WO2024028088A1 - Method for introducing a biological sample, to be concentrated, containing biological material into a centrifugal microfluidic cartridge - Google Patents

Method for introducing a biological sample, to be concentrated, containing biological material into a centrifugal microfluidic cartridge Download PDF

Info

Publication number
WO2024028088A1
WO2024028088A1 PCT/EP2023/069786 EP2023069786W WO2024028088A1 WO 2024028088 A1 WO2024028088 A1 WO 2024028088A1 EP 2023069786 W EP2023069786 W EP 2023069786W WO 2024028088 A1 WO2024028088 A1 WO 2024028088A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological sample
centrifugal
biological material
biological
sample
Prior art date
Application number
PCT/EP2023/069786
Other languages
German (de)
French (fr)
Inventor
Tamara Härpfer
Timo Hillebrand
Martin Schulz
Original Assignee
Endress+Hauser BioSense GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser BioSense GmbH filed Critical Endress+Hauser BioSense GmbH
Publication of WO2024028088A1 publication Critical patent/WO2024028088A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/1013Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by using magnetic beads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/491Blood by separating the blood components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces

Definitions

  • the invention relates to a method for introducing a biological sample containing biological material to be concentrated into a centrifugal-microfluidic cartridge and then analyzing the biological material using a centrifugal-microfluidic analysis method.
  • biological material to be detected or monitored can be, for example, viruses, bacteria, algae, fungi, germ/cells/cell cultures, microorganisms, DNA, RNA and/or subcellular particles, especially exosomes.
  • patent DE 10 2008 023 297 B4 discloses a novel approach for concentrating biomolecules from a biological sample and for the subsequent extraction of nucleic acids.
  • the patent describes the use of the ability of alginates to gel in solutions with low calcium content and to form so-called hydrogels.
  • the cause of gelation is the incorporation of calcium ions into the zigzag structure of the GG blocks.
  • the zigzag structure of another alginate molecule is then deposited on this zone. It's coming this leads to the formation of three-dimensional structures. Gels are also formed in combination with strong acids. The resulting gel structures can also be specifically destroyed again.
  • aqueous solution that induces gel formation/pellet formation e.g. using a 1 M calcium chloride solution or a 1% hydrochloric acid solution
  • the method disclosed in the patent is extremely efficient and allows even large-volume samples to be used quickly and easily for the enrichment of biomolecules.
  • the method described has a major disadvantage. Automating the process is difficult to do. This is justified in the patent by the fact that the enrichment step must always be carried out using centrifugation, which is known not to be easy to implement in an automated process.
  • the particles are resuspended and incubated.
  • the incubation serves to dissolve the alginate gel structure and release the biomolecules.
  • the magnetic or paramagnetic particles are then separated by applying a magnetic field.
  • the resulting supernatant contains the biomolecules, which can then be processed or analyzed.
  • the invention is therefore based on the object of proposing a method which is easier to automate.
  • the method according to the invention for introducing a biological sample containing biological material to be concentrated into a centrifugal-microfluidic cartridge and subsequent analysis of the biological sample using a centrifugal-microfluidic analysis method comprises the following steps: a) mixing the liquid biological sample with at least one aqueous alginate solution; b) adding an aqueous solution which induces gel formation/pellet formation; c) mixing the biological sample and incubating briefly, preferably at room temperature, so that the biological material of the biological sample is bound in the alginate gel; d) separating the biological material bound in the alginate gel and then removing the sample supernatant; e) adding a transfer buffer; f) introducing the biological material of the biological sample bound in the alginate gel into the centrifugal microfluidic cartridge; g) Carrying out the centrifugal-microfluidic analysis method in a manner known per se.
  • a method which provides for the combination of the method described in patent DE 10 2008 023297 B4 with a centrifugal-microfluidic system.
  • Magnetic and/or paramagnetic particles located in the alginate gel (hereinafter also referred to as PME complex, where PME stands for “Polymer Mediated Enrichment”) can, according to the invention, be added directly into a centrifugal-microfluidic cartridge using a transfer buffer.
  • PME complex Magnetic and/or paramagnetic particles located in the alginate gel
  • PME Polymer Mediated Enrichment
  • microfluidic samples examples include blood, serum, water/wastewater, liquid food, homogenates (from clinical or veterinary materials, for example) as well as food and sampling materials for hygiene monitoring.
  • a centrifugal microfluidic analysis method standard laboratory processes such as centrifugation, mixing, aliquoting, lysing, amplification and detection are implemented and carried out in a microfluidic cartridge.
  • the microfluidic cartridges are sometimes also referred to as “lab-on-a-disc” and contain microfluidic channel structures for fluid guidance and/or microfluidic chamber structures for collecting liquids.
  • the cartridges are processed in a manner known per se in a rotation-based process in which the cartridge is rotated with a predefined sequence of rotation frequencies (frequency protocol) by a special processing device, so that a corresponding processing and / or analysis step is carried out by the centrifugal force can be carried out.
  • a rotation-based process in which the cartridge is rotated with a predefined sequence of rotation frequencies (frequency protocol) by a special processing device, so that a corresponding processing and / or analysis step is carried out by the centrifugal force can be carried out.
  • An advantageous embodiment of the method according to the invention provides that magnetic and/or paramagnetic particles are added before the addition of the aqueous solution in method step b).
  • the method can provide that in method step d) the separation is carried out using a magnet.
  • a further advantageous embodiment of the method according to the invention provides that in method step d) the separation is carried out by centrifugation.
  • a further advantageous embodiment of the method according to the invention provides that a volume of the transfer buffer to be added is selected depending on the centrifugal-microfluidic cartridge.
  • the method can provide that the volume of the transfer buffer to be added is selected from the range of approximately 50-500pL.
  • a further advantageous embodiment of the method according to the invention provides that the biological sample is introduced into the centrifugal microfluidic cartridge without first dissolving and/or separating the biological sample bound in the alginate gel and, if necessary. the one in the alginate gel located magnetic and / or paramagnetic particles is carried out.
  • Fig. 2 a second embodiment of the method according to the invention, in which the PME complex consists of alginate gel, biological material and magnetic and/or paramagnetic particles located in the alginate gel and
  • Fig. 3 the result of a centrifugal-microfluidic analysis method for a biological sample which was introduced into the centrifugal-microfluidic cartridge using the method according to the invention without the biological material being detached from the PME complex beforehand.
  • FIGS. 1 and 2 each show an exemplary embodiment of the method according to the invention for introducing a biological sample with biological material to be concentrated into a centrifugal-microfluidic cartridge 15 and subsequent analysis of the biological sample using a centrifugal-microfluidic analysis method.
  • the method known from the patent specification DE 102008 023 297 B4 is shown schematically in FIGS. 1 and 2 in a box which is provided with the reference number 1.
  • the innovation compared to this known method is shown in a box with dashed lines and reference number 2.
  • the exemplary embodiments shown in FIGS. 1 and 2 differ in that in the exemplary embodiment shown in FIG.
  • the PME complex 12b consists of alginate gel, biological material and magnetic and / or paramagnetic particles located in the alginate gel.
  • the method according to the invention now provides, in a first step, that a liquid biological sample containing biological material 4 is mixed with an aqueous alginate solution, for example in a sample vessel with a lid 3.
  • biological material can be viruses, bacteria, algae, fungi, germs/cells/cell cultures, microorganisms, DNA, RNA and/or subcellular particles, especially exosomes.
  • an aqueous solution which induces gel formation/pellet formation is added.
  • a 1M calcium chloride solution or a 1% hydrochloric acid solution can be added.
  • magnetic and/or paramagnetic particles can be added to the sample before adding the aqueous solution that induces gel formation/pellet formation.
  • the biological sample 4 is mixed and incubated for a short time 6.
  • the incubation time can be in the range of 5 to 30 minutes, preferably in the range of 7 to 25 minutes, particularly preferably in the range of 10 to 20 minutes.
  • the mixing and incubation preferably takes place at room temperature and serves to bind the biological material of sample 4 in the alginate gel that forms.
  • a subsequent fourth step 7 the biological material 4 bound in the alginate gel is separated and then the sample supernatant 8 protruding beyond the separated portion of the biological sample 9 is removed.
  • the separation 7 can be done in different ways. So the separation 7 can be carried out by centrifugation in the case that no magnetic and/or paramagnetic particles are added to the sample 4. In the event that magnetic and/or paramagnetic particles have previously been added to the sample, the separation can take place by means of an (external) magnet 16 arranged outside the sample vessel, as is the case in the exemplary embodiment shown in FIG. 2.
  • a transfer buffer 11 is added in a fifth step 10.
  • water, salt-containing buffers such as PBS, transfer media for microorganisms or viruses can serve as transfer buffer 11.
  • the biological material bound in the alginate gel is introduced into a sample inlet 14 of the centrifugal microfluidic cartridge 15.
  • the introduction can take place in a manner known per se, for example by pipetting into the cartridge 15 or transferring using absorbent materials.
  • the biological material bound in the alginate gel introduced into the centrifugal-microfluidic cartridge 15 is analyzed by a centrifugal-microfluidic analysis method in a manner known per se.
  • FIG 3 shows the result of a centrifugal-microfluidic analysis method for a biological sample 4 which was introduced into the centrifugal-microfluidic cartridge 15 using the method according to the invention without the biological material being detached from the PME complex 12a, 12b.
  • wastewater samples were taken as a biological sample and examined for the SARS-CoV-2 virus.
  • the wastewater samples were taken from an inlet of a wastewater treatment plant in a region whose current daily incidence at the time the sample was taken was around 300, so it can be assumed that the SARS-CoV-2 virus is in the wastewater.
  • the wastewater samples were treated according to the method according to the invention and accordingly placed in a centrifugal-microfluidic cartridge and analyzed for the virus by a centrifugal-microfluidic analysis method.
  • a positive control one of the samples was added Additionally, an artificial virus (AccuPlexTM SARS-CoV-2 Reference Material Kit - Full Genome from Seracare, MA USA) was spiked with 250 copies/ml (2500 copies per sample).
  • an artificial virus (AccuPlexTM SARS-CoV-2 Reference Material Kit - Full Genome from Seracare, MA USA) was spiked with 250 copies/ml (2500 copies per sample).
  • Fig. 3 shows that the method according to the invention is suitable for detecting coronaviruses from wastewater without the necessary detachment of the biological material from the PME complex described in the patent DE 10 2008 023 297 B4.
  • Both the coronavirus (CoV D1.1 - D1.3, solid curves) and the cartridge-internal process control (IC D1.1 - D1.3, dotted curves) could be detected on a first centrifugal microfluidic cartridge.
  • the added PME complex neither disrupted the microfluidic processes nor the molecular-biological replication of coronavirus RNA and process control using PCR on the cartridge.
  • the fresh wastewater on the first centrifugal microfluidic cartridge showed a Ct value of 33 for the coronavirus (CoV D1 .1 - D1 .3, solid curves) and a Ct value of 21 for the internal process control ( to verify the functionality of the disk detection system, IC D1.1 - D1.3, dotted curves in Fig. 3).
  • the fresh wastewater from the second centrifugal microfluidic cartridge shows the same Ct value for the internal process control (IC D2.1 - D2.3, dotted curve) and, however, a lower Ct for the coronavirus due to the spiked artificial virus Value of 30 (CoV D2.1 - D2.3, dashed curves).
  • Transfer buffer a PME complex without magnetic and/or paramagnetic particles b PME complex with magnetic and/or paramagnetic particles

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Ecology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to a method for introducing a biological sample, to be concentrated, containing biological material into a centrifugal microfluidic cartridge (15) and subsequently analysing the biological sample by means of a centrifugal microfluidic analysis method, comprising the steps of: h) mixing the liquid biological sample (4) at least with an aqueous alginate solution; i) adding an aqueous solution that induces the obtaining of gel/formation of pellets; j) mixing the biological sample (4) and incubating (6) for a short time, preferably at room temperature, such that the biological material of the biological sample is bound in the alginate gel; k) separating the biological material bound in the alginate gel and subsequently removing the sample supernatant; l) adding a transfer buffer (11); m) introducing the biological material, bound in the alginate gel, of the biological sample into the centrifugal microfluidic cartridge (15); n) carrying out the centrifugal microfluidic analysis method in a known manner.

Description

Verfahren zum Einbringen einer aufzukonzentrierenden biologischen Probe mit biologischem Material in eine zentrifugal-mikrofluidische Kartusche Method for introducing a biological sample containing biological material to be concentrated into a centrifugal-microfluidic cartridge
Die Erfindung bezieht sich auf ein Verfahren zum Einbringen einer aufzukonzentrierenden biologischen Probe mit biologischem Material in eine zentrifugal-mikrofluidische Kartusche und anschließender Analyse des biologischen Materials mittels eines zentrifugal-mikrofluidischen Analyseverfahrens. The invention relates to a method for introducing a biological sample containing biological material to be concentrated into a centrifugal-microfluidic cartridge and then analyzing the biological material using a centrifugal-microfluidic analysis method.
Die Detektion biologischer Materialien spielt in der Prozessindustrie, beispielsweise bei der Überwachung und Reinigung von Industriewasser oder Klär- bzw. Abwasser, in der Lebensmittelproduktion und im Pharma- und Lifescience-Bereich eine zunehmend wichtige Rolle. Derartig zu detektierendes bzw. darauf zu überwachendes biologisches Material können beispielsweise Viren, Bakterien, Algen, Pilze, Keim-/Zellen/Zellkulturen, Mikroorganismen, DNA, RNA und/oder subzelluläre Partikel, insb. Exosomen, sein. The detection of biological materials is playing an increasingly important role in the process industry, for example in the monitoring and purification of industrial water or sewage or wastewater, in food production and in the pharmaceutical and life science sectors. Such biological material to be detected or monitored can be, for example, viruses, bacteria, algae, fungi, germ/cells/cell cultures, microorganisms, DNA, RNA and/or subcellular particles, especially exosomes.
Hierzu werden großvolumige Proben aus den zu untersuchenden bzw. zu überwachenden Prozessen entnommen und das biologische Material angereichert bzw. isoliert, um das angereicherte biologische Material anschließend beispielsweise für die Extraktion von Nukleinsäuren zu verwenden. For this purpose, large-volume samples are taken from the processes to be examined or monitored and the biological material is enriched or isolated in order to then use the enriched biological material, for example, for the extraction of nucleic acids.
So ist beispielsweise in der Patentschrift DE 10 2008 023 297 B4 ein neuartiger Ansatz zur Aufkonzentrierung von Biomolekülen aus einer biologischen Probe und zur nachfolgenden Extraktion von Nukleinsäuren offenbart. For example, patent DE 10 2008 023 297 B4 discloses a novel approach for concentrating biomolecules from a biological sample and for the subsequent extraction of nucleic acids.
Die Patentschrift beschreibt die Nutzung der Fähigkeit von Alginaten, in Lösungen mit niedrigem Kalziumgehalt zu gelieren und sog. Hydrogele zu bilden. Die Ursache der Gelierung begründet sich in der Einlagerung von Kalziumionen in die Zickzackstruktur der GG-Blöcke. Auf diese Zone lagert sich dann die Zickzackstruktur eines anderen Alginatmoleküls. Es kommt hierdurch zur Ausbildung dreidimensionaler Strukturen. Die Ausbildung von Gelen erfolgt auch in Kombination mit starken Säuren. Die entstandenen Gelstrukturen können darüber hinaus auch wieder spezifisch zerstört werden. The patent describes the use of the ability of alginates to gel in solutions with low calcium content and to form so-called hydrogels. The cause of gelation is the incorporation of calcium ions into the zigzag structure of the GG blocks. The zigzag structure of another alginate molecule is then deposited on this zone. It's coming this leads to the formation of three-dimensional structures. Gels are also formed in combination with strong acids. The resulting gel structures can also be specifically destroyed again.
Unter Ausnutzung der Ausbildung von Alginatgelen kann die Anreicherung von Biomolekülen einfach und schnell erfolgen und nachfolgend die Isolierung von Nukleinsäuren durchgeführt werden. Der Ablauf des Verfahrens ist wie folgt beschrieben: By taking advantage of the formation of alginate gels, the enrichment of biomolecules can be carried out easily and quickly and the isolation of nucleic acids can subsequently be carried out. The procedure is described as follows:
1 . Mischen einer wässrigen Alginatlösung mit einer flüssigen biologischen Probe 1 . Mixing an aqueous alginate solution with a liquid biological sample
2. Zugabe einer wässrigen Lösung, welche die Gelausbildung/ Pelletbildung induziert (z.B. Verwendung einer 1 M Kalziumchloridlösung oder einer 1 %igen Salzsäurelösung) 2. Adding an aqueous solution that induces gel formation/pellet formation (e.g. using a 1 M calcium chloride solution or a 1% hydrochloric acid solution)
3. Mischen der Probe und kurze Inkubation bei Raumtemperatur 3. Mix the sample and briefly incubate at room temperature
4. Zentrifugation der Probe und Entfernung des Überstandes 4. Centrifuge the sample and remove the supernatant
5. Auflösen des Pellets oder Gelstückchens und damit Freisetzung der Biomoleküle und ggf. nachfolgende direkte Isolierung von DNA oder RNA in an sich bekannter Art und Weise. 5. Dissolving the pellet or gel piece and thus releasing the biomolecules and, if necessary, subsequent direct isolation of DNA or RNA in a manner known per se.
Das in der Patentschrift offenbarte Verfahren ist extrem effizient und gestattet es, auch großvolumige Proben schnell und einfach für die Anreicherung von Biomolekülen einzusetzen. Allerdings zeigt das beschriebene Verfahren einen großen Nachteil. Die Automatisierung des Prozesses ist schwierig durchzuführen. Dies wird in der Patentschrift damit begründet, dass der Anreicherungsschritt immer mittels Zentrifugation erfolgen muss, welche bekannter Weise in einem automatisierten Prozess nicht einfach umzusetzen ist. The method disclosed in the patent is extremely efficient and allows even large-volume samples to be used quickly and easily for the enrichment of biomolecules. However, the method described has a major disadvantage. Automating the process is difficult to do. This is justified in the patent by the fact that the enrichment step must always be carried out using centrifugation, which is known not to be easy to implement in an automated process.
Hier setzt das in der Offenlegungsschrift DE 10 2015 215 894 A1 beschriebene Verfahren zur Anreicherung von Biomolekülen und zur Entfernung der Biomoleküle aus einer biologischen Probe an, in dem ein Verfahren beschrieben wird, welches auf einen Zentrifugationsschritt verzichten kann. This is where the method for enriching biomolecules and removing biomolecules from a biological sample described in published patent application DE 10 2015 215 894 A1 comes into play, in which a method is described which can dispense with a centrifugation step.
Das Verfahren wird dabei wie folgt beschrieben: 1 . Versetzen einer biologischen flüssigen Probe mit einer Alginatlösung und mit Salzen von di- bzw. polyvalenten Kationen (z.B. Kalzium-, Zink,- oder Aluminiumsalze) oder mit einer Säure The procedure is described as follows: 1 . Adding an alginate solution and salts of di- or polyvalent cations (e.g. calcium, zinc or aluminum salts) or an acid to a biological liquid sample
2. Zugabe von magnetischen oder paramagnetischen Partikeln 2. Addition of magnetic or paramagnetic particles
3. Separieren der Partikel und Entfernen des Probenüberstandes, so dass sich die anzureichernden Biomoleküle vollständig in einem Komplex aus Alginatgel und magnetischen bzw. paramagnetischen Partikeln befinden 3. Separating the particles and removing the sample supernatant so that the biomolecules to be enriched are completely in a complex of alginate gel and magnetic or paramagnetic particles
4. Freisetzung der komplexierten Biomoleküle dadurch, dass Reagenzien zugesetzt werden, welche die Alginat-Gelstruktur wieder zerstören4. Release of the complexed biomolecules by adding reagents that destroy the alginate gel structure again
5. Nach Zugabe dieser Reagenzien erfolgt eine Resuspendierung der Partikel und eine Inkubation. Die Inkubation dient dabei der Auflösung der Alginat-Gelstruktur und der Freisetzung der Biomoleküle. 5. After adding these reagents, the particles are resuspended and incubated. The incubation serves to dissolve the alginate gel structure and release the biomolecules.
6. Nachfolgend werden die magnetischen bzw. paramagnetischen Partikel durch Anlegen eines Magnetfeldes abgetrennt. Der resultierende Überstand enthält die Biomoleküle, welche nachfolgende dann aufgearbeitet oder analysiert werden können. 6. The magnetic or paramagnetic particles are then separated by applying a magnetic field. The resulting supernatant contains the biomolecules, which can then be processed or analyzed.
Nachteilig an diesem Verfahren ist, dass die Automatisierung nur bedingt mit einem zufriedenstellenden Ergebnis durchzuführen ist. Dies liegt insbesondere daran, dass die Resuspendierung der Partikel und die Inkubation notwendig ist, um die Freisetzung zu ermöglichen und dass dieser Verfahrensschritt relativ viel Zeit benötigt. The disadvantage of this process is that the automation can only be carried out to a limited extent with a satisfactory result. This is particularly due to the fact that the resuspension of the particles and the incubation are necessary to enable release and that this process step requires a relatively long time.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren vorzuschlagen, welches besser automatisierbar ist. The invention is therefore based on the object of proposing a method which is easier to automate.
Die Aufgabe wird erfindungsgemäß gelöst durch das Verfahren gemäß Patentanspruch 1 . The object is achieved according to the invention by the method according to patent claim 1.
Das erfindungsgemäße Verfahren zum Einbringen einer aufzukonzentrierenden biologischen Probe mit biologischem Material in eine zentrifugal-mikrofluidische Kartusche und anschließender Analyse der biologischen Probe mittels eines zentrifugal-mikrofluidischen Analyseverfahrens, umfasst die folgenden Schritte: a) Mischen der flüssigen biologischen Probe zumindest mit einer wässrigen Alginatlösung; b) Zugabe einer wässrigen Lösung, welche die Gelausbildung/ Pelletbildung induziert; c) Mischen der biologischen Probe und kurze Inkubation, vorzugsweise bei Raumtemperatur, so dass das biologische Material der biologischen Probe in dem Alginatgel gebunden wird; d) Separieren des in dem Alginatgel gebunden biologischen Materials und anschließendes Entfernen des Probenüberstandes; e) Zugabe eines Transferpuffers; f) Einbringen des in dem Alginatgel gebundenen biologischen Materials der biologischen Probe in die zentrifugal-mikrofluidische Kartusche; g) Durchführen des zentrifugal-mikrofluidischen Analyseverfahrens auf an sich bekannte Art und Weise. The method according to the invention for introducing a biological sample containing biological material to be concentrated into a centrifugal-microfluidic cartridge and subsequent analysis of the biological sample using a centrifugal-microfluidic analysis method comprises the following steps: a) mixing the liquid biological sample with at least one aqueous alginate solution; b) adding an aqueous solution which induces gel formation/pellet formation; c) mixing the biological sample and incubating briefly, preferably at room temperature, so that the biological material of the biological sample is bound in the alginate gel; d) separating the biological material bound in the alginate gel and then removing the sample supernatant; e) adding a transfer buffer; f) introducing the biological material of the biological sample bound in the alginate gel into the centrifugal microfluidic cartridge; g) Carrying out the centrifugal-microfluidic analysis method in a manner known per se.
Erfindungsgemäß wird ein Verfahren vorgeschlagen, welches die Kombination des in der Patentschrift DE 10 2008 023297 B4 beschriebenen Verfahrens mit einem zentrifugal-mikrofluidischen System vorsieht. Ein aus dem beschriebenen Verfahren resultierender Komplex aus Alginatgel und biologischem Material sowie ggfls. in dem Alginatgel befindlichen magnetischen und/oder paramagnetischen Partikel (im Folgenden auch kurz als PME-Komplex bezeichnet, wobei PME für „Polymer Mediated Enrichment“ steht) kann erfindungsgemäß mit Hilfe eines Transferpuffers direkt in eine zentrifugal-mikrofluidische Kartusche gegeben werden. Grund hierfür ist, dass überraschenderweise herausgefunden wurde, dass im Gegensatz zum dort beschriebenen PME-Workflow keine Ablösung des biologischen Materials aus dem PME-Komplex notwendig ist, um das biologische Material mittels eines zentrifugal-mikrofluidischen Analyseverfahrens nachweisen zu können. According to the invention, a method is proposed which provides for the combination of the method described in patent DE 10 2008 023297 B4 with a centrifugal-microfluidic system. A complex of alginate gel and biological material resulting from the process described and, if necessary. Magnetic and/or paramagnetic particles located in the alginate gel (hereinafter also referred to as PME complex, where PME stands for “Polymer Mediated Enrichment”) can, according to the invention, be added directly into a centrifugal-microfluidic cartridge using a transfer buffer. The reason for this is that it was surprisingly found that, in contrast to the PME workflow described there, no separation of the biological material from the PME complex is necessary in order to be able to detect the biological material using a centrifugal-microfluidic analysis method.
Als biologische Probe kommen hierbei beispielsweise Blut, Serum, Wasser/Abwasser, flüssige Lebensmittel, Homogenisate (aus beispielsweise klinischen oder veterinären Materialien) sowie Lebensmitteln und Beprobungsmaterialien bei der Hygieneüberwachung in Frage. Bei einem zentrifugal-mikrofluidischen Analyseverfahren werden Standardlaborprozesse, wie Zentrifugieren, Mischen, Aliquotieren, Lysieren, Amplifizieren und Detektieren in einer mikrofluidischen Kartusche implementiert und durchgeführt. Die mikrofluidischen Kartuschen werden teilweise auch als „Lab-on-a-disc“ bezeichnet und beinhalten mikrofluidische Kanalstrukturen für die Fluidführung und/oder mikrofluidische Kammerstrukturen für das Auffangen von Flüssigkeiten. Die Kartuschen werden auf an sich bekannte Art und Weise in einem rotationsbasierten Verfahren, bei dem die Kartusche mit einer vordefinierten Abfolge von Drehfrequenzen (Frequenzprotokoll) durch ein spezielles Prozessiergerät rotiert werden, bearbeitet, so dass durch die Zentrifugalkraft ein entsprechender Verarbeitungs- und/oder Analyseschritt durchgeführt werden kann. Examples of possible biological samples include blood, serum, water/wastewater, liquid food, homogenates (from clinical or veterinary materials, for example) as well as food and sampling materials for hygiene monitoring. In a centrifugal microfluidic analysis method, standard laboratory processes such as centrifugation, mixing, aliquoting, lysing, amplification and detection are implemented and carried out in a microfluidic cartridge. The microfluidic cartridges are sometimes also referred to as “lab-on-a-disc” and contain microfluidic channel structures for fluid guidance and/or microfluidic chamber structures for collecting liquids. The cartridges are processed in a manner known per se in a rotation-based process in which the cartridge is rotated with a predefined sequence of rotation frequencies (frequency protocol) by a special processing device, so that a corresponding processing and / or analysis step is carried out by the centrifugal force can be carried out.
Eine vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens sieht vor, dass vor der Zugabe der wässrigen Lösung in Verfahrensschritt b) magnetische und/oder paramagnetische Partikel zugegeben werden. Insbesondere kann das Verfahren vorsehen, dass beim Verfahrensschritt d) das Separieren mittels eines Magneten durchgeführt wird. An advantageous embodiment of the method according to the invention provides that magnetic and/or paramagnetic particles are added before the addition of the aqueous solution in method step b). In particular, the method can provide that in method step d) the separation is carried out using a magnet.
Eine weitere vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens sieht vor, dass beim Verfahrensschritt d) das Separieren mittels zentrifugieren durchgeführt wird. A further advantageous embodiment of the method according to the invention provides that in method step d) the separation is carried out by centrifugation.
Eine weitere vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens sieht vor, dass ein Volumen des zuzugebenden Transferpuffers in Abhängigkeit der zentrifugal-mikrofluidischen Kartusche gewählt wird. Insbesondere kann das Verfahren vorsehen, dass das Volumen des zuzugebenden Transferpuffers aus dem Bereich von ca. 50-500pL ausgewählt wird. A further advantageous embodiment of the method according to the invention provides that a volume of the transfer buffer to be added is selected depending on the centrifugal-microfluidic cartridge. In particular, the method can provide that the volume of the transfer buffer to be added is selected from the range of approximately 50-500pL.
Eine weitere vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens sieht vor, dass das Einbringen der biologischen Probe in die zentrifugalmikrofluidische Kartusche ohne vorheriges Auflösen und/oder Trennen der in dem Alginatgel gebunden biologischen Probe und ggfls. der in dem Alginatgel befindlichen magnetischen und/oder paramagnetischen Partikel durchgeführt wird. A further advantageous embodiment of the method according to the invention provides that the biological sample is introduced into the centrifugal microfluidic cartridge without first dissolving and/or separating the biological sample bound in the alginate gel and, if necessary. the one in the alginate gel located magnetic and / or paramagnetic particles is carried out.
Die Erfindung wird anhand der nachfolgenden Zeichnungen näher erläutert. Es zeigt: The invention is explained in more detail with reference to the following drawings. It shows:
Fig. 1 : ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens, bei dem der PM E-Komplex aus Alginatgel und biologischem Material besteht, 1: a first exemplary embodiment of the method according to the invention, in which the PM E complex consists of alginate gel and biological material,
Fig. 2: ein zweites Ausführungsbeispiel des erfindungsgemäßen Verfahrens, bei dem der PME-Komplex aus Alginatgel, biologischem Material sowie in dem Alginatgel befindlichen magnetischen und/oder paramagnetischen Partikel besteht und Fig. 2: a second embodiment of the method according to the invention, in which the PME complex consists of alginate gel, biological material and magnetic and/or paramagnetic particles located in the alginate gel and
Fig. 3: das Ergebnis eines zentrifugal-mikrofluidischen Analyseverfahrens für eine biologische Probe die mittels des erfindungsgemäßen Verfahrens in die zentrifugal-mikrofluidische Kartusche eingebracht wurde, ohne dass zuvor eine Ablösung des biologischen Materials aus dem PME-Komplex erfolgte. Fig. 3: the result of a centrifugal-microfluidic analysis method for a biological sample which was introduced into the centrifugal-microfluidic cartridge using the method according to the invention without the biological material being detached from the PME complex beforehand.
Fig. 1 und 2 zeigen jeweils ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens zum Einbringen einer aufzukonzentrierenden biologischen Probe mit biologischem Material in eine zentrifugal-mikrofluidische Kartusche 15 und anschließender Analyse der biologischen Probe mittels eines zentrifugalmikrofluidischen Analyseverfahrens. Hierfür ist in den Fig. 1 und 2 das aus der Patentschrift DE 102008 023 297 B4 bekannt Verfahren schematisch in einem Kasten dargestellt, der mit dem Bezugszeichen 1 versehen ist. Die Neuerung gegenüber diesem bekannten Verfahren ist in einem Kasten mit gestrichelten Linien und Bezugszeichen 2 dargestellt. Die in den Fig. 1 und 2 dargestellten Ausführungsbeispiele unterscheiden sich dahingehend, dass in dem in Fig. 1 dargestellten Ausführungsbeispiel der PME-Komplex 12a aus Alginatgel und biologischem Material besteht und keine magnetischen und/oder paramagnetischen Partikeln umfasst, wohingegen gemäß dem in Fig. 2 dargestellten Ausführungsbeispiel der PME-Komplex 12b aus Alginatgel, biologischem Material sowie in dem Alginatgel befindlichen magnetischen und/oder paramagnetischen Partikeln besteht. Das erfindungsgemäße Verfahren sieht nun in einem ersten Schritt vor, dass eine flüssige biologische Probe mit biologischem Material 4 mit einer wässrigen Alginatlösung, bspw. in einem Probengefäß mit einem Deckel 3, gemischt wird. Biologisches Material können, wie bereits eingangs beschrieben Viren, Bakterien, Algen, Pilze, Keim-/Zellen/Zellkulturen, Mikroorganismen, DNA, RNA und/oder subzelluläre Partikel, insb. Exosomen, sein. 1 and 2 each show an exemplary embodiment of the method according to the invention for introducing a biological sample with biological material to be concentrated into a centrifugal-microfluidic cartridge 15 and subsequent analysis of the biological sample using a centrifugal-microfluidic analysis method. For this purpose, the method known from the patent specification DE 102008 023 297 B4 is shown schematically in FIGS. 1 and 2 in a box which is provided with the reference number 1. The innovation compared to this known method is shown in a box with dashed lines and reference number 2. The exemplary embodiments shown in FIGS. 1 and 2 differ in that in the exemplary embodiment shown in FIG. 2 illustrated embodiment, the PME complex 12b consists of alginate gel, biological material and magnetic and / or paramagnetic particles located in the alginate gel. The method according to the invention now provides, in a first step, that a liquid biological sample containing biological material 4 is mixed with an aqueous alginate solution, for example in a sample vessel with a lid 3. As already described at the beginning, biological material can be viruses, bacteria, algae, fungi, germs/cells/cell cultures, microorganisms, DNA, RNA and/or subcellular particles, especially exosomes.
In einem daran anschließenden zweiten Schritt 5 wird eine wässrige Lösung, welche die Gelausbildung/ Pelletbildung induziert, zugegeben. Zum Beispiel kann eine 1 M Kalziumchloridlösung oder einer 1 %ige Salzsäurelösung zugegeben werden. Optional können gemäß dem in Fig. 2 dargestellten Ausführungsbeispiel vor der Zugabe der wässrigen Lösung, die die Gelausbildung/ Pelletbildung induziert, noch magnetische und/oder paramagnetische Partikel der Probe zugegeben werden. In a subsequent second step 5, an aqueous solution which induces gel formation/pellet formation is added. For example, a 1M calcium chloride solution or a 1% hydrochloric acid solution can be added. Optionally, according to the exemplary embodiment shown in FIG. 2, magnetic and/or paramagnetic particles can be added to the sample before adding the aqueous solution that induces gel formation/pellet formation.
Anschließend wird, in einem dritten Schritt, die biologische Probe 4 gemischt und für eine kurze Zeit inkubiert 6. Die Inkubationszeit kann hierbei im Bereich von 5 bis 30 Minuten, vorzugsweise im Bereich von 7 bis 25 Minuten, besonders bevorzugt im Bereich von 10 bis 20 Minuten liegen. Das Mischen und die Inkubation erfolgt vorzugsweise bei Raumtemperatur und dient dazu, dass das biologische Material der Probe 4 in dem sich ausbildenden Alginatgel gebunden wird. Subsequently, in a third step, the biological sample 4 is mixed and incubated for a short time 6. The incubation time can be in the range of 5 to 30 minutes, preferably in the range of 7 to 25 minutes, particularly preferably in the range of 10 to 20 minutes. The mixing and incubation preferably takes place at room temperature and serves to bind the biological material of sample 4 in the alginate gel that forms.
In einem daran anschließenden vierten Schritt 7 wird das in dem Alginatgel gebundene biologische Material 4 separiert und anschließend der über den separierten Anteil der biologischen Probe 9 überstehende Probenüberstand 8 entfernt. Das Separieren 7 kann dabei auf unterschiedliche Weise erfolgen. So kann das Separieren 7 in dem Fall, dass der Probe 4 keine magnetischen und/oder paramagnetischen Partikel zugesetzt sind, mittels Zentrifugation durchgeführt werden. In dem Fall, dass der Probe zuvor magnetischen und/oder paramagnetischen Partikel zugesetzt wurden, kann die Separation mittels eines außerhalb des Probengefäßes angeordneten (externen) Magnets 16 erfolgen, wie dies in dem in Fig. 2 dargestellten Ausführungsbeispiel der Fall ist. Nach dem Schritt des Separierens 7 des in dem Alginatgel gebunden biologischen Materials 4 und Entfernen des Überstandes 8 wird in einem fünften Schritt 10 ein Transferpuffer 11 zugegeben. Als Transferpuffer 11 können bspw. Wasser, salzhaltige Puffer wie PBS, Transfermedien für Mikroorganismen oder Viren dienen. In a subsequent fourth step 7, the biological material 4 bound in the alginate gel is separated and then the sample supernatant 8 protruding beyond the separated portion of the biological sample 9 is removed. The separation 7 can be done in different ways. So the separation 7 can be carried out by centrifugation in the case that no magnetic and/or paramagnetic particles are added to the sample 4. In the event that magnetic and/or paramagnetic particles have previously been added to the sample, the separation can take place by means of an (external) magnet 16 arranged outside the sample vessel, as is the case in the exemplary embodiment shown in FIG. 2. After the step of separating 7 the biological material 4 bound in the alginate gel and removing the supernatant 8, a transfer buffer 11 is added in a fifth step 10. For example, water, salt-containing buffers such as PBS, transfer media for microorganisms or viruses can serve as transfer buffer 11.
Anschließend wird in einem sechsten Schritt 13 das in dem Alginatgel gebundenen biologischen Material in ein Proben-Inlet 14 der zentrifugalmikrofluidischen Kartusche 15 eingebracht. Das Einbringen kann in an sich bekannter Weise beispielsweise durch Pipettieren in die Kartusche 15 oder Transfer mittels aufsaugfähiger Materialien erfolgen. Subsequently, in a sixth step 13, the biological material bound in the alginate gel is introduced into a sample inlet 14 of the centrifugal microfluidic cartridge 15. The introduction can take place in a manner known per se, for example by pipetting into the cartridge 15 or transferring using absorbent materials.
In einem letzten Schritt wird das in die zentrifugal-mikrofluidische Kartusche 15 eingebrachte in dem Alginatgel gebundenen biologischen Material durch ein zentrifugal-mikrofluidischen Analyseverfahrens auf an sich bekannte Art und Weise analysiert. In a final step, the biological material bound in the alginate gel introduced into the centrifugal-microfluidic cartridge 15 is analyzed by a centrifugal-microfluidic analysis method in a manner known per se.
Fig. 3 zeigt das Ergebnis eines zentrifugal-mikrofluidischen Analyseverfahrens für eine biologische Probe 4 die mittels des erfindungsgemäßen Verfahrens in die zentrifugal-mikrofluidische Kartusche 15 eingebracht wurde ohne, dass eine Ablösung des biologischen Materials aus dem PME-Komplex 12a, 12b erfolgte. 3 shows the result of a centrifugal-microfluidic analysis method for a biological sample 4 which was introduced into the centrifugal-microfluidic cartridge 15 using the method according to the invention without the biological material being detached from the PME complex 12a, 12b.
Zu Demonstrationszwecken wurden Abwasserproben als biologische Probe entnommen und auf das Virus SARS-CoV-2 hin untersucht. Die Abwasserproben wurde aus einem Zulauf einer Abwasserreinigungsanlage einer Region entnommen, deren tagesaktuelle Inzidenz zum Zeitpunkt der Probenentnahme in etwa bei 300 lag, so dass davon ausgegangen werden kann, dass sich das Virus SARS-CoV-2 im Abwasser befindet. Es wurden insgesamt zwei Proben mit jeweils 10 ml Abwasser entnommen. For demonstration purposes, wastewater samples were taken as a biological sample and examined for the SARS-CoV-2 virus. The wastewater samples were taken from an inlet of a wastewater treatment plant in a region whose current daily incidence at the time the sample was taken was around 300, so it can be assumed that the SARS-CoV-2 virus is in the wastewater. A total of two samples, each containing 10 ml of wastewater, were taken.
Die Abwasserproben wurde gemäß dem erfindungsgemäßen Verfahren behandelt und entsprechend in eine zentrifugal-mikrofluidische Kartusche eingebracht und durch ein zentrifugal-mikrofluidisches Analyseverfahren auf das Virus hin untersucht. Als Positivkontrolle wurde in eine der Proben zusätzlich ein artifizieller Virus (AccuPlex™ SARS-CoV-2 Reference Material Kit - Full Genome von Seracare, MA USA) mit 250 Kopien/ml (2500 Kopien pro Probe) gespikt. The wastewater samples were treated according to the method according to the invention and accordingly placed in a centrifugal-microfluidic cartridge and analyzed for the virus by a centrifugal-microfluidic analysis method. As a positive control, one of the samples was added Additionally, an artificial virus (AccuPlex™ SARS-CoV-2 Reference Material Kit - Full Genome from Seracare, MA USA) was spiked with 250 copies/ml (2500 copies per sample).
Das in Fig. 3 abgebildete Ergebnis zeigt, dass das erfindungsgemäße Verfahren geeignet ist, ohne das in der Patentschrift DE 10 2008 023 297 B4 beschriebene notwendige Ablösen des biologischen Materials aus dem PME- Komplex, Coronaviren aus Abwasser zu detektieren. Auf einer ersten zentrifugal-mikrofluidischen Kartusche ließ sich sowohl das Coronavirus (CoV D1.1 - D1.3, durchgezogenen Kurven) als auch die Kartuschen-interne Prozesskontrolle (IC D1.1 - D1.3, gepunktete Kurven) nachweisen. Der zugegebene PME-Komplex störte dabei weder die mikrofluidischen Prozesse noch die molekular-biologische Vervielfältigung von Coronaviren-RNA und Prozesskontrolle mittels PCR auf der Kartusche. The result shown in Fig. 3 shows that the method according to the invention is suitable for detecting coronaviruses from wastewater without the necessary detachment of the biological material from the PME complex described in the patent DE 10 2008 023 297 B4. Both the coronavirus (CoV D1.1 - D1.3, solid curves) and the cartridge-internal process control (IC D1.1 - D1.3, dotted curves) could be detected on a first centrifugal microfluidic cartridge. The added PME complex neither disrupted the microfluidic processes nor the molecular-biological replication of coronavirus RNA and process control using PCR on the cartridge.
Das frische Abwasser auf der ersten zentrifugal-mikrofluidischen Kartusche (D1 in Fig. 3) zeigte einen Ct Wert von 33 für den Coronavirus (CoV D1 .1 - D1 .3, durchgezogenen Kurven) und einen Ct Wert von 21 für die interne Prozesskontrolle (zur Verifizierung der Funktionstüchtigkeit des Nachweissystems der Disk, IC D1.1 - D1.3, gepunktete Kurven in Fig. 3). Das frische Abwasser der zweiten zentrifugal-mikrofluidischen Kartusche (D2 in Fig. 3) zeigt für die interne Prozesskontrolle denselben Ct Wert (IC D2.1 - D2.3, gepunktete Kurve) und für das Coronavirus aufgrund des gespikten artifiziellen Virus jedoch einen niedrigeren Ct Wert von 30 (CoV D2.1 - D2.3, gestrichelte Kurven). The fresh wastewater on the first centrifugal microfluidic cartridge (D1 in Fig. 3) showed a Ct value of 33 for the coronavirus (CoV D1 .1 - D1 .3, solid curves) and a Ct value of 21 for the internal process control ( to verify the functionality of the disk detection system, IC D1.1 - D1.3, dotted curves in Fig. 3). The fresh wastewater from the second centrifugal microfluidic cartridge (D2 in Fig. 3) shows the same Ct value for the internal process control (IC D2.1 - D2.3, dotted curve) and, however, a lower Ct for the coronavirus due to the spiked artificial virus Value of 30 (CoV D2.1 - D2.3, dashed curves).
Bezugszeichenliste Reference symbol list
An sich bekanntes Verfahren zur Anreicherung und Isolierung von Nukleinsäuren und/oder Viren aus einer biologischen Probe Erfindungsgemäße Verfahrensschritte Probengefäß mit Deckel Known method for enriching and isolating nucleic acids and/or viruses from a biological sample. Method steps according to the invention. Sample vessel with lid
Biologische Probe mit biologischem MaterialBiological sample with biological material
Verfahrensschritt Zugabe Reagenzien (Magnetpartikel undProcess step adding reagents (magnetic particles and
Alginatgel) alginate gel)
Inkubationsschritt Incubation step
Separationsschritt Separation step
Probenüberstand bzw. Verfahrensschritt zum Entfernen des Probenüberstandes Sample supernatant or process step for removing the sample supernatant
Separierter Anteil der biologischen ProbeSeparated portion of the biological sample
Verfahrensschritt Zugabe Transferpuffer Process step Add transfer buffer
Transferpuffer a PME-Komplex ohne magnetische und/oder paramagnetischen Partikeln b PME-Komplex mit magnetische und/oder paramagnetischen Partikeln Transfer buffer a PME complex without magnetic and/or paramagnetic particles b PME complex with magnetic and/or paramagnetic particles
T ransfer-Verfahrensschritt T ransfer process step
Proben-Inlet einer zentrifugal-mikrofluidischen Kartusche Zentrifugal-mikrofluidischen Kartusche Sample inlet of a centrifugal microfluidic cartridge Centrifugal microfluidic cartridge
Externer Magnet External magnet

Claims

Patentansprüche Patent claims
1 . Verfahren zum Einbringen einer aufzukonzentrierenden biologischen Probe mit biologischem Material in eine zentrifugal-mikrofluidische Kartusche (15) und anschließender Analyse des biologischen Materials mittels eines zentrifugal-mikrofluidischen Analyseverfahrens, umfassend die Schritte: a) Mischen der flüssigen biologischen Probe (4) zumindest mit einer wässrigen Alginatlösung; b) Zugabe einer wässrigen Lösung, welche die Gelausbildung/ Pelletbildung induziert; c) Mischen der biologischen Probe (4) und kurze Inkubation (6), vorzugsweise bei Raumtemperatur, so dass das biologische Material der biologischen Probe in dem Alginatgel gebunden wird; d) Separieren des in dem Alginatgel gebunden biologischen Materials und anschließendes Entfernen des Probenüberstandes; e) Zugabe eines Transferpuffers (11 ); f) Einbringen des in dem Alginatgel gebundenen biologischen Materials der biologischen Probe in die zentrifugal-mikrofluidische Kartusche (15); g) Durchführen des zentrifugal-mikrofluidischen Analyseverfahrens auf an sich bekannte Art und Weise. 1 . Method for introducing a biological sample to be concentrated with biological material into a centrifugal-microfluidic cartridge (15) and subsequent analysis of the biological material using a centrifugal-microfluidic analysis method, comprising the steps: a) mixing the liquid biological sample (4) at least with an aqueous alginate solution; b) adding an aqueous solution which induces gel formation/pellet formation; c) mixing the biological sample (4) and briefly incubating (6), preferably at room temperature, so that the biological material of the biological sample is bound in the alginate gel; d) separating the biological material bound in the alginate gel and then removing the sample supernatant; e) adding a transfer buffer (11); f) introducing the biological material of the biological sample bound in the alginate gel into the centrifugal-microfluidic cartridge (15); g) Carrying out the centrifugal-microfluidic analysis method in a manner known per se.
2. Verfahren nach Anspruch 1 , wobei vor der Zugabe der wässrigen Lösung in Verfahrensschritt b) magnetische und/oder paramagnetische Partikel zugegeben werden. 2. The method according to claim 1, wherein magnetic and / or paramagnetic particles are added before the addition of the aqueous solution in process step b).
3. Verfahren nach dem vorhergehenden Anspruch, wobei beim Verfahrensschritt d) das Separieren mittels eines Magneten (16) durchgeführt wird. 3. The method according to the preceding claim, wherein in method step d) the separation is carried out using a magnet (16).
4. Verfahren nach Anspruch 1 , wobei beim Verfahrensschritt d) das Separieren mittels zentrifugieren durchgeführt wird. 4. The method according to claim 1, wherein in method step d) the separation is carried out by centrifugation.
5. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, wobei ein Volumen des zuzugebenden Transferpuffers in Abhängigkeit der zentrifugal-mikrofluidischen Kartusche gewählt wird. 5. The method according to one or more of the preceding claims, wherein a volume of the transfer buffer to be added is selected depending on the centrifugal-microfluidic cartridge.
6. Verfahren nach dem vorhergehenden Anspruch, wobei das Volumen des zuzugebenden Transferpuffers aus dem Bereich von ca. 50-500pL ausgewählt wird. 6. Method according to the preceding claim, wherein the volume of the transfer buffer to be added is selected from the range of approximately 50-500pL.
7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, wobei das Einbringen der biologischen Probe in die zentrifugal-mikrofluidische Kartusche (15) ohne vorheriges Auflösen und/oder Trennen der in dem Alginatgel gebunden biologischen Probe und ggfl. der in dem Alginatgel befindlichen magnetischen und/oder paramagnetischen Partikel durchgeführt wird. 7. The method according to one or more of the preceding claims, wherein the introduction of the biological sample into the centrifugal-microfluidic cartridge (15) without first dissolving and / or separating the biological sample bound in the alginate gel and, if necessary. of the magnetic and/or paramagnetic particles contained in the alginate gel.
PCT/EP2023/069786 2022-08-05 2023-07-17 Method for introducing a biological sample, to be concentrated, containing biological material into a centrifugal microfluidic cartridge WO2024028088A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022119712.3 2022-08-05
DE102022119712.3A DE102022119712A1 (en) 2022-08-05 2022-08-05 Method for introducing a biological sample containing biological material to be concentrated into a centrifugal-microfluidic cartridge

Publications (1)

Publication Number Publication Date
WO2024028088A1 true WO2024028088A1 (en) 2024-02-08

Family

ID=87474118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/069786 WO2024028088A1 (en) 2022-08-05 2023-07-17 Method for introducing a biological sample, to be concentrated, containing biological material into a centrifugal microfluidic cartridge

Country Status (2)

Country Link
DE (1) DE102022119712A1 (en)
WO (1) WO2024028088A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008023297B4 (en) 2008-05-08 2014-06-26 Aj Innuscreen Gmbh Method for enrichment and isolation of nucleic acids or viruses
DE102015215894A1 (en) 2015-03-26 2016-09-29 Aj Innuscreen Gmbh Method of enriching biomolecules and removing biomolecules from a biological sample
US20170252670A1 (en) * 2014-08-05 2017-09-07 Ymir Genomics Llc Methods for the isolation of extracellular vesicles and other bioparticles from urine and other biofluids
US20170335312A1 (en) * 2014-06-24 2017-11-23 Aj Innuscreen Gmbh Method for enriching microvesicles
US20180216162A1 (en) * 2017-01-30 2018-08-02 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US20190101537A1 (en) * 2016-03-25 2019-04-04 President And Fellows Of Harvard College Microfluidic determination of immune and other cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011083920B4 (en) 2011-09-30 2018-07-19 Albert-Ludwigs-Universität Freiburg METHOD AND DEVICE FOR PRODUCING FLUIDICALLY SEPARATED PARTIAL VOLUMES OF A LIQUID
DE102021109852A1 (en) 2021-04-19 2022-10-20 Ist Innuscreen Gmbh Method for the automated online detection of at least one biological target substance in a liquid and online analysis device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008023297B4 (en) 2008-05-08 2014-06-26 Aj Innuscreen Gmbh Method for enrichment and isolation of nucleic acids or viruses
US20170335312A1 (en) * 2014-06-24 2017-11-23 Aj Innuscreen Gmbh Method for enriching microvesicles
US20170252670A1 (en) * 2014-08-05 2017-09-07 Ymir Genomics Llc Methods for the isolation of extracellular vesicles and other bioparticles from urine and other biofluids
DE102015215894A1 (en) 2015-03-26 2016-09-29 Aj Innuscreen Gmbh Method of enriching biomolecules and removing biomolecules from a biological sample
US20190101537A1 (en) * 2016-03-25 2019-04-04 President And Fellows Of Harvard College Microfluidic determination of immune and other cells
US20180216162A1 (en) * 2017-01-30 2018-08-02 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
O. STROHMEIER ET AL: "Centrifugal microfluidic platforms: advanced unit operations and applications", CHEMICAL SOCIETY REVIEWS, vol. 44, no. 17, 1 January 2015 (2015-01-01), UK, pages 6187 - 6229, XP055423852, ISSN: 0306-0012, DOI: 10.1039/C4CS00371C *

Also Published As

Publication number Publication date
DE102022119712A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
EP1894214B2 (en) Magnetic particles with a closed ultrathin silica layer, method for the production thereof and their use
WO2008145587A1 (en) Method for purifying cells, recovering cells, and transfecting cells gently
WO2009135936A1 (en) Method for concentrating and isolating biomolecules or viruses
EP3596215A1 (en) Process for concentrating cells from a sample and then isolating nucleic acids from said cells
WO2023088991A1 (en) Method for concentrating at least one target substance in a sample liquid
CN107011410A (en) A kind of use quartz sand extracts the method and its application of sludge extracellular polymeric
WO2023089078A1 (en) Method for cascadable concentration of at least one target substance in a sample liquid
DE60035977T2 (en) FTA-COATED CARRIER FOR USE AS A MOLECULAR DIAGNOSTIC
WO2012007581A1 (en) Method of concentrating bacteria, viruses and cells and for the subsequent isolation of nucleic acid
EP0734768A1 (en) Method of binding a biological substance
EP1839061A2 (en) Method for the specific or unspecific separation of cells and/or viruses from aqueous media and use thereof
WO2024028088A1 (en) Method for introducing a biological sample, to be concentrated, containing biological material into a centrifugal microfluidic cartridge
EP3487869A1 (en) Method for enriching biomolecules and for removing the biomolecules from a biological sample
WO2022223314A1 (en) Method for automatic online detection of at least one biological target substance in a liquid and online analyzer
DE102010043015B4 (en) Method for concentration of sample components and amplification of nucleic acids
EP3161136A1 (en) Method for enriching microvesicles
EP3064944B1 (en) Layering for separating particles
DE102016209904A1 (en) Method and microfluidic device for processing a sample of biological material
WO2002022866A2 (en) Method and sampling kit for analysing material containing nucleic acid
EP4118201A1 (en) Method for treating a biological sample, and device for isolating cells from a transport medium
WO2022180117A1 (en) Method for simultaneously isolating nucleic acids from sedimentable and nonsedimentable biomolecules in water samples
WO2023227428A1 (en) Method for automatic online detection of at least one biological target substance in a sample liquid by means of an online analyzer
EP3111220B1 (en) Procedures for molecular diagnostics for enriching a nucleic acid from a biological sample
DE2655265C3 (en) Method for the automatic preparation of samples consisting of cell suspensions for the purpose of the subsequent determination of intra- and / or extracellular substances by continuously successive treatment of a plurality of samples
WO2022242931A1 (en) Process for purifying nucleic acids, in particular in a microfluidic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745447

Country of ref document: EP

Kind code of ref document: A1