claim 1, wherein the carrier is one or more kinds.
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), R 1 and R 2 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. ]
    Figure JPOXMLDOC01-appb-C000002
    [In formula (2), R 3 and R 4 each independently represent a substituted or unsubstituted hydrocarbon group, and R 3 and R 4 may be bonded to each other to form a cyclic structure. ]
    Figure JPOXMLDOC01-appb-C000003
    [In formula (3), R 5 represents a substituted or unsubstituted hydrocarbon group, and X represents a cyclic ether group. ]
  3.  前記リガンド反応性基を有する化合物が、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミドの塩、N,N'-ジシクロヘキシルカルボジイミド、N,N'-ジイソプロピルカルボジイミド、無水マレイン酸、無水プロピオン酸、無水酢酸、ピバル酸無水物、無水コハク酸、グルタル酸無水物、プロピレンオキシド、ブチレンオキシド、グリシジルメチルエーテル、エチルグリシジルエーテル、グリシドール、エピクロロヒドリン、及びエピブロモヒドリンから選ばれる1種又は2種以上の化合物である、請求項1又は2に記載のクロマトグラフィー用担体の製造方法。 The compound having the ligand-reactive group is 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, a salt of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, N,N' -Dicyclohexylcarbodiimide, N,N'-diisopropylcarbodiimide, maleic anhydride, propionic anhydride, acetic anhydride, pivalic anhydride, succinic anhydride, glutaric anhydride, propylene oxide, butylene oxide, glycidyl methyl ether, ethyl glycidyl ether The method for producing a chromatography carrier according to claim 1 or 2, wherein the carrier is one or more compounds selected from , glycidol, epichlorohydrin, and epibromohydrin.
  4.  前記リガンド反応性基を有する化合物が、下記式(1)で表される化合物及びその塩から選ばれる少なくとも1種の化合物である、請求項1~3のいずれか1項に記載のクロマトグラフィー用担体の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    〔式(1)中、R1及びR2は、相互に独立に、水素原子、アルキル基、シクロアルキル基、アミノアルキル基、モノアルキルアミノアルキル基、又はジアルキルアミノアルキル基を示す。〕
    The compound for chromatography according to any one of claims 1 to 3, wherein the compound having a ligand-reactive group is at least one compound selected from a compound represented by the following formula (1) and a salt thereof. Method for manufacturing carrier.
    Figure JPOXMLDOC01-appb-C000004
    [In formula (1), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aminoalkyl group, a monoalkylaminoalkyl group, or a dialkylaminoalkyl group. ]
  5.  前記リガンド反応性基を有する化合物の使用量が、リガンドが固定された多孔質粒子の乾燥重量1gに対して0.01~15ミリモルである、請求項1~4のいずれか1項に記載のクロマトグラフィー用担体の製造方法。 According to any one of claims 1 to 4, the amount of the compound having a ligand-reactive group used is 0.01 to 15 mmol per 1 g of dry weight of the porous particles on which the ligand is immobilized. A method for producing a carrier for chromatography.
  6.  前記リガンドが、配列番号2で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列に対して、少なくとも、以下の(a)~(i)から選ばれる1又は2以上の置換がされたアミノ酸配列を有するタンパク質リガンドである、請求項1~5のいずれか1項に記載のクロマトグラフィー用担体の製造方法。
     (a)配列番号2のアミノ酸配列の1位に相当する位置のアミノ酸残基のバリン残基への置換
     (b)配列番号2のアミノ酸配列の3位に相当する位置のアミノ酸残基のアラニン残基への置換
     (c)配列番号2のアミノ酸配列の6位に相当する位置のアミノ酸残基のアラニン残基又はアスパラギン酸残基への置換
     (d)配列番号2のアミノ酸配列の9位に相当する位置のアミノ酸残基のアラニン残基への置換
     (e)配列番号2のアミノ酸配列の11位に相当する位置のアミノ酸残基のアラニン残基、グルタミン残基又はグルタミン酸残基への置換
     (f)配列番号2のアミノ酸配列の23位に相当する位置のアミノ酸残基のロイシン残基への置換
     (g)配列番号2のアミノ酸配列の29位に相当する位置のアミノ酸残基のアラニン残基への置換
     (h)配列番号2のアミノ酸配列の43位に相当する位置のアミノ酸残基のアラニン残基への置換
     (i)配列番号2のアミノ酸配列の49位に相当する位置のアミノ酸残基のアルギニン残基への置換
    The ligand has at least one or two or more substitutions selected from the following (a) to (i) to the amino acid sequence that has 85% or more homology to the amino acid sequence shown in SEQ ID NO: 2. The method for producing a chromatography carrier according to any one of claims 1 to 5, which is a protein ligand having an amino acid sequence.
    (a) Substitution of the amino acid residue at the position corresponding to position 1 of the amino acid sequence of SEQ ID NO: 2 with a valine residue (b) Substitution of the amino acid residue at the position corresponding to position 3 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (c) Substitution of the amino acid residue at the position corresponding to position 6 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue or aspartic acid residue (d) Corresponding to position 9 of the amino acid sequence of SEQ ID NO: 2 (e) Substitution of the amino acid residue at the position corresponding to position 11 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue, glutamine residue, or glutamic acid residue (f ) Substitution of the amino acid residue at the position corresponding to position 23 of the amino acid sequence of SEQ ID NO: 2 with a leucine residue (g) Substitution of the amino acid residue at the position corresponding to position 29 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (h) Substitution of the amino acid residue at the position corresponding to position 43 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (i) Substitution of the amino acid residue at the position corresponding to position 49 of the amino acid sequence of SEQ ID NO: 2 Substitution to arginine residue
  7.  前記リガンドが、配列番号2で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列に対して、少なくとも、以下の(a)~(i)から選ばれる3以上の置換がされたアミノ酸配列を有するタンパク質リガンドである、請求項1~5のいずれか1項に記載のクロマトグラフィー用担体の製造方法。
     (a)配列番号2のアミノ酸配列の1位に相当する位置のアミノ酸残基のバリン残基への置換
     (b)配列番号2のアミノ酸配列の3位に相当する位置のアミノ酸残基のアラニン残基への置換
     (c)配列番号2のアミノ酸配列の6位に相当する位置のアミノ酸残基のアラニン残基又はアスパラギン酸残基への置換
     (d)配列番号2のアミノ酸配列の9位に相当する位置のアミノ酸残基のアラニン残基への置換
     (e)配列番号2のアミノ酸配列の11位に相当する位置のアミノ酸残基のアラニン残基、グルタミン残基又はグルタミン酸残基への置換
     (f)配列番号2のアミノ酸配列の23位に相当する位置のアミノ酸残基のロイシン残基への置換
     (g)配列番号2のアミノ酸配列の29位に相当する位置のアミノ酸残基のアラニン残基への置換
     (h)配列番号2のアミノ酸配列の43位に相当する位置のアミノ酸残基のアラニン残基への置換
     (i)配列番号2のアミノ酸配列の49位に相当する位置のアミノ酸残基のアルギニン残基への置換
    An amino acid sequence in which the ligand has at least three or more substitutions selected from the following (a) to (i) to an amino acid sequence that has 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2. The method for producing a chromatography carrier according to any one of claims 1 to 5, which is a protein ligand having the following.
    (a) Substitution of the amino acid residue at the position corresponding to position 1 of the amino acid sequence of SEQ ID NO: 2 with a valine residue (b) Substitution of the amino acid residue at the position corresponding to position 3 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (c) Substitution of the amino acid residue at the position corresponding to position 6 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue or aspartic acid residue (d) Corresponding to position 9 of the amino acid sequence of SEQ ID NO: 2 (e) Substitution of the amino acid residue at the position corresponding to position 11 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue, glutamine residue, or glutamic acid residue (f ) Substitution of the amino acid residue at the position corresponding to position 23 of the amino acid sequence of SEQ ID NO: 2 with a leucine residue (g) Substitution of the amino acid residue at the position corresponding to position 29 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (h) Substitution of the amino acid residue at the position corresponding to position 43 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (i) Substitution of the amino acid residue at the position corresponding to position 49 of the amino acid sequence of SEQ ID NO: 2 Substitution to arginine residue
  8.  工程Bの反応を、水系媒体中pH8~14で行う、請求項1~7のいずれか1項に記載のクロマトグラフィー用担体の製造方法。 The method for producing a chromatography carrier according to any one of claims 1 to 7, wherein the reaction in step B is carried out in an aqueous medium at a pH of 8 to 14.
  9.  工程A-1と工程Bの間に以下の工程A-2を更に備え、工程A-2で得られた親水性基含有リガンド固定多孔質粒子を前記工程A-1後のリガンドが固定された多孔質粒子として工程Bで用いる、請求項1~8のいずれか1項に記載のクロマトグラフィー用担体の製造方法。
     (工程A-2)工程A-1でリガンドが固定された多孔質粒子と、ヒドロキシ基及びメルカプト基から選ばれる少なくとも1種の親水性基を分子内に合計で2個以上有する化合物とを反応させる工程
    The following step A-2 is further provided between step A-1 and step B, and the ligand after step A-1 is immobilized on the hydrophilic group-containing ligand-immobilized porous particles obtained in step A-2. The method for producing a chromatography carrier according to any one of claims 1 to 8, which is used in step B as porous particles.
    (Step A-2) The porous particles on which the ligand was fixed in Step A-1 are reacted with a compound having a total of two or more hydrophilic groups of at least one kind selected from hydroxy groups and mercapto groups in the molecule. process of letting
  10.  以下の工程A-P1及び工程A-P2を更に備え、工程A-P2で架橋剤及び親水化剤から選ばれる少なくとも1種を反応させた多孔質粒子を前記多孔質粒子として工程A-1で用いる、請求項1~9のいずれか1項に記載のクロマトグラフィー用担体の製造方法。
     (工程A-P1)水系媒体中にモノマー組成物を分散させ懸濁重合させる工程
     (工程A-P2)工程A-P1で得られた多孔質粒子と、架橋剤及び親水化剤から選ばれる少なくとも1種とを反応させる工程
    The process further comprises the following steps A-P1 and A-P2, and in step A-1, porous particles reacted with at least one selected from a crosslinking agent and a hydrophilic agent are used as the porous particles. A method for producing a chromatography carrier according to any one of claims 1 to 9.
    (Step A-P1) A step of dispersing the monomer composition in an aqueous medium and carrying out suspension polymerization. (Step A-P2) The porous particles obtained in step A-P1 and at least one selected from a crosslinking agent and a hydrophilizing agent. Step of reacting with one species
  11.  多孔質粒子と、当該多孔質粒子に固定されたリガンドと、-C(=O)-O-C(=O)-で表される基、カルボジイミド基、及び環状エーテル基から選ばれる少なくとも1種のリガンド反応性基を有する化合物に由来する部分構造とを有し、
     前記リガンドが、プロテインA、プロテインG、プロテインL及びこれらの類縁物質から選ばれる1種又は2種以上のリガンドであり、
     前記リガンドのアミノ基及びカルボキシ基から選ばれる少なくとも1種の官能基が、前記部分構造で化学修飾されており、
     下記式:
     化学修飾率(モル%) = (化学修飾された官能基のモル数) / (化学修飾された官能基のモル数と化学修飾されていない官能基のモル数との和) × 100
    で算出される化学修飾率が、1~70モル%である、クロマトグラフィー用担体。
    Porous particles, a ligand fixed to the porous particles, and at least one type selected from a group represented by -C(=O)-OC(=O)-, a carbodiimide group, and a cyclic ether group. and a partial structure derived from a compound having a ligand-reactive group,
    The ligand is one or more ligands selected from protein A, protein G, protein L and related substances,
    At least one functional group selected from an amino group and a carboxy group of the ligand is chemically modified with the partial structure,
    The following formula:
    Chemical modification rate (mol%) = (number of moles of chemically modified functional groups) / (sum of number of moles of chemically modified functional groups and number of moles of non-chemically modified functional groups) × 100
    A carrier for chromatography, which has a chemical modification rate calculated from 1 to 70 mol%.
  12.  前記リガンドのアミノ基が前記部分構造で化学修飾されている、請求項11に記載のクロマトグラフィー用担体。 The chromatography carrier according to claim 11, wherein the amino group of the ligand is chemically modified with the partial structure.
  13.  前記部分構造が、-C(=O)-、-NR1-C(=O)-、-C(=NR1)-又は-CH2-CH(-OH)-(R1は、水素原子、アルキル基、シクロアルキル基、アミノアルキル基、モノアルキルアミノアルキル基、又はジアルキルアミノアルキル基を示す。)で表される基を分子内に有する、請求項11又は12に記載のクロマトグラフィー用担体。 The partial structure is -C(=O)-, -NR 1 -C(=O)-, -C(=NR 1 )- or -CH 2 -CH(-OH)- (R 1 is a hydrogen atom , an alkyl group, a cycloalkyl group, an aminoalkyl group, a monoalkylaminoalkyl group, or a dialkylaminoalkyl group) in its molecule. .
  14.  前記部分構造が、-NR1-C(=O)-NR2-又は-C(=NR1)-NR2-(R1及びR2は、相互に独立に、水素原子、アルキル基、シクロアルキル基、アミノアルキル基、モノアルキルアミノアルキル基、又はジアルキルアミノアルキル基を示す。)で表される基を分子内に有する、請求項11~13のいずれか1項に記載のクロマトグラフィー用担体。 The partial structure is -NR 1 -C(=O)-NR 2 - or -C(=NR 1 )-NR 2 - (R 1 and R 2 are each independently a hydrogen atom, an alkyl group, a cyclo The chromatography carrier according to any one of claims 11 to 13, which has a group represented by an alkyl group, an aminoalkyl group, a monoalkylaminoalkyl group, or a dialkylaminoalkyl group in its molecule. .
  15.  R1及びR2のうち少なくとも1つが、アミノアルキル基、モノアルキルアミノアルキル基、又はジアルキルアミノアルキル基である、請求項14に記載のクロマトグラフィー用担体。 The chromatography carrier according to claim 14, wherein at least one of R 1 and R 2 is an aminoalkyl group, a monoalkylaminoalkyl group, or a dialkylaminoalkyl group.
  16.  前記リガンドが、配列番号2で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列に対して、少なくとも、以下の(a)~(i)から選ばれる1又は2以上の置換がされたアミノ酸配列を有するタンパク質リガンドである、請求項11~15のいずれか1項に記載のクロマトグラフィー用担体。
     (a)配列番号2のアミノ酸配列の1位に相当する位置のアミノ酸残基のバリン残基への置換
     (b)配列番号2のアミノ酸配列の3位に相当する位置のアミノ酸残基のアラニン残基への置換
     (c)配列番号2のアミノ酸配列の6位に相当する位置のアミノ酸残基のアラニン残基又はアスパラギン酸残基への置換
     (d)配列番号2のアミノ酸配列の9位に相当する位置のアミノ酸残基のアラニン残基への置換
     (e)配列番号2のアミノ酸配列の11位に相当する位置のアミノ酸残基のアラニン残基、グルタミン残基又はグルタミン酸残基への置換
     (f)配列番号2のアミノ酸配列の23位に相当する位置のアミノ酸残基のロイシン残基への置換
     (g)配列番号2のアミノ酸配列の29位に相当する位置のアミノ酸残基のアラニン残基への置換
     (h)配列番号2のアミノ酸配列の43位に相当する位置のアミノ酸残基のアラニン残基への置換
     (i)配列番号2のアミノ酸配列の49位に相当する位置のアミノ酸残基のアルギニン残基への置換
    The ligand has at least one or two or more substitutions selected from the following (a) to (i) to the amino acid sequence that has 85% or more homology to the amino acid sequence shown in SEQ ID NO: 2. The chromatography carrier according to any one of claims 11 to 15, which is a protein ligand having an amino acid sequence.
    (a) Substitution of the amino acid residue at the position corresponding to position 1 of the amino acid sequence of SEQ ID NO: 2 with a valine residue (b) Substitution of the amino acid residue at the position corresponding to position 3 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (c) Substitution of the amino acid residue at the position corresponding to position 6 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue or aspartic acid residue (d) Corresponding to position 9 of the amino acid sequence of SEQ ID NO: 2 (e) Substitution of the amino acid residue at the position corresponding to position 11 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue, glutamine residue, or glutamic acid residue (f ) Substitution of the amino acid residue at the position corresponding to position 23 of the amino acid sequence of SEQ ID NO: 2 with a leucine residue (g) Substitution of the amino acid residue at the position corresponding to position 29 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (h) Substitution of the amino acid residue at the position corresponding to position 43 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (i) Substitution of the amino acid residue at the position corresponding to position 49 of the amino acid sequence of SEQ ID NO: 2 Substitution to arginine residue
  17.  前記リガンドが、配列番号2で示されるアミノ酸配列と85%以上の相同性を有するアミノ酸配列に対して、少なくとも、以下の(a)~(i)から選ばれる3以上の置換がされたアミノ酸配列を有するタンパク質リガンドである、請求項11~15のいずれか1項に記載のクロマトグラフィー用担体。
     (a)配列番号2のアミノ酸配列の1位に相当する位置のアミノ酸残基のバリン残基への置換
     (b)配列番号2のアミノ酸配列の3位に相当する位置のアミノ酸残基のアラニン残基への置換
     (c)配列番号2のアミノ酸配列の6位に相当する位置のアミノ酸残基のアラニン残基又はアスパラギン酸残基への置換
     (d)配列番号2のアミノ酸配列の9位に相当する位置のアミノ酸残基のアラニン残基への置換
     (e)配列番号2のアミノ酸配列の11位に相当する位置のアミノ酸残基のアラニン残基、グルタミン残基又はグルタミン酸残基への置換
     (f)配列番号2のアミノ酸配列の23位に相当する位置のアミノ酸残基のロイシン残基への置換
     (g)配列番号2のアミノ酸配列の29位に相当する位置のアミノ酸残基のアラニン残基への置換
     (h)配列番号2のアミノ酸配列の43位に相当する位置のアミノ酸残基のアラニン残基への置換
     (i)配列番号2のアミノ酸配列の49位に相当する位置のアミノ酸残基のアルギニン残基への置換
    An amino acid sequence in which the ligand has at least three or more substitutions selected from the following (a) to (i) to an amino acid sequence that has 85% or more homology with the amino acid sequence shown in SEQ ID NO: 2. The chromatography carrier according to any one of claims 11 to 15, which is a protein ligand having the following.
    (a) Substitution of the amino acid residue at the position corresponding to position 1 of the amino acid sequence of SEQ ID NO: 2 with a valine residue (b) Substitution of the amino acid residue at the position corresponding to position 3 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (c) Substitution of the amino acid residue at the position corresponding to position 6 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue or aspartic acid residue (d) Corresponding to position 9 of the amino acid sequence of SEQ ID NO: 2 (e) Substitution of the amino acid residue at the position corresponding to position 11 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue, glutamine residue, or glutamic acid residue (f ) Substitution of the amino acid residue at the position corresponding to position 23 of the amino acid sequence of SEQ ID NO: 2 with a leucine residue (g) Substitution of the amino acid residue at the position corresponding to position 29 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (h) Substitution of the amino acid residue at the position corresponding to position 43 of the amino acid sequence of SEQ ID NO: 2 with an alanine residue (i) Substitution of the amino acid residue at the position corresponding to position 49 of the amino acid sequence of SEQ ID NO: 2 Substitution to arginine residue
  18.  請求項11~17のいずれか1項に記載のクロマトグラフィー用担体を含む、クロマトグラフィーカラム。 A chromatography column comprising the chromatography carrier according to any one of claims 11 to 17.
  19.  請求項11~17のいずれか1項に記載のクロマトグラフィー用担体又は請求項18に記載のクロマトグラフィーカラムを用いる、抗体又はその断片の単離方法。 A method for isolating an antibody or a fragment thereof using the chromatography carrier according to any one of claims 11 to 17 or the chromatography column according to claim 18.
PCT/JP2023/027099 2022-08-01 2023-07-25 Method for producing carrier for chromatography, and carrier for chromatography WO2024029394A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022122467 2022-08-01
JP2022-122467 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024029394A1 true WO2024029394A1 (en) 2024-02-08

Family

ID=89848959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027099 WO2024029394A1 (en) 2022-08-01 2023-07-25 Method for producing carrier for chromatography, and carrier for chromatography

Country Status (1)

Country Link
WO (1) WO2024029394A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018109643A (en) * 2013-11-27 2018-07-12 Jsr株式会社 Solid-phase carrier, production method for solid-phase carrier, carrier for affinity refining, production method for filler for affinity chromatography, filler for affinity chromatography, chromatography column, and refining method
WO2020040307A1 (en) * 2018-08-24 2020-02-27 Jsr株式会社 Immunoglobulin-binding protein, and affinity carrier using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018109643A (en) * 2013-11-27 2018-07-12 Jsr株式会社 Solid-phase carrier, production method for solid-phase carrier, carrier for affinity refining, production method for filler for affinity chromatography, filler for affinity chromatography, chromatography column, and refining method
WO2020040307A1 (en) * 2018-08-24 2020-02-27 Jsr株式会社 Immunoglobulin-binding protein, and affinity carrier using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GRABAREK, Z. ; GERGELY, J.: "Zero-length crosslinking procedure with the use of active esters", ANALYTICAL BIOCHEMISTRY, ACADEMIC PRESS, AMSTERDAM, NL, vol. 185, no. 1, 15 February 1990 (1990-02-15), Amsterdam, NL , pages 131 - 135, XP024818117, ISSN: 0003-2697, DOI: 10.1016/0003-2697(90)90267-D *
PHILLIPS, T.M. ; QUEEN, W.D. ; MORE, N.S. ; THOMPSON, A.M.: "Protein A-coated glass beads", JOURNAL OF CHROMATOGRAPHY A, ELSEVIER, AMSTERDAM, NL, vol. 327, 26 June 1985 (1985-06-26), AMSTERDAM, NL, pages 213 - 219, XP026479835, ISSN: 0021-9673, DOI: 10.1016/S0021-9673(01)81651-4 *
ZHANG KUO; WANG LUNAN; LIU MIN; ZHANG RUI; LI JINMING: "Synthetic rabbit-human antibody conjugate as a control in immunoassays for immunoglobulin M specific to hepatitis E virus", VIROLOGY JOURNAL, BIOMED CENTRAL, LONDON, GB, vol. 7, no. 1, 20 May 2010 (2010-05-20), GB , pages 101, XP021080042, ISSN: 1743-422X, DOI: 10.1186/1743-422X-7-101 *

Similar Documents

Publication Publication Date Title
JP7110287B2 (en) Corrosion stable chromatography ligand
EP2655404B1 (en) Novel alkali-resistant variants of protein a and their use in affinity chromatography
TWI596108B (en) Chromatography matrices including novel staphylococcus aureus protein a based ligands
JP5298242B2 (en) Carrier for affinity chromatography and method for isolating immunoglobulin
JP6630036B2 (en) Method for purifying target substance and carrier for mixed mode
CN111108113B (en) Immunoglobulin-binding proteins and affinity carriers using the same
JP2017533924A (en) Mutant immunoglobulin binding polypeptide
JP6705806B2 (en) Immunoglobulin binding protein and affinity carrier using the same
WO2014046278A1 (en) Protein ligand for affinity isolation matrix
CN111148753B (en) Immunoglobulin-binding proteins and affinity carriers using the same
JP5236311B2 (en) IgG-Fab fragment antibody binding peptide
WO2012083424A1 (en) Novel amino acid linker sequences for ligand immobilization
WO2024029394A1 (en) Method for producing carrier for chromatography, and carrier for chromatography
JP4481260B2 (en) Antibody binding peptide
CN109776654B (en) Affinity peptide and application thereof
JP7439498B2 (en) Affinity carriers, chromatography columns, and methods for isolating antibodies or fragments thereof
JP6722187B2 (en) Affinity carrier and method for isolating immunoglobulins
JP2023165666A (en) Immunoglobulin-binding protein variants with increased alkali-tolerance and uses thereof
WO2017195638A1 (en) Method for refining antibody or antibody fragment containing κ-chain variable region
JP2019522629A (en) Separation matrix
WO2017146225A1 (en) Porous carrier for affinity chromatography, ligand-conjugated porous carrier, purification method of target, and antibody
WO2015093507A1 (en) Novel modified protein of extracellular domain of protein g

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849949

Country of ref document: EP

Kind code of ref document: A1