WO2024027873A1 - Electrochemical cell and use - Google Patents

Electrochemical cell and use Download PDF

Info

Publication number
WO2024027873A1
WO2024027873A1 PCT/DE2023/100532 DE2023100532W WO2024027873A1 WO 2024027873 A1 WO2024027873 A1 WO 2024027873A1 DE 2023100532 W DE2023100532 W DE 2023100532W WO 2024027873 A1 WO2024027873 A1 WO 2024027873A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
electrochemical cell
support structure
titanium oxide
transport layer
Prior art date
Application number
PCT/DE2023/100532
Other languages
German (de)
French (fr)
Inventor
Nathan Kruppe
Mehmet OETE
Philipp Hoerning
Nazlim Bagcivan
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102023118887.9A external-priority patent/DE102023118887A1/en
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2024027873A1 publication Critical patent/WO2024027873A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries

Definitions

  • the invention relates to an electrochemical cell in the form of a fuel cell, an electrolyzer or a redox flow cell and the use of a transport layer in such an electrochemical cell.
  • Transport layers have electrical conductivity and are known per se. They are also referred to as gas diffusion bodies, gas diffusion layers, current collectors, transport layers and the like and are used to conduct and/or distribute fluids within a reaction space of an electrochemical cell.
  • metal foams, metal fabrics, metal meshes, metal felts, metal thread scrims, sintered metals with open porosity, expanded metals and the like are used, which can be attached on one side to a gas-tight metal plate and can also be coated at least in some areas in order to achieve a certain open porosity with suitable ones Adjust the pore diameter of the coating, the coating being used in contact with a polymer membrane separating the reaction spaces in an electrochemical cell.
  • a gas diffusion body comprising at least one base layer with through openings, which is formed either from electrically conductive expanded metal, fabric or grid or from an electrically conductive metal plate provided with openings.
  • the powdery material consists largely of particles of electrically conductive material, in particular titanium, and can contain additives in the form of platinum particles, gold particles, iridium particles or combinations thereof.
  • the gas diffusion body is used in electrochemical cells, in particular electrolyzers or fuel cells.
  • DE 10 2020 203 398 A1 describes a method in which a metal support of a fuel cell is produced additively.
  • the metal support is built up by applying a metal layer to a base structure.
  • a metal layer As a basic structure it can be a metal grid and/or a metal mesh can be used. A porosity of the metal layer can be adjusted gradually, but gas-tight areas can also be created.
  • DE 10 2015 111 918 A1 discloses a method for producing a current collector for an electrode of an electrochemical cell, in particular an electrolyzer.
  • a substrate is provided and at least one microporous layer made of titanium or containing titanium is applied to the substrate by plasma spraying in a vacuum.
  • Titanium powder used for this purpose can be sprayed with at least one other metal powder made of a base metal, in particular aluminum, iron or zinc.
  • a titanium expanded metal frame or sintered titanium powder is described as the substrate.
  • US 4,931,213 A describes an electrically conductive ceramic material made of substoichiometric titanium oxide, which is used in electrochemical applications. Titanium dioxide is combined with graphite and reduced to substoichiometric titanium oxide.
  • the task is for the electrochemical cell in the form of a fuel cell, an electrolyzer or a redox flow cell, comprising two reaction spaces separated from one another by a polymer membrane, and with at least one transport layer, which is electrically connected in at least one of the reaction spaces conductive, open-porous coating is arranged facing the polymer membrane, wherein the transport layer is formed, comprising a metallic support structure with the coating applied to the support structure at least in regions, the coating being formed from a mixture of substoichiometric titanium oxide and chromium oxide, which has a maximum of 0 .5% by weight of elements from the group comprising Nb, Zr, Y, Al, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C.
  • the electrochemical cell has significantly improved long-term cell performance due to the high electrochemical stability and electrical conductivity of the transport layer used.
  • the coating preferably has an electrical conductivity of at least 3*10 3 S/m.
  • the substoichiometric titanium oxide preferably has the formula TiÜ2-x with 0 ⁇ x ⁇ 1, in particular with 0.01 ⁇ x ⁇ 0.2. A particularly high electrical conductivity can be achieved here.
  • the substoichiometric titanium oxide is preferably present in the coating in a ratio of 95:5 to 5:95% by weight to the chromium oxide.
  • the substoichiometric titanium oxide is present in the coating at 75 to 85% by weight.
  • the chromium oxide preferably has a stoichiometric structure.
  • the coating is preferably formed on the support structure by thermal spraying. This allows open porosities in the coating to be specifically adjusted and changed.
  • the open-porous coating is applied to the support structure, preferably by thermal spraying of a titanium powder and/or titanium. tan oxide powder and further a chromium powder and/or chromium oxide powder, optionally with prior mixing of these powders.
  • an open porosity is preferably set with an average diameter of the pores in the single-digit micrometer range, in particular in the range from 5 to 15 pm, while on the side of the coating facing the support structure, an open porosity is preferably set an average diameter of the pores in the single-digit millimeter range, in particular in the range from 0.5 to 1.5 mm. Starting from the support structure, the pore diameter in the coating is successively reduced towards the free surface.
  • an open porosity in the range of 25 to 35% by volume on the side of the open-porous coating facing the support structure and an open porosity in the range of 78 to 82 in the area of the free surface of the open-porous coating Vol.-%.
  • powders with grain sizes in the range from 1 to 100 pm, in particular in the range from 25 ⁇ 5 pm are preferably used.
  • the powders used are in particular those which already have the required substoichiometric composition of the titanium oxide and a stoichiometric composition of the chromium oxide.
  • the powders provided or the mixed powders are preferably sprayed onto the support structure using atmospheric plasma spraying.
  • thermal spray processes can also be used.
  • the fact that thermal spraying can be used to produce openly porous layers or components is used.
  • the ability of this deposition technology to be used to generatively produce geometric structures in the micrometer to millimeter range is utilized. In this way, three-dimensional flow channels can be formed by a locally sprayed open-porous coating of different thicknesses, which are suitable for guiding the fluid flows within the electrochemical cell. There are hardly any limits to the geometric shape of the flow channels set. This allows fluid transport in both lateral and normal directions to a polymer membrane.
  • the metallic support structure is preferably plate-shaped and comprises at least one open-porous layer, for example made of a metal sintered part, metal foam, metal mesh, metal mesh, metal fleece, metal thread scrim and the like, onto which the coating is sprayed at least on one side.
  • the support structure can further comprise at least one gas-impermeable metal plate, which is arranged on the side of the open-porous layer facing away from the coating.
  • the support structure in particular has a thickness in the range from 0.1 mm to 5 mm, in particular 0.5 mm.
  • Both a metal plate and an open-porous layer can have three-dimensional structures to form macroscopically recognizable flow channels or flow guide structures. These three-dimensional structures can be formed by embossing, molding and the like.
  • the open-porous coating is preferably applied to the support structure, here in particular to the open-porous layer, in a layer thickness in the range of 0.5 mm to 5 mm.
  • Three-dimensional structures can also be formed in-situ during thermal spraying on a free surface of the coating that faces away from the carrier structure.
  • a use of at least one transport layer comprising a metallic support structure with an electrically conductive, open-porous coating applied at least in areas to the support structure, the coating being formed from a mixture of substoichiometric titanium oxide and chromium oxide, which has a maximum of 0.5 wt.
  • FIGS 1 to 3 are intended to explain transport layers for use in an electrochemical cell and their use in an electrochemical cell as an example. This shows:
  • FIG. 1 shows a first transport position for use in an electrochemical cell in a schematic three-dimensional view
  • Figure 2 shows a second transport layer for use in an electrochemical cell in a schematic three-dimensional view
  • Figure 3 shows a section through an electrochemical cell of an electrolyzer.
  • Figure 1 shows a first transport layer 1 for use in an electrochemical cell 10 (compare Figure 3) in a schematic three-dimensional view.
  • the first transport layer 1 comprises a metallic support structure 2, which is formed from an open-porous metal sintered part 2c made of titanium in plate form.
  • An electrically conductive, open-porous coating 3 is applied to one side of the support structure 2 by atmospheric plasma spraying using a device 20 for thermal spraying, which is only shown schematically here.
  • the coating 3 is formed from a mixture of substoichiometric titanium oxide and chromium oxide, which further contains a maximum of 0.5% by weight of elements from the group comprising Nb, Zr, Y, Al, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C.
  • FIG 2 shows a second transport layer 1 'for use in an electrochemical cell 10 (compare Figure 3) in a schematic three-dimensional view.
  • the second transport layer 1 ' comprises a metallic support structure 2 in plate form, which comprises a gas-tight metal plate 2a made of steel, which is connected on one side to an open-porous metal mesh 2b made of steel.
  • On the free side of the open-porous metal fabric 2b is an electrically conductive, open-porous coating 3 by atmospheric plasma spraying using a device 20 for thermal Spraying applied, which is only shown schematically here.
  • the coating 3 is formed from a mixture of substoichiometric titanium oxide and chromium oxide, which further contains a maximum of 0.5% by weight of elements from the group comprising Nb, Zr, Y, Al, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C.
  • FIG 3 shows a section through an electrochemical cell 10 in the form of an electrolyzer.
  • the electrochemical cell 10 comprises two reaction spaces 4, 5, separated from one another by a polymer membrane 6, here a polymer electrolyte membrane.
  • a transport layer 1 'per reaction space 4, 5 with a free surface 3a (compare Figures 1 and 2) the coating 3 is arranged facing the polymer membrane 6.
  • An electrically conductive catalyst layer, not shown separately, is arranged on both sides of the polymer electrolyte membrane, each comprising a catalyst material.
  • the metal plates 2a here each have flow channels 7 on their sides facing the metal mesh 2b in order to improve the supply of reaction medium (water) and the removal of reaction products (water, hydrogen, oxygen).
  • Such flow channels 7 are only present optionally and can alternatively or additionally also be formed in-situ on the free surface 3a of the coating 3 during thermal spraying.
  • Support structure a metal plate b metal mesh c metal sintered part open-porous coating a free surface, 5 reaction space

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to an electrochemical cell (10) in the form of a fuel cell, an electrolyser or a redox-flow cell, comprising two reaction chambers (4, 5) separated from one another by a polymer membrane (6), and comprising at least one transport layer (1, 1 ') which is arranged in at least one of the reaction chambers (4, 5) with an electrically conductive, open-pore coating (3) facing the polymer membrane (6), the transport layer (1, 1 ') comprising a metal carrier structure (2) having the coating (3) applied to at least portions of the carrier structure (2), and the coating (3) being formed of a mixture of substoichiometric titanium oxide and chromium oxide, which mixture contains at most 0.5 wt.% elements from the group comprising Nb, Zr, Y, AI, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, and C. The invention also relates to a use of at least one transport layer (1, 1 ') in an electrochemical cell (10) of this kind.

Description

Elektrochemische Zelle sowie Verwendung Electrochemical cell and use
Die Erfindung betrifft eine elektrochemische Zelle in Form einer Brennstoffzelle, eines Elektrolyseurs oder einer Redox-Flusszelle und eine Verwendung einer Transportlage in einer solchen elektrochemischen Zelle. The invention relates to an electrochemical cell in the form of a fuel cell, an electrolyzer or a redox flow cell and the use of a transport layer in such an electrochemical cell.
Transportlagen weisen eine elektrische Leitfähigkeit auf und sind an sich bekannt. Sie werden auch als Gasdiffusionskörper, Gasdiffusionsschicht, Stromkollektor, Transportschicht und dergleichen bezeichnet und dienen zur Leitung und/oder Verteilung von Fluiden innerhalb eines Reaktionsraums einer elektrochemischen Zelle. Dabei kommen unter anderem Metallschäume, Metallgewebe, Metallgestricke, Metallfilze, Metallfadengelege, gesinterte Metalle mit offener Porosität, Streckmetalle und dergleichen zum Einsatz, die einseitig an eine gasdichte Metallplatte angeheftet sein können und zusätzlich zumindest bereichsweise beschichtet sein können, um eine bestimmte offene Porosität mit geeigneten Porendurchmessern der Beschichtung einzustellen, wobei die Beschichtung in Kontakt zu einer, die Reaktionsräume in einer elektrochemischen Zelle trennenden Polymermembrane eingesetzt wird. Transport layers have electrical conductivity and are known per se. They are also referred to as gas diffusion bodies, gas diffusion layers, current collectors, transport layers and the like and are used to conduct and/or distribute fluids within a reaction space of an electrochemical cell. Among other things, metal foams, metal fabrics, metal meshes, metal felts, metal thread scrims, sintered metals with open porosity, expanded metals and the like are used, which can be attached on one side to a gas-tight metal plate and can also be coated at least in some areas in order to achieve a certain open porosity with suitable ones Adjust the pore diameter of the coating, the coating being used in contact with a polymer membrane separating the reaction spaces in an electrochemical cell.
So beschreibt die DE 10 2018 132 399 A1 bereits einen Gasdiffusionskörper umfassend mindestens eine Basisschicht mit Durchgangsöffnungen, die entweder aus elektrisch leitendem Streckmetall, Gewebe oder Gitter gebildet ist oder aus einer elektrisch leitenden, mit Öffnungen versehenen Metallplatte. Weiterhin ist eine Zusatzschicht vorhanden, die als pulverförmiges Material unter Einsatz eines thermischen Spritzverfahrens aufgetragen ist. Das pulverförmige Material besteht zum Großteil aus Partikeln aus elektrisch leitendem Material, insbesondere aus Titan, und kann Zusätze in Form von Platinpartikeln, Goldpartikeln, Iridiumpartikeln oder Kombinationen daraus enthalten. Der Gasdiffusionskörper wird in elektrochemischen Zellen, insbesondere Elektrolyseuren oder Brennstoffzellen, eingesetzt. DE 10 2018 132 399 A1 already describes a gas diffusion body comprising at least one base layer with through openings, which is formed either from electrically conductive expanded metal, fabric or grid or from an electrically conductive metal plate provided with openings. There is also an additional layer that is applied as a powdery material using a thermal spray process. The powdery material consists largely of particles of electrically conductive material, in particular titanium, and can contain additives in the form of platinum particles, gold particles, iridium particles or combinations thereof. The gas diffusion body is used in electrochemical cells, in particular electrolyzers or fuel cells.
Die DE 10 2020 203 398 A1 beschreibt ein Verfahren, bei welchem additiv ein Metallträger einer Brennstoffzelle hergestellt wird. Dabei wird der Metallträger durch Auftragung einer Metallschicht auf eine Basisstruktur aufgebaut. Als Basisstruktur kann da- bei ein Metallgitter und/oder ein Metallgewebe dienen. Eine Porosität der Metallschicht kann graduell eingestellt werden, aber auch gasdichte Bereiche können erzeugt werden. DE 10 2020 203 398 A1 describes a method in which a metal support of a fuel cell is produced additively. The metal support is built up by applying a metal layer to a base structure. As a basic structure it can be a metal grid and/or a metal mesh can be used. A porosity of the metal layer can be adjusted gradually, but gas-tight areas can also be created.
Die DE 10 2015 111 918 A1 offenbart ein Verfahren zur Herstellung eines Stromkollektors für eine Elektrode einer elektrochemischen Zelle, insbesondere eines Elektrolyseurs. Es wird ein Substrat bereitgestellt und mindestens eine mikroporöse, aus Titan bestehende oder Titan enthaltende Schicht durch Plasmaspritzen im Vakuum auf das Substrat aufgebracht. Dazu eingesetztes Titanpulver kann mit mindestens einem weiteren Metallpulver aus einem unedlen Metall, insbesondere Aluminium, Eisen oder Zink, verspritzt werden. Als Substrat ist ein Titan-Streckgitter oder gesintertes Titanpulver beschrieben. Auf die mindestens eine mikroporöse Schicht kann eine Korrosionsschutzschicht, insbesondere aus Edelmetall oder aus einem porösen Elektrokatalysator, wie SnO2:Sb, Ti4O?, SnÜ2:M mit M = Sb, In, Nb, oder TiO2:M mit M = W, Nb, Mo, aufgebracht werden. DE 10 2015 111 918 A1 discloses a method for producing a current collector for an electrode of an electrochemical cell, in particular an electrolyzer. A substrate is provided and at least one microporous layer made of titanium or containing titanium is applied to the substrate by plasma spraying in a vacuum. Titanium powder used for this purpose can be sprayed with at least one other metal powder made of a base metal, in particular aluminum, iron or zinc. A titanium expanded metal frame or sintered titanium powder is described as the substrate. A corrosion protection layer, in particular made of noble metal or of a porous electrocatalyst, such as SnO2:Sb, Ti4O?, SnÜ2:M with M = Sb, In, Nb, or TiO2:M with M = W, Nb, can be applied to the at least one microporous layer. Mo, be upset.
Die US 4 931 213 A beschreibt ein elektrisch leitfähiges keramisches Material aus unterstöchiometrischem Titanoxid, welches in elektrochemischen Anwendungen eingesetzt wird. Dabei wird Titandioxid mit Graphit zusammengebracht und zu dem unterstöchiometrischem Titanoxid reduziert. US 4,931,213 A describes an electrically conductive ceramic material made of substoichiometric titanium oxide, which is used in electrochemical applications. Titanium dioxide is combined with graphite and reduced to substoichiometric titanium oxide.
Die US 2022 / 0 033 288 A1 offenbart eine elektrochemische Vorrichtung zur Reinigung eines Fluids, wie Abwasser oder Schlamm, umfassend eine elektrochemische Filtermembrane und einen offen-porösen metallischen Träger, der eine Beschichtung enthaltend TiOx mit x= 1 ,5 bis 1 ,9 aufweist. US 2022/0 033 288 A1 discloses an electrochemical device for cleaning a fluid, such as wastewater or sludge, comprising an electrochemical filter membrane and an open-porous metallic carrier which has a coating containing TiOx with x = 1.5 to 1.9 .
Es ist Aufgabe der Erfindung, eine elektrochemische Zelle bereitzustellen, die hinsichtlich einer elektrochemischen Stabilität und elektrischen Leitfähigkeit einer in der elektrochemischen Zelle eingesetzten Transportlage verbessert ist. It is the object of the invention to provide an electrochemical cell which is improved in terms of electrochemical stability and electrical conductivity of a transport layer used in the electrochemical cell.
Die Aufgabe wird für die elektrochemische Zelle in Form einer Brennstoffzelle, eines Elektrolyseurs oder einer Redox-Flusszelle, umfassend zwei, durch eine Polymermembrane voneinander getrennte Reaktionsräume, und mit mindestens einer Transportlage, welche in mindestens einem der Reaktionsräume mit einer elektrisch leitfähigen, offen-porösen Beschichtung zur Polymermembrane gewandt angeordnet ist, wobei die Transportlage, umfassend eine metallische Trägerstruktur mit der, zumindest bereichsweise auf die Trägerstruktur aufgebrachten Beschichtung ausgebildet ist, wobei die Beschichtung aus einer Mischung aus unterstöchiometrischem Titanoxid und Chromoxid gebildet ist, die maximal 0,5 Gew.-% an Elementen aus der Gruppe umfassend Nb, Zr, Y, AI, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C, aufweist. The task is for the electrochemical cell in the form of a fuel cell, an electrolyzer or a redox flow cell, comprising two reaction spaces separated from one another by a polymer membrane, and with at least one transport layer, which is electrically connected in at least one of the reaction spaces conductive, open-porous coating is arranged facing the polymer membrane, wherein the transport layer is formed, comprising a metallic support structure with the coating applied to the support structure at least in regions, the coating being formed from a mixture of substoichiometric titanium oxide and chromium oxide, which has a maximum of 0 .5% by weight of elements from the group comprising Nb, Zr, Y, Al, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C.
Die elektrochemische Zelle besitzt eine wesentlich verbesserte Langzeit-Zellleistung aufgrund der hohen elektrochemischen Stabilität und elektrischen Leitfähigkeit der eingesetzten Transportlage. The electrochemical cell has significantly improved long-term cell performance due to the high electrochemical stability and electrical conductivity of the transport layer used.
Ein Grenzflächenwiderstand der Beschichtung liegt vorzugsweise unterhalb von 25 mOhrmcm2, wobei eine TPV-Messung (TVP = „through plane voltage“) auf Gold normiert und bei einer Pressung von 100 N/cm2 und einer Stromdichte von 2 A/cm2 durchgeführt wird. Bevorzugt liegt mindestens eine elektrische Leitfähigkeit von 3*103 S/m für die Beschichtung vor. An interface resistance of the coating is preferably below 25 mOhrmcm 2 , with a TPV measurement (TVP = "through plane voltage") standardized to gold and carried out at a pressure of 100 N/cm 2 and a current density of 2 A/cm 2 . The coating preferably has an electrical conductivity of at least 3*10 3 S/m.
Das unterstöchiometrische Titanoxid weist bevorzugt die Formel TiÜ2-x mit 0 < x < 1 , insbesondere mit 0,01 < x < 0,2, auf. Hierbei ist eine besonders hohe elektrische Leitfähigkeit erzielbar. The substoichiometric titanium oxide preferably has the formula TiÜ2-x with 0 <x <1, in particular with 0.01 <x <0.2. A particularly high electrical conductivity can be achieved here.
Das unterstöchiometrische Titanoxid liegt zu dem Chromoxid bevorzugt in einem Verhältnis von 95:5 bis 5:95 Gew.-% in der Beschichtung vor. Insbesondere liegt das unterstöchiometrische Titanoxid zu 75 bis 85 Gew.-% in der Beschichtung vor. Das Chromoxid ist bevorzugt stöchiometrisch aufgebaut. The substoichiometric titanium oxide is preferably present in the coating in a ratio of 95:5 to 5:95% by weight to the chromium oxide. In particular, the substoichiometric titanium oxide is present in the coating at 75 to 85% by weight. The chromium oxide preferably has a stoichiometric structure.
Die Beschichtung ist bevorzugt durch ein thermisches Spritzen auf der Trägerstruktur ausgebildet. Dadurch lassen sich gezielt offene Porositäten in der Beschichtung einstellen und verändern. Die offen-poröse Beschichtung ist dabei auf der Trägerstruktur vorzugsweise durch ein thermisches Spritzen eines Titanpulvers und/oder Ti- tanoxidpulvers und weiterhin eines Chrompulvers und/oder Chromoxidpulvers, optional unter vorheriger Mischung dieser Pulver, gebildet. The coating is preferably formed on the support structure by thermal spraying. This allows open porosities in the coating to be specifically adjusted and changed. The open-porous coating is applied to the support structure, preferably by thermal spraying of a titanium powder and/or titanium. tan oxide powder and further a chromium powder and/or chromium oxide powder, optionally with prior mixing of these powders.
Im Bereich einer freien Oberfläche der Beschichtung ist dabei vorzugsweise eine offene Porosität eingestellt mit einem mittleren Durchmesser der Poren im einstelligen Mikrometerbereich, insbesondere im Bereich von 5 bis 15 pm, während auf der, der Trägerstruktur zugewandten Seite der Beschichtung vorzugsweise eine offene Porosität eingestellt ist mit einem mittleren Durchmesser der Poren im einstelligen Millimeterbereich, insbesondere im Bereich von 0,5 bis 1 , 5 mm. Dabei ist, ausgehend von der Trägerstruktur, der Porendurchmesser in der Beschichtung sukzessive in Richtung der freien Oberfläche verringert. In the area of a free surface of the coating, an open porosity is preferably set with an average diameter of the pores in the single-digit micrometer range, in particular in the range from 5 to 15 pm, while on the side of the coating facing the support structure, an open porosity is preferably set an average diameter of the pores in the single-digit millimeter range, in particular in the range from 0.5 to 1.5 mm. Starting from the support structure, the pore diameter in the coating is successively reduced towards the free surface.
Besonders bevorzugt ist dabei eine offene Porosität im Bereich von 25 bis 35 Vol.-% auf der, der Trägerstruktur zugewandten Seite der offen-porösen Beschichtung ausgebildet und im Bereich der freien Oberfläche der offen-porösen Beschichtung eine offene Porosität im Bereich von 78 bis 82 Vol.-%. Particularly preferred is an open porosity in the range of 25 to 35% by volume on the side of the open-porous coating facing the support structure and an open porosity in the range of 78 to 82 in the area of the free surface of the open-porous coating Vol.-%.
Dabei werden zum thermischen Spritzen bevorzugt Pulver mit Korngrößen im Bereich von 1 bis 100 pm, insbesondere im Bereich von 25 ± 5 pm, eingesetzt. Als Pulver werden insbesondere solche verwendet, die bereits die geforderte unterstöchiometrische Zusammensetzung des Titanoxids und eine stöchiometrische Zusammensetzung des Chromoxids aufweisen. For thermal spraying, powders with grain sizes in the range from 1 to 100 pm, in particular in the range from 25 ± 5 pm, are preferably used. The powders used are in particular those which already have the required substoichiometric composition of the titanium oxide and a stoichiometric composition of the chromium oxide.
Bevorzugt werden die bereitgestellten Pulver oder die vermischten Pulver mittels atmosphärischem Plasmaspritzen auf die Trägerstruktur gespritzt. Aber auch andere thermische Spritzverfahren sind einsetzbar. Prozesstechnisch wird ausgenutzt, dass mittels thermischen Spritzens zum einen offen poröse Lagen oder Bauteile hergestellt werden können. Zudem wird die Fähigkeit dieser Abscheidetechnologie nutzbar gemacht, geometrische Strukturen vom Mikrometer- bis zum Millimeterbereich generativ herzustellen. Auf diese Weise können dreidimensionale Strömungskanäle durch eine lokal unterschiedlich dick aufgespritzte offen-poröse Beschichtung ausgebildet werden, die geeignet sind, die Fluidströme innerhalb der elektrochemischen Zelle zu führen. Der geometrischen Ausformung der Strömungskanäle sind dabei kaum Grenzen gesetzt. Dies ermöglicht einen Fluidtransport sowohl in lateraler als auch in normaler Richtung zu einer Polymermembrane. The powders provided or the mixed powders are preferably sprayed onto the support structure using atmospheric plasma spraying. But other thermal spray processes can also be used. In terms of process technology, the fact that thermal spraying can be used to produce openly porous layers or components is used. In addition, the ability of this deposition technology to be used to generatively produce geometric structures in the micrometer to millimeter range is utilized. In this way, three-dimensional flow channels can be formed by a locally sprayed open-porous coating of different thicknesses, which are suitable for guiding the fluid flows within the electrochemical cell. There are hardly any limits to the geometric shape of the flow channels set. This allows fluid transport in both lateral and normal directions to a polymer membrane.
Die metallische Trägerstruktur ist bevorzugt plattenförmig ausgebildet und umfasst zumindest eine offen-poröse Lage, beispielsweise aus einem Metallsinterteil, Metallschaum, Metallgewebe, Metallgestrick, Metallvlies, Metallfadengelege und dergleichen, auf welche zumindest einseitig die Beschichtung aufgespritzt wird. Die Trägerstruktur kann weiterhin mindestens eine gasundurchlässige Metallplatte umfassen, die auf der, der Beschichtung abgewandten Seite der offen-porösen Lage angeordnet wird. Dabei weist die Trägerstruktur insbesondere eine Dicke im Bereich von 0,1 mm bis 5 mm, insbesondere von 0,5 mm, auf. Sowohl eine Metallplatte als auch eine offen-poröse Lage können dreidimensionale Strukturen zur Ausbildung von makroskopisch erkennbaren Strömungskanälen oder Strömungsleitstrukturen aufweisen. Diese dreidimensionalen Strukturen können durch Prägen, Einformen und dergleichen gebildet sein. The metallic support structure is preferably plate-shaped and comprises at least one open-porous layer, for example made of a metal sintered part, metal foam, metal mesh, metal mesh, metal fleece, metal thread scrim and the like, onto which the coating is sprayed at least on one side. The support structure can further comprise at least one gas-impermeable metal plate, which is arranged on the side of the open-porous layer facing away from the coating. The support structure in particular has a thickness in the range from 0.1 mm to 5 mm, in particular 0.5 mm. Both a metal plate and an open-porous layer can have three-dimensional structures to form macroscopically recognizable flow channels or flow guide structures. These three-dimensional structures can be formed by embossing, molding and the like.
Die offen-poröse Beschichtung ist bevorzugt in einer Schichtdicke im Bereich von 0,5 mm bis 5 mm auf die Trägerstruktur, hier insbesondere auf die offen-poröse Lage, aufgetragen. Dabei können auf einer freien Oberfläche der Beschichtung, welche der Trägerstruktur abgewandt ist, ebenfalls dreidimensionale Strukturen beim thermischen Spritzen in-situ ausgebildet sein. The open-porous coating is preferably applied to the support structure, here in particular to the open-porous layer, in a layer thickness in the range of 0.5 mm to 5 mm. Three-dimensional structures can also be formed in-situ during thermal spraying on a free surface of the coating that faces away from the carrier structure.
Eine Verwendung mindestens einer Transportlage, umfassend eine metallische Trägerstruktur mit einer, zumindest bereichsweise auf die Trägerstruktur aufgebrachten, elektrisch leitfähigen, offen-porösen Beschichtung, wobei die Beschichtung aus einer Mischung aus unterstöchiometrischem Titanoxid und Chromoxid gebildet ist, die maximal 0,5 Gew.-% an Elementen aus der Gruppe umfassend Nb, Zr, Y, AI, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C, aufweist, in einer elektrochemische Zelle in Form einer Brennstoffzelle, eines Elektrolyseurs oder einer Re- dox-Flusszelle, umfassend zwei, durch eine Polymermembrane voneinander getrennte Reaktionsräume, wobei die mindestens eine Transportlage in mindestens einem der Reaktionsräume mit der Beschichtung zur Polymermembrane gewandt angeordnet wird, hat sich bewährt. A use of at least one transport layer, comprising a metallic support structure with an electrically conductive, open-porous coating applied at least in areas to the support structure, the coating being formed from a mixture of substoichiometric titanium oxide and chromium oxide, which has a maximum of 0.5 wt. % of elements from the group comprising Nb, Zr, Y, Al, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H , N, C, in an electrochemical cell in the form of a fuel cell, an electrolyzer or a redox flow cell, comprising two reaction spaces separated from one another by a polymer membrane, the at least one transport layer in at least one the reaction spaces with the coating are arranged facing the polymer membrane has proven to be effective.
Die Figuren 1 bis 3 sollen Transportlagen zur Verwendung in einer elektrochemischen Zelle und deren Einsatz in einer elektrochemischen Zelle beispielhaft erläutern. So zeigt: Figures 1 to 3 are intended to explain transport layers for use in an electrochemical cell and their use in an electrochemical cell as an example. This shows:
Figur 1 eine erste Transportlage zur Verwendung in einer elektrochemischen Zelle in einer schematischen dreidimensionalen Ansicht, 1 shows a first transport position for use in an electrochemical cell in a schematic three-dimensional view,
Figur 2 eine zweite Transportlage zur Verwendung in einer elektrochemischen Zelle in einer schematischen dreidimensionalen Ansicht, undFigure 2 shows a second transport layer for use in an electrochemical cell in a schematic three-dimensional view, and
Figur 3 einen Schnitt durch eine elektrochemische Zelle eines Elektrolyseurs. Figure 3 shows a section through an electrochemical cell of an electrolyzer.
Figur 1 zeigt eine erste Transportlage 1 zur Verwendung in einer elektrochemischen Zelle 10 (vergleiche Figur 3) in einer schematischen dreidimensionalen Ansicht. Die erste Transportlage 1 umfasst eine metallische Trägerstruktur 2, die aus einem offenporösen Metallsinterteil 2c aus Titan in Plattenform gebildet ist. Auf eine Seite der Trägerstruktur 2 ist eine elektrisch leitfähige, offen-poröse Beschichtung 3 durch atmosphärisches Plasmaspritzen mittels einer Vorrichtung 20 zum thermischen Spritzen aufgebracht, welche hier lediglich schematisch dargestellt ist. Die Beschichtung 3 ist aus einer Mischung aus unterstöchiometrischem Titanoxid und Chromoxid gebildet, die weiterhin maximal 0,5 Gew.-% an Elementen aus der Gruppe umfassend Nb, Zr, Y, AI, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C, aufweist. Figure 1 shows a first transport layer 1 for use in an electrochemical cell 10 (compare Figure 3) in a schematic three-dimensional view. The first transport layer 1 comprises a metallic support structure 2, which is formed from an open-porous metal sintered part 2c made of titanium in plate form. An electrically conductive, open-porous coating 3 is applied to one side of the support structure 2 by atmospheric plasma spraying using a device 20 for thermal spraying, which is only shown schematically here. The coating 3 is formed from a mixture of substoichiometric titanium oxide and chromium oxide, which further contains a maximum of 0.5% by weight of elements from the group comprising Nb, Zr, Y, Al, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C.
Figur 2 zeigt eine zweite Transportlage 1 ' zur Verwendung in einer elektrochemischen Zelle 10 (vergleiche Figur 3) in einer schematischen dreidimensionalen Ansicht. Die zweite Transportlage 1 ' umfasst eine metallische Trägerstruktur 2 in Plattenform, die eine gasdichte Metallplatte 2a aus Stahl umfasst, welche einseitig mit einem offenporösen Metallgewebe 2b aus Stahl verbunden ist. Auf die freie Seite des offenporösen Metallgewebes 2b ist eine elektrisch leitfähige, offen-poröse Beschichtung 3 durch atmosphärisches Plasmaspritzen mittels einer Vorrichtung 20 zum thermischen Spritzen aufgebracht, welche hier lediglich schematisch dargestellt ist. Die Beschichtung 3 ist aus einer Mischung aus unterstöchiometrischem Titanoxid und Chromoxid gebildet, die weiterhin maximal 0,5 Gew.-% an Elementen aus der Gruppe umfassend Nb, Zr, Y, AI, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C, aufweist. Figure 2 shows a second transport layer 1 'for use in an electrochemical cell 10 (compare Figure 3) in a schematic three-dimensional view. The second transport layer 1 'comprises a metallic support structure 2 in plate form, which comprises a gas-tight metal plate 2a made of steel, which is connected on one side to an open-porous metal mesh 2b made of steel. On the free side of the open-porous metal fabric 2b is an electrically conductive, open-porous coating 3 by atmospheric plasma spraying using a device 20 for thermal Spraying applied, which is only shown schematically here. The coating 3 is formed from a mixture of substoichiometric titanium oxide and chromium oxide, which further contains a maximum of 0.5% by weight of elements from the group comprising Nb, Zr, Y, Al, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C.
Figur 3 zeigt einen Schnitt durch eine elektrochemische Zelle 10 in Form eines Elektrolyseurs. Die elektrochemische Zelle 10 umfasst zwei, durch eine Polymermembrane 6, hier eine Polymerelektrolytmembrane, voneinander getrennte Reaktionsräume 4, 5. Auf beiden Seiten der Polymermembrane 6 ist je eine Transportlage 1 ' pro Reaktionsraum 4, 5 mit einer freien Oberfläche 3a (vergleiche Figuren 1 und 2) der Beschichtung 3 jeweils zur Polymermembrane 6 gewandt angeordnet. Beiderseits der Polymerelektrolytmembrane ist jeweils eine nicht gesondert dargestellte elektrisch leitende Katalysatorschicht umfassend jeweils ein Katalysatormaterial angeordnet. Die Metallplatten 2a weisen hier jeweils Strömungskanäle 7 auf ihren dem Metallgewebe 2b zugewandten Seiten auf, um eine Zufuhr von Reaktionsmedium (Wasser) und eine Abfuhr von Reaktionsprodukten (Wasser, Wasserstoff, Sauerstoff) zu verbessern. Derartige Strömungskanäle 7 sind lediglich optional vorhanden und können alternativ oder zusätzlich auch auf der freien Oberfläche 3a der Beschichtung 3 beim thermischen Spritzen in-situ ausgebildet sein. Figure 3 shows a section through an electrochemical cell 10 in the form of an electrolyzer. The electrochemical cell 10 comprises two reaction spaces 4, 5, separated from one another by a polymer membrane 6, here a polymer electrolyte membrane. On both sides of the polymer membrane 6 there is a transport layer 1 'per reaction space 4, 5 with a free surface 3a (compare Figures 1 and 2) the coating 3 is arranged facing the polymer membrane 6. An electrically conductive catalyst layer, not shown separately, is arranged on both sides of the polymer electrolyte membrane, each comprising a catalyst material. The metal plates 2a here each have flow channels 7 on their sides facing the metal mesh 2b in order to improve the supply of reaction medium (water) and the removal of reaction products (water, hydrogen, oxygen). Such flow channels 7 are only present optionally and can alternatively or additionally also be formed in-situ on the free surface 3a of the coating 3 during thermal spraying.
Bezuqszeichenliste , r Transportlage Reference symbol list, r transport position
Trägerstruktur a Metallplatte b Metallgewebe c Metallsinterteil offen-poröse Beschichtung a freie Oberfläche , 5 Reaktionsraum Support structure a metal plate b metal mesh c metal sintered part open-porous coating a free surface, 5 reaction space
Polymermembrane Polymer membrane
Strömungskanäle 0 elektrochemische Zelle 0 Vorrichtung zum thermischen Spritzen Flow channels 0 electrochemical cell 0 device for thermal spraying

Claims

Patentansprüche Patent claims
1. Elektrochemische Zelle (10) in Form einer Brennstoffzelle, eines Elektrolyseurs o- der einer Redox-Flusszelle, umfassend zwei, durch eine Polymermembrane (6) voneinander getrennte Reaktionsräume (4, 5), und mit mindestens einer Transportlage (1 , 1 '), welche in mindestens einem der Reaktionsräume (4, 5) mit einer elektrisch leitfähigen, offen-porösen Beschichtung (3) zur Polymermembrane (6) gewandt angeordnet ist, wobei die Transportlage (1 , 1 '), umfassend eine metallische Trägerstruktur (2) mit der, zumindest bereichsweise auf die Trägerstruktur (2) aufgebrachten Beschichtung (3) ausgebildet ist, wobei die Beschichtung (3) aus einer Mischung aus unterstöchiometrischem Titanoxid und Chromoxid gebildet ist, die maximal 0,5 Gew.-% an Elementen aus der Gruppe umfassend Nb, Zr, Y, AI, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C, aufweist. 1. Electrochemical cell (10) in the form of a fuel cell, an electrolyzer or a redox flow cell, comprising two reaction spaces (4, 5) separated from one another by a polymer membrane (6), and with at least one transport layer (1, 1 ' ), which is arranged in at least one of the reaction spaces (4, 5) with an electrically conductive, open-porous coating (3) facing the polymer membrane (6), the transport layer (1, 1 '), comprising a metallic support structure (2 ) is formed with the coating (3) applied at least in some areas to the support structure (2), the coating (3) being formed from a mixture of substoichiometric titanium oxide and chromium oxide, which contains a maximum of 0.5% by weight of elements from the Group comprising Nb, Zr, Y, Al, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C, having.
2. Elektrochemische Zelle (10) nach Anspruch 1 , wobei das unterstöchiometrische Titanoxid die Formel TiÜ2-x mit 0 < x < 1 aufweist. 2. Electrochemical cell (10) according to claim 1, wherein the substoichiometric titanium oxide has the formula TiÜ2-x with 0 <x <1.
3. Elektrochemische Zelle (10) nach Anspruch 2, wobei das unterstöchiometrische Titanoxid die Formel TiÜ2-x mit 0,01 < x < 0,2 aufweist. 3. Electrochemical cell (10) according to claim 2, wherein the substoichiometric titanium oxide has the formula TiÜ2-x with 0.01 <x <0.2.
4. Elektrochemische Zelle (10) nach einem der Ansprüche 1 bis 3, wobei die Beschichtung (3) durch thermisches Spritzen auf der Trägerstruktur (2) ausgebildet ist. 4. Electrochemical cell (10) according to one of claims 1 to 3, wherein the coating (3) is formed by thermal spraying on the support structure (2).
5. Elektrochemische Zelle (10) nach einem der Ansprüche 1 bis 4, wobei das unterstöchiometrische Titanoxid zu dem Chromoxid in einem Verhältnis von 95:5 bis 5:95 Gew.-% in der Beschichtung (3) vorliegt. 5. Electrochemical cell (10) according to one of claims 1 to 4, wherein the substoichiometric titanium oxide to the chromium oxide is present in the coating (3) in a ratio of 95:5 to 5:95% by weight.
6. Elektrochemische Zelle (10) nach Anspruch 5, wobei das unterstöchiometrische Titanoxid zu 75 bis 85 Gew.-% in der Beschichtung (3) vorliegt. 6. Electrochemical cell (10) according to claim 5, wherein the substoichiometric titanium oxide is present in the coating (3) in an amount of 75 to 85% by weight.
7. Elektrochemische Zelle (10) nach einem der Ansprüche 1 bis 6, wobei die offenporöse Beschichtung (3) auf der Trägerstruktur (2) durch ein thermisches Spritzen eines Titanpulvers und/oder Titanoxidpulvers und weiterhin eines Chrompulvers und/oder Chromoxidpulvers, optional unter vorheriger Mischung dieser Pulver, gebil- det ist. 7. Electrochemical cell (10) according to one of claims 1 to 6, wherein the open-porous coating (3) on the support structure (2) by thermal spraying of a titanium powder and / or titanium oxide powder and further a chromium powder and / or chromium oxide powder, optionally under previous Mixture of these powders is formed.
8. Verwendung mindestens einer Transportlage (1 , 1 '), umfassend eine metallische Trägerstruktur (2) mit einer, zumindest bereichsweise auf die Trägerstruktur (2) aufgebrachten, elektrisch leitfähigen, offen-porösen Beschichtung (3), wobei die Beschichtung (3) aus einer Mischung aus unterstöchiometrischem Titanoxid und Chro- moxid gebildet ist, die maximal 0,5 Gew.-% an Elementen aus der Gruppe umfassend Nb, Zr, Y, AI, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C, aufweist, in einer elektrochemische Zelle (10) in Form einer Brennstoffzelle, eines Elektrolyseurs oder einer Redox-Flusszelle, umfassend zwei, durch eine Polymermembrane (6) voneinander getrennte Reaktionsräume (4, 5), wobei die mindes- tens eine Transportlage (1 , 1 ') in mindestens einem der Reaktionsräume (4, 5) mit der Beschichtung (3) zur Polymermembrane (6) gewandt angeordnet wird. 8. Use of at least one transport layer (1, 1 '), comprising a metallic support structure (2) with an electrically conductive, open-porous coating (3) applied at least in regions to the support structure (2), wherein the coating (3) is formed from a mixture of substoichiometric titanium oxide and chromium oxide, which contains a maximum of 0.5% by weight of elements from the group comprising Nb, Zr, Y, Al, Sn, Zn, Ni, Ta, Mo, Ag, Cu, Au, Pt, V, Ru, W, Si, Fe, Ca, Mg, Na, H, N, C, in an electrochemical cell (10) in the form of a fuel cell, an electrolyzer or a redox flow cell, comprising two , reaction spaces (4, 5) separated from one another by a polymer membrane (6), the at least one transport layer (1, 1 ') in at least one of the reaction spaces (4, 5) with the coating (3) to the polymer membrane (6) is arranged facing.
PCT/DE2023/100532 2022-08-03 2023-07-19 Electrochemical cell and use WO2024027873A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102022119472.8 2022-08-03
DE102022119472 2022-08-03
DE102023118887.9 2023-07-18
DE102023118887.9A DE102023118887A1 (en) 2022-08-03 2023-07-18 Electrochemical cell and use

Publications (1)

Publication Number Publication Date
WO2024027873A1 true WO2024027873A1 (en) 2024-02-08

Family

ID=87551076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2023/100532 WO2024027873A1 (en) 2022-08-03 2023-07-19 Electrochemical cell and use

Country Status (1)

Country Link
WO (1) WO2024027873A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3339566C2 (en) * 1983-11-02 1987-06-11 Heraeus Elektroden Gmbh, 6450 Hanau, De
US4931213A (en) 1987-01-23 1990-06-05 Cass Richard B Electrically-conductive titanium suboxides
US9493883B2 (en) * 2012-02-23 2016-11-15 Treadstone Technologies, Inc. Corrosion resistant and electrically conductive surface of metal
DE102015111918A1 (en) 2015-07-17 2017-01-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Current collector, membrane unit, electrochemical cell, method for producing a current collector, a membrane unit and an electrochemical cell
DE102018132399A1 (en) 2018-12-17 2020-06-18 Forschungszentrum Jülich GmbH Gas diffusion body
DE102020203398A1 (en) 2020-03-17 2021-09-23 Robert Bosch Gesellschaft mit beschränkter Haftung Process for the additive manufacturing of a metal carrier for a fuel cell
US20220033288A1 (en) 2018-12-07 2022-02-03 Saint-Gobain Centre De Recherches Et D'etudes Europeen Device for purifying a fluid, in particular waste water
WO2022127984A1 (en) * 2020-12-15 2022-06-23 Schaeffler Technologies AG & Co. KG Method for producing a bipolar plate for an electrochemical cell, and bipolar plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3339566C2 (en) * 1983-11-02 1987-06-11 Heraeus Elektroden Gmbh, 6450 Hanau, De
US4931213A (en) 1987-01-23 1990-06-05 Cass Richard B Electrically-conductive titanium suboxides
EP0343188B1 (en) * 1987-01-23 1997-04-23 CASS, Richard Barton Electrically conductive titanium suboxides
US9493883B2 (en) * 2012-02-23 2016-11-15 Treadstone Technologies, Inc. Corrosion resistant and electrically conductive surface of metal
DE102015111918A1 (en) 2015-07-17 2017-01-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Current collector, membrane unit, electrochemical cell, method for producing a current collector, a membrane unit and an electrochemical cell
US20220033288A1 (en) 2018-12-07 2022-02-03 Saint-Gobain Centre De Recherches Et D'etudes Europeen Device for purifying a fluid, in particular waste water
DE102018132399A1 (en) 2018-12-17 2020-06-18 Forschungszentrum Jülich GmbH Gas diffusion body
DE102020203398A1 (en) 2020-03-17 2021-09-23 Robert Bosch Gesellschaft mit beschränkter Haftung Process for the additive manufacturing of a metal carrier for a fuel cell
WO2022127984A1 (en) * 2020-12-15 2022-06-23 Schaeffler Technologies AG & Co. KG Method for producing a bipolar plate for an electrochemical cell, and bipolar plate

Similar Documents

Publication Publication Date Title
EP3307924B1 (en) Method for preparing hydrocarbon-selective gas diffusion electrodes based on copper-containing catalysts
DE602004007039T2 (en) STRUCTURES FOR GAS DIFFUSION MATERIALS AND MANUFACTURING METHOD THEREFOR
EP3642391B1 (en) Method, use and electrolysis cell comprising gas diffusion electrode for reducing carbon dioxide
DE112005001131T5 (en) Novel method to produce a high performance membrane electrode assembly (MEA) for a PEM fuel cell
EP3748039A1 (en) Electrically conductive nanofibers for a polymer membrane based electrolysis
DE102015108604A1 (en) Conductive thin film for protection against carbon corrosion
EP1989338A2 (en) Porous body containing mixed oxides made from an iron/chrome alloy for fuel cells
DE102020133553A1 (en) Method of making a bipolar plate for an electrochemical cell and bipolar plate
EP2573211B1 (en) Method for their production of gas diffusion electrodes
EP3479429B1 (en) Method for producing a supported catalyst material for a fuel cell
DE102004053582A1 (en) New electrical contact element for a fuel cell
WO2024027873A1 (en) Electrochemical cell and use
DE102023118887A1 (en) Electrochemical cell and use
WO2012028313A1 (en) Process for producing platinum-transition metal catalyst particles
EP4430230A2 (en) Half-cell of an electrolytic cell for an electrolyzer and method for producing a component for an electrolytic cell
DE102016123910A1 (en) Gas diffusion electrode
WO2020015944A1 (en) Method for producing an open-pored metal body having an oxide layer and metal body produced by said method
DE102018204602A1 (en) Gas distributor structure for a fuel cell
DE102008006036B4 (en) Method for producing a bipolar plate for a fuel cell unit and bipolar plate
WO2024125695A1 (en) Method for producing a substrate material, catalyst material, and electrochemical cell
EP4343898A1 (en) Combination of porous transport layer and bipolar plate for electrochemical cells
WO2020135972A1 (en) Method for producing a ceramic functional layer
DE112020006285T5 (en) Porous body and fuel cell containing same
DE102022115040A1 (en) Bifunctional gas diffusion electrode for alkaline electrochemical energy conversion systems and method for their production
DE102010028893B4 (en) Method for producing an interconnector for a fuel cell stack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23748698

Country of ref document: EP

Kind code of ref document: A1