WO2024029011A1 - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
WO2024029011A1
WO2024029011A1 PCT/JP2022/029859 JP2022029859W WO2024029011A1 WO 2024029011 A1 WO2024029011 A1 WO 2024029011A1 JP 2022029859 W JP2022029859 W JP 2022029859W WO 2024029011 A1 WO2024029011 A1 WO 2024029011A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
waveguide
optical modulator
substrate
mirror
Prior art date
Application number
PCT/JP2022/029859
Other languages
French (fr)
Japanese (ja)
Inventor
侑祐 齋藤
悠太 上田
光映 石川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/029859 priority Critical patent/WO2024029011A1/en
Publication of WO2024029011A1 publication Critical patent/WO2024029011A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction in an optical waveguide structure

Definitions

  • the present invention relates to an optical modulator, and more particularly to an optical modulator that allows optical coupling in a direction substantially perpendicular to the main surface of a substrate.
  • An optical modulator is a key device that determines the performance of the entire optical communication system, and its central optical circuit is fabricated using materials such as InP, Si, or lithium niobate (LN: LiNbO 3 ).
  • the optical modulator described in Non-Patent Document 1 uses benzocyclobutene (BCB), an organic material with a low dielectric constant, as the insulating material of the signal electrode, and exhibits good frequency response characteristics. There is.
  • Optical circuits are generally formed on a flat surface near the surface of a substrate, and require connection to the outside at an end surface formed on a side surface of the substrate. Therefore, manufacturing processes such as cleaving, polishing, and anti-reflection coating of the end face of the optical waveguide, and mounting processes such as alignment of the spatial optical system are required, which has been an issue in reducing manufacturing costs.
  • Patent Document 1 proposes a method of providing a mirror in an optical circuit.
  • the light emitted from the waveguide end face of the optical circuit has its optical path converted in the vertical direction of the substrate, and is emitted into the free space above the substrate.
  • an optical waveguide made of a semiconductor has a refractive index of 3.0 or more, which is about three times that of free space using air as a medium. Therefore, when light is emitted from the end face of the waveguide, the spot spreads.
  • the distance between the end of the optical waveguide and the mirror has been designed to be small.
  • An object of the present invention is to provide an optical modulator that improves connection efficiency with external optical components and has excellent high frequency characteristics in a structure in which a mirror is provided in an optical circuit.
  • the present invention provides an optical modulator including a laminated substrate in which a lower cladding layer, a core layer, and an upper cladding layer are laminated in order on a substrate, in which the an optical waveguide including a core formed therein, the optical waveguide having a waveguide end face in a groove formed in the laminated substrate; It is characterized by comprising a converting mirror, and an insulating film that insulates a signal electrode and a ground electrode provided near the optical waveguide and fills a gap between the waveguide end face and the mirror.
  • FIG. 1 is a diagram showing the manufacturing process of an optical modulator according to a first embodiment of the present invention
  • FIG. 2 is a diagram showing the manufacturing process of the optical modulator of the first embodiment
  • FIG. 3 is a diagram showing the manufacturing process of the optical modulator of the first embodiment
  • FIG. 4 is a diagram showing the manufacturing process of the optical modulator of the first embodiment
  • FIG. 5 is a diagram showing the manufacturing process of the optical modulator of the first embodiment
  • FIG. 6 is a diagram showing the manufacturing process of the optical modulator of the first embodiment
  • FIG. 7 is a diagram showing the manufacturing process of the optical modulator of the first embodiment
  • FIG. 8 is a diagram showing the manufacturing process of the optical modulator of the first embodiment
  • FIG. 9 is a diagram showing the manufacturing process of the optical modulator of the second embodiment
  • FIG. 10 is a diagram showing the structure of an optical modulator according to the third embodiment.
  • an optical modulator using an InP-based semiconductor material will be explained as an example.
  • the waveguide can be configured using a refractive index difference using Si or LN, and the optical modulator can be manufactured by etching, Any material may be used.
  • FIGS. 1-8 show the manufacturing process of the optical modulator according to the first embodiment of the present invention.
  • the optical modulator 10 has n-type doped InP (n-InP) layered as a lower cladding layer 12 on the upper surface of a semi-insulating InP (SI-InP) substrate 11.
  • the optical modulator 10 has a multi-quantum well (MQW) structure as a core layer 13 and a p-type doped InP (p-InP) as a first upper cladding layer 14 stacked in this order on the upper surface of the lower cladding layer 12. It is formed from a laminated substrate.
  • the MQW structure is made of elements such as In, Ga, As, P, and Al, and the optical modulator 10 functions as an electroabsorption modulator.
  • the first upper cladding layer 14 is removed by photolithography and etching, leaving the light modulation region 21. Furthermore, in the mirror formation regions 22a and 22b, the core layer 13 is also removed by photolithography and etching.
  • FIG. 1C shows the top surface of the substrate from which the first upper cladding layer 14 and the core layer 13 have been removed.
  • the light modulation region 21 is masked with SiO 2 or the like, and backfilled with SI-InP as the second upper cladding layer 15 using metal organic vapor phase epitaxy.
  • the growth thickness from the lower cladding layer 12 to the first upper cladding layer 14 and the second upper cladding layer 15 was set to 2.0 ⁇ m, but if it is possible to confine light in the optical waveguide, the growth thickness may be, for example, 0.5 ⁇ m or more. It is possible to design up to about 10 ⁇ m.
  • the light modulation region 21 is composed of the first upper cladding layer 14 made of p-InP, and the regions other than the light modulation region are It is composed of a second upper cladding layer 15 made of SI-InP. Since SI-InP functions as an insulating material, it is possible to isolate electrodes to be formed later between the light modulation region 21 and other regions. In addition, optical absorption loss due to free carriers in other regions can be reduced.
  • the optical modulator 10 is a Mach-Zehnder interferometer type optical modulator, as shown in FIG.
  • Two arm waveguides 32 and 33 are connected to the duplexer 35b.
  • Both optical waveguides have a high mesa structure formed by photolithography and etching.
  • the width of the optical waveguide that is, the width of the core of the high mesa structure was set to 2.0 ⁇ m in order to satisfy the single mode condition, but it is also possible to design the width to be 1.0 to 3.0 ⁇ m, for example.
  • the configuration of the optical modulator 10 is not limited to the Mach-Zehnder interferometer type, but may also be configured without an interferometer.
  • FIG. 3B is a cross-sectional view taken along IIIb-IIIb' in FIG. 15c.
  • FIG. 3(c) is a cross-sectional view taken along IIIc-IIIc' in FIG. 3(a), and the optical waveguides that become the arm waveguides 32 and 33 are composed of the first upper cladding layers 14a and 14b made of p-InP. be done.
  • the high mesa height was set to 5.0 ⁇ m, any height may be used as long as light can be confined in the core of the optical waveguide.
  • a ridge optical waveguide or the like can also be used.
  • a groove 41 is formed so that the waveguide end surface of the input waveguide 31 is exposed, and a groove 42 is formed so that the waveguide end surface of the output waveguide 34 is exposed, each with a depth that reaches the lower cladding layer 12.
  • the grooves 41 and 42 are formed to expose the end face of the waveguide facing a mirror, which will be described later, and furthermore, the distance between the end face of the waveguide and the reflection surface of the mirror is defined by the width of the groove.
  • RIE reactive ion etching
  • ICP inductively coupled plasma
  • a portion of the laminated substrate is removed at a position facing the waveguide end surfaces of the grooves 41 and 42 to form a slope that will become a reflective surface of the mirror.
  • the resist is coated on the surface of the substrate at the positions that will become the slopes 43 and 44 so that the exposure intensity is varied and the resist becomes a concave surface. do.
  • the shape of the resist is transferred to the laminated substrate, and as shown in FIG. 4(b), slopes 43 and 44 on which concave mirrors are formed are formed.
  • the curvature of the concave surface is designed so that the waveguide 31 and the output waveguide 34 are provided at a predetermined distance from the waveguide end faces, respectively, and condense the input light or make the output light collimated. ing.
  • the distance from the waveguide end face to the slopes 43 and 44 is desirably 5 ⁇ m to 30 ⁇ m or less in order to prevent vignetting on the mirror due to the spread of light, but this is not a limitation.
  • the slope of the mirror is a flat surface
  • the slope that will become the mirror can be formed by normal lithography and wet etching, without using the above-mentioned method.
  • FIG. 5A shows the top surface of a substrate on which a passivation layer (SiON) 17 is formed on the optical modulator 10.
  • 5(b) is a sectional view taken along Vb-Vb' in FIG. 5(a)
  • FIG. 5(c) is a sectional view taken along Vc-Vc' in FIG. 5(a).
  • the film thickness of the passivation layer 17 was set to 300 nm, it can be set to a range of approximately 100 nm to 1000 nm depending on the design of the optical waveguide, mirror, and the like.
  • the passivation layer 17 is a protective film for protecting the surface of an optical circuit such as an optical waveguide formed as a Mach-Zehnder interferometer type optical modulator.
  • the material of the passivation layer 17 may include various materials other than SiON, such as SiO 2 and SiN, and may be a multilayer film made of a plurality of materials. Further, as a method of film formation, any method used in standard semiconductor processes, such as plasma CVD (Chemical Vapor Deposition) and spin-on glass, may be used.
  • plasma CVD Chemical Vapor Deposition
  • spin-on glass any method used in standard semiconductor processes, such as plasma CVD (Chemical Vapor Deposition) and spin-on glass, may be used.
  • FIG. 6(a) shows a state in which the SiON of the ground electrode forming portions 51-53 of the light modulation region of the optical modulator 10 is removed by opening.
  • FIG. 6(b) is a sectional view taken along VIb-VIb' in FIG. 6(a).
  • the SiON in the ground electrode forming portions 51-53 in the light modulation region is removed by photolithography and etching.
  • FIG. 7A shows a state in which ground electrode contacts 51a-53a and mirror reflection surfaces 43a and 44b are formed.
  • 7(b) is a sectional view taken along VIIb-VIIb' in FIG. 7(a)
  • FIG. 7(c) is a sectional view taken along VIIc-VIIc' in FIG. 7(a).
  • metal is deposited by vacuum evaporation, and ground electrode contacts 51a-53a and mirror reflection surfaces 43a and 44b are simultaneously formed by lift-off.
  • the metal material may be any material used in general semiconductor processes, such as Au, Pt, Ti, and Cr.
  • BCB 18 benzocyclobutene (BCB) 18 is formed as an insulating film on the surface of the substrate of the optical modulator 10.
  • BCB 18 is formed by spin coating and curing.
  • the thickness of the BCB 18 is set to approximately the height of the high mesa of the optical waveguide by adjusting the rotation speed of spin coating. Here, it was set to 5.0 ⁇ m.
  • FIG. 8(b) is a sectional view taken along VIIIb-VIIIb' in FIG. 8(a)
  • FIG. 8(c) is a sectional view taken along VIIIc-VIIIc' in FIG. 8(a).
  • the periphery of the optical waveguide is protected by the BCBs 18a and 18b, and as will be described later, it is possible to isolate the signal electrode and ground electrode provided near the optical waveguide.
  • the gaps between the waveguide end faces exposed in the grooves 41 and 42 and the mirror reflection surfaces 43a and 44b are also filled with the BCBs 18a and 18b.
  • the refractive index of BCB is approximately 1.5, and the difference in refractive index with the waveguide material is smaller than that of air, resulting in a smaller diffraction angle, so that light enters the end of the optical waveguide or is emitted from the end of the optical waveguide. The spread of light is suppressed. Therefore, there are advantages such as miniaturization of the mirror and relaxation of the curvature conditions necessary for condensing light onto the end of the optical waveguide.
  • BCB is used as the insulating film
  • other materials commonly used as interlayer insulating films, such as SiO 2 and polyimide, may be used. However, in pursuit of higher speed optical modulators, materials with lower dielectric constants are desirable.
  • a signal electrode and a ground electrode for connecting to an external control circuit for making the optical modulator 10 function are formed.
  • the signal electrode which becomes the traveling wave electrode, is formed by photolithography and etching on the signal electrode forming portion 61 on the first upper cladding layers 14a and 14b, where the BCB and SiON on the optical waveguide in the optical modulation region are removed. .
  • BCB and SiON can be removed by standard RIE or hydrofluoric acid soak processes.
  • patterns for signal electrodes and ground electrodes are formed by photolithography, then metal is deposited by vacuum evaporation, and signal electrodes 61a, 61b and ground electrodes 62a-62c are formed by lift-off.
  • the electrode material the above-mentioned metal materials can be used, and the formation method is not limited to vacuum deposition, but a plating method or the like may also be used.
  • the electrode pattern is not limited to the illustrated pattern, but may be a capacitively loaded structure as shown in Non-Patent Document 1, for example.
  • the slope for forming the mirror was created by etching the laminated substrate, but in the second embodiment, the slope is created using BCB. In the following, only the differences from the first embodiment will be described, and overlapping points will be omitted.
  • the grayscale lithography process shown in FIGS. 4(a) and 4(b) is not performed, and the positions of the slopes 43 and 44 are located at the lower part, similar to the grooves 41 and 42 shown in FIG. 3(b). It is removed to a depth that reaches the cladding layer 12.
  • the formation of the passivation layer 17 shown in FIG. 5 and the formation of the ground electrode contacts 51a-53a shown in FIGS. 6 and 7 are the same as in the first embodiment.
  • benzocyclobutene (BCB) 18 is formed as an insulating film on the surface of the substrate of the optical modulator 10.
  • BCB benzocyclobutene
  • a portion of the BCB 18 inside the grooves 41 and 42 forms slopes 18a and 18d that become reflective surfaces of the mirrors.
  • a resist is applied to the surface of the substrate, and the resist is applied to the surface of the substrate so that the exposure intensity is varied so that the resist has a concave surface.
  • the shape of the resist is transferred to the BCB, forming slopes 18a and 18d that serve as concave mirrors.
  • the slopes 18a and 18d are provided at a predetermined distance from the end of the optical waveguide, and are used to condense light input to the end of the optical waveguide, or to collimate light output from the end of the optical waveguide. Curvature is designed. Thereafter, metal is deposited by vacuum evaporation, and mirror reflection surfaces 43a and 44a are simultaneously formed by lift-off.
  • a fiber block is manufactured to optically couple the light reflected by the mirror with the optical fiber.
  • a film of photosensitive epoxy resin is formed on the surface of the substrate of the optical modulator 10 by spin coating. The thickness of the photosensitive epoxy resin is approximately 100 ⁇ m.
  • FIGS. 10(a) and 10(b) a fiber block structure as shown in FIGS. 10(a) and 10(b) is produced by lithography and etching steps.
  • the mirrors are installed on the BCBs 18a, 18b in the vertical direction of the substrate with respect to the mirror reflection surfaces 43a, 44b so that the optical path of the light reflected by the mirrors and the optical axis of the optical fiber are aligned.
  • FIG. 10 shows an example of square-shaped fiber blocks 71 and 72 that correspond to receptacles.
  • connection with the optical fiber is not limited to the shape of this embodiment, and the fiber blocks 71 and 72 may have a cylindrical hollow portion and the optical fiber core wire may be directly inserted therein. Furthermore, it is also possible to combine optical components such as lenses, filters, and isolators with fiber blocks.
  • the space from the end of the optical waveguide to the mirror is filled with a low dielectric constant material whose refractive index is higher than that of air, thereby suppressing the spread of light and preventing interference with external optical components. Connection efficiency can be increased. Further, the material filling the space from the end of the optical waveguide to the mirror can also be used as an insulating film for a signal electrode, and an optical modulator with excellent high frequency characteristics can be obtained. Furthermore, optical coupling is possible in a direction substantially perpendicular to the main surface of the substrate, and a simple connection method using passive alignment can improve mounting efficiency and simplify the mounting process.

Abstract

Provided is an optical modulator capable of suppressing spreading of light caused by a mirror that converts an optical path and of increasing connection efficiency with an external optical component. An optical modulator (10) comprising a laminate substrate having a lower clad layer (12), a core layer (13), and upper clad layers (14, 15) stacked in the stated order on a substrate (11) is provided with: an optical waveguide that includes a core (13) formed from the core layer (13) and that has waveguide end surfaces in grooves (41, 42) formed in the laminate substrate; mirrors (43a, 44a) that are formed on slopes facing the waveguide end surfaces and that convert optical paths in the vertical direction of the substrate; and insulation films (18a, 18b) that insulate ground electrodes (62a-62c) and signal electrodes (61a, 61b) provided near the optical waveguide, and fill gaps between the waveguide end surfaces and the mirrors (43a, 44a).

Description

光変調器light modulator
 本発明は、光変調器に関し、より詳細には、基板の主面に対して略垂直方向の光結合が可能な光変調器に関する。 The present invention relates to an optical modulator, and more particularly to an optical modulator that allows optical coupling in a direction substantially perpendicular to the main surface of a substrate.
 近年、情報通信技術の進展に伴い、ネットワークのトラヒックが急激に増加しており、この需要に対応し得る光通信システムの更なる高速化と低消費電力化が求められている。光変調器は、光通信システム全体の性能を決定づけるキーデバイスであり、その中心となる光回路は、InP、Si、またはニオブ酸リチウム(LN:LiNbO)等の材料を用いて作製されている。また、非特許文献1に記載された光変調器においては、信号電極の絶縁材料として低誘電率の有機材料であるベンゾシクロブテン(BCB)を利用しており、良好な周波数応答特性を示している。 In recent years, with the advancement of information and communication technology, network traffic has increased rapidly, and optical communication systems that can meet this demand are required to have even higher speeds and lower power consumption. An optical modulator is a key device that determines the performance of the entire optical communication system, and its central optical circuit is fabricated using materials such as InP, Si, or lithium niobate (LN: LiNbO 3 ). . Furthermore, the optical modulator described in Non-Patent Document 1 uses benzocyclobutene (BCB), an organic material with a low dielectric constant, as the insulating material of the signal electrode, and exhibits good frequency response characteristics. There is.
 一方、光変調器を含む従来の光回路を導波する光を、外部の光学系に接続する構成には多くの課題があった。光回路は、一般的に基板の表面近傍の平面上に形成され、基板の側面に形成された端面にて外部との接続を必要としていた。このため、光導波路の端面の劈開、研磨、反射防止コーティング等の作製工程、空間光学系の調心等の実装工程が必要となり、製造コストの削減を図る上で課題となっていた。 On the other hand, there are many problems with the configuration in which light guided through a conventional optical circuit including an optical modulator is connected to an external optical system. Optical circuits are generally formed on a flat surface near the surface of a substrate, and require connection to the outside at an end surface formed on a side surface of the substrate. Therefore, manufacturing processes such as cleaving, polishing, and anti-reflection coating of the end face of the optical waveguide, and mounting processes such as alignment of the spatial optical system are required, which has been an issue in reducing manufacturing costs.
 この問題を解決するため、光回路を導波する光を基板の上面に出射させる方法が考えられてきた。例えば、特許文献1には、光回路にミラーを設ける方法が提案されている。光回路の導波路端面から出射された光は、基板の鉛直方向に光路が変換され、基板上部の自由空間に出射されていた。一般に、半導体により構成される光導波路は、屈折率が3.0以上であり、空気を媒質とする自由空間の3倍程度の屈折率を有する。このため、導波路端面から光を出射すると、スポットの広がりが起こる。従来は、ミラーの必要寸法を小さく抑えるため、光導波路端とミラーと間の距離を小さく設計することにより対応していた。 In order to solve this problem, methods have been considered in which the light guided through the optical circuit is emitted onto the top surface of the substrate. For example, Patent Document 1 proposes a method of providing a mirror in an optical circuit. The light emitted from the waveguide end face of the optical circuit has its optical path converted in the vertical direction of the substrate, and is emitted into the free space above the substrate. Generally, an optical waveguide made of a semiconductor has a refractive index of 3.0 or more, which is about three times that of free space using air as a medium. Therefore, when light is emitted from the end face of the waveguide, the spot spreads. Conventionally, in order to keep the required dimensions of the mirror small, the distance between the end of the optical waveguide and the mirror has been designed to be small.
 しかしながら、ミラーを含む構造は、簡便に作製することができる一方で、光の広がりを抑制するために、設計上の制約を受けるという問題があった。また、光の広がりのために効率よく光ファイバ等の外部光学部品と接続することが難しいという問題もあった。 However, while a structure including a mirror can be easily manufactured, there is a problem in that it is subject to design constraints in order to suppress the spread of light. Another problem was that it was difficult to efficiently connect external optical components such as optical fibers due to the spread of light.
国際公開第2021/255862号International Publication No. 2021/255862 国際公開第2020/246042号International Publication No. 2020/246042
 本発明の目的は、光回路にミラーを設ける構造において、外部光学部品との接続効率を高め、優れた高周波特性を有する光変調器を提供することにある。 An object of the present invention is to provide an optical modulator that improves connection efficiency with external optical components and has excellent high frequency characteristics in a structure in which a mirror is provided in an optical circuit.
 本発明は、このような目的を達成するために、一実施態様は、基板上に下部クラッド層、コア層および上部クラッド層が順に積層された積層基板からなる光変調器において、前記コア層から形成されたコアを含む光導波路であって、前記積層基板に形成された溝に導波路端面を有する光導波路と、前記導波路端面と対向する斜面に形成され、前記基板の鉛直方向に光路を変換するミラーと、前記光導波路の近傍に設けられた信号電極および接地電極を絶縁し、前記導波路端面と前記ミラーとの間の間隙を埋め込む絶縁膜とを備えたことを特徴とする。 In order to achieve such an object, the present invention provides an optical modulator including a laminated substrate in which a lower cladding layer, a core layer, and an upper cladding layer are laminated in order on a substrate, in which the an optical waveguide including a core formed therein, the optical waveguide having a waveguide end face in a groove formed in the laminated substrate; It is characterized by comprising a converting mirror, and an insulating film that insulates a signal electrode and a ground electrode provided near the optical waveguide and fills a gap between the waveguide end face and the mirror.
図1は、本発明の第1の実施形態にかかる光変調器の製造過程を示す図、FIG. 1 is a diagram showing the manufacturing process of an optical modulator according to a first embodiment of the present invention, 図2は、第1の実施形態の光変調器の製造過程を示す図、FIG. 2 is a diagram showing the manufacturing process of the optical modulator of the first embodiment, 図3は、第1の実施形態の光変調器の製造過程を示す図、FIG. 3 is a diagram showing the manufacturing process of the optical modulator of the first embodiment, 図4は、第1の実施形態の光変調器の製造過程を示す図、FIG. 4 is a diagram showing the manufacturing process of the optical modulator of the first embodiment, 図5は、第1の実施形態の光変調器の製造過程を示す図、FIG. 5 is a diagram showing the manufacturing process of the optical modulator of the first embodiment, 図6は、第1の実施形態の光変調器の製造過程を示す図、FIG. 6 is a diagram showing the manufacturing process of the optical modulator of the first embodiment, 図7は、第1の実施形態の光変調器の製造過程を示す図、FIG. 7 is a diagram showing the manufacturing process of the optical modulator of the first embodiment, 図8は、第1の実施形態の光変調器の製造過程を示す図、FIG. 8 is a diagram showing the manufacturing process of the optical modulator of the first embodiment, 図9は、第2の実施形態の光変調器の製造過程を示す図、FIG. 9 is a diagram showing the manufacturing process of the optical modulator of the second embodiment, 図10は、第3の実施形態の光変調器の構造を示す図である。FIG. 10 is a diagram showing the structure of an optical modulator according to the third embodiment.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。本実施形態では、InP系半導体材料を用いた光変調器を例に説明するが、SiまたはLNなど、屈折率差により導波路を構成することができ、エッチング加工により光変調器を作製できれば、どのような材料を用いても良い。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In this embodiment, an optical modulator using an InP-based semiconductor material will be explained as an example. However, if the waveguide can be configured using a refractive index difference using Si or LN, and the optical modulator can be manufactured by etching, Any material may be used.
  [第1の実施形態]
 図1-8に、本発明の第1の実施形態にかかる光変調器の製造過程を示す。光変調器10は、図1(a)に示すように、半絶縁性InP(SI-InP)基板11の上面に、下部クラッド層12としてn型ドープInP(n-InP)が積層されている。さらに、光変調器10は、下部クラッド層12の上面に、コア層13として多重量子井戸(MQW)構造と、第1上部クラッド層14としてp型ドープInP(p-InP)が順に積層された積層基板から形成されている。MQW構造は、In、Ga、As、P、Al等の元素により構成され、光変調器10は、電界吸収型変調器として機能する。
[First embodiment]
FIGS. 1-8 show the manufacturing process of the optical modulator according to the first embodiment of the present invention. As shown in FIG. 1(a), the optical modulator 10 has n-type doped InP (n-InP) layered as a lower cladding layer 12 on the upper surface of a semi-insulating InP (SI-InP) substrate 11. . Further, the optical modulator 10 has a multi-quantum well (MQW) structure as a core layer 13 and a p-type doped InP (p-InP) as a first upper cladding layer 14 stacked in this order on the upper surface of the lower cladding layer 12. It is formed from a laminated substrate. The MQW structure is made of elements such as In, Ga, As, P, and Al, and the optical modulator 10 functions as an electroabsorption modulator.
 図1(b)に示すように、第1上部クラッド層14について、光変調領域21を残して、フォトリソグラフィおよびエッチングにより除去する。さらに、ミラー形成領域22a,22bでは、コア層13についても、フォトリソグラフィおよびエッチングにより除去する。図1(c)は、第1上部クラッド層14とコア層13とが除去された基板上面を示している。 As shown in FIG. 1(b), the first upper cladding layer 14 is removed by photolithography and etching, leaving the light modulation region 21. Furthermore, in the mirror formation regions 22a and 22b, the core layer 13 is also removed by photolithography and etching. FIG. 1C shows the top surface of the substrate from which the first upper cladding layer 14 and the core layer 13 have been removed.
 次に、図2(a)に示すように、光変調領域21をSiO等によりマスクし、有機金属気相成長法を用いて、第2上部クラッド層15としてSI-InPによる埋め戻しを行う。下部クラッド層12から第1上部クラッド層14および第2上部クラッド層15までの成長厚は2.0μmとしたが、光導波路への光閉じ込めが可能なものであれば、例えば、0.5μmから10μm程度までの設計が可能である。 Next, as shown in FIG. 2A, the light modulation region 21 is masked with SiO 2 or the like, and backfilled with SI-InP as the second upper cladding layer 15 using metal organic vapor phase epitaxy. . The growth thickness from the lower cladding layer 12 to the first upper cladding layer 14 and the second upper cladding layer 15 was set to 2.0 μm, but if it is possible to confine light in the optical waveguide, the growth thickness may be, for example, 0.5 μm or more. It is possible to design up to about 10 μm.
 SiOマスクをフッ酸等により除去すると、図2(b)に示すように、光変調領域21は、p-InPからなる第1上部クラッド層14で構成され、光変調領域以外の領域は、SI-InPからなる第2上部クラッド層15で構成される。SI-InPは絶縁材料としてはたらくので、光変調領域21とその他の領域との間で、後に形成する電極のアイソレーションを取ることができる。加えて、その他の領域における自由キャリアによる光吸収損失を低減することができる。 When the SiO 2 mask is removed using hydrofluoric acid or the like, as shown in FIG. 2(b), the light modulation region 21 is composed of the first upper cladding layer 14 made of p-InP, and the regions other than the light modulation region are It is composed of a second upper cladding layer 15 made of SI-InP. Since SI-InP functions as an insulating material, it is possible to isolate electrodes to be formed later between the light modulation region 21 and other regions. In addition, optical absorption loss due to free carriers in other regions can be reduced.
 次に、光変調器10を構成する光導波路を形成する。光変調器10は、図3(a)に示すように、マッハツェンダ干渉計型の光変調器であり、入力導波路31に接続された光合分波器35aと出力導波路34に接続された光合分波器35bとの間を、2本のアーム導波路32,33で接続している。いずれの光導波路も、フォトリソグラフィおよびエッチングにより形成されたハイメサ構造である。光導波路の幅、すなわちハイメサ構造のコアの幅はシングルモード条件を満たすため、2.0μmとしたが、例えば1.0から3.0μmの設計も可能である。また、光変調器10の構成は、マッハツェンダ干渉計型にかぎらず、干渉計を含まない構成とすることもできる。 Next, an optical waveguide that constitutes the optical modulator 10 is formed. The optical modulator 10 is a Mach-Zehnder interferometer type optical modulator, as shown in FIG. Two arm waveguides 32 and 33 are connected to the duplexer 35b. Both optical waveguides have a high mesa structure formed by photolithography and etching. The width of the optical waveguide, that is, the width of the core of the high mesa structure was set to 2.0 μm in order to satisfy the single mode condition, but it is also possible to design the width to be 1.0 to 3.0 μm, for example. Furthermore, the configuration of the optical modulator 10 is not limited to the Mach-Zehnder interferometer type, but may also be configured without an interferometer.
 図3(b)は、図3(a)のIIIb-IIIb’の断面図であり、入力導波路31、出力導波路34となる光導波路は、SI-InPからなる第2上部クラッド層15b,15cにより構成される。図3(c)は、図3(a)のIIIc-IIIc’の断面図であり、アーム導波路32,33となる光導波路は、p-InPからなる第1上部クラッド層14a,14bにより構成される。ハイメサ高さは5.0μmとしたが、光導波路のコアへの光閉じ込めが可能であればどのような高さでも構わない。また、ハイメサ構造以外にも、リッジ光導波路等により構成することもできる。 FIG. 3B is a cross-sectional view taken along IIIb-IIIb' in FIG. 15c. FIG. 3(c) is a cross-sectional view taken along IIIc-IIIc' in FIG. 3(a), and the optical waveguides that become the arm waveguides 32 and 33 are composed of the first upper cladding layers 14a and 14b made of p-InP. be done. Although the high mesa height was set to 5.0 μm, any height may be used as long as light can be confined in the core of the optical waveguide. In addition to the high mesa structure, a ridge optical waveguide or the like can also be used.
 さらに、この工程において、入力導波路31の導波路端面が露出するように溝41を、出力導波路34の導波路端面が露出するように溝42を、それぞれ下部クラッド層12に達する深さで形成する。溝41,42は、後述するミラーと対向する導波路端面を露出するために形成され、さらに、導波路端面とミラーの反射面との間の距離を、溝の幅によって規定している。なお、エッチングの方法としては、反応性イオンエッチング(RIE)、誘導結合プラズマ(ICP)によるエッチングなど、一般的な半導体プロセスを用いることができる。 Furthermore, in this step, a groove 41 is formed so that the waveguide end surface of the input waveguide 31 is exposed, and a groove 42 is formed so that the waveguide end surface of the output waveguide 34 is exposed, each with a depth that reaches the lower cladding layer 12. Form. The grooves 41 and 42 are formed to expose the end face of the waveguide facing a mirror, which will be described later, and furthermore, the distance between the end face of the waveguide and the reflection surface of the mirror is defined by the width of the groove. Note that as the etching method, a general semiconductor process such as reactive ion etching (RIE) and etching using inductively coupled plasma (ICP) can be used.
 次に、溝41,42の導波路端面と対向する位置に、積層基板の一部を除去して、ミラーの反射面となる斜面を形成する。図4(a)に示すように、いわゆるグレースケールリソグラフィ工程により、斜面43,44となる位置に、レジストに対して露光強度に濃淡をもたせて、レジストが凹面となるように基板の表面に塗布する。ドライエッチング加工を行うことにより、レジストの形状が積層基板に転写され、図4(b)に示すように、凹面のミラーが形成される斜面43,44を形成する
 斜面43,44は、入力導波路31、出力導波路34の導波路端面からそれぞれ所定の距離をおいて設けられ、入力する光を集光する、または、出力された光がコリメート光となるように、凹面の曲率が設計されている。導波路端面から斜面43,44までの距離は、光の広がりによるミラーでのケラレを防ぐため、5μmから30μm以下とすることが望ましいが、この限りではない。
Next, a portion of the laminated substrate is removed at a position facing the waveguide end surfaces of the grooves 41 and 42 to form a slope that will become a reflective surface of the mirror. As shown in FIG. 4(a), by a so-called grayscale lithography process, the resist is coated on the surface of the substrate at the positions that will become the slopes 43 and 44 so that the exposure intensity is varied and the resist becomes a concave surface. do. By performing the dry etching process, the shape of the resist is transferred to the laminated substrate, and as shown in FIG. 4(b), slopes 43 and 44 on which concave mirrors are formed are formed. The curvature of the concave surface is designed so that the waveguide 31 and the output waveguide 34 are provided at a predetermined distance from the waveguide end faces, respectively, and condense the input light or make the output light collimated. ing. The distance from the waveguide end face to the slopes 43 and 44 is desirably 5 μm to 30 μm or less in order to prevent vignetting on the mirror due to the spread of light, but this is not a limitation.
 なお、ミラーの斜面を平面とする場合は、上述した方法によらず、通常のリソグラフィとウェットエッチング加工によりミラーとなる斜面を形成することができる。その場合、導波路端面から斜面までの距離は、3μmから15μm以下とすることが望ましい。 Note that when the slope of the mirror is a flat surface, the slope that will become the mirror can be formed by normal lithography and wet etching, without using the above-mentioned method. In that case, it is desirable that the distance from the waveguide end face to the slope be 3 μm to 15 μm or less.
 図5(a)に、光変調器10にパッシベーション層(SiON)17を成膜した基板上面を示す。図5(b)は、図5(a)のVb-Vb’の断面図であり、図5(c)は、図5(a)のVc-Vc’の断面図である。パッシベーション層17の膜厚は300nmとしたが、光導波路およびミラーその他の設計に合わせて100nmから1000nm程度の範囲とすることができる。パッシベーション層17は、マッハツェンダ干渉計型の光変調器として形成された光導波路などの光回路の表面を保護するための保護膜である。パッシベーション層17の材料は、SiON以外にSiO、SiN等の各種材料を含んでよく、複数の材料による多層膜としても構わない。また、成膜の方法としては、プラズマCVD(Chemical Vapor Deposition)、スピンオングラス等の、標準的な半導体プロセスで用いられる方法のいずれでも構わない。 FIG. 5A shows the top surface of a substrate on which a passivation layer (SiON) 17 is formed on the optical modulator 10. 5(b) is a sectional view taken along Vb-Vb' in FIG. 5(a), and FIG. 5(c) is a sectional view taken along Vc-Vc' in FIG. 5(a). Although the film thickness of the passivation layer 17 was set to 300 nm, it can be set to a range of approximately 100 nm to 1000 nm depending on the design of the optical waveguide, mirror, and the like. The passivation layer 17 is a protective film for protecting the surface of an optical circuit such as an optical waveguide formed as a Mach-Zehnder interferometer type optical modulator. The material of the passivation layer 17 may include various materials other than SiON, such as SiO 2 and SiN, and may be a multilayer film made of a plurality of materials. Further, as a method of film formation, any method used in standard semiconductor processes, such as plasma CVD (Chemical Vapor Deposition) and spin-on glass, may be used.
 図6(a)に、光変調器10の光変調領域の接地電極形成部51-53のSiONを窓開け除去した状態を示す。図6(b)は、図6(a)のVIb-VIb’の断面図である。フォトリソグラフィおよびエッチングにより、光変調領域の接地電極形成部51-53のSiONを除去する。図7(a)に、接地電極コンタクト51a-53aおよびミラー反射面43a,44bを形成した状態を示す。図7(b)は、図7(a)のVIIb-VIIb’の断面図であり、図7(c)は、図7(a)のVIIc-VIIc’の断面図である。その後、真空蒸着により金属を蒸着し、リフトオフにより接地電極コンタクト51a-53aおよびミラー反射面43a,44bを同時に形成する。金属材料としては、Au、Pt、Ti、Cr等の、一般的な半導体プロセスにおいて用いられている材質であればどのようなものでも構わない。 FIG. 6(a) shows a state in which the SiON of the ground electrode forming portions 51-53 of the light modulation region of the optical modulator 10 is removed by opening. FIG. 6(b) is a sectional view taken along VIb-VIb' in FIG. 6(a). The SiON in the ground electrode forming portions 51-53 in the light modulation region is removed by photolithography and etching. FIG. 7A shows a state in which ground electrode contacts 51a-53a and mirror reflection surfaces 43a and 44b are formed. 7(b) is a sectional view taken along VIIb-VIIb' in FIG. 7(a), and FIG. 7(c) is a sectional view taken along VIIc-VIIc' in FIG. 7(a). Thereafter, metal is deposited by vacuum evaporation, and ground electrode contacts 51a-53a and mirror reflection surfaces 43a and 44b are simultaneously formed by lift-off. The metal material may be any material used in general semiconductor processes, such as Au, Pt, Ti, and Cr.
 次に、図8(a)に示すように、光変調器10の基板表面に対して、絶縁膜としてベンゾシクロブテン(BCB)18を成膜する。BCB18は、スピンコート法およびキュアリングにより成膜する。BCB18の厚さは、スピンコートの回転数を調整することにより、光導波路のハイメサの高さ程度に設定する。ここでは5.0μmとした。図8(b)は、図8(a)のVIIIb-VIIIb’の断面図であり、図8(c)は、図8(a)のVIIIc-VIIIc’の断面図である。この工程により、光導波路の周囲がBCB18a,18bにより保護され、後述するように、光導波路の近傍に設けられた信号電極および接地電極のアイソレーションを取ることができる。同時に、溝41,42に露出していた導波路端面からミラー反射面43a,44bまでの間の間隙も、BCB18a,18bにより埋め込まれる。 Next, as shown in FIG. 8(a), benzocyclobutene (BCB) 18 is formed as an insulating film on the surface of the substrate of the optical modulator 10. BCB 18 is formed by spin coating and curing. The thickness of the BCB 18 is set to approximately the height of the high mesa of the optical waveguide by adjusting the rotation speed of spin coating. Here, it was set to 5.0 μm. FIG. 8(b) is a sectional view taken along VIIIb-VIIIb' in FIG. 8(a), and FIG. 8(c) is a sectional view taken along VIIIc-VIIIc' in FIG. 8(a). Through this step, the periphery of the optical waveguide is protected by the BCBs 18a and 18b, and as will be described later, it is possible to isolate the signal electrode and ground electrode provided near the optical waveguide. At the same time, the gaps between the waveguide end faces exposed in the grooves 41 and 42 and the mirror reflection surfaces 43a and 44b are also filled with the BCBs 18a and 18b.
 BCBの屈折率はおよそ1.5であり、空気と比較して導波路材料との屈折率差が小さく、回折角が小さくなるため、光導波路端に入力する光または光導波路端から出射される光の広がりが抑制される。従って、ミラーの小型化、光導波路端への集光に必要な曲率条件の緩和等の利点がある。なお、絶縁膜としてBCBを用いたが、他にもSiOやポリイミド等の一般的に層間絶縁膜として用いられている材料でも構わない。ただし、光変調器の高速化を追求する上では、より低誘電率の材料が望ましい。 The refractive index of BCB is approximately 1.5, and the difference in refractive index with the waveguide material is smaller than that of air, resulting in a smaller diffraction angle, so that light enters the end of the optical waveguide or is emitted from the end of the optical waveguide. The spread of light is suppressed. Therefore, there are advantages such as miniaturization of the mirror and relaxation of the curvature conditions necessary for condensing light onto the end of the optical waveguide. Although BCB is used as the insulating film, other materials commonly used as interlayer insulating films, such as SiO 2 and polyimide, may be used. However, in pursuit of higher speed optical modulators, materials with lower dielectric constants are desirable.
 その後、光変調器10を機能させるための外部制御回路と接続するための信号電極および接地電極を形成する。進行波電極となる信号電極は、フォトリソグラフィおよびエッチングにより、光変調領域の光導波路上のBCBおよびSiONを窓開け除去した第1上部クラッド層14a,14b上の信号電極形成部61に形成される。BCBおよびSiONは、標準的なRIEまたはフッ酸浸漬プロセスにより除去することができる。次に、フォトリソグラフィにより、信号電極、接地電極用のパターンを形成した後、真空蒸着により金属を蒸着し、リフトオフにより信号電極61a,61bおよび接地電極62a-62cを形成する。 After that, a signal electrode and a ground electrode for connecting to an external control circuit for making the optical modulator 10 function are formed. The signal electrode, which becomes the traveling wave electrode, is formed by photolithography and etching on the signal electrode forming portion 61 on the first upper cladding layers 14a and 14b, where the BCB and SiON on the optical waveguide in the optical modulation region are removed. . BCB and SiON can be removed by standard RIE or hydrofluoric acid soak processes. Next, patterns for signal electrodes and ground electrodes are formed by photolithography, then metal is deposited by vacuum evaporation, and signal electrodes 61a, 61b and ground electrodes 62a-62c are formed by lift-off.
 電極材料としては、上述した金属材料が使える他、形成方法は真空蒸着に限らず、メッキ法などを使用しても構わない。また、電極パターンは、図示のパターンに限らず、例えば、非特許文献1に示されるような容量装荷型の構造としても構わない。 As the electrode material, the above-mentioned metal materials can be used, and the formation method is not limited to vacuum deposition, but a plating method or the like may also be used. Further, the electrode pattern is not limited to the illustrated pattern, but may be a capacitively loaded structure as shown in Non-Patent Document 1, for example.
  [第2の実施形態]
 第1の実施形態では、積層基板のエッチングによりミラーを形成するための斜面を作製したが、第2の実施形態では、この斜面をBCBにより作製する。以下では、第1の実施形態との差分のみについて述べ、重複する点は省略する。
[Second embodiment]
In the first embodiment, the slope for forming the mirror was created by etching the laminated substrate, but in the second embodiment, the slope is created using BCB. In the following, only the differences from the first embodiment will be described, and overlapping points will be omitted.
 第1に、図4(a),(b)に示したグレースケールリソグラフィ工程は行わず、斜面43,44となる位置は、図3(b)に示した溝41,42と同様に、下部クラッド層12に達する深さまで除去しておく。図5に示したパッシベーション層17の成膜、図6,7に示した接地電極コンタクト51a-53aの形成は、第1の実施形態と同じである。 First, the grayscale lithography process shown in FIGS. 4(a) and 4(b) is not performed, and the positions of the slopes 43 and 44 are located at the lower part, similar to the grooves 41 and 42 shown in FIG. 3(b). It is removed to a depth that reaches the cladding layer 12. The formation of the passivation layer 17 shown in FIG. 5 and the formation of the ground electrode contacts 51a-53a shown in FIGS. 6 and 7 are the same as in the first embodiment.
 第2に、図9(b)に示すように、光変調器10の基板表面に対して、絶縁膜としてベンゾシクロブテン(BCB)18を成膜する。このとき、いわゆるグレースケールリソグラフィ工程により、溝41,42の内部のBCB18の一部がミラーの反射面となる斜面18a,18dを形成する。基板の表面にレジストを塗布し、レジストに対して、露光強度に濃淡をもたせて、レジストが凹面となるように基板の表面に塗布する。ドライエッチング加工を行うことにより、レジストの形状がBCBに転写され、凹面のミラーとなる斜面18a,18dを形成する。 Second, as shown in FIG. 9(b), benzocyclobutene (BCB) 18 is formed as an insulating film on the surface of the substrate of the optical modulator 10. At this time, by a so-called gray scale lithography process, a portion of the BCB 18 inside the grooves 41 and 42 forms slopes 18a and 18d that become reflective surfaces of the mirrors. A resist is applied to the surface of the substrate, and the resist is applied to the surface of the substrate so that the exposure intensity is varied so that the resist has a concave surface. By performing dry etching, the shape of the resist is transferred to the BCB, forming slopes 18a and 18d that serve as concave mirrors.
 斜面18a,18dは、光導波路端から所定の距離をおいて設けられ、光導波路端に入力する光を集光する、または、光導波路端から出力された光がコリメート光となるように、その曲率を設計されている。その後、真空蒸着により金属を蒸着し、リフトオフによりミラー反射面43a,44aを同時に形成する。 The slopes 18a and 18d are provided at a predetermined distance from the end of the optical waveguide, and are used to condense light input to the end of the optical waveguide, or to collimate light output from the end of the optical waveguide. Curvature is designed. Thereafter, metal is deposited by vacuum evaporation, and mirror reflection surfaces 43a and 44a are simultaneously formed by lift-off.
 次に、図9(a)および(c)に示すように、第1の実施形態と同様に、光変調領域の光導波路上の信号電極形成部61のBCBおよびSiONを窓開け除去した後、フォトリソグラフィにより、信号電極、接地電極用のパターンを形成した後、真空蒸着により金属を蒸着し、リフトオフにより信号電極および接地電極62を形成する。 Next, as shown in FIGS. 9(a) and 9(c), similarly to the first embodiment, after removing the BCB and SiON of the signal electrode forming portion 61 on the optical waveguide in the optical modulation region, After forming patterns for signal electrodes and ground electrodes by photolithography, metal is deposited by vacuum evaporation, and signal electrodes and ground electrodes 62 are formed by lift-off.
  [第3の実施形態]
 第1および第2の実施形態の光変調器10において、ミラーによって反射された光を、光ファイバと光学的に結合されるためのファイバブロックを作製する。第1および第2の実施形態において、信号電極61および接地電極62を形成した後、光変調器10の基板表面に、感光性エポキシ樹脂をスピンコート法により成膜する。感光性エポキシ樹脂の厚さは、100μm程度とする。
[Third embodiment]
In the optical modulator 10 of the first and second embodiments, a fiber block is manufactured to optically couple the light reflected by the mirror with the optical fiber. In the first and second embodiments, after forming the signal electrode 61 and the ground electrode 62, a film of photosensitive epoxy resin is formed on the surface of the substrate of the optical modulator 10 by spin coating. The thickness of the photosensitive epoxy resin is approximately 100 μm.
 次に、リソグラフィおよびエッチング工程により、図10(a),(b)に示すようなファイバブロック構造を作製する。ミラー反射面43a,44bに対して基板の鉛直方向のBCB18a,18b上に、ミラーによって反射された光の光路と、光ファイバの光軸とが整合するように設置される。図10は、レセプタクルに相当するロの字型のファイバブロック71,72の例を示している。この中空部分に、ファイバ芯線を固定した角柱形状のプラグに相当するファイバブロックを挿入することにより、ミラーを介して光変調器10の光導波路と光ファイバ芯線とを、パッシブアライメントにより接続することができる。 Next, a fiber block structure as shown in FIGS. 10(a) and 10(b) is produced by lithography and etching steps. The mirrors are installed on the BCBs 18a, 18b in the vertical direction of the substrate with respect to the mirror reflection surfaces 43a, 44b so that the optical path of the light reflected by the mirrors and the optical axis of the optical fiber are aligned. FIG. 10 shows an example of square-shaped fiber blocks 71 and 72 that correspond to receptacles. By inserting a fiber block corresponding to a prismatic plug to which a fiber core wire is fixed into this hollow part, the optical waveguide of the optical modulator 10 and the optical fiber core wire can be connected via a mirror by passive alignment. can.
 光ファイバとの接続は、本実施形態の形状には限られず、ファイバブロック71,72には、円筒状の中空部分を形成し、光ファイバ芯線を直接挿入する形態としてもよい。さらに、レンズ、フィルタ、アイソレータなどの光学部品とファイバブロックとを組み合わせることもできる。 The connection with the optical fiber is not limited to the shape of this embodiment, and the fiber blocks 71 and 72 may have a cylindrical hollow portion and the optical fiber core wire may be directly inserted therein. Furthermore, it is also possible to combine optical components such as lenses, filters, and isolators with fiber blocks.
  [実施形態のまとめ]
 本実施形態によれば、光変調器において、光導波路端からミラーまでの空間を、屈折率が空気よりも大きな低誘電率材料で満たすことにより、光の広がりを抑制し、外部光学部品との接続効率を高めることができる。また、光導波路端からミラーまでの空間を埋めている材料を、信号電極の絶縁膜としても利用することができ、優れた高周波特性を有する光変調器とすることができる。さらに、基板の主面に対して略垂直方向の光結合が可能であり、パッシブアライメントによる簡易な接続方法により、実装効率の向上と、実装工程の簡略化を図ることができる。
[Summary of embodiments]
According to this embodiment, in the optical modulator, the space from the end of the optical waveguide to the mirror is filled with a low dielectric constant material whose refractive index is higher than that of air, thereby suppressing the spread of light and preventing interference with external optical components. Connection efficiency can be increased. Further, the material filling the space from the end of the optical waveguide to the mirror can also be used as an insulating film for a signal electrode, and an optical modulator with excellent high frequency characteristics can be obtained. Furthermore, optical coupling is possible in a direction substantially perpendicular to the main surface of the substrate, and a simple connection method using passive alignment can improve mounting efficiency and simplify the mounting process.

Claims (8)

  1.  基板上に下部クラッド層、コア層および上部クラッド層が順に積層された積層基板からなる光変調器において、
     前記コア層から形成されたコアを含む光導波路であって、前記積層基板に形成された溝に導波路端面を有する光導波路と、
     前記導波路端面と対向する斜面に形成され、前記基板の鉛直方向に光路を変換するミラーと、
     前記光導波路の近傍に設けられた信号電極および接地電極を絶縁し、前記導波路端面と前記ミラーとの間の間隙を埋め込む絶縁膜と
     を備えたことを特徴とする光変調器。
    In an optical modulator consisting of a laminated substrate in which a lower cladding layer, a core layer, and an upper cladding layer are laminated in order on a substrate,
    an optical waveguide including a core formed from the core layer, the optical waveguide having a waveguide end face in a groove formed in the laminated substrate;
    a mirror formed on a slope facing the end face of the waveguide and converting the optical path in a direction perpendicular to the substrate;
    An optical modulator comprising: an insulating film that insulates a signal electrode and a ground electrode provided near the optical waveguide and fills a gap between the end face of the waveguide and the mirror.
  2.  前記斜面は、前記積層基板の一部を除去して平面または凹面として形成され、前記ミラーは金属からなる反射面を有することを特徴とする請求項1に記載の光変調器。 The optical modulator according to claim 1, wherein the slope is formed as a flat or concave surface by removing a part of the laminated substrate, and the mirror has a reflective surface made of metal.
  3.  前記斜面は、前記絶縁膜の一部を平面または凹面として形成され、前記ミラーは金属からなる反射面を有することを特徴とする請求項1に記載の光変調器。 The optical modulator according to claim 1, wherein the slope is formed by forming a part of the insulating film as a flat or concave surface, and the mirror has a reflective surface made of metal.
  4.  前記絶縁膜は、低誘電率の有機材料からなることを特徴とする請求項1に記載の光変調器。 The optical modulator according to claim 1, wherein the insulating film is made of an organic material with a low dielectric constant.
  5.  前記ミラーに対して前記基板の鉛直方向に設置されたファイバブロックをさらに備えたことを特徴とする請求項1ないし4のいずれか1項に記載の光変調器。 The optical modulator according to any one of claims 1 to 4, further comprising a fiber block installed in a direction perpendicular to the substrate with respect to the mirror.
  6.  前記コア層に、多重量子井戸構造を含む光変調領域を有し、電界吸収型変調器を構成することを特徴とする請求項1ないし4のいずれか1項に記載の光変調器。 The optical modulator according to any one of claims 1 to 4, wherein the core layer has an optical modulation region including a multi-quantum well structure, and constitutes an electroabsorption modulator.
  7.  前記光変調領域は、前記光導波路によりマッハツェンダ干渉計が構成されていることを特徴とする請求項6に記載の光変調器。 The optical modulator according to claim 6, wherein the optical modulation region constitutes a Mach-Zehnder interferometer using the optical waveguide.
  8.  前記光変調領域以外の領域の上部クラッド層は、絶縁材料からなることを特徴とする請求項6に記載の光変調器。 The optical modulator according to claim 6, wherein the upper cladding layer in a region other than the optical modulation region is made of an insulating material.
PCT/JP2022/029859 2022-08-03 2022-08-03 Optical modulator WO2024029011A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029859 WO2024029011A1 (en) 2022-08-03 2022-08-03 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029859 WO2024029011A1 (en) 2022-08-03 2022-08-03 Optical modulator

Publications (1)

Publication Number Publication Date
WO2024029011A1 true WO2024029011A1 (en) 2024-02-08

Family

ID=89848925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029859 WO2024029011A1 (en) 2022-08-03 2022-08-03 Optical modulator

Country Status (1)

Country Link
WO (1) WO2024029011A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139465A (en) * 2006-11-30 2008-06-19 Shinko Electric Ind Co Ltd Method of manufacturing optoelectric hybrid board
WO2008126653A1 (en) * 2007-03-22 2008-10-23 Ngk Insulators, Ltd. Method for manufacturing optical surface mounting waveguide substrate
JP2016018147A (en) * 2014-07-10 2016-02-01 Nttエレクトロニクス株式会社 Optical circuit with mirror, and manufacturing method of optical circuit with mirror
JP2016102883A (en) * 2014-11-28 2016-06-02 住友ベークライト株式会社 Optical waveguide, manufacturing method of optical waveguide module, and electronic apparatus
JP2017016020A (en) * 2015-07-03 2017-01-19 富士通株式会社 Optical modulator, and method for manufacturing optical modulator
WO2017085934A1 (en) * 2015-11-19 2017-05-26 日本電信電話株式会社 Silicon optical circuit
US20180106954A1 (en) * 2016-10-13 2018-04-19 Stmicroelectronics Sa Method for manufacturing an optical device
US20200132947A1 (en) * 2018-10-24 2020-04-30 Samsung Electronics Co., Ltd. Probe device and test device including the same
WO2020246042A1 (en) * 2019-06-07 2020-12-10 日本電信電話株式会社 Surface-emitting optical circuit and surface-emitting light source using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139465A (en) * 2006-11-30 2008-06-19 Shinko Electric Ind Co Ltd Method of manufacturing optoelectric hybrid board
WO2008126653A1 (en) * 2007-03-22 2008-10-23 Ngk Insulators, Ltd. Method for manufacturing optical surface mounting waveguide substrate
JP2016018147A (en) * 2014-07-10 2016-02-01 Nttエレクトロニクス株式会社 Optical circuit with mirror, and manufacturing method of optical circuit with mirror
JP2016102883A (en) * 2014-11-28 2016-06-02 住友ベークライト株式会社 Optical waveguide, manufacturing method of optical waveguide module, and electronic apparatus
JP2017016020A (en) * 2015-07-03 2017-01-19 富士通株式会社 Optical modulator, and method for manufacturing optical modulator
WO2017085934A1 (en) * 2015-11-19 2017-05-26 日本電信電話株式会社 Silicon optical circuit
US20180106954A1 (en) * 2016-10-13 2018-04-19 Stmicroelectronics Sa Method for manufacturing an optical device
US20200132947A1 (en) * 2018-10-24 2020-04-30 Samsung Electronics Co., Ltd. Probe device and test device including the same
WO2020246042A1 (en) * 2019-06-07 2020-12-10 日本電信電話株式会社 Surface-emitting optical circuit and surface-emitting light source using same

Similar Documents

Publication Publication Date Title
US8401352B2 (en) Optical waveguide device, its manufacture method, laser module and optical transmission system
JP5515927B2 (en) Semiconductor optical device
JP2618875B2 (en) Waveguide
US11067748B2 (en) Guide transition device and method
US10511146B2 (en) Guide transition device with digital grating deflectors and method
WO2021037863A1 (en) Method of manufacturing a iii-v based optoelectronic device on a silicon-on-insulator wafer
JP2002139717A (en) Optical modulator and method of manufacturing for the same as well as optical semiconductor device
JPH09105826A (en) Optical waveguide device
US7024057B2 (en) Optical device having dual microstrip transmission lines with a low-k material and a method of manufacture thereof
JP5263718B2 (en) Semiconductor optical modulator
JPH1168242A (en) Semiconductor laser
US20110064360A1 (en) Optical semiconductor element and method for manufacturing the same
WO2018117077A1 (en) Optical integrated element and optical transmitter module
US20140021160A1 (en) Method for manufacturing optical semiconductor device
US6282009B1 (en) Light modulator and method of manufacturing the light modulator
WO2024029011A1 (en) Optical modulator
JP2817602B2 (en) Semiconductor Mach-Zehnder modulator and method of manufacturing the same
JP2010080707A (en) Semiconductor optical function device
JPH10163568A (en) Modulator-integrated semiconductor laser
KR102648213B1 (en) Photoelectric conversion device
US9971225B2 (en) Spot size converter, semiconductor optical device
US20230064550A1 (en) Fiber to chip coupler and method of using
JPH07142699A (en) Semiconductor optical integrated device and manufacture thereof
US11808996B1 (en) Waveguides and edge couplers with multiple-thickness waveguide cores
CN113219681B (en) Optical waveguide integrated device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954000

Country of ref document: EP

Kind code of ref document: A1