WO2024028143A1 - Verfahren für ein elektrisch antreibbares fahrzeug, insbesondere nutzfahrzeug, computerprogramm und/oder computerlesbares medium, steuergerät, elektrisch antreibbares fahrzeug, insbesondere nutzfahrzeug - Google Patents

Verfahren für ein elektrisch antreibbares fahrzeug, insbesondere nutzfahrzeug, computerprogramm und/oder computerlesbares medium, steuergerät, elektrisch antreibbares fahrzeug, insbesondere nutzfahrzeug Download PDF

Info

Publication number
WO2024028143A1
WO2024028143A1 PCT/EP2023/070420 EP2023070420W WO2024028143A1 WO 2024028143 A1 WO2024028143 A1 WO 2024028143A1 EP 2023070420 W EP2023070420 W EP 2023070420W WO 2024028143 A1 WO2024028143 A1 WO 2024028143A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
charge
state
storage device
regenerative braking
Prior art date
Application number
PCT/EP2023/070420
Other languages
English (en)
French (fr)
Inventor
Daniel MORGENWECK
Markus Eisele
Thomas KATTENBERG
Winfried Fakler
Johannes HESEDING
Mark SCHAPER
Daniel RASCH
Franz Bitzer
Michael Grossmann
Thomas Dieckmann
Original Assignee
Zf Cv Systems Global Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Cv Systems Global Gmbh filed Critical Zf Cv Systems Global Gmbh
Publication of WO2024028143A1 publication Critical patent/WO2024028143A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • B60L15/2018Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking for braking on a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/36Vehicles designed to transport cargo, e.g. trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction

Definitions

  • the invention relates to a method for an electrically driven vehicle, in particular a commercial vehicle, with an energy storage device that can be charged to a maximum state of charge and an electric drive capable of regenerative braking, wherein the energy storage device can be charged during regenerative braking.
  • the invention relates to a computer program and/or a computer-readable medium, a control device for an electrically drivable vehicle, in particular a commercial vehicle, and an electrically drivable vehicle, in particular a commercial vehicle, with an energy storage device that can be charged to a maximum state of charge and an electric drive capable of regenerative braking, wherein the Energy storage device can be charged during regenerative braking.
  • a continuous brake may be required by law in a vehicle with a permissible total mass of over 9 t or in a bus with a permissible total mass of over 5.5 t.
  • electrically powered vehicles Electric Vehicle, EV; Battery Electric Vehicle, BEV
  • BEV Battery Electric Vehicle
  • UNECE Economic Commission for Europe
  • EAE R 13 the brakes [2016/194]
  • This requires maintaining a speed of 30 km/h over a 6 km long downhill section with a 7% gradient without using a friction brake or service brake.
  • powerful retarders are intended for conventional vehicles to minimize friction brake locking and enable longer downhill gradients at higher speeds.
  • the Type II-A test can be met by BEVs if the battery charge level allows the absorption of the energy recovered through recuperation. In order to avoid the risk of the energy storage device being overcharged and so on is damaged, software and/or hardware measures will be taken. However, when the energy storage device has a high state of charge, a braking effect can be omitted due to regenerative braking of the electric drive. In order to guarantee compliance with the Type II-A test, special measures must be implemented for BEVs: Option 1 includes the addition of another wear-free continuous brake (braking resistor, retarder, etc.), Option 2 includes the implementation of a brake performance estimator ) which warns a driver in two warning thresholds if a friction brake can no longer guarantee certain delays. Option 3 envisages the implementation of intelligent energy management functions that work predictively and, if necessary, keep the battery charge level in an appropriate range.
  • the service brake would overheat during long downhill journeys and, for example, when the energy storage device or battery is full, additional braking is carried out using the electric drive used as a regenerative brake.
  • the braking energy that is absorbed via the electric drive can be destroyed, for example via a braking resistor, a so-called brake chopper.
  • DE 10 2019 004 557 A1 discloses a vehicle having an electrically conductive vehicle part that can be used as a resistance element for converting electrical energy into heat.
  • the electrically driven vehicle includes an electrical machine that can be operated as a generator, a storage device for electrical energy, an electrically conductive vehicle part and a control device.
  • the storage device for electrical energy is designed to receive electrical energy from the electrical machine and/or to deliver electrical energy to the electrical machine.
  • the control device is designed, when at least one predetermined energy dissipation condition is met, to divert electrical energy generated in the generator operation of the electric machine to the electrically conductive vehicle part for conversion into thermal energy, the electrically conductive vehicle part being a vehicle frame and/or a vehicle body and/or a body .
  • EP 2 648 936 B1 discloses a battery charging strategy which, should the battery be full, uses the recuperation energy to cool a refrigerator compartment in the vehicle.
  • the vehicle includes a refrigeration engine assembly and a hybrid electric propulsion system having a control unit, a main power unit, an electric motor generator and an electric storage system, the control unit being configured to, upon registration of a vehicle braking request, and upon registration that the electrical storage system has an upper state of charge or has the potential to reach the upper state of charge by means of regenerative braking during a predicted braking period, at least a portion of the energy recovered by means of regenerative braking during a braking period following the braking request is used to directly drive the chiller arrangement.
  • the control unit includes a distribution system that determines a time-dependent distribution of the energy recovered by means of regenerative braking to at least the refrigeration machine arrangement and the electrical storage system, the refrigeration machine arrangement being assigned to a refrigeration machine arrangement distribution parameter, and the electrical storage system being assigned to an electrical storage system distribution parameter.
  • EP 2 847 054 B1 discloses an energy management system for a hybrid electric vehicle.
  • the energy management system has an electrical machine for the Vehicle traction and regenerative braking, an electrical storage system for storing recuperated energy, and at least one additional electrical vehicle auxiliary device that is different from the electrical machine.
  • An energy management control device is configured, after detecting a potential for an increased amount of recuperated energy during a predicted future downhill descent, to direct electrical power from the electrical storage system to the at least one additional electrical auxiliary device for the purpose of reducing the electrical state of charge of the electrical storage system that an increased amount of energy can be recuperated during the predicted future downhill descent and stored in the electrical storage system.
  • the invention is therefore based on the object of enriching the prior art and enabling an improved measure to enable the possibility of converting energy through regenerative braking.
  • a method for an electrically driven vehicle in particular a commercial vehicle, is provided with an energy storage device that can be charged to a maximum state of charge and an electric drive capable of regenerative braking, wherein the energy storage device can be charged during regenerative braking.
  • the method has the steps: determining a state of charge of the energy storage device; Determining a state of charge variable that can be achieved through regenerative braking; Determining an energy conversion mode depending on the state of charge, the state of charge size, the maximum state of charge and two vehicle components of the vehicle, in particular commercial vehicle, wherein the two vehicle components are set up to carry out vehicle functions that work in opposite directions to one another in regular operation of the vehicle, in particular commercial vehicle; and operating the vehicle, in particular commercial vehicle, according to the energy conversion mode.
  • the vehicle in particular a commercial vehicle, is referred to below as a vehicle.
  • the energy storage device is designed to provide electrical energy for operating the electric drive and/or to be charged by the electric drive through regenerative braking. This means that the state of charge of the energy storage device is established at a point in time during a journey and is determined or queried.
  • the state of charge variable is a calculated variable that characterizes a state of charge that can hypothetically be achieved through regenerative braking, in particular by charging the energy storage device by the electric drive during regenerative braking. For this purpose, a prediction of the regenerative braking can be made, which can be used to determine the state of charge variable.
  • the state of charge variable can be calculated assuming that the recuperation power that can be absorbed by the regenerative braking by the electric drive is equal to the charging power for charging the energy storage device.
  • the maximum state of charge is less than or equal to a capacity of the energy storage device.
  • the maximum state of charge can be defined by a state of charge in which the electric drive can provide maximum charging power through regenerative braking.
  • the energy storage device is set up to be regularly charged to the maximum charge state during operation. The maximum state of charge can be changed by using the energy storage device.
  • an energy conversion mode is determined.
  • the energy conversion mode is determined depending on the state of charge, the maximum state of charge and the state of charge and thus depending on the regenerative braking.
  • the energy storage device can provide enough energy to absorb the braking energy for continuous braking capability.
  • the state of charge value is therefore below the maximum state of charge of the energy storage device. Therefore, it may be unnecessary to maintain a certain buffer for the state of charge and energy conversion through the vehicle functions that work in opposite directions to one another may be unnecessary.
  • the charge level is high, the charging current and/or the charging power of the energy storage device is limited.
  • the state of charge variable can be above the maximum state of charge of the energy storage device and energy conversion by the vehicle functions acting in opposite directions can be indicated. For this reason, operating the vehicle components may be necessary. Thus, determining the energy conversion mode can be done such that the state of charge does not exceed the maximum state of charge.
  • the energy conversion mode is additionally determined depending on the two vehicle components.
  • One of the two vehicle components can be the electric drive or both of the two vehicle components can be different from the electric drive. Additionally, both vehicle components may be different from the energy storage device.
  • the two vehicle components are determined according to the energy conversion mode in such a way that the two vehicle components perform vehicle functions that work in opposite directions to one another in regular operation of the vehicle.
  • the two vehicle components are set up to perform work in accordance with their respective functions in such a way that the work of the two vehicle components acts in opposite directions.
  • the two vehicle components each produce at least partially compensating performance. This ensures that energy is converted efficiently in such a way that the possibility of converting energy through regenerative braking is created, improved or maintained quickly and reliably. Furthermore, an influence on driving behavior and/or driving comfort can be avoided because the vehicle functions at least partially compensate for each other. Due to the energy conversion, an electrical braking resistor and/or a cooling system can be unnecessary or can be designed to be relatively small, which can lead to cost, weight and/or installation space savings.
  • the vehicle and in particular the vehicle components are operated according to the energy conversion mode.
  • the vehicle components lead the way Vehicle functions that work in opposite directions to one another.
  • energy in the vehicle can be converted into other forms of energy, which reduce and/or do not increase the charge level of the battery. It is ensured that the state of charge does not become greater than the maximum state of charge during regenerative braking.
  • the two vehicle components include a heating component of a vehicle interior and an air conditioning component of the vehicle interior.
  • the heating component causes the vehicle interior to warm up and the air conditioning component causes the vehicle interior to cool.
  • the two vehicle components include a system heating component for a vehicle device and a system air conditioning component for the vehicle device.
  • the system heating component causes the vehicle device to heat up and the system air conditioning component causes the vehicle device to cool.
  • the vehicle device can be any heatable and coolable device in the vehicle.
  • the two vehicle components include a compressor and a pressure relief valve.
  • the compressor causes a gas, for example air, to be compressed, and the pressure relief valve causes the gas compressed by the compressor to be released and thus an expansion of the gas.
  • the two vehicle components include the electric drive and a service brake.
  • the electric drive causes a torque that drives the vehicle and the service brake causes a torque that decelerates the vehicle.
  • Each of the aforementioned pairs of vehicle components therefore performs opposite work.
  • one or more of the aforementioned pairs may be operated to enable conversion of a quantity of energy through regenerative braking.
  • the pair or pairs of vehicle components can be determined in such a way that the conversion of the amount of energy through regenerative braking is optimal, i.e. the maximum charge state is not exceeded and/or an unnecessary amount of energy does not have to operate the vehicle components.
  • an operating point is determined for one of the vehicle components, and the energy conversion mode is determined such that the operating point is not optimal.
  • the vehicle component has an operating point defined by one or more operating parameters of the vehicle component, wherein the operating point can lead to more or less efficient operation of the vehicle component depending on the operating parameters. This makes it possible to operate the vehicle component in a targeted, inefficient manner in order to specifically create, improve or maintain the possibility of converting energy through regenerative braking. For example, it is possible to select an inefficient gear and/or operating point of the transmission and/or to achieve inefficient control of the electric drive.
  • the method further comprises the step of: determining a brake distribution parameter, wherein the brake distribution parameter comprises a distribution of the braking power to a service brake, to regenerative braking of the electric drive for charging the energy storage device and to regenerative braking of the electric drive to operate according to the energy conversion mode.
  • the brake distribution parameter therefore includes the information about how energy is to be converted through braking.
  • energy can be converted into thermal energy by the service brake or friction brake device, energy that can be stored in the energy storage device can be converted by the electric drive through regenerative braking and/or can be converted by the electric drive through regenerative braking to operate the vehicle components according to the energy conversion mode.
  • the brake distribution parameter indicates, for example, the ratio of a braking torque belonging to one of the aforementioned options to a total braking torque.
  • Dividing the braking power has the following advantages: By dividing the braking power, the necessary power consumption of the energy storage device is reduced. The charge state that can actually be achieved can therefore be set closer to the maximum charge state of the energy storage device. The reserve buffer of the state of charge of the energy storage device becomes smaller due to the braking power distribution, since less energy has to be absorbed by the battery.
  • the two vehicle components include an electrical braking resistor and a cooling system.
  • the electrical braking resistor is included set up to convert electrical energy into heat.
  • the electrical braking resistor causes the electrical braking resistor to heat up and the cooling system causes the electrical braking resistor to cool.
  • the cooling system can be a cooling system of the electric drive and/or an inverter. This eliminates the need for a cooling system specifically designed for the electrical braking resistor, which can lead to savings in costs, installation space and/or weight.
  • the method further comprises the step of: determining a brake distribution parameter, wherein the brake distribution parameter is a distribution of the braking power to a service brake, to regenerative braking of the electric drive for charging the energy storage device, to regenerative braking of the electric drive for operating according to the energy conversion mode and to regenerative braking of the electric drive for operating the braking resistor.
  • the brake distribution parameter is a distribution of the braking power to a service brake, to regenerative braking of the electric drive for charging the energy storage device, to regenerative braking of the electric drive for operating according to the energy conversion mode and to regenerative braking of the electric drive for operating the braking resistor.
  • the brake distribution parameter is a distribution of the braking power to a service brake, to regenerative braking of the electric drive for charging the energy storage device, to regenerative braking of the electric drive for operating according to the energy conversion mode and to regenerative braking of the electric drive for operating the braking resistor.
  • the determination of the state of charge variable and/or the determination of the energy conversion mode takes place as a function of position information relating to the position of the vehicle, in particular a commercial vehicle. Based on the position, it is possible to effectively estimate or determine how much energy can be converted by regenerative braking, taking into account the topography in an area surrounding the vehicle and/or along a route of the vehicle. If the vehicle is located on the map in a region where there are potentially steep gradients, a larger buffer of the charge level must be maintained. If the vehicle is located on the map in a region where it is flat, it may be possible to completely dispense with the charging status buffer.
  • the absolute height can be taken into account as a weighting factor.
  • a buffer of the state of charge is kept until the battery is fully charged in order to absorb the braking energy of the electric drive in accordance with a legally prescribed continuous braking capability in the energy storage device can.
  • the state of charge variable can be determined in particular as described in DE 10 2022 108 592.9;
  • the state of charge variable can be a value of a state of charge curve that exceeds the maximum state of charge, for example a maximum of the state of charge curve.
  • the method preferably has the step: outputting driver information depending on the energy conversion mode.
  • the driver information may include a warning for a driver of the vehicle, wherein the driver information indicates that operation of the vehicle components is necessary to create, improve or maintain the ability to convert energy through regenerative braking.
  • the driver information can be output visually and/or acoustically so that a user, in particular the driver, can perceive it.
  • Dispensing can be done by a vehicle-mounted dispensing device.
  • the energy conversion mode is determined such that braking of the vehicle, in particular the commercial vehicle, is possible until the vehicle, in particular the commercial vehicle, comes to a standstill.
  • the energy conversion mode is determined in such a way that regenerative braking by the electric drive can remain possible, overheating of the service brake is avoided and/or damage to the energy storage device is avoided.
  • the brake distribution parameter can be determined in such a way that the vehicle can be braked to a standstill.
  • a computer program and/or computer-readable medium comprises instructions which, when the program or instructions are executed by a computer, cause the computer to carry out the method described here and/or the steps of the method described here.
  • the computer program and/or computer-readable medium may include instructions to carry out steps of the method described as optional and/or advantageous in order to achieve a corresponding technical effect.
  • a control device for an electrically driven vehicle in particular a commercial vehicle, is provided with a maximum State of charge chargeable energy storage device and an electric drive capable of regenerative braking are provided, wherein the energy storage device can be charged during regenerative braking.
  • the control unit is set up to carry out the procedure described here.
  • the control device can be set up to carry out steps of the method described as optional and/or advantageous in order to achieve a corresponding technical effect.
  • an electrically driven vehicle in particular a commercial vehicle, is provided with an energy storage device that can be charged to a maximum charge state and an electric drive capable of regenerative braking and with a control device described here, wherein the energy storage device can be charged during regenerative braking.
  • the vehicle and/or the control unit can be set up to carry out steps of the method described as optional and/or advantageous in order to achieve a corresponding technical effect.
  • the electrically drivable vehicle in particular a commercial vehicle, preferably comprises a fuel cell and an electrical braking resistor. It was recognized that a vehicle with a fuel cell typically has a powerful cooling system. This eliminates the need for a cooling system specifically designed for the electrical braking resistor, which can lead to cost and/or weight savings.
  • FIG. 1 shows a schematic representation of a vehicle, in particular a commercial vehicle, according to an embodiment of the invention
  • FIG. 2 shows a schematic representation of a flowchart of a method according to an embodiment of the invention
  • FIG. 3 shows a schematic representation of a vehicle, in particular a commercial vehicle, according to a further embodiment of the invention
  • 4 shows an exemplary charge state curve of an energy storage device of a vehicle, in particular a commercial vehicle, according to an embodiment of the invention.
  • FIG 1 shows a schematic representation of a vehicle 100a, in particular commercial vehicle 100b, according to an embodiment of the invention.
  • vehicle 100a in particular commercial vehicle 100b
  • vehicle 100a, 100b is referred to below as vehicle 100a, 100b.
  • the vehicle 100a, 100b is set up to carry out method 1 described with reference to FIG.
  • the vehicle 100a, 100b has an energy storage device 20, an electric drive 21 and a control device 14.
  • the energy storage device 20 is set up to store and provide energy for operating the electric drive 21.
  • the electric drive 21 is set up to carry out regenerative braking NB.
  • charging 113 of the energy storage device 20 can take place.
  • a quantity and/or a proportion of energy stored or made available by the energy storage device 20 is characterized by a charge state SoC of the energy storage device 20.
  • the energy storage device 20 is set up to be regularly charged to a maximum charge state SoCM during operation by regenerative braking NB and/or when charging at and/or by a charging station external to the vehicle.
  • the maximum state of charge is defined by a state of charge SoC, in which the electric drive 21 can provide a maximum charging power through the regenerative braking NB.
  • the recuperation power of the electric drive 21 is limited in such a way that the energy storage device 20 can absorb less power than is provided by the recuperation of the electric drive 21, as with reference to Figure 5 (A) of the patent application that had not yet been published on the filing date
  • the energy storage device 20 and the control device 14 are connected to one another so that the control device 14 provides information relating to the state of charge SoC of the energy storage device 20 and information relating to the maximum state of charge SoCM of the energy storage device 20 can receive or query relevant information from the energy storage device 20.
  • the regenerative braking NB reduces potential and/or kinetic energy of the vehicle 100a, 100b and generates a braking effect with a braking power 112, the braking effect acting between a roadway 150 and a wheel 145 of the vehicle 100a, 100b.
  • the braking power 112 can also be achieved by a service brake 24 or a friction brake device of the vehicle 100a, 100b.
  • the vehicle 100a, 100b is arranged at a position 130 of the vehicle 100, the position 130 being illustrated by a cross.
  • the control device 14 is set up to receive position information 131 relating to the position 130 of the vehicle 100a, 100b.
  • the position 130 can be determined, for example, via a GPS device, a mobile phone network and/or a local network, with which the position information 131 is determined and transmitted to the control device 14.
  • the vehicle 100a, 100b has two vehicle components 22, 23.
  • the vehicle components 22, 23 are set up to carry out vehicle functions 116, 117 that work in opposite directions during regular operation of the vehicle 100a, 100b.
  • the vehicle functions 116, 117 are carried out simultaneously, the vehicle functions 116, 117 at least partially compensate for each other.
  • the two vehicle components 22, 23 include a heating component 22a of a vehicle interior 105 of the vehicle 100a, 100b and an air conditioning component 23a of the vehicle interior 105.
  • the vehicle interior 105 is a driver's cabin of the vehicle 100a, 100b.
  • the vehicle functions 116 of the heating component 22a causes the vehicle interior 105 to be heated and the vehicle functions 117 of the air conditioning component 23a causes the vehicle interior 105 to cool.
  • the two vehicle components 22, 23 include a system heating component 22b for a vehicle device 106 and a System air conditioning component 23b for the vehicle device 106.
  • the vehicle functions 116 of the system heating component 22b causes heating of the vehicle device 106 and the vehicle functions 117 of the system air conditioning component 23b causes cooling of the vehicle device 106.
  • the vehicle device 106 can be any vehicle-side device that can do this is set up to be heated and cooled.
  • the two vehicle components 22, 23 include a compressor 22c and a pressure relief valve 23c.
  • the vehicle functions 116 of the compressor 22c causes a compression of a gas and the vehicle functions 117 of the pressure relief valve 23c causes an expansion of the gas.
  • the two vehicle components 22, 23 include an electrical braking resistor 22d and a cooling system 23d.
  • the vehicle functions 116 of the electrical braking resistor 22d causes the electrical braking resistor 22d to heat up and the vehicle functions 117 of the cooling system 23d causes the electrical braking resistor 22d to cool.
  • the two vehicle components 22, 23 include the electric drive 21 and the service brake 24.
  • the vehicle functions 116 of the electric drive 21 causes a drive torque and the vehicle functions 117 of the service brake 24 causes a braking torque 24.
  • the two vehicle components 22, 23 are operated according to an energy conversion mode 115.
  • the energy conversion mode 115 is also described with reference to Figure 2. 1, the control unit 14 is connected to each of the two vehicle components 22, 23 in order to apply a control signal corresponding to the energy conversion mode 115 to the two vehicle components 22, 23 and thus to operate the two vehicle components 22, 23.
  • the control unit 14 is connected to the service brake 24 and the electric drive 21 in order to distribute a braking effect to the service brake 24 and the electric drive 21 with the regenerative braking NB in the event of a braking request according to a brake distribution parameter 119.
  • the control unit 14 is set up to output driver information 125 depending on the energy conversion mode 115.
  • the driver information 125 is output into the vehicle interior 105, for example via a vehicle-side output device, so that a driver (not shown) can perceive the driver information 125.
  • Figure 2 shows a schematic representation of a flow chart of a method 1 according to an embodiment of the invention.
  • Method 1 is a method 1 for an electrically driven vehicle 100a, 100b as described with reference to FIG. Figure 2 is described with reference to Figure 1.
  • the method 1 according to Figure 2 has the step: Determining S1 of a state of charge SoC of the energy storage device 20.
  • the state of charge SoC and / or information relating to the state of charge SoC is detected by the energy storage device 20 and transmitted to the control unit 14.
  • a state of charge variable 114 that can be achieved by regenerative braking NB is determined S2.
  • the performance of the electric drive 21 is taken into account, which can cause charging 113 of the energy storage device 20 by regenerative braking NB.
  • the state of charge variable 114 can be calculated assuming that the recuperation power that can be absorbed by the electric drive 21 through the regenerative braking NB is equal to the charging power for charging the energy storage device 20.
  • the charging power of the energy storage device 20 decreases in a saturation range at a high state of charge SoC, while the recuperation power can be defined by the ability of the electric drive 21 to convert energy, as with reference to Figure 5 (A) of the patent application DE 10, which has not yet been published on the filing date 2022 108 592.9 described.
  • the state of charge variable 114 is, for example, a value of a state of charge curve 401 that exceeds the maximum state of charge SoCM, for example a maximum 402 of the state of charge curve 401 or a difference between the maximum state of charge SoCM and the maximum 402 of the state of charge curve 401 (see Figure 4).
  • the determination S2 of the state of charge variable 114 takes place depending on the position 130 of the vehicle 100a, 100b, relevant position information 131.
  • the position information 131 can be used to draw conclusions about a possible downhill journey and thus about the potential energy of the vehicle 100a, 100b, which results in the potential amount of energy that can be converted by the regenerative braking NB.
  • Based on the position information 131 a position on the map, a speed limit, a traffic light, a roundabout, an intersection, an incline, a highway entrance and/or historical routes of other vehicles can be taken into account.
  • a worst-case route can thus be calculated, with which the energy consumption for the energy storage device 20 can be calculated in accordance with a legally required continuous braking capability.
  • the state of charge variable 114 that can be achieved by the regenerative braking NB can lead to a state of charge SoC that is smaller or larger than the maximum state of charge SoCM or corresponds to the maximum state of charge SoCM.
  • An energy conversion mode 115 is determined S3 depending on the state of charge SoC, the maximum state of charge SoCM, the state of charge variable 114 and two vehicle components 22, 23 of the vehicle 100a, 100b.
  • the two vehicle components 22, 23 are, as described with reference to FIG. 1, set up to carry out vehicle functions 116, 117 that work in opposite directions during regular operation of the vehicle 100a, 100b.
  • vehicle functions 116, 117 that work in opposite directions during regular operation of the vehicle 100a, 100b.
  • an amount of energy that can be determined by operating the vehicle components 22, 23 can be converted. So that the maximum state of charge SoCM is not exceeded, the determination S3 of the energy conversion mode 115 also takes place depending on the position information 131.
  • the amount of energy that can be converted by the regenerative braking NB can thus be matched to the amount of energy that can be converted by the operation of the vehicle components 22, 23.
  • the determination S3 of the energy conversion mode 115 is done such that the state of charge SoC does not exceed the maximum state of charge SoCM.
  • An operating point 118 is determined for one of the vehicle components 22, 23. For this purpose, a parameter and/or parameters are defined which determine the operation of the vehicle components 22, 23. The parameters have an influence on the efficiency of operating the vehicle components 22, 23.
  • the energy conversion mode 115 is determined such that the operating point 118 is non-optimal. For example, strong cooling may be less efficient than less strong cooling.
  • the energy conversion mode 115 is determined such that braking of the vehicle 100a, 100b is possible until the vehicle 100a, 100b comes to a standstill.
  • the amount of energy to be converted until the vehicle 100a, 100b comes to a standstill is determined taking into account the vehicle mass and vehicle speed.
  • the standstill of the vehicle 100a, 100b can be achieved by the regenerative braking NB and/or by the service brake 24.
  • a brake distribution parameter 119 is determined S3'.
  • the brake distribution parameter 119 includes one or more variables that distribute the braking power 112 to the service brake 24, to the regenerative braking NB of the electric drive 21 for charging 113 of the energy storage device 20, to the regenerative braking NB of the electric drive 21 to operate S4 of the vehicle 100a, 100b according to the energy conversion mode 115 and optionally to a regenerative braking NB of the electric drive 21 to operate S4 'of the braking resistor 22d.
  • the vehicle 100a, 100b is operated S4 according to the energy conversion mode 115.
  • the energy storage device 20 can be charged 113 by the regenerative braking NB and/or the two vehicle components 22, 23 can be operated.
  • Driver information 125 is output S5 depending on the energy conversion mode 115.
  • steps of the method 100 can be carried out in a different order than that shown in FIG. 2, simultaneously and/or permanently.
  • determining S1 of the SoC charge state can be done permanently.
  • Determining S3 of the energy conversion mode 115 and determining S3' of the brake distribution parameter 119 may be performed simultaneously and/or in reverse order.
  • the output S5 of the driver information 125 can take place at any time after determining S3 of the energy conversion mode 115.
  • Figure 3 shows a schematic representation of a vehicle 100a, in particular commercial vehicle 100b, according to a further embodiment of the invention.
  • the embodiment of the vehicle 100a, 100b according to FIG. 3 is described with reference to FIG. 1. The differences between Figures 1 and 3 are described.
  • the vehicle 100a, 100b according to FIG. 3 has a fuel cell 110 and an electrical braking resistor 23d.
  • the fuel cell 110 is electrically connected to the electric drive 21 and/or the energy storage device 20 to provide electrical energy (not shown).
  • the two vehicle components 22, 23 include an electrical braking resistor 22d and a cooling system 23d.
  • the cooling system 22d is a cooling system 22d for cooling the fuel cell 110. Due to the low system efficiency of fuel cell systems in the range of up to 50% to 60%, large amounts of waste heat are generated, which must be dissipated via the cooling system 23d. During long downhill journeys, the fuel cell system can be deactivated and the cooling system 23d can be used to cool the braking resistor 22d.
  • Figure 4 shows exemplary charge state curves 401 of an energy storage device 20 of a vehicle 100a, in particular commercial vehicle 100b.
  • Figure 4 is described with reference to Figures 1 to 3 and their description.
  • the state of charge curves 401 show the state of charge SoC of the energy storage device 20 depending on the time or the distance that the vehicle 100a, 100c drives.
  • the energy stored in the energy storage device 20 is converted into kinetic energy of the vehicle 100a, 100c by the electric drive 21. This means that the SoC charge level decreases depending on the time or distance.
  • Kinetic energy can be converted by recuperation or regenerative braking NB by the electric drive 21 and supplied to the energy storage device 20. This allows the state of charge SoC of the energy storage device 20 to increase.
  • the maximum capacity SoCM of the energy storage device 20 is indicated by a horizontal dotted line.
  • the state of charge curve 401a indicated by a dashed line is an imputed state of charge curve 401a, in which the state of charge curve 401a assumes values that exceed the maximum state of charge SoCM. This recognizes that the energy conversion mode 115 must be determined such that the state of charge SoC does not exceed the maximum state of charge SoCM.
  • the charge state curves 401b, 401c show two possible scenarios. According to the charge state curve 401b shown with a dotted line, the energy conversion mode 115 is determined accordingly at a first point 403a.
  • the state of charge SoC thus decreases at an initial point in time such that the maximum state of charge SoCM is not exceeded.
  • the energy conversion mode 115 is determined accordingly at the second point 403b.
  • the state of charge SoC thus decreases at a later point in time, for example at the start of a downhill journey in which the maximum state of charge SoCM would be exceeded, in such a way that the maximum state of charge SoCM is not exceeded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Verfahren (1) für ein elektrisch antreibbares Fahrzeug (100a), insbesondere Nutzfahrzeug (100b), mit einer auf einen maximalen Ladezustand (SoCM) aufladbaren Energiespeichervorrichtung (20) und einem zur Nutzbremsung (NB) fähigen elektrischen Antrieb (21), wobei die Energiespeichervorrichtung (20) während einer Nutzbremsung (NB) aufladbar ist, wobei das Verfahren (1) die Schritte aufweist: Ermitteln (S1) eines Ladezustands (SoC) der Energiespeichervorrichtung (20); Ermitteln (S2) einer durch eine Nutzbremsung (NB) erzielbaren Ladezustandsgröße (114); Bestimmen (S3) eines Energieumwandlungsmodus (115) in Abhängigkeit von dem Ladezustand (SoC), von dem maximalen Ladezustand (SoCM), von der Ladezustandsgröße (114) und von zwei Fahrzeugkomponenten (22, 23) des Fahrzeugs (100a), insbesondere Nutzfahrzeugs (100b), wobei die zwei Fahrzeugkomponenten (22, 23) dazu eingerichtet sind, in einem Regelbetrieb des Fahrzeugs (100a), insbesondere Nutzfahrzeugs (100b), zueinander gegensätzlich wirkende Fahrzeugfunktionen (116, 117) durchzuführen; und Betreiben (S4) des Fahrzeugs (100a), insbesondere Nutzfahrzeugs (100b) gemäß dem Energieumwandlungsmodus (115).

Description

Verfahren für ein elektrisch antreibbares Fahrzeug, insbesondere Nutzfahrzeuq, Computerprogramm und/oder computerlesbares Medium, Steuergerät, elektrisch antreibbares Fahrzeug, insbesondere Nutzfahrzeug
Die Erfindung betrifft ein Verfahren für ein elektrisch antreibbares Fahrzeug, insbesondere Nutzfahrzeug, mit einer auf einen maximalen Ladezustand aufladbaren Energiespeichervorrichtung und einem zur Nutzbremsung fähigen elektrischen Antrieb, wobei die Energiespeichervorrichtung während einer Nutzbremsung aufladbar ist. Die Erfindung betrifft ein Computerprogramm und/oder ein computerlesbares Medium, ein Steuergerät für ein elektrisch antreibbares Fahrzeug, insbesondere Nutzfahrzeug, und ein elektrisch antreibbares Fahrzeug, insbesondere Nutzfahrzeug, mit einer auf einen maximalen Ladezustand aufladbaren Energiespeichervorrichtung und einem zur Nutzbremsung fähigen elektrischen Antrieb, wobei die Energiespeichervorrichtung während einer Nutzbremsung aufladbar ist.
Eine Dauerbremse kann in einem Fahrzeug mit einer zulässigen Gesamtmasse von über 9 t beziehungsweise in einem Bus mit einer zulässigen Gesamtmasse von über 5,5 t gesetzlich vorgeschrieben sein. Ferner können elektrisch antreibbare Fahrzeuge (Electric Vehicle, EV; Battery Electric Vehicle, BEV), insbesondere Nutzfahrzeuge, einen Typ ll-A Test gemäß ‘Regelung Nr. 13 der Wirtschaftskommission für Europa der Vereinten Nationen (UNECE) — Einheitliche Vorschriften für die Typgenehmigung von Fahrzeugen der Klassen M, N, und O hinsichtlich der Bremsen [2016/194]' (ECE R 13) zu erfüllen haben. Dabei ist ein Halten einer Geschwindigkeit von 30 km / h über eine 6 km lange Gefällestrecke mit 7 % Steigung ohne Einsatz einer Reibbremse beziehungsweise Betriebsbremse gefordert. Darüber hinaus sind leistungsstarke Retarder für konventionelle Fahrzeuge vorgesehen, um einen Verschließ der Reibbremsen zu minimieren und längere Gefällestrecken bei höheren Geschwindigkeiten zu ermöglichen.
Der Typ ll-A Test kann von BEVs erfüllt werden, wenn der Batterieladezustand die Aufnahme der durch die Rekuperation rückgewonnenen Energie erlaubt. Um das Risiko zu vermeiden, dass die Energiespeichervorrichtung überladen und so geschädigt wird, werden softwaretechnische und/oder hardwaretechnische Maßnahmen ergriffen. Dabei kann jedoch bei einem hohen Ladezustand der Energiespeichervorrichtung eine Bremswirkung durch eine Nutzbremsung des elektrischen Antriebs entfallen. Um die Erfüllung des Typ ll-A Test zu garantieren, sind für BEVs somit gesonderte Maßnahmen zu implementieren: Option 1 umfasst eine Hinzunahme einerweiteren verschleißfreien Dauerbremse (Bremswiderstand, Retarder o.ä.), Option 2 umfasst eine Implementation eines Bremsleistungsschätzers (Brake Performance Estimators) der in zwei Warnschwellen einen Fahrer warnt, sofern eine Reibbremse bestimmte Verzögerungen nicht mehr garantieren kann. Option 3 sieht die Implementierung intelligenter Energiemanagement-Funktionen vor, die prädiktiv arbeiten und den Batterieladezustand gegebenenfalls in einem geeigneten Bereich halten.
Da die Betriebsbremse bei langen Bergabfahrten und beispielsweise voller Energiespeichervorrichtung beziehungsweise Batterie überhitzen würde, wird mittels des als Nutzbremse verwendeten elektrischen Antriebs zusätzlich gebremst. Dabei kann die Bremsenergie, die über den elektrischen Antrieb aufgenommen wird, beispielsweise über einen Bremswiderstand, einen sogenannten Brake Chopper, vernichtet werden. Alternativ ist es zulässig, mit technischen Maßnahmen eine Lösung zu implementieren, die vermeidet, dass ein Fahrzeug bei längerer Bergabfahrt die Verzögerungsfähigkeit beispielsweise durch eine überhitzte Reibbremse verliert.
Es ist denkbar, bereits beim Laden der Energiespeichervorrichtung an einer Ladestation einen Puffer vorzuhalten, also eine Differenz zwischen der maximalen Kapazität beziehungsweise des maximalen Ladezustands der Energiespeichervorrichtung und einem Ziel-Ladezustand einzustellen. DE 10 2020 001 782 A1 und die am Anmeldetag noch nicht veröffentlichte Patentanmeldung DE 10 2022 108 592.9 beschreiben je ein solches Verfahren zum Laden einer Traktionsbatterie eines batterieelektrischen Kraftfahrzeugs.
Alternativ oder zusätzlich zum Laden an einer Ladestation können während der Fahrt Maßnahmen ergriffen werden, um eine Bremsfähigkeit sicherzustellen. DE 10 2019 004 557 A1 offenbart ein Fahrzeug aufweisend einen als Widerstandselement zur Wandlung elektrischer Energie in Wärme verwendbaren elektrisch leitenden Fahrzeugteil. Das elektrisch antreibbare Fahrzeug umfasst eine generatorisch betreibbare elektrische Maschine, einen Speicher für elektrische Energie, einen elektrisch leitenden Fahrzeugteil und eine Steuervorrichtung. Der Speicher für elektrische Energie ist ausgebildet, elektrische Energie von der elektrischen Maschine aufzunehmen und/oder elektrische Energie an die elektrische Maschine abzugeben. Die Steuervorrichtung ist ausgebildet, bei Erfüllung mindestens einer vorbestimmten Energieabführbedingung im generatorischen Betrieb der elektrischen Maschine erzeugte elektrische Energie an den elektrisch leitenden Fahrzeugteil zur Umwandlung in thermische Energie abzuleiten, wobei der elektrisch leitende Fahrzeugteil ein Fahrzeugrahmen und/oder ein Fahrzeugaufbau und/oder eine Karosserie ist.
EP 2 648 936 B1 offenbart eine Batterieladestrategie, die, sollte die Batterie voll sein, die Rekuperationsenergie zum Kühlen eines Kühlraums im Fahrzeug verwendet. Das Fahrzeug umfasst eine Kältemaschinenanordnung und ein Hybridelektroantriebssystem mit einer Steuereinheit, einer Hauptleistungseinheit, einem Elektromotor-Generator und einem elektrischen Speichersystem, wobei die Steuereinheit so konfiguriert ist, dass sie, nach Registrierung einer Fahrzeugbremsanforderung, und nach Registrierung, dass das elektrische Speichersystem einen oberen Ladungszustand aufweist, oder das Potential hat, den oberen Ladungszustand mittels regenerativen Bremsens während einer vorhergesagten Bremsperiode zu erreichen, wenigstens einen Teil der mittels regenerativen Bremsens während einer auf die Bremsanforderung folgenden Bremsperiode zurückgewonnenen Energie verwendet, um die Kältemaschinenanordnung direkt anzutreiben. Die Steuereinheit umfasst ein Verteilungssystem, das eine zeitabhängige Verteilung der mittels regenerativen Bremsens zurückgewonnenen Energie auf wenigstens die Kältemaschinenanordnung und das elektrische Speichersystem bestimmt, wobei die Kältemaschinenanordnung einem Kältemaschinenanordnungs-Verteilungsparameter zugeordnet ist, und das elektrische Speichersystem einem Elektrospeichersystem-Verteilungsparameter zugeordnet ist.
EP 2 847 054 B1 offenbart ein Energiemanagementsystem für ein Hybridelektrofahrzeug. Das Energiemanagementsystem weist eine elektrische Maschine für den Fahrzeugzugantrieb und rekuperatives Bremsen, ein elektrisches Speichersystem zum Speichern von rekuperierter Energie, und wenigstens eine zusätzliche elektrische Fahrzeughilfsvorrichtung, die von der elektrischen Maschine verschieden ist, auf. Eine Energiemanagementsteuereinrichtung ist dazu ausgelegt, nach dem Feststellen eines Potentials für eine erhöhte Menge an rekuperierter Energie während einer vorhergesagten künftigen Bergabfahrt elektrische Leistung von dem elektrisches Speichersystem zu der wenigstens einen zusätzlichen elektrischen Hilfsvorrichtung zu leiten, zum Zwecke des Reduzierens des elektrischen Ladezustands des elektrisches Speichersystem derart, dass eine erhöhte Menge an Energie während der vorhergesagten künftigen Bergabfahrt rekuperiert und in dem elektrisches Speichersystem gespeichert werden kann.
Gemäß dem genannten Stand der Technik werden Maßnahmen ergriffen, um Energie derart umzuwandeln, damit weitere Energie durch eine Nutzbremsung umgewandelt werden kann. Jedoch können die genannten Maßnahmen weiter verbessert werden.
Der Erfindung liegt daher die Aufgabe zugrunde, den Stand der Technik zu bereichern und eine verbesserte Maßnahme zu ermöglichen, um eine Möglichkeit zur Umwandlung von Energie durch eine Nutzbremsung zu ermöglichen.
Die Aufgabe wird durch ein Verfahren nach Anspruch 1 sowie den Gegenständen nach den weiteren unabhängigen Ansprüchen gelöst. Die Unteransprüche geben bevorzugte Weiterbildungen der Erfindung an.
Gemäß einem Aspekt der Erfindung wird ein Verfahren für ein elektrisch antreibbares Fahrzeug, insbesondere Nutzfahrzeug, mit einer auf einen maximalen Ladezustand aufladbaren Energiespeichervorrichtung und einem zur Nutzbremsung fähigen elektrischen Antrieb bereitgestellt, wobei die Energiespeichervorrichtung während einer Nutzbremsung aufladbar ist. Das Verfahren weist die Schritte auf: Ermitteln eines Ladezustands der Energiespeichervorrichtung; Ermitteln einer durch eine Nutzbremsung erzielbaren Ladezustandsgröße; Bestimmen eines Energieumwandlungsmodus in Abhängigkeit von dem Ladezustand, von der Ladezustandsgröße, von dem maximalen Ladezustand und von zwei Fahrzeugkomponenten des Fahrzeugs, insbesondere Nutzfahrzeug, wobei die zwei Fahrzeugkomponenten dazu eingerichtet sind, in einem Regelbetrieb des Fahrzeugs, insbesondere Nutzfahrzeugs, zueinander gegensätzlich wirkende Fahrzeugfunktionen durchzuführen; und Betreiben des Fahrzeugs, insbesondere Nutzfahrzeugs gemäß dem Energieumwandlungsmodus.
Das Fahrzeug, insbesondere Nutzfahrzeug, wird im Folgenden als Fahrzeug bezeichnet. Die Energiespeichervorrichtung ist dazu eingerichtet, elektrische Energie zum Betreiben des elektrischen Antriebs bereitzustellen und/oder durch eine Nutzbremsung durch den elektrischen Antrieb geladen zu werden. Damit stellt sich während einer Fahrt zu einem Zeitpunkt der Ladezustand der Energiespeichervorrichtung ein, der ermittelt beziehungsweise abgefragt wird.
Die Ladezustandsgröße ist eine kalkulatorische Größe, die einen Ladezustand charakterisiert der durch eine Nutzbremsung hypothetisch erreicht werden kann, insbesondere indem die Energiespeichervorrichtung durch den elektrischen Antrieb bei einer Nutzbremsung geladen wird. Dazu kann eine Prognose der Nutzbremsung erfolgen, anhand derer die Ladezustandsgröße ermittelbar ist. Die Ladezustandsgröße kann berechnet werden unter der Annahme, dass die durch die Nutzbremsung durch den elektrischen Antrieb aufnehmbare Rekuperationsleistung gleich der Ladeleistung zum Laden der Energiespeichervorrichtung ist.
Der maximale Ladezustand ist kleiner oder gleich einer Kapazität der Energiespeichervorrichtung. Der maximale Ladezustand kann definiert werden durch eine Ladezustand, bei dem der elektrische Antrieb durch die Nutzbremsung eine maximale Ladeleistung bereitzustellen kann. Die Energiespeichervorrichtung ist dazu eingerichtet, im Betrieb regelmäßig auf den maximalen Ladezustand aufgeladen zu werden. Der maximale Ladezustand kann durch Verwendung der Energiespeichervorrichtung veränderlich sein.
Damit ein effizientes Umwandeln von Energie erfolgen kann, wird ein Energieumwandlungsmodus bestimmt. Der Energieumwandlungsmodus wird dabei abhängig von dem Ladezustand, dem maximalen Ladezustand sowie der Ladezustandsgröße und somit abhängig von der Nutzbremsung bestimmt. Bei einem mittleren und/oder niedrigen Ladezustand kann die Energiespeichervorrichtung genügend Energie aufnehmen, um die Bremsenergie für die Dauerbremsfähigkeit aufzunehmen. Damit liegt die Ladezustandsgröße unterhalb des maximalen Ladezustands der Energiespeichervorrichtung. Somit kann ein Vorhalt eines gewissen Puffers für den Ladezustand entbehrlich sein und eine Energieumwandlung durch die zueinander gegensätzlich wirkenden Fahrzeugfunktionen kann entbehrlich sein. Bei hohem Ladezustand ist der Ladestrom und/oder die Ladeleistung der Energiespeichervorrichtung beschränkt. Die Ladezustandsgröße kann oberhalb des maximalen Ladezustands der Energiespeichervorrichtung liegen und eine Energieumwandlung durch die zueinander gegensätzlich wirkenden Fahrzeugfunktionen kann angezeigt sein. Aus diesem Grund kann das Betreiben der Fahrzeugkomponenten notwendig sein. Somit kann das Bestimmen des Energieumwandlungsmodus derart erfolgen, dass der Ladezustand den maximalen Ladezustand nicht übersteigt. Der Energieumwandlungsmodus wird zusätzlich abhängig von den zwei Fahrzeugkomponenten bestimmt. Dabei kann eine der zwei Fahrzeugkomponenten der elektrische Antrieb sein oder beide der zwei Fahrzeugkomponenten können verschieden von dem elektrischen Antrieb sein. Zusätzlich können beide Fahrzeugkomponenten verschieden von der Energiespeichervorrichtung sein. Die beiden Fahrzeugkomponenten werden gemäß dem Energieumwandungsmodus derart bestimmt, dass die beiden Fahrzeugkomponenten in einem Regelbetrieb des Fahrzeugs, zueinander gegensätzlich wirkende Fahrzeugfunktionen durchführen. Mit anderen Worten sind die beiden Fahrzeugkomponenten dazu eingerichtet, entsprechend ihrer jeweiligen Funktion Arbeit derart zu verrichten, dass die Arbeit der beiden Fahrzeugkomponenten entgegengesetzt wirkt. Die beiden Fahrzeugkomponenten bewirken jeweils eine sich wenigstens teilweise kompensierende Leistung. Damit ist sichergestellt, dass Energie effizient derart umgewandelt wird, dass optional schnell und zuverlässig die Möglichkeit einer Umwandlung von Energie durch die Nutzbremsung geschaffen, verbessert oder erhalten wird. Ferner kann ein Einfluss auf das Fahrverhalten und/oder den Fahrkomfort vermieden werden, da sich die Fahrzeugfunktionen wenigstens teilweise kompensieren. Durch die Energieumwandlung kann ein elektrischer Bremswiderstand und/oder ein Kühlsystem dafür entbehrlich sein oder verhältnismäßig klein ausgelegt werden, was zu einer Kosten-, Gewichts- und/oder Bauraumersparnis führen kann.
Das Fahrzeug und insbesondere die Fahrzeugkomponenten werden gemäß dem Energieumwandlungsmodus betrieben. Die Fahrzeugkomponenten führen dabei entgegensetzt zueinander wirkende Fahrzeugfunktionen durch. Dabei kann Energie im Fahrzeug durch das Betreiben in andere Energieformen gewandelt werden, welche den Ladezustand der Batterie senken und/oder nicht heben. Es wird sichergestellt, dass bei der Nutzbremsung der Ladezustand nicht größer als der maximale Ladezustand wird.
Vorzugsweise umfassen die zwei Fahrzeugkomponenten eine Heizkomponente eines Fahrzeuginnenraums und eine Klimatisierungskomponente des Fahrzeuginnenraums. Dabei bewirkt die Heizkomponente eine Erwärmung des Fahrzeuginnenraums und die Klimatisierungskomponente bewirkt eine Kühlung des Fahrzeuginnenraums. Alternativ oder zusätzlich umfassen die zwei Fahrzeugkomponenten eine System-Heizungskomponente für eine Fahrzeugvorrichtung und eine System-Klimatisierungskomponente für die Fahrzeugvorrichtung. Dabei bewirkt die System-Heizungskomponente eine Erwärmung der Fahrzeugvorrichtung und die System-Klimatisierungskomponente bewirkt eine Kühlung der Fahrzeugvorrichtung. Die Fahrzeugvorrichtung kann dabei jede beheizbare und kühlbare Vorrichtung des Fahrzeugs sein. Alternativ oder zusätzlich umfassen die zwei Fahrzeugkomponenten einen Kompressor und ein Überdruckventil. Dabei bewirkt der Kompressor ein Verdichten eines Gases, beispielweise Luft, und das Überdruckventil bewirkt ein Ablassen des durch den Kompressor verdichteten Gases und somit eine Entspannung des Gases. Alternativ oder zusätzlich umfassen die zwei Fahrzeugkomponenten den elektrischen Antrieb und eine Betriebsbremse. Dabei bewirkt der elektrische Antrieb ein das Fahrzeug antreibendes Drehmoment und die Betriebsbremse bewirkt ein das Fahrzeug verzögerndes Drehmoment. Jedes der zuvor genannten Paare von Fahrzeugkomponenten verrichtet somit entgegengesetzt wirkende Arbeit. Gemäß dem Verfahren können eines oder mehrere der zuvor genannten Paare betrieben werden, um eine Umwandlung einer Menge von Energie durch eine Nutzbremsung zu ermöglichen. Dabei können das oder die Paare der Fahrzeugkomponenten derart bestimmt werden, dass die Umwandlung der Menge von Energie durch die Nutzbremsung optimal ist, d.h., der maximale Ladezustand nicht überschritten wird und/oder nicht unnötig viel Energie zum Betreiben der Fahrzeugkomponenten aufgewendet werden muss.
Vorzugsweise wird zu einer der Fahrzeugkomponenten ein Arbeitspunkt ermittelt, und der Energieumwandlungsmodus wird derart bestimmt, dass der Arbeitspunkt nicht-optimal ist. Dabei wurde erkannt, dass die Fahrzeugkomponente einen durch einen oder mehrere Betriebsparameter der Fahrzeugkomponente definierten Arbeitspunkt aufweist, wobei der Arbeitspunkt je nach Betriebsparameter zu einem mehr oder weniger effizienten Betreiben der Fahrzeugkomponente führen kann. Damit ist ein gezieltes ineffizientes Betreiben der Fahrzeugkomponente möglich, um gezielt die Möglichkeit der Umwandlung von Energie durch die Nutzbremsung zu schaffen, zu verbessern oder zu erhalten. Beispielsweise ist es möglich, einen ineffizienten Gang und/oder Betriebspunkt des Getriebes zu wählen, und/oder eine ineffiziente Ansteuerung des elektrischen Antriebs zu erzielen.
Vorzugsweise weist das Verfahren ferner den Schritt auf: Bestimmen eines Bremsverteilungsparameters, wobei der Bremsverteilungsparameter eine Verteilung der Bremsleistung auf eine Betriebsbremse, auf eine Nutzbremsung des elektrischen Antriebs zum Laden der Energiespeichervorrichtung und auf eine Nutzbremsung des elektrischen Antriebs zum Betreiben gemäß dem Energieumwandlungsmodus umfasst. Der Bremsverteilungsparameter umfasst somit die Information, wie Energie durch eine Bremsung umzuwandeln ist. Durch eine Bremsung kann Energie durch die Betriebsbremse beziehungsweise Reibbremsvorrichtung in thermische Energie umgewandelt werden, durch den elektrischen Antrieb durch Nutzbremsung in der Energiespeichervorrichtung speicherbare Energie umgewandelt werden und/oder durch den elektrischen Antrieb durch Nutzbremsung zum Betreiben der Fahrzeugkomponenten gemäß dem Energieumwandlungsmodus umgewandelt werden. Der Bremsverteilungsparameter gibt beispielsweise das Verhältnis eines zu einer der zuvor genannten Möglichkeiten gehörigen Bremsmoments zu einem Gesamtbremsmoment an. Die Aufteilung der Bremsleistung hat folgende Vorteile: Durch eine Aufteilung der Bremsleistung wird die notwendige Leistungsaufnahme der Energiespeichervorrichtung verringert. Somit kann der tatsächlich zu erreichende Ladezustand näher an den maximalen Ladezustand der Energiespeichervorrichtung gelegt werden. Der vorgehaltene Puffer des Ladezustands der Energiespeichervorrichtung wird durch die Bremsleistungsaufteilung kleiner, da weniger Energie von der Batterie aufgenommen werden muss.
Vorzugsweise umfassen die zwei Fahrzeugkomponenten einen elektrischen Bremswiderstand und ein Kühlsystem. Der elektrische Bremswiderstand ist dazu eingerichtet, elektrische Energie in Wärme umzuwandeln. Dabei bewirkt der elektrische Bremswiderstand eine Erwärmung des elektrischen Bremswiderstands und das Kühlsystem bewirkt eine Kühlung des elektrischen Bremswiderstands. Damit kann der elektrische Bremswiderstand vergleichsweise klein und einfach ausgeführt werden, da das Abführen von von dem elektrischen Bremswiderstand erzeugter Wärme durch das Kühlsystem effektiv möglich ist. Das Kühlsystem kann ein Kühlsystem des elektrischen Antriebs und/oder eines Inverters sein. Damit ist ein speziell für den elektrischen Bremswiderstand vorgesehenes Kühlsystem entbehrlich, was zu einer Kosten-, Bauraum- und/oder Gewichtsersparnis führen kann.
Vorzugsweise weist das Verfahren ferner den Schritt auf: Bestimmen eines Bremsverteilungsparameters, wobei der Bremsverteilungsparameter eine Verteilung der Bremsleistung auf eine Betriebsbremse, auf eine Nutzbremsung des elektrischen Antriebs zum Laden der Energiespeichervorrichtung, auf eine Nutzbremsung des elektrischen Antriebs zum Betreiben gemäß dem Energieumwandlungsmodus und auf eine Nutzbremsung des elektrischen Antriebs zum Betreiben des Bremswiderstands umfasst. Dabei wird zusätzlich zu dem oben beschriebenen Bremsverteilungsparameter berücksichtigt, dass durch eine Bremsung Energie in Wärme des elektrischen Bremswiderstands umgewandelt werden kann.
Vorzugsweise erfolgt das Ermitteln der Ladezustandsgröße und/oder das Bestimmen des Energieumwandlungsmodus in Abhängigkeit von einer die Position des Fahrzeugs, insbesondere Nutzfahrzeugs, betreffender Positionsinformation. Anhand der Position kann effektiv unter Berücksichtigung der Topographie in einer Umgebung des Fahrzeugs und/oder entlang einer Route des Fahrzeugs abgeschätzt beziehungsweise ermittelt werden, wieviel Energie durch die Nutzbremsung umwandelbar ist. Befindet sich das Fahrzeug auf der Karte in einer Region, wo es potenziell starke Gefällestrecken gibt, muss ein größerer Puffer des Ladezustands vorgehalten werden. Befindet sich das Fahrzeug auf der Karte in einer Region, wo es flach ist, kann eventuell komplett auf den Puffer des Ladezustands verzichtet werden. Optional kann die absolute Höhe als Gewichtungsfaktor berücksichtigt werden. Alternativ oder zusätzlich wird Puffer des Ladezustands bis zur vollgeladenen Batterie vorgehalten, um die Bremsenergie des elektrischen Antriebs gemäß einer gesetzlich vorgeschriebenen Dauerbremsfähigkeit in der Energiespeichervorrichtung aufnehmen zu können. Die Ladezustandsgröße kann insbesondere wie in DE 10 2022 108 592.9 beschrieben ermittelt werden; dabei kann die Ladezustandsgröße ein Wert einer Ladezustandskurve sein, der den maximalen Ladezustand übersteigt, beispielsweise ein Maximum der Ladezustandskurve.
Vorzugsweise weist das Verfahren den Schritt auf: Ausgeben einer Fahrerinformation in Abhängigkeit von dem Energieumwandlungsmodus. Die Fahrerinformation kann eine Warnung für einen Fahrer des Fahrzeugs umfassen, wobei die Fahrerinformation angibt, dass das Betreiben der Fahrzeugkomponenten notwendig ist, um die Möglichkeit der Umwandlung von Energie durch die Nutzbremsung zu schaffen, zu verbessern oder zu erhalten. Die Fahrerinformation kann visuell und/oder akustisch für einen Nutzer, insbesondere den Fahrer, wahrnehmbar ausgegeben werden. Das Ausgeben kann durch eine fahrzeugseitige Ausgabevorrichtung erfolgen.
Vorzugsweise wird der Energieumwandlungsmodus derart bestimmt, dass eine Bremsung des Fahrzeugs, insbesondere des Nutzfahrzeugs, bis zu einem Stillstand des Fahrzeugs, insbesondere des Nutzfahrzeugs, möglich ist. Dabei wird der Energieumwandlungsmodus derart bestimmt, dass eine Nutzbremsung durch den elektrischen Antrieb möglich bleiben kann, ein Überhitzen der Betriebsbremse vermieden wird und/oder eine Schädigung der Energiespeichervorrichtung vermieden wird. Alternativ oder zusätzlich kann dafür der Bremsverteilungsparameter derart bestimmt werden, dass die Bremsung des Fahrzeugs bis zum Stillstand möglich ist.
Gemäß einem weiteren Aspekt der Erfindung wird ein Computerprogramm und/oder computerlesbares Medium bereitgestellt. Das Computerprogramm und/oder computerlesbare Medium umfasst Befehle, die bei der Ausführung des Programms bzw. der Befehle durch einen Computer diesen veranlassen, das hier beschriebene Verfahren und/oder die Schritte des hier beschriebenen Verfahrens durchzuführen. Das Computerprogramm und/oder computerlesbare Medium kann Befehle umfassen, um als optional und/oder vorteilhaft beschriebene Schritte des Verfahrens durchzuführen, um einen entsprechenden technischen Effekt zu erzielen.
Gemäß einem weiteren Aspekt der Erfindung wird ein Steuergerät für ein elektrisch antreibbares Fahrzeug, insbesondere Nutzfahrzeug, mit einer auf einen maximalen Ladezustand aufladbaren Energiespeichervorrichtung und einem zur Nutzbremsung fähigen elektrischen Antrieb bereitgestellt, wobei die Energiespeichervorrichtung während einer Nutzbremsung aufladbar ist. Das Steuergerät ist dazu eingerichtet, das hier beschriebene Verfahren durchzuführen. Das Steuergerät kann dazu eingerichtet sein, als optional und/oder vorteilhaft beschriebene Schritte des Verfahrens durchzuführen, um einen entsprechenden technischen Effekt zu erzielen.
Gemäß einem weiteren Aspekt der Erfindung wird ein elektrisch antreibbares Fahrzeug, insbesondere Nutzfahrzeug, mit einer auf einen maximalen Ladezustand aufladbaren Energiespeichervorrichtung und einem zur Nutzbremsung fähigen elektrischen Antrieb und mit einem hier beschriebenen Steuergerät bereitgestellt, wobei die Energiespeichervorrichtung während einer Nutzbremsung aufladbar ist. Das Fahrzeug und/oder das Steuergerät kann dazu eingerichtet sein, als optional und/oder vorteilhaft beschriebene Schritte des Verfahrens durchzuführen, um einen entsprechenden technischen Effekt zu erzielen.
Vorzugsweise umfasst das elektrisch antreibbare Fahrzeug, insbesondere Nutzfahrzeug, eine Brennstoffzelle und einen elektrischen Bremswiderstand. Dabei wurde erkannt, dass ein Fahrzeug mit einer Brennstoffzelle ein typischerweise leistungsfähiges Kühlsystem aufweist. Damit ist ein speziell für den elektrischen Bremswiderstand vorgesehenes Kühlsystem entbehrlich, was zu einer Kosten- und/oder Gewichtsersparnis führen kann.
Weitere Vorteile und Merkmale der Erfindung sowie deren technische Effekte ergeben sich aus den Figuren und der Beschreibung der in den Figuren gezeigten bevorzugten Ausführungsformen. Dabei zeigen
Fig. 1 eine schematische Darstellung eines Fahrzeugs, insbesondere Nutzfahrzeugs, gemäß einer Ausführungsform der Erfindung;
Fig. 2 eine schematische Darstellung eines Ablaufschemas eines Verfahrens gemäß einer Ausführungsform der Erfindung;
Fig. 3 eine schematische Darstellung eines Fahrzeugs, insbesondere Nutzfahrzeugs, gemäß einer weiteren Ausführungsform der Erfindung; und Fig. 4 eine exemplarische Ladezustandskurven einer Energiespeichervorrichtung eines Fahrzeugs, insbesondere Nutzfahrzeugs, gemäß einer Ausführungsform der Erfindung.
Figur 1 zeigt eine schematische Darstellung eines Fahrzeugs 100a, insbesondere Nutzfahrzeugs 100b, gemäß einer Ausführungsform der Erfindung. Das Fahrzeug 100a, insbesondere Nutzfahrzeug 100b, wird im Folgenden als Fahrzeug 100a, 100b bezeichnet.
Das Fahrzeug 100a, 100b ist dazu eingerichtet, dass mit Bezug zu Figur 2 beschriebene Verfahren 1 durchzuführen. Dafür weist das Fahrzeug 100a, 100b eine Energiespeichervorrichtung 20, einen elektrischen Antrieb 21 und ein Steuergerät 14 auf.
Die Energiespeichervorrichtung 20 ist dazu eingerichtet, Energie zum Betreiben des elektrischen Antriebs 21 zu speichern und bereitzustellen. Der elektrische Antrieb 21 ist dazu eingerichtet, eine Nutzbremsung NB durchzuführen. Bei der Nutzbremsung NB kann ein Laden 113 der Energiespeichervorrichtung 20 erfolgen. Eine Menge und/oder ein Anteil von durch die Energiespeichervorrichtung 20 gespeicherter bzw. bereitstellbarer Energie wird durch einen Ladezustand SoC der Energiespeichervorrichtung 20 charakterisiert. Die Energiespeichervorrichtung 20 ist dazu eingerichtet, im Betrieb regelmäßig durch eine Nutzbremsung NB und/oder beim Laden an einer und/oder durch eine fahrzeugexterne Ladestation auf einen maximale Ladezustand SoCM aufgeladen zu werden. Der maximale Ladezustand ist definiert durch eine Ladezustand SoC, bei dem der elektrische Antrieb 21 durch die Nutzbremsung NB eine maximale Ladeleistung bereitzustellen kann. Denn typischerweise ist in einem Sättigungsbereich der Energiespeichervorrichtung 20 bei einem hohen Ladezustand SoC die Rekuperationsleistung des elektrischen Antriebs 21 derart eingeschränkt, dass die Energiespeichervorrichtung 20 weniger Leistung aufnehmen kann, als durch Re- kuperation von dem elektrischen Antrieb 21 bereitgestellt wird, wie mit Bezug zu Figur 5 (A) der am Anmeldetag noch nicht veröffentlichte Patentanmeldung
DE 10 2022 108 592.9 beschrieben. Die Energiespeichervorrichtung 20 und das Steuergerät 14 sind miteinander verbunden, damit das Steuergerät 14 eine den Ladezustand SoC der Energiespeichervorrichtung 20 betreffende Informationen sowie eine den maximalen Ladezustand SoCM der Energiespeichervorrichtung 20 betreffende Informationen von der Energiespeichervorrichtung 20 empfangen bzw. abfragen kann.
Durch die Nutzbremsung NB wird potentielle und/oder kinetische Energie des Fahrzeugs 100a, 100b vermindert und eine Bremswirkung mit einer Bremsleistung 112 erzeugt, wobei die Bremswirkung zwischen einer Fahrbahn 150 und einem Rad 145 des Fahrzeugs 100a, 100b wirkt. Die Bremsleistung 112 kann ebenfalls von einer Betriebsbremse 24 bzw. einer Reibbremsvorrichtung des Fahrzeugs 100a, 100b erzielt werden.
Das Fahrzeug 100a, 100b ist an einer Position 130 des Fahrzeugs 100 angeordnet, wobei die Position 130 durch ein Kreuz illustriert ist. Das Steuergerät 14 ist dazu eingerichtet, eine die Position 130 des Fahrzeugs 100a, 100b betreffende Positionsinformation 131 zu empfangen. Die Position 130 kann beispielsweise über eine GPS- Vorrichtung, ein Mobilfunknetz und/oder ein lokales Netzwerk ermittelt werden, womit die Positionsinformation 131 bestimmt und an das Steuergerät 14 übermittelt wird.
Das Fahrzeug 100a, 100b weist zwei Fahrzeugkomponenten 22, 23 auf. Die Fahrzeugkomponenten 22, 23 sind dazu eingerichtet, in einem Regelbetrieb des Fahrzeugs 100a, 100b, zueinander gegensätzlich wirkende Fahrzeugfunktionen 116, 117 durchzuführen. Bei einem gleichzeitigen Durchführen der Fahrzeugfunktionen 116, 117 kompensieren sich die Fahrzeugfunktionen 116, 117 wenigstens teilweise gegenseitig.
Die zwei Fahrzeugkomponenten 22, 23 umfassen eine Heizkomponente 22a eines Fahrzeuginnenraums 105 des Fahrzeugs 100a, 100b und eine Klimatisierungskomponente 23a des Fahrzeuginnenraums 105. Der Fahrzeuginnenraum 105 ist eine Fahrerkabine des Fahrzeugs 100a, 100b. Die Fahrzeugfunktionen 116 der Heizkomponente 22a bewirkt eine Erwärmung des Fahrzeuginnenraums 105 und die Fahrzeugfunktionen 117 der Klimatisierungskomponente 23a bewirkt eine Kühlung des Fahrzeuginnenraums 105.
In einer anderen Ausführungsform umfassen die zwei Fahrzeugkomponenten 22, 23 eine System-Heizungskomponente 22b für eine Fahrzeugvorrichtung 106 und eine System-Klimatisierungskomponente 23b für die Fahrzeugvorrichtung 106. Die Fahrzeugfunktionen 116 der System-Heizkomponente 22b bewirkt eine Erwärmung der Fahrzeugvorrichtung 106 und die Fahrzeugfunktionen 117 der System-Klimatisierungskomponente 23b bewirkt eine Kühlung der Fahrzeugvorrichtung 106. Die Fahrzeugvorrichtung 106 kann jede fahrzeugseitige Vorrichtung sein, die dazu eingerichtet ist, beheizt und gekühlt zu werden.
In einer anderen Ausführungsform umfassen die zwei Fahrzeugkomponenten 22, 23 einen Kompressor 22c und ein Überdruckventil 23c. Die Fahrzeugfunktionen 116 des Kompressors 22c bewirkt eine Verdichtung eines Gases und die Fahrzeugfunktionen 117 des Überdruckventils 23c bewirkt eine Entspannung des Gases.
In einer anderen Ausführungsform umfassen die zwei Fahrzeugkomponenten 22,23 einen elektrischen Bremswiderstand 22d und ein Kühlsystem 23d. Die Fahrzeugfunktionen 116 des elektrischen Bremswiderstands 22d bewirkt eine Erwärmung des elektrischen Bremswiderstands 22d und die Fahrzeugfunktionen 117 des Kühlsystems 23d bewirkt eine Kühlung des elektrischen Bremswiderstands 22d.
In einer nicht-gezeigten Ausführungsform umfassen die zwei Fahrzeugkomponenten 22, 23 den elektrischen Antrieb 21 und die Betriebsbremse 24. Die Fahrzeugfunktionen 116 des elektrischen Antriebs 21 bewirkt ein Antriebsmoment und die Fahrzeugfunktionen 117 der Betriebsbremse 24 bewirkt ein Bremsmoment 24.
Die zwei Fahrzeugkomponenten 22, 23 werden gemäß einem Energieumwandlungsmodus 115 betrieben. Der Energieumwandlungsmodus 115 ist auch mit Bezug zu Figur 2 beschrieben. Wie in Figur 1 gezeigt ist das Steuergerät 14 mit jeder der zwei Fahrzeugkomponenten 22, 23 verbunden, um die zwei Fahrzeugkomponenten 22, 23 mit einem dem Energieumwandlungsmodus 115 entsprechenden Steuersignal zu beaufschlagen und so die zwei Fahrzeugkomponenten 22, 23 zu betreiben.
Das Steuergerät 14 ist mit der Betriebsbremse 24 und dem elektrischen Antrieb 21 verbunden, um bei einer Bremsanforderung gemäß einem Bremsverteilungsparameter 119 eine Bremswirkung auf die Betriebsbremse 24 und den elektrischen Antrieb 21 mit der Nutzbremsung NB zu verteilen. Das Steuergerät 14 ist dazu eingerichtet, eine Fahrerinformation 125 in Abhängigkeit von dem Energieumwandlungsmodus 115 auszugeben. Die Fahrerinformation 125 wird beispielsweise über eine fahrzeugseitige Ausgabevorrichtung in den Fahrzeuginnenraum 105 ausgegeben, damit ein Fahrer (nicht gezeigt) die Fahrerinformation 125 wahrnehmen kann.
Figur 2 zeigt eine schematische Darstellung eines Ablaufschemas eines Verfahrens 1 gemäß einer Ausführungsform der Erfindung. Das Verfahren 1 ist ein Verfahren 1 für ein elektrisch antreibbares Fahrzeug 100a, 100b wie mit Bezug zu Figur 1 beschrieben. Figur 2 wird unter Bezugnahme zu Figur 1 beschrieben.
Das Verfahren 1 gemäß Figur 2 weist den Schritt auf: Ermitteln S1 eines Ladezustands SoC der Energiespeichervorrichtung 20. Der Ladezustand SoC und/oder eine den Ladezustand SoC betreffende Information wird von der Energiespeichervorrichtung 20 erfasst und an das Steuergerät 14 übermittelt.
Es erfolgt ein Ermitteln S2 einer durch eine Nutzbremsung NB erzielbaren Ladezustandsgröße 114. Dazu wird unter anderem die Leistungsfähigkeit des elektrischen Antriebs 21 berücksichtigt, der durch die Nutzbremsung NB ein Laden 113 der Energiespeichervorrichtung 20 bewirken kann. Die Ladezustandsgröße 114 kann berechnet werden unter der Annahme, dass die durch die Nutzbremsung NB durch den elektrischen Antrieb 21 aufnehmbare Rekuperationsleistung gleich der Ladeleistung zum Laden der Energiespeichervorrichtung 20 ist. Typischerweise nimmt die Ladeleistung der Energiespeichervorrichtung 20 in einem Sättigungsbereich bei hohem Ladezustand SoC ab, während die Rekuperationsleistung durch die Fähigkeit des elektrischen Antriebs 21 zur Energieumwandlung definiert werden kann, wie mit Bezug zu Figur 5 (A) der am Anmeldetag noch nicht veröffentlichte Patentanmeldung DE 10 2022 108 592.9 beschrieben. Die Ladezustandsgröße 114 ist beispielsweise ein Wert einer Ladezustandskurve 401 , der den maximalen Ladezustand SoCM übersteigt, beispielsweise ein Maximum 402 der Ladezustandskurve 401 oder eine Differenz zwischen dem maximalen Ladezustand SoCM und dem Maximum 402 der Ladezustandskurve 401 (siehe Figur 4). Das Ermitteln S2 der Ladezustandsgröße 114 erfolgt in Abhängigkeit von einer die Position 130 des Fahrzeugs 100a, 100b, betreffender Positionsinformation 131. Durch die Positionsinformation 131 kann auf eine mögliche Bergabfahrt und somit auf eine potentielle Energie des Fahrzeugs 100a, 100b geschlossen werden, woraus sich die potentielle Menge der durch die Nutzbremsung NB umwandelbaren Energie ergibt. Anhand der Positionsinformation 131 kann eine Position auf Karte, eine Geschwindigkeitsbeschränkung, eine Ampel, ein Kreisverkehr, eine Kreuzung, eine Steigung, eine Autobahnauffahrt und/oder historische Fahrstrecken anderer Fahrzeuge mitberücksichtigt werden. Somit kann eine Worst-Case Route berechnet werden, mit der die Energieaufnahme für die Energiespeichervorrichtung 20 gemäß einer gesetzlich geforderten Dauerbremsfähigkeit berechnet werden kann. Beim Laden an einer Ladestation kann dafür die Batterie nicht komplett vollgeladen werden. Es wird ein Puffer des Ladezustands SoC gemäß einer berechneten Energie der Energiespeichervorrichtung 20 bis zur vollgeladenen Energiespeichervorrichtung 20 freigehalten. Beim Fahren werden die Fahrzeugkomponenten 22, 23 ineffizient angesteuert, um Energie umzuwandeln, bis der Ladezustand SoC hinreichend für die berechnete Energie ist. Die durch die Nutzbremsung NB erzielbare Ladezustandsgröße 114 kann zu einem Ladezustand SoC führen, der kleiner oder größer als der maximale Ladezustand SoCM ist oder dem maximalen Ladezustand SoCM entspricht.
Es erfolgt ein Bestimmen S3 eines Energieumwandlungsmodus 115 in Abhängigkeit von dem Ladezustand SoC, von dem maximalen Ladezustand SoCM, von der Ladezustandsgröße 114 und von zwei Fahrzeugkomponenten 22, 23 des Fahrzeugs 100a, 100b. Die zwei Fahrzeugkomponenten 22, 23 sind wie mit Bezug zu Figur 1 beschrieben dazu eingerichtet, in einem Regelbetrieb des Fahrzeugs 100a, 100b, zueinander gegensätzlich wirkende Fahrzeugfunktionen 116, 117 durchzuführen. Je nach Wahl der Fahrzeugkomponenten 22, 23 und/oder der Fahrzeugfunktionen 116, 117 kann eine durch den Betrieb der Fahrzeugkomponenten 22, 23 bestimmbare Menge von Energie umgewandelt werden. Damit der maximale Ladezustand SoCM nicht überstiegen wird, erfolgt das Bestimmen S3 des Energieumwandlungsmodus 115 auch in Abhängigkeit von der Positionsinformation 131 . Damit kann die durch die Nutzbremsung NB umwandelbare Menge an Energie auf die durch den Betrieb der Fahrzeugkomponenten 22, 23 umwandelbare Menge von Energie abgestimmt werden. Das Bestimmen S3 des Energieumwandlungsmodus 115 erfolgt derart, dass der Ladezustand SoC den maximalen Ladezustand SoCM nicht übersteigt. Zu einen der Fahrzeugkomponenten 22, 23 wird ein Arbeitspunkt 118 ermittelt. Dazu wird ein Parameter und/oder werden Parameter definiert, der und/oder die den Betrieb der Fahrzeugkomponenten 22, 23 bestimmen. Die Parameter haben einen Einfluss auf die Effizienz des Betreibens der Fahrzeugkomponenten 22, 23. Der Energieumwandlungsmodus 115 wird derart bestimmt, dass der Arbeitspunkt 118 nichtoptimal ist. Beispielsweise ist ein starkes Kühlen unter Umständen weniger effizient als ein weniger starkes Kühlen.
Der Energieumwandlungsmodus 115 wird derart bestimmt, dass eine Bremsung des Fahrzeugs 100a, 100b, bis zu einem Stillstand des Fahrzeugs 100a, 100b, möglich ist. Dabei wird unter Berücksichtigung der Fahrzeugmasse und Fahrzeuggeschwindigkeit die Menge der bis zum Stillstand des Fahrzeugs 100a, 100b umzuwandelnden Energie ermittelt. Der Stillstand des Fahrzeugs 100a, 100b kann durch die Nutzbremsung NB und/oder durch die Betriebsbremse 24 erzielt werden.
Es erfolgt ein Bestimmen S3‘ eines Bremsverteilungsparameters 119. Der Bremsverteilungsparameter 119 umfasst dabei eine oder mehrere Größen, die eine Verteilung der Bremsleistung 112 auf die Betriebsbremse 24, auf die Nutzbremsung NB des elektrischen Antriebs 21 zum Laden 113 der Energiespeichervorrichtung 20, auf die Nutzbremsung NB des elektrischen Antriebs 21 zu einem Betreiben S4 des Fahrzeugs 100a, 100b gemäß dem Energieumwandlungsmodus 115 und optional auf eine Nutzbremsung NB des elektrischen Antriebs 21 zum Betreiben S4‘ des Bremswiderstands 22d definiert.
Es erfolgt ein Betreiben S4 des Fahrzeugs 100a, 100b gemäß dem Energieumwandlungsmodus 115. Dabei kann ein Laden 113 der Energiespeichervorrichtung 20 durch die Nutzbremsung NB und/oder ein Betreiben der zwei Fahrzeugkomponenten 22, 23 erfolgen.
Es erfolgt ein Ausgeben S5 einer Fahrerinformation 125 in Abhängigkeit von dem Energieumwandlungsmodus 115. Der Fachmann erkennt, dass Schritte des Verfahren 100 in einer anderen als der in Figur 2 gezeigten Reihenfolge, simultan und/oder dauerhaft durchgeführt werden können. Beispielweise kann das Ermitteln S1 des Ladezustands SoC dauerhaft erfolgen. Das Bestimmen S3 des Energieumwandlungsmodus 115 und das Bestimmen S3‘ des Bremsverteilungsparameters 119 können simultan und/oder in umgekehrter Reihenfolge durchgeführt werden. Das Ausgeben S5 der Fahrerinformation 125 kann jederzeit nach dem Bestimmen S3 des Energieumwandlungsmodus 115 erfolgen.
Figur 3 zeigt eine schematische Darstellung eines Fahrzeugs 100a, insbesondere Nutzfahrzeugs 100b, gemäß einer weiteren Ausführungsform der Erfindung. Die Ausführungsform des Fahrzeugs 100a, 100b gemäß Figur 3 wird unter Bezugnahme u Figur 1 beschrieben. Dabei werden die Unterschiede zwischen den Figuren 1 und 3 beschrieben.
Das Fahrzeug 100a, 100b, gemäß Figur 3 weist eine Brennstoffzelle 110 und einen elektrischen Bremswiderstand 23d umfasst. Die Brennstoffzelle 110 ist mit dem elektrischen Antrieb 21 und/oder der Energiespeichervorrichtung 20 elektrisch verbunden, um elektrische Energie bereitzustellen (nicht gezeigt).
Die zwei Fahrzeugkomponenten 22,23 umfassen einen elektrischen Bremswiderstand 22d und ein Kühlsystem 23d. Das Kühlsystem 22d ist dabei ein Kühlsystem 22d zum Kühlen der Brennstoffzelle 110. Aufgrund des niedrigen Systemwirkungsgrad von Brennstoffzellensystemen im Bereich von bis zu 50 % bis 60 % fallen große Mengen an Abwärme an, die über das Kühlsystem 23d abgeführt werden müssen. Bei langen Bergabfahrten kann das Brennstoffzellensystem deaktiviert werden und das Kühlsystem 23d zum Kühlen des Bremswiderstandes 22d verwendet werden.
Figur 4 zeigt exemplarische Ladezustandskurven 401 einer Energiespeichervorrichtung 20 eines Fahrzeugs 100a, insbesondere Nutzfahrzeugs 100b. Figur 4 wird unter Bezugnahme auf Figure 1 bis 3 sowie deren Beschreibung beschrieben.
Die Ladezustandskurven 401 zeigen den Ladezustand SoC der Energiespeichervorrichtung 20 in Abhängigkeit von der zeit bzw. der Strecke, die das Fahrzeug 100a, 100c fährt. Beim Fahren wird die in der Energiespeichervorrichtung 20 gespeicherte Energie durch den elektrischen Antrieb 21 in kinetische Energie des Fahrzeugs 100a, 100c umgewandelt. Damit sinkt der Ladezustand SoC in Abhängigkeit von der Zeit bzw. der Strecke. Kinetische Energie kann durch Rekuperation bzw. durch Nutzbremsung NB durch den elektrischen Antrieb 21 umgewandelt und der Energiespeichervorrichtung 20 zugeführt werden. Dadurch kann der Ladezustand SoC der Energiespeichervorrichtung 20 steigen.
Die maximale Kapazität SoCM der Energiespeichervorrichtung 20 ist durch eine horizontale gepunktete Linie angedeutet.
Die mit einer gestrichelten Linie angedeutete Ladezustandskurve 401a ist eine kalkulatorische Ladezustandskurve 401a, bei der die Ladezustandskurve 401a Werte annimmt, die den maximalen Ladezustand SoCM übersteigen. Damit wird erkannt, dass der Energieumwandlungsmodus 115 derart bestimmt werden muss, dass der Ladezustand SoC den maximalen Ladezustand SoCM nicht übersteigt.
Dafür zeigen die Ladezustandskurven 401 b, 401c zwei mögliche Szenarien. Gemäß der mit einer gepunkteten Linie dargestellten Ladezustandskurve 401 b wird der Energieumwandlungsmodus 115 an einem ersten Punkt 403a entsprechend bestimmt.
Damit nimmt der Ladezustand SoC an einem anfänglichen Zeitpunkt derart ab, dass der maximale Ladezustand SoCM nicht überschritten wird. Gemäß der ab einem zweiten Punkt 403b mit einer durchgezogenen Linie dargestellten Ladezustandskurve 401 c wird der Energieumwandlungsmodus 115 an dem zweiten Punkt 403b entsprechend bestimmt. Damit nimmt der Ladezustand SoC an einem späteren Zeitpunkt, beispielsweise zu Beginn einer Bergabfährt, bei der der maximale Ladezustand SoCM überschritten werden würde, derart ab, dass der maximale Ladezustand SoCM nicht überschritten wird. Bezuqszeichen (Teil der Beschreibung)
1 Verfahren
14 Steuergerät
20 Energiespeichervorrichtung
21 elektrischer Antrieb
22 Fahrzeugkomponente
22a Heizkomponente
22b System-Heizungskomponente
22c Kompressor
22d Bremswiderstand
23 Fahrzeugkomponente
23a Klimatisierungskomponente
23b System- Klimatisierungskomponente
23c Überdruckventil
23d Kühlsystem
24 Betriebsbremse
100a Fahrzeug
100b Nutzfahrzeug
105 Fahrzeuginnenraum
110 Brennstoffzelle
112 Bremsleistung
113 Laden
114 Ladezustandsgröße
115 Energieumwandlungsmodus
116 Fahrzeugfunktion
117 Fahrzeugfunktion
118 Arbeitspunkt
119 Bremsverteilungsparameter
125 Fahrerinformation
130 Position
131 Positionsinformation 145 Rad
150 Fahrbahn
401 Ladezustandskurve
401a Ladezustandskurve
401 b Ladezustandskurve
401c Ladezustandskurve
402 Maximum
403a erster Punkt
403b zweiter Punkt
NB Nutzbremsung
Soc Ladezustand
SoCM maximaler Ladezustand
51 Ermitteln eines Ladezustands
52 Ermitteln einer Ladezustandsgröße
53 Bestimmen eines Energieumwandlungsmodus
S3‘ Bestimmen eines Bremsverteilungsparameters
54 Betreiben
55 Ausgeben

Claims

Patentansprüche
1. Verfahren (1) für ein elektrisch antreibbares Fahrzeug (100a), insbesondere Nutzfahrzeug (100b), mit einer auf einen maximalen Ladezustand (SoCM) aufladbaren Energiespeichervorrichtung (20) und einem zur Nutzbremsung (NB) fähigen elektrischen Antrieb (21), wobei die Energiespeichervorrichtung (20) während einer Nutzbremsung (NB) aufladbar ist, wobei das Verfahren (1) die Schritte aufweist:
- Ermitteln (S1) eines Ladezustands (SoC) der Energiespeichervorrichtung (20);
- Ermitteln (S2) einer durch eine Nutzbremsung (NB) erzielbaren Ladezustandsgröße (114);
- Bestimmen (S3) eines Energieumwandlungsmodus (115) in Abhängigkeit von dem Ladezustand (SoC), von der Ladezustandsgröße (114), von dem maximalen Ladezustand (SoCM) und von zwei Fahrzeugkomponenten (22, 23) des Fahrzeugs (100a), insbesondere Nutzfahrzeugs (100b), wobei die zwei Fahrzeugkomponenten (22, 23) dazu eingerichtet sind, in einem Regelbetrieb des Fahrzeugs (100a), insbesondere Nutzfahrzeugs (100b), zueinander gegensätzlich wirkende Fahrzeugfunktionen (116, 117) durchzuführen; und
- Betreiben (S4) des Fahrzeugs (100a), insbesondere Nutzfahrzeugs (100b), gemäß dem Energieumwandlungsmodus (115).
2. Verfahren nach Anspruch 1 , wobei die zwei Fahrzeugkomponenten (22, 23) eine Heizkomponente (22a) eines Fahrzeuginnenraums (105) und eine Klimatisierungskomponente (23a) des Fahrzeuginnenraums (105) umfassen, eine System-Heizungskomponente (22b) für eine Fahrzeugvorrichtung (106) und eine System-Klimatisierungskomponente (23b) für die Fahrzeugvorrichtung (106) umfassen, einen Kompressor (22c) und ein Überdruckventil (23c) umfassen und/oder den elektrischen Antrieb (21 ) und eine Betriebsbremse (24) umfassen.
3. Verfahren nach Anspruch 1 oder 2, wobei zu einer der Fahrzeugkomponenten (22, 23) ein Arbeitspunkt (118) ermittelt wird, und der Energieumwandlungsmodus (115) derart bestimmt wird, dass der Arbeitspunkt (118) nicht-optimal ist.
4. Verfahren nach einem der vorangehenden Ansprüche, wobei das Verfahren (1) ferner den Schritt aufweist:
- Bestimmen (S3‘) eines Bremsverteilungsparameters (119), wobei der Bremsverteilungsparameter (119) eine Verteilung einer Bremsleistung (112) auf eine Betriebsbremse (24), auf eine Nutzbremsung (NB) des elektrischen Antriebs (21 ) zum Laden (113) der Energiespeichervorrichtung (20) und auf eine Nutzbremsung (NB) des elektrischen Antriebs (21 ) zum Betreiben (S4) gemäß dem Energieumwandlungsmodus (115) umfasst.
5. Verfahren nach einem der vorherigen Ansprüche, wobei die zwei Fahrzeugkomponenten (22,23) einen elektrischen Bremswiderstand (22d) und ein Kühlsystem (23d) umfassen.
6. Verfahren nach Anspruch 5, wobei das Verfahren (1) ferner den Schritt aufweist:
- Bestimmen (S3‘) eines Bremsverteilungsparameters (119), wobei der Bremsverteilungsparameter (119) eine Verteilung der Bremsleistung (112) auf eine Betriebsbremse (24), auf eine Nutzbremsung (NB) des elektrischen Antriebs (21) zum Laden (113) der Energiespeichervorrichtung (20), auf eine Nutzbremsung (NB) des elektrischen Antriebs (21 ) zum Betreiben (S4) gemäß dem Energieumwandlungsmodus (115) und auf eine Nutzbremsung (NB) des elektrischen Antriebs (21) zum Betreiben (S4‘) des Bremswiderstands (22d) umfasst.
7. Verfahren nach einem der vorherigen Ansprüche, wobei das Ermitteln (S2) der Ladezustandsgröße (114) und/oder das Bestimmen (S3) des Energieumwandlungsmodus in Abhängigkeit von einer die Position (130) des Fahrzeugs (100a), insbesondere Nutzfahrzeugs (100b), betreffender Positionsinformation (131) erfolgt.
8. Verfahren nach einem der vorherigen Ansprüche, wobei das Verfahren (1) den Schritt aufweist:
- Ausgeben (S5) einer Fahrerinformation (125) in Abhängigkeit von dem Energieumwandlungsmodus (115).
9. Verfahren nach einem der vorherigen Ansprüche, wobei der Energieumwandlungsmodus (115) derart bestimmt wird, dass eine Bremsung des Fahrzeugs (100a), insbesondere des Nutzfahrzeugs (100b), bis zu einem Stillstand des Fahrzeugs (100a), insbesondere des Nutzfahrzeugs (100b), möglich ist.
10. Computerprogramm und/oder computerlesbares Medium, umfassend Befehle, die bei der Ausführung des Programms bzw. der Befehle durch einen Computer diesen veranlassen, das Verfahren (1) und/oder die Schritte des Verfahrens (1) nach einem der vorherigen Ansprüche durchzuführen.
11 . Steuergerät (14) für ein elektrisch antreibbares Fahrzeug (100a), insbesondere Nutzfahrzeug (100b), mit einer auf einen maximalen Ladezustand (SoCM) aufladbaren Energiespeichervorrichtung (20) und einem zur Nutzbremsung (NB) fähigen elektrischen Antrieb (21), wobei die Energiespeichervorrichtung (20) während einer Nutzbremsung (NB) aufladbar ist, wobei das Steuergerät (14) dazu eingerichtet ist, das Verfahren (1) nach einem der Ansprüche 1 bis 9 durchzuführen.
12. Elektrisch antreibbares Fahrzeug (100a), insbesondere Nutzfahrzeug (100b), mit einer auf einen maximalen Ladezustand (SoCM) aufladbaren Energiespeichervorrichtung (20) und einem zur Nutzbremsung (NB) fähigen elektrischen Antrieb (21) und mit einem Steuergerät (14) nach Anspruch 11 , wobei die Energiespeichervorrichtung (20) während einer Nutzbremsung (NB) aufladbar ist.
13. Elektrisch antreibbares Fahrzeug (100a), insbesondere Nutzfahrzeug (100b), wobei das elektrisch antreibbare Fahrzeug (100a), insbesondere Nutzfahrzeug (100b), eine Brennstoffzelle (110) und einen elektrischen Bremswiderstand (23d) umfasst.
PCT/EP2023/070420 2022-08-05 2023-07-24 Verfahren für ein elektrisch antreibbares fahrzeug, insbesondere nutzfahrzeug, computerprogramm und/oder computerlesbares medium, steuergerät, elektrisch antreibbares fahrzeug, insbesondere nutzfahrzeug WO2024028143A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022119803.0 2022-08-05
DE102022119803.0A DE102022119803A1 (de) 2022-08-05 2022-08-05 Verfahren für ein elektrisch antreibbares Fahrzeug, insbesondere Nutzfahrzeug, Computerprogramm und/oder computerlesbares Medium, Steuergerät, elektrisch antreibbares Fahrzeug, insbesondere Nutzfahrzeug

Publications (1)

Publication Number Publication Date
WO2024028143A1 true WO2024028143A1 (de) 2024-02-08

Family

ID=87474236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/070420 WO2024028143A1 (de) 2022-08-05 2023-07-24 Verfahren für ein elektrisch antreibbares fahrzeug, insbesondere nutzfahrzeug, computerprogramm und/oder computerlesbares medium, steuergerät, elektrisch antreibbares fahrzeug, insbesondere nutzfahrzeug

Country Status (2)

Country Link
DE (1) DE102022119803A1 (de)
WO (1) WO2024028143A1 (de)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150239474A1 (en) * 2014-02-26 2015-08-27 Denso Corporation Regenerative braking apparatus for electric vehicle
EP2648936B1 (de) 2010-12-06 2016-06-22 Volvo Lastvagnar AB Fahrzeug mit einer kühlanordnung
EP2847054B1 (de) 2012-05-08 2016-07-06 Volvo Lastvagnar AB Energieverwaltungssystem und kraftstoffsparendes verfahren für ein elektrisches hybridfahrzeug
DE102019004557A1 (de) 2019-06-28 2020-12-31 Man Truck & Bus Se Fahrzeug aufweisend einen als Widerstandselement zur Wandlung elektrischer Energie in Wärme verwendbaren elektrisch leitenden Fahrzeugteil
DE102020001782A1 (de) 2020-03-18 2021-09-23 Man Truck & Bus Se Verfahren zum Laden einer Traktionsbatterie eines batterieelektrischen Kraftfahrzeugs
DE102020126659A1 (de) * 2020-05-11 2021-11-11 Hyundai Motor Company System zur Steuerung einer regenerativen Bremsung für ein elektromotorbetriebenes Fahrzeug
DE102020133118A1 (de) * 2020-12-11 2022-06-15 Man Truck & Bus Se Verfahren und Vorrichtung zur Bereitstellung einer Speicherkapazitätsreserve in einer Traktionsbatterie für eine bevorstehende Gefällefahrt
DE102022108592A1 (de) 2022-04-08 2023-10-12 Zf Cv Systems Global Gmbh Verfahren für elektrisch antreibbares Fahrzeug, insbesondere Nutzfahrzeug, Verfahren für fahrzeugexternen Server, Computerprogramm, computerlesbares Medium, Steuergerät, elektrisch antreibbares Fahrzeug, fahrzeugexterner Server

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10226308A1 (de) 2002-06-13 2003-12-24 Zahnradfabrik Friedrichshafen Elektrodynamische Antriebsvorrichtung für ein Kraftfahrzeug sowie Verfahren zur Steuerung und Regelung derselben
DE102010005022A1 (de) 2010-01-19 2011-07-21 Continental Automotive GmbH, 30165 Fahrzeug mit elektrischem Antrieb
DE102010031540A1 (de) 2010-07-20 2012-01-26 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges, welches mindestens eine elektrische Maschine umfasst

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2648936B1 (de) 2010-12-06 2016-06-22 Volvo Lastvagnar AB Fahrzeug mit einer kühlanordnung
EP2847054B1 (de) 2012-05-08 2016-07-06 Volvo Lastvagnar AB Energieverwaltungssystem und kraftstoffsparendes verfahren für ein elektrisches hybridfahrzeug
US20150239474A1 (en) * 2014-02-26 2015-08-27 Denso Corporation Regenerative braking apparatus for electric vehicle
DE102019004557A1 (de) 2019-06-28 2020-12-31 Man Truck & Bus Se Fahrzeug aufweisend einen als Widerstandselement zur Wandlung elektrischer Energie in Wärme verwendbaren elektrisch leitenden Fahrzeugteil
DE102020001782A1 (de) 2020-03-18 2021-09-23 Man Truck & Bus Se Verfahren zum Laden einer Traktionsbatterie eines batterieelektrischen Kraftfahrzeugs
DE102020126659A1 (de) * 2020-05-11 2021-11-11 Hyundai Motor Company System zur Steuerung einer regenerativen Bremsung für ein elektromotorbetriebenes Fahrzeug
DE102020133118A1 (de) * 2020-12-11 2022-06-15 Man Truck & Bus Se Verfahren und Vorrichtung zur Bereitstellung einer Speicherkapazitätsreserve in einer Traktionsbatterie für eine bevorstehende Gefällefahrt
DE102022108592A1 (de) 2022-04-08 2023-10-12 Zf Cv Systems Global Gmbh Verfahren für elektrisch antreibbares Fahrzeug, insbesondere Nutzfahrzeug, Verfahren für fahrzeugexternen Server, Computerprogramm, computerlesbares Medium, Steuergerät, elektrisch antreibbares Fahrzeug, fahrzeugexterner Server

Also Published As

Publication number Publication date
DE102022119803A1 (de) 2024-02-08

Similar Documents

Publication Publication Date Title
EP3418107B1 (de) Verfahren und batteriemanagementsystem zum betreiben einer traktionsbatterie in einem kraftfahrzeug sowie kraftfahrzeug mit einem derartigen batteriemanagementsystem
DE102012210838B4 (de) Verfahren zum Betreiben eines Hybridfahrzeugs
DE102013217274B4 (de) Antriebssteuerungsverfahren für ein Hybridfahrzeug
DE102017103907A1 (de) Elektrofahrzeug mit Energiedissipation
DE102013111440A1 (de) Verzögerter rein elektrischer Betrieb eines Hybridfahrzeugs
DE102004026950A1 (de) Systeme und Verfahren für die Leistungsregelung bei Hybridfahrzeugen
DE102013207530A1 (de) Nutzbremsungssteuerung zur minderung von antriebsstrangschwingungen
DE102010052964A1 (de) Verfahren zum Betreiben eines Fahrzeugs und Fahrerassistenzeinrichtung
DE112016001745B4 (de) Steuereinheit für generator, verfahren zur steuerung des antreibens eines generators und leistungsquellenverwaltungssystem in einem motorfahrzeug
WO2022122820A1 (de) Verfahren und vorrichtung zur bereitstellung einer speicherkapazitätsreserve in einer traktionsbatterie für eine bevorstehende gefällefahrt
DE102010034672A1 (de) Verfahren und Vorrichtung zum Energiemanagement in einem elektrischen System eines Kraftfahrzeugs
DE102017000070B4 (de) Fahrzeugsteuersystem
WO2018054880A2 (de) Verfahren zum betreiben eines hybridfahrzeugs
DE102011017260A1 (de) Verfahren zur Ermittlung einer optimalen Verzögerungsstrategie eines Elektrofahrzeugs, sowie entsprechende Vorrichtung und Fahrzeug
DE102010031540A1 (de) Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges, welches mindestens eine elektrische Maschine umfasst
DE102019134966B4 (de) Verfahren und Kraftfahrzeug-Steuersystem zum Steuern einer Längsdynamik eines Kraftfahrzeugs durch Vorgeben eines Toleranzintervalls für Beschleunigung oder Verzögerung; sowie Kraftfahrzeug
DE102012210916A1 (de) Verfahren und Vorrichtung zum Bereitstellen eines negativen Antriebsmoments einer elektrischen Maschine eines Kraftfahrzeuges
EP4077039A1 (de) Prädiktive batterieladung für batteriebetriebene schienenfahrzeuge
DE102020203127A1 (de) Verfahren zur Steuerung der Längsdynamik eines Fahrzeugs
DE102019134614A1 (de) Verfahren und Steuervorrichtung zum vorausschauenden Temperieren eines elektrisch angetriebenen Kraftfahrzeugs
WO2024028143A1 (de) Verfahren für ein elektrisch antreibbares fahrzeug, insbesondere nutzfahrzeug, computerprogramm und/oder computerlesbares medium, steuergerät, elektrisch antreibbares fahrzeug, insbesondere nutzfahrzeug
DE102012209631A1 (de) Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs
DE102011085457B4 (de) Verfahren zur Steuerung eines Hybridantriebs mit einem elektrischen Energiespeicherfür ein Schienenfahrzeug und Hybridantrieb
WO2016058858A1 (de) Antriebsvorrichtung für ein kraftfahrzeug
WO2022156968A1 (de) Klimasystem und verfahren zur klimatisierung eines elektrifizierten kraftfahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745497

Country of ref document: EP

Kind code of ref document: A1