WO2024027721A1 - 监测发电机变形的方法 - Google Patents

监测发电机变形的方法 Download PDF

Info

Publication number
WO2024027721A1
WO2024027721A1 PCT/CN2023/110607 CN2023110607W WO2024027721A1 WO 2024027721 A1 WO2024027721 A1 WO 2024027721A1 CN 2023110607 W CN2023110607 W CN 2023110607W WO 2024027721 A1 WO2024027721 A1 WO 2024027721A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
generator
position information
deformation
coordinate system
Prior art date
Application number
PCT/CN2023/110607
Other languages
English (en)
French (fr)
Inventor
李生璐
郭孟磊
王兴瑞
刘思伟
原帅
苏志刚
关运生
郑华兵
段宪东
贾凯利
张亚辉
周功林
Original Assignee
中广核核电运营有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核核电运营有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核核电运营有限公司
Publication of WO2024027721A1 publication Critical patent/WO2024027721A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Definitions

  • the invention relates to the technical field of nuclear power, and in particular to a method for monitoring generator deformation.
  • An existing nuclear power half-speed generator usually uses a hydrogen-hydrogen water cooling method, that is, the stator core and rotor coil of the generator are cooled with hydrogen, and the stator coil is cooled with water.
  • the chamber of this type of generator is filled with 3bar hydrogen.
  • the rotor and stator at both ends of the generator are sealed with single-flow ring sealing tiles, and the rotor is supported by a spherical three-tile tilting tile.
  • the generator During the overhaul of the unit, the generator often needs to perform gas replacement, air tightness test and other pressure filling and relief work. At the same time, under the pressure change of 3bar gas in the chamber, the generator undergoes elastic deformation of expansion and contraction, and the support bearings at both ends Changes in tile position and sealing tile position.
  • the position of the spherical tiles is not correct, it is easy to cause the bearing temperature to be too high and the deviation to be too large during the startup process, causing micro-melting of the black metal surface of the bottom tile.
  • the sealing tiles When the sealing tiles are not in the correct position, it will cause the sealing oil flow to be incorrect. Stable, and even phenomena such as hydrogen side seal oil leakage and gas leakage may occur. Therefore, it is necessary to clearly understand the deformation rules of the generator body and other components during pressure charging and relief, as well as the changes in the position of bearing bushes, sealing bushes, etc.
  • the existing monitoring method for generator deformation is too simple. For example, it only reflects the relative position of the bearing bush before and after deformation by measuring the oil pressure on the top shaft of the bottom bush. It cannot truly display the true state of generator deformation, let alone understand the bearing bush. The real reason for the change in tile position.
  • magnetic dial indicators or displacement sensors are often used to set up at an external fixed point to observe the relative changes in a certain orientation of the generator body. The measurement dimension is single, and the equipment cannot be observed in space. The actual changes in the three dimensions, and due to the limited space around the generator, the measuring points that can be monitored are extremely limited.
  • the technical problem to be solved by the present invention is to provide a method for monitoring generator deformation with high measurement accuracy, accuracy and reliability in view of the shortcomings of the existing technology.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a method for monitoring the deformation of a generator, which includes the following steps:
  • the step S1 specifically includes:
  • S12. Determine the monitoring site, and place the monitoring device on the monitoring site; wherein the monitoring range of the monitoring site includes the monitoring location;
  • step S11 further includes determining a reference point outside the generator, and step S12 determines a plurality of monitoring sites, and the monitoring range of each monitoring site includes the reference point. and at least one monitoring location; the step S2 specifically includes:
  • the step S4 specifically includes:
  • the step S5 also includes fitting the position information of the reference points measured at each monitoring site to the standard three-dimensional spatial coordinate system, and obtaining the coordinates of all monitoring positions in the standard three-dimensional spatial coordinate system.
  • the first coordinate data and the second coordinate data in .
  • the monitoring surface selected from the generator in step S11 includes a single monitoring point on the monitoring surface, or includes multiple monitoring points on the monitoring surface, and the monitoring points are spaced at a certain distance. set up.
  • establishing a standard three-dimensional spatial coordinate system in step S3 specifically includes: S31. Taking the center of the cylindrical end surface of the rotor back wheel of the generator as the coordinate origin, taking the vertical direction as the Z axis, and parallel to the end surface of the opposite wheel. The standard three-dimensional spatial coordinate system is established for the Y-axis.
  • the step S6 includes:
  • the cylinder is used as a feature body to fit the hub surface of each part of the pressurized rotor of the generator, and the plane is used as a feature body to fit each monitoring surface respectively;
  • step S6 also includes S62, calculating the distance from the monitoring point on the radial surface of the big end cover before and after the generator is stamped to the central axis of the rotor hub, and obtaining the distance of the oil baffle pocket relative to the rotor central axis after the pressure is charged and relieved. Variety.
  • step S6 also includes the following steps:
  • the method for monitoring generator deformation further includes the following steps:
  • step S8 depressurize the generator, and repeat step S3 at predetermined time intervals after the pressure is decompressed, to obtain a plurality of third monitoring data and third coordinate data.
  • steps S2 and S4 a single point, stable point or continuous point measurement method is selected for each monitoring position.
  • the implementation of the present invention has the following beneficial effects: the present invention can effectively obtain changes in the generator monitoring position in the three-dimensional space, clearly grasp the deformation rules of the generator before and after charging, has rich measurement data types, and can provide more on-site intervention. Small, ensuring the normal operation of the unit and improving equipment reliability.
  • Figure 1 is a flow chart of an embodiment of a method for monitoring generator deformation of the present invention
  • FIG. 2 is a specific flow chart of step S1 of the method for monitoring generator deformation of the present invention
  • FIG. 3 is a specific flow chart of step S2 of the method for monitoring generator deformation of the present invention.
  • FIG. 4 is a specific flow chart of step S3 of the method for monitoring generator deformation of the present invention.
  • Figure 5 is a logic block diagram of the method for monitoring generator deformation of the present invention.
  • Figure 6 is a schematic diagram of the end structure of the generator of the present invention.
  • Figure 7 is a flow chart of another embodiment of the method for monitoring generator deformation of the present invention.
  • Figures 1 and 5 show a method for monitoring generator deformation according to the present invention, which includes the following steps:
  • Step S1 Before charging the generator, make preparations for measurement, including determining the monitoring location and monitoring site.
  • step S1 specifically includes:
  • the monitoring location includes the monitoring point and/or monitoring surface selected from the generator;
  • FIG. 6 is a schematic diagram of the end structure of a nuclear power generator.
  • the components to be monitored include but are not limited to the generator body 4, the large end cover, Seal the tile chamber 5, bearing 7, etc.
  • the large end cover includes the upper half 1 of the large end cover and the lower half 2 of the large end cover.
  • the structural relationship between the above-mentioned monitored components is roughly as follows: the generator large end cover is fastened to the generator body through flange bolts; the generator sealing tile 5 is fastened to the generator large end cover through facade flange bolts ; There is a bearing pad pillow 6 located inside the large end cover of the generator.
  • the bearing pad pillow 6 is the generator bearing, which is used to support the generator rotor; the bearing pad pillow 6 is fastened to the bearing gland 3 with bolts to support the bearing 7 Apply a certain tightening force to limit the bearing 7. Therefore, the selection of monitoring points and/or monitoring surfaces can be based on actual measurement requirements. For specific applications, stable monitoring points should be pasted on the generator body and its components.
  • the monitoring surface selected from the generator in step S11 includes a single monitoring point on the monitoring surface, or multiple monitoring points on the monitoring surface, and the monitoring points are set at a certain distance apart.
  • the monitoring range of the monitoring site should include the monitoring location and be a relatively stable platform relative to the generator, such as a platform adjacent to the generator.
  • a laser tracker can be used as the monitoring device.
  • the laser tracker is arranged on a stable platform adjacent to the generator, such as the depressions on the low-pressure cylinder surface.
  • TrackerCalib software is used to perform forward and rear view inspection of the laser tracker, and the QVC function is used to calibrate it; then the physical level of the laser tracker is calibrated to ensure that the vertical coordinates of the laser tracker are within direction of gravity.
  • step S11 also includes determining a reference point outside the generator; step S12, determining multiple monitoring sites, and the monitoring range of each monitoring site includes the reference point and at least one monitoring position; due to the detection of a single monitoring site
  • the scope is limited and may not include all monitoring locations, so multiple monitoring sites need to be determined to complete monitoring of all monitoring locations.
  • the reference point is required to remain relatively stable relative to the charging and pressure relief of the generator.
  • selecting reference points specifically includes selecting scattered and stable reference points on the low-pressure cylinder adjacent to the generator or other stable buildings (such as concrete pillars, etc.).
  • each reference point can be arranged correspondingly.
  • Reference target ball seat or other forms of reference points that can be monitored; adjust the initial installation site position of the laser tracker to ensure that the laser beam emitted from the laser tracker can see the above-mentioned reference point, that is, the arranged reference target ball seat location, and you can see the monitoring points arranged on the generator.
  • the monitoring range includes as many reference points and monitoring points arranged on the generator as possible, that is, the measurement between the two monitoring sites The more overlap the data has, the better.
  • step S2 specifically includes:
  • SA Spatial Analyzer
  • the monitoring surface can be the geometric surface for movable measurement, such as the hub cylinder at different positions of the generator rotor (such as the oil damper, the ground carbon brush, backrest wheel, etc.), the axial plane of the sealing tile chamber, the axial plane of the generator bearing 7 and bearing tile pillow 6 and other components, the axial surface and radial surface of the oil retaining pocket of the generator big end cover and the upper surface of the bearing When half uninstalled, the horizontal center plane of the generator bearing, bearing shoe pillow 6 and generator large end cover.
  • the generator rotor such as the oil damper, the ground carbon brush, backrest wheel, etc.
  • the measuring point method selected in this step selects single point, stable point, continuous point and other measurement methods based on the monitoring points selected on the actual monitoring surface in step S11.
  • Single point, stable point and continuous point are three methods in the laser measurement process: single point refers to the reference target ball seat being placed stably on the monitoring surface, and the points are collected by manually operating the laser tracker; stable point refers to the reference target The ball seat is placed on the monitoring surface and the laser tracker automatically detects that the reference target ball seat is currently in a stable state and automatically collects points. This method is generally used in continuous measurement of an object and there are not too many monitoring points.
  • the continuous point means that the reference target ball seat does not leave the surface of the object to be measured and moves along a certain trajectory.
  • the laser tracker performs automatic continuous measurements during the movement of the reference target ball seat, similar to scanning. It is suitable for situations where there are many monitoring points.
  • step S22 Switch the monitoring site and repeat step S21 until the measurements of all monitoring locations are completed. If the monitoring range of the monitoring device installed on a single monitoring site cannot fully cover all monitoring points and monitoring surfaces that need to be monitored, move and adjust the monitoring device to another monitoring site on the generator, such as the monitoring on the other side of the generator. Station, the new monitoring station ensures that the reference target tee and the monitoring device not measured in the above steps can be measured. Repeat step S21 to measure the position information of the reference target ball seat and the position information of some monitoring points on the generator that were not measured during the previous measurement, and comprehensively obtain the first monitoring position information.
  • step S3 establishing the standard three-dimensional spatial coordinate system in step S3 includes:
  • Step S4 is similar to step S2. The only difference is that step S2 is for the measurement of the monitoring position before the generator is charged, and step S4 is for the measurement of the monitoring position after the generator is charged.
  • step S4 specifically includes:
  • step S4 the same as step S2, select single point, stable point, continuous point and other measurement methods for each monitoring point to measure.
  • Step S5 also includes fitting the position information of the reference points measured at each monitoring site to the standard three-dimensional space coordinate system, and obtaining the first coordinate data and the second coordinate data of all monitoring positions in the standard three-dimensional space coordinate system.
  • Step S6 includes:
  • the cylinder is used as a feature body to fit the hub surface of each part of the generator's pressurized rotor, and the plane is used as a feature body to fit each monitoring surface;
  • step S6 also includes step S62: Calculate the distance from the monitoring point on the radial surface of the big end cover before and after the generator is stamped to the central axis of the rotor hub, and obtain the relative position of the oil baffle pocket to the central axis of the rotor after the pressure is charged and relieved. The change.
  • step S6 also includes the following steps:
  • the cylinder is used as the characteristic body to fit the hub surface of each part of the generator rotor respectively, and the center coordinates of the fitted cylinder are denoised, and the key points of each cylinder are established, that is, the front, middle and rear center points of the cylinder, and the front and rear center points are connected to form the The central axis of the cylinder; use the plane as the characteristic body to fit each monitoring surface separately, and perform noise reduction processing on the monitoring surface.
  • the method for monitoring generator deformation may also include step S7.
  • steps S4 to S6 may be repeated at preset time intervals. Specifically, considering that there is a time lag in the deformation of the generator, steps S4 to S6 can be repeated to monitor the charging at different time periods after charging, such as just after charging, 2 hours after charging, 24 hours after charging, etc.
  • the deformation state of the generator after compression may also include step S7.
  • the method for monitoring generator deformation may also include step S8.
  • step S3 is repeated at predetermined time intervals to obtain a plurality of third steps.
  • the generator can be monitored after pressure filling and pressure relief. deformation state.
  • the predetermined time interval in step S8 and the predetermined time interval in step S7 may be the same, partially the same or completely different, and are specifically set according to actual needs.
  • the invention makes up for the lack of domestic monitoring of the deformation of nuclear power generators caused by the charging and depressurizing of the cooling medium, and can clearly grasp the deformation rules of the generator body and other components during the charging and depressurizing, as well as the position of bearing bushes, sealing pads and other tiles. changes to implement corresponding tile position adjustment and intervention plans during the overhaul period to ensure the normal operation of the unit and improve equipment reliability.
  • the laser tracker used in the present invention measures the deformation of the generator body and components with high measurement accuracy, rich types of measurement data, and less intervention on site. Compared with the traditional monitoring method, the present invention has richer sampling points and can effectively obtain the equipment's condition.
  • Position changes in three-dimensional space improve the accuracy of measurement data, reduce the requirements for the measurement environment and the interference to the work process, thereby grasping the real change patterns and correctly guiding equipment adjustment work.
  • This method can be used to monitor the status of each unit's generator at different stages before charging, 2 hours after charging, and 24 hours after charging. It can visualize and quantify the deformation of the generator and further guide the spherical support of the generator.
  • the adjustment work of the bearings and the actual deformation of the end face of the sealing tile chamber were collected, which laid a good foundation for the subsequent analysis of the changes in sealing oil flow and the replacement of the sealing tile chamber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明涉及一种监测发电机变形的方法,包括S1、在发电机充压前,确定监测位置和监测站点;S2、通过设置在监测站点上的监测装置,得到监测位置的位置信息,作为第一监测位置信息;S3、建立标准空间坐标系,将第一监测位置信息转换成标准空间坐标系下的第一坐标数据;S4、当发电机充压后,重新得到监测位置的位置信息,作为第二监测位置信息;S5、将第二监测位置信息拟合到标准空间坐标系中,得到第二坐标数据;S6、比较第一坐标数据和第二坐标数据,得出变形监测结果。本发明能有效地获得发电机监测位置在三维空间中的变化,可掌握发电机在充压前后发电机的变形规律,测量数据类型丰富且对现场的干预较小,保证机组的正常投运,提高设备可靠性。

Description

监测发电机变形的方法 技术领域
本发明涉及核电技术领域,尤其涉及一种监测发电机变形的方法。
背景技术
现有的某核电半速发电机通常采用氢氢水冷却方式,即发电机定子铁芯和转子线圈用氢气冷却,定子线圈用水冷却,该类型发电机膛内充满3bar氢气。发电机两端转子与定子之间使用单流环式密封瓦进行密封,转子由球型的三瓦块可倾瓦支撑。
在机组大修期间,发电机常常需要进行气体置换、气密试验等充泄压工作,与此同时,在膛内3bar气体的压力变化下发电机发生膨胀、收缩的弹性形变,以及两端支撑轴瓦瓦位以及密封瓦瓦位的变化。然而,当球型瓦瓦位不正时,容易造成启机过程中轴瓦温度过高、偏差过大,发生底瓦乌金面微熔等现象;当密封瓦瓦位不正时,则造成密封油流量不稳定,甚至出现氢侧密封油窜油跑气等现象。因此,需要清楚地掌握在充泄压时发电机本体等部件的变形规律,以及轴瓦、密封瓦等瓦位变化。
现有的关于发电机变形方面的监测,手段过于单一,例如仅仅通过测量底瓦顶轴油压的大小来反映变形前后轴瓦的相对位置,无法真正显示发电机变形的真实状态,更无法了解轴瓦瓦位变化的真实原因。此外,在传统的位移及变形监测中,常常采用磁力百分表或位移传感器架设至某一外部不动点来观测发电机本体某个方位的相对变化,测量维度单一,无法观测到设备在空间三维中的实际变化,并且因发电机周围环境空间所限可监测的测点极其有限,再加上大修期间检修工作的开展,百分表座更不易架设,常常发生误碰,测量不准确的问题,对数据分析准确性、有效性带来了极大的影响,同时也给现场正常的维修工作造成了干扰。
发明内容
本发明要解决的技术问题在于,针对现有技术的缺陷,提供一种测量精度高、准确可靠的监测发电机变形的方法。
本发明解决其技术问题所采用的技术方案是:构造一种监测发电机变形的方法,包括以下步骤:
S1、在发电机充压前,确定监测位置和监测站点;
S2、通过设置在所述监测站点上的监测装置,得到所述监测位置的位置信息,作为第一监测位置信息;
S3、建立标准三维空间坐标系,将所述第一监测位置信息转换成所述标准三维空间坐标系下的第一坐标数据;
S4、当发电机充压至工作压力后,重新得到所述监测位置的位置信息,作为第二监测位置信息;
S5、将所述第二监测位置信息拟合到所述标准三维空间坐标系中,得到第二坐标数据;
S6、比较所述第一坐标数据和所述第二坐标数据,得出变形监测结果。
优选地,所述步骤S1具体包括:
S11、确定监测位置,所述监测位置包括选取自所述发电机上的监测点和/或监测面;
S12、确定所述监测站点,将所述监测装置置于所述监测站点上;其中,所述监测站点的监测范围包括所述监测位置;
S13、检查并校准所述监测装置,使所述监测装置的垂直坐标方向保持与竖直方向重合。
优选地,所述步骤S11中,还包括确定所述发电机外的基准点,所述步骤S12中,确定多个所述监测站点,且每一所述监测站点的监测范围包括所述基准点和至少一个所述监测位置;所述步骤S2具体包括:
S21、在一个所述监测站点得到所述基准点的位置信息和所述监测位置的所述第一监测位置信息;
S22、切换监测站点,重复执行步骤S21,直至完成所有监测位置的测量;
所述步骤S4具体包括:
S41、在一个所述监测站点得到所述基准点的位置信息和所述监测位置的所述第二监测位置信息;
S42、切换监测站点,重复执行步骤S41,直至完成所有监测位置的测量;
所述步骤S5还包括,将在各个所述监测站点测量的所述基准点的位置信息拟合至所述标准三维空间坐标系中,并得到所有所述监测位置在所述标准三维空间坐标系中的所述第一坐标数据和所述第二坐标数据。
优选地,所述步骤S11中的选取自所述发电机上的监测面包括所述监测面上的单个监测点,或包括所述监测面上的多个监测点,所述监测点间隔一定距离设置。
优选地,所述步骤S3中建立标准三维空间坐标系具体包括:S31、以所述发电机的转子靠背轮的圆柱端面圆心为坐标原点,以竖直方向为Z轴,以平行于对轮端面为Y轴建立所述标准三维空间坐标系。
优选地,所述步骤S6包括:
S61、以圆柱作为特征体分别拟合所述发电机充压前的转子各部位的轮毂面,以平面作为特征体分别拟合各监测面;以及
以圆柱作为特征体分别拟合所述发电机充压后的转子各部位的轮毂面,以平面作为特征体分别拟合各监测面;
比较充压前后的各拟合面,得出面变形结果。
优选地,步骤S6还包括S62、计算出发电机冲压前后大端盖上径向面上的监测点至转子轮毂处中心轴线的距离,得出油挡洼窝在充泄压后相对转子中心轴线的变化。
优选地,所述步骤S6还包括以下步骤:
S63、对各所述第二特征体进行降噪处理。
优选地,所述监测发电机变形的方法还包括以下步骤:
S7、在发电机充压后按照预设时间重复步骤S4至步骤S6;
和/或,
S8,将发电机泄压,并在泄压后按照预定时间间隔重复步骤S3,得到多个第三监测数据和第三坐标数据。
优选地,所述步骤S2和步骤S4中,对各所述监测位置选择单点、稳定点或者连续点的测量方式进行测量。
实施本发明具有以下有益效果:本发明能有效地获得发电机监测位置在三维空间中的变化,清楚地掌握发电机在充压前后发电机的变形规律,测量数据类型丰富以及对现场的干预较小,保证机组的正常投运,提高设备可靠性。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明的监测发电机变形方法的一种实施例的流程框图;
图2是本发明的监测发电机变形方法步骤S1的具体流程框图;
图3是本发明的监测发电机变形方法步骤S2的具体流程框图;
图4是本发明的监测发电机变形方法步骤S3的具体流程框图;
图5是本发明的监测发电机变形方法的逻辑框图;
图6是本发明的发电机端部结构示意图;
图7是本发明的监测发电机变形方法的另一实施例的流程框图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。以下描述中,需要理解的是,“前”、“后”、“上”、“下”、“左”、“右”、“纵”、“横”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“头”、“尾”等指示的方位或位置关系为基于附图所示的方位或位置关系、以特定的方位构造和操作,仅是为了便于描述本技术方案,而不是指示所指的装置或元件必须具有特定的方位,因此不能理解为对本发明的限制。
还需要说明的是,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。当一个元件被称为在另一元件“上”或“下”时,该元件能够“直接地”或“间接地”位于另一元件之上,或者也可能存在一个或更多个居间元件。术语“第一”、“第二”、“第三”等仅是为了便于描述本技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
图1和图5示出本发明的一种监测发电机变形的方法,包括以下步骤:
步骤S1、在发电机充压前,进行测量前的准备工作,包括确定监测位置和监测站点。
如图2所示,具体地,步骤S1具体包括:
S11、确定监测位置,监测位置包括选取自发电机上的监测点和/或监测面;
其中,监测点和/或监测面的设置数量也可为若干个;结合图6,该图为某核电发电机端部结构示意图,监测的部件包括且不限于发电机本体4、大端盖、密封瓦室5、轴承7等,大端盖包括大端盖上半1和大端盖下半2。上述各监测的部件之间的结构关系大致为:发电机大端盖通过法兰螺栓紧固在发电机本体上;发电机密封瓦5通过立面法兰螺栓紧固在发电机大端盖上;发电机大端盖内部坐落有轴承瓦枕6,轴承瓦枕6上方为发电机轴承,用于支撑发电机转子;轴承瓦枕6用螺栓紧固在轴承压盖3上,以对轴承7施加一定的紧力、起到对轴承7的限位作用。因此,关于监测点和/或监测面的选取可根据实际测量需求,具体应用时,在发电机本体及其部件上粘贴稳定的监测点。
进一步地,步骤S11中的选取自发电机上的监测面包括监测面上的单个监测点,或包括监测面上的多个监测点,监测点间隔一定距离设置。
S12、确定监测站点,将监测装置置于监测站点上;其中,监测站点的监测范围应包括监测位置,且为相对于发电机而言,相对稳定的平台,例如选定为发电机相邻的稳定平台上;监测装置可选用激光跟踪仪。具体地,将激光跟踪仪布置至发电机相邻的稳定平台上,如低压缸缸面洼窝处等。
S13、检查并校准监测装置,使监测装置的垂直坐标方向保持与竖直方向重合,完成测量前的准备工作。
在一个实施例中,当激光跟踪仪充分预热后,使用TrackerCalib软件进行激光跟踪仪前视后视检查,并使用QVC功能校准;随后校准激光跟踪仪物理水平,保证激光跟踪仪的垂直坐标在重力方向。
进一步地,步骤S11中,还包括确定发电机外的基准点;步骤S12中,确定多个监测站点,且每一监测站点的监测范围包括基准点和至少一个监测位置;由于单个监测站点的检测范围有限,不一定能包括所有的监测位置,因此需要确定多个监测站点,以完成所有监测位置的监测。当监测站点的数量为多个时,需要确定基准点进行测量,以保证在不同监测站点监测时,都以相同的基准点作为统一参考。基准点要求相对于发电机的充压、泄压而言,保持相对稳定。具体地,选取基准点具体包括在发电机相邻的低压缸或其他稳定的建筑物(如混凝土支柱等)上选取分散且稳定的基准点,具体实施时,可在每个基准点上对应布置基准靶球座或者其他形式的可被监测到的基准点形式;调整激光跟踪仪初始架设站点位置,保证激光跟踪仪中发出的激光束既能看到上述基准点,即布置的基准靶球座位置,又能看到发电机上布置的监测点。
其中,在选择基准点的位置时,应以在某一监测站点监测时,监测范围包括尽可能多的基准点和发电机上布置的监测点为宜,也即,两个监测站点之间的测量数据有更多的重合为更佳。
S2、通过设置在监测站点上的监测装置,得到监测位置的位置信息,例如包括在该监测装置监测到各监测位置的距离、角度等数据,作为第一监测位置信息。
如图3所示,具体地,步骤S2具体包括:
S21、在一个监测站点得到基准点的位置信息和监测位置的第一监测位置信息;具体地,可采用Spatial Analyzer(简称:SA)软件测量各基准点坐标,即测量各基准靶球座的空间坐标,随后测量发电机上各稳定的监测点和/或监测面,监测面即可移动测量的几何面,如发电机转子不同位置处的轮毂圆柱(如油挡洼窝处、接地碳刷处、靠背轮处等),密封瓦室轴向平面,发电机轴承7和轴承瓦枕6等部件的轴向平面,发电机大端盖油挡洼窝处的轴向面、径向面以及轴承上半未安装时,发电机轴承、轴承瓦枕6和发电机大端盖的水平中分面。
该步骤中选用的测点方法根据步骤S11中实际监测面上所选取的监测点情况进而选择单点、稳定点以及连续点等测量方式。单点、稳定点以及连续点是激光测量过程中的三种方式:单点是指基准靶球座稳定放置在监测面上后,由人工操作激光跟踪仪进行采点;稳定点是指基准靶球座放在监测面且激光跟踪仪自动监测到基准靶球座当前处于稳定状态后自动采点,这种方式一般会用在对一个物体连续测量并且监测点不太多的情况,介于单点和连续点之间;连续点是指基准靶球座不离开被测物表面,沿一定的轨迹进行移动,激光跟踪仪在基准靶球座的移动过程中进行自动连续测量,类似于扫描,适用于监测点点集较多的情况。
S22、切换监测站点,重复执行步骤S21,直至完成所有监测位置的测量。若设置在单个监测站点上的监测装置的监测范围无法完全包含所有需要监测的监测点及监测面时,重新移动并调整监测装置至发电机的另一监测站点,如发电机另一侧的监测站点,新的监测站点保证能测到基准靶球座以及上述步骤中未测量的监测装置。重复执行步骤S21,测量基准靶球座的位置信息以及前次测量时发电机上未测量到的部分监测点的位置信息,综合得到第一监测位置信息。
S3、建立标准三维空间坐标系,将第一监测位置信息转换成标准三维空间坐标系下的第一坐标数据。
具体地,步骤S3中建立标准三维空间坐标系具体包括:
S31、以发电机的转子靠背轮的圆柱端面圆心为坐标原点,以竖直方向为Z轴,以平行于对轮端面为Y轴建立标准三维空间坐标系。具体地,以发电机转子靠背轮的圆柱端面圆心为坐标原点,以监测装置的激光跟踪仪设备的垂直坐标为Z轴,以平行于对轮端面为Y轴建立标准三维空间坐标系;使用SA软件将各监测站点下的位置信息(当然,同时包含基准点的位置信息)拟合到该标准三维空间坐标系中,即将发电机充压前,根据监测装置设置在不同监测站点下分别测量得到的第一监测位置信息拟合到同一空间坐标系中,从而将第一监测位置信息转换成标准三维空间坐标系下的第一坐标数据。
S4、当发电机充压至工作压力后,重新得到各监测位置的位置信息,作为第二监测位置信息。
步骤S4与步骤S2类似,区别仅仅在于,步骤S2针对发电机充压前监测位置的测量,步骤S4针对发电机充压后监测位置的测量。
如图4所示,步骤S4具体包括:
S41、在一个监测站点得到基准点的位置信息和监测位置的第二监测位置信息;
S42、切换监测站点,重复执行步骤S41,直至完成所有监测位置的测量。
S5、将第二监测位置信息拟合到标准三维空间坐标系中,得到第二坐标数据。
 同样地,在步骤S4中,与步骤S2相同,对各监测点选择单点、稳定点以及连续点等测量方式进行测量。
步骤S5还包括,将在各个监测站点测量的基准点的位置信息拟合至标准三维空间坐标系中,并得到所有监测位置在标准三维空间坐标系中的第一坐标数据和第二坐标数据。
S6、比较第一坐标数据和第二坐标数据,得出变形监测结果。
通过比较发电机充压前后各部件形变,通过对上述数据的分析,根据不同部件相互之间的关系,可求得状态变化后各部件之间的相对位移以及实际变形量,得出变形监测结果。
步骤S6包括:
S61、以圆柱作为特征体分别拟合发电机充压前的转子各部位的轮毂面,以平面作为特征体分别拟合各监测面;以及
以圆柱作为特征体分别拟合发电机充压后的转子各部位的轮毂面,以平面作为特征体分别拟合各监测面;
比较充压前后的各拟合面,得出面变形结果。具体地,使用SA软件标注出发电机充压后的监测点的坐标,得出发电机充压前后各监测点在标准三维空间坐标系中的变化情况;将发电机充压后的监测面的坐标拟合至标准三维空间坐标系中,得出发电机充压前后在标准三维空间坐标系中的同一平面上各点的相对位移。例如,充压后通过重新拟合发电机转子各部位的轮毂面,得出发电机转子的圆心坐标,与发电机充压前的坐标对比,可得出发电机转子圆心在同一空间坐标系中的变化情况。其他检测点的变化情况的计算亦是如此,不再赘述。
进一步地,步骤S6还包括步骤S62:计算出发电机冲压前后大端盖上径向面上的监测点至转子轮毂处中心轴线的距离,得出油挡洼窝在充泄压后相对转子中心轴线的变化。
进一步地,步骤S6还包括以下步骤:
S63、对各特征体进行降噪处理。具体地,一般根据激光跟踪仪测量得到的位置信息往往有较多的噪声点,可能会导致误差出现,为了消除误差,因此可对各特征体进行降噪处理。以圆柱为特征体分别拟合发电机转子各部位的轮毂面,对拟合的圆柱中坐标进行降噪处理,并建立各圆柱关键点,即圆柱前中后中心点,连接前后中心点形成该圆柱中心轴线;以平面为特征体分别拟合各监测面,并对监测面进行降噪处理。
更一步地,请参阅附图7所示,该监测发电机变形的方法还可以包括步骤S7,发电机充压后可按照预设时间间隔重复步骤S4至步骤S6。具体地,考虑发电机变形存在时滞性,可以在充压后的不同时间段,例如在刚充压、充压后2h、充压后24h等不同阶段,重复步骤S4至步骤S6,监测充压后发电机变形状态。
可理解地,在一个实施例中,请参阅附图7所示,该监测发电机变形的方法还可以包括步骤S8,在发电机泄压后按照预定时间间隔重复进行步骤S3,得到多个第三监测位置信息,以及拟合得到的第三坐标数据,将第三坐标数据与第一坐标数据和第二坐标数据进行分别比较或者联合比较,可以监测到发电机在经过充压及泄压后的变形状态。该步骤S8中的预定时间间隔与前述步骤S7中的预定时间间隔可以相同、部分相同或者完全不同,具体根据实际需求进行设定。
本发明弥补了国内对核电发电机因冷却介质的充泄压所引起的变形监测的缺失,能清楚地掌握在充泄压时发电机本体等部件的变形规律,以及轴瓦、密封瓦等瓦位变化,以在大修期间执行相应的瓦位调整及干预方案,保证机组的正常投运,提高设备可靠性。本发明所采用的激光跟踪仪测量发电机本体及部件变形的方式测量精度高、测量数据类型丰富以及对现场的干预较小,较传统监测方式,本发明采点丰富,能有效地获得设备在三维空间中的位置变化,提高了测量数据的准确性,降低对测量环境的要求以及对工作过程带来的干扰,从而掌握真实地变化规律,正确地指导设备调整工作。该方法可用于监测各台机组发电机在充压前、充压后2h以及充压后24h等不同阶段的状态,对发电机变形情况实现了可视化、可量化,进一步指导了发电机球型支撑轴承的调整工作,并且收集了密封瓦室端面真实的变形情况,为后续分析密封油流量变化以及密封瓦室更换工作奠定了良好基础。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (10)

  1. 一种监测发电机变形的方法,其特征在于,包括以下步骤:
    S1、在发电机充压前,确定监测位置和监测站点;
    S2、通过设置在所述监测站点上的监测装置,得到所述监测位置的位置信息,作为第一监测位置信息;
    S3、建立标准三维空间坐标系,将所述第一监测位置信息转换成所述标准三维空间坐标系下的第一坐标数据;
    S4、当发电机充压至工作压力后,重新得到所述监测位置的位置信息,作为第二监测位置信息;
    S5、将所述第二监测位置信息拟合到所述标准三维空间坐标系中,得到第二坐标数据;
    S6、比较所述第一坐标数据和所述第二坐标数据,得出变形监测结果。
  2. 根据权利要求1所述的监测发电机变形的方法,其特征在于,所述步骤S1具体包括:
    S11、确定监测位置,所述监测位置包括选取自所述发电机上的监测点和/或监测面;
    S12、确定所述监测站点,将所述监测装置置于所述监测站点上;其中,所述监测站点的监测范围包括所述监测位置;
    S13、检查并校准所述监测装置,使所述监测装置的垂直坐标方向保持与竖直方向重合。
  3. 根据权利要求2所述的监测发电机变形的方法,其特征在于,所述步骤S11中,还包括确定所述发电机外的基准点,所述步骤S12中,确定多个所述监测站点,且每一所述监测站点的监测范围包括所述基准点和至少一个所述监测位置;所述步骤S2具体包括:
    S21、在一个所述监测站点得到所述基准点的位置信息和所述监测位置的所述第一监测位置信息;
    S22、切换监测站点,重复执行步骤S21,直至完成所有监测位置的测量;
    所述步骤S4具体包括:
    S41、在一个所述监测站点得到所述基准点的位置信息和所述监测位置的所述第二监测位置信息;
    S42、切换监测站点,重复执行步骤S41,直至完成所有监测位置的测量;
    所述步骤S5还包括,将在各个所述监测站点测量的所述基准点的位置信息拟合至所述标准三维空间坐标系中,并得到所有所述监测位置在所述标准三维空间坐标系中的所述第一坐标数据和所述第二坐标数据。
  4. 根据权利要求2所述的监测发电机变形的方法,其特征在于,所述步骤S11中的选取自所述发电机上的监测面包括所述监测面上的单个监测点,或包括所述监测面上的多个监测点,所述监测点间隔一定距离设置。
  5. 根据权利要求3所述的监测发电机变形的方法,其特征在于,所述步骤S3中建立标准三维空间坐标系具体包括:S31、以所述发电机的转子靠背轮的圆柱端面圆心为坐标原点,以竖直方向为Z轴,以平行于对轮端面为Y轴建立所述标准三维空间坐标系。
  6. 根据权利要求3所述的监测发电机变形的方法,其特征在于,所述步骤S6包括:
    S61、以圆柱作为特征体分别拟合所述发电机充压前的转子各部位的轮毂面,以平面作为特征体分别拟合各监测面;以及
    以圆柱作为特征体分别拟合所述发电机充压后的转子各部位的轮毂面,以平面作为特征体分别拟合各监测面;
    比较充压前后的各拟合面,得出面变形结果。
  7. 根据权利要求6所述的监测发电机变形的方法,其特征在于,步骤S6还包括S62、计算出发电机冲压前后大端盖上径向面上的监测点至转子轮毂处中心轴线的距离,得出油挡洼窝在充泄压后相对转子中心轴线的变化。
  8. 根据权利要求6所述的监测发电机变形的方法,其特征在于,所述步骤S6还包括以下步骤:
    S63、对各所述第二特征体进行降噪处理。
  9. 根据权利要求1至8中任一项所述的监测发电机变形的方法,其特征在于,所述监测发电机变形的方法还包括以下步骤:
    S7、在发电机充压后按照预设时间重复步骤S4至步骤S6;
    和/或,
    S8,将发电机泄压,并在泄压后按照预定时间间隔重复步骤S3,得到多个第三监测数据和第三坐标数据。
  10. 根据权利要求1至8中任一项所述的监测发电机变形的方法,其特征在于,所述步骤S2和步骤S4中,对各所述监测位置选择单点、稳定点或者连续点的测量方式进行测量。
PCT/CN2023/110607 2022-08-02 2023-08-01 监测发电机变形的方法 WO2024027721A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210922088.7 2022-08-02
CN202210922088.7A CN115493491A (zh) 2022-08-02 2022-08-02 监测发电机变形的方法

Publications (1)

Publication Number Publication Date
WO2024027721A1 true WO2024027721A1 (zh) 2024-02-08

Family

ID=84466737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110607 WO2024027721A1 (zh) 2022-08-02 2023-08-01 监测发电机变形的方法

Country Status (2)

Country Link
CN (1) CN115493491A (zh)
WO (1) WO2024027721A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115493491A (zh) * 2022-08-02 2022-12-20 中广核核电运营有限公司 监测发电机变形的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090708A (ja) * 2001-09-17 2003-03-28 Ottoo:Kk コークス炉の3次元測定装置
KR20030090156A (ko) * 2002-05-21 2003-11-28 현대자동차주식회사 실린더 헤드의 변형량 측정 장치
CN112129239A (zh) * 2020-09-23 2020-12-25 北京城建集团有限责任公司 一种建筑模板支撑系统的监测方法及装置
CN112461195A (zh) * 2020-11-06 2021-03-09 中广核核电运营有限公司 汽轮机平台沉降监测方法、装置和计算机设备
CN114719770A (zh) * 2022-04-02 2022-07-08 基康仪器股份有限公司 一种基于图像识别及空间定位技术的变形监测方法及装置
CN115493491A (zh) * 2022-08-02 2022-12-20 中广核核电运营有限公司 监测发电机变形的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090708A (ja) * 2001-09-17 2003-03-28 Ottoo:Kk コークス炉の3次元測定装置
KR20030090156A (ko) * 2002-05-21 2003-11-28 현대자동차주식회사 실린더 헤드의 변형량 측정 장치
CN112129239A (zh) * 2020-09-23 2020-12-25 北京城建集团有限责任公司 一种建筑模板支撑系统的监测方法及装置
CN112461195A (zh) * 2020-11-06 2021-03-09 中广核核电运营有限公司 汽轮机平台沉降监测方法、装置和计算机设备
CN114719770A (zh) * 2022-04-02 2022-07-08 基康仪器股份有限公司 一种基于图像识别及空间定位技术的变形监测方法及装置
CN115493491A (zh) * 2022-08-02 2022-12-20 中广核核电运营有限公司 监测发电机变形的方法

Also Published As

Publication number Publication date
CN115493491A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2024027721A1 (zh) 监测发电机变形的方法
CN107274942B (zh) Ap1000核电站中下部堆内构件的安装方法
CN110455211A (zh) 一种基于激光断面测距的自动监控量测方法
CN113237461B (zh) 一种风机塔筒垂直度的在线监测方法
CN107255442B (zh) 基于激光跟踪技术的大尺寸水轮发电机定子安装测量方法
CN106767501B (zh) 一种测量大型圆柱体圆度的方法
CN109184819A (zh) 一种激光跟踪测量系统测量汽轮机径向通流间隙的方法
CN109386298B (zh) 一种带有监测设备的预制隧道钢拱架
Schlegel et al. MN· m torque calibration for nacelle test benches using transfer standards
CN110631564A (zh) 一种圆截面筒体倾斜测量方法
CN108507549A (zh) 高温气冷堆堆内石墨砖和碳砖的安装测量方法
CN109524134A (zh) 一种用于高温气冷堆核电站堆内构件的测量装置及方法
CN117359524A (zh) 一种汽轮机发电组安装定位装置及施工方法
CN105157975A (zh) 控制和测量封严环轴向压缩位移变形量的方法
CN104064105A (zh) 大型立式机组垂直同轴度测量调整实验装置与实验方法
CN206115822U (zh) 一种立式电机安装空气间隙测量调整实验装置
CN104534963B (zh) 一种系列多尺度方形岩石结构面摩擦角测量装置及方法
CN106643443B (zh) 一种混凝土搅拌机拌缸同轴度检测装置及检测方法
CN113932680B (zh) 一种立式水轮机顶盖安装中心的计算和调整方法
CN115388867A (zh) 沉井下沉姿态实时观测播报方法
CN114964163A (zh) 一种核燃料装卸料机固定套筒铅垂度测量装置及方法
CN103884255A (zh) 封闭式组合电器母线筒膨胀量检测工具及其方法
CN103398027B (zh) 大型离心风机安装方法
CN112432622A (zh) 基于单测距传感器的曲面法向的测量装置及方法
CN204064169U (zh) 封闭式组合电器母线筒膨胀量检测工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849427

Country of ref document: EP

Kind code of ref document: A1