WO2024029225A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2024029225A1
WO2024029225A1 PCT/JP2023/023304 JP2023023304W WO2024029225A1 WO 2024029225 A1 WO2024029225 A1 WO 2024029225A1 JP 2023023304 W JP2023023304 W JP 2023023304W WO 2024029225 A1 WO2024029225 A1 WO 2024029225A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
duct
refrigerator
partition plate
blower fan
Prior art date
Application number
PCT/JP2023/023304
Other languages
French (fr)
Japanese (ja)
Inventor
豊志 上迫
サギッシュ サチャシーラン
アジャイ デブ プラパダティール
ベルサミー ゴパル
ディナカラン ベル
ジャナルデャナン プラモス カラティール
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024029225A1 publication Critical patent/WO2024029225A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays

Definitions

  • the present disclosure relates to a refrigerator.
  • Patent Document 1 describes a refrigerator main body having an outer box and an inner box, a refrigerating compartment provided in the upper part of the refrigerator main body, a vegetable compartment provided in the lower part of the refrigerator main body, and the vegetable compartment and the refrigerating compartment.
  • a freezer compartment provided between the freezer compartment, a storage compartment back member provided on the back of the freezer compartment, a cooler cover provided at the rear of the storage compartment back member, and a cooler cover and the interior a cooler chamber provided between the box, a cooler provided within the cooler chamber, a defrosting heater provided below the cooler, and a defrost heater provided below the storage chamber back member;
  • a refrigerator is disclosed that includes a freezer compartment return port that communicates a freezer compartment with the cooler compartment.
  • the present disclosure provides a refrigerator having a defrost water drainage structure suitable for a blower fan.
  • the refrigerator according to the present disclosure includes a storage chamber, a cooling chamber in which an evaporator is installed on the back side of the storage chamber, and a partition section that partitions between the storage chamber and the cooling chamber; a blower fan that blows air into the storage chamber, the blower fan having a rotating blade and a fan casing that guides air flowing by rotation of the rotating blade, and the blower fan has a rotating blade and a fan casing that guides air flowing by rotation of the rotating blade, and is provided with a first partition plate, the fan casing is fixed to the back side of the first partition plate, and the first partition plate has the first partition plate at a position facing the lower surface of the fan casing. 1.
  • a drain groove is formed that extends to the end on the back side of the partition plate.
  • defrosting water generated in the blower fan can be easily drained to the back side of the first partition plate through the drain groove. Therefore, the refrigerator according to the present disclosure can efficiently drain defrost water generated in the blower fan.
  • FIG. 1 is a longitudinal cross-sectional view of a refrigerator in Embodiment 1.
  • FIG. 2 is a rear view showing the cooling chamber and duct in Embodiment 1.
  • FIG. 3 is a rear view of the blower fan portion of the partition in Embodiment 1, seen from the cooling chamber side.
  • FIG. 4 is a longitudinal cross-sectional view of the partition section in Embodiment 1.
  • FIG. 5 is an exploded perspective view of the partition section in Embodiment 1 seen from the freezer compartment side.
  • FIG. 6 is an exploded perspective view of the partition section in Embodiment 1 seen from the cooling chamber side.
  • FIG. 7 is a front view of the first partition plate of the partition section in Embodiment 1.
  • FIG. 1 is a longitudinal cross-sectional view of a refrigerator in Embodiment 1.
  • FIG. 2 is a rear view showing the cooling chamber and duct in Embodiment 1.
  • FIG. 3 is a rear view of the blower fan portion of the partition in Embodiment 1,
  • FIG. 8 is a perspective view of the molded heat insulating material of the partition section in Embodiment 1 seen from the front side.
  • FIG. 9 is a perspective view of the molded heat insulating material of the partition section in Embodiment 1 seen from the back.
  • FIG. 10 is a rear view of the molded heat insulating material of the partition section in Embodiment 1.
  • FIG. 11 is a front view of the partition section in Embodiment 1.
  • the blower fan in a refrigerator is generally an axial fan, and the fan casing is open on both sides in the axial direction.
  • the fan casing tends to have a structure that surrounds the blower fan. Therefore, when the blower fan is defrosted, the inventors discovered the problem that defrost water tends to accumulate inside the fan casing, and in order to solve this problem, the subject matter of the present disclosure is constituted. It's arrived. Therefore, the present disclosure provides a refrigerator that can efficiently drain defrost water generated within a fan casing of a blower fan.
  • FIG. 1 is a longitudinal sectional view of a refrigerator in Embodiment 1.
  • FIG. 2 is a rear view showing the cooling chamber and duct in the first embodiment.
  • FIG. 3 is a rear view of the blower fan portion of the partition in Embodiment 1, viewed from the cooling chamber side.
  • FIG. 4 is a longitudinal cross-sectional view of the partition portion in the first embodiment.
  • FIG. 5 is an exploded perspective view of the partition section in Embodiment 1, viewed from the freezer compartment side.
  • FIG. 6 is an exploded perspective view of the partition section in Embodiment 1, viewed from the cooling chamber side.
  • FIGS. 1 and 2 front, rear, left and right are used with reference to FIGS. 1 and 2. That is, the left and right sides of FIG. 1 will be described as corresponding to the front and rear of the refrigerator 10. Further, the left and right sides in FIG. 2 will be described as corresponding to the left and right sides of the refrigerator 10. Note that when referring to the front of the refrigerator 10, the term “front” may be used. Furthermore, when referring to the rear surface of the refrigerator 10, the term “back surface” may be used.
  • the refrigerator 10 includes a box-shaped casing 11 with an open front.
  • a refrigerator compartment 12 of about 2°C to 4°C is formed above the casing 11 as a second storage compartment, and a freezing compartment 13 of about -18°C as a first storage compartment is formed below the casing 11. is formed.
  • a low temperature chamber 60 with a temperature of about -5° C. to about 1° C. is formed as a third storage room.
  • a side-opening door 14 is provided at the front opening of the refrigerator compartment 12 so as to be openable and closable.
  • a side-opening door 61 is provided at the front opening of the freezer compartment 13 so as to be openable and closable, and multiple drawer cases 15, 16, and 17 for storing food are provided inside.
  • a drawer-type door 62 is provided at the front opening of the cold room 60 so as to be freely openable and closable, and a drawer case 63 is provided which interlocks with the opening and closing of the drawer-type door 62.
  • a cooling chamber 20 is provided on the back side of the freezing chamber 13 of the refrigerator 10.
  • a duct 21 that is located on the back side of the refrigerator compartment 12 and communicates in the vertical direction is connected above the cooling compartment 20 .
  • the duct 21 is provided with a refrigerating outlet (not shown) that communicates with the refrigerating chamber 12 .
  • a heat insulating wall 64 is provided between the freezing chamber 13 and the low temperature chamber 60.
  • a cold air passage 64a that communicates between the cooling chamber 20 and the duct 21 is formed in the heat insulating wall 64. Thereby, the configuration is such that the cold air generated in the cooling chamber 20 is introduced into the duct 21 via the cold air passage 64a.
  • the cold air passage 64a is provided with a twin damper 65 that adjusts the amount of cold air flowing into the refrigerator compartment 12 and the cold room 60.
  • the twin damper 65 includes a cold chamber damper 65a as a third storage chamber damper and a refrigerator chamber damper 65b as a first storage chamber damper, which are arranged adjacent to each other in the left and right width direction of the refrigerator 10. There is.
  • the cold room damper 65a and the cold room damper 65b are controlled according to the indoor temperatures of the cold room 60 and the cold room 12, respectively, and open and close the dampers independently. Adjust the amount of cold air.
  • the partition part 29 has a first partition plate 30 arranged on the front side of the cooling chamber 20. Furthermore, the partition section 29 includes a second partition plate 40 arranged on the back side of the freezer compartment 13. A cold air passage 29a is formed between the first partition plate 30 and the second partition plate 40. An inclined surface 35 is formed on the upper part of the first partition plate 30 and is inclined upwardly away from the second partition plate 40 . A blower fan 26 is attached to the back side of the inclined surface 35.
  • the blower fan 26 is a fan classified as one type of blower fan.
  • Axial fans also exist as blower fans.
  • an axial fan has a rotary blade attached to the center of a frame, sucks air from one end of the rotary blade in the direction of the rotation axis, and blows air out to the other end of the blade in the direction of the rotation axis.
  • Traditional refrigerators often use axial fans to circulate cold air.
  • the blower fan 26 includes rotating blades 27 and a fan casing 28 that covers the rotating blades 27, sucks air from the direction of the rotation axis of the rotating blades 27, and sucks air from the radial direction of the rotating blades 27 (in this embodiment, , corresponding to the upper part in FIG.
  • the fan casing 28 is formed into a casing shaped along an involute curve based on the rotation center C1 of the rotating blade 27, and is formed into a substantially spiral casing. Note that in the following description, the rotation center C1 may be referred to as the rotation axis direction C1.
  • the fan casing 28 is formed in a substantially spiral shape whose distance from the rotation center C1 gradually increases in the clockwise direction.
  • a cold air intake port 28a for taking in cold air from the cooling chamber 20 into the fan casing 28 is formed in a central portion of the fan casing 28 facing the rotation center C1 of the blower fan 26.
  • a second opening 28b is formed at the top of the fan casing 28 and communicates with the lower end of the cold air passage 64a.
  • the fan casing 28 is provided with a connecting portion 28c that expands from the top toward both left and right sides of the fan casing 28 and is connected to the cold air passage 64a via a second opening 28b.
  • the blower fan 26 tends to achieve higher static pressure than an axial fan of comparable size.
  • the number of rotating blades 27 of the blower fan 26 is generally greater than the number of rotating blades of an axial fan, this also makes it easier to obtain a high static pressure.
  • an evaporator 22 is installed below the blower fan 26 in the cooling chamber 20.
  • a compressor 23 is arranged at the rear upper part of the refrigerator compartment 12.
  • the compressor 23, a condenser (not shown), an expansion mechanism, and the evaporator 22 are connected by refrigerant piping, and constitute a refrigeration cycle. Then, by discharging the refrigerant from the compressor 23, the refrigerant is cooled to a predetermined temperature, and by exchanging heat with the evaporator 22 and the internal air of the cooling chamber 20, cold air is generated inside the cooling chamber 20. It is configured as follows.
  • the cold air in the cooling chamber 20 is sucked into the blower fan 26 from the cold air intake 28a of the fan casing 28, and is blown out from the outer periphery of the blower fan 26 into the inside of the fan casing 28.
  • the cold air blown into the fan casing 28 is guided along the inner circumferential surface of the fan casing 28 and sent to the duct 21 from the second opening 28b through the cold air passage 64a.
  • FIG. 7 is a front view of the first partition plate 30 of the partition section 29 in the first embodiment.
  • the first partition plate 30 of the partition section 29 has a substantially rectangular base section 31 .
  • a partition wall portion 31a that projects rearward is formed at the left end portion of the base portion 31.
  • the partition wall portion 31a extends in the vertical direction.
  • a partition wall 51a (see FIGS. 5 and 6) of a molded heat insulating material 50 is attached to the partition wall portion 31a.
  • a fan plate portion 32 that protrudes forward in a pedestal shape is formed at a position of the base portion 31 corresponding to the fan casing 28 .
  • the fan plate portion 32 is formed into a substantially rectangular shape with rounded corners when viewed from the front. In other words, the fan plate portion 32 has a substantially rounded rectangular shape when viewed from the front.
  • the fan plate portion 32 has a substantially rounded rectangular shape with the left and right sides longer than the top and bottom.
  • a planar cutout portion 32a is formed in the lower part of the fan plate portion 32.
  • a rearwardly recessed recess 33 is formed on the front surface (seat surface) of the fan plate portion 32 .
  • the recess 33 includes an inclined surface 35 corresponding to the bottom surface of the recess 33 and a peripheral wall 34 corresponding to the side surface of the recess 33 .
  • the surrounding wall 34 connects the periphery of the inclined surface 35 and the front surface of the fan plate section 32.
  • a circular fan mounting portion 36 is formed on the inclined surface 35.
  • a plurality of fan support parts 36a, 36b, and 36c are formed around the fan attachment part 36.
  • the fan support portions 36a to 36c are formed at approximately equal intervals in the circumferential direction. In this embodiment, the fan support parts 36a to 36c are formed at three locations: above the fan mounting part 36, at the lower left, and at the lower right.
  • the fan support portions 36a to 36c are formed as concave portions recessed forward from the back surface (see FIG. 6).
  • a mounting portion of a fan frame (not shown), which rotatably supports the rotary blade 27, is fixed to each of the fan support portions 36a to 36c with screws (not shown).
  • a rotating blade 27 is rotatably supported by a fan frame (not shown).
  • a substantially arc-shaped first opening 38 along the fan casing 28 is formed between each of the fan support portions 36a, 36b, and 36c.
  • the first opening 38 is formed in the inclined surface 35.
  • three first openings 38 are formed.
  • the three first openings 38 are defined as an upstream first opening 38a, a midstream first opening 38b, and a downstream first opening 38c, respectively, from the upstream side of the airflow by the blower fan 26 with the top as a reference. ing.
  • the opening areas of the first upstream opening 38a, the first midstream opening 38b, and the first downstream opening 38c are formed such that the opening width gradually increases from the upstream side to the downstream side of the airflow. ing. Further, the opening areas of the first upstream opening 38a, the first midstream opening 38b, and the first downstream opening 38c are formed to increase sequentially from the upstream side. Thereby, the air volume to the freezer compartment 13 can be ensured, and cooling can be performed efficiently. Note that, as long as the air volume can be ensured, a configuration may be adopted in which at least only the first opening 38a on the upstream side gradually becomes larger.
  • the rotation center C1 of the blower fan 26 is arranged to be inclined with respect to the front-rear direction (see FIG. 4). As a result, the blower fan 26 blows the cool air upward from the first opening 38, which facilitates the convection of the cool air.
  • a rectangular plate-shaped heat insulating material 39 is arranged below the fan plate section 32.
  • the heat insulating material 39 insulates the cold air transmitted from the cooling chamber 20 to the first partition plate 30. Thereby, it is possible to suppress the condensed water flowing down from the recess 33 from freezing.
  • a second partition plate 40 is arranged in front of the first partition plate 30.
  • a molded heat insulating material 50 made of, for example, expanded polystyrene is provided in close contact with the second partition plate 40 .
  • the second partition plate 40 and the molded heat insulating material 50 have shapes corresponding to each other.
  • FIG. 8 is a perspective view of the molded heat insulating material 50 of the partition portion 29 in the first embodiment, viewed from the front side.
  • FIG. 9 is a perspective view of the molded heat insulating material 50 of the partition portion 29 in the first embodiment, viewed from the back.
  • FIG. 10 is a rear view of the molded heat insulating material 50 of the partition portion 29 in the first embodiment. Note that in FIG. 10, the fan plate portion 32 is shown with grid-like hatching for convenience of explanation.
  • the molded heat insulating material 50 has a plate-shaped base portion 51 that is thick in the front-rear direction.
  • the base portion 51 is formed into a substantially rectangular shape when viewed from the front.
  • the base portion 51 is formed with a duct portion 52 that protrudes from the front surface of the base portion 51 toward the freezer compartment 13 side.
  • a duct space 52s (see FIG. 9) is formed in the duct portion 52 and is recessed toward the freezer compartment 13 side with respect to the rear surface of the base portion 51.
  • a cold air passage 29a (see FIG. 4) is formed by the duct space 52s surrounded by the duct portion 52 and the first partition plate 30.
  • the duct portion 52 has a middle duct portion 53 at a position corresponding to the fan plate portion 32 of the first partition plate 30.
  • the middle duct portion 53 includes a front surface 53a having a rounded rectangular shape, side surfaces 53b and 53c provided on the left and right sides of the front surface 53a and extending in the vertical direction, and a lower surface provided below the front surface 53a and extending in the left-right direction. 53d, and curved side surfaces 53e and 53f that connect between the side surfaces 53b and 53c and the lower surface 53d.
  • the curved side surfaces 53e and 53f curve inward in the left-right direction as they move downward.
  • a middle duct space (air path) 53s (see FIG. 9) forming a part of the duct space 52s is formed in the middle duct portion 53.
  • the middle duct space 53s has an inner peripheral shape corresponding to the outer peripheral shape of the fan plate portion 32, as shown in FIG. That is, the fan plate portion 32 can be fitted into the middle duct space 53s.
  • the middle duct space 53s is formed in the rotation axis direction C1 of the blower fan 26. That is, the middle duct space 53s is provided on an extension of the rotation center C1 of the blower fan 26.
  • Front openings 53a1, 53a2, and 53a3 penetrating in the thickness direction are formed in the front surface 53a of the middle duct portion 53.
  • a center front opening 53a1 extending in the left-right direction along the lower surface 53d is formed in the lower part of the front surface 53a.
  • the center front opening 53a1 curves upward along the curved side surfaces 53e and 53f at both left and right ends.
  • side front openings 53a2 and 53a3 extending along side surfaces 53b and 53c are formed at both left and right ends of the front surface 53a. Both left and right ends of the center front opening 53a1 are located below the side front openings 53a2 and 53a3.
  • Side openings 53b1 and 53c1 penetrating in the thickness direction are formed in side surfaces 53b and 53c of the middle duct portion 53.
  • side openings 53b1 and 53c1 that extend in the vertical direction along the side surfaces 53b and 53c are formed in the side surfaces 53b and 53c.
  • the lower ends of the side openings 53b1 and 53c1 extend to the curved side surfaces 53e and 53f, and are curved along the curved side surfaces 53e and 53f. Therefore, the side openings 53b1 and 53c1 open in the left-right direction (side surface direction) and in the downward direction.
  • Cold air is sent from the cold air passage 29a to the freezer compartment 13 through the front openings 53a1 to 53a3 and the side openings 53b1 and 53c1. That is, cold air is sent forward through the front openings 53a1 to 53a3. Further, cold air is sent from the cold air passage 29a to the left and right and downward through the side openings 53b1 and 53c1.
  • a top duct part 54 extending in the left-right direction is formed above the middle duct part 53.
  • the top duct part 54 is formed so that the amount of protrusion from the front surface of the base part 51 is smaller than that of the middle duct part 53.
  • the top duct portion 54 is formed to have a larger horizontal width than the middle duct portion 53.
  • a top duct space 54s forming a part of the duct space 52s is formed in the top duct portion 54.
  • the top duct space 54s extends left and right upward from the upper end on both the left and right sides of the middle duct space 53s.
  • top openings 54a and 54b are formed at both left and right end portions to penetrate in the thickness direction. Cool air is sent forward from the top duct space 54s through the top openings 54a and 54b.
  • a lower duct portion (second duct portion) 55 is formed below the middle duct portion 53 and extends downward from the left and right center of the middle duct portion 53 .
  • the lower duct portion 55 is formed so that the amount of protrusion from the front surface of the base portion 51 is smaller than that of the middle duct portion 53.
  • the lower duct portion 55 has a front surface 55a, side surfaces 55b and 55c provided on the left and right sides of the front surface 55a and extending in the vertical direction, and curved side surfaces 55e and 55f extending downward from the lower ends of the side surfaces 55b and 55c.
  • the curved side surfaces 55e and 55f curve outward in the left-right direction as they move downward.
  • a connecting duct space (connecting air path) 55s that forms a part of the duct space 52s is formed in the lower duct portion 55.
  • the connecting duct space 55s extends in the vertical direction.
  • the connecting duct space 55s has, at its lower end, a connecting portion 55s1 that curves outward in the left-right direction as it moves downward, corresponding to the curved side surfaces 55e and 55f.
  • the connecting duct space 55s is formed according to the lower surface 53d (see FIG. 8), and has a larger opening width than the top duct space 54s. Cold air easily flows into the connecting duct space 55s from the middle duct space 53s.
  • a bottom duct portion (third duct portion) 56 is formed below the lower duct portion 55 and extends from side to side.
  • the bottom duct portion 56 has a longer horizontal width than the middle duct portion 53, and a smaller horizontal width than the top duct portion 54.
  • the bottom duct portion 56 is formed to have the same protrusion amount from the front surface of the base portion 51 as the lower duct portion 55 .
  • Upper surfaces 56b and 56c of the bottom duct portion 56 are smoothly connected to side surfaces 55b and 55c of the lower duct portion 55 via curved side surfaces 55e and 55f.
  • a bottom duct space 56s forming a part of the duct space 52s is formed in the bottom duct portion 56.
  • the bottom duct space 56s communicates with the connecting duct space 55s at the left and right center portions.
  • the bottom duct space 56s extends in the left-right direction from the connection duct space 55s.
  • the bottom duct space 56s is smoothly curved and connected to the connecting duct space 55s by a connecting portion 55s1.
  • a bottom opening 56a extending in the left-right direction is formed in the bottom duct portion 56.
  • the bottom opening 56a is formed on the entire front surface of the bottom duct portion 56.
  • the bottom opening 56a has a larger horizontal width than the connecting duct space 55s.
  • the bottom opening 56a is longer than the center front opening 53a1 in the left and right directions.
  • the second partition plate 40 is arranged in front of the molded heat insulating material 50. As shown in FIG. The second partition plate 40 is formed in a cover shape corresponding to the molded heat insulating material 50. The second partition plate 40 has a shape corresponding to the shaped heat insulating material 50. The duct portion 42 of the second partition plate 40 is formed in the same shape as the duct portion 52 of the molded heat insulating material 50, except that the side openings 43b1, 43b2, 43c1, and 43c2 are divided into two vertically.
  • the second partition plate 40 includes the base portion 51 of the molded heat insulating material 50, the duct portion 52, the duct space 52s, the middle duct portion 53, the front surface 53a, the side surfaces 53b, 53c, the lower surface 53d, Curved side surfaces 53e, 53f, middle duct space 53s, front openings 53a1, 53a2, 53a3, top duct section 54, top duct space 54s, top openings 54a, 54b, lower duct section 55, front surface 55a, side surfaces 55b, 55c, curved side surface 55e , 55f, the connecting duct space 55s, the bottom duct part 56, the bottom duct space 56s, the bottom opening 56a, the top surfaces 56b and 56c, the base part 41, the duct part 42, the duct space 42s, the middle duct part (first duct part) 43, front surface 43a, side surfaces 43b, 43c, lower surface 43d, curved side surfaces 43e, 43f, middle duct space 43s
  • the base portion 51 of the molded heat insulating material 50 is attached to the base portion 41 of the second partition plate 40 so as to be in close contact with the base portion 41 of the second partition plate 40.
  • the duct portion 52 of the molded heat insulating material 50 is fitted into the duct space 42s of the second partition plate 40.
  • the duct space 52s of the molded heat insulating material 50 is divided into the openings 53a1 to 53a3, 53b1, 53c1, 54a, 54b, 56a of the molded heat insulating material 50 and the openings 43a1 to 43a3, 43b1, 43b2, 43c1 of the second partition plate 40, It communicates with the freezer compartment 13 through 43c2, 44a, 44b, and 46a.
  • the base portion 31 of the first partition plate 30 is attached to the base portion 51 of the molded heat insulating material 50 so as to be in close contact therewith.
  • the cold air passage 29a is formed by the duct space 52s surrounded by the inner surface of the duct portion 52 and the front surface of the first partition plate 30.
  • the fan plate portion 32 of the first partition plate 30 enters the middle duct space 53s so as to raise the bottom of the middle duct space 53s. Since the blower fan 26 can be placed close to the freezing compartment 13 by the fan plate portion 32, air can be blown in the front direction into the freezing compartment 13 with less air resistance.
  • the fan plate portion 32 is located behind the side openings 53b1, 53c1, and 43b1 to 43c2. Therefore, the fan plate portion 32 does not reduce the opening area of the side openings 53b1, 53c1, 43b1 to 43c2.
  • the front surface of the fan plate portion 32 is shaped like a pedestal and is formed wide. Therefore, when the width of the front surface is small, for example, compared to when the front surface has an elongated rib shape, the cold air blown from the recess 33 is less likely to meander when trying to cross the fan plate section 32 in the radial direction. ing. Therefore, the pressure loss of cold air is easily suppressed.
  • a shutter 70 is arranged in the middle duct space 53s.
  • the shutter 70 has a teardrop shape when viewed from the front.
  • the shutter 70 is fixed to a shaft 71 that extends forward.
  • the shaft 71 passes through the molded heat insulating material 50 and the second partition plate 40 and is rotatably supported.
  • An operating knob 72 is fixed to the front end of the shaft 71. By rotating the operation knob 72, the shutter 70 is rotated.
  • FIG. 11 is a front view of the partition portion 29 in the first embodiment.
  • the center front opening 43a1 and the first midstream opening 38b overlap. That is, the lower end of the midstream side first opening 38b is exposed from the center front opening 43a1.
  • the right side front opening 43a3 and the downstream first opening 38c overlap. That is, the first downstream opening 38c is exposed from the right side front opening 43a2.
  • the left side front opening 43a2 and the first upstream opening 38a do not substantially overlap.
  • the shutter 70 rotates around the shaft 71, and overlaps the front openings 43a1 and 43a2 and the side openings 43b1 and 43b2 in a front view and a side view.
  • the opening areas of the front openings 43a1, 43a2 and the side openings 43b1, 43b2 it is possible to change the amount of cold air flowing out from the middle duct space 53s.
  • the heater 25 is, for example, an electric heating device, and melts frost attached to the evaporator 22 and the blower fan 26 by heating the air inside the cooling chamber 20 .
  • a defrosting water receiving tray 25a is provided below the heater 25 so as to cover the bottom surface of the cooling chamber 20. The defrosting water tray 25a receives the defrosting water dripping from the evaporator 22 and the defrosting water flowing along the back side of the first partition plate 30.
  • the lower end 28e of the fan casing 28 is located near the lower end of the inclined surface 35 and is located further forward than the base portion 31.
  • the first partition plate 30 has a drainage groove 34b formed below the lower end 28e of the fan casing 28 so as to vertically overlap the lower end 28e.
  • the drain groove 34b for draining defrosting water is formed in the first partition plate 30 at a position vertically facing the lower surface portion 28d of the fan casing 28.
  • the drain groove 34b is a groove extending in the front-rear direction, and is formed by recessing the bottom surfaces of the peripheral wall 34 and the second peripheral wall 34a downward.
  • the second surrounding wall 34a is a portion of the first partition plate 30 that connects the base portion 31 with the lower end of the inclined surface 35 located forward of the back surface of the base portion 31 (see FIG. 6).
  • the drain groove 34b is a groove that extends toward the rear surface of the base portion 31, that is, to the end of the rear side of the first partition plate 30, and opens toward the rear side. It is formed by sloping downward towards.
  • a step portion 34d rising upward from the bottom surface 34c is formed at the front end of the drain groove 34b.
  • a stepped portion 34d rising upward from the bottom surface 34c is formed at the end of the drain groove 34b on the freezer compartment 13 side. The defrosting water flowing through the drain groove 34b is drained by flowing down the back surface of the first partition plate 30.
  • FIGS. 8 to 11 Drainage structure of defrosting water from the duct
  • bottom surfaces 56d and 56e of the bottom duct portion 56 are inclined downward toward the center of the bottom duct portion 56 in the left-right direction.
  • a center portion 56f corresponding to the center portion in the left-right direction of the bottom surfaces 56d and 56e of the bottom duct portion 56 is recessed downward.
  • a drainage hole 56g for draining defrosting water generated inside the duct portion 52 is opened at the rear of the central portion 56f.
  • the drainage hole 56g is a hole formed in the base portion 51 of the molded heat insulating material 50 and has a circular cross section that extends vertically.
  • the drain hole 56g passes through the molded heat insulating material 50 below the center portion 56f of the bottom surfaces 56d and 56e of the bottom duct portion 56, and opens above the defrost water receiving tray 25a in the cooling chamber 20 (see FIG. 4). That is, the drain hole 56g communicates the bottom duct space 56s and the cooling chamber 20. Furthermore, a drainage hole 46g corresponding to the drainage hole 56g of the molded heat insulating material 50 is formed at the lower end of the second partition plate 40.
  • the refrigerator 10 performs a defrosting operation at predetermined intervals in order to defrost the frost attached to the evaporator 22, the blower fan 26, and the like.
  • the heater 25 is operated, thereby warming the air in the cooling chamber 20 and turning it into warm air.
  • the warm air rises while defrosting the cooling chamber 20.
  • the frost adhering to the evaporator 22 melts and becomes defrosting water.
  • the defrosting water generated in the evaporator 22 is dripped by the action of gravity and guided to the defrosting water receiving tray 25a.
  • the defrosting water dripped into the drain 34b flows toward the rear along the bottom surface 34c that slopes downward. After the defrosting water reaches the rear end of the drain groove 34b, it flows out from the open rear end of the drain groove 34b and flows along the back surface of the base portion 31 of the first partition plate 30. Thereafter, the defrosting water is guided to the defrosting water receiving tray 25a by the action of gravity.
  • the defrosting water is pushed into the center portion 56f by the air flowing inside the bottom duct portion 56 along the bottom surfaces 56d and 56e. Since the central portion 56f is recessed downward, the defrosting water collects at the central portion 56f and flows into the drainage hole 56g provided at the rear of the central portion 56f.
  • the defrosting water that has flowed into the drain hole 56g flows downward through the drain hole 56g and flows into the cooling chamber 20 from the drain hole 46g. At this time, the defrosting water inside the drain hole 56g is pushed downward by the air flowing downward within the connecting duct space 55s and the bottom duct space 56s. The defrosting water that has flowed into the cooling chamber 20 through the drain holes 56g and 46g flows downward under the action of gravity and is guided to the defrosting water receiving tray 25a.
  • the refrigerator 10 includes the freezing compartment 13 as an example of a storage compartment, and the cooling compartment 20 in which the evaporator 22 is installed is formed on the back side of the freezing compartment 13. , a partition part 29 that partitions between the freezing compartment 13 and the cooling compartment 20, and a blower fan 26 that blows air from the cooling compartment 20 to the freezing compartment 13.
  • the blower fan 26 includes a rotating blade 27 and a rotating blade.
  • a first partition plate 30 is installed on the back side of the partition part 29, and the fan casing 28 is installed on the back side of the first partition plate 30.
  • a drain groove 34b is formed in the first partition plate 30 at a position facing the lower surface portion 28d of the fan casing 28, and extends to the rear end of the first partition plate 30.
  • a step portion 34d rising upward may be formed at the end of the drain groove 34b on the freezer compartment 13 side.
  • the lower surface portion 28d of the fan casing 28 may be sloped downward toward the freezer compartment 13, and the drain groove 34b may be sloped downward toward the back side.
  • Embodiments 1 and 2 have been described as examples of the technology disclosed in this application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, etc. are made. Therefore, other embodiments will be illustrated below.
  • the storage compartment may be the refrigerator compartment 12, or the refrigerator may have only one of the refrigerator compartment 12 and the freezer compartment 13.
  • the storage room may be a cold room 60.
  • the rotation center C1 of the blower fan 26 is arranged at an angle, but the invention is not limited to this.
  • the rotation center C1 may be arranged so as to be substantially horizontal. Good too.
  • a storage room is provided, and a cooling room in which an evaporator is installed is formed on the back side of the storage room, and a partition part that partitions between the storage room and the cooling room, and an air in the cooling room is provided.
  • a blower fan that blows air into the storage chamber, the blower fan has a rotating blade, and a fan casing that guides air flowing by rotation of the rotating blade, and on the back side of the partition part.
  • a first partition plate is installed, the fan casing is fixed to the back side of the first partition plate, and the first partition plate has the first partition plate at a position facing the lower surface of the fan casing.
  • a refrigerator characterized in that a drain groove is formed that extends to the end of the back side of the plate. With this configuration, defrost water generated in the blower fan is easily drained to the back side of the first partition plate through the drainage groove. Therefore, defrost water generated in the blower fan can be efficiently drained.
  • the present disclosure can be used for refrigerators. Specifically, it can be suitably used in a refrigerator that blows cold air with a blower fan.
  • Refrigerator 13 Freezer room (storage room) 20 Cooling room 22 Evaporator 26 Blower fan 27 Rotating blade 28 Fan casing 28d Lower surface portion 29 Partition portion 30 First partition plate 34b Drain groove 34d Step portion

Abstract

Provided is a refrigerator having a defrosting water drainage structure suitable for a blower fan. This refrigerator is provided with a storage compartment, wherein: a cooling chamber in which an evaporator is installed is formed on a rear surface side of the storage compartment; the refrigerator is provided with a partitioning portion that partitions the storage compartment and the cooling chamber, and a blower fan for blowing air in the cooling chamber into the storage compartment; the blower fan includes a rotating blade, and a fan casing for guiding air that flows by means of rotation of the rotating blade; a first partitioning plate is installed on a rear surface side of the partitioning portion; the fan casing is fixed to a rear surface side of the first partitioning plate; and a drainage channel that extends to an end portion on the rear surface side of the first partitioning plate is formed in a position in the first partitioning plate facing a lower surface portion of the fan casing.

Description

冷蔵庫refrigerator
 本開示は、冷蔵庫に関する。 The present disclosure relates to a refrigerator.
 特許文献1には、外箱と内箱とを有する冷蔵庫本体と、該冷蔵庫本体の上部に設けられた冷蔵室と、前記冷蔵庫本体の下部に設けられた野菜室と、該野菜室と前記冷蔵室との間に設けられた冷凍室と、該冷凍室の背面に設けられた貯蔵室背面部材と、該貯蔵室背面部材の後方に設けられた冷却器カバーと、該冷却器カバーと前記内箱との間に設けられた冷却器室と、該冷却器室内に設けられた冷却器と、前記冷却器の下方に設けられた除霜ヒータと、前記貯蔵室背面部材の下部に設けられ前記冷凍室と前記冷却器室とを連通する冷凍室戻り口と、を有する冷蔵庫が開示されている。 Patent Document 1 describes a refrigerator main body having an outer box and an inner box, a refrigerating compartment provided in the upper part of the refrigerator main body, a vegetable compartment provided in the lower part of the refrigerator main body, and the vegetable compartment and the refrigerating compartment. a freezer compartment provided between the freezer compartment, a storage compartment back member provided on the back of the freezer compartment, a cooler cover provided at the rear of the storage compartment back member, and a cooler cover and the interior a cooler chamber provided between the box, a cooler provided within the cooler chamber, a defrosting heater provided below the cooler, and a defrost heater provided below the storage chamber back member; A refrigerator is disclosed that includes a freezer compartment return port that communicates a freezer compartment with the cooler compartment.
特開2010-060188号公報Japanese Patent Application Publication No. 2010-060188
 本開示は、ブロアファンに好適な除霜水の排水構造を有する冷蔵庫を提供する。 The present disclosure provides a refrigerator having a defrost water drainage structure suitable for a blower fan.
 この明細書には、2022年8月2日に出願された日本国特許出願・特願2022-123059の全ての内容が含まれる。
 本開示における冷蔵庫は、貯蔵室を備え、前記貯蔵室の背面側に、蒸発器が設置される冷却室を形成し、前記貯蔵室と前記冷却室との間を仕切る仕切部と、前記冷却室の空気を前記貯蔵室に送風するブロアファンと、を備え、前記ブロアファンは、回転羽根と、前記回転羽根の回転によって流れる空気を案内するファンケーシングと、を有し、前記仕切部の背面側には、第1仕切板が設置され、前記ファンケーシングは、前記第1仕切板の背面側に固定され、前記第1仕切板には、前記ファンケーシングの下面部と対向する位置に、前記第1仕切板の背面側の端部まで延びる排水溝が形成される。
This specification includes all contents of Japanese patent application/Japanese Patent Application No. 2022-123059 filed on August 2, 2022.
The refrigerator according to the present disclosure includes a storage chamber, a cooling chamber in which an evaporator is installed on the back side of the storage chamber, and a partition section that partitions between the storage chamber and the cooling chamber; a blower fan that blows air into the storage chamber, the blower fan having a rotating blade and a fan casing that guides air flowing by rotation of the rotating blade, and the blower fan has a rotating blade and a fan casing that guides air flowing by rotation of the rotating blade, and is provided with a first partition plate, the fan casing is fixed to the back side of the first partition plate, and the first partition plate has the first partition plate at a position facing the lower surface of the fan casing. 1. A drain groove is formed that extends to the end on the back side of the partition plate.
 本開示における冷蔵庫は、ブロアファンに生じた除霜水を、排水溝を通して第1仕切板の背面側に排水し易い。そのため、本開示における冷蔵庫は、ブロアファンに生じる除霜水を効率的に排水できる。 In the refrigerator according to the present disclosure, defrosting water generated in the blower fan can be easily drained to the back side of the first partition plate through the drain groove. Therefore, the refrigerator according to the present disclosure can efficiently drain defrost water generated in the blower fan.
図1は、実施の形態1における冷蔵庫の縦断面図FIG. 1 is a longitudinal cross-sectional view of a refrigerator in Embodiment 1. 図2は、実施の形態1における冷却室およびダクトを示す背面図FIG. 2 is a rear view showing the cooling chamber and duct in Embodiment 1. 図3は、実施の形態1における仕切部のブロアファン部分を冷却室側から見た背面図FIG. 3 is a rear view of the blower fan portion of the partition in Embodiment 1, seen from the cooling chamber side. 図4は、実施の形態1における仕切部の縦断面図FIG. 4 is a longitudinal cross-sectional view of the partition section in Embodiment 1. 図5は、実施の形態1における仕切部を冷凍室側から見た分解斜視図FIG. 5 is an exploded perspective view of the partition section in Embodiment 1 seen from the freezer compartment side. 図6は、実施の形態1における仕切部を冷却室側から見た分解斜視図FIG. 6 is an exploded perspective view of the partition section in Embodiment 1 seen from the cooling chamber side. 図7は、実施の形態1における仕切部の第1仕切板の正面図FIG. 7 is a front view of the first partition plate of the partition section in Embodiment 1. 図8は、実施の形態1における仕切部の成形断熱材を正面側から見た斜視図FIG. 8 is a perspective view of the molded heat insulating material of the partition section in Embodiment 1 seen from the front side. 図9は、実施の形態1における仕切部の成形断熱材を背面から見た斜視図FIG. 9 is a perspective view of the molded heat insulating material of the partition section in Embodiment 1 seen from the back. 図10は、実施の形態1における仕切部の成形断熱材の背面図FIG. 10 is a rear view of the molded heat insulating material of the partition section in Embodiment 1. 図11は、実施の形態1における仕切部の正面図FIG. 11 is a front view of the partition section in Embodiment 1.
  (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、冷蔵室と、野菜室と、冷凍室とを備え、各室と冷却器室とをそれぞれダクトにより接続して、冷却器室から発生する冷気を、冷蔵室と、野菜室と、冷凍室とに送るようにした技術があった。
(Findings, etc. that formed the basis of this disclosure)
At the time when the inventors came up with the present disclosure, it was equipped with a refrigerator compartment, a vegetable compartment, and a freezer compartment, each of which was connected to a cooler compartment by a duct, and the cold air generated from the cooler compartment was There was a technology that sent food to the refrigerator, vegetable room, and freezer.
 従来の技術では、冷蔵庫内における送風ファンは一般には軸流ファンであり、ファンケーシングは軸方向の両側全体が開放されていた。
 しかしながら、ブロアファンを用いる場合にはファンケーシングはブロアファンの周囲を取り囲む構造となり易い。このため、ブロアファンが除霜された場合には、除霜水がファンケーシング内にたまり易いという課題を発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。
 そこで、本開示は、ブロアファンのファンケーシング内で生じる除霜水を効率よく排水することができる冷蔵庫を提供する。
In the prior art, the blower fan in a refrigerator is generally an axial fan, and the fan casing is open on both sides in the axial direction.
However, when a blower fan is used, the fan casing tends to have a structure that surrounds the blower fan. Therefore, when the blower fan is defrosted, the inventors discovered the problem that defrost water tends to accumulate inside the fan casing, and in order to solve this problem, the subject matter of the present disclosure is constituted. It's arrived.
Therefore, the present disclosure provides a refrigerator that can efficiently drain defrost water generated within a fan casing of a blower fan.
 以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明を省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted.
The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter recited in the claims.
 (実施の形態1)
 以下、図1~図11を用いて、実施の形態1を説明する。
 [1-1.構成]
 [1-1-1.冷蔵庫の構成]
 図1は、実施の形態1における冷蔵庫の縦断面図である。図2は、実施の形態1における冷却室およびダクトを示す背面図である。図3は、実施の形態1における仕切部のブロアファン部分を冷却室側から見た背面図である。図4は、実施の形態1における仕切部の縦断面図である。図5は、実施の形態1における仕切部を冷凍室側から見た分解斜視図である。図6は、実施の形態1における仕切部を冷却室側から見た分解斜視図である。
 本明細書の説明において、冷蔵庫10について、前後、左右という場合には、図1、図2を基準にして用いる。すなわち、図1の左右が、冷蔵庫10の前後に対応するものとして説明する。また、図2の左右が、冷蔵庫10の左右に対応するものとして説明する。なお、冷蔵庫10の前面を示す場合に、正面という場合もある。また、冷蔵庫10の後面を示す場合に、背面という場合もある。
(Embodiment 1)
Embodiment 1 will be described below using FIGS. 1 to 11.
[1-1. composition]
[1-1-1. Refrigerator configuration]
FIG. 1 is a longitudinal sectional view of a refrigerator in Embodiment 1. FIG. 2 is a rear view showing the cooling chamber and duct in the first embodiment. FIG. 3 is a rear view of the blower fan portion of the partition in Embodiment 1, viewed from the cooling chamber side. FIG. 4 is a longitudinal cross-sectional view of the partition portion in the first embodiment. FIG. 5 is an exploded perspective view of the partition section in Embodiment 1, viewed from the freezer compartment side. FIG. 6 is an exploded perspective view of the partition section in Embodiment 1, viewed from the cooling chamber side.
In the description of this specification, when referring to the refrigerator 10, front, rear, left and right are used with reference to FIGS. 1 and 2. That is, the left and right sides of FIG. 1 will be described as corresponding to the front and rear of the refrigerator 10. Further, the left and right sides in FIG. 2 will be described as corresponding to the left and right sides of the refrigerator 10. Note that when referring to the front of the refrigerator 10, the term "front" may be used. Furthermore, when referring to the rear surface of the refrigerator 10, the term "back surface" may be used.
 図1に示すように、冷蔵庫10は、前面が開放された箱型の筐体11を備えている。筐体11の上方には、第2貯蔵室としての約2℃~4℃の冷蔵室12が形成され、筐体11の下方には、第1貯蔵室としての約-18℃の冷凍室13が形成されている。冷蔵室12と冷凍室13との間には、第3貯蔵室としての約-5℃~約1℃の低温室60が形成されている。 As shown in FIG. 1, the refrigerator 10 includes a box-shaped casing 11 with an open front. A refrigerator compartment 12 of about 2°C to 4°C is formed above the casing 11 as a second storage compartment, and a freezing compartment 13 of about -18°C as a first storage compartment is formed below the casing 11. is formed. Between the refrigerator compartment 12 and the freezer compartment 13, a low temperature chamber 60 with a temperature of about -5° C. to about 1° C. is formed as a third storage room.
 冷蔵庫10において、冷蔵室12の前面の開口部には、横開き式の扉14が開閉自在に設けられている。冷凍室13の前面の開口部には、横開き式の扉61が開閉自在に設けられ、内部に食品を収容する複数段の引出しケース15、16、17が設けられている。また、低温室60の前面の開口部には引出し式扉62が開閉自在に設けられ、引出し式扉62の開閉と連動する引出しケース63が設けられている。 In the refrigerator 10, a side-opening door 14 is provided at the front opening of the refrigerator compartment 12 so as to be openable and closable. A side-opening door 61 is provided at the front opening of the freezer compartment 13 so as to be openable and closable, and multiple drawer cases 15, 16, and 17 for storing food are provided inside. Further, a drawer-type door 62 is provided at the front opening of the cold room 60 so as to be freely openable and closable, and a drawer case 63 is provided which interlocks with the opening and closing of the drawer-type door 62.
 図1、図2に示すように、冷蔵庫10の冷凍室13の背面側には、冷却室20が設けられている。冷却室20の上方には、冷蔵室12の背面側に位置し、上下方向に連通するダクト21が連結されている。
 ダクト21には、冷蔵室12に連通する図示しない冷蔵用吹出口が設けられている。
 冷凍室13と低温室60との間には、断熱壁64が設けられている。断熱壁64には、冷却室20とダクト21とを連通する冷気通路64aが形成されている。これにより、冷却室20で生成された冷気が冷気通路64aを介してダクト21に導入する構成となっている。
As shown in FIGS. 1 and 2, a cooling chamber 20 is provided on the back side of the freezing chamber 13 of the refrigerator 10. A duct 21 that is located on the back side of the refrigerator compartment 12 and communicates in the vertical direction is connected above the cooling compartment 20 .
The duct 21 is provided with a refrigerating outlet (not shown) that communicates with the refrigerating chamber 12 .
A heat insulating wall 64 is provided between the freezing chamber 13 and the low temperature chamber 60. A cold air passage 64a that communicates between the cooling chamber 20 and the duct 21 is formed in the heat insulating wall 64. Thereby, the configuration is such that the cold air generated in the cooling chamber 20 is introduced into the duct 21 via the cold air passage 64a.
 冷気通路64aには、冷蔵室12と低温室60とへの冷気量を調節するツインダンパ65が設けられている。
 図2に示すように、ツインダンパ65は、冷蔵庫10の左右幅方向に隣接配置される第3貯蔵室ダンパとしての低温室ダンパ65aと第1貯蔵室ダンパとしての冷蔵室ダンパ65bとを備えている。低温室ダンパ65aと冷蔵室ダンパ65bは、低温室60と冷蔵室12のそれぞれの室内温度に応じて制御されて、それぞれ独立してダンパの開閉動作を行い、低温室60および冷蔵室12への冷気量を調節する。
The cold air passage 64a is provided with a twin damper 65 that adjusts the amount of cold air flowing into the refrigerator compartment 12 and the cold room 60.
As shown in FIG. 2, the twin damper 65 includes a cold chamber damper 65a as a third storage chamber damper and a refrigerator chamber damper 65b as a first storage chamber damper, which are arranged adjacent to each other in the left and right width direction of the refrigerator 10. There is. The cold room damper 65a and the cold room damper 65b are controlled according to the indoor temperatures of the cold room 60 and the cold room 12, respectively, and open and close the dampers independently. Adjust the amount of cold air.
 図1に示すように、冷凍室13と冷却室20との間は、厚板状の仕切部29で仕切られる。仕切部29は、冷却室20の前面側に配置された第1仕切板30を有する。また、仕切部29は、冷凍室13の背面側に配置された第2仕切板40を有する。第1仕切板30と第2仕切板40との間には、冷気通路29aが形成されている。
 第1仕切板30の上部には、上方に向かうにつれて第2仕切板40から離れるように傾斜した傾斜面35が形成されている。傾斜面35の背面側には、ブロアファン26が取り付けられている。
As shown in FIG. 1, the freezing chamber 13 and the cooling chamber 20 are separated by a thick plate-shaped partition 29. The partition part 29 has a first partition plate 30 arranged on the front side of the cooling chamber 20. Furthermore, the partition section 29 includes a second partition plate 40 arranged on the back side of the freezer compartment 13. A cold air passage 29a is formed between the first partition plate 30 and the second partition plate 40.
An inclined surface 35 is formed on the upper part of the first partition plate 30 and is inclined upwardly away from the second partition plate 40 . A blower fan 26 is attached to the back side of the inclined surface 35.
 ブロアファン26は、送風ファンの一つに分類されるファンである。送風ファンには、軸流ファンも存在する。一般的に、軸流ファンは、フレームの中央部に回転羽根が取り付けられ、回転羽根の回転軸方向一端から空気を吸い込み、回転軸方向他端に吹き出す構成である。従来の冷蔵庫では、冷気の循環に軸流ファンを用いることが多い。 The blower fan 26 is a fan classified as one type of blower fan. Axial fans also exist as blower fans. Generally, an axial fan has a rotary blade attached to the center of a frame, sucks air from one end of the rotary blade in the direction of the rotation axis, and blows air out to the other end of the blade in the direction of the rotation axis. Traditional refrigerators often use axial fans to circulate cold air.
 これに対し、ブロアファン26は、回転羽根27と、回転羽根27を覆うファンケーシング28とを備え、回転羽根27の回転軸方向から空気を吸い込み、回転羽根27の径方向(本実施の形態では、図4中の上方に相当)に吹き出す構成であり、回転羽根27の側方に吹き出す構成である。ファンケーシング28は、回転羽根27の回転中心C1を基準とするインボリュート曲線に沿った形状のケーシングに形成され、略渦巻き状のケーシングに形成される。なお、以下の説明では回転中心C1を回転軸方向C1と呼ぶ場合もある。 On the other hand, the blower fan 26 includes rotating blades 27 and a fan casing 28 that covers the rotating blades 27, sucks air from the direction of the rotation axis of the rotating blades 27, and sucks air from the radial direction of the rotating blades 27 (in this embodiment, , corresponding to the upper part in FIG. The fan casing 28 is formed into a casing shaped along an involute curve based on the rotation center C1 of the rotating blade 27, and is formed into a substantially spiral casing. Note that in the following description, the rotation center C1 may be referred to as the rotation axis direction C1.
 図3に示すように、ファンケーシング28は、時計回り方向で回転中心C1からの離間距離が徐々に大きくなる略渦巻き状に形成される。ファンケーシング28のブロアファン26の回転中心C1と対向する中央部には、冷却室20の冷気をファンケーシング28に取り入れるための冷気取入れ口28aが形成されている。ファンケーシング28の最上部には、冷気通路64aの下端部に連通する第2開口部28bが形成される。ファンケーシング28は、その上部からファンケーシング28の左右両側に向けて拡開し、第2開口部28bを介して冷気通路64aに接続される接続部28cを備えている。 As shown in FIG. 3, the fan casing 28 is formed in a substantially spiral shape whose distance from the rotation center C1 gradually increases in the clockwise direction. A cold air intake port 28a for taking in cold air from the cooling chamber 20 into the fan casing 28 is formed in a central portion of the fan casing 28 facing the rotation center C1 of the blower fan 26. A second opening 28b is formed at the top of the fan casing 28 and communicates with the lower end of the cold air passage 64a. The fan casing 28 is provided with a connecting portion 28c that expands from the top toward both left and right sides of the fan casing 28 and is connected to the cold air passage 64a via a second opening 28b.
 回転羽根27の回転により回転中心C1から放射方向に流れた風がファンケーシング28の内面に沿って流れることによって、ファンケーシング28の側方、すなわち、径方向に設けられた開口(本実施の形態では上方に設けられた第2開口部28bに相当)から風が吹き出す。
 一般的に、ブロアファン26は、同等サイズの軸流ファンよりも高い静圧を得やすい。また、ブロアファン26の回転羽根27の枚数は、一般的に、軸流ファンの回転羽根の枚数よりも多いので、これによっても高い静圧を得やすくなる。
The wind flowing in the radial direction from the rotation center C1 due to the rotation of the rotary blade 27 flows along the inner surface of the fan casing 28, so that the openings provided on the sides of the fan casing 28, that is, in the radial direction (this embodiment The wind blows out from the second opening 28b (corresponding to the second opening 28b provided above).
Generally, the blower fan 26 tends to achieve higher static pressure than an axial fan of comparable size. Further, since the number of rotating blades 27 of the blower fan 26 is generally greater than the number of rotating blades of an axial fan, this also makes it easier to obtain a high static pressure.
 図1、図2に示すように、冷却室20のブロアファン26の下方には、蒸発器22が設置されている。冷蔵室12の後方上部には、圧縮機23が配置されている。圧縮機23と、図示しない凝縮器と、膨張機構と、蒸発器22とは、冷媒配管により接続されており、冷凍サイクルを構成している。
 そして、圧縮機23から冷媒を吐出させることで、冷媒を所定の温度に冷却し、蒸発器22と冷却室20の内部空気と熱交換させることで、冷却室20の内部に冷気を発生されるように構成されている。
As shown in FIGS. 1 and 2, an evaporator 22 is installed below the blower fan 26 in the cooling chamber 20. As shown in FIGS. A compressor 23 is arranged at the rear upper part of the refrigerator compartment 12. The compressor 23, a condenser (not shown), an expansion mechanism, and the evaporator 22 are connected by refrigerant piping, and constitute a refrigeration cycle.
Then, by discharging the refrigerant from the compressor 23, the refrigerant is cooled to a predetermined temperature, and by exchanging heat with the evaporator 22 and the internal air of the cooling chamber 20, cold air is generated inside the cooling chamber 20. It is configured as follows.
 ここで、回転羽根27を回転駆動させることで、冷却室20の冷気はファンケーシング28の冷気取入れ口28aからブロアファン26に吸い込まれ、ブロアファン26の外周部からファンケーシング28の内部に吹き出される。ファンケーシング28の内部に吹き出された冷気は、ファンケーシング28の内周面に沿って案内されて第2開口部28bから冷気通路64aを介してダクト21に送られる。 Here, by rotationally driving the rotary blade 27, the cold air in the cooling chamber 20 is sucked into the blower fan 26 from the cold air intake 28a of the fan casing 28, and is blown out from the outer periphery of the blower fan 26 into the inside of the fan casing 28. Ru. The cold air blown into the fan casing 28 is guided along the inner circumferential surface of the fan casing 28 and sent to the duct 21 from the second opening 28b through the cold air passage 64a.
 [1-1-2.仕切部の構成]
 図7は、実施の形態1における仕切部29の第1仕切板30の正面図である。
 仕切部29の第1仕切板30は、略矩形状のベース部31を有する。ベース部31の左端部には、後方に突出する区画壁部31aが形成される。区画壁部31aは上下方向に延びる。区画壁部31aには、成形断熱材50の区画壁51a(図5、図6参照)が装着される。
[1-1-2. Structure of partition section]
FIG. 7 is a front view of the first partition plate 30 of the partition section 29 in the first embodiment.
The first partition plate 30 of the partition section 29 has a substantially rectangular base section 31 . A partition wall portion 31a that projects rearward is formed at the left end portion of the base portion 31. The partition wall portion 31a extends in the vertical direction. A partition wall 51a (see FIGS. 5 and 6) of a molded heat insulating material 50 is attached to the partition wall portion 31a.
 ベース部31のファンケーシング28に対応する位置には、台座状に前方に突出するファンプレート部32が形成される。ファンプレート部32は、前面視で、角が丸みを帯びた略矩形状に形成される。換言すれば、ファンプレート部32は、前面視で、略角丸長方形形状である。ファンプレート部32は、上下よりも左右が長い略角丸長方形形状である。ファンプレート部32の下部には、平面状に切り欠かれた切除部32aが形成される。ファンプレート部32の前面(座面)には、後方に凹んだ凹部33が形成される。凹部33は、凹部33の底面に対応する傾斜面35と、凹部33の側面に対応する周囲壁34とにより構成される。周囲壁34は、傾斜面35の周囲とファンプレート部32の前面との間を接続する。 A fan plate portion 32 that protrudes forward in a pedestal shape is formed at a position of the base portion 31 corresponding to the fan casing 28 . The fan plate portion 32 is formed into a substantially rectangular shape with rounded corners when viewed from the front. In other words, the fan plate portion 32 has a substantially rounded rectangular shape when viewed from the front. The fan plate portion 32 has a substantially rounded rectangular shape with the left and right sides longer than the top and bottom. A planar cutout portion 32a is formed in the lower part of the fan plate portion 32. A rearwardly recessed recess 33 is formed on the front surface (seat surface) of the fan plate portion 32 . The recess 33 includes an inclined surface 35 corresponding to the bottom surface of the recess 33 and a peripheral wall 34 corresponding to the side surface of the recess 33 . The surrounding wall 34 connects the periphery of the inclined surface 35 and the front surface of the fan plate section 32.
 傾斜面35には、円形状のファン取付部36が形成される。ファン取付部36の周囲には、複数のファン支持部36a、36b、36cが形成される。ファン支持部36a~36cは、ほぼ等間隔に周方向に形成される。本実施の形態では、ファン支持部36a~36cは、ファン取付部36の上方、左下、右下の3か所に形成される。ファン支持部36a~36cは背面から前方に凹んだ凹部として形成される(図6参照)。各ファン支持部36a~36cには、回転羽根27を回転可能に支持する図示しないファンフレームの取付部が、ビス(不図示)により固定される。不図示のファンフレームには回転羽根27が回転可能に支持される。 A circular fan mounting portion 36 is formed on the inclined surface 35. A plurality of fan support parts 36a, 36b, and 36c are formed around the fan attachment part 36. The fan support portions 36a to 36c are formed at approximately equal intervals in the circumferential direction. In this embodiment, the fan support parts 36a to 36c are formed at three locations: above the fan mounting part 36, at the lower left, and at the lower right. The fan support portions 36a to 36c are formed as concave portions recessed forward from the back surface (see FIG. 6). A mounting portion of a fan frame (not shown), which rotatably supports the rotary blade 27, is fixed to each of the fan support portions 36a to 36c with screws (not shown). A rotating blade 27 is rotatably supported by a fan frame (not shown).
 ファン取付部36の外周側において、各ファン支持部36a、36b、36cの間には、ファンケーシング28に沿った略弧状の第1開口部38が形成されている。第1開口部38は、傾斜面35に形成される。第1開口部38は、本実施の形態においては、3つ形成されている。3つの第1開口部38は、上方を基準として、ブロアファン26による気流の上流側から、それぞれ上流側第1開口部38a、中流側第1開口部38b、下流側第1開口部38cとされている。 On the outer peripheral side of the fan mounting portion 36, a substantially arc-shaped first opening 38 along the fan casing 28 is formed between each of the fan support portions 36a, 36b, and 36c. The first opening 38 is formed in the inclined surface 35. In this embodiment, three first openings 38 are formed. The three first openings 38 are defined as an upstream first opening 38a, a midstream first opening 38b, and a downstream first opening 38c, respectively, from the upstream side of the airflow by the blower fan 26 with the top as a reference. ing.
 上流側第1開口部38a、中流側第1開口部38bおよび下流側第1開口部38cの開口面積は、それぞれ気流の上流側から下流側に向けて徐々に開口幅が大きくなるように形成されている。また、上流側第1開口部38a、中流側第1開口部38bおよび下流側第1開口部38cの開口面積は、上流側から順次大きくなるように形成されている。
 これにより、冷凍室13への風量を確保できて効率的に冷却することができる。なお、風量を確保できれば、少なくとも上流側第1開口部38aのみ徐々に大きくなる構成でもよい。
The opening areas of the first upstream opening 38a, the first midstream opening 38b, and the first downstream opening 38c are formed such that the opening width gradually increases from the upstream side to the downstream side of the airflow. ing. Further, the opening areas of the first upstream opening 38a, the first midstream opening 38b, and the first downstream opening 38c are formed to increase sequentially from the upstream side.
Thereby, the air volume to the freezer compartment 13 can be ensured, and cooling can be performed efficiently. Note that, as long as the air volume can be ensured, a configuration may be adopted in which at least only the first opening 38a on the upstream side gradually becomes larger.
 第1仕切板30の傾斜面35にブロアファン26が取り付けられるため、ブロアファン26の回転中心C1が前後方向に対して傾斜して配置されることになる(図4参照)。これにより、ブロアファン26は、第1開口部38から冷気を上方に向けて吹き出すことになり、冷気の対流をしやすくすることができる。 Since the blower fan 26 is attached to the inclined surface 35 of the first partition plate 30, the rotation center C1 of the blower fan 26 is arranged to be inclined with respect to the front-rear direction (see FIG. 4). As a result, the blower fan 26 blows the cool air upward from the first opening 38, which facilitates the convection of the cool air.
 ファンプレート部32の下方には、矩形板状の断熱材39が配置される。断熱材39は冷却室20から第1仕切板30に伝わった冷気を断熱する。これにより、凹部33から流れ落ちる結露水が氷ることを抑制できる。 A rectangular plate-shaped heat insulating material 39 is arranged below the fan plate section 32. The heat insulating material 39 insulates the cold air transmitted from the cooling chamber 20 to the first partition plate 30. Thereby, it is possible to suppress the condensed water flowing down from the recess 33 from freezing.
 図4~図6に示すように、第1仕切板30の前方には、第2仕切板40が配置される。第2仕切板40には、例えば、発泡スチロールなどからなる成形断熱材50が密着して設けられている。第2仕切板40および成形断熱材50は互いに対応する形状を有する。 As shown in FIGS. 4 to 6, a second partition plate 40 is arranged in front of the first partition plate 30. A molded heat insulating material 50 made of, for example, expanded polystyrene is provided in close contact with the second partition plate 40 . The second partition plate 40 and the molded heat insulating material 50 have shapes corresponding to each other.
 図8は、実施の形態1における仕切部29の成形断熱材50を正面側から見た斜視図である。図9は、実施の形態1における仕切部29の成形断熱材50を背面から見た斜視図である。図10は、実施の形態1における仕切部29の成形断熱材50の背面図である。なお、図10においては、説明の便宜のために、格子状の網掛けを付してファンプレート部32を示している。 FIG. 8 is a perspective view of the molded heat insulating material 50 of the partition portion 29 in the first embodiment, viewed from the front side. FIG. 9 is a perspective view of the molded heat insulating material 50 of the partition portion 29 in the first embodiment, viewed from the back. FIG. 10 is a rear view of the molded heat insulating material 50 of the partition portion 29 in the first embodiment. Note that in FIG. 10, the fan plate portion 32 is shown with grid-like hatching for convenience of explanation.
 成形断熱材50は、前後方向に厚みを有する板状のベース部51を有する。ベース部51は前面視で略矩形状に形成される。ベース部51には、ベース部51の前面よりも冷凍室13側に突出するダクト部52が形成される。ダクト部52には、ベース部51の後面に対して冷凍室13側に凹んだダクトスペース52s(図9参照)が形成される。ダクト部52と第1仕切板30により囲まれたダクトスペース52sにより冷気通路29a(図4参照)が形成される。 The molded heat insulating material 50 has a plate-shaped base portion 51 that is thick in the front-rear direction. The base portion 51 is formed into a substantially rectangular shape when viewed from the front. The base portion 51 is formed with a duct portion 52 that protrudes from the front surface of the base portion 51 toward the freezer compartment 13 side. A duct space 52s (see FIG. 9) is formed in the duct portion 52 and is recessed toward the freezer compartment 13 side with respect to the rear surface of the base portion 51. A cold air passage 29a (see FIG. 4) is formed by the duct space 52s surrounded by the duct portion 52 and the first partition plate 30.
 ダクト部52は、第1仕切板30のファンプレート部32に対応する位置に、ミドルダクト部53を有する。
 ミドルダクト部53は、前面視で、角丸長方形状の前面53aと、前面53aの左右に設けられて上下方向に延びる側面53b、53cと、前面53aの下方に設けられて左右方向に延びる下面53dと、側面53b、53cと下面53dとの間を接続する湾曲側面53e、53fと、を有する。湾曲側面53e、53fは下方に進むに連れて左右方向内側に湾曲する。
The duct portion 52 has a middle duct portion 53 at a position corresponding to the fan plate portion 32 of the first partition plate 30.
When viewed from the front, the middle duct portion 53 includes a front surface 53a having a rounded rectangular shape, side surfaces 53b and 53c provided on the left and right sides of the front surface 53a and extending in the vertical direction, and a lower surface provided below the front surface 53a and extending in the left-right direction. 53d, and curved side surfaces 53e and 53f that connect between the side surfaces 53b and 53c and the lower surface 53d. The curved side surfaces 53e and 53f curve inward in the left-right direction as they move downward.
 ミドルダクト部53には、ダクトスペース52sの一部を成すミドルダクトスペース(風路)53s(図9参照)が形成される。ミドルダクトスペース53sは、図10に示すように、ファンプレート部32の外周形状に対応する内周形状を有する。すなわち、ミドルダクトスペース53sには、ファンプレート部32が嵌合可能である。ミドルダクトスペース53sは、ブロアファン26の回転軸方向C1に形成される。すなわち、ミドルダクトスペース53sは、ブロアファン26の回転中心C1の延長線上に設けられる。 A middle duct space (air path) 53s (see FIG. 9) forming a part of the duct space 52s is formed in the middle duct portion 53. The middle duct space 53s has an inner peripheral shape corresponding to the outer peripheral shape of the fan plate portion 32, as shown in FIG. That is, the fan plate portion 32 can be fitted into the middle duct space 53s. The middle duct space 53s is formed in the rotation axis direction C1 of the blower fan 26. That is, the middle duct space 53s is provided on an extension of the rotation center C1 of the blower fan 26.
 ミドルダクト部53の前面53aには、厚み方向に貫通する前面開口53a1、53a2、53a3が形成される。
 具体的には、前面53aの下部には、下面53dに沿って左右方向に延びるセンター前面開口53a1が形成される。センター前面開口53a1は、左右両端では、湾曲側面53e、53fに沿って上方に湾曲する。
 また、前面53aの左右両端には、側面53b、53cに沿って延びるサイド前面開口53a2、53a3が形成される。サイド前面開口53a2、53a3の下方には、センター前面開口53a1の左右両端が位置する。
Front openings 53a1, 53a2, and 53a3 penetrating in the thickness direction are formed in the front surface 53a of the middle duct portion 53.
Specifically, a center front opening 53a1 extending in the left-right direction along the lower surface 53d is formed in the lower part of the front surface 53a. The center front opening 53a1 curves upward along the curved side surfaces 53e and 53f at both left and right ends.
Furthermore, side front openings 53a2 and 53a3 extending along side surfaces 53b and 53c are formed at both left and right ends of the front surface 53a. Both left and right ends of the center front opening 53a1 are located below the side front openings 53a2 and 53a3.
 ミドルダクト部53の側面53b、53cには、厚み方向に貫通する側面開口53b1、53c1が形成される。
 具体的には、側面53b、53cには、側面53b、53cに沿って上下方向に延びる側面開口53b1、53c1が形成される。側面開口53b1、53c1は、下端部が、湾曲側面53e、53fまで延びており、湾曲側面53e、53fに沿って湾曲する。よって、側面開口53b1、53c1は、左右方向(側面方向)と下方向とに開口する。
Side openings 53b1 and 53c1 penetrating in the thickness direction are formed in side surfaces 53b and 53c of the middle duct portion 53.
Specifically, side openings 53b1 and 53c1 that extend in the vertical direction along the side surfaces 53b and 53c are formed in the side surfaces 53b and 53c. The lower ends of the side openings 53b1 and 53c1 extend to the curved side surfaces 53e and 53f, and are curved along the curved side surfaces 53e and 53f. Therefore, the side openings 53b1 and 53c1 open in the left-right direction (side surface direction) and in the downward direction.
 前面開口53a1~53a3および側面開口53b1、53c1を通じて冷気通路29aから冷気が冷凍室13に送られる。すなわち、前面開口53a1~53a3を通じて冷気は前方に送られる。また、側面開口53b1、53c1を通じて冷気通路29aから冷気が左右方向および下方向に送られる。 Cold air is sent from the cold air passage 29a to the freezer compartment 13 through the front openings 53a1 to 53a3 and the side openings 53b1 and 53c1. That is, cold air is sent forward through the front openings 53a1 to 53a3. Further, cold air is sent from the cold air passage 29a to the left and right and downward through the side openings 53b1 and 53c1.
 ミドルダクト部53の上方には、左右方向に延びるトップダクト部54が形成される。トップダクト部54は、ベース部51の前面からの突出量がミドルダクト部53よりも小さく形成される。トップダクト部54は、ミドルダクト部53よりも左右幅が大きく形成される。トップダクト部54には、ダクトスペース52sの一部を成すトップダクトスペース54sが形成される。トップダクトスペース54sは、ミドルダクトスペース53sの左右両側の上端から左右上にそれぞれ延びている。 A top duct part 54 extending in the left-right direction is formed above the middle duct part 53. The top duct part 54 is formed so that the amount of protrusion from the front surface of the base part 51 is smaller than that of the middle duct part 53. The top duct portion 54 is formed to have a larger horizontal width than the middle duct portion 53. A top duct space 54s forming a part of the duct space 52s is formed in the top duct portion 54. The top duct space 54s extends left and right upward from the upper end on both the left and right sides of the middle duct space 53s.
 トップダクト部54の前面には、左右両端部に厚み方向に貫通するトップ開口54a、54bが形成される。トップ開口54a、54bを通じてトップダクトスペース54sから冷気が前方に送られる。 On the front surface of the top duct portion 54, top openings 54a and 54b are formed at both left and right end portions to penetrate in the thickness direction. Cool air is sent forward from the top duct space 54s through the top openings 54a and 54b.
 ミドルダクト部53の下方には、ミドルダクト部53の左右中央から下方に延びるロアダクト部(第2ダクト部)55が形成される。ロアダクト部55は、ベース部51の前面からの突出量がミドルダクト部53よりも小さく形成される。
 ロアダクト部55は、前面55aと、前面55aの左右に設けられて上下方向に延びる側面55b、55cと、側面55b、55cの下端から下方に延びる湾曲側面55e、55fと、を有する。湾曲側面55e、55fは、下方に進むに連れて左右方向外側に湾曲する。
A lower duct portion (second duct portion) 55 is formed below the middle duct portion 53 and extends downward from the left and right center of the middle duct portion 53 . The lower duct portion 55 is formed so that the amount of protrusion from the front surface of the base portion 51 is smaller than that of the middle duct portion 53.
The lower duct portion 55 has a front surface 55a, side surfaces 55b and 55c provided on the left and right sides of the front surface 55a and extending in the vertical direction, and curved side surfaces 55e and 55f extending downward from the lower ends of the side surfaces 55b and 55c. The curved side surfaces 55e and 55f curve outward in the left-right direction as they move downward.
 ロアダクト部55には、ダクトスペース52sの一部を成す連結ダクトスペース(連結風路)55sが形成される。連結ダクトスペース55sは、上下方向に延びる。連結ダクトスペース55sは、下端部では、湾曲側面55e、55fに対応して、下方に進むに連れて左右方向外側に湾曲する接続部55s1を有する。連結ダクトスペース55sは、下面53d(図8参照)に応じて形成されており、トップダクトスペース54sよりも大きな開口幅を有する。連結ダクトスペース55sには、ミドルダクトスペース53sから冷気が流入し易くなっている。 A connecting duct space (connecting air path) 55s that forms a part of the duct space 52s is formed in the lower duct portion 55. The connecting duct space 55s extends in the vertical direction. The connecting duct space 55s has, at its lower end, a connecting portion 55s1 that curves outward in the left-right direction as it moves downward, corresponding to the curved side surfaces 55e and 55f. The connecting duct space 55s is formed according to the lower surface 53d (see FIG. 8), and has a larger opening width than the top duct space 54s. Cold air easily flows into the connecting duct space 55s from the middle duct space 53s.
 ロアダクト部55の下方には、左右に延びるボトムダクト部(第三ダクト部)56が形成される。ボトムダクト部56は、ミドルダクト部53よりも左右幅が長く、トップダクト部54よりも左右幅が小さい。ボトムダクト部56は、ベース部51の前面からの突出量がロアダクト部55と同様に形成される。ボトムダクト部56の上面56b、56cは、ロアダクト部55の側面55b、55cに湾曲側面55e、55fを介して滑らかに接続される。 A bottom duct portion (third duct portion) 56 is formed below the lower duct portion 55 and extends from side to side. The bottom duct portion 56 has a longer horizontal width than the middle duct portion 53, and a smaller horizontal width than the top duct portion 54. The bottom duct portion 56 is formed to have the same protrusion amount from the front surface of the base portion 51 as the lower duct portion 55 . Upper surfaces 56b and 56c of the bottom duct portion 56 are smoothly connected to side surfaces 55b and 55c of the lower duct portion 55 via curved side surfaces 55e and 55f.
 ボトムダクト部56には、ダクトスペース52sの一部を成すボトムダクトスペース56sが形成される。ボトムダクトスペース56sは、連結ダクトスペース55sに左右中央部で連通する。ボトムダクトスペース56sは、連結ダクトスペース55sから左右方向に延びる。ボトムダクトスペース56sは、連結ダクトスペース55sに接続部55s1により滑らかに湾曲して接続される。 A bottom duct space 56s forming a part of the duct space 52s is formed in the bottom duct portion 56. The bottom duct space 56s communicates with the connecting duct space 55s at the left and right center portions. The bottom duct space 56s extends in the left-right direction from the connection duct space 55s. The bottom duct space 56s is smoothly curved and connected to the connecting duct space 55s by a connecting portion 55s1.
 ボトムダクト部56には、左右方向に延びるボトム開口56aが形成される。ボトム開口56aは、ボトムダクト部56の前面の全体に形成されている。ボトム開口56aは、連結ダクトスペース55sよりも左右幅が大きい。ボトム開口56aは、センター前面開口53a1よりも左右に長く形成される。 A bottom opening 56a extending in the left-right direction is formed in the bottom duct portion 56. The bottom opening 56a is formed on the entire front surface of the bottom duct portion 56. The bottom opening 56a has a larger horizontal width than the connecting duct space 55s. The bottom opening 56a is longer than the center front opening 53a1 in the left and right directions.
 図5、図6に示すように、成形断熱材50の前方には、第2仕切板40が配置される。第2仕切板40は、成形断熱材50に対応するカバー状に形成される。第2仕切板40は成形断熱材50に対応する形状を有する。
 第2仕切板40のダクト部42は、側面開口43b1、43b2、43c1、43c2が上下に二分割されている点以外は、成形断熱材50のダクト部52と同様の形状に形成される。
As shown in FIGS. 5 and 6, the second partition plate 40 is arranged in front of the molded heat insulating material 50. As shown in FIG. The second partition plate 40 is formed in a cover shape corresponding to the molded heat insulating material 50. The second partition plate 40 has a shape corresponding to the shaped heat insulating material 50.
The duct portion 42 of the second partition plate 40 is formed in the same shape as the duct portion 52 of the molded heat insulating material 50, except that the side openings 43b1, 43b2, 43c1, and 43c2 are divided into two vertically.
 具体的な対応関係を詳述すると、第2仕切板40は、成形断熱材50のベース部51、ダクト部52、ダクトスペース52s、ミドルダクト部53、前面53a、側面53b、53c、下面53d、湾曲側面53e、53f、ミドルダクトスペース53s、前面開口53a1、53a2、53a3、トップダクト部54、トップダクトスペース54s、トップ開口54a、54b、ロアダクト部55、前面55a、側面55b、55c、湾曲側面55e、55f、連結ダクトスペース55s、ボトムダクト部56、ボトムダクトスペース56s、ボトム開口56a、上面56b、56cに対応して、ベース部41、ダクト部42、ダクトスペース42s、ミドルダクト部(第1ダクト部)43、前面43a、側面43b、43c、下面43d、湾曲側面43e、43f、ミドルダクトスペース43s、前面開口43a1、43a2、43a3、トップダクト部44、トップダクトスペース44s、トップ開口44a、44b、ロアダクト部(第2ダクト部)45、前面45a、側面45b、45c、湾曲側面45e、45f、連結ダクトスペース45s、ボトムダクト部(第3ダクト部)46、ボトムダクトスペース46s、ボトム開口(下部前面開口)46a、上面46b、46cを有する。
 また、第2仕切板40は、成形断熱材50の側面開口53b1、53c1に対応して、上下に二分割された側面開口43b1、43b2、43c1、43c2を有する。
To explain the specific correspondence in detail, the second partition plate 40 includes the base portion 51 of the molded heat insulating material 50, the duct portion 52, the duct space 52s, the middle duct portion 53, the front surface 53a, the side surfaces 53b, 53c, the lower surface 53d, Curved side surfaces 53e, 53f, middle duct space 53s, front openings 53a1, 53a2, 53a3, top duct section 54, top duct space 54s, top openings 54a, 54b, lower duct section 55, front surface 55a, side surfaces 55b, 55c, curved side surface 55e , 55f, the connecting duct space 55s, the bottom duct part 56, the bottom duct space 56s, the bottom opening 56a, the top surfaces 56b and 56c, the base part 41, the duct part 42, the duct space 42s, the middle duct part (first duct part) 43, front surface 43a, side surfaces 43b, 43c, lower surface 43d, curved side surfaces 43e, 43f, middle duct space 43s, front openings 43a1, 43a2, 43a3, top duct section 44, top duct space 44s, top openings 44a, 44b, Lower duct part (second duct part) 45, front face 45a, side faces 45b, 45c, curved side faces 45e, 45f, connecting duct space 45s, bottom duct part (third duct part) 46, bottom duct space 46s, bottom opening (lower front It has an opening) 46a and upper surfaces 46b and 46c.
Further, the second partition plate 40 has side openings 43b1, 43b2, 43c1, and 43c2 divided into two vertically, corresponding to the side openings 53b1, 53c1 of the molded heat insulating material 50.
 仕切部29では、第2仕切板40のベース部41に対して、成形断熱材50のベース部51が密着するように取り付けられる。換言すれば、第2仕切板40のダクトスペース42sに成形断熱材50のダクト部52が嵌合される。これにより、成形断熱材50のダクトスペース52sが、成形断熱材50の開口53a1~53a3、53b1、53c1、54a、54b、56aおよび第2仕切板40の開口43a1~43a3、43b1、43b2、43c1、43c2、44a、44b、46aを通じて冷凍室13に連通する。 In the partition portion 29, the base portion 51 of the molded heat insulating material 50 is attached to the base portion 41 of the second partition plate 40 so as to be in close contact with the base portion 41 of the second partition plate 40. In other words, the duct portion 52 of the molded heat insulating material 50 is fitted into the duct space 42s of the second partition plate 40. Thereby, the duct space 52s of the molded heat insulating material 50 is divided into the openings 53a1 to 53a3, 53b1, 53c1, 54a, 54b, 56a of the molded heat insulating material 50 and the openings 43a1 to 43a3, 43b1, 43b2, 43c1 of the second partition plate 40, It communicates with the freezer compartment 13 through 43c2, 44a, 44b, and 46a.
 また、成形断熱材50のベース部51に対して、第1仕切板30のベース部31が密着するように取り付けられる。これにより、ダクト部52の内面と第1仕切板30の前面とにより囲まれたダクトスペース52sにより冷気通路29aが形成される。 Furthermore, the base portion 31 of the first partition plate 30 is attached to the base portion 51 of the molded heat insulating material 50 so as to be in close contact therewith. Thereby, the cold air passage 29a is formed by the duct space 52s surrounded by the inner surface of the duct portion 52 and the front surface of the first partition plate 30.
 このとき、ミドルダクトスペース53sには、第1仕切板30のファンプレート部32が、ミドルダクトスペース53s内を、いわば、底上げするように進入する。ファンプレート部32によりブロアファン26を冷凍室13に近付けて配置できるため、前面方向への送風を少ない空気抵抗で冷凍室13内に供給することができる。 At this time, the fan plate portion 32 of the first partition plate 30 enters the middle duct space 53s so as to raise the bottom of the middle duct space 53s. Since the blower fan 26 can be placed close to the freezing compartment 13 by the fan plate portion 32, air can be blown in the front direction into the freezing compartment 13 with less air resistance.
 ここで、ファンプレート部32は側面開口53b1、53c1、43b1~43c2よりも後方に位置する。よって、ファンプレート部32は側面開口53b1、53c1、43b1~43c2の開口面積を減少させない。また、ファンプレート部32の前面は台座状であり幅広に形成される。このため、前面の幅が少ない場合、例えば、前面が細長いリブ形状である場合に比べて、凹部33から送風される冷気がファンプレート部32を径方向に越えようとする際に蛇行し難くなっている。よって、冷気の圧力損失が抑制され易くなっている。 Here, the fan plate portion 32 is located behind the side openings 53b1, 53c1, and 43b1 to 43c2. Therefore, the fan plate portion 32 does not reduce the opening area of the side openings 53b1, 53c1, 43b1 to 43c2. Further, the front surface of the fan plate portion 32 is shaped like a pedestal and is formed wide. Therefore, when the width of the front surface is small, for example, compared to when the front surface has an elongated rib shape, the cold air blown from the recess 33 is less likely to meander when trying to cross the fan plate section 32 in the radial direction. ing. Therefore, the pressure loss of cold air is easily suppressed.
 ミドルダクトスペース53sには、シャッタ70が配置される。シャッタ70は前面視で涙滴形状である。シャッタ70は、前方に延びるシャフト71に固定される。シャフト71は、成形断熱材50および第2仕切板40を貫通して回動可能に支持される。シャフト71の前端には、操作ノブ72が固定される。操作ノブ72を回転させることによりシャッタ70が回動する。 A shutter 70 is arranged in the middle duct space 53s. The shutter 70 has a teardrop shape when viewed from the front. The shutter 70 is fixed to a shaft 71 that extends forward. The shaft 71 passes through the molded heat insulating material 50 and the second partition plate 40 and is rotatably supported. An operating knob 72 is fixed to the front end of the shaft 71. By rotating the operation knob 72, the shutter 70 is rotated.
 図11は、実施の形態1における仕切部29の正面図である。
 図11に示すように、前面視では、センター前面開口43a1と中流側第1開口部38bが重複する。すなわち、センター前面開口43a1から中流側第1開口部38bの下端が露出する。また、前面視では、右側のサイド前面開口43a3と、下流側第1開口部38cとが重複する。すなわち、右側のサイド前面開口43a2から、下流側第1開口部38cが露出する。なお、左側のサイド前面開口43a2と、上流側第1開口部38aは略重複しない。
FIG. 11 is a front view of the partition portion 29 in the first embodiment.
As shown in FIG. 11, when viewed from the front, the center front opening 43a1 and the first midstream opening 38b overlap. That is, the lower end of the midstream side first opening 38b is exposed from the center front opening 43a1. Further, in a front view, the right side front opening 43a3 and the downstream first opening 38c overlap. That is, the first downstream opening 38c is exposed from the right side front opening 43a2. Note that the left side front opening 43a2 and the first upstream opening 38a do not substantially overlap.
 ここで、操作ノブ72を回転させることにより、シャッタ70がシャフト71を中心に回動し、前面開口43a1、43a2や側面開口43b1、43b2に前面視や側面視で重複する。これにより、前面開口43a1、43a2や側面開口43b1、43b2の開口面積を変更させることで、ミドルダクトスペース53sからの冷気の流出量を変更することが可能となる。 Here, by rotating the operation knob 72, the shutter 70 rotates around the shaft 71, and overlaps the front openings 43a1 and 43a2 and the side openings 43b1 and 43b2 in a front view and a side view. Thereby, by changing the opening areas of the front openings 43a1, 43a2 and the side openings 43b1, 43b2, it is possible to change the amount of cold air flowing out from the middle duct space 53s.
 [1-1-3.除霜のための構成]
 冷蔵庫10の内部には、結露して付着した水滴が凍結し、着霜する場合がある。冷蔵庫10は、内部に付着した霜を融解させて除霜水とし、除霜水を排水する構成を有する。以下では、冷蔵庫10が有する除霜のための構成、および、特に着霜しやすいブロアファン26およびダクト部52の内側からの排水構造について説明する。
 図1に示すように、冷却室20において、ブロアファン26および蒸発器22の下方には、除霜用のヒータ25が設けられている。ヒータ25は、例えば電熱式の加熱装置であり、冷却室20の内部の空気を加熱することにより、蒸発器22およびブロアファン26に付着した霜を融解させる。また、ヒータ25の下方には、除霜水受け皿25aが冷却室20の底面を覆うように設けられる。除霜水受け皿25aは、蒸発器22から滴下される除霜水、および、第1仕切板30の背面側を伝って流れる除霜水を受ける。
[1-1-3. Configuration for defrosting]
Water droplets that have condensed and adhered to the inside of the refrigerator 10 may freeze and form frost. The refrigerator 10 has a configuration in which frost adhering to the inside is melted into defrosting water, and the defrosting water is drained. Below, the defrosting structure of the refrigerator 10 and the drainage structure from inside the blower fan 26 and the duct portion 52, which are particularly susceptible to frost formation, will be described.
As shown in FIG. 1, in the cooling chamber 20, a defrosting heater 25 is provided below the blower fan 26 and the evaporator 22. The heater 25 is, for example, an electric heating device, and melts frost attached to the evaporator 22 and the blower fan 26 by heating the air inside the cooling chamber 20 . Further, a defrosting water receiving tray 25a is provided below the heater 25 so as to cover the bottom surface of the cooling chamber 20. The defrosting water tray 25a receives the defrosting water dripping from the evaporator 22 and the defrosting water flowing along the back side of the first partition plate 30.
 [1-1-3-1.ブロアファンからの除霜水の排水構造]
 図4に示すように、ブロアファン26が傾斜面35に取り付けられた状態において、ファンケーシング28の下面部28dは、前方側に向けて下方に傾斜している。下面部28dは、ファンケーシング28において、回転羽根27から径方向に吹き出された空気を案内する側面の一部であり、回転羽根27を下方から覆う部分である。下面部28dが前下がりに傾斜することにより、ブロアファン26の内部で生じた除霜水は、重力の作用によって下面部28dに沿ってファンケーシング28の下端28eに向けて前方に流れやすくなる。なお、仕切部29から見て、冷凍室13側(貯蔵室側)は、前方側に相当する。また、ブロアファン26から見て、冷凍室13側は、前方側に相当する。
[1-1-3-1. Defrost water drainage structure from blower fan]
As shown in FIG. 4, when the blower fan 26 is attached to the inclined surface 35, the lower surface portion 28d of the fan casing 28 is inclined downwardly toward the front side. The lower surface portion 28d is a part of the side surface of the fan casing 28 that guides air blown out in the radial direction from the rotary blade 27, and is a portion that covers the rotary blade 27 from below. Since the lower surface portion 28d is tilted forward and downward, the defrosting water generated inside the blower fan 26 tends to flow forward along the lower surface portion 28d toward the lower end 28e of the fan casing 28 due to the action of gravity. Note that, when viewed from the partition portion 29, the freezer compartment 13 side (storage compartment side) corresponds to the front side. Furthermore, when viewed from the blower fan 26, the freezer compartment 13 side corresponds to the front side.
 ファンケーシング28の下端28eは、傾斜面35の下端付近に位置しており、ベース部31よりも前方に位置する。図4および図6に示すように、第1仕切板30は、ファンケーシング28の下端28eよりも下方において、下端28eと上下に重なるように形成された排水溝34bを有する。換言すれば、第1仕切板30には、ファンケーシング28の下面部28dと上下方向に対向する位置に、除霜水の排水のための排水溝34bが形成される。排水溝34bは、前後方向に延びる溝であり、周囲壁34および第2周囲壁34aの底面が下方に凹むことにより形成されている。第2周囲壁34aは、第1仕切板30において、ベース部31の背面よりも前方に位置する傾斜面35の下端と、ベース部31と、を接続する部分である(図6参照)。排水溝34bは、ベース部31の後面、すなわち第1仕切板30の背面側の端部まで背面側に伸びて、背面側に向けて開放する溝であり、排水溝34bの底面34cは背面側に向けて下方に傾斜して形成される。排水溝34bの前方側の端部には、底面34cから上方に立ち上がる段差部34dが形成されている。換言すれば、排水溝34bの冷凍室13側の端部には、底面34cから上方に立ち上がる段差部34dが形成されている。排水溝34bを流れる除霜水は、第1仕切板30の背面を伝って流れ落ちることによって排水される。 The lower end 28e of the fan casing 28 is located near the lower end of the inclined surface 35 and is located further forward than the base portion 31. As shown in FIGS. 4 and 6, the first partition plate 30 has a drainage groove 34b formed below the lower end 28e of the fan casing 28 so as to vertically overlap the lower end 28e. In other words, the drain groove 34b for draining defrosting water is formed in the first partition plate 30 at a position vertically facing the lower surface portion 28d of the fan casing 28. The drain groove 34b is a groove extending in the front-rear direction, and is formed by recessing the bottom surfaces of the peripheral wall 34 and the second peripheral wall 34a downward. The second surrounding wall 34a is a portion of the first partition plate 30 that connects the base portion 31 with the lower end of the inclined surface 35 located forward of the back surface of the base portion 31 (see FIG. 6). The drain groove 34b is a groove that extends toward the rear surface of the base portion 31, that is, to the end of the rear side of the first partition plate 30, and opens toward the rear side. It is formed by sloping downward towards. A step portion 34d rising upward from the bottom surface 34c is formed at the front end of the drain groove 34b. In other words, a stepped portion 34d rising upward from the bottom surface 34c is formed at the end of the drain groove 34b on the freezer compartment 13 side. The defrosting water flowing through the drain groove 34b is drained by flowing down the back surface of the first partition plate 30.
 [1-1-3-2.ダクト部からの除霜水の排水構造]
 図8から図11に示すように、ボトムダクト部56の底面56d、56eは、ボトムダクト部56の左右方向の中心に向かって下方に傾斜している。また、ボトムダクト部56の底面56d、56eにおける左右方向中央部分に相当する中央部56fは、下方に向けて凹んだ形状となっている。さらに、中央部56fの後部には、ダクト部52の内側に生じる除霜水を排水するための排水孔56gが開口している。排水孔56gは、成形断熱材50のベース部51に形成された、上下に延びる円形断面の孔である。排水孔56gは、ボトムダクト部56の底面56d、56eの中央部56fよりも下方において成形断熱材50を貫通し、冷却室20における除霜水受け皿25aの上方において開口する(図4参照)。すなわち、排水孔56gは、ボトムダクトスペース56sと冷却室20とを連通する。また、第2仕切板40の下端には、成形断熱材50の排水孔56gに対応した孔である排水孔46gが形成されている。
[1-1-3-2. Drainage structure of defrosting water from the duct]
As shown in FIGS. 8 to 11, bottom surfaces 56d and 56e of the bottom duct portion 56 are inclined downward toward the center of the bottom duct portion 56 in the left-right direction. Further, a center portion 56f corresponding to the center portion in the left-right direction of the bottom surfaces 56d and 56e of the bottom duct portion 56 is recessed downward. Further, a drainage hole 56g for draining defrosting water generated inside the duct portion 52 is opened at the rear of the central portion 56f. The drainage hole 56g is a hole formed in the base portion 51 of the molded heat insulating material 50 and has a circular cross section that extends vertically. The drain hole 56g passes through the molded heat insulating material 50 below the center portion 56f of the bottom surfaces 56d and 56e of the bottom duct portion 56, and opens above the defrost water receiving tray 25a in the cooling chamber 20 (see FIG. 4). That is, the drain hole 56g communicates the bottom duct space 56s and the cooling chamber 20. Furthermore, a drainage hole 46g corresponding to the drainage hole 56g of the molded heat insulating material 50 is formed at the lower end of the second partition plate 40.
 [1-2.動作]
 次に、実施の形態1における冷蔵庫10の除霜運転時の動作について、図4および図11を用いて説明する。
 冷蔵庫10は、蒸発器22やブロアファン26等に付着した霜を除霜するために、所定の時間ごとに除霜運転を実行する。除霜運転時において、冷蔵庫10において、ヒータ25が稼働することにより、冷却室20内の空気が温められて暖気となる。図4に白抜きの矢印ですように、暖気は、冷却室20を除霜しながら上昇する。これにより、図4に矢印で示すように、蒸発器22に付着した霜が溶解して除霜水となる。蒸発器22において生じた除霜水は、重力の作用によって滴下され、除霜水受け皿25aに導かれる。
[1-2. motion]
Next, the operation of the refrigerator 10 in the first embodiment during the defrosting operation will be described using FIG. 4 and FIG. 11.
The refrigerator 10 performs a defrosting operation at predetermined intervals in order to defrost the frost attached to the evaporator 22, the blower fan 26, and the like. During the defrosting operation, in the refrigerator 10, the heater 25 is operated, thereby warming the air in the cooling chamber 20 and turning it into warm air. As shown by the white arrow in FIG. 4, the warm air rises while defrosting the cooling chamber 20. As a result, as shown by the arrow in FIG. 4, the frost adhering to the evaporator 22 melts and becomes defrosting water. The defrosting water generated in the evaporator 22 is dripped by the action of gravity and guided to the defrosting water receiving tray 25a.
 また、暖気は、冷気取入れ口28aを介してファンケーシング28の内部に流入する。これにより、回転羽根27およびファンケーシング28の内面に付着した霜が融解され、除霜水となる。回転羽根27およびファンケーシング28の内面において生じた除霜水は、重力の作用により、ファンケーシング28の下面部28dに流れ込む。下面部28dに流れ込んだ除霜水は、重力の作用により、前下がりに傾斜した下面部28dを伝ってファンケーシング28の下端28eに向けて流れる。下端28eに到達した除霜水は、重力の作用により、下方に位置する排水溝34bに向けて滴下される。このとき、排水溝34b内に滴下された除霜水は、段差部34dに阻まれて前方側に向けての移動が制限される。 Furthermore, warm air flows into the inside of the fan casing 28 via the cold air intake 28a. As a result, the frost adhering to the inner surfaces of the rotating blades 27 and the fan casing 28 is melted and becomes defrosting water. Defrosting water generated on the inner surfaces of the rotating blades 27 and the fan casing 28 flows into the lower surface portion 28d of the fan casing 28 due to the action of gravity. The defrosting water that has flowed into the lower surface portion 28d flows toward the lower end 28e of the fan casing 28 along the lower surface portion 28d that is inclined forwardly downward due to the action of gravity. The defrosting water that has reached the lower end 28e is dripped toward the drain groove 34b located below due to the action of gravity. At this time, the defrosting water dripped into the drain groove 34b is blocked by the stepped portion 34d and its movement toward the front side is restricted.
 排水溝34bに滴下された除霜水は、後ろ下がりに傾斜した底面34cを伝って後方に向けて流れる。除霜水は、排水溝34bの後端まで到達した後、開放した排水溝34bの後端から流出し、第1仕切板30のベース部31の背面を伝うように流れる。その後、除霜水は、重力の作用によって除霜水受け皿25aに導かれる。 The defrosting water dripped into the drain 34b flows toward the rear along the bottom surface 34c that slopes downward. After the defrosting water reaches the rear end of the drain groove 34b, it flows out from the open rear end of the drain groove 34b and flows along the back surface of the base portion 31 of the first partition plate 30. Thereafter, the defrosting water is guided to the defrosting water receiving tray 25a by the action of gravity.
 また、暖気の一部は、回転羽根27の駆動により、3つの第1開口部38を介してファンケーシング28の内部からダクトスペース52sに流入する。これにより、図11に示すように、ダクト部52の内面に付着した霜は融解されて除霜水となる。ダクト部52の内部において生じた除霜水は、重力の作用によって下方に流れ、ボトムダクト部56の底面56d、56eに流れ込む。底面56d、56eに流れ込んだ除霜水は、ボトムダクト部56の左右方向の中心に向かって下方に傾斜した底面56d、56eを伝い、中央部56fに流れる。このとき、除霜水は、ボトムダクト部56の内部を底面56d、56eに沿って流れる空気によって中央部56fに押し込まれる。中央部56fは下方に向けて凹んでいるため、除霜水は中央部56fに集まり、中央部56fの後部に設けられた排水孔56gに流入する。 In addition, a portion of the warm air flows from the inside of the fan casing 28 into the duct space 52s through the three first openings 38 due to the drive of the rotating blade 27. As a result, as shown in FIG. 11, the frost adhering to the inner surface of the duct portion 52 is melted and becomes defrosting water. The defrosting water generated inside the duct section 52 flows downward under the action of gravity and flows into the bottom surfaces 56d and 56e of the bottom duct section 56. The defrosting water that has flowed into the bottom surfaces 56d and 56e flows along the bottom surfaces 56d and 56e that are inclined downward toward the center in the left-right direction of the bottom duct portion 56, and flows to the center portion 56f. At this time, the defrosting water is pushed into the center portion 56f by the air flowing inside the bottom duct portion 56 along the bottom surfaces 56d and 56e. Since the central portion 56f is recessed downward, the defrosting water collects at the central portion 56f and flows into the drainage hole 56g provided at the rear of the central portion 56f.
 排水孔56gに流入した除霜水は、排水孔56gを下方に流れ、排水孔46gから冷却室20に流入する。このとき、排水孔56gの内部の除霜水は、連結ダクトスペース55sおよびボトムダクトスペース56s内を下方に向かって流れる空気によって、下方に押し込まれる。排水孔56g、46gを介して冷却室20に流入した除霜水は、重力の作用によって下方に流れ、除霜水受け皿25aに導かれる。 The defrosting water that has flowed into the drain hole 56g flows downward through the drain hole 56g and flows into the cooling chamber 20 from the drain hole 46g. At this time, the defrosting water inside the drain hole 56g is pushed downward by the air flowing downward within the connecting duct space 55s and the bottom duct space 56s. The defrosting water that has flowed into the cooling chamber 20 through the drain holes 56g and 46g flows downward under the action of gravity and is guided to the defrosting water receiving tray 25a.
 [1-3.効果等]
 以上述べたように、本実施の形態においては、冷蔵庫10は、貯蔵室の一例としての冷凍室13を備え、冷凍室13の背面側に、蒸発器22が設置される冷却室20を形成し、冷凍室13と冷却室20との間を仕切る仕切部29と、冷却室20の空気を冷凍室13に送風するブロアファン26と、を備え、ブロアファン26は、回転羽根27と、回転羽根27の回転によって流れる空気を案内するファンケーシング28と、を有し、仕切部29の背面側には、第1仕切板30が設置され、ファンケーシング28は、第1仕切板30の背面側に固定され、第1仕切板30には、ファンケーシング28の下面部28dと対向する位置に、第1仕切板30の背面側の端部まで延びる排水溝34bが形成される。
 これにより、ブロアファン26に生じた除霜水は、排水溝34bを通って第1仕切板30の背面側に排水され易くなる。そのため、ブロアファン26に生じる除霜水を効率的に排水できる。
[1-3. Effects, etc.]
As described above, in the present embodiment, the refrigerator 10 includes the freezing compartment 13 as an example of a storage compartment, and the cooling compartment 20 in which the evaporator 22 is installed is formed on the back side of the freezing compartment 13. , a partition part 29 that partitions between the freezing compartment 13 and the cooling compartment 20, and a blower fan 26 that blows air from the cooling compartment 20 to the freezing compartment 13. The blower fan 26 includes a rotating blade 27 and a rotating blade. A first partition plate 30 is installed on the back side of the partition part 29, and the fan casing 28 is installed on the back side of the first partition plate 30. A drain groove 34b is formed in the first partition plate 30 at a position facing the lower surface portion 28d of the fan casing 28, and extends to the rear end of the first partition plate 30.
Thereby, the defrosting water generated in the blower fan 26 is easily drained to the back side of the first partition plate 30 through the drainage groove 34b. Therefore, the defrosting water generated in the blower fan 26 can be efficiently drained.
 本実施の形態のように、排水溝34bの冷凍室13側の端部には、上方に立ち上がる段差部34dが形成される構成としてもよい。
 これにより、排水溝34bに流入した除霜水は、段差部34dによって冷凍室13側に移動しにくくなり、第1仕切板30の背面側に排水され易くなる。そのため、ブロアファン26に生じる除霜水を効率的に排水できる。
As in the present embodiment, a step portion 34d rising upward may be formed at the end of the drain groove 34b on the freezer compartment 13 side.
Thereby, the defrosting water that has flowed into the drain groove 34b becomes difficult to move toward the freezer compartment 13 due to the stepped portion 34d, and is easily drained toward the back side of the first partition plate 30. Therefore, the defrosting water generated in the blower fan 26 can be efficiently drained.
 本実施の形態のように、ファンケーシング28の下面部28dは、冷凍室13側に向けて下方に傾斜し、排水溝34bは、背面側に向けて下方に傾斜する構成としてもよい。
 これにより、ブロアファン26に生じた除霜水は、重力の作用によってファンケーシング28の下面部28d、および、第1仕切板30の排水溝34bを流れ易くなる。そのため、ブロアファンに26生じる除霜水を効率的に排水できる。
As in this embodiment, the lower surface portion 28d of the fan casing 28 may be sloped downward toward the freezer compartment 13, and the drain groove 34b may be sloped downward toward the back side.
Thereby, the defrosting water generated in the blower fan 26 easily flows through the lower surface portion 28d of the fan casing 28 and the drain groove 34b of the first partition plate 30 due to the action of gravity. Therefore, the defrosting water generated in the blower fan can be efficiently drained.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1および2を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。
 そこで、以下、他の実施の形態を例示する。
(Other embodiments)
As mentioned above, Embodiments 1 and 2 have been described as examples of the technology disclosed in this application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, etc. are made.
Therefore, other embodiments will be illustrated below.
 実施の形態1においては、貯蔵室を冷凍室13とする構成を説明した。本発明はこれに限定されるものではなく、例えば、貯蔵室を冷蔵室12としてもよく、冷蔵室12、冷凍室13の一方のみを有する冷蔵庫でもよい。また、貯蔵室は、低温室60であってもよい。 In the first embodiment, a configuration in which the storage compartment is the freezing compartment 13 has been described. The present invention is not limited to this. For example, the storage compartment may be the refrigerator compartment 12, or the refrigerator may have only one of the refrigerator compartment 12 and the freezer compartment 13. Further, the storage room may be a cold room 60.
 また、実施の形態1においては、ブロアファン26の回転中心C1を傾斜して配置するようにしたが、これに限定されず、例えば、回転中心C1を略水平となるように配置するようにしてもよい。 Further, in the first embodiment, the rotation center C1 of the blower fan 26 is arranged at an angle, but the invention is not limited to this. For example, the rotation center C1 may be arranged so as to be substantially horizontal. Good too.
 (付記)
 以上の実施の形態の記載により、下記の技術が開示される。
(Additional note)
The following techniques are disclosed by the description of the above embodiments.
 (技術1)貯蔵室を備え、前記貯蔵室の背面側に、蒸発器が設置される冷却室を形成し、前記貯蔵室と前記冷却室との間を仕切る仕切部と、前記冷却室の空気を前記貯蔵室に送風するブロアファンと、を備え、前記ブロアファンは、回転羽根と、前記回転羽根の回転によって流れる空気を案内するファンケーシングと、を有し、前記仕切部の背面側には、第1仕切板が設置され、前記ファンケーシングは、前記第1仕切板の背面側に固定され、前記第1仕切板には、前記ファンケーシングの下面部と対向する位置に、前記第1仕切板の背面側の端部まで延びる排水溝が形成されることを特徴とする冷蔵庫。
 この構成により、ブロアファンに生じた除霜水は、排水溝を通って第1仕切板の背面側に排水され易くなる。そのため、ブロアファンに生じる除霜水を効率的に排水できる。
(Technology 1) A storage room is provided, and a cooling room in which an evaporator is installed is formed on the back side of the storage room, and a partition part that partitions between the storage room and the cooling room, and an air in the cooling room is provided. a blower fan that blows air into the storage chamber, the blower fan has a rotating blade, and a fan casing that guides air flowing by rotation of the rotating blade, and on the back side of the partition part. , a first partition plate is installed, the fan casing is fixed to the back side of the first partition plate, and the first partition plate has the first partition plate at a position facing the lower surface of the fan casing. A refrigerator characterized in that a drain groove is formed that extends to the end of the back side of the plate.
With this configuration, defrost water generated in the blower fan is easily drained to the back side of the first partition plate through the drainage groove. Therefore, defrost water generated in the blower fan can be efficiently drained.
 (技術2)前記排水溝の前記貯蔵室側の端部には、上方に立ち上がる段差部が形成されることを特徴とする技術1に記載の冷蔵庫。
 この構成により、排水溝に流入した除霜水は、段差部によって貯蔵室側に移動しにくくなり、第1仕切板の背面側に排水され易くなる。そのため、ブロアファンに生じる除霜水を効率的に排水できる。
(Technique 2) The refrigerator according to Technique 1, wherein a stepped portion rising upward is formed at the end of the drain on the storage room side.
With this configuration, the defrosting water that has flowed into the drain becomes difficult to move toward the storage chamber due to the stepped portion, and is easily drained toward the back side of the first partition plate. Therefore, defrost water generated in the blower fan can be efficiently drained.
 (技術3)前記ファンケーシングの前記下面部は、前記貯蔵室側に向けて下方に傾斜し、前記排水溝は、背面側に向けて下方に傾斜する、ことを特徴とする技術1または2に記載の冷蔵庫。
 この構成により、ブロアファンに生じた除霜水は、重力の作用によってファンケーシングの下面部、および、第1仕切板の排水溝を流れ易くなる。そのため、ブロアファンに生じる除霜水を効率的に排水できる。
(Technique 3) According to technique 1 or 2, the lower surface portion of the fan casing is sloped downward toward the storage chamber, and the drain groove is sloped downward toward the rear side. Refrigerator as described.
With this configuration, defrost water generated in the blower fan easily flows through the lower surface of the fan casing and the drainage groove of the first partition plate due to the action of gravity. Therefore, defrost water generated in the blower fan can be efficiently drained.
 本開示は、冷蔵庫に利用可能である。具体的には、ブロアファンにより冷気を送風する冷蔵庫に好適に利用可能である。 The present disclosure can be used for refrigerators. Specifically, it can be suitably used in a refrigerator that blows cold air with a blower fan.
 10 冷蔵庫
 13 冷凍室(貯蔵室)
 20 冷却室
 22 蒸発器
 26 ブロアファン
 27 回転羽根
 28 ファンケーシング
 28d 下面部
 29 仕切部
 30 第1仕切板
 34b 排水溝
 34d 段差部
 
10 Refrigerator 13 Freezer room (storage room)
20 Cooling room 22 Evaporator 26 Blower fan 27 Rotating blade 28 Fan casing 28d Lower surface portion 29 Partition portion 30 First partition plate 34b Drain groove 34d Step portion

Claims (3)

  1.  貯蔵室を備え、
     前記貯蔵室の背面側に、蒸発器が設置される冷却室を形成し、
     前記貯蔵室と前記冷却室との間を仕切る仕切部と、前記冷却室の空気を前記貯蔵室に送風するブロアファンと、を備え、
     前記ブロアファンは、回転羽根と、前記回転羽根の回転によって流れる空気を案内するファンケーシングと、を有し、
     前記仕切部の背面側には、第1仕切板が設置され、
     前記ファンケーシングは、前記第1仕切板の背面側に固定され、
     前記第1仕切板には、前記ファンケーシングの下面部と対向する位置に、前記第1仕切板の背面側の端部まで延びる排水溝が形成される
     ことを特徴とする冷蔵庫。
    Equipped with a storage room,
    forming a cooling chamber in which an evaporator is installed on the back side of the storage chamber;
    A partition section that partitions between the storage chamber and the cooling chamber, and a blower fan that blows air from the cooling chamber to the storage chamber,
    The blower fan includes a rotating blade and a fan casing that guides air flowing by rotation of the rotating blade,
    A first partition plate is installed on the back side of the partition part,
    The fan casing is fixed to the back side of the first partition plate,
    The refrigerator is characterized in that the first partition plate is formed with a drain groove extending to a rear end of the first partition plate at a position facing the lower surface of the fan casing.
  2.  前記排水溝の前記貯蔵室側の端部には、上方に立ち上がる段差部が形成される
     ことを特徴とする請求項1に記載の冷蔵庫。
    The refrigerator according to claim 1, wherein an upwardly rising step is formed at an end of the drain on the storage room side.
  3.  前記ファンケーシングの前記下面部は、前記貯蔵室側に向けて下方に傾斜し、
     前記排水溝は、背面側に向けて下方に傾斜する、
     ことを特徴とする請求項1または2に記載の冷蔵庫。
     
    The lower surface portion of the fan casing is inclined downward toward the storage chamber, and
    The drain groove slopes downward toward the back side.
    The refrigerator according to claim 1 or 2, characterized in that:
PCT/JP2023/023304 2022-08-02 2023-06-23 Refrigerator WO2024029225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-123059 2022-08-02
JP2022123059A JP2024020694A (en) 2022-08-02 2022-08-02 refrigerator

Publications (1)

Publication Number Publication Date
WO2024029225A1 true WO2024029225A1 (en) 2024-02-08

Family

ID=89848836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023304 WO2024029225A1 (en) 2022-08-02 2023-06-23 Refrigerator

Country Status (2)

Country Link
JP (1) JP2024020694A (en)
WO (1) WO2024029225A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100850959B1 (en) * 2007-04-04 2008-08-12 엘지전자 주식회사 Ventilating device and the refrigerator have the same
JP2009063244A (en) * 2007-09-07 2009-03-26 Hitachi Appliances Inc Refrigerator
JP2019078495A (en) * 2017-10-26 2019-05-23 日立アプライアンス株式会社 refrigerator
WO2019111364A1 (en) * 2017-12-06 2019-06-13 三菱電機株式会社 Refrigerator
JP2020200779A (en) * 2019-06-07 2020-12-17 三星電子株式会社Samsung Electronics Co.,Ltd. Blower and refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100850959B1 (en) * 2007-04-04 2008-08-12 엘지전자 주식회사 Ventilating device and the refrigerator have the same
JP2009063244A (en) * 2007-09-07 2009-03-26 Hitachi Appliances Inc Refrigerator
JP2019078495A (en) * 2017-10-26 2019-05-23 日立アプライアンス株式会社 refrigerator
WO2019111364A1 (en) * 2017-12-06 2019-06-13 三菱電機株式会社 Refrigerator
JP2020200779A (en) * 2019-06-07 2020-12-17 三星電子株式会社Samsung Electronics Co.,Ltd. Blower and refrigerator

Also Published As

Publication number Publication date
JP2024020694A (en) 2024-02-15

Similar Documents

Publication Publication Date Title
US7866182B2 (en) Refrigerator
US10634418B2 (en) Refrigerator
JP6788893B2 (en) refrigerator
JP5313857B2 (en) refrigerator
CN109196290B (en) Refrigerator with a door
WO2024029225A1 (en) Refrigerator
WO2021131150A1 (en) Refrigerator
JP2017215117A (en) refrigerator
WO2024029238A1 (en) Refrigerator
WO2024029208A1 (en) Refrigerator
JP2017215119A (en) refrigerator
JP6876901B2 (en) Damper device and refrigerator using it
JP7433520B2 (en) refrigerator
JP3159360U (en) Shutter, cooler and air conditioner outdoor unit
JP2005016903A (en) Refrigerator
WO2023068047A1 (en) Refrigerator
WO2020238615A1 (en) Shielding device and refrigerator comprising same
WO2023067948A1 (en) Refrigerator
WO2020238616A1 (en) Shielding device and refrigerator having same
US20230243573A1 (en) Refrigerator
JP6865349B2 (en) refrigerator
US20230272962A1 (en) Refrigerator
JP2019132503A (en) refrigerator
JP2001280794A (en) Refrigerator
JP2017215120A (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849785

Country of ref document: EP

Kind code of ref document: A1