WO2024029027A1 - Triple gear pump - Google Patents

Triple gear pump Download PDF

Info

Publication number
WO2024029027A1
WO2024029027A1 PCT/JP2022/029919 JP2022029919W WO2024029027A1 WO 2024029027 A1 WO2024029027 A1 WO 2024029027A1 JP 2022029919 W JP2022029919 W JP 2022029919W WO 2024029027 A1 WO2024029027 A1 WO 2024029027A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear pump
gear
fluid
housing
triple
Prior art date
Application number
PCT/JP2022/029919
Other languages
French (fr)
Japanese (ja)
Inventor
精鋭 増田
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to PCT/JP2022/029919 priority Critical patent/WO2024029027A1/en
Publication of WO2024029027A1 publication Critical patent/WO2024029027A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations

Definitions

  • the present disclosure relates to a floating bearing type triple gear pump that pressurizes and discharges fluid by rotating gears, and particularly relates to a triple gear pump that can be operated stably not only in series and parallel modes but also in no-load mode.
  • a gear pump usually includes a pair of gears that mesh with each other and a housing that houses the gears, and pressurizes and discharges fluid by rotating the pair of gears in a flow path defined by the housing. It is used in fuel supply devices for reciprocating engines and jet engines.
  • Floating bearings are often used in gear pumps.
  • the bearing In a floating bearing type gear pump, the bearing not only supports the gear shaft, but is also slightly movable in the axial direction and comes into contact with and supports the side surface of the gear.
  • the fluid passing through the gear pump is used not only to lubricate the bearing, but also to pressurize the bearing to press it against the side of the gear.
  • a triple gear pump has been proposed in which two gear pumps are driven simultaneously by one drive shaft. According to the triple gear pump, a relatively small flow rate can be achieved by operating two gear pumps in series, and a relatively large flow rate can be achieved by operating two gear pumps in parallel.
  • Patent Documents 1 and 2 disclose related technologies.
  • Floating bearings require pressurization, and in order to ensure smooth operation of the gear pump and prevent fluid leakage from the side of the gear, it is necessary to manage the pressurization within an appropriate range.
  • the pressure of the fluid around the floating bearing has non-negligible fluctuations depending on the operating mode, so the technical difficulty increases as the number of supported operating modes increases. Resulting in.
  • the present disclosure relates to a triple gear pump that can stably operate not only in series and parallel modes but also in no-load mode.
  • a triple gear pump includes a driving gear, and first and second driven gears meshing with the driving gear and forming first and second gear pumps, respectively, and is used as fuel. discharge the fluid.
  • Such a triple gear pump includes a housing surrounding the first gear pump and the second gear pump, a housing coupled to the drive gear so as to rotate together, a drive shaft pulled out from the housing, and a housing that rotates the drive shaft.
  • a drive shaft bearing that is axially floating and abuts the drive gear under pressure from the fluid; and a drive shaft bearing that is interposed between the drive shaft and the housing so that the fluid can flow outside the housing and a seal interposed between the drive shaft bearing and the mechanical seal to prevent the pressure of the fluid from propagating to the mechanical seal.
  • a triple gear pump is provided that can operate stably not only in series and parallel modes but also in no-load mode.
  • FIG. 1 is a schematic block diagram of a system for supplying fuel to an aircraft engine according to one embodiment.
  • FIG. 2 is a cross-sectional plan view of a triple gear pump according to one embodiment.
  • FIG. 3 is a schematic cross-sectional view of the triple gear pump.
  • FIG. 4 is an enlarged cross-sectional plan view mainly showing the area around the floating bearing in the triple gear pump.
  • FIG. 5 is a schematic block diagram illustrating series mode, parallel mode and no-load mode.
  • a triple gear pump 1 according to the present embodiment is used, for example, by being incorporated into a system that supplies fuel to an aircraft engine 10. pressurizes and discharges a fluid such as
  • Fluid is supplied from the tank through the flow path F1 , pressurized by the triple gear pump 1, and discharged.
  • Another low pressure pump 3 may be interposed on the flow path F1 for system startup or other purposes. Although the low pressure pump 3 is not necessarily limited to this, a centrifugal pump can be used.
  • the discharge amount of the triple gear pump 1 is normally proportional to or at least dependent on the rotation speed of the turbine. For example, when cruising at high altitude, the engine speed may be relatively high but the fuel consumption may be low, so the discharge amount does not necessarily match the required amount of the engine 10. Of the fluid discharged there, a portion exceeding the required amount is divided by the fuel control unit 5 and returned to the flow path F1 through the reflux path F3 , and only the required amount is supplied to the engine 10 through the flow path F5. be done.
  • the discharge fluid is also used for cooling it. That is, the flow path F5 is connected to the oil cooler 9, which cools the lubricating oil L, and after the fluid itself is preheated, it is introduced into the combustion chamber 7 of the engine 10 via the supply path F7 , where it is combusted. served.
  • the triple gear pump 1 itself generates heat, and part of the heat returns to the triple gear pump 1 through the return path F3 , resulting in a considerable temperature rise in the fluid in the flow path F5 . Therefore, the cooling capacity of the oil cooler 9 is often not balanced with the temperature rise of the lubricating oil L. Therefore, an air-cooled oil cooler 11 that uses air A extracted from a bypass passage of the engine 10 is used as an auxiliary aid. As the reflux through the reflux path F3 increases and the temperature of the discharge fluid increases, and the load on the air-cooled oil cooler 11 increases, the thermal stress on each part of the system increases, and thermal energy is wasted. Energy efficiency will decrease.
  • Conventional triple gear pumps enable series and parallel modes to increase or decrease the discharge volume and minimize the return volume.
  • the triple gear pump 1 by enabling not only series and parallel modes but also no-load mode, it is possible to further increase/decrease the discharge amount and improve energy efficiency. That is, for example, when the aircraft is idling on the ground or cruising at high altitude, the series and parallel modes are used, and when a large flow rate is required, such as during takeoff, the triple gear pump 1 is left unloaded. This enables switching such that fuel is supplied exclusively by the centrifugal pump 3.
  • the problem is that in the no-load mode, high pressure is applied to the entire triple gear pump 1, making it difficult to control pressurization. The solution will become clear from the following explanation.
  • the triple gear pump 1 generally includes a drive gear 23 driven by one drive shaft 21, and first and second gears meshing with the drive gear 23, respectively.
  • the combination of the drive gear 23 and the first driven gear 27 constitutes the first gear pump G1
  • the combination of the drive gear 23 and the second driven gear 31 constitutes the first gear pump G1.
  • It constitutes a gear pump G2 . Since the housing 41 surrounds these and is in close contact with the tips of the teeth of each gear, the spaces 43, 45, and 47 surrounded by the gear teeth and the housing 41 serve to transport the fluid while pressurizing it in accordance with the rotation of the gears. do.
  • the housing 41 also includes an inlet 49 and an outlet 51 that communicate with the first gear pump G1 , and an inlet 53 and an outlet 55 that communicate with the second gear pump G2 .
  • the first and second gear pumps G 1 and G 2 operate in parallel, and the fluid sucked in from the suction port 49 at a pressure P 1 is transferred to the discharge port. 51 at a pressure P 3 , and the fluid sucked in from the suction port 53 at a pressure P 5 is discharged to the discharge port 55 at a pressure P 7 .
  • the discharge pressures P 3 and P 7 are higher than the suction pressures P 1 and P 5 , respectively, but as explained below, this depends on the operating mode.
  • the drive shaft 21 is pulled out of the housing 41 for coupling with a power source, but the shafts 25, 29 of the first and second driven gears 27, 31 are It is enclosed within 41.
  • Each shaft 21, 25, 29 is rotatably supported by a pair of floating bearings 33, 35, 37, respectively.
  • Each floating bearing 33, 35, 37 also sandwiches a gear 23, 27, 31, respectively.
  • the floating bearings 33, 35, and 37 can float slightly in the axial direction, and come into contact with both side surfaces of the gears 23, 27, and 31, respectively, under appropriate pressurization.
  • a gap is maintained between both ends of the first and second driven shafts 25, 29 and floating bearings 35, 37, respectively, and the housing 41, and fluid can flow in by communicating with the suction ports 49, 53, respectively.
  • the fluid in the gap is pressurized at each end by suction pressures P 1 and P 5 .
  • This pressurization is used to press the floating bearings 35 and 37 against the first and second driven gears 27 and 31, respectively.
  • the first and second driven shafts 25 and 29 are hollow in order to spread the fluid across both ends and apply uniform pressure.
  • a communication passage 67 is interposed between the floating bearing 37 and the floating bearing 33 to provide fluid communication therebetween.
  • both side surfaces of the housing 41 may each be provided with an introduction pipe.
  • the floating bearings 35, 37 have a reduced diameter on the end side, and may be provided with a step on the shoulder thereof, and the inner end of the introduction tube may be open toward the shoulder. .
  • the stepped surface can be used as a surface that receives the pressure P9 .
  • a suitable seal, such as a gasket, should be interposed between the end face and the shoulder to suppress the propagation of mutual pressure.
  • Such an inlet pipe can also communicate, for example, with the outlet 51 or 55, in which case the pressure P 9 applied to the step surface corresponds in principle to the outlet pressure P 3 or P 7 .
  • a pressurizing means such as a spring 39 may be interposed between the shoulder and the housing 41, for example. These are used to adjust the pressurization of the floating bearings 35 and 37.
  • Seals 61 and 63 are interposed between the housing 41 and the drive shaft 21 to prevent internal fluid from leaking.
  • One or both of the seals 61 and 63 may be a mechanical seal that presses the seal surfaces against each other using, for example, a spring force.
  • a seal 65 that prevents fluid pressure from propagating is interposed between the above-mentioned communication path 67 and the seal 61 so that excessive pressure does not apply to the mechanical seal. For example, a labyrinth seal can be applied to such a seal 65.
  • the housing 41 may further include an inlet passage 69 to collect fluid leaking from the labyrinth seal and to apply an appropriate pressure P 11 to the mechanical seal 61 .
  • a flow path F 1 can be connected to the introduction path 69 , so that the pressure of the fluid before being pressurized by the triple gear pump 1 can be applied to the mechanical seal 61 .
  • other appropriate channels may be connected.
  • a force f1 originating from the suction pressure P5 acts on the upper ends of the upper floating bearings 33, 37, and therefore the upper floating bearings 33, 37 and is pressed against the second driven gear 31 by a downward force f d .
  • the force f1 derived from the suction pressure P5 acts on the lower floating bearing 33, and therefore the lower floating bearing 33 , 37 are pressed against the drive gear 23 and the second driven gear 31 by an upward force fu .
  • the common pressure is applied, the forces f d and f u are balanced, and the driving gear 23 and the second driven gear 31 are stably supported.
  • a force f2 different from these is used to adjust the upward force fu , thereby preventing the floating bearing 37 from disengaging from the second driven gear 31. can do.
  • the triple gear pump 1 is operated by being connected to a fuel supply system as shown in FIG. That is, the flow path F 1 is branched into two and connected to an inflow path F 11 and an inflow path F 17 .
  • a check valve V 1 may be interposed between the flow path F 1 and the inflow path F 11 .
  • the inflow paths F 11 and F 17 are connected to suction ports 49 and 53 of the first and second gear pumps G 1 and G 2 , respectively.
  • the respective discharge ports 51 and 55 are connected to the outflow paths F 13 and F 19 , respectively.
  • the inflow path F11 also branches into two, one of which communicates with the outflow path F15 via the valve V3 , and after merging with the outflow paths F13 and F19 , the flow path F21 . It is connected to the.
  • Flow path F 21 is connected to flow path F 5 of the fuel supply system.
  • triple gear pump 1 when valve V3 is closed, triple gear pump 1 operates in series mode. At this time, a comparison using the flow path F1 is made in both the inflow path F11 communicating with the suction port 49 of the first gear pump G1 and the inflow path F17 communicating with the suction port 53 of the second gear pump G2. A low pressure is applied. At this time, the pressures P 1 and P 5 are both low pressures, and the vertical forces f d and f u of each of the floating bearings 33, 35, and 37 are balanced.
  • the pressurized fluid discharged from the discharge port 51 passes through the flow paths F 13 and F 15 , and the fluid discharged from the discharge port 55 passes through the flow path F 19 and merges in the flow path F 21 to form the engine 10 . supplied to
  • triple gear pump 1 when valve V3 is opened, triple gear pump 1 operates in parallel mode.
  • the outlet pressure P 3 of the first gear pump G 1 passes through the valve V 3 into the inlet channel F 11 , as a result of which the suction pressure P 1 increases to match the outlet pressure P 3 .
  • the presence of the non-return valve V1 prevents the fluid from flowing back towards the flow path F1 .
  • the common pressure P 1 is applied to both floating bearings 35, so the vertical forces f d and f u are balanced. Also, changes in pressure P1 do not affect floating bearings 33, 37.
  • the first gear pump G1 idles (does no work), and only the discharge from the second gear pump G2 contributes to the supply of fluid.
  • valve V3 is not an on-off valve, but a control valve such as a variable throttle valve that can continuously change the flow rate can be used.
  • the valve V3 may have an intermediate state other than fully closed (the state shown in FIG. 5(a)) and fully open (the state shown in FIG. 5(b)), but in any of the intermediate states, However, the balance of forces with respect to the floating bearings 33, 35, 37 is not lost.
  • a no-load mode is possible according to this embodiment.
  • the valve V3 remains open (or may be closed) and increases the discharge amount of the centrifugal pump 3.
  • high pressure from the centrifugal pump 3 is applied to both gear pumps G 1 and G 2 .
  • the pressure is applied to the floating bearing 33 of the drive shaft 21 by the communication passage 67, so that the floating The vertical forces f d and fu of the bearing 33 are also balanced.
  • the labyrinth seal 65 prevents this pressure from reaching the mechanical seal 61. Fluid will not leak out from the mechanical seal 61 or the smooth operation of the mechanical seal 61 will not be impaired.
  • both gear pumps G 1 , G 2 do virtually no work, and only the centrifugal pump 3 contributes exclusively to the fluid supply.
  • the centrifugal pump can efficiently discharge a large volume of fluid, especially when the engine 10 exerts high output.
  • the triple gear pump 1 does virtually no work, and the reflux of fluid through the reflux path F3 can be minimized, so that the flow of fluid supplied to the flow path F5 is minimized. Temperature rise can be suppressed.
  • the cooling capacity of the oil cooler 9 can be fully utilized, and the load on the air-cooled oil cooler 11 can be suppressed.
  • the parallel mode is used when the engine 10 requires high output even at low rotation speed, the parallel mode is used when cruising at high altitude, and the centrifugal pump is exclusively used in the no-load mode when particularly high output is required, such as during takeoff.
  • an optimal mode can be selected and used. This embodiment can achieve high energy efficiency in both cases.
  • a triple gear pump is provided that can operate stably not only in series and parallel modes but also in no-load mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

This triple gear pump comprises one driving gear, and a first and a second driven gear that each engage with the driving gear and that respectively constitute a first and a second gear pump; moreover, said triple gear pump discharges a fluid used as fuel. This triple gear pump comprises: a housing that surrounds the first gear pump and the second gear pump; a driving shaft that is linked with the driving gear so as to rotate integrally with the same, and that is drawn out of the housing; a driving shaft bearing that rotatably supports the driving shaft, that is capable of floating in the axial direction, and that receives pressure from the fluid and abuts the driving gear; a mechanical seal that is interposed between the driving shaft and the housing and that prevents the fluid from leaking outside of the housing; and a seal that is interposed between the driving shaft bearing and the mechanical seal and that prevents the pressure of the fluid from being transmitted to the mechanical seal.

Description

3連ギアポンプtriple gear pump
 本開示は、ギアの回転により流体を加圧して吐出する浮動軸受型の3連ギアポンプに関し、特に、直列および並列モードのみならず、無負荷モードにおいても安定して運用できる3連ギアポンプに関する。 The present disclosure relates to a floating bearing type triple gear pump that pressurizes and discharges fluid by rotating gears, and particularly relates to a triple gear pump that can be operated stably not only in series and parallel modes but also in no-load mode.
 ギアポンプは、通常、互いに噛合した一対のギアと、これを収容するハウジングとを備え、ハウジングが画する流路において一対のギアが回転することにより流体を加圧して吐出する。レシプロエンジンやジェットエンジンへの燃料供給装置等に利用されている。 A gear pump usually includes a pair of gears that mesh with each other and a housing that houses the gears, and pressurizes and discharges fluid by rotating the pair of gears in a flow path defined by the housing. It is used in fuel supply devices for reciprocating engines and jet engines.
 ギアポンプにおいて、しばしば浮動軸受が利用される。浮動軸受型のギアポンプにおいては、軸受はギアシャフトを支持するのみならず、軸方向に僅かに可動であってギア側面に当接してこれを支持する。ギアポンプを通過する流体は、軸受の潤滑のみならず、軸受をギア側面へ押圧するための与圧にも利用される。 Floating bearings are often used in gear pumps. In a floating bearing type gear pump, the bearing not only supports the gear shaft, but is also slightly movable in the axial direction and comes into contact with and supports the side surface of the gear. The fluid passing through the gear pump is used not only to lubricate the bearing, but also to pressurize the bearing to press it against the side of the gear.
 一の駆動シャフトにより二つのギアポンプを同時に駆動する3連ギアポンプが提案されている。3連ギアポンプによれば、二つのギアポンプを直列に運用することにより比較的に小流量を、並列に運用することにより比較的に大流量を実現することができる。 A triple gear pump has been proposed in which two gear pumps are driven simultaneously by one drive shaft. According to the triple gear pump, a relatively small flow rate can be achieved by operating two gear pumps in series, and a relatively large flow rate can be achieved by operating two gear pumps in parallel.
 特許文献1,2は、関連する技術を開示する。 Patent Documents 1 and 2 disclose related technologies.
特開2008-50979号公報Japanese Patent Application Publication No. 2008-50979 国際公開公報WO2017/009994A1International Publication WO2017/009994A1
 浮動軸受には与圧が必要であり、ギアポンプの円滑な稼動を保証し、またギア側面からの流体の漏れを防ぐためには、与圧を適切な範囲に管理することを要する。3連ギアポンプにおいて、浮動軸受の周囲における流体の圧力には、運転モードに依存して無視しえない変動が生じるために、対応しうる運転モードを増やそうとするほどに技術的な困難さは増大してしまう。 Floating bearings require pressurization, and in order to ensure smooth operation of the gear pump and prevent fluid leakage from the side of the gear, it is necessary to manage the pressurization within an appropriate range. In triple gear pumps, the pressure of the fluid around the floating bearing has non-negligible fluctuations depending on the operating mode, so the technical difficulty increases as the number of supported operating modes increases. Resulting in.
 本開示は、直列および並列モードのみならず、無負荷モードにおいても安定して運用できる3連ギアポンプに関する。 The present disclosure relates to a triple gear pump that can stably operate not only in series and parallel modes but also in no-load mode.
 一の局面による3連ギアポンプは、一の駆動ギアと、前記駆動ギアにそれぞれ噛合してそれぞれ第1,第2のギアポンプをそれぞれ構成する第1,第2の従動ギアとを備え、燃料として利用される流体を吐出する。かかる3連ギアポンプは、前記第1のギアポンプと前記第2のギアポンプとを囲むハウジングと、一体に回転するよう前記駆動ギアに結合し、前記ハウジングから引き出された駆動シャフトと、前記駆動シャフトを回転可能に支持し、軸方向に浮動可能であって前記流体による圧力を受けて前記駆動ギアに当接する駆動シャフト軸受と、前記駆動シャフトと前記ハウジングとの間に介在して前記流体が前記ハウジング外へ漏出するのを妨げるメカニカルシールと、前記駆動シャフト軸受と前記メカニカルシールとの間に介在し、前記流体の前記圧力が前記メカニカルシールへ伝播するのを妨げるシールと、を備える。 A triple gear pump according to one aspect includes a driving gear, and first and second driven gears meshing with the driving gear and forming first and second gear pumps, respectively, and is used as fuel. discharge the fluid. Such a triple gear pump includes a housing surrounding the first gear pump and the second gear pump, a housing coupled to the drive gear so as to rotate together, a drive shaft pulled out from the housing, and a housing that rotates the drive shaft. a drive shaft bearing that is axially floating and abuts the drive gear under pressure from the fluid; and a drive shaft bearing that is interposed between the drive shaft and the housing so that the fluid can flow outside the housing and a seal interposed between the drive shaft bearing and the mechanical seal to prevent the pressure of the fluid from propagating to the mechanical seal.
 直列および並列モードのみならず、無負荷モードにおいても安定して運用できる3連ギアポンプが提供される。 A triple gear pump is provided that can operate stably not only in series and parallel modes but also in no-load mode.
図1は、一実施形態による航空機エンジンへ燃料を供給するシステムの模式的なブロックダイヤグラムである。FIG. 1 is a schematic block diagram of a system for supplying fuel to an aircraft engine according to one embodiment. 図2は、一実施形態による3連ギアポンプの断面平面図である。FIG. 2 is a cross-sectional plan view of a triple gear pump according to one embodiment. 図3は、3連ギアポンプの模式的な横断面図である。FIG. 3 is a schematic cross-sectional view of the triple gear pump. 図4は、3連ギアポンプにおいて主に浮動軸受の周りを拡大して示す断面平面図である。FIG. 4 is an enlarged cross-sectional plan view mainly showing the area around the floating bearing in the triple gear pump. 図5は、直列モード、並列モードおよび無負荷モードを説明する模式的なブロックダイヤグラムである。FIG. 5 is a schematic block diagram illustrating series mode, parallel mode and no-load mode.
 添付の図面を参照して以下にいくつかの例示的な実施形態を説明する。以下の説明および添付の特許請求の範囲を通じ、「軸方向」および「軸周り」の語は、シャフトごとに規定されて使用されている。 Some exemplary embodiments will be described below with reference to the accompanying drawings. Throughout the following description and appended claims, the terms "axial" and "periaxial" are used in a shaft-specific manner.
 図1を参照するに、本実施形態による3連ギアポンプ1は、例えば航空機エンジン10へ燃料を供給するシステムに組み込まれて利用されるものであって、ケロシン等の比較的に低粘性の油のごとき流体を加圧して吐出する。 Referring to FIG. 1, a triple gear pump 1 according to the present embodiment is used, for example, by being incorporated into a system that supplies fuel to an aircraft engine 10. pressurizes and discharges a fluid such as
 流体は、タンクから流路Fを通して供給され、3連ギアポンプ1により加圧されて吐出される。システムの始動あるいは他の目的のために他の低圧ポンプ3が流路F上に介在することがある。低圧ポンプ3には、必ずしもこれに限られないが、遠心ポンプを利用することができる。 Fluid is supplied from the tank through the flow path F1 , pressurized by the triple gear pump 1, and discharged. Another low pressure pump 3 may be interposed on the flow path F1 for system startup or other purposes. Although the low pressure pump 3 is not necessarily limited to this, a centrifugal pump can be used.
 3連ギアポンプ1の動力には、例えばエンジン10のタービンから抽出されるエネルギが利用されるので、通常、3連ギアポンプ1の吐出量はタービンの回転数に比例または少なくとも依存する。例えば高空を巡航する時には回転数は比較的に高いが燃料消費は少ないことがあるので、吐出量はエンジン10の要求量に必ずしも合致するわけではない。そこで吐出された流体のうち、要求量を超える部分は燃料制御部5により分流されて還流路Fを通じて流路Fに戻され、要求量のみが流路Fを通してエンジン10に向けて供給される。 Since energy extracted from, for example, a turbine of the engine 10 is used to power the triple gear pump 1, the discharge amount of the triple gear pump 1 is normally proportional to or at least dependent on the rotation speed of the turbine. For example, when cruising at high altitude, the engine speed may be relatively high but the fuel consumption may be low, so the discharge amount does not necessarily match the required amount of the engine 10. Of the fluid discharged there, a portion exceeding the required amount is divided by the fuel control unit 5 and returned to the flow path F1 through the reflux path F3 , and only the required amount is supplied to the engine 10 through the flow path F5. be done.
 エンジン10内には潤滑油Lが循環しており加熱されるので、吐出流体はその冷却のためにも利用される。すなわち流路Fはオイルクーラ9に連絡しており、潤滑油Lを冷却し、流体自身は予熱を受けた後に、供給路Fを経由してエンジン10の燃焼室7へ導入されて燃焼に供される。 Since the lubricating oil L circulates within the engine 10 and is heated, the discharge fluid is also used for cooling it. That is, the flow path F5 is connected to the oil cooler 9, which cools the lubricating oil L, and after the fluid itself is preheated, it is introduced into the combustion chamber 7 of the engine 10 via the supply path F7 , where it is combusted. served.
 3連ギアポンプ1自体が発熱するし、その熱の一部は還流路Fを通じて3連ギアポンプ1に戻り、結果的に流路Fにおける流体に無視しえない温度上昇が生じることがある。そのためオイルクーラ9の冷却能は潤滑油Lの昇温としばしば均衡しえない。そこでエンジン10のバイパス流路等から抽気した空気Aを利用した空冷オイルクーラ11が補助的に利用される。還流路Fを通じた還流が増大して吐出流体が昇温し、空冷オイルクーラ11の負担が増大するほど、システムの各部への熱的ストレスは増大し、また熱エネルギは無駄に捨てられてエネルギ効率は低下してしまう。従来の3連ギアポンプは、直列および並列モードを可能にすることで、吐出量の増減を可能にし、還流量を極小化している。 The triple gear pump 1 itself generates heat, and part of the heat returns to the triple gear pump 1 through the return path F3 , resulting in a considerable temperature rise in the fluid in the flow path F5 . Therefore, the cooling capacity of the oil cooler 9 is often not balanced with the temperature rise of the lubricating oil L. Therefore, an air-cooled oil cooler 11 that uses air A extracted from a bypass passage of the engine 10 is used as an auxiliary aid. As the reflux through the reflux path F3 increases and the temperature of the discharge fluid increases, and the load on the air-cooled oil cooler 11 increases, the thermal stress on each part of the system increases, and thermal energy is wasted. Energy efficiency will decrease. Conventional triple gear pumps enable series and parallel modes to increase or decrease the discharge volume and minimize the return volume.
 本実施形態による3連ギアポンプ1によれば、直列および並列モードのみならず、無負荷モードをも可能にすることで、更なる吐出量の増減を可能にし、エネルギ効率の向上を可能にしている。すなわち、例えば航空機が地上においてアイドル運転している時および高空を巡航している時には直列および並列モードを利用し、離陸の時のように大流量が必要なときには3連ギアポンプ1を無負荷として、専ら遠心ポンプ3により燃料を供給するような切り替えを可能にする。問題は、無負荷モードにおいては3連ギアポンプ1の全体に高圧が印加されてしまい、与圧の制御が困難になることである。その解決手段は以下の説明より明らかになる。 According to the triple gear pump 1 according to the present embodiment, by enabling not only series and parallel modes but also no-load mode, it is possible to further increase/decrease the discharge amount and improve energy efficiency. . That is, for example, when the aircraft is idling on the ground or cruising at high altitude, the series and parallel modes are used, and when a large flow rate is required, such as during takeoff, the triple gear pump 1 is left unloaded. This enables switching such that fuel is supplied exclusively by the centrifugal pump 3. The problem is that in the no-load mode, high pressure is applied to the entire triple gear pump 1, making it difficult to control pressurization. The solution will become clear from the following explanation.
 図2,3を組み合わせ、主に図3を参照するに、3連ギアポンプ1は概して、一の駆動シャフト21により駆動される駆動ギア23と、駆動ギア23にそれぞれ噛合する第1,第2の従動ギア27,31とを備え、駆動ギア23と第1の従動ギア27との組み合わせは第1のギアポンプGを構成し、駆動ギア23と第2の従動ギア31との組み合わせは第1のギアポンプGを構成する。ハウジング41はこれらを囲み、また各ギアの歯先に密に接するので、ギア歯とハウジング41とが囲む各空間43,45,47は、ギアの回転に応じて流体を加圧しながら輸送する働きをする。ハウジング41には、また、第1のギアポンプGに連通する吸入口49および吐出口51、および第2のギアポンプGに連通する吸入口53および吐出口55を備える。外部の動力源により駆動ギア23がその軸周りに回転すると、第1,第2のギアポンプG,Gが並行して稼働し、吸入口49から圧力Pをもって吸入された流体を吐出口51へ圧力Pをもって吐出し、吸入口53から圧力Pをもって吸入された流体を吐出口55へ圧力Pをもって吐出する。通常は吐出圧力P,Pはそれぞれ吸入圧力P,Pよりも高いが、以下に説明する通り、これは運転モードに依存する。 Combining FIGS. 2 and 3 and mainly referring to FIG. 3, the triple gear pump 1 generally includes a drive gear 23 driven by one drive shaft 21, and first and second gears meshing with the drive gear 23, respectively. The combination of the drive gear 23 and the first driven gear 27 constitutes the first gear pump G1 , and the combination of the drive gear 23 and the second driven gear 31 constitutes the first gear pump G1. It constitutes a gear pump G2 . Since the housing 41 surrounds these and is in close contact with the tips of the teeth of each gear, the spaces 43, 45, and 47 surrounded by the gear teeth and the housing 41 serve to transport the fluid while pressurizing it in accordance with the rotation of the gears. do. The housing 41 also includes an inlet 49 and an outlet 51 that communicate with the first gear pump G1 , and an inlet 53 and an outlet 55 that communicate with the second gear pump G2 . When the drive gear 23 rotates around its axis by an external power source, the first and second gear pumps G 1 and G 2 operate in parallel, and the fluid sucked in from the suction port 49 at a pressure P 1 is transferred to the discharge port. 51 at a pressure P 3 , and the fluid sucked in from the suction port 53 at a pressure P 5 is discharged to the discharge port 55 at a pressure P 7 . Typically, the discharge pressures P 3 and P 7 are higher than the suction pressures P 1 and P 5 , respectively, but as explained below, this depends on the operating mode.
 主に図2を参照するに、動力源との結合のために駆動シャフト21はハウジング41の外に引き出されているが、第1,第2の従動ギア27,31のシャフト25,29はハウジング41内に封入されている。各シャフト21,25,29を、それぞれ対になった浮動軸受33,35,37が回転可能に支持している。各浮動軸受33,35,37は、また、ギア23,27,31をそれぞれ挟んでいる。浮動軸受33,35,37は軸方向に僅かに浮動可能であり、それぞれ適宜の与圧を受けてギア23,27,31のそれぞれ両側面に当接する。 Mainly referring to FIG. 2, the drive shaft 21 is pulled out of the housing 41 for coupling with a power source, but the shafts 25, 29 of the first and second driven gears 27, 31 are It is enclosed within 41. Each shaft 21, 25, 29 is rotatably supported by a pair of floating bearings 33, 35, 37, respectively. Each floating bearing 33, 35, 37 also sandwiches a gear 23, 27, 31, respectively. The floating bearings 33, 35, and 37 can float slightly in the axial direction, and come into contact with both side surfaces of the gears 23, 27, and 31, respectively, under appropriate pressurization.
 第1,第2の従動シャフト25,29および浮動軸受35,37のそれぞれ両端とハウジング41との間には隙間が保持されており、それぞれ吸入口49,53と連通することにより流体が流入し、隙間内の流体はそれぞれの端部を吸入圧力P,Pにより与圧する。かかる与圧は浮動軸受35,37をそれぞれ第1,第2の従動ギア27,31に押圧するために利用される。両端に流体を行き渡らせて均一な圧力を及ぼすべく、例えば第1,第2の従動シャフト25,29は中空である。またかかる与圧を駆動シャフト21の浮動軸受33にも及ぼすべく、浮動軸受37と浮動軸受33とを流体連通する連通路67がこれらの間に介在する。 A gap is maintained between both ends of the first and second driven shafts 25, 29 and floating bearings 35, 37, respectively, and the housing 41, and fluid can flow in by communicating with the suction ports 49, 53, respectively. , the fluid in the gap is pressurized at each end by suction pressures P 1 and P 5 . This pressurization is used to press the floating bearings 35 and 37 against the first and second driven gears 27 and 31, respectively. For example, the first and second driven shafts 25 and 29 are hollow in order to spread the fluid across both ends and apply uniform pressure. Further, in order to apply this pressurization to the floating bearing 33 of the drive shaft 21, a communication passage 67 is interposed between the floating bearing 37 and the floating bearing 33 to provide fluid communication therebetween.
 吸入圧力P,Pとは異なる圧力Pを外部から導入して浮動軸受35,37に及ぼすべく、ハウジング41の例えば両側面はそれぞれ導入管を備えてもよい。かかる圧力Pを受容するべく、浮動軸受35,37は端の側において小径になり、その肩に段差を備えてもよく、導入管の内端はかかる肩に向けて開口していてもよい。段差面は圧力Pを受容する面として利用できる。端面と肩との間にはガスケットのごとき適宜のシールが介在して互いの圧力の伝播を抑制するべきだろう。またかかる導入管は、例えば吐出口51または吐出口55に連絡させることができ、その場合には段差面に印加される圧力Pは、原則として吐出圧力PまたはPに一致する。さらに与圧を調整するべく、例えばかかる肩とハウジング41との間にスプリング39のごとき与圧手段が介在してもよい。これらは浮動軸受35,37への与圧を調整するために利用される。 In order to introduce a pressure P 9 different from the suction pressures P 1 and P 5 from the outside and apply it to the floating bearings 35 and 37, for example, both side surfaces of the housing 41 may each be provided with an introduction pipe. In order to receive such pressure P9 , the floating bearings 35, 37 have a reduced diameter on the end side, and may be provided with a step on the shoulder thereof, and the inner end of the introduction tube may be open toward the shoulder. . The stepped surface can be used as a surface that receives the pressure P9 . A suitable seal, such as a gasket, should be interposed between the end face and the shoulder to suppress the propagation of mutual pressure. Such an inlet pipe can also communicate, for example, with the outlet 51 or 55, in which case the pressure P 9 applied to the step surface corresponds in principle to the outlet pressure P 3 or P 7 . In order to further adjust the pressurization, a pressurizing means such as a spring 39 may be interposed between the shoulder and the housing 41, for example. These are used to adjust the pressurization of the floating bearings 35 and 37.
 ハウジング41と駆動シャフト21との間にはシール61,63が介在して内部の流体の漏出を防止する。かかるシール61,63の一方または両方には、例えばスプリングによる弾発力を利用してシール面同士を押し付けるメカニカルシールを適用することができる。メカニカルシールに過大な圧力が及ばないよう、上述の連通路67とシール61との間には、流体の圧力の伝播を妨げるシール65が介在する。かかるシール65には、例えばラビリンスシールが適用できる。 Seals 61 and 63 are interposed between the housing 41 and the drive shaft 21 to prevent internal fluid from leaking. One or both of the seals 61 and 63 may be a mechanical seal that presses the seal surfaces against each other using, for example, a spring force. A seal 65 that prevents fluid pressure from propagating is interposed between the above-mentioned communication path 67 and the seal 61 so that excessive pressure does not apply to the mechanical seal. For example, a labyrinth seal can be applied to such a seal 65.
 ラビリンスシールから漏出する流体を回収し、また適宜の圧力P11をメカニカルシール61に印加できるよう、ハウジング41はさらに導入路69を備えてもよい。導入路69には、例えば流路Fを連結することができ、以って3連ギアポンプ1による加圧を受ける前の流体の圧力をメカニカルシール61に印加することができる。もちろん他の適宜の流路を連結してもよい。 The housing 41 may further include an inlet passage 69 to collect fluid leaking from the labyrinth seal and to apply an appropriate pressure P 11 to the mechanical seal 61 . For example, a flow path F 1 can be connected to the introduction path 69 , so that the pressure of the fluid before being pressurized by the triple gear pump 1 can be applied to the mechanical seal 61 . Of course, other appropriate channels may be connected.
 図2に組み合わせて図4を参照するに、上側の浮動軸受33,37の上端には吸入圧力Pに由来する力fが作用し、それゆえ上側の浮動軸受33,37は駆動ギア23および第2の従動ギア31に下向きの力fにより押し付けられる。下側の浮動軸受37には、また連通路67が介在するために下側の浮動軸受33にも、吸入圧力Pに由来する力fが作用し、以って下側の浮動軸受33,37は駆動ギア23および第2の従動ギア31に上向きの力fにより押し付けられる。共通の圧力が作用しているために、力f,fは釣り合い、駆動ギア23および第2の従動ギア31が安定的に支持される。また、これらとは異なる(通常はより大きい)力fを利用して、上向きの力fを調整し、以って浮動軸受37が第2の従動ギア31から離脱しようとするのを防止することができる。 Referring to FIG. 4 in combination with FIG. 2, a force f1 originating from the suction pressure P5 acts on the upper ends of the upper floating bearings 33, 37, and therefore the upper floating bearings 33, 37 and is pressed against the second driven gear 31 by a downward force f d . Since the lower floating bearing 37 has the communication passage 67, the force f1 derived from the suction pressure P5 acts on the lower floating bearing 33, and therefore the lower floating bearing 33 , 37 are pressed against the drive gear 23 and the second driven gear 31 by an upward force fu . Since the common pressure is applied, the forces f d and f u are balanced, and the driving gear 23 and the second driven gear 31 are stably supported. Also, a force f2 different from these (usually larger) is used to adjust the upward force fu , thereby preventing the floating bearing 37 from disengaging from the second driven gear 31. can do.
 上述の説明は専ら第2のギアポンプGに関するが、第1のギアポンプGにおいても同様な力の釣り合いが成立する。 Although the above description relates exclusively to the second gear pump G2 , a similar force balance also holds true for the first gear pump G1 .
 3連ギアポンプ1は図5に示すごとく燃料供給システムと接続されて運用される。すなわち、流路Fは2つに分岐して流入路F11および流入路F17と接続されている。流路Fと流入路F11との間には逆流防止弁Vが介在してもよい。流入路F11,F17はそれぞれ第1,第2のギアポンプG,Gの吸入口49,53に接続される。それぞれの吐出口51,55は、それぞれ流出路F13,F19に接続される。流入路F11は、また、2つに分岐しており、その一方はバルブVを介して流出路F15に連絡しており、流出路F13,F19と合流した後に流路F21に接続されている。流路F21は燃料供給システムの流路Fに接続される。 The triple gear pump 1 is operated by being connected to a fuel supply system as shown in FIG. That is, the flow path F 1 is branched into two and connected to an inflow path F 11 and an inflow path F 17 . A check valve V 1 may be interposed between the flow path F 1 and the inflow path F 11 . The inflow paths F 11 and F 17 are connected to suction ports 49 and 53 of the first and second gear pumps G 1 and G 2 , respectively. The respective discharge ports 51 and 55 are connected to the outflow paths F 13 and F 19 , respectively. The inflow path F11 also branches into two, one of which communicates with the outflow path F15 via the valve V3 , and after merging with the outflow paths F13 and F19 , the flow path F21 . It is connected to the. Flow path F 21 is connected to flow path F 5 of the fuel supply system.
 図2から4までに組み合わせて図5(a)を参照するに、バルブVを閉じたときには、3連ギアポンプ1は直列モードで稼働する。このとき、第1のギアポンプGの吸入口49に連絡する流入路F11と、第2のギアポンプGの吸入口53に連絡する流入路F17との両方に、流路Fによる比較的低い圧力が印加される。このとき圧力P,Pともに低圧であって、浮動軸受33,35,37の何れについても上下の力f,fは釣り合う。吐出口51から加圧されて吐出される流体は流出路F13,F15を通り、吐出口55から吐出される流体は流出路F19を通り、それぞれ流路F21において合流してエンジン10へ供給される。 Referring to FIG. 5(a) in combination with FIGS. 2 to 4, when valve V3 is closed, triple gear pump 1 operates in series mode. At this time, a comparison using the flow path F1 is made in both the inflow path F11 communicating with the suction port 49 of the first gear pump G1 and the inflow path F17 communicating with the suction port 53 of the second gear pump G2. A low pressure is applied. At this time, the pressures P 1 and P 5 are both low pressures, and the vertical forces f d and f u of each of the floating bearings 33, 35, and 37 are balanced. The pressurized fluid discharged from the discharge port 51 passes through the flow paths F 13 and F 15 , and the fluid discharged from the discharge port 55 passes through the flow path F 19 and merges in the flow path F 21 to form the engine 10 . supplied to
 図5(a)に代えて図5(b)を参照するに、バルブVを開いた時には、3連ギアポンプ1は並列モードで稼働する。第1のギアポンプGの出口圧PはバルブVを介して流入路F11に及び、結果として吸入圧力Pは出口圧Pと一致するように高まる。逆流防止弁Vが介在していれば、流体が流路Fに向かって逆流することが防止される。このときも両方の浮動軸受35には共通の圧力Pが印加されるので、上下の力f,fは釣り合う。また圧力Pの変化は浮動軸受33,37には影響を及ぼさない。このとき、第1のギアポンプGは空転して(仕事をせずに)、第2のギアポンプGによる吐出のみが流体の供給に寄与する。 Referring to FIG. 5(b) instead of FIG. 5(a), when valve V3 is opened, triple gear pump 1 operates in parallel mode. The outlet pressure P 3 of the first gear pump G 1 passes through the valve V 3 into the inlet channel F 11 , as a result of which the suction pressure P 1 increases to match the outlet pressure P 3 . The presence of the non-return valve V1 prevents the fluid from flowing back towards the flow path F1 . At this time as well, the common pressure P 1 is applied to both floating bearings 35, so the vertical forces f d and f u are balanced. Also, changes in pressure P1 do not affect floating bearings 33, 37. At this time, the first gear pump G1 idles (does no work), and only the discharge from the second gear pump G2 contributes to the supply of fluid.
 なおバルブVには開閉バルブではなく、流量を連続的に変化できる可変絞り弁のごとき調節バルブを適用することができる。この場合に、バルブVには全閉(図5(a)の状態)と全開(図5(b)の状態)以外に、中間的な状態がありうるが、中間的な何れの状態においても浮動軸受33,35,37に関して力の釣り合いが失われることはない。 Note that the valve V3 is not an on-off valve, but a control valve such as a variable throttle valve that can continuously change the flow rate can be used. In this case, the valve V3 may have an intermediate state other than fully closed (the state shown in FIG. 5(a)) and fully open (the state shown in FIG. 5(b)), but in any of the intermediate states, However, the balance of forces with respect to the floating bearings 33, 35, 37 is not lost.
 図5(a),5(b)に代えて図5(c)を参照するに、本実施形態によれば無負荷モードが可能である。このときバルブVは開いたまま(あるいは閉じてもよい)、遠心ポンプ3の吐出量を増大する。すると遠心ポンプ3による高圧が両ギアポンプG,Gに印加される。上述の説明より理解される通り、浮動軸受35,37について上下の力f,fが釣り合うのはもちろんのこと、連通路67により圧力が駆動シャフト21の浮動軸受33にも及ぶので、浮動軸受33についても上下の力f,fが釣り合う。浮動軸受33に高圧が印加されるにも関わらず、ラビリンスシール65により、かかる圧力はメカニカルシール61には及ばない。メカニカルシール61から流体が外部に漏れ出すことはなく、あるいはメカニカルシール61の円滑な動作が損なわれることがない。 Referring to FIG. 5(c) instead of FIGS. 5(a) and 5(b), a no-load mode is possible according to this embodiment. At this time, the valve V3 remains open (or may be closed) and increases the discharge amount of the centrifugal pump 3. Then, high pressure from the centrifugal pump 3 is applied to both gear pumps G 1 and G 2 . As can be understood from the above explanation, not only the vertical forces f d and f u are balanced on the floating bearings 35 and 37, but also the pressure is applied to the floating bearing 33 of the drive shaft 21 by the communication passage 67, so that the floating The vertical forces f d and fu of the bearing 33 are also balanced. Although high pressure is applied to the floating bearing 33, the labyrinth seal 65 prevents this pressure from reaching the mechanical seal 61. Fluid will not leak out from the mechanical seal 61 or the smooth operation of the mechanical seal 61 will not be impaired.
 無負荷モードにおいて、両ギアポンプG,Gは共に実質的に仕事をせずに、専ら遠心ポンプ3のみが流体の供給に寄与する。遠心ポンプは、特にエンジン10が高出力を発揮するときに、効率よく大容量の流体を吐出することができる。改めて図1を参照して理解できる通り、3連ギアポンプ1は実質的に仕事をせず、また還流路Fを通じた流体の還流も極小にできるので、流路Fへ供給される流体の温度上昇は抑えられる。オイルクーラ9の冷却能を十分に利用でき、翻って空冷オイルクーラ11の負担を抑制することができる。 In the no-load mode, both gear pumps G 1 , G 2 do virtually no work, and only the centrifugal pump 3 contributes exclusively to the fluid supply. The centrifugal pump can efficiently discharge a large volume of fluid, especially when the engine 10 exerts high output. As can be understood with reference to FIG. 1 again, the triple gear pump 1 does virtually no work, and the reflux of fluid through the reflux path F3 can be minimized, so that the flow of fluid supplied to the flow path F5 is minimized. Temperature rise can be suppressed. The cooling capacity of the oil cooler 9 can be fully utilized, and the load on the air-cooled oil cooler 11 can be suppressed.
 例えばエンジン10が低回転ながら高出力を要するときには並列モード、高空を巡航するときには並列モードを利用し、離陸の時のように特に高出力を要するときには無負荷モードによって専ら遠心ポンプを利用するなど、本実施形態によれば最適なモードを選択して利用することができる。本実施形態は、その何れにおいても高いエネルギ効率を実現することができる。 For example, the parallel mode is used when the engine 10 requires high output even at low rotation speed, the parallel mode is used when cruising at high altitude, and the centrifugal pump is exclusively used in the no-load mode when particularly high output is required, such as during takeoff. According to this embodiment, an optimal mode can be selected and used. This embodiment can achieve high energy efficiency in both cases.
 いくつかの実施形態を説明したが、上記開示内容に基づいて実施形態の修正または変形をすることが可能である。 Although several embodiments have been described, it is possible to modify or transform the embodiments based on the content disclosed above.
 直列および並列モードのみならず、無負荷モードにおいても安定して運用できる3連ギアポンプが提供される。 A triple gear pump is provided that can operate stably not only in series and parallel modes but also in no-load mode.

Claims (5)

  1.  一の駆動ギアと、前記駆動ギアにそれぞれ噛合してそれぞれ第1,第2のギアポンプをそれぞれ構成する第1,第2の従動ギアとを備え、燃料として利用される流体を吐出する3連ギアポンプであって、
     前記第1のギアポンプと前記第2のギアポンプとを囲むハウジングと、
     一体に回転するよう前記駆動ギアに結合し、前記ハウジングから引き出された駆動シャフトと、
     前記駆動シャフトを回転可能に支持し、軸方向に浮動可能であって前記流体による圧力を受けて前記駆動ギアに当接する駆動シャフト軸受と、
     前記駆動シャフトと前記ハウジングとの間に介在して前記流体が前記ハウジング外へ漏出するのを妨げるメカニカルシールと、
     前記駆動シャフト軸受と前記メカニカルシールとの間に介在し、前記流体の前記圧力が前記メカニカルシールへ伝播するのを妨げるシールと、
     を備えた3連ギアポンプ。
    A triple gear pump that discharges fluid used as fuel, and includes a first driving gear and first and second driven gears that mesh with the driving gear and constitute first and second gear pumps, respectively. And,
    a housing surrounding the first gear pump and the second gear pump;
    a drive shaft coupled to the drive gear so as to rotate together and pulled out from the housing;
    a drive shaft bearing that rotatably supports the drive shaft, is able to float in the axial direction, and comes into contact with the drive gear under pressure from the fluid;
    a mechanical seal interposed between the drive shaft and the housing to prevent the fluid from leaking out of the housing;
    a seal interposed between the drive shaft bearing and the mechanical seal that prevents the pressure of the fluid from propagating to the mechanical seal;
    Triple gear pump with.
  2.  前記第2の従動ギアに結合した従動シャフトと、
     前記従動シャフトを回転可能に支持し、軸方向に浮動可能であって前記第2の従動ギアに軸方向に当接する浮動軸受と、
     前記駆動シャフト軸受と前記浮動軸受とを前記ハウジング内において流体連通する連通路と、を備え、
     前記シールは前記連通路と前記メカニカルシールとの間に介在する、請求項1の3連ギアポンプ。
    a driven shaft coupled to the second driven gear;
    a floating bearing rotatably supporting the driven shaft, floating in the axial direction, and abutting the second driven gear in the axial direction;
    a communication passage that fluidly communicates the drive shaft bearing and the floating bearing within the housing;
    The triple gear pump according to claim 1, wherein the seal is interposed between the communication path and the mechanical seal.
  3.  前記第2のギアポンプへ前記流体を導入するべく、前記ハウジングに開けられて前記第2のギアポンプへ連通した吸入口をさらに備え、
     前記吸入口は、前記圧力を前記駆動シャフト軸受および前記浮動軸受に印加するべく前記駆動シャフト軸受、前記浮動軸受および前記連通路に流体連通している、請求項2の3連ギアポンプ。
    further comprising an inlet opened in the housing and communicating with the second gear pump for introducing the fluid into the second gear pump;
    3. The triple gear pump of claim 2, wherein the inlet is in fluid communication with the drive shaft bearing, the floating bearing, and the communication passageway to apply the pressure to the drive shaft bearing and the floating bearing.
  4.  加圧される前の前記流体を前記ハウジングの外部から前記メカニカルシールへ導入する導入路を、
     さらに備えた請求項1の3連ギアポンプ。
    an introduction path for introducing the fluid before being pressurized from the outside of the housing to the mechanical seal;
    The triple gear pump according to claim 1, further comprising:
  5.  前記シールはラビリンスシールである、請求項1から4までの何れか1項の3連ギアポンプ。 The triple gear pump according to any one of claims 1 to 4, wherein the seal is a labyrinth seal.
PCT/JP2022/029919 2022-08-04 2022-08-04 Triple gear pump WO2024029027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029919 WO2024029027A1 (en) 2022-08-04 2022-08-04 Triple gear pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029919 WO2024029027A1 (en) 2022-08-04 2022-08-04 Triple gear pump

Publications (1)

Publication Number Publication Date
WO2024029027A1 true WO2024029027A1 (en) 2024-02-08

Family

ID=89848932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029919 WO2024029027A1 (en) 2022-08-04 2022-08-04 Triple gear pump

Country Status (1)

Country Link
WO (1) WO2024029027A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164180A (en) * 1990-10-29 1992-06-09 Shimadzu Corp Fluid machine
JP2000087872A (en) * 1998-09-08 2000-03-28 Shimadzu Corp Gear pump for viscous fluid
WO2017009994A1 (en) * 2015-07-16 2017-01-19 株式会社Ihi Triple gear pump and fluid supplying device
JP2022125574A (en) * 2021-02-17 2022-08-29 株式会社Ihi triple gear pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164180A (en) * 1990-10-29 1992-06-09 Shimadzu Corp Fluid machine
JP2000087872A (en) * 1998-09-08 2000-03-28 Shimadzu Corp Gear pump for viscous fluid
WO2017009994A1 (en) * 2015-07-16 2017-01-19 株式会社Ihi Triple gear pump and fluid supplying device
JP2022125574A (en) * 2021-02-17 2022-08-29 株式会社Ihi triple gear pump

Similar Documents

Publication Publication Date Title
US5159808A (en) Gas turbine engine fuel and hydraulic fluid pumping system
US7931124B2 (en) On-demand lubrication system and method for improved flow management and containment
KR100983066B1 (en) Improved water-injected screw compressor element
US2711071A (en) Arrangement for starting a prime mover by independently driven lubricating pump
EP1589226A1 (en) Pump assembly
US20120156005A1 (en) Buffer air for a labyrinth seal
US6059537A (en) Aircraft fuel pump with centrifugal pump and regenerative pump stages
CN209800100U (en) sealing system for reducing oil leakage
US9546728B2 (en) Balanced binary pump for CVT transmission
JP2022125574A (en) triple gear pump
US4444014A (en) Control arrangement for an hydraulic assist turbocharger
US5245819A (en) Gas turbine engine fuel and hydraulic fluid pumping system
WO2024029027A1 (en) Triple gear pump
US7866965B2 (en) Inner gear being biased to pump cover due to meshing of inner and outer gears
US11965510B2 (en) Compressor body and compressor to supply liquid into working chambers and whose downstream portion reaches a suction bearing chamber
JP3910057B2 (en) Two level pressurization valve controlled by fuel metering unit
US10648467B2 (en) Triple gear pump and fluid supplying device
US3614269A (en) Integrated pump-control system using a unitized pump
JPH07253031A (en) Pump
JP4065721B2 (en) Double gear pump and switching circuit for serial / parallel switching
US11162426B2 (en) Assembly of a servo pump and a hydraulic motor
JP3879404B2 (en) Gear pump
JP2002317782A (en) Oil free screw compressor
CN218439741U (en) Oil inlet positive-pressure high-rotation-speed small-displacement duplicate gear pump and hydraulic system
EP3249221B1 (en) Axial piston pump/motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954016

Country of ref document: EP

Kind code of ref document: A1