WO2024029386A1 - 複合電極端子の製造方法 - Google Patents

複合電極端子の製造方法 Download PDF

Info

Publication number
WO2024029386A1
WO2024029386A1 PCT/JP2023/027017 JP2023027017W WO2024029386A1 WO 2024029386 A1 WO2024029386 A1 WO 2024029386A1 JP 2023027017 W JP2023027017 W JP 2023027017W WO 2024029386 A1 WO2024029386 A1 WO 2024029386A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
metal layer
temperature
electrode terminal
joining
Prior art date
Application number
PCT/JP2023/027017
Other languages
English (en)
French (fr)
Inventor
一郎 北嶋
雄一 江尻
一輝 段
英樹 山岸
智 佐藤
Original Assignee
ファインネクス株式会社
富山県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファインネクス株式会社, 富山県 filed Critical ファインネクス株式会社
Publication of WO2024029386A1 publication Critical patent/WO2024029386A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/62Connections between conductors of different materials; Connections between or with aluminium or steel-core aluminium conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/16Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing contact members, e.g. by punching and by bending

Definitions

  • the present invention relates to a method for manufacturing a composite electrode terminal consisting of multiple metal layers.
  • electrode terminals used in secondary battery cells such as lithium ion batteries (LIB) generally use Al material for the positive electrode terminal and Cu material for the negative electrode terminal.
  • LIB lithium ion batteries
  • high output is required, so a plurality of secondary battery cells are electrically connected in series by bus bars or the like.
  • Patent Document 1 discloses a clad terminal in which a Cu material and an Al material are laminated, but after the Cu material and the Al material are laminated by rolling, a thickness of several ⁇ m or more is formed at the bonding interface in a heating furnace. After the reaction layer is generated by diffusion and metallurgically bonded, it is further formed by press working, which requires a large number of man-hours and cannot be said to have good productivity. Punching (trimming) also results in wasted material. In addition, IMC of Cu and Al is metallurgically generated in this reaction layer, but in general, IMC becomes brittle when its thickness becomes on the order of ⁇ m, and even at the stage of formation, cracks etc. occur due to thermal stress etc. Easy to contain defects.
  • Patent Document 2 discloses a clad terminal consisting of an Al layer, a Cu layer, and a nickel (Ni) layer, in which the Ni layer prevents cracking during press forming and crimping.
  • Patent Document 3 discloses a terminal formed by bonding Cu and Al, but the bonding method is laser welding. Since fusion welding such as laser welding involves high temperatures, it is much more difficult to suppress the growth of IMC in joining dissimilar metals than in solid-phase joining.
  • the present invention aims to provide a highly productive method for manufacturing a composite electrode terminal that has excellent bonding strength and electrical properties and can be formed into a terminal shape at the same time as bonding multiple metal materials. purpose.
  • the method for manufacturing a composite electrode terminal according to the present invention is a method for manufacturing a composite electrode terminal consisting of a first metal layer and a second metal layer that are joined together, the method comprising: forming a composite electrode terminal on a second metal material serving as the second metal layer; When the first metal materials forming the first metal layer are overlapped, the total thickness of the first metal material and the second metal material before bonding is t 0 mm, and the total thickness of the first metal layer and the second metal material after bonding is t 0 mm.
  • the expression "pressure molding” means that it is also possible to mold into a predetermined shape and structure at the same time as bonding.
  • the joining temperature of the metal materials during joining is preferably in the range of 210 to 410° C., taking into account the thickness of the IMC, although details will be described later.
  • plastic flow is generated at the joining interface, thereby removing the oxide film and the like at the joining interface.
  • the feature is that the contaminant layer that is an obstacle to mutual diffusion between the metal material and the second metal material is stretched out, divided, removed, and solid-phase bonding is performed by efficient diffusion at low temperature and in a short time on the generated clean surface. .
  • the present invention since the present invention generates strong plastic flow at the joint interface by a high rolling reduction ratio, as mentioned above, the contaminated layer such as an oxide film becomes extremely thin or divided, and its surface area becomes extremely large, and the oxygen Diffusion of homocontaminant layer elements into the base material also becomes easier. Therefore, almost no barrier layer that inhibits efficient diffusion remains at the bonding interface (the principle of ensuring high cleanliness at the bonding interface brought about by the reduction ratio to achieve efficient diffusion bonding at low temperatures and in a short time).
  • the bonding temperature when the combination of the first metal layer and the second metal layer is an alloy of copper (Cu) or its alloy and aluminum (Al), the bonding temperature is in the range of 270 to 410°C.
  • the bonding temperature may be in the range of 210 to 370°C. You can. Considering the thickness of the IMC, the bonding temperature may be lower in the case of industrial pure aluminum than in the case of aluminum alloy.
  • “industrial pure aluminum” refers to Japanese JIS 1000 series aluminum, and other materials are referred to as aluminum alloys. Representative examples of aluminum alloys include JIS 5000 series and 3000 series.
  • the present invention enables low-temperature solid phase welding with plastic flow at the bonding interface by performing pressure forming at a predetermined temperature so that the rolling reduction ratio R (t 0 /t 1 ) falls within a predetermined range.
  • the present inventors refer to this method as low temperature forge welding.
  • the conventional forge welding method refers to the method described in WELDIING HANDBOOK Vol. edited by the American Welding Society (AWS). 2), it is known as the oldest welding method, as it is described as "the only welding method that was commonly used until the beginning of the 19th century.” This was mainly used for joining low carbon steels, and fluxes such as silica sand and borax were used to avoid the formation of oxide scales.
  • the low-temperature forge welding method proposed by the present invention is a new highly productive multi-material production method that uses general-purpose industrial presses such as mechanical presses and hydraulic presses to complete forming and composite formation at low temperatures and in a short time. It is.
  • the ratio T/T m of the joining temperature T to the melting point T m of the high melting point material which is standardized in terms of absolute temperature, is approximately in the range of 0.3 to 0.7.
  • solid-phase bonding can be achieved in a short time because the bonding temperature is significantly lower and the effect of the diffusion barrier layer is removed by a high rolling reduction ratio.
  • brittle reactive layer which has traditionally been a problem when joining dissimilar materials, to a thickness that is sufficiently thinner than 1 ⁇ m, where there is generally concern that brittleness may manifest.
  • a composite electrode terminal can be obtained which can be suppressed in the reaction layer and has excellent bonding strength and electrical properties.
  • the joining mechanism is a reactive layer, high-quality joining of dissimilar materials can be completed in an instant with molding, making the brittleness of the layer virtually harmless.
  • the thickness of the reaction layer can be controlled by the joining temperature and rolling reduction ratio, which are the basic joining parameters of this method, if there is a management record of the joining temperature, the product dimensions (rolling ratio ), it is possible to guarantee the quality of the joint in all respects.
  • the structure of a composite electrode terminal in which the first metal material m 1 and the second metal material m 2 are pressed and formed in a stacked state, and the first metal layer M 1 and the second metal layer M 2 are joined is schematically shown. Shown below. (a) shows examples of rolling reduction ratio R1.80, similarly (b) R2.10, (c) R2.60, and (d) R3.60. An example is shown in which a mechanical press is used for pressure forming in a combination of copper (C1020) and aluminum alloy (A5052). An optical microscope image of a cross section near the bonding interface of a sample of a combination of copper (C1020) and aluminum alloy (A5052) pressure-formed at a bonding temperature of 360° C.
  • (b) shows an image in which the contaminant layer at the bonding interface is divided as the rolling reduction ratio increases, and its influence as a diffusion barrier layer decreases.
  • the relationship between the maximum tensile load (fracture load) of the joint and the amount of adhesion of the mating material (mass concentration) on each fracture surface with respect to the joining temperature is shown (reduction ratio 4.2).
  • the relationship between the maximum tensile load of the joint and the thickness of IMC with respect to the joining temperature is shown (rolling ratio 4.2).
  • This figure shows a secondary electron image observed by FE-SEM of the thickness of the bonding interface reaction layer (IMC) versus bonding temperature in a combination of copper (C1020) and industrial pure aluminum (A1200) (rolling ratio 4.4).
  • a bright field (BF) image of the cross section of the bonding interface at a bonding temperature of 310° C. in FIG. 11 observed with a transmission electron microscope (TEM) is shown.
  • the results of a line analysis performed by EPMA on the cross section of the bonding interface at a bonding temperature of 310° C. in FIG. 11 are shown.
  • a graph comparing the relationship between bonding temperature and IMC thickness between industrial pure aluminum (A1200) and aluminum alloy (A5052) in pressure forming with copper (C1020) is shown.
  • This figure shows the fatigue properties of a sample of a combination of copper (C1020) and industrial pure aluminum (A1200) pressure-formed at a bonding temperature of 310°C and a rolling reduction ratio of 4.4 against repeated
  • FIG. 1 shows a schematic diagram of the case where the first metal material m 1 and the second metal material m 2 are overlapped and the rolling reduction ratio R is changed, and (a) is R1.80, (b) is R2. 10, (c) shows an example of R2.60, and (d) shows an example of R3.60.
  • the reduction ratio R is the total thickness t 0 of the first metal material m 1 and the second metal material m 2 before joining, and the total thickness of the first metal layer M 1 and the second metal layer M 2 after joining.
  • the ratio to t 1 is defined as t 0 /t 1 .
  • the left side is before bonding, and the right side is bonded and formed into a terminal shape by pressure molding.
  • Plastic flow is promoted by forming the second metal layer M2 so as to wrap around the first metal layer M1 .
  • the first metal layer M1 may be pure copper (Cu) or an alloy thereof
  • the second metal layer M2 may be pure aluminum (Al) or an alloy thereof.
  • FIG. 2 shows changes over time in each index (press load, slide stroke, slide speed) when a composite electrode terminal was pressure-formed using a mechanical press at a reduction ratio of R4.2 and a bonding temperature of 360°C.
  • SPM Shot Per Minute
  • SPM 25 override of 50%
  • FIG. 3 shows an optical microscope image of the cross section of the joint of the composite electrode terminal manufactured above (only the vicinity of the joint interface is shown).
  • the first metal phase M 1 is Cu (C1020)
  • the second metal layer M 2 is Al (A5052).
  • FIG. 4 shows the surface analysis results of the bonded interface by EPMA.
  • FIG. 4 shows a backscattered electron image (CP) and surface analysis results of Cu, Al, and oxygen (O). From FIG. 4, it can be seen that the cleanliness of the bonding interface is very high, and that no reaction layer was formed with a thickness that could be recognized with the spatial resolution of EPMA. A more detailed observation of the bonding interface of this sample was performed using FE-SEM.
  • Figure 5 shows a secondary electron image obtained at high magnification.
  • FIG. 5(b) shows the results of EPMA line analysis of the bonding interface. From this, a reaction layer presumed to be an IMC of Cu and Al on a submicron scale well below 1 ⁇ m can be clearly observed at the bonding interface (confirmation of metallurgical bonding). Also, similar to the results in FIG. 4, it can be seen from the chart of O that the cleanliness of the bonding interface is very high. The high cleanliness of this bonding interface, in other words, the state in which there is almost no influence of a contaminant layer that impedes diffusion, makes it possible to achieve diffusion at low temperatures and in a short time. Temperature, which is the driving force in diffusion, has a dominant effect on the reaction rate, but by performing low-temperature diffusion, this method suppresses the growth of IMC to a thickness well below 1 ⁇ m, making it virtually IMC-free. ing.
  • FIG. 6(b) schematically shows a divided image of a contaminated layer such as an oxide film in a cross section of the bonding interface. As the reduction ratio increases, the diffusivity at low temperatures improves.
  • Figure 7 shows the relationship between bonding temperature and maximum tensile load at which the bonded surface breaks in a product tensile test (room temperature) when a Cu (C1020)/Al (A5052) composite electrode terminal was pressure-formed at a reduction ratio of R4.2. This is the result of investigating the adhesion amount (mass concentration) of the mating material on each fracture surface.
  • Al on Cu side indicates the concentration of Al attached to the fracture surface on the Cu material side
  • Cu on Al side indicates the concentration of Cu attached to the fracture surface on the Al material side.
  • the bonding strength was 0N due to peeling at the bonding interface after pressing.
  • those that did not peel off after pressing at a bonding temperature of 35°C also had low strength (approximately 600 N), which is thought to be due to the mechanical bonding effect (anchor effect) caused by plastic flow at the edge of the bonding interface.
  • the bonding temperature ranges from 250°C to 450°C, the bonding strength increases significantly compared to the data at room temperature (35°C), and has a peak between 330 and 400°C.
  • FIG. 8 shows the relationship with the IMC thickness instead of the adhesion amount of the mating material shown in FIG. At a high bonding temperature of 450° C., the thickness of the IMC exceeds 1,000 nm (1 ⁇ m), and a behavior in which the bonding strength decreases is observed.
  • Figure 9 shows the results of surface analysis using EPMA for Cu and Al elements on the fracture surface (near the axis) of the Cu material at a reduction ratio of R4.2 and a welding temperature of 360°C obtained in the above tensile test. be. It can be seen that Al is attached to the entire surface of the fracture surface on the Cu material side. In particular, it can be seen that more particles are attached in the form of a fine network. This supports the image of the contaminant layer being separated by rolling down (Fig. 6(b)).
  • the rolling reduction ratio R and the welding temperature are important factors, and from the data in FIG. 6, the rolling ratio R is preferably 1.8 or more.
  • the rolling ratio R is preferably 1.8 or more.
  • FIG. 10 shows the results of an investigation of the welding temperature and maximum tensile load at a reduction ratio of R4.4.
  • the copper side was screwed to a tension jig
  • the pure aluminum side was adhered to the tension jig with adhesive
  • a tensile load was applied in the direction in which the tension jig was separated from each other.
  • the white plot indicates fracture at the bonding interface
  • the colored plot indicates failure at the bonding interface.
  • the bonding temperature was 150° C. or higher, the adhesive part broke, and an appropriate bonding temperature range (peak strength) could not be confirmed from this bonding test. Note that a load of approximately 1,200 N is exerted at room temperature (25° C.), but this is due to the mechanical bonding effect.
  • FIG. 11 shows the results of observing the cross section of the bonded interface using FE-SEM at a reduction ratio of R4.4 and varying the bonding temperature.
  • the reaction layer (IMC) at the bonding interface tends to become thicker as the bonding temperature increases; it is ⁇ 100 nm at a bonding temperature of 210°C, ⁇ 300 nm at a bonding temperature of 255°C, 300-500 nm at a bonding temperature of 310°C, and 385 nm at a bonding temperature of 385°C.
  • the thickness was about 1 to 2 ⁇ m. Further, at the bonding interface where the bonding temperature was 385° C., cracks were observed to some extent in the IMC.
  • FIG. 12 shows a cross-sectional TEM image (BF) of the bonding interface of an electrode terminal that was pressure-molded at a rolling ratio of R4.4 and a bonding temperature of 310°C.
  • the reaction diffusion layer was made of defect-free two-phase IMC (Al 2 Cu on the A1200 side and Al 4 Cu 9 on the C1020 side), and the total thickness was about 400 nm.
  • FIG. 13 shows the results of EPMA line analysis of the bonded interface. As in the case of the combination of C1020 and A5052 (FIG. 5(b)), it can be confirmed from the O chart that the bonding interface is highly clean.
  • FIG. 5(b) it can be confirmed from the O chart that the bonding interface is highly clean.
  • FIG. 14 is a graph comparing the growth behavior of IMC with respect to bonding temperature between industrial pure aluminum A1200 and aluminum alloy A5052 (C1020/A1200 Vs C1020/A5052). Note that the rolling reduction ratios are approximately the same as 4.4 and 4.2, respectively, and the cleanliness of the bonding interface is sufficiently high (FIG. 5(b), FIG. 13). As a result, it was found that there is a difference in IMC growth behavior between aluminum alloy and industrial pure aluminum.
  • the bonding temperature at which the IMC thickness is 50 nm to 1 ⁇ m (1,000 nm) is approximately in the range of 270 to 410 °C in the case of a combination of C1020 and A5052. be. If A5052 is a typical example of an aluminum alloy, the bonding temperature should preferably be in the range of 270 to 410°C, and in order to achieve a thickness of IMC of 200 to 500 nm in consideration of quality stability in mass production, the bonding temperature should be in the range of 350 to 380°C. It can be seen that the range is good.
  • the junction temperature is approximately in the range of 210 to 370 degrees Celsius, and the quality required for mass production is Considering stability, the bonding temperature is preferably in the range of 260 to 330° C. in order to maintain the IMC thickness at the level of 200 to 500 nm.
  • FIG. 15 shows the results of a fatigue test conducted using a pressure-molded sample (IMC thickness of about 400 nm) of a combination of C1020 and A1200 with a reduction ratio of R4.4 and a bonding temperature of 310°C.
  • the test was conducted using a hydraulic servo fatigue testing machine at room temperature, oscillating tension (stress ratio 0), and a repetition frequency of 20 Hz. No fracture was observed at the joint under any of the conditions.
  • the bonding method according to the present invention enables low-temperature solid-phase bonding with excellent bonding strength and electrical properties, and is also extremely superior in productivity compared to conventional clad terminal manufacturing methods. Useful for manufacturing composite electrode terminals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

【課題】接合強度及び電気的特性に優れるとともに複数の金属材の接合と同時に端子形状に成形することも可能な複合電極端子の製造方法の提供を目的とする。 【解決手段】接合された第1金属層と第2金属層からなる複合電極端子の製造方法であって、前記第2金属層となる第2金属材の上に前記第1金属層となる第1金属材を重ねた状態で、接合前の第1金属材と第2金属材との厚みの合計をtmm、接合後の第1金属層と第2金属層との接合部の厚みをtmmとすると、所定の接合温度にて圧下比R(t/t)が1.80~5.0の範囲になるように加圧成形することを特徴とする。

Description

複合電極端子の製造方法
 本発明は、複数の金属層からなる複合電極端子の製造方法に関する。
 例えば、リチウムイオンバッテリー(LIB)等の二次電池セルに用いられている電極端子は、一般に正極端子にAl材、負極端子にCu材が使用されている。
 電気自動車やハイブリッド自動車等の駆動源として、この種の二次電池を用いる際には高出力が必要であることから複数の二次電池セルが直列にバスバー等により電気接続されている。
 その場合に、負極端子のCu材と正極端子のAl材との異材接合が必要となるが、Cu-Al系の溶融溶接においては脆弱な金属間化合物(IMC)が容易に生成し、当該反応層の脆弱性により実用的な溶接が困難なことから、セルの電極端子とバスバー間で同種材の溶融溶接を可能とするためのCu/AlクラッドバスバーやCu/Alクラッド端子が採用されている(電極端子とそれをつなげるバスバーとの接合は同種材とすることで溶融溶接を可能とするもの)。
 例えば特許文献1には、Cu材とAl材とを積層したクラッド端子が開示されているが、これはCu材とAl材とを圧延で積層した後に、加熱炉で接合界面に数μm以上の反応層を拡散により生成、冶金的に接合した後、さらにプレス加工にて成形するもので工数が多く生産性は良いと言えない。
 打ち抜き(トリミング)により材料に無駄も生じる。
 また、この反応層には冶金学的にCuとAlのIMCが生成するが、一般にIMCはその厚みがμmオーダーになると脆弱性が顕在化し、また生成の段階でも熱応力などによりき裂などの欠陥を内包しやすい。
 すなわち、このような加熱炉での拡散接合によりμmオーダーの脆弱なIMCが生成された異種金属の接合界面では、接合後のプレス加工によるき裂の発生や、使用時の熱応力による疲労破壊などの面で耐久性に懸念がある。
 また、これらのき裂欠陥は同時に電気部品としての重要な機能性(電気抵抗)の低下につながる。
 AlCu、AlCu、AlCu、AlCuなど、Cu-Al系の各種IMCの電気抵抗率は、Alに対しておおよそ5~6倍高いとの報告があることからも(N.M.Raj et al.: Transactions of the Indian Institute of Metals, 71, 2018, pp.107-116.)、き裂等の欠陥が無いIMCであってもなるべく薄いことが望ましい。
 特許文献2には、Al層、Cu層及びニッケル(Ni)層からなるクラッド端子を開示するが、プレス加工による成形時の割れや、かしめ時の割れをNi層で防止したものである。
 特許文献3には、CuとAlとの接合からなる端子を開示するが、接合方法はレーザ溶接である。
 レーザ溶接など溶融溶接は高温となるため異種金属接合においてIMCの成長抑制が固相接合に比べ格段に難しい。
日本国特開2021-157897号公報 日本国特開2021-144792号公報 日本国特開2020-095837号公報
 本発明は上記技術的課題に鑑みて、接合強度及び電気的特性に優れるとともに複数の金属材の接合と同時に端子形状に成形することも可能な生産性の高い複合電極端子の製造方法の提供を目的とする。
 本発明に係る複合電極端子の製造方法は、接合された第1金属層と第2金属層からなる複合電極端子の製造方法であって、前記第2金属層となる第2金属材の上に前記第1金属層となる第1金属材を重ねた状態で、接合前の第1金属材と第2金属材との厚みの合計をtmm、接合後の第1金属層と第2金属層との接合部の厚みをtmmとすると、所定の接合温度にて圧下比R(t/t)が1.80~5.0の範囲になるように加圧成形することを特徴とする。
 ここで、第1金属層と第2金属層からなる複合電極端子と表現しているが、2層のみならず、さらに3層以上に接合された複合電極端子も含まれる。
 また、加圧成形と表現したのは、接合と同時に所定の形状、構造に成形することも可能であることを意味する。
 本発明において、接合時の金属材の接合温度は、詳細は後述するが、IMCの厚みを考慮し、210~410℃の範囲が好ましい。
 本発明による接合方法は、第1金属材と第2金属材とを重ねた状態で加圧成形する際に、接合界面に塑性流動を生じさせることで、接合界面での酸化膜等、第1金属材と第2金属材の相互拡散の障害になる汚染層を引き伸ばし、分断、除去、生成された清浄面において、低温かつ短時間で効率的な拡散により固相接合を行う点に特徴がある。
 なお、本発明は高い圧下比により強い塑性流動を接合界面に生じさせることから、前述のとおり酸化被膜等汚染層は非常に薄くなる、あるいは分断されることによってその表面積が非常に大きくなり、酸素等汚染層元素の母材への拡散も容易になる。
 従って、接合界面に効率的な拡散を阻害する障害層がほぼ残らない(低温かつ短時間で効率的な拡散接合を実現するための圧下比がもたらす接合界面の高清浄性確保の原理)。
 本発明において、前記第1金属層と第2金属層の組み合せが、銅(Cu)又はその合金と、アルミニウム(Al)の合金である場合には、接合温度が270~410℃の範囲であってもよく、前記第1金属層と第2金属層の組み合せが銅(Cu)又はその合金と、工業用純アルミニウム(Al)である場合には、接合温度が210~370℃の範囲であってもよい。
 IMCの厚みを考慮すると、工業用純アルミニウムの場合に、アルミニウム合金よりも接合温度が低くてもよい。
 ここで、工業用純アルミニウムとは、日本国のJIS 1000系のアルミニウムをいい、その他をアルミニウム合金という。
 アルミニウム合金の代表例としては、JIS 5000系,3000系等である。
 本発明は、所定の温度にて圧下比R(t/t)が所定の範囲になるように加圧成形することで、接合界面にて塑性流動を伴う低温固相接合が可能になる。
 本発明者らは、この工法を低温鍛接と称する。
 ここで、従来鍛接法とは、米国溶接協会(AWS)編WELDING HANDBOOK Vo.2)において、「19世紀に入るまで一般的に使用されていた唯一の溶接方法」と記載されているとおり、最も古い溶接法として知られている。
 これは、低炭素鋼同士の接合が主な用途であり、また酸化スケール生成を避けるためケイ砂やホウ砂などのフラックスが用いられていたものである。
 溶融プロセスの発達により今では一般には見られない接合法となっている。
 これまでの実用例としては、軟鉄の刃物に鋼をハンマーで何度も叩いて接合するいわゆる鍛冶や帯状の鋼材をローラーで丸めて端部を鍛着する鋼管成形等があるが、いずれも非常に高い温度(約1000℃~融点付近)で実施される職人技術あるいは大規模なライン加工による素形材製造工程であって適用形態が限られているものである。
 絶対温度で規格さされた融点Tに対する接合温度Tの比率T/Tmは、おおよそ0.8以上である。
 本発明の示す低温鍛接法は、機械式プレスや油圧式プレス機など汎用の産業用加圧機を用いて、低温かつ短時間で成形とともに複合化を完了する生産性の高い新たなマルチマテリアル化法である。
 絶対温度で規格さされた高融点材の融点Tに対する接合温度Tの比率T/Tは、おおよそ0.3~0.7の範囲である。
 従来の熱処理による拡散接合や溶接等に比較して、接合温度が著しく低温でありながらも高い圧下比により拡散障害層の影響を取り除くため、短時間でも固相接合が実現できる。
 このように低温かつ短時間で相互拡散させることで、異材接合において従来、問題になっていた脆弱な反応層(IMC)の成長を一般に脆弱性の顕在化が懸念される厚み1μmよりも十分薄い反応層に抑制することができ、接合強度及び電気的特性に優れた複合電極端子が得られる。
 接合機構は反応層でありながら、その脆弱性を実質無害化した高品質な異材接合を成形とともに一瞬で完了できる。
 また、反応層の厚みは、本法の基本的な接合パラメータである接合温度と圧下比にて制御できるため、接合温度の管理記録があれば、接合後であっても製品の寸法(圧下比)により、その接合品質の全点保証が可能になる。
第1金属材mと第2金属材mとを重ねた状態で加圧成形し、第1金属層Mと第2金属層Mとが接合された複合電極端子の構造を模式的に示す。 (a)は圧下比R1.80,同様に(b)R2.10,(c)R2.60,(d)R3.60の例を示す。 銅(C1020)とアルミニウム合金(A5052)との組み合わせにおいて、加圧成形に機械式プレスを用いた例を示す。 銅(C1020)とアルミニウム合金(A5052)との組み合わせにおいて、接合温度:360℃,圧下比R4.2にて加圧成形したサンプルの接合界面近傍断面の光学顕微鏡像を示す。 図3に示したサンプルの接合界面の電子線マイクロアナライザ(EPMA)による各元素の面分析結果を示す。なおCPは反射電子像を示す。 (a)は図3に示したサンプルの接合界面における電解放出形走査電子顕微鏡(FE-SEM)二次電子像を示す。(b)はその接合界面のEPMA線分析結果を示す。 (a)は銅(C1020)とアルミニウム合金(A5052)との組み合わせにおいて、圧下比Rと接合界面断面のEPMA線分析における最大酸素信号強度の関係を示す(接合温度265℃)。(b)は接合界面の汚染層が圧下比の増加とともに分断され、拡散障害層としての影響が低下するイメージを示す。 銅(C1020)とアルミニウム合金(A5052)との組み合わせにおいて、接合温度に対する接合部の最大引張荷重(破壊荷重)及び、その各破面における相手材付着量(質量濃度)の関係を示す(圧下比4.2)。 銅(C1020)とアルミニウム合金(A5052)との組み合わせにおいて、接合温度に対する接合部の最大引張荷重及びIMCの厚みの関係を示す(圧下比4.2)。 銅(C1020)とアルミニウム合金(A5052)との組み合わせにおいて、接合温度360℃で加圧成形したサンプルの引張試験後Cu側破面のEPMA面分析結果を示す。 銅(C1020)と工業用純アルミニウム(A1200)との組み合せにおいて、加圧成形したサンプルの接合温度と最大引張荷重の関係を示す(圧下比4.4)。図中白抜きプロットは接合界面破断を、また色塗りプロットは接合界面で破壊できなかったことを示す。 銅(C1020)と工業用純アルミニウム(A1200)との組み合せにおいて、接合温度に対する接合界面反応層(IMC)の厚みについてFE-SEMにより観察した二次電子像を示す(圧下比4.4)。 図11の接合温度310℃の接合界面断面について、透過型電子顕微鏡(TEM)で観察した明視野(BF)像を示す。 図11の接合温度310℃の接合界面断面について、EPMAで線分析した結果を示す。 銅(C1020)との加圧成形において、接合温度とIMCの厚みの関係を工業用純アルミニウム(A1200)とアルミニウム合金(A5052)との間で比較したグラフを示す。 銅(C1020)と工業用純アルミニウム(A1200)との組み合わせにおいて、接合温度310℃、圧下比4.4で加圧成形したサンプルの繰り返し引張荷重に対する疲労特性を示す。
 複合端子の試験品を製造し、比較調査した結果を以下に説明するが、本発明はこれに限定されない。
 図1に第1金属材mと第2金属材mとを重ねた状態で圧下比Rを変化させた場合の模式図を示し、(a)はR1.80,(b)はR2.10,(c)はR2.60,(d)はR3.60の例を示す。
 圧下比Rは、接合前の第1金属材mと第2金属材mとの合計の厚みtと接合後の第1金属層Mと第2金属層Mとの合計の厚みtとの比t/tと定義する。
 図1に模式的に示した形状は、左側が接合前で右側が加圧成形により端子形状に接合及び成形したことを示す。
 第2金属層Mにて第1金属層Mを包み込むように成形することで塑性流動が促進される。
 ここで、例えば第1金属層Mは、純銅(Cu)又はその合金であって、第2金属層Mは純アルミニウム(Al)又はその合金であってもよい。
 図2に圧下比R4.2,接合温度360℃にて、複合電極端子を機械式プレスで加圧成形した際の各指標(プレス荷重、スライドストローク、スライド速度)の時間変化を示す。
 Shot Per Minute(SPM)50のACサーボプレス(コマツ産機株式会社製 H1F200-2)を用いて、オーバーライド50%(=SPM25)で低温鍛接加工を行った。
 加圧時間は約150msのハイスループット加工である。
 ピーク荷重は約88kNであった。
 ここに示した加圧成形は、高速加工の一例であって、本発明に係る接合原理からすると、接合時間は数秒レベル、例えば10秒レベルまで長くなってもよい。
 上記にて製作した複合電極端子の接合部断面の光学顕微鏡像を図3に示す(接合界面近傍のみ示す)。
 第1金属相MはCu(C1020)、第2金属層MはAl(A5052)の例である。
 当該接合界面のEPMAによる面分析結果を図4に示す。
 図4は、反射電子像(CP)、Cu、Al及び酸素(O)の面分析結果を示す。
 図4から、接合界面の清浄度は非常に高く、またEPMAの空間分解能で認識できるような厚みの反応層は生成していないことが分かる。
 このサンプルについてより詳細な接合界面の観察をFE-SEMを用いて行った。
 図5に高倍率で取得した二次電子像を示す。
 また、図5(b)に当該接合界面のEPMA線分析結果を示す。
 これより、接合界面には1μmを十分に下回るサブミクロンスケールのCuとAlのIMCと推定される反応層が明確に観察できる(冶金的接合の確認)。
 また図4の結果と同様、Oのチャートから接合界面の清浄性が非常に高いことが分かる。
 この接合界面の高い清浄性が、言い換えれば拡散の障害となる汚染層の影響がほぼ無い状態により、低温かつ短時間での拡散を実現させている。
 拡散において駆動力となる温度は反応速度に支配的な影響を与えるが、このように本法は低温拡散させることで、IMCの成長を1μmよりも十分に薄く抑え込み、実質IMCフリー化を実現している。
 次に、圧下比Rとこの接合界面の清浄度との関係を調査した。
 接合界面の清浄度の指標として、接合界面断面のEPMA線分析による最大酸素信号強度を用いた。
 その結果を図6(a)に示す。
 C1020とA5052との組み合せにて、接合温度265℃での実験結果である。
 圧下比Rを大きくすると、接合界面の清浄度が向上することが分かる。
 すなわち、圧下比が大きいほど酸化被膜などの汚染層(拡散反応に対する障害層)の影響がより小さくなることから、拡散反応がより効率的、健全に行えるようになる。
 図6(a)に示した圧下比R1.80でも清浄度が高いが、R2.60,R3.60と圧下比の増加に伴い、さらに清浄度が高くなり、本線分析のベース信号強度(バックグラウンド)とほぼ等しくなる。
 これは、図4また図5(b)のOの信号強度が接合界面とAl母材中とで変わらないことからも確認できる。
 この圧下比の増加に伴う接合界面の清浄性向上について、図6(b)に接合界面断面の酸化膜等汚染層の分断イメージを模式的に示す。
 圧下比の増加に伴い低温での拡散性が向上する。
 次に、接合強度及びIMCの成長に及ぼす接合温度の影響を調査した。
 図7は、圧下比R4.2においてCu(C1020)/Al(A5052)複合電極端子を加圧成形し、製品引張試験(室温)において、接合温度と接合面が破壊する最大引張荷重との関係及びその各破面での相手材の付着量(質量濃度)を調べた結果である。
 グラフ中、Al on Cu sideはCu材側の破面に付着したAlの濃度を示し、Cu on Al sideはAl材側の破面に付着したCuの濃度を示す。
 接合温度35℃(夏季室温、予熱なし)ではプレス後に接合界面で剥離し接合強度0Nとなった。
 また、接合温度35℃でプレス後に剥離しなかったものも低強度(約600 N)であり、これは接合界面縁辺部の塑性流動による機械的な接合効果(アンカー効果)が生じたためと考えられる。
 接合温度250℃から450℃では、室温(35℃)のデータに比べ、大きく接合強度が上昇し、330~400℃の間にピークを有していることが分かる。
 また、接合温度が高くなり過ぎると、破面に付着する相手材の増加挙動からも分かるとおり、接合界面での拡散反応が過度に進み、接合強度が低下していることが分かる。
 図8には、図7の相手材の付着量の替わりに、IMC厚みとの関係を示す。
 接合温度が450℃の高温では、IMCの厚みが1,000nm(1μm)を超え、接合強度が低下する挙動が認められる。
 図9は、上記引張試験で得られた圧下比R4.2、接合温度360℃のCu材側の破面(軸心近傍)に対し、CuとAlの元素についてEPMAで面分析をした結果である。
 Cu材側破面に対してAlが全面に付着していることが分かる。
 中でも特に、細かなネットワーク状の形態でより多く付着していることが分かる。
 これは圧下による汚染層の分断イメージ(図6(b))を支持する。
 以上の評価結果から、本発明に係る低温鍛接においては、圧下比Rと接合温度は重要な因子であり、図6のデータから圧下比Rは1.8以上が好ましい。
 また、接合温度は異材の組合せに応じて最適温度が存在し、C1020とA5052との組み合せの場合に、接合強度が最大となる接合温度T℃±50℃の範囲がより好ましいと言える(これに相当するIMC厚みは、おおよそ50nm~1,000nm(1μm))。
 次に、第1金属層Mとして銅(C1020)、第2金属層Mとして工業用純アルミニウム(A1200)を用いて、試験評価した(C1020/A1200)。
 図10に、圧下比R4.4における接合温度と最大引張荷重との調査結果を示す。
 引張試験(室温)は、銅側を引張治具にねじ締結し、純アルミニウム側は引張治具に接着剤で接着し、相互の引張治具が離間する方向に引張荷重を負荷した。
 ここで白抜きプロットは接合界面破断を示し、色塗りプロットは接合界面で破壊できなかったことを示す。
 接合温度が150℃以上では、接着剤の部分で破壊し、本接合試験から適切な接合温度範囲(ピーク強度)は確認できなかった。
 なお、室温(25℃)において1,200N程度の荷重が出ているがこれは機械的な接合効果によるものである。
 図11に圧下比R4.4において、接合温度を変えてその接合界面断面をFE-SEMで観察した結果を示す。
 接合温度の増加とともに接合界面の反応層(IMC)は厚くなる傾向を示し、接合温度210℃では~100nm、接合温度255℃では~300nm、接合温度310℃では300~500nm、接合温度385℃では1~2μm程度の厚みであった。
 またこの接合温度385℃の接合界面では、IMCにクラックの発生がある程度認められた。
図12に圧下比R4.4,接合温度310℃で加圧成形した電極端子の接合界面断面TEM像(BF)を示す。反応拡散層は欠陥の無い2相のIMC(A1200側がAlCu、C1020側がAlCu)から成り、全体の厚みは約400nmであった。
 図13にその接合界面のEPMA線分析結果を示す。
 C1020とA5052との組み合せの場合(図5(b))と同様に、Oチャートから清浄度の高い接合界面であることが確認できる。
 図14に接合温度に対するIMCの成長挙動を工業用純アルミニウムA1200とアルミニウム合金A5052とで対比してグラフにした(C1020/A1200 Vs C1020/A5052)。
 なお圧下比は、それぞれ4.4と4.2と同程度で接合界面の清浄度は十分に高い(図5(b)、図13)。
 その結果、アルミニウム合金と工業用純アルミニウムではIMCの成長挙動に差があることが分かった。
 IMCの厚みに対する接合強度挙動(図8)を考慮すると、IMCの厚みが50nm~1μm(1,000nm)となる接合温度は、C1020とA5052との組み合せの場合におおよそ270~410℃の範囲である。
 A5052をアルミニウム合金の代表例とすると、接合温度は270~410℃の範囲がよく、また量産上の品質安定性を考慮し、IMCの厚み200~500nmレベルにするには、350~380℃の範囲がよいことが分かる。
 これに対して、C1020とA1200との組み合せである工業用純アルミニウムの場合には、IMCの厚みが50nm~1μmとすると、接合温度はおおよそ210~370℃の範囲であり、また量産上の品質安定性を考慮し、IMCの厚み200~500nmレベルにするには、接合温度は260~330℃の範囲がよい。
 C1020とA1200との組み合せにて、圧下比R4.4,接合温度310℃の加圧成形サンプル(IMCの厚み約400nm)を用いて、疲労試験を実施した結果を図15に示す。
 試験は油圧サーボ疲労試験機を用いて、室温、片振り引張(応力比0)、繰り返し周波数20 Hzで実施した。
 いずれの条件でも接合部での破壊は認められなかった。
 本発明に係る接合方法は、接合強度及び電気特性に優れた低温固相接合が可能であり、さらに従来のクラッド端子の製造方法に比べ生産性も非常に優れる。
 複合電極端子の製造に有用である。

Claims (4)

  1.  接合された第1金属層と第2金属層からなる複合電極端子の製造方法であって、
    前記第2金属層となる第2金属材の上に前記第1金属層となる第1金属材を重ねた状態で、接合前の第1金属材と第2金属材との厚みの合計をtmm、接合後の第1金属層と第2金属層との接合部の厚みをtmmとすると、
    所定の接合温度にて圧下比R(t/t)が1.80~5.0の範囲になるように加圧成形することを特徴とする複合電極端子の製造方法。
  2.  前記接合温度は、210~410℃の範囲であることを特徴とする請求項1記載の複合電極端子の製造方法。
  3.  前記第1金属層と第2金属層の組み合せが、銅(Cu)又はその合金と、アルミニウム(Al)の合金であり、接合温度が270~410℃の範囲であることを特徴とする請求項2記載の複合電極端子の製造方法。
  4.  前記第1金属層と第2金属層の組み合せが銅(Cu)又はその合金と、工業用純アルミニウム(Al)であり、接合温度が210~370℃の範囲であることを特徴とする請求項2記載の複合電極端子の製造方法。
PCT/JP2023/027017 2022-08-01 2023-07-24 複合電極端子の製造方法 WO2024029386A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-122478 2022-08-01
JP2022122478 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024029386A1 true WO2024029386A1 (ja) 2024-02-08

Family

ID=89848940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027017 WO2024029386A1 (ja) 2022-08-01 2023-07-24 複合電極端子の製造方法

Country Status (1)

Country Link
WO (1) WO2024029386A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122171A (ja) * 2002-10-01 2004-04-22 High Frequency Heattreat Co Ltd 異種金属薄板の固相接合装置および固相接合方法
JP2013099776A (ja) * 2011-07-06 2013-05-23 Nissan Motor Co Ltd 冷間圧接工法および冷間圧接装置
WO2021192595A1 (ja) * 2020-03-27 2021-09-30 富山県 金属材料の接合方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122171A (ja) * 2002-10-01 2004-04-22 High Frequency Heattreat Co Ltd 異種金属薄板の固相接合装置および固相接合方法
JP2013099776A (ja) * 2011-07-06 2013-05-23 Nissan Motor Co Ltd 冷間圧接工法および冷間圧接装置
WO2021192595A1 (ja) * 2020-03-27 2021-09-30 富山県 金属材料の接合方法

Similar Documents

Publication Publication Date Title
Dong et al. Refilled friction stir spot welding of aluminum alloy to galvanized steel sheets
EP2736672B1 (fr) Pièce d'acier soudée mise en forme à chaud à très haute résistance mécanique et procédé de fabrication
US9174298B2 (en) Dissimilar metal joining method for magnesium alloy and steel
Chen et al. Influence of interfacial reaction layer morphologies on crack initiation and propagation in Ti/Al joint by laser welding–brazing
Yan et al. Diffusion-bonding of TiAl
CN108176920B (zh) 一种钛-铝异种金属高强冶金结合的电子束连接方法
US5788142A (en) Process for joining, coating or repairing parts made of intermetallic material
JP6572986B2 (ja) 抵抗スポット溶接方法および抵抗スポット溶接の溶接条件判定方法
JP2013514188A (ja) 伝導性複合コンポーネント及びその製造方法
Wu et al. Vacuum diffusion bonding of TC4 titanium alloy and T2 copper by a slow cooling heat treatment
Mansor et al. Microstructure and mechanical properties of micro-resistance spot welding between stainless steel 316L and Ti-6Al-4V
JP2022174243A (ja) 金属材料の接合方法
CN1846915A (zh) 双金属手用锯条及其生产方法
CN102962581B (zh) 变形锌合金与铜合金线材的冷压焊接方法
Berto et al. Using the hybrid metal extrusion & bonding (HYB) process for dissimilar joining of AA6082-T6 and S355
JP4627400B2 (ja) アルミニウム/ニッケルクラッド材および電池用外部端子
WO2024029386A1 (ja) 複合電極端子の製造方法
Guo et al. Forming and tensile fracture characteristics of Ti-6Al-4V and T2 Cu vacuum electron beam welded joints
HUO et al. Corrugated interface structure and formation mechanism of Al/Mg/Al laminate rolled by hard plate
JP5892306B2 (ja) 接合方法及び接合部品
CN110480124B (zh) 一种钛/铝异种材料的增材制造方法
JP4469165B2 (ja) 鋼材とアルミニウム材との異材接合体とその接合方法
JP2006051523A (ja) 導電部品用クラッド材およびその製造方法
JP2019177408A (ja) 接合構造体およびその製造方法
Jassim et al. Effect of tool rotational direction and welding speed on the quality of friction stir welded Al-Mg Alloy 5052-O

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849941

Country of ref document: EP

Kind code of ref document: A1