WO2024027560A1 - 无线承载的处理方法及装置 - Google Patents

无线承载的处理方法及装置 Download PDF

Info

Publication number
WO2024027560A1
WO2024027560A1 PCT/CN2023/109621 CN2023109621W WO2024027560A1 WO 2024027560 A1 WO2024027560 A1 WO 2024027560A1 CN 2023109621 W CN2023109621 W CN 2023109621W WO 2024027560 A1 WO2024027560 A1 WO 2024027560A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio bearer
network element
message
qos flow
pdcp count
Prior art date
Application number
PCT/CN2023/109621
Other languages
English (en)
French (fr)
Inventor
周叶
苗金华
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2024027560A1 publication Critical patent/WO2024027560A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • H04W28/0967Quality of Service [QoS] parameters

Definitions

  • the present application relates to the field of communication technology, and in particular, to a wireless bearer processing method and device.
  • the Packet Data Convergence Protocol (PDCP) count value in the multicast mechanism is usually generated based on the sequence number provided by the core network for the multicast Quality of Service (QoS) flow. Since the PDCP count value and the sequence number of the multicast QoS flow both range from 0 to 2 32 -1, when the number of multicast packets transmitted exceeds 2 32 , the PDCP count value and the sequence number provided by the core network will change. A count rollover occurs. However, according to the state parameter change mechanism of the multicast radio bearer (MBS Radio Bearer, MRB), both the sender and the receiver can only handle the situation where the PDCP count value rises monotonically.
  • MRS Radio Bearer MRB
  • the sender and receiver will think that they have completed the sending and receiving process before, so the sender will not send these data packets through the air interface, and the receiver will not receive these data packets through the air interface. This means This means that the transmission of multicast services is essentially terminated. This will cause the problem of transmission interruption of service data of the multicast service.
  • Embodiments of the present application provide a wireless bearer processing method and device, which can be applied to long term evolution (LTE) systems, fifth generation (5th generation, 5G) mobile communication systems, and 5G new radio (NR) ) system, or other future new mobile communication systems and other communication systems, through the first message sent by the first network element to the second network element, so that the first PDCP COUNT of the second network element on the first radio bearer reaches After the maximum value, the second radio bearer is used to transmit the first quality of service QoS flow, thereby avoiding the problem that the receiver of the data in the first QoS flow and the second network element both think that the data packet after the count value has been flipped has completed the transmission process. The transmission is actually terminated, which improves the efficiency of data packet transmission.
  • LTE long term evolution
  • 5th generation, 5G mobile communication systems fifth generation
  • NR new radio
  • embodiments of the present application provide a wireless bearer processing method, which method includes:
  • the first message is used to request or instruct the second network element when the first packet data convergence protocol count value PDCP COUNT of the first quality of service QoS flow transmitted using the first radio bearer reaches the maximum value,
  • the second radio bearer is used to transmit data of the first QoS flow.
  • the first radio bearer is used before the first PDCP COUNT of the first QoS flow reaches a maximum value; the second radio bearer is different from the first radio bearer.
  • sending the first message to the second network element includes:
  • obtaining the first PDCP COUNT of the first radio bearer includes:
  • the second message includes the first downlink multicast broadcast system quality of service flow identification MBS QFI sequence number for the first QoS flow;
  • the obtaining the first PDCP COUNT of the first radio bearer includes:
  • the first PDCP COUNT is determined according to the first downlink MBS QFI sequence number and the downlink MBS QFI sequence number mapped to other QoS flows of the first radio bearer.
  • sending the first message to the second network element includes:
  • the first message is sent to the second network element.
  • the method further includes:
  • the method further includes:
  • determining whether the first radio bearer is out of use according to the second PDCP COUNT includes:
  • the second PDCP COUNT and the set minimum value it is determined whether the first radio bearer is stopped from being used.
  • the method further includes:
  • sending the first message to the second network element includes:
  • the first indication includes a first indication for the first QoS flow and/or a first indication for the first radio bearer.
  • the method further includes:
  • the first PDCP COUNT corresponding to the number reaches the maximum value, or indicates that the second radio bearer has been enabled, or indicates that the mapping relationship between the first QoS flow and the first radio bearer has been transformed into the first QoS flow and the first radio bearer.
  • the second indication includes one or more of a second indication for the first QoS flow, a second indication for the first radio bearer, and a second indication for the second radio bearer.
  • the method further includes:
  • embodiments of the present application provide a communication device that has some or all of the functions of the terminal device in implementing the method described in the first aspect.
  • the functions of the communication device may have some or all of the functions in this application.
  • the functions in the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the communication device includes:
  • a transceiver module configured to send the first message to the second network element
  • the first message is used to request or instruct the second network element when the first packet data convergence protocol count value PDCP COUNT of the first quality of service QoS flow transmitted using the first radio bearer reaches the maximum value,
  • the second radio bearer is used to transmit data of the first QoS flow.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes superior Describe the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
  • embodiments of the present application provide a wireless bearer processing system.
  • the system includes the communication device described in the third aspect and the communication device described in the fourth aspect.
  • the system includes the communication device described in the fifth aspect.
  • the device and the communication device according to the sixth aspect, or the system includes the communication device according to the seventh aspect and the communication device according to the eighth aspect, or the system includes the communication device according to the ninth aspect and the communication device according to the tenth aspect.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the terminal device. When the instructions are executed, the terminal device is caused to execute the method described in the first aspect. .
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method and at least one of the information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a wireless access network node structure provided in related technologies
  • FIG. 3 is a schematic flowchart of a wireless bearer processing method provided by an embodiment of the present application.
  • Figure 4 is a schematic flowchart of a wireless bearer processing method provided by an embodiment of the present application.
  • Figure 5 is a schematic flowchart of a wireless bearer processing method provided by an embodiment of the present application.
  • Figure 6 is a schematic flowchart of a wireless bearer processing method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a radio bearer processing method provided by an embodiment of the present application.
  • Figure 8 is a schematic flowchart of a wireless bearer processing method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a radio bearer processing method provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a radio bearer processing method provided by an embodiment of the present application.
  • FIG 11 is a schematic flowchart of a radio bearer processing method provided by an embodiment of the present application.
  • Figure 12 is a schematic flowchart of a radio bearer processing method provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a radio bearer processing method provided by an embodiment of the present application.
  • Figure 14 is a schematic flowchart of a radio bearer processing method provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • Multicast Broadcast System (MBS)
  • UE User Equipment
  • multicast and broadcast mechanisms which allow the network to use specific wireless resources to send a single copy of downlink data, and multiple UEs can receive this copy at the same time.
  • Downstream data In contrast, traditional downlink data that can only be received by one UE is called a unicast mechanism.
  • MBS The part of the wireless communication system that supports multicast and broadcast.
  • QoS quality of service
  • a UE has Data packets with different QoS requirements may be received at the same time.
  • Data packets with the same QoS requirements constitute a QoS flow (QoS Flow) and are identified by a QoS Flow ID (QFI).
  • QoS Flow QoS flow
  • QFI QoS Flow ID
  • the Radio Access Network can configure multiple radio bearers to carry these QoS flows, and each radio bearer has its own configuration information.
  • Multicast radio bearer MBS Radio Bearer, MRB is used to transmit multicast services or broadcast services.
  • PDCP is an air interface protocol layer.
  • the RAN node and UE When transmitting data, the RAN node and UE will establish a PDCP entity for each MRB to process the transmitted data.
  • PDCP introduces a count value PDCP COUNT, whose value range is 0 to 2 32 -1.
  • the sender's PDCP layer specifies PDCP COUNT for each data packet belonging to the wireless bearer and then sends it through the air interface, while the receiver's PDCP layer will receive these data packets from the air interface.
  • the PDCP COUNT of the data packet is calculated from the information carried in each data packet, and then these data packets are sorted according to the PDCP COUNT, and finally submitted to the higher layer.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to one network device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1 includes a network device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • NR 5th generation new radio
  • side link in the embodiment of the present application may also be called a side link or a through link.
  • the network device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the network device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • the network equipment provided by the embodiments of this application may be composed of a centralized unit (central unit, CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • UE User Equipment
  • multicast and broadcast mechanisms which allow the network to use specific wireless resources to send a single copy of downlink data, and multiple UEs can receive this copy at the same time.
  • Downstream data In contrast, traditional downlink data that can only be received by one UE is called a unicast mechanism.
  • MBS The part of the wireless communication system that supports multicast and broadcast.
  • QoS quality of service
  • a UE has Data packets with different QoS requirements may be received at the same time.
  • Data packets with the same QoS requirements constitute a QoS flow (QoS Flow) and are identified by a QoS Flow ID (QFI).
  • QoS Flow QoS flow
  • QFI QoS Flow ID
  • the Radio Access Network can configure multiple radio bearers to carry these QoS flows, and each radio bearer has its own configuration information.
  • a radio bearer (MBS Radio Bearer, MRB) is used to transmit multicast services or broadcast services.
  • PDCP is an air interface protocol layer.
  • the RAN node and UE When transmitting data, the RAN node and UE will establish a PDCP entity for each MRB to process the transmitted data.
  • PDCP introduces a count value PDCP COUNT, whose value range is 0 to 2 32 -1.
  • the sender's PDCP layer specifies PDCP COUNT for each data packet belonging to the wireless bearer and then sends it through the air interface, while the receiver's PDCP layer will receive these data packets from the air interface.
  • the PDCP COUNT of the data packet is calculated from the information carried in each data packet, and then these data packets are sorted according to the PDCP COUNT, and finally submitted to the higher layer.
  • the receiver can use PDCP COUNT to identify whether there is data loss. If a data packet with a certain PDCP COUNT value has not been received for a period of time, the receiver will think that the data is lost. The data packet is lost. If there is loss, the receiver can provide feedback so that the sender can resend the data packet. For scenarios such as air interface connection switching that may cause data duplication, the receiver can also use PDCP COUNT to identify whether duplication occurs. If duplication exists, the receiver will discard one of the duplicate data packets.
  • the existing technology stipulates that the PDCP COUNT of the MRB should be specified based on the count value for QoS flows provided by the core network.
  • the Multicast/Broadcast-User Plane Function (MB-UPF) in the core network assigns a sequence number to each data packet belonging to the QoS flow.
  • the sequence It is called the downlink MBS QFI Sequence Number (DL MBS QFI Sequence Number), where QFI refers to the QoS Flow Identifier, which is the QoS flow identifier.
  • DL MBS QFI Sequence Number downlink MBS QFI Sequence Number
  • the RAN maps the QoS flow to an MRB (the so-called mapping means that all user data on the QoS flow is sent through the MRB), and only this QoS flow is mapped to this MRB, then the PDCP layer of the RAN is When processing a data packet belonging to this QoS flow, it shall set the value of the PDCP COUNT of this data packet to the value of the downstream MBS QFI sequence number in the packet header when the RAN receives this data packet from the MB-UPF.
  • the RAN maps the QoS flow to an MRB, but there are other QoS flows mapped on the MRB, then when processing the data packet of the QoS flow, the PDCP layer of the RAN will set the PDCP COUNT value of the data packet to Immediately before the RAN receives this packet from the MB-UPF, the sum of the downlink MBS QFI sequence number values of the next expected received packet mapped to the QoS flow on this MRB is modulo 2 32 . For example, if two QoS flows are mapped on the MRB, and one of the flows RAN has received a data packet with a downlink MBS QFI sequence number of 3 / 4 ⁇ 2 32 -1, the next expected received data packet is the downlink MBS QFI sequence.
  • the number is 3 / 4 ⁇ 2 32 ; while another flow RAN has received a data packet with a downlink MBS QFI sequence number of 1 / 2 ⁇ 2 32 -1, and the downlink MBS QFI sequence number of the next expected received data packet is 1 / 2 ⁇ 2 32 , then the PDCP COUNT of the next data packet transmitted on the MRB should be set to (3/4 ⁇ 2 32 + 1/2 ⁇ 2 32) (mod 2 32 ) , that is , 1/4 ⁇ 2 32 .
  • the PDCP COUNT of the MRB will gradually increase until it reaches 2 32 -1 and then wraps around and starts from 0 again, resulting in a situation where the data transmission actually stops.
  • FIG. 2 is a schematic diagram of a wireless access network node structure provided in related technologies.
  • a logical NG-RAN node in NG-RAN, can be further divided into Control plane central node (Central Unit-Control Plane, CU-CP), one or more user plane central nodes (Central Unit-User Plane, CU-UP), and one or more distribution nodes (Distributed Unit, DU), This structure is called "CU-CP/UP split".
  • Control plane central node Central Unit-Control Plane, CU-CP
  • CU-UP Central Unit-User Plane
  • DU Distribution nodes
  • the NG-RAN node is an NG-RAN node using New Radio (NR) technology, that is, gNB (its definition is "NG-RAN node using NR technology"), gNB-CU-CP and gNB-DU are connected through the F1-C interface, and gNB-CU-CP and gNB-CU-UP are connected through the F1-C interface. are connected via E1 interface.
  • NR New Radio
  • the control plane connection N2 between gNB and the core network 5GC (5G Core) ends at gNB-CU-CP, while the air interface connection between gNB and the mobile terminal terminates at gNB-DU.
  • an N3 transmission channel When there is user plane data that needs to be transmitted, an N3 transmission channel will be established between gNB-CU-UP and 5GC (for MBS data, it is N3mb, not shown in Figure 2), and the relationship between gNB-DU and gNB-CU-UP The F1-U transmission channel is established during the period.
  • the PDCP layer used to process user plane data is located inside gNB-CU-UP, so gNB-CU-CP does not know the real-time situation of PDCP COUNT.
  • RRC Radio Resource Control
  • gNB-CU-CP The Radio Resource Control (RRC) module in the CP interacts with the UE, and the signaling interacted is called RRC signaling.
  • RRC signaling is generated by gNB-CU-CP. After being encapsulated into a layer 2 data packet, it is sent to gNB-DU through F1-C, and then forwarded to the UE through the air interface.
  • the NG-RAN node is a node using Evolved Universal Terrestrial Radio Access (E-UTRA) technology, that is, ng-eNB, between eNB-CU-CP and eNB-DU
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • the W1-C interface is used to connect, and the eNB-CU-CP and eNB-CU-UP are connected to the E1 interface.
  • the control plane connection N2 between ng-eNB and the core network 5GC terminates at eNB-CU-CP, while the air interface connection between ng-eNB and the mobile terminal terminates at eNB-DU.
  • an N3 transmission channel will be established between eNB-CU-UP and 5GC, and a W1-U transmission channel will be established between eNB-DU and eNB-CU-UP.
  • Other functions are similar and will not be repeated here.
  • E-UTRAN evolved Packet System
  • EPS evolved Packet System
  • E-UTRAN evolved UMTS Terrestrial Radio Access Network
  • en-gNB (not abbreviated, its definition is "E-UTRAN node using NR technology")
  • en-gNB can also be further divided into a CU-CP, one or more CU-UP , and a DU.
  • en-gNB can only act as a dual-connection secondary node and has no control plane connection with the core network EPC (Evolved Packet Core).
  • EPC Evolved Packet Core
  • en-gNB-CU-CP and en-gNB-DU are connected through the F1-C interface, and en-gNB-CU-CP and en-gNB-CU-UP are connected through the E1 interface.
  • the bottom part of the air interface connection between en-gNB and the mobile terminal terminates in en-gNB-DU.
  • an S1-U transmission channel When there is user plane data to be transmitted, an S1-U transmission channel will be established between en-gNB-CU-UP and EPC, and an F1-U transmission channel will be established between en-gNB-DU and en-gNB-CU-UP. aisle. Other functions are similar and will not be repeated here.
  • Figure 3 is a schematic flowchart of a radio bearer processing method provided by an embodiment of the present application. The method is applied to the first network element. As shown in Figure 3, the method may include but is not limited to the following steps:
  • Step 301 Send the first message to the second network element
  • the first message is used to request or instruct the second network element when the first packet data convergence protocol count value PDCP COUNT of the first quality of service QoS flow transmitted using the first radio bearer reaches the maximum value,
  • the second radio bearer is used to transmit data of the first QoS flow.
  • a UE may receive data packets with different QoS requirements at the same time.
  • Data packets with the same QoS requirements constitute a QoS flow.
  • RAN can configure multiple radio bearers to carry these QoS flows, and each radio bearer has its own configuration information.
  • the radio bearer used to transmit multicast services or broadcast services is called MRB.
  • PDCP is an air interface protocol layer.
  • the RAN node and UE When transmitting data, the RAN node and UE will establish a PDCP entity for each radio bearer to process the transmitted data.
  • PDCP introduces a count value PDCP COUNT, whose value range is 0 to 2 32 -1.
  • the radio bearer may be an MRB.
  • the first radio bearer is used before the first PDCP COUNT of the first QoS flow reaches a maximum value; the second radio bearer is different from the first radio bearer.
  • the sender allocates a first radio bearer, and the PDCP layer of the sender (such as the core network) sequentially specifies the first PDCP COUNT for each data packet belonging to the radio bearer and then passes
  • the PDCP layer of the receiver (such as UE) will receive these data packets from the air interface, calculate the PDCP COUNT of the data packet based on the information carried in each data packet, and then process these data packets according to the first PDCP COUNT is sorted, and finally submitted to a higher layer.
  • the data packets in the first QoS flow can be normally transmitted by the sender's PDCP layer through NR. to the PDCP layer of the receiver, but when the first QoS flow reaches the maximum value in the sequence number or count value, the first PDCP COUNT will flip and directly become 0, causing both the sender and the receiver to think that The sending and receiving of the data packets of the first QoS flow has been completed, and the data packets in the first QoS flow are no longer transmitted through NR.
  • the second radio bearer created can take over the first radio bearer to transmit the first QoS flow after the sequence number or count value of the first QoS flow reaches the maximum value. data packets to avoid data loss caused by transmission termination.
  • step 301 in Figure 3 may specifically include:
  • Step 401 Obtain the first PDCP COUNT of the first radio bearer
  • Step 402 Send the first message to the second network element according to the first PDCP COUNT.
  • the first network element and the second network element are connected through an E1 interface, and messages are transmitted through the E1 interface, that is, the first message is an E1 interface message.
  • the first network element may obtain the first PDCP COUNT of the first radio bearer, and determine whether to send the first message to the second network element based on the first PDCP COUNT to request or instruct the second After the packet data convergence protocol count value PDCP COUNT of the first radio bearer reaches the maximum value, the network element uses the second radio bearer to transmit the first quality of service QoS flow.
  • the method of obtaining the first PDCP COUNT of the first radio bearer includes but is not limited to:
  • Step 501 Receive a second message sent by the second network element, wherein the second message includes the first downlink multicast broadcast system quality of service flow identifier MBS QFI sequence number and/or for the first QoS flow.
  • the first PDCP COUNT The first PDCP COUNT.
  • the second message is an E1 interface message
  • the first network element receives the second message sent by the second network element.
  • the second message includes a first download for the first QoS flow.
  • the multicast broadcast system quality of service flow is identified by the MBS QFI sequence number and/or the first PDCP COUNT.
  • the second message may include one or more first downlink MBS QFI sequence numbers, and/or one or more first PDCP COUNTs.
  • the first downlink MBS QFI sequence number in the second message The number of MBS QFI serial number and first PDCP COUNT can be selected according to actual needs.
  • the first PDCP COUNT is the PDCP COUNT value of the next data packet expected to be transmitted through the first radio bearer (this value is also called the TX_NEXT of the PDCP instance).
  • the first PDCP COUNT is TX_NEXT minus a fixed constant or 0, whichever is greater.
  • the first PDCP COUNT is the PDCP COUNT value of the last data packet transmitted through the first radio bearer.
  • the first downlink MBS QFI sequence number is the downlink MBS QFI sequence number of the next data packet expected to be received through N3mb and belonging to the first QoS flow.
  • the first downlink MBS QFI sequence number is the minimum value among the downlink MBS QFI sequence numbers of all data packets belonging to the first QoS flow that have not yet been received through N3mb.
  • the first downlink MBS QFI sequence number is the downlink MBS QFI sequence number of the last data packet received through N3mb and belonging to the first QoS flow.
  • the second message includes the first downlink multicast broadcast system quality of service flow identifier MBS QFI sequence number for the first QoS flow, then the method of obtaining the first PDCP COUNT of the first radio bearer includes But not limited to:
  • the first PDCP COUNT is determined according to the first downlink MBS QFI sequence number and the downlink MBS QFI sequence numbers mapped to other QoS flows of the first radio bearer.
  • the first PDCP COUNT is determined based on the first downlink MBS QFI sequence number and the downlink MBS QFI sequence number mapped to other QoS flows of the first radio bearer, Specifically include:
  • the first PDCP COUNT is obtained by summing and modulo the first downlink MBS QFI sequence number and the downlink MBS QFI sequence numbers mapped to other QoS flows of the first radio bearer.
  • sending the first message to the second network element specifically includes:
  • Step 701 Obtain the first PDCP COUNT of the first radio bearer
  • Step 702 Send a first message to the second network element according to the first PDCP COUNT and the set maximum value.
  • the first network element determines whether the first PDCP COUNT is about to flip to 0 through the obtained first PDCP COUNT and the set maximum value, that is, whether the first PDCP COUNT is close to the maximum value. If it is close to the maximum value, the first network element needs to send a first message to the second network element.
  • step 702 includes but is not limited to: subtracting the first PDCP COUNT from the value obtained by the (maximum value + 1) to obtain a first difference, and adding the first difference The value is compared with the preset threshold. If the first difference is less than the preset threshold, it can be determined that the first PDCP COUNT is about to flip, and the first message needs to be sent to the second network element.
  • step 701 uses the method of step 501 to obtain the first PDCP COUNT.
  • the first network element will select one of the first PDCP COUNTs, and then based on the selected PDCP COUNT, the set maximum value will be different from the first PDCP COUNT.
  • the specific method of making the difference can be selected according to actual needs. For example, the first PDCP COUNT can be subtracted from 0 and modulo (maximum value + 1) to obtain the first difference.
  • the first network element will consider that if no action is taken, the data packets on the first QoS flow will not be able to continue to be transmitted, and the first network element needs to send the first QoS flow to the second network element. A message.
  • step 701 uses the method of step 501 to obtain the first PDCP COUNT
  • the second message contains multiple first downlink MBS QFI sequence numbers
  • the first network element will select one of the first PDCP COUNTs.
  • the downlink MBS QFI sequence number and then based on this first downlink MBS QFI sequence number, first map the first downlink MBS QFI sequence number to the corresponding downlink MBS QFI sequence number of other QoS flows of the first radio bearer. Sum and modulo to get the first PDCP COUNT. The maximum value is then differed from the first PDCP COUNT.
  • the first network element will consider that if no action is taken, the data packets on the first QoS flow will not be able to continue to be transmitted, and the first network element needs to send the first QoS flow to the second network element. A message.
  • the maximum value is set to 2 32 -1.
  • the method further includes (as shown in Figure 8):
  • Step 801 Receive a third message sent by the second network element, where the third message is used to instruct the second network element to accept the request or instruction of the first network element in the first message.
  • the third message is an E1 interface message.
  • the second network element After receiving the first message sent by the first network element, the second network element sends the third message (which may be a confirmation message) to the first network element through the E1 interface, to notify the first network element to accept the request or instruction of the first network element in the first message.
  • the method further includes (as shown in Figure 9):
  • Step 901 Obtain the second PDCP COUNT of the second radio bearer
  • step 901 may be the same as the method of step 401 described above, or may be different.
  • obtaining the second PDCP COUNT of the second radio bearer includes but is not limited to: the first network element receives a fourth message sent by the second network element, wherein the fourth message includes the second PDCP COUNT for the second radio bearer.
  • the second downstream MBS QFI sequence number of the first QoS flow and/or the second PDCP COUNT includes but is not limited to: the first network element receives a fourth message sent by the second network element, wherein the fourth message includes the second PDCP COUNT for the second radio bearer.
  • the specific steps of obtaining the second PDCP COUNT of the second radio bearer are: mapping the second downlink MBS QFI sequence number to the second radio bearer
  • the downstream MBS QFI sequence numbers carried by other QoS flows are summed and modulo to generate the second PDCP COUNT.
  • Step 902 Determine whether the first radio bearer has been stopped based on the second PDCP COUNT.
  • the method of determining whether the first radio bearer has been stopped includes but is not limited to (as shown in Figure 10), specifically including:
  • Step 1001 Determine whether the first radio bearer is stopped based on the second PDCP COUNT and the set minimum value.
  • the first network element determines whether the second PDCP COUNT has been stopped using the obtained second PDCP COUNT and the set minimum value. Specifically, the second PDCP COUNT is subtracted from the value obtained by the (maximum value + 1) to obtain a second difference; if the second difference is not less than a preset threshold, determine the first The radio bearer has been discontinued.
  • the fourth message contains a second PDCP COUNT
  • the first network element directly differs the second PDCP COUNT from the maximum value.
  • the second PDCP COUNT can be subtracted from 0 and modulo (maximum value + 1) to obtain the second difference. If the second difference is less than the preset threshold, the first network element determines that the first radio bearer has been stopped.
  • the fourth message contains a second downlink MBS QFI sequence number
  • the first network element will first compare the second downlink MBS QFI sequence number with the corresponding QoS flows mapped to the first radio bearer.
  • the downstream MBS QFI sequence numbers are summed and modulo to obtain a value equivalent to the second PDCP COUNT.
  • the second PDCP COUNT is then differed from the maximum value. For example, the second PDCP COUNT can be subtracted from 0 and modulo (maximum value + 1) to obtain the second difference. If the second difference is less than the preset threshold, the first network element determines that the first radio bearer has been stopped.
  • the fourth message contains multiple second PDCP COUNTs, then the first network element will select one of the second PDCP COUNTs, and then add the second PDCP COUNT according to the selected second PDCP COUNT. Difference from the maximum value. For example, the second PDCP COUNT can be subtracted from 0 and modulo (maximum value + 1) to obtain the second difference. If the second difference is less than the preset threshold, the first network element determines that the first radio bearer has been stopped.
  • the fourth message contains multiple second downlink MBS QFI sequence numbers
  • the first network element will select one of the second downlink MBS QFI sequence numbers, and then based on this second downlink MBS QFI sequence number, first sum and modulo the second downlink MBS QFI sequence number and the corresponding downlink MBS QFI sequence number mapped to other QoS flows of the second radio bearer to obtain a value equivalent to the second PDCP COUNT.
  • Difference the second PDCP COUNT from the maximum value. For example, the second PDCP COUNT can be subtracted from 0 and modulo (maximum value + 1) to obtain the second difference. If the second difference is less than the preset threshold, the first network element determines that the first radio bearer has been stopped.
  • the preset threshold can be set to a very large value, or even a number greater than the maximum value, which means that the first network element does not need to receive the second message sent by the second network element. It is determined whether the first message needs to be sent to the second network element, but the first message can be sent directly to the second network element.
  • the first network element can also obtain the second PDCP COUNT or the second downlink MBS QFI sequence number information through other means instead of being provided by the second network element through the fourth message.
  • the handover source gNB will provide the first PDCP COUNT or the first downlink MBS QFI sequence number information to the handover target gNB for data forwarding and other purposes.
  • the target gNB is a gNB-CU -CP/UP separation node
  • the first network element in the target gNB can directly obtain the first PDCP COUNT or the first downlink MBS QFI sequence number information from the source gNB on behalf of the target gNB, and then use this information to determine whether it needs to The second network element sends the first message.
  • the method further includes (as shown in Figure 11):
  • Step 1101 Instruct one or more terminal devices to perform a reconfiguration process to establish the second radio bearer.
  • the data packet processing mechanism of the first QoS flow may be changed to use the second radio bearer to transmit the data packets of the first QoS flow, where the data packets belong to the first QoS flow.
  • the second network element can change the packet processing mechanism of the first QoS flow and switch to To use the second radio bearer to transmit the data packet of the first QoS flow, wherein the data packet belongs to the first QoS flow.
  • the method further includes (as shown in Figure 12):
  • Step 1201 Receive a first indication sent by the second network element, where the first indication is used to indicate that the first PDCP COUNT of the first QoS flow using the first radio bearer is about to reach the maximum value;
  • Step 1202 Send the first message to the second network element according to the first instruction
  • the first indication includes a first indication for the first QoS flow and/or a first indication for the first radio bearer.
  • the second message may include a first indication for the first QoS flow and/or a first indication for the first radio bearer, where the first indication is used to indicate that the The first PDCP COUNT of the first radio bearer is about to reach the maximum value.
  • the first network element can directly send a message to the second network element according to the first indication. To send the first message, there is no need to judge whether the first PDCP COUNT is about to reach the maximum value.
  • the method further includes (as shown in Figure 13):
  • Step 1301 Receive a second indication sent by the second network element.
  • the second indication is used to indicate that the first PDCP COUNT of the first QoS flow using the first radio bearer reaches the maximum value, or the downlink of the first QoS flow reaches the maximum value.
  • the first PDCP COUNT corresponding to the MBS QFI sequence number reaches the maximum value, or indicates that the second radio bearer has been enabled, or indicates that the mapping relationship between the first QoS flow and the first radio bearer has changed to the first The mapping relationship between the QoS flow and the second radio bearer;
  • Step 1302 Determine that the first wireless bearer has been stopped according to the second indication
  • the second indication includes one or more of a second indication for the first QoS flow, a second indication for the first radio bearer, and a second indication for the second radio bearer.
  • the second message may include a second indication for the first QoS flow and/or a second indication for the first radio bearer and/or a second indication for the second radio bearer.
  • Second instruction After receiving the second message containing the second indication, the first network element can directly determine that the first radio bearer has stopped using according to the second indication, without having to determine whether the first radio bearer has stopped by itself. use.
  • the method further includes (as shown in Figure 14):
  • Step 1401 Instruct one or more terminal devices to perform a reconfiguration process to release the first radio bearer.
  • the first message includes:
  • the first multicast radio bearer MRB identity and the first MRB identity are old identities; or,
  • the first MRB identifier, the second MRB identifier, and the second MRB identifier are new identifiers.
  • the first message includes: an explicit information element.
  • the old MRB identifier or new MRB identifier or explicit information element is used to instruct the second network element to establish the second radio bearer, and instruct the second network element to establish the second radio bearer in the first After the first PDCP COUNT of the radio bearer reaches the maximum value, the second radio bearer is used to transmit the first QoS flow.
  • the first message if the first message includes a first MRB identifier and the first MRB identifier is an old identifier, the first message is used to instruct the second network element to use the first MRB identifier as the third MRB identifier.
  • the identifier of the second radio bearer and instructs the second network element to determine the first radio bearer according to the first MRB identifier.
  • the first message is used to indicate the first radio bearer and the second radio bearer. If the first message includes the first MRB identifier and an old MRB identifier, the first message may indicate the first radio bearer and the second radio bearer.
  • the second network element uses the first MRB identifier as the identifier of the second radio bearer, and instructs the second network element to determine the first radio bearer based on the old MRB identifier.
  • the first message is used to instruct the second network element to transfer the
  • the second MRB identifier serves as the identifier of the second radio bearer and instructs the second network element to determine the first radio bearer based on the first MRB identifier.
  • the first message is used to indicate the first radio bearer and the second radio bearer. If the first message includes the second MRB identifier and a new MRB identifier, the first message may indicate the The second network element uses the second MRB as the identifier of the second radio bearer, and instructs the second network element to determine the first radio bearer based on the MRB identifier.
  • the QoS flow mapped to the first radio bearer is the first QoS flow.
  • the first message includes:
  • MRB identifier the identifier of the first QoS flow and explicit information element.
  • the explicit information element is used to request or instruct the second network element to establish the second radio bearer, and after the first PDCP COUNT of the first radio bearer reaches the maximum value , using the second radio bearer to transmit The data of the first QoS flow.
  • the first message is used to instruct the second network element to use the MRB identity as the identity of the second radio bearer, and instruct the second network element to use the first QoS flow
  • the radio bearer currently mapped to is used as the first radio bearer.
  • the first message contains an MRB identifier, an identifier of the first QoS flow and an explicit information element, where the MRB identifier is used to provide the second network element with the identifier of the second radio bearer, and the third message A message may also instruct the second network element to use the radio bearer to which the first QoS flow is currently mapped as the first radio bearer.
  • the first network element is gNB-CU-CP
  • the second network element is gNB-CU-UP
  • the NG-RAN node includes: one gNB-CU-CP; one or more gNB-CU- UP; one or more gNB-DU.
  • the first network element is the source gNB-CU-CP
  • the second network element is the source gNB-CU-CP, source gNB-CU-UP and source gNB-DU.
  • the source gNB-CU-CP decides to initiate a handover for a UE.
  • the UE is receiving data belonging to the first QoS flow through the first radio bearer or the second radio bearer.
  • the source gNB-CU-UP sends information intended to handover the UE to the target gNB on behalf of the source gNB.
  • This information can be sent directly through the Xn interface or forwarded through the core network through the N2 interface.
  • This part of the information includes configuration information for the first radio bearer and/or the second radio bearer, which is used as source side information for reference by the target gNB.
  • the configuration information of the first radio bearer and/or the second radio bearer also contains sufficient information to indicate that the relationship between the first radio bearer and the second radio bearer is "originally using the first radio bearer to The data of the first QoS flow is transmitted, but after the first PDCP COUNT of the first radio bearer is flipped, the second radio bearer is used to transmit the data of the first QoS flow.”
  • This part of the information may be "the first MBS QFI sequence number and/or the first PDCP COUNT for the first QoS flow" provided by the source gNB-CU-UP in the second message, or it may be the old MRB identification or new MRB identification or the above-mentioned explicit information element or MRB identification or the identification or explicit information element of the first QoS flow, but the content contained therein is used to "request or instruct the second network element to establish the second network element".
  • radio bearer and after the first PDCP COUNT of the first radio bearer reaches the maximum value, use the second radio bearer to transmit data of the first QoS flow" should be replaced with "indicates that the first radio bearer was originally used to transmit data of the first QoS flow"
  • the radio bearer is used to transmit the data of the first QoS flow, but after the first PDCP COUNT of the first radio bearer is flipped, the second radio bearer is used to transmit the data of the first QoS flow.”
  • the target gNB generates RRC configuration information to be sent to the UE based on the information provided by the source gNB. If the target gNB has previously been transmitting data of the first QoS flow and transmitting it through the third radio bearer, and the QoS flow list mapped on the first radio bearer is exactly the same as the QoS flow list mapped on the third radio bearer, and the The third PDCP COUNT of the three radio bearers is close to 2 32 -1, then the RRC configuration information should indicate that the first radio bearer should be reconfigured as the third radio bearer.
  • the target gNB has previously been transmitting data of the first QoS flow and transmitting it through the fourth radio bearer, and the QoS flow list mapped on the second radio bearer is exactly the same as the QoS flow list mapped on the fourth radio bearer, and the The fourth PDCP COUNT of the four radio bearers is close to 0, then the RRC configuration information should indicate that the second radio bearer should be reconfigured as the fourth radio bearer.
  • the source gNB is a separate node.
  • the source gNB can also be a non-detached node, but considering that it takes a certain amount of time to establish a new second radio bearer, in order to enable the few data packets after the first PDCP COUNT flips to zero to be sent as soon as possible, in the When the first PDCP COUNT of a radio bearer is relatively close to 2 32 -1 but still a certain distance away, a second radio bearer is established in advance.
  • the first embodiment of this application proposes a wireless bearer processing method, which method includes:
  • Step 1 gNB-CU-CP (the first network element) determines that the PDCP COUNT of MRB 1 is about to flip in the near future. If no action is taken, the data packets on QoS flow 1 (the first QoS flow) will not be able to Transmission continues on MRB 1 (the first radio bearer). In view of this, gNB-CU-CP decided to establish MRB 2 (second radio bearer) to replace MRB 1 to transmit the data of QoS flow 1 after the first PDCP COUNT of MRB 1 flipped.
  • MRB 2 second radio bearer
  • gNB-CU-CP sends an E1 interface message (i.e., the first message) to gNB-CU-UP, requesting or instructing gNB-CU-UP to establish MRB 2, and instructs gNB-CU-UP to generate PDCP COUNT in MRB 1. After the flip, MRB 2 is used to transmit the data of QoS flow 1.
  • E1 interface message i.e., the first message
  • Step 2 gNB-CU-UP accepts the request or instruction of gNB-CU-CP in step 1.
  • gNB-CU-UP Send an E1 interface message (ie, the third message) to the gNB-CU-CP to inform that the request in the first message has been accepted.
  • E1 interface message ie, the third message
  • the specific name of this E1 interface message is not limited.
  • Step 3 gNB-CU-CP instructs one or more UEs to perform the reconfiguration process to establish MRB 2.
  • gNB-CU-CP also performs signaling interaction with gNB-DU and/or gNB-CU-UP to complete operations necessary for the reconfiguration process.
  • the execution order of step 1, step 2 and step 3 is not limited, that is, step 3 can be executed concurrently with step 1 and/or step 2. Since the data on QoS flow 1 is still being sent through MRB 1 at this stage, and there is no data on MRB 2, the time difference configured between different nodes will not have a substantial impact on data transmission, so there is no need to limit the execution order.
  • Step 4 At a certain moment, gNB-CU-UP sends the first data packet with a PDCP COUNT value of 2 32 -1 through MRB 1. Let's assume that the data packet belongs to QoS flow 1. The data packet is successfully delivered to one or more UEs and processed normally.
  • Step 5 gNB-CU-UP changes its internal packet processing mechanism so that packets belonging to QoS flow 1 are sent by MRB 2 instead.
  • Step 6 gNB-CU-UP sends the data packet belonging to QoS flow 1 through MRB 2. If the QoS flow list originally mapped to MRB 1 is exactly the same as the QoS flow list now mapped to MRB 2, then the second PDCP COUNT of the packet belonging to QoS flow 1 sent on MRB 2 should be 0. The data packet is successfully delivered to one or more UEs and processed normally. Subsequent data packets are processed in a similar manner and will not be described again here.
  • Step 7 gNB-CU-UP sends an E1 interface message (that is, the fourth message) to gNB-CU-CP, which contains at least one second PDCP COUNT for MRB 2 and/or at least one for QoS The second downstream MBS QFI sequence number of stream 1.
  • Step 8 gNB-CU-CP determines that MRB 1 has stopped using based on the second PDCP COUNT for MRB 2 and/or at least one second downlink MBS QFI sequence number for QoS flow 1 provided by gNB-CU-UP.
  • Step 9 gNB-CU-CP instructs one or more UEs to perform a reconfiguration procedure to release MRB 1.
  • gNB-CU-CP also performs signaling interaction with gNB-DU and/or gNB-CU-UP to complete operations necessary for the reconfiguration process.
  • step 1 in the above-mentioned first embodiment also includes:
  • Step S1 gNB-CU-UP uses MRB 1 to transmit the data of QoS flow 1, that is, in this gNB-CU-UP, QoS flow 1 is mapped to MRB 1.
  • the first PDCP COUNT of a packet transmitted on MRB 1 is specified according to the downstream MBS QFI sequence number provided by MB-UPF.
  • Step S2 gNB-CU-UP sends an E1 interface message (that is, the second message) to gNB-CU-CP, which contains at least a first PDCP COUNT for MRB 1 and/or at least a first PDCP COUNT for QoS flow 1. Downstream MBS QFI serial number.
  • the so-called PDCP COUNT for MRB 1 can be the PDCP COUNT value of the next data packet expected to be transmitted through MRB 1 (this value is also called the TX_NEXT of the PDCP instance), or it can be TX_NEXT minus a fixed constant and 0 The larger of these can also be the PDCP COUNT value of the last packet transmitted through MRB 1.
  • the so-called downstream MBS QFI sequence number for QoS flow 1 can be the downstream MBS QFI sequence number on the packet header of the next data packet expected to be received through N3mb and belongs to QoS flow 1, or it can be all the QoS flow 1 that have not yet been received through N3mb.
  • the minimum value of the downstream MBS QFI sequence number in the packet header can also be the downstream MBS QFI sequence number in the packet header of the previous data packet belonging to QoS flow 1 received through N3mb.
  • the specific name of this E1 interface message is not limited.
  • the gNB-CU-CP in the above step 1 can be based on at least one first PDCP COUNT for MRB 1 and/or at least one for QoS flow 1 contained in the second message.
  • the specific process of using the first downstream MBS QFI sequence number to determine "if no action is taken, the data packet on QoS flow 1 will not be able to continue to be transmitted on MRB 1" includes any of the following:
  • gNB-CU-CP directly differs this value from 2 32 (the specific method of difference is not limited, for example The difference can be obtained by subtracting the PDCP COUNT from 0 and taking modulo 2 32 (the same applies below), where the maximum value is 2 32 -1, and 2 32 is the value obtained by adding 1 to the maximum value. If the difference is less than a preset threshold, then gNB-CU-CP will consider that the data packet on QoS flow 1 will not be able to continue to be transmitted if no action is taken.
  • gNB-CU-UP provides in the second message is a downlink MBS QFI sequence number for QoS flow 1
  • gNB-CU-CP will first sum and modulo the first downlink MBS QFI sequence number and the corresponding downlink MBS QFI sequence numbers of other QoS flows mapped to MRB 1 to obtain a first PDCP equivalent to MRB 1 COUNT value, and then use the aforementioned method to determine whether it is a situation where "data packets on QoS flow 1 will not be able to continue to be transmitted on MRB 1 if no action is taken.”
  • gNB-CU-UP second message provides multiple first PDCP COUNTs for MRB 1 and/or the first downlink MBS QFI sequence number for QoS flow 1, then gNB-CU-CP will select one of them. one, and then process it according to the above method according to the first PDCP COUNT and/or the first downstream MBS QFI sequence number.
  • step 8 if the fourth message provided by gNB-CU-UP in step 7 is a second downlink MBS QFI sequence number for QoS flow 1, then gNB-CU-CP will first send this The second downlink MBS QFI sequence number is summed and moduloed with the corresponding downlink MBS QFI sequence numbers of other QoS flows previously mapped to MRB 1 to obtain a value equivalent to the second PDCP COUNT of MRB 2, and then the value is compared with 2 32 Difference, if the difference is not less than a preset threshold, then gNB-CU-CP will determine that MRB 1 has stopped using.
  • gNB-CU-CP can set the above "preset threshold" to a very large value, even a number greater than 232 , which means that gNB-CU-CP does not need to wait for step S2. occurs and can directly trigger step 1.
  • gNB-CU-CP can also obtain PDCP COUNT or downlink MBS QFI sequence number information through other means, which does not have to be provided by gNB-CU-UP. For example, during the handover process, the handover source gNB will provide PDCP COUNT or downlink MBS QFI sequence number information to the handover target gNB for data forwarding and other purposes.
  • the target gNB is a gNB-CU-CP/UP separation node
  • the target gNB-CU-CP can directly obtain the PDCP COUNT or downlink MBS QFI sequence number information from the source gNB on behalf of the target gNB, and then use this information to trigger step 1.
  • the information contained in the second message provided by gNB-CU-UP in step S2 is replaced with at least one first indication for MRB 1 and/or at least one first indication for QoS flow 1.
  • An indication, the first indication is used to indicate that the PDCP COUNT of MRB 1 is about to reach the maximum value 2 32 -1, or the PDCP COUNT of the MRB mapped by QoS flow 1 is about to reach the upper limit.
  • gNB-CU-CP can directly send an E1 interface message (i.e., the first message) to gNB-CU-UP according to the first instruction in the second message, requesting or instructing gNB-CU-UP to establish MRB 2 , and instructs gNB-CU-UP to use MRB 2 to transmit the data of QoS flow 1 after the PDCP COUNT of MRB 1 flips.
  • E1 interface message i.e., the first message
  • the information contained in the fourth message in step 7 above may be replaced with at least one indication for MRB 1 and/or a second indication for MRB 2 and/or a second indication for QoS flow 1, the second indication being Indicates that the first PDCP COUNT of MRB 1 has reached 2 32 -1, or MRB 2 has been enabled, or the mapping relationship of the QoS flow has been changed from MRB 1 to MRB 2.
  • gNB-CU-CP can determine that MRB 1 has stopped using according to the second indication in the fourth message provided by gNB-CU-UP.
  • the E1 interface message (that is, the first message) sent by gNB-CU-CP to gNB-CU-UP in step 1 of the above-mentioned first embodiment includes:
  • At least one multicast MRB creates or modifies the configuration item (MCMRB Setup Modify Configuration-Item), or at least one multicast MRB modification confirmation list item (MCMRB Modify Confirm List-Item).
  • One of the multicast MRB establishment or modification configuration items or multicast MRB modification confirmation list items includes: an "MRB ID” (MRB ID) and an “Old MRB ID” (Old MRB ID), or an "MRB Logo” and a "New MRB ID” (New MRB ID).
  • this multicast MRB establishment or modification configuration item also contains an additional explicit information element.
  • step 1 This "old MRB identity” or “new MRB identity” or the above-mentioned additional explicit information element is what is described in step 1 in the first embodiment and is used to "request or instruct gNB-CU-UP to establish MRB 2, and instructs gNB-CU-UP to use MRB 2 to transmit the data of QoS flow 1 after the PDCP COUNT of MRB 1 flips.”
  • the multicast MRB establishment or modification configuration item contains an "MRB ID” and an "old MRB ID”
  • gNB-CU-UP will replace the existing MRB ID indicated by the "old MRB ID”.
  • the MRB is understood to be MRB 1 described in the first embodiment, and MRB 2 described in the first embodiment is established, and this "MRB identification” is used as the identification of MRB 2.
  • the subsequent processing is the same as that of the first embodiment and is omitted here.
  • the multicast MRB establishment or modification configuration item contains an "MRB ID” and a "new MRB ID”
  • gNB-CU-UP will replace the existing MRB indicated by the "MRB ID” with It is understood that it is MRB 1 described in the first embodiment, and MRB 2 described in the first embodiment is established, and this "new MRB identification” is used as the identification of MRB 2.
  • the subsequent processing is the same as that of the first embodiment and is omitted here.
  • any QoS flow mapped to MRB 1 can be regarded as the QoS flow 1 mentioned in the first embodiment.
  • the E1 interface message (that is, the first message) sent by gNB-CU-CP to gNB-CU-UP Contains at least one multicast MRB establishment or modification configuration item.
  • a multicast MRB establishment or modification configuration item includes: an "MRB ID" (MRB ID), at least one QFI, and an explicit information element.
  • the explicit information element is what is described in step 1 in the first embodiment, and is used to "request or instruct gNB-CU-UP to establish MRB 2, and instruct gNB-CU-UP to flip the PDCP COUNT of MRB 1" , instead use MRB 2 to transmit the data of QoS flow 1" information.
  • gNB-CU-UP will establish the MRB 2 described in Embodiment 1 according to the first message, and use this "MRB identification" as the identification of MRB 2, as indicated by any one of the above-mentioned at least one QFI.
  • the existing QoS flow is used as the QoS flow 1 mentioned in the first embodiment, and the MRB to which the QoS flow 1 is currently mapped is used as the MRB 1 mentioned in the first embodiment.
  • the subsequent steps are the same as those in the first embodiment and are omitted here.
  • steps S1, S2, step 1, step 2 and step 3 are first included.
  • gNB-CU-CP, gNB-CU-UP and gNB-DU are renamed here.
  • Source gNB-CU-CP, source gNB-CU-UP and source gNB-DU are renamed here.
  • Steps 4, 5, and 6 in the first embodiment are in some embodiments. If they exist, each step is the same as the first embodiment. It should be noted here that steps 4 to 6 may not occur at all, or only step 4 may occur, or only steps 4 and 5 may occur, or all three steps may occur.
  • Step 7 is replaced by: Due to some reason, such as the movement of the UE, the source gNB-CU-CP decides to initiate a handover for a UE.
  • the UE is receiving data belonging to QoS flow 1 through MRB 1 or MRB 2.
  • steps 4 to 6 do not involve the source gNB-CU-CP, the source gNB-CU-CP does not know whether steps 4 to 6 have occurred, so subsequent processing must apply to both cases.
  • Step 8 is replaced with: the source gNB-CU-UP sends information intended to handover the UE to the target gNB on behalf of the source gNB.
  • This part of the information can be sent directly through the Xn interface or forwarded through the core network through the N2 interface.
  • This part of information contains configuration information for MRB 1 and/or MRB 2, which is used as source-side information for reference by the target gNB.
  • the aforementioned configuration information of MRB 1 and/or MRB 2 also contains sufficient information to indicate that the relationship between MRB 1 and MRB 2 is "MRB 1 was originally used to transmit the data of QoS flow 1, but in MRB 1 After the first PDCP COUNT flips, MRB 2 is used to transmit the data of QoS flow 1."
  • This part of the information can be "at least one first PDCP COUNT for MRB 1 and/or at least one first downlink MBS QFI sequence number for QoS flow 1" provided by the source gNB-CU-UP in step S2, It can also be similar to what is described in the third embodiment and the fourth embodiment, but “requests or instructs gNB-CU-UP to establish MRB 2, and after the PDCP COUNT of MRB 1 is flipped, instead "Use MRB 2 to transmit the data of QoS flow 1" should be replaced by "Indicates that MRB 1 was originally used to transmit the data of QoS flow 1, but after the first PDCP COUNT of MRB 1
  • Step 9 is replaced with: the target gNB generates RRC configuration information to be sent to the UE based on the information provided by the source gNB. If the target gNB has previously been transmitting data for QoS flow 1, and the transmission is through MRB 3, and the QoS flow list mapped on MRB 1 is exactly the same as the QoS flow list mapped on MRB 3, and the PDCP COUNT of MRB 3 is close to 2 32 -1, then the RRC configuration information should indicate that MRB 1 should be reconfigured as MRB 3.
  • the target gNB has previously been transmitting data for QoS flow 1, and the transmission is through MRB 4, and the QoS flow list mapped on MRB 2 is exactly the same as the QoS flow list mapped on MRB 4, and the PDCP COUNT of MRB 4 is close to 0, Then the RRC configuration information should indicate that MRB 2 should be reconfigured as MRB 4.
  • the source gNB is a separate node.
  • the source gNB can also be a non-detached node, but considering that it takes a certain amount of time to establish a new MRB 2, in order to enable the few data packets after the PDCP COUNT flips to zero to be sent as soon as possible, in the PDCP COUNT of MRB 1
  • MRB 2 is established in advance as described in step 3 in the first embodiment. In this case, steps 7 to 9 in this embodiment are still applicable.
  • network equipment and terminal equipment may include hardware structures and software modules to implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 15 is a schematic structural diagram of a communication device 150 provided by an embodiment of the present application.
  • the communication device 150 shown in FIG. 15 may include a transceiver module 1501.
  • the transceiver module 1501 may include a sending module, a receiving module, and/or a processing module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function
  • the processing module is used to process data.
  • the transceiver module 1501 can implement a sending function, a receiving function and/or a processing function.
  • the communication device 150 may be a terminal device (such as the terminal device in the foregoing method embodiment), a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 150 may be a network device, a device in a network device, or a device that can be used in conjunction with the network device.
  • the communication device 150 is the first network element, which includes:
  • a transceiver module configured to send the first message to the second network element
  • the first message is used to request or instruct the second network element when the first packet data convergence protocol count value PDCP COUNT of the first quality of service QoS flow transmitted using the first radio bearer reaches the maximum value,
  • the second radio bearer is used to transmit data of the first QoS flow.
  • the first radio bearer is used before the first PDCP COUNT of the first QoS flow reaches a maximum value; the second radio bearer is different from the first radio bearer.
  • the transceiver module 1501 is also used to:
  • the transceiver module 1501 is also used to:
  • the second message includes the first downlink multicast broadcast system quality of service flow identification MBS QFI sequence number for the first QoS flow, and the transceiver module 1501 is also used to:
  • the first PDCP COUNT is determined according to the first downlink MBS QFI sequence number and the downlink MBS QFI sequence number mapped to other QoS flows of the first radio bearer.
  • the transceiver module 1501 is also used to:
  • the first message is sent to the second network element.
  • the communication device 150 further includes a processing module 1502 .
  • the processing module 1502 can be used to implement sending functions, receiving functions, and data processing functions.
  • processing module 1502 is used to:
  • processing module 1502 is also used to:
  • processing module 1502 is also used to:
  • the second PDCP COUNT and the set minimum value it is determined whether the first radio bearer is stopped from being used.
  • processing module 1502 is also used to:
  • processing module 1502 is also used to:
  • the first indication being used to indicate that the first PDCP COUNT of the first QoS flow using the first radio bearer is about to reach the maximum value; according to the first indication, Send the first message to the second network element;
  • the first indication includes a first indication for the first QoS flow and/or a first indication for the first radio bearer.
  • processing module 1502 is also used to:
  • the first PDCP COUNT corresponding to the number reaches the maximum value, or indicates that the second radio bearer has been enabled, or indicates that the mapping relationship between the first QoS flow and the first radio bearer has been transformed into the first QoS flow and the first radio bearer.
  • the second indication includes one or more of a second indication for the first QoS flow, a second indication for the first radio bearer, and a second indication for the second radio bearer.
  • processing module 1502 is also used to:
  • FIG. 16 is a schematic structural diagram of another communication device 160 provided by an embodiment of the present application.
  • the communication device 160 may be a network device, a terminal device (such as the terminal device in the foregoing method embodiment), a chip, a chip system, a processor, etc. that supports the network device to implement the above method, or a terminal device that supports A chip, chip system, or processor that implements the above method.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 160 may include one or more processors 1601.
  • the processor 1601 may be a general-purpose processor or a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 160 may also include one or more memories 1602, on which a computer program 1603 may be stored.
  • the processor 1601 executes the computer program 1603, so that the communication device 160 performs the above method embodiments. described method.
  • the memory 1602 may also store data.
  • the communication device 160 and the memory 1602 can be provided separately or integrated together.
  • the communication device 160 may also include a transceiver 1604 and an antenna 1605.
  • the transceiver 1604 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1604 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • one or more interface circuits 1606 may also be included in the communication device 160 .
  • the interface circuit 1606 is used to receive code instructions and transmit them to the processor 1601 .
  • the processor 1601 executes the code instructions to cause the communication device 160 to perform the method described in the above method embodiment.
  • the communication device 160 is the first network element: the processor 1601 is used to execute step 301 in Figure 3; execute step 401 and step 402 in Figure 4; and step 501 in Figure 5.
  • the communication device 160 is the second network element: the transceiver 1604 is used to perform step 601 in Figure 6 .
  • the processor 1601 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1601 may store a computer program 1603, and the computer program 1603 runs on the processor 1601, causing the communication device 160 to perform the method described in the above method embodiment.
  • Computer program 1603 may be solidified in In the processor 1601, in this case, the processor 1601 may be implemented by hardware.
  • the communication device 160 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the foregoing method embodiment), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited to Limitations of Figure 16.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 17 refer to the schematic structural diagram of the chip shown in FIG. 17 .
  • the chip shown in Figure 17 includes a processor 1701 and an interface 1702.
  • the number of processors 1701 may be one or more, and the number of interfaces 1702 may be multiple.
  • the chip also includes memory 1703 for storing necessary computer programs and data.
  • Embodiments of the present application also provide a wireless bearer processing system, which system includes a communication device as a terminal device (such as the terminal device in the foregoing method embodiment) and a communication device as a network device in the embodiment of FIG. 15, or, The system includes a communication device as a terminal device (such as the terminal device in the foregoing method embodiment) in the aforementioned embodiment of FIG. 16 and a communication device as a network device.
  • a wireless bearer processing system which system includes a communication device as a terminal device (such as the terminal device in the foregoing method embodiment) and a communication device as a network device in the embodiment of FIG. 15, or, The system includes a communication device as a terminal device (such as the terminal device in the foregoing method embodiment) in the aforementioned embodiment of FIG. 16 and a communication device as a network device.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g. For example, floppy disk, hard disk, magnetic tape), optical media (for example, high-density digital video disc (DVD)), or semiconductor medium (for example, solid state disk (SSD)), etc.
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种无线承载的处理方法及装置,该方法包括:向第二网元发送第一消息;其中,所述第一消息用于请求或指示所述第二网元在使用第一无线承载传输的第一QoS流的第一PDCP COUNT达到最大值的情况下,使用第二无线承载来传输所述第一QoS流的数据。通过实施该方法,可以通过向第二网元发送的第一消息,以使所述第二网元在第一PDCP COUNT达到最大值后,使用第二无线承载来传输第一QoS流,从而避免了第一QoS流中数据的接收方和第二网元均认为计数值翻转后的数据包已完成传输过程,所导致的传输实质终止的情形,提高了数据包传输效率。

Description

无线承载的处理方法及装置
相关申请的交叉引用
本公开基于申请号为202210941598.9、申请日为2022年8月5日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本申请涉及通信技术领域,尤其涉及一种无线承载的处理方法及装置。
背景技术
无线通信中,多播机制中的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)计数值通常根据核心网所提供的针对多播服务质量(Quality of Service,QoS)流的序列号生成。由于PDCP计数值与多播QoS流的序列号的取值范围均为0至232-1,当多播数据包的传输数量超过232时,PDCP计数值与核心网所提供的序列号将出现计数值翻转。但根据多播无线承载(MBS Radio Bearer,MRB)的状态参量变化机制,发送方与接收方均只能处理PDCP计数值单调上升的情况,对于PDCP计数值从232-1回归为0之后的所有数据包,发送方与接收方均会认为其在此前已经完成了发送与接收过程,导致发送方不会通过空口发送这些数据包,接收方也不会通过空口接收这些数据包,这也就意味着多播业务的传输实质上终止了。这将导致多播业务的业务数据发生传输中断的问题。
发明内容
本申请实施例提供一种无线承载的处理方法及装置,可以应用于长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等通信系统,通过第一网元向第二网元发送的第一消息,以使所述第二网元在第一无线承载的第一PDCP COUNT达到最大值后,使用第二无线承载来传输第一服务质量QoS流,从而避免了第一QoS流中数据的接收方和第二网元均认为计数值翻转后的数据包已完成传输过程所导致的传输实质终止的情形,提高了数据包传输效率。
第一方面,本申请实施例提供一种无线承载的处理方法,该方法包括:
向第二网元发送第一消息;
其中,所述第一消息用于请求或指示所述第二网元在使用第一无线承载传输的第一服务质量QoS流的第一分组数据汇聚协议计数值PDCP COUNT达到最大值的情况下,使用第二无线承载来传输所述第一QoS流的数据。
在一些实施例中,所述第一无线承载在所述第一QoS流的第一PDCP COUNT达到最大值之前使用;所述第二无线承载与所述第一无线承载不同。
在一些实施例中,所述向第二网元发送第一消息,包括:
获取第一无线承载的第一PDCP COUNT;
根据所述第一PDCP COUNT向所述第二网元发送所述第一消息。
在一些实施例中,所述获取所述第一无线承载的第一PDCP COUNT,包括:
接收第二网元发送的第二消息,其中,所述第二消息中包括针对第一QoS流的第一下行多播广播系统服务质量流标识MBS QFI序列号和/或第一PDCP COUNT。
在一些实施例中,所述第二消息中包括针对第一QoS流的第一下行多播广播系统服务质量流标识MBS QFI序列号;
所述获取第一无线承载的第一PDCP COUNT,包括:
根据所述第一下行MBS QFI序列号与映射至所述第一无线承载的其他QoS流的下行MBS QFI序列号,确定所述第一PDCP COUNT。
在一些实施例中,所述向第二网元发送第一消息,包括:
获取第一无线承载的第一PDCP COUNT;
根据所述第一PDCP COUNT与设定的最大值,向第二网元发送第一消息。
在一些实施例中,所述方法还包括:
接收所述第二网元发送的第三消息,所述第三消息用于指示所述第二网元接受所述第一网元在所述第一消息中的请求或指示。
在一些实施例中,所述方法还包括:
获取所述第二无线承载的第二PDCP COUNT;
根据所述第二PDCP COUNT确定所述第一无线承载是否被停止使用。
在一些实施例中,所述根据所述第二PDCP COUNT,确定所述第一无线承载是否被停止使用,包括:
根据所述第二PDCP COUNT与设定的最小值,确定所述第一无线承载是否被停止使用。
在一些实施例中,所述方法还包括:
指示一个或多个终端设备执行重配过程以建立所述第二无线承载。
在一些实施例中,所述向第二网元发送第一消息,包括:
接收第二网元发送的第一指示,所述第一指示用于指示使用所述第一无线承载的所述第一QoS流的第一PDCP COUNT即将达到最大值;
根据所述第一指示,向第二网元发送第一消息;
其中,所述第一指示包含针对第一QoS流的第一指示和/或针对第一无线承载的第一指示。
在一些实施例中,所述方法还包括:
接收第二网元发送的第二指示,所述第二指示用于指示使用第一无线承载的第一QoS流的第一PDCP COUNT达到最大值,或所述第一QoS流的下行MBS QFI序列号对应的第一PDCP COUNT达到最大值,或,指示第二无线承载已启用,或,指示所述第一QoS流与第一无线承载之间的映射关系已经转变为所述第一QoS流与第二无线承载之间的映射关系;
根据所述第二指示,确定所述第一无线承载已停止使用;
其中,所述第二指示包含针对第一QoS流的第二指示、针对第一无线承载的第二指示、针对所述第二无线承载的第二指示中的一种或者多种。
在一些实施例中,所述方法还包括:
指示一个或多个终端设备执行重配过程以释放所述第一无线承载。
第二方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
在一种实现方式中,所述通信装置包括:
收发模块,用于向第二网元发送第一消息;
其中,所述第一消息用于请求或指示所述第二网元在使用第一无线承载传输的第一服务质量QoS流的第一分组数据汇聚协议计数值PDCP COUNT达到最大值的情况下,使用第二无线承载来传输所述第一QoS流的数据。
第三方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第四方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上 述第一方面所述的方法。
第五方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种无线承载的处理系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第七方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第八方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第九方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是相关技术中提供的一种无线接入网节点结构示意图;
图3是本申请实施例提供的一种无线承载的处理方法的流程示意图;
图4是本申请实施例提供的一种无线承载的处理方法的流程示意图;
图5是本申请实施例提供的一种无线承载的处理方法的流程示意图;
图6是本申请实施例提供的一种无线承载的处理方法的流程示意图;
图7是本申请实施例提供的一种无线承载的处理方法的流程示意图;
图8是本申请实施例提供的一种无线承载的处理方法的流程示意图;
图9是本申请实施例提供的一种无线承载的处理方法的流程示意图;
图10是本申请实施例提供的一种无线承载的处理方法的流程示意图;
图11是本申请实施例提供的一种无线承载的处理方法的流程示意图;
图12是本申请实施例提供的一种无线承载的处理方法的流程示意图;
图13是本申请实施例提供的一种无线承载的处理方法的流程示意图;
图14是本申请实施例提供的一种无线承载的处理方法的流程示意图;
图15是本申请实施例提供的一种通信装置的结构示意图;
图16是本申请实施例提供的另一种通信装置的结构示意图;
图17是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本申请涉及的术语。
1、多播广播系统(Multicast Broadcast System,MBS)
无线通信系统中存在多个终端设备,也称为用户设备(User Equipment,UE)请求相同下行业务数据的场景。对于这种场景,为了尽量降低无线资源消耗,业界提出了多播(Multicast)与广播(Broadcast)机制,允许网络利用特定无线资源发送单一的一份下行数据,而多个UE同时接收这一份下行数据。相对地,传统的、只能由一个UE接收的下行数据称作单播(Unicast)机制。无线通信系统之中支持多播与广播的部分称作MBS。
在5G系统中,不同数据有不同的服务质量(Quality of Service,QoS)需求,而一个UE有 可能同时接收具有不同QoS需求的数据包,具有相同QoS需求的数据包构成了一个QoS流(QoS Flow),并以QoS流标识(QoS Flow ID,QFI)作为标识。而在空口传输上,为了有区别的进行调度,无线接入网(Radio Access Network,RAN)可以配置多个无线承载用以承载这些QoS流,每个无线承载均有各自的配置信息。利用多播无线承载(MBS Radio Bearer,MRB)来传输多播业务或者广播业务。
2、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)
PDCP是一个空口协议层,在传输数据时,RAN节点与UE会为每一个MRB建立一个PDCP实体,用以处理所传输的数据。为了保证业务数据的按序递交以及切换中的无损传输、无重复传输,PDCP引入了一个计数值PDCP COUNT,其取值范围是0至232-1。
简单地说,针对一个无线承载,发送方的PDCP层为属于该无线承载的每一个数据包依次指定PDCP COUNT然后通过空口发送,而接收方的PDCP层则会从空口接收这些数据包,根据每个数据包中所携带的信息推算出该数据包的PDCP COUNT,然后对这些数据包按照PDCP COUNT进行排序,最后再递交至更高层。
为了更好的理解本申请实施例公开的一种无线承载的处理方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。还需要说明的是,本申请实施例中的侧链路还可以称为侧行链路或直通链路。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
无线通信系统中存在多个用户设备(User Equipment,UE)请求相同下行业务数据的场景。对于这种场景,为了尽量降低无线资源消耗,业界提出了多播(Multicast)与广播(Broadcast)机制,允许网络利用特定无线资源发送单一的一份下行数据,而多个UE同时接收这一份下行数据。相对地,传统的、只能由一个UE接收的下行数据称作单播(Unicast)机制。无线通信系统之中支持多播与广播的部分称作MBS。
在5G系统中,不同数据有不同的服务质量(Quality of Service,QoS)需求,而一个UE有 可能同时接收具有不同QoS需求的数据包,具有相同QoS需求的数据包构成了一个QoS流(QoS Flow),并以QoS流标识(QoS Flow ID,QFI)作为标识。而在空口传输上,为了有区别的进行调度,无线接入网(Radio Access Network,RAN)可以配置多个无线承载用以承载这些QoS流,每个无线承载均有各自的配置信息。利用无线承载(MBS Radio Bearer,MRB)来传输多播业务或者广播业务。
PDCP是一个空口协议层,在传输数据时,RAN节点与UE会为每一个MRB建立一个PDCP实体,用以处理所传输的数据。为了保证业务数据的按序递交以及切换中的无损传输、无重复传输,PDCP引入了一个计数值PDCP COUNT,其取值范围是0至232-1。
简单地说,针对一个无线承载,发送方的PDCP层为属于该无线承载的每一个数据包依次指定PDCP COUNT然后通过空口发送,而接收方的PDCP层则会从空口接收这些数据包,根据每个数据包中所携带的信息推算出该数据包的PDCP COUNT,然后对这些数据包按照PDCP COUNT进行排序,最后再递交至更高层。
对于空口连接切换等有可能造成数据丢失的场景,接收方可以通过PDCP COUNT来识别是否存在数据丢失,如果某个PDCP COUNT值的数据包在一段时间内一直没有收到,那么接收方会认为该数据包丢失了,如果存在丢失,接收方可以进行反馈,以便发送方重新发送该数据包。对于空口连接切换等有可能造成数据重复的场景,接收方也可以通过PDCP COUNT来识别是否出现了重复,如果存在重复,接收方将会丢弃其中一个重复的数据包。
在现有的技术中,由于这些设计,只有PDCP COUNT单调上升的情形才能被正常处理。以接收方为例,如果接收方在正确处理并递交了PDCP COUNT接近232-1的数据包之后,收到了PDCP COUNT接近0的数据包,接收方会认为该数据包在以前已经处理过了,因此会直接丢弃该数据包。
此外,对于多播数据,为了降低切换过程中数据包丢失等情况,现有技术规定MRB的PDCP COUNT应当根据核心网所提供的针对QoS流的计数值进行指定。具体地,针对一个QoS流,核心网之中的多播广播用户平面功能(Multicast/Broadcast-User Plane Function,MB-UPF)为属于该QoS流的每一个数据包一次指定一个序列号,该序列号称作下行MBS QFI序列号(DL MBS QFI Sequence Number),其中,QFI是指QoS Flow Identifier,即QoS流标识。MB-UPF在发送每一个数据包时,会将MBS QFI作为包头的一部分与数据包一并发送至RAN。
如果RAN将该QoS流映射到一个MRB中(所谓映射是指该QoS流上的所有用户数据均通过该MRB发送),并且只有这一个QoS流映射到了这个MRB之中,那么RAN的PDCP层在处理属于该QoS流的数据包的时候,它应当将这个数据包的PDCP COUNT的值设置为RAN在从MB-UPF接收这个数据包的时候包头上的下行MBS QFI序列号的值。
如果RAN将该QoS流映射到一个MRB中,但该MRB上还映射有其他QoS流,那么RAN的PDCP层在处理该QoS流的数据包的时候,会将这个数据包的PDCP COUNT值设置为RAN在从MB-UPF接收这个数据包的前一刻,所有映射到该MRB上的QoS流的下一个预期接收的数据包的下行MBS QFI序列号的值之和对232取模。例如,如果该MRB上映射了两个QoS流,其中一个流RAN已经接收到了下行MBS QFI序列号为3/4×232-1的数据包,下一个预期接收的数据包的下行MBS QFI序列号是3/4×232;而另一个流RAN已经接收到了下行MBS QFI序列号为1/2×232-1的数据包,下一个预期接收的数据包的下行MBS QFI序列号是1/2×232,那么该MRB上传输的下一个数据包的PDCP COUNT应当设为(3/4×232+1/2×232)(mod 232),也就是1/4×232
由此可见,随着数据包的传输,MRB的PDCP COUNT会逐渐上升,直至达到232-1并发生翻转(wrap around)并重新从0开始,从而导致出现数据传输实质停止的情形。
图2是相关技术中提供的一种无线接入网节点结构示意图,如图2所示,在NG-RAN之中,一个逻辑上的NG-RAN节点(NG-RAN node)可以进一步划分为一个控制平面中心节点(Central Unit-Control Plane,CU-CP),一个或多个用户平面中心节点(Central Unit-User Plane,CU-UP),以及一个或多个分布节点(Distributed Unit,DU),这种结构称作“CU-CP/UP分离(CU-CP/UP split)”。
在该NG-RAN节点为采用新空口(New Radio,NR)技术的NG-RAN节点,也就是gNB (其定义就是“采用NR技术的NG-RAN节点”)的情况下,gNB-CU-CP与gNB-DU之间以F1-C接口连接,而gNB-CU-CP与gNB-CU-UP之间以E1接口连接。gNB与核心网5GC(5G Core)的控制面连接N2止于gNB-CU-CP,而gNB与移动终端的空口连接则终止于gNB-DU。
当有用户平面数据需要传输时,gNB-CU-UP与5GC之间将建立N3传输通道(对于MBS数据则为N3mb,图2中未画出),而gNB-DU与gNB-CU-UP之间则建立F1-U传输通道。用于处理用户平面数据的PDCP层位于gNB-CU-UP内部,因此gNB-CU-CP并不了解PDCP COUNT的实时情况。
对于涉及业务组织,例如QoS flow与DRB如何映射的空口控制平面功能,由于其既会牵涉gNB-DU也会牵涉gNB-CU-UP,为了便于统一控制与管理,这部分空口功能通过gNB-CU-CP之中的无线资源控制(Radio Resource Control,RRC)模块与UE交互,所交互的信令称为RRC信令。特别地,下行RRC信令均由gNB-CU-CP生成,在封装为层2数据包之后,通过F1-C发送至gNB-DU,然后由其通过空口转发至UE。
在该NG-RAN节点为采用演进的全球陆地无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)技术的节点,也就是ng-eNB的情况下,eNB-CU-CP与eNB-DU之间以W1-C接口连接,而eNB-CU-CP与eNB-CU-UP之间以E1接口连接。ng-eNB与核心网5GC的控制面连接N2止于eNB-CU-CP,而ng-eNB与移动终端的空口连接则终止于eNB-DU。
当有用户平面数据需要传输时,eNB-CU-UP与5GC之间将建立N3传输通道,而eNB-DU与eNB-CU-UP之间则建立W1-U传输通道。其他功能也是类似的,此处不再重复。
除此之外,在演进的分组系统(Evolved Packet System,EPS)之中,采用NR技术的演进的UMTS陆地无线进入网(Evolved UMTS Terrestrial Radio Access Network,E-UTRAN,其中,UMTS为Universal Mobile Telecommunications System,通用移动通信系统)节点,也就是en-gNB(非缩写,其定义就是“采用NR技术的E-UTRAN节点”),也可以进一步划分为一个CU-CP,一个或多个CU-UP,以及一个DU。en-gNB仅能充当双连接的辅节点,没有与核心网EPC(Evolved Packet Core)的控制平面连接。en-gNB-CU-CP与en-gNB-DU之间以F1-C接口连接,而en-gNB-CU-CP与en-gNB-CU-UP之间以E1接口连接。en-gNB与移动终端的空口连接的底层部分终止于en-gNB-DU。
当有用户平面数据需要传输时,en-gNB-CU-UP与EPC之间将建立S1-U传输通道,而en-gNB-DU与en-gNB-CU-UP之间则建立F1-U传输通道。其他功能也是类似的,此处不再重复。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的无线承载的处理方法及装置进行详细地介绍。
请参见图3,图3是本申请实施例提供的一种无线承载的处理方法的流程示意图。所述方法应用于第一网元中。如图3所示,该方法可以包括但不限于如下步骤:
步骤301:向第二网元发送第一消息;
其中,所述第一消息用于请求或指示所述第二网元在使用第一无线承载传输的第一服务质量QoS流的第一分组数据汇聚协议计数值PDCP COUNT达到最大值的情况下,使用第二无线承载来传输所述第一QoS流的数据。
在通信系统中,不同数据有不同的QoS需求,而一个UE有可能同时接收具有不同QoS需求的数据包,具有相同QoS需求的数据包构成了一个QoS流。而在空口传输上,为了有区别的进行调度,RAN可以配置多个无线承载用以承载这些QoS流,每个无线承载均有各自的配置信息。用于传输多播业务或者广播业务的无线承载称为MRB。
PDCP是一个空口协议层,在传输数据时,RAN节点与UE会为每一个无线承载建立一个PDCP实体,用以处理所传输的数据。为了保证业务数据的按序递交以及切换中的无损传输、无重复传输,PDCP引入了一个计数值PDCP COUNT,其取值范围是0至232-1。其中,所述无线承载可以为MRB。
在一些实施例中,所述第一无线承载在所述第一QoS流的第一PDCP COUNT达到最大值之前使用;所述第二无线承载与所述第一无线承载不同。
本申请实施例中,对于一个QoS流,发送方为其分配一个第一无线承载,发送方(如核心网)的PDCP层为属于该无线承载的每一个数据包依次指定第一PDCP COUNT然后通过空口发送,而接收方(如UE)的PDCP层则会从空口接收这些数据包,根据每个数据包中所携带的信息推算出该数据包的PDCP COUNT,然后对这些数据包按照第一PDCP COUNT进行排序,最后再递交至更高层,所述第一QoS流在所述序列号或计数值达到最大值前,第一QoS流中的数据包可以正常地由发送方的PDCP层通过NR传输到接收方的PDCP层中,但当所述第一QoS流在所述序列号或计数值达到最大值后,第一PDCP COUNT会发生翻转直接变为0,导致发送方和接收方均会认为已经完成第一Qos流的数据包的发送与接收,不再通过NR传输第一QoS流中的数据包。为了避免第一QoS流数据包中断传输,通过创建的第二无线承载,可以在第一QoS流的所述序列号或计数值达到最大值后接替第一无线承载来传输第一QoS流中的数据包,避免传输终止导致的数据丢失。
在一些实施例中,如图4所示,图3中的步骤301可以具体包括:
步骤401,获取第一无线承载的第一PDCP COUNT;
步骤402,根据所述第一PDCP COUNT向所述第二网元发送所述第一消息。
本申请实施例中,所述第一网元和第二网元之间以E1接口连接,通过E1接口来传递消息,即所述第一消息为E1接口消息。所述第一网元可以获取所述第一无线承载的第一PDCP COUNT,依据所述第一PDCP COUNT判断是否向述第二网元发送所述第一消息,以请求或指示所述第二网元在第一无线承载的分组数据汇聚协议计数值PDCP COUNT达到最大值后,使用第二无线承载来传输第一服务质量QoS流。
在一些实施例中,如图5所示,获取第一无线承载的第一PDCP COUNT的方式包括但不限于:
步骤501,接收第二网元发送的第二消息,其中,所述第二消息中包括针对所述第一QoS流的第一下行多播广播系统服务质量流标识MBS QFI序列号和/或所述第一PDCP COUNT。
本申请实施例中,所述第二消息为E1接口消息,第一网元通过接收第二网元发送的第二消息,所述第二消息中包括针对所述第一QoS流的第一下行多播广播系统服务质量流标识MBS QFI序列号和/或所述第一PDCP COUNT。
需要说明的是,所述第二消息中可以包括一个或多个第一下行MBS QFI序列号,和/或,一个或多个第一PDCP COUNT,本实施例第二消息中第一下行MBS QFI序列号和第一PDCP COUNT的数量可以根据实际需要选择。
在一些实施例中,所述第一PDCP COUNT为下一个预期通过第一无线承载传输的数据包的PDCP COUNT值(这个值也称作该PDCP实例的TX_NEXT)。
在一些实施例中,所述第一PDCP COUNT为TX_NEXT减去一个固定的常数与0之中的较大者。
在一些实施例中,所述第一PDCP COUNT为最后一个通过第一无线承载传输的数据包的PDCP COUNT值。
在一些实施例中,所述第一下行MBS QFI序列号为下一个预期通过N3mb接收的属于第一QoS流的数据包的下行MBS QFI序列号。
在一些实施例中,所述第一下行MBS QFI序列号为所有尚未通过N3mb接收的属于第一QoS流的数据包的下行MBS QFI序列号之中的最小值。
在一些实施例中,所述第一下行MBS QFI序列号为上一个通过N3mb接收的属于第一QoS流的数据包的下行MBS QFI序列号。
在一些实施例中,所述第二消息中包括针对第一QoS流的第一下行多播广播系统服务质量流标识MBS QFI序列号,那么获取第一无线承载的第一PDCP COUNT的方式包括但不限于:
根据所述第一下行MBS QFI序列号与映射至所述第一无线承载的其他QoS流的下行MBS QFI序列号,确定所述第一PDCP COUNT。
在本申请提供的另一个实施例中,根据所述第一下行MBS QFI序列号与映射至所述第一无线承载的其他QoS流的下行MBS QFI序列号,确定所述第一PDCP COUNT,具体包括:
将所述第一下行MBS QFI序列号与映射至所述第一无线承载的其他QoS流的下行MBS QFI序列号求和并取模,得到所述第一PDCP COUNT。
在本申请提供的另一个实施例中,在一些实施例中,如图7所示,向第二网元发送第一消息,具体包括:
步骤701,获取第一无线承载的第一PDCP COUNT;
步骤702,根据所述第一PDCP COUNT与设定的最大值,向第二网元发送第一消息。
本申请实施例中,所述第一网元通过获取的第一PDCP COUNT与设定的最大值判断所述第一PDCP COUNT是否即将发生翻转变为0,也即第一PDCP COUNT是否接近所述最大值。如果接近所述最大值,则所述第一网元需要向第二网元发送第一消息。
在一些实施例中,步骤702的具体实现方式包括但不限于:将所述第一PDCP COUNT与所述(最大值+1)得到的值相减获取第一差值,将所述第一差值与预设阈值进行比较,如果所述第一差值小于预设阈值,则可以确定所述第一PDCP COUNT即将发生翻转,需要向所述第二网元发送所述第一消息。
在一些实施例中,步骤701采用步骤501的方式获取第一PDCP COUNT。此时,如果第二消息中包含多个第一PDCP COUNT,那么第一网元会选择其中一个第一PDCP COUNT,然后根据选择的PDCP COUNT,将设定最大值与第一PDCP COUNT作差。可以根据实际需要选择作差的具体方法,例如可以是用0减去第一PDCP COUNT并对(最大值+1)取模,以此得到第一差值。如果所述第一差值小于所述预设阈值,那么第一网元会认为若不采取行为第一QoS流上的数据包将无法继续传输,需要向所述第二网元发送所述第一消息。
在一些实施例中,如果步骤701采用步骤501的方式获取第一PDCP COUNT,那么如果所述第二消息中包含多个第一下行MBS QFI序列号,那么第一网元会选择其中一个第一下行MBS QFI序列号,然后根据这一个第一下行MBS QFI序列号,首先将第一下行MBS QFI序列号与映射至第一无线承载的其他QoS流的相应的下行MBS QFI序列号求和并取模,得到第一PDCP COUNT。然后将所述最大值与第一PDCP COUNT作差。如果所述第一差值小于所述预设阈值,那么第一网元会认为若不采取行为第一QoS流上的数据包将无法继续传输,需要向所述第二网元发送所述第一消息。
在一些实施例中,设定的最大值为232-1。
在本申请提供的另一个实施例中,所述方法还包括(如图8所示):
步骤801,接收所述第二网元发送的第三消息,所述第三消息用于指示所述第二网元接受所述第一网元在所述第一消息中的请求或指示。
所述第三消息为E1接口消息,所述第二网元接收到第一网元发送的第一消息后,通过E1接口向第一网元发送所述第三消息(可以为确认消息),以通知所述第一网元接受所述第一网元在所述第一消息中的请求或指示。
在本申请提供的另一个实施例中,所述方法还包括(如图9所示):
步骤901,获取所述第二无线承载的第二PDCP COUNT;
需要说明的是,步骤901的方式可以与上述步骤401的方式相同,也可以不同。
在一些实施例中,获取所述第二无线承载的第二PDCP COUNT,包括但不限于:第一网元接收第二网元发送的第四消息,其中,所述第四消息中包括针对所述第一QoS流的第二下行MBS QFI序列号和/或所述第二PDCP COUNT。
如果所述第四消息中包括第二下行MBS QFI序列号,则获取第二无线承载的第二PDCP COUNT的具体步骤为:将所述第二下行MBS QFI序列号与映射至所述第二无线承载的其他QoS流的下行MBS QFI序列号求和并取模,以生成所述第二PDCP COUNT。
步骤902,根据所述第二PDCP COUNT确定所述第一无线承载是否被停止使用。
在本申请提供的另一个实施例中,确定所述第一无线承载是否被停止使用的方式包括但不限于(如图10所示),具体包括:
步骤1001,根据所述第二PDCP COUNT与设定的最小值,确定所述第一无线承载是否被停止使用。
本申请实施例中,所述第一网元通过获取的第二PDCP COUNT与设定的最小值,判断所述第二PDCP COUNT是否被停止使用。具体地,将所述第二PDCP COUNT与所述(最大值+1)得到的值相减以获取第二差值;如果所述第二差值不小于预设阈值,则确定所述第一无线承载已停止使用。
在一些实施例中,所述第四消息中包含一个第二PDCP COUNT,那么第一网元直接将所述第二PDCP COUNT与最大值作差。例如可以是用0减去第二PDCP COUNT并对(最大值+1)取模,以此得到第二差值。如果所述第二差值小于所述预设阈值,那么第一网元会确定所述第一无线承载已停止使用。
在一些实施例中,所述第四消息中包含一个第二下行MBS QFI序列号,那么第一网元会首先将第二下行MBS QFI序列号与映射至第一无线承载的其他QoS流的相应的下行MBS QFI序列号求和并取模,以得到一个相当于第二PDCP COUNT的值。然后将所述第二PDCP COUNT与最大值作差。例如可以是用0减去第二PDCP COUNT并对(最大值+1)取模,以此得到第二差值。如果所述第二差值小于所述预设阈值,那么第一网元会确定所述第一无线承载已停止使用。
在一些实施例中,所述第四消息中包含多个第二PDCP COUNT,那么第一网元会选择其中一个第二PDCP COUNT,然后根据选择的第二PDCP COUNT,将所述第二PDCP COUNT与最大值作差。例如可以是用0减去第二PDCP COUNT并对(最大值+1)取模,以此得到第二差值。如果所述第二差值小于所述预设阈值,那么第一网元会确定所述第一无线承载已停止使用。
在一些实施例中,所述第四消息中包含多个第二下行MBS QFI序列号,那么第一网元会选择其中一个第二下行MBS QFI序列号,然后根据这一个第二下行MBS QFI序列号,首先将第二下行MBS QFI序列号与映射至第二无线承载的其他QoS流的相应的下行MBS QFI序列号求和并取模,以得到一个相当于第二PDCP COUNT的值。将所述第二PDCP COUNT与最大值作差。例如可以是用0减去第二PDCP COUNT并对(最大值+1)取模,以此得到第二差值。如果所述第二差值小于所述预设阈值,那么第一网元会确定所述第一无线承载已停止使用。
在一些实施例中,所述预设阈值可以设置为一个很大的值,甚至是一个大于最大值的数,这也就意味着第一网元无需接收第二网元发送的第二消息来判断是否需要向第二网元发送第一消息,而是可以直接向第二网元发送第一消息。
在一些实施例中,第一网元也可以通过其他手段获取第二PDCP COUNT或者第二下行MBS QFI序列号信息,而非由第二网元通过第四消息提供。例如,在切换过程中,切换的源gNB出于数据前转等目的会向切换的目标gNB提供第一PDCP COUNT或者第一下行MBS QFI序列号信息,此时如果目标gNB是一个gNB-CU-CP/UP分离节点,那么目标gNB中的第一网元就能够代表目标gNB直接从源gNB获取第一PDCP COUNT或者第一下行MBS QFI序列号信息,然后使用该信息判断是否需要向第二网元发送第一消息。
在本申请提供的另一个实施例中,所述方法还包括(如图11所示):
步骤1101,指示一个或多个终端设备执行重配过程以建立所述第二无线承载。
本申请实施例中,第一网元指示建立所述第二无线承载后,第二网元在通过第一无线承载发送的数据包对应的第一PDCP COUNT等于所述最大值的情况下,即可变更所述第一QoS流的数据包处理机制,转为使用第二无线承载传输所述第一QoS流的数据包,其中,所述数据包属于所述第一QoS流。
本申请实施例中,在第一PDCP COUNT等于所述最大值时,则说明第一PDCP COUNT即将发生翻转,此时第二网元即可更所述第一QoS流的数据包处理机制,转为使用第二无线承载传输所述第一QoS流的数据包,其中,所述数据包属于所述第一QoS流。
在本申请提供的另一个实施例中,所述方法还包括(如图12所示):
步骤1201,接收第二网元发送的第一指示,所述第一指示用于指示使用所述第一无线承载的所述第一QoS流的第一PDCP COUNT即将达到最大值;
步骤1202,根据所述第一指示,向第二网元发送第一消息;
其中,所述第一指示包含针对第一QoS流的第一指示和/或针对第一无线承载的第一指示。
本申请实施例中,所述第二消息中可以包含针对所述第一QoS流的第一指示和/或针对所述第一无线承载的第一指示,所述第一指示用于指示所述第一无线承载的第一PDCP COUNT即将达到所述最大值,第一网元在接收到包含所述第一指示的第二消息后,可以直接根据所述第一指示向所述第二网元发送所述第一消息,无需自行判断第一PDCP COUNT是否即将达到所述最大值。
在本申请提供的另一个实施例中,所述方法还包括(如图13所示):
步骤1301,接收第二网元发送的第二指示,所述第二指示用于指示使用第一无线承载的第一QoS流的第一PDCP COUNT达到最大值,或所述第一QoS流的下行MBS QFI序列号对应的第一PDCP COUNT达到最大值,或,指示第二无线承载已启用,或,指示所述第一QoS流与第一无线承载之间的映射关系已经转变为所述第一QoS流与第二无线承载之间的映射关系;
步骤1302,根据所述第二指示,确定所述第一无线承载已停止使用;
其中,所述第二指示包含针对第一QoS流的第二指示、针对第一无线承载的第二指示、针对所述第二无线承载的第二指示中的一种或者多种。
本申请实施例中,所述第二消息中可以包含针对所述第一QoS流的第二指示和/或针对所述第一无线承载的第二指示和/或针对所述第二无线承载的第二指示。第一网元在接收到包含所述第二指示的第二消息后,可以直接根据所述第二指示确定所述第一无线承载已停止使用,无需自行判断所述第一无线承载是否已停止使用。
在本申请提供的另一个实施例中,所述方法还包括(如图14所示):
步骤1401:指示一个或多个终端设备执行重配过程以释放所述第一无线承载。
在本申请提供的另一个实施例中,所述第一消息包括:
第一多播无线承载MRB标识和该第一MRB标识为旧标识;或,
第一MRB标识、第二MRB标识、第二MRB标识为新标识。
在一些实施例中,所述第一消息包括:显式信元。
在一些实施例中,所述旧MRB标识或新MRB标识或显式信元用于指示所述第二网元建立所述第二无线承载,并指示所述第二网元在所述第一无线承载的第一PDCP COUNT达到所述最大值后,使用第二无线承载来传输所述第一QoS流。
在一些实施例中,如果所述第一消息中包括第一MRB标识和该第一MRB标识为旧标识,则第一消息用于指示所述第二网元将第一MRB标识作为所述第二无线承载的标识,并指示所述第二网元根据所述第一MRB标识确定所述第一无线承载。
本申请实施例中,所述第一消息用于指示第一无线承载和第二无线承载,如果所述第一消息中包括第一MRB标识和一个旧MRB标识,则第一消息可以指示所述第二网元将第一MRB标识作为所述第二无线承载的标识,并指示所述第二网元根据所述旧MRB标识确定所述第一无线承载。
在一些实施例中,如果所述第一消息中包括第一MRB标识、第二MRB标识、第二MRB标识为新标识,则所述第一消息用于指示所述第二网元将所述第二MRB标识作为所述第二无线承载的标识,并指示所述第二网元根据第一MRB标识确定所述第一无线承载。
本申请实施例中,所述第一消息用于指示第一无线承载和第二无线承载,如果所述第一消息中包括第二MRB标识和一个新MRB标识,则第一消息可以指示所述第二网元将所述第二MRB作为所述第二无线承载的标识,并指示所述第二网元根据MRB标识确定所述第一无线承载。
在一些实施例中,映射到所述第一无线承载上的QoS流即为所述第一QoS流。
在一些实施例中,所述第一消息包括:
MRB标识,所述第一QoS流的标识和显式信元。
在一些实施例中,所述显式信元用于请求或指示所述第二网元建立所述第二无线承载,并且在所述第一无线承载的第一PDCP COUNT达到所述最大值后,使用所述第二无线承载来传输 所述第一QoS流的数据。
在一些实施例中,所述第一消息用于指示所述第二网元将所述MRB标识作为所述第二无线承载的标识,并指示所述第二网元将所述第一QoS流当前映射到的无线承载作为所述第一无线承载。
本申请实施例中,所述第一消息中包含MRB标识,第一QoS流的标识和显式信元,其中的MRB标识用于给第二网元提供第二无线承载的标识,所述第一消息同时可以指示第二网元将所述第一QoS流当前映射到的无线承载作为所述第一无线承载。
在一些实施例中,第一网元为gNB-CU-CP,第二网元为gNB-CU-UP,NG-RAN节点中包含:一个gNB-CU-CP;一个或多个gNB-CU-UP;一个或多个gNB-DU。
在一些实施例中,第一网元为源gNB-CU-CP,第二网元为源gNB-CU-CP、源gNB-CU-UP与源gNB-DU。
响应于某种原因,例如UE的移动,源gNB-CU-CP决定针对一个UE发起切换。该UE正在通过第一无线承载或者第二无线承载接收属于第一QoS流的数据。
源gNB-CU-UP代表源gNB向目标gNB发送旨在切换UE的信息,这部分信息可以直接通过Xn接口发送,也可以通过N2接口经由核心网转发。这部分信息之中包含针对第一无线承载和/或第二无线承载的配置信息,作为源侧信息供目标gNB参考使用。特别地,前述第一无线承载和/或第二无线承载的配置信息之中还包含足够的信息,以指明第一无线承载与第二无线承载之间的关系是“原先使用第一无线承载来传输第一QoS流的数据,但在第一无线承载的第一PDCP COUNT发生翻转后,转而使用第二无线承载来传输第一QoS流的数据”。这部分信息可以是源gNB-CU-UP在第二消息之中所提供的“针对所述第一QoS流的第一MBS QFI序列号和/或所述第一PDCP COUNT”,也可以是旧MRB标识或者新MRB标识或者上述显式信元或MRB标识或第一QoS流的标识或显式信元,但其中的包含的用于“请求或指示所述第二网元建立所述第二无线承载,并且在所述第一无线承载的第一PDCP COUNT达到所述最大值后,使用所述第二无线承载来传输所述第一QoS流的数据”应当替换为“指示原先使用第一无线承载来传输第一QoS流的数据,但在第一无线承载的第一PDCP COUNT发生翻转后,转而使用第二无线承载来传输第一QoS流的数据”。
目标gNB根据源gNB所提供的信息生成即将发送至UE的RRC配置信息。如果目标gNB先前已经在传输第一QoS流的数据,并且通过第三无线承载进行传输,并且第一无线承载上映射的QoS流列表与第三无线承载上映射的QoS流列表完全相同,并且第三无线承载的第三PDCP COUNT接近232-1,那么RRC配置信息之中应当指明第一无线承载应当重配为第三无线承载。如果目标gNB先前已经在传输第一QoS流的数据,并且通过第四无线承载进行传输,并且第二无线承载上映射的QoS流列表与第四无线承载上映射的QoS流列表完全相同,并且第四无线承载的第四PDCP COUNT接近0,那么RRC配置信息之中应当指明第二无线承载应当重配为第四无线承载。
需要指出的是,这里为了表述清晰,假设源gNB是一个分离型节点。但是,源gNB也可以是一个非分离型节点,只是考虑到建立一个新的第二无线承载需要一定时间,为了使第一PDCP COUNT翻转归零之后的那几个数据包能够尽早发送,在第一无线承载的第一PDCP COUNT与232-1较为接近但尚有一定距离的时候,提前建立了第二无线承载。
本申请第一实施例提出的一种无线承载的处理方法,所述方法包括:
步骤1:gNB-CU-CP(第一网元)判断MRB 1的PDCP COUNT即将在不久之后的未来发生翻转,若不采取行为QoS流1(第一QoS流)上的数据包将无法在在MRB 1(第一无线承载)上继续传输。有鉴于此,gNB-CU-CP决定建立MRB 2(第二无线承载)以在MRB 1的第一PDCP COUNT发生翻转后,代替MRB 1传输QoS流1的数据。gNB-CU-CP向gNB-CU-UP发送一条E1接口消息(也即第一消息),请求或指示gNB-CU-UP建立MRB 2,并指示gNB-CU-UP在MRB 1的PDCP COUNT发生翻转后,转而使用MRB 2来传输QoS流1的数据。这条E1接口消息的具体名称不做限定。
步骤2:gNB-CU-UP接纳了步骤1之中gNB-CU-CP的请求或指示。可选地,gNB-CU-UP 向gNB-CU-CP发送一条E1接口消息(也即第三消息)以告知第一消息中的请求已被接纳。这条E1接口消息的具体名称不做限定。
步骤3:gNB-CU-CP指示一个或多个UE执行重配过程,以建立MRB 2。可选地,该过程中gNB-CU-CP还与gNB-DU和/或gNB-CU-UP进行信令交互,以完成重配过程所必需的操作。需要指出的是,步骤1与步骤2和步骤3的执行顺序不做限定,即,步骤3可以与步骤1和/或步骤2并发执行。由于在此阶段QoS流1上的数据仍在通过MRB 1发送,MRB 2上并没有任何数据,不同节点之间配置的时间差不会对数据传输造成实质影响,因此无需限定执行顺序。
步骤4:在某一时刻,gNB-CU-UP通过MRB 1发送了第一PDCP COUNT值为232-1的数据包。不妨设该数据包属于QoS流1。该数据包成功送达一个或多个UE并被正常处理。
步骤5:gNB-CU-UP变更其内部的数据包处理机制,使得属于QoS流1的数据包改由MRB 2发送。
步骤6:gNB-CU-UP通过MRB 2发送了属于QoS流1的数据包。如果原先映射至MRB 1的QoS流列表与现在映射至MRB 2的QoS流列表完全相同,那么MRB 2上发送的属于QoS流1的数据包的第二PDCP COUNT应当为0。该数据包成功送达一个或多个UE并被正常处理。后续数据包的处理方式也是类似地,此处不再赘述。
步骤7:可选地,gNB-CU-UP向gNB-CU-CP发送一条E1接口消息(也即第四消息),其中包含至少一个针对MRB 2的第二PDCP COUNT和/或至少一个针对QoS流1的第二下行MBS QFI序列号。
步骤8:gNB-CU-CP根据gNB-CU-UP所提供的针对MRB 2的第二PDCP COUNT和/或至少一个针对QoS流1的第二下行MBS QFI序列号,判断MRB 1已停止使用。
步骤9:gNB-CU-CP指示一个或多个UE执行重配过程,以释放MRB 1。可选地,该过程中gNB-CU-CP还与gNB-DU和/或gNB-CU-UP进行信令交互,以完成重配过程所必需的操作。
在本申请第二实施例中,上述第一实施例中的步骤1之前还包括:
步骤S1:gNB-CU-UP使用MRB 1传输QoS流1的数据,亦即在这个gNB-CU-UP中,QoS流1映射到了MRB 1。MRB 1上所传输的数据包的第一PDCP COUNT是按照MB-UPF所提供的下行MBS QFI序列号指定的。
步骤S2:gNB-CU-UP向gNB-CU-CP发送一条E1接口消息(也即第二消息),其中包含至少一个针对MRB 1的第一PDCP COUNT和/或至少一个针对QoS流1的第一下行MBS QFI序列号。
其中,所谓针对MRB 1的PDCP COUNT可以是下一个预期通过MRB 1传输的数据包的PDCP COUNT值(这个值也称作该PDCP实例的TX_NEXT),也可以是TX_NEXT减去一个固定的常数与0之中的较大者,也可以是最后一个通过MRB 1传输的数据包的PDCP COUNT值。所谓针对QoS流1的下行MBS QFI序列号可以是下一个预期通过N3mb接收的属于QoS流1的数据包的包头上的下行MBS QFI序列号,也可以是所有尚未通过N3mb接收的属于QoS流1的数据包之中,包头上的下行MBS QFI序列号之中的最小值,也可以是上一个通过N3mb接收的属于QoS流1的数据包的包头上的下行MBS QFI序列号。这条E1接口消息的具体名称不做限定。
在一些实施例中,如果实施了步骤S2,上述步骤1中gNB-CU-CP即可根据第二消息中包含的至少一个针对MRB 1的第一PDCP COUNT和/或至少一个针对QoS流1的第一下行MBS QFI序列号来判断“若不采取行为QoS流1上的数据包将无法在MRB 1上继续传输”的具体过程包括以下任意一项:
如果gNB-CU-UP在第二消息中所提供的是一个针对MRB 1的第一PDCP COUNT,那么gNB-CU-CP直接将该值与232作差(作差的具体方法不限,例如可以是0减去该PDCP COUNT并对232取模,以此得到差值,后文同理),其中,最大值为232-1,232即为最大值加1后得到的值。如果该差值小于一个预设阈值,那么gNB-CU-CP会认为若不采取行为QoS流1上的数据包将无法继续传输。
如果gNB-CU-UP在第二消息中所提供的是一个针对QoS流1的下行MBS QFI序列号,那 么gNB-CU-CP会首先将这个第一下行MBS QFI序列号与映射至MRB 1的其他QoS流的相应的下行MBS QFI序列号求和并取模得到一个相当于MRB 1的第一PDCP COUNT的值,然后按照前述方法判断是否属于“若不采取行为QoS流1上的数据包将无法在MRB 1上继续传输”的情况。
如果gNB-CU-UP第二消息中所提供的是多个针对MRB 1的第一PDCP COUNT和/或针对QoS流1的第一下行MBS QFI序列号,那么gNB-CU-CP会选择其中一个,然后根据这一个第一PDCP COUNT和/或第一下行MBS QFI序列号按照上述方法处理。
类似地,对于步骤8,如果gNB-CU-UP在步骤7之中第四消息所提供的是一个针对QoS流1的第二下行MBS QFI序列号,那么gNB-CU-CP会首先将这个第二下行MBS QFI序列号与先前映射至MRB 1的其他QoS流的相应的下行MBS QFI序列号求和并取模得到一个相当于MRB2的第二PDCP COUNT的值,然后将该值与232作差,如果该差值不小于一个预设阈值,那么gNB-CU-CP会判断MRB 1已停止使用。
需要指出的是,gNB-CU-CP可以将上述“预设阈值”设为一个很大的值,甚至是一个大于232的数,这也就意味着gNB-CU-CP无需等待步骤S2的发生而可以直接触发步骤1。此外,gNB-CU-CP也可以通过其他手段获取PDCP COUNT或者下行MBS QFI序列号信息,并不是一定要由gNB-CU-UP提供。例如,在切换过程中,切换的源gNB出于数据前转等目的会向切换的目标gNB提供PDCP COUNT或者下行MBS QFI序列号信息,此时如果目标gNB是一个gNB-CU-CP/UP分离节点,那么目标gNB-CU-CP就能够代表目标gNB直接从源gNB获取PDCP COUNT或者下行MBS QFI序列号信息,然后使用该信息触发步骤1。
在本申请第三实施例中,上述步骤S2中gNB-CU-UP提供的第二消息里包含的信息被替换为至少一个针对MRB 1的第一指示和/或至少一个针对QoS流1的第一指示,所述第一指示用于指示MRB 1的PDCP COUNT即将到达最大值232-1,或者QoS流1所映射的MRB的PDCP COUNT即将到达上限。
步骤1中gNB-CU-CP即可直接根据第二消息中的第一指示向gNB-CU-UP发送一条E1接口消息(也即第一消息),请求或指示gNB-CU-UP建立MRB 2,并指示gNB-CU-UP在MRB 1的PDCP COUNT发生翻转后,转而使用MRB 2来传输QoS流1的数据。
类似的,上述步骤7中第四消息中包含的信息可以替换为至少一个针对MRB 1的指示和/或针对MRB 2的第二指示和/或针对QoS流1的第二指示,所述第二指示用于指示MRB 1的第一PDCP COUNT已经达到232-1,或者MRB 2已经启用,或者QoS流的映射关系已由MRB 1转变为MRB 2。
则在步骤8中,gNB-CU-CP可以根据gNB-CU-UP所提供的第四消息中的第二指示,来判断MRB 1已停止使用。
在在本申请第四实施例中,上述第一实施例中的步骤1中gNB-CU-CP向gNB-CU-UP发送的E1接口消息(也即第一消息)中包含:
至少一个多播MRB建立或修改配置项(MCMRB Setup Modify Configuration-Item),或,至少一个多播MRB修改确认列表项(MCMRB Modify Confirm List-Item)。
其中某个多播MRB建立或修改配置项或多播MRB修改确认列表项之中包含:一个“MRB标识”(MRB ID)和一个“旧的MRB标识”(Old MRB ID),或者一个“MRB标识”和一个“新的MRB标识”(New MRB ID)。
可选地,这个多播MRB建立或修改配置项之中还包含一个额外的显式的信元。
这个“旧的MRB标识”或者“新的MRB标识”或者上述额外的显式的信元即是第一实施例中步骤1之中所描述的,用于“请求或指示gNB-CU-UP建立MRB 2,并指示gNB-CU-UP在MRB 1的PDCP COUNT发生翻转后,转而使用MRB 2来传输QoS流1的数据”的信息。
如果这个多播MRB建立或修改配置项之中包含的是一个“MRB标识”和一个“旧的MRB标识”,那么gNB-CU-UP会将这个“旧的MRB标识”所指示的那个既有的MRB理解为第一实施例之中所描述的MRB 1,并且建立第一实施例之中所描述的MRB 2,且以这个“MRB标识”作为MRB 2的标识。后续处理与第一实施例相同,此处从略。
如果这个多播MRB建立或修改配置项之中包含的是一个“MRB标识”和一个“新的MRB标识”,那么gNB-CU-UP会将这个“MRB标识”所指示的那个既有的MRB理解为第一实施例之中所描述的MRB 1,并且建立第一实施例之中所描述的MRB 2,且以这个“新的MRB标识”作为MRB 2的标识。后续处理与第一实施例相同,此处从略。
在一些实施例中,任何一个映射到MRB 1上的QoS流均可视为第一实施例之中所提到的QoS流1。
在本申请另一个实施例提出的一种无线承载的处理方法,上述第一实施例中的步骤1中gNB-CU-CP向gNB-CU-UP发送的E1接口消息(也即第一消息)中包含至少一个多播MRB建立或修改配置项。
其中,某个多播MRB建立或修改配置项中包含:一个“MRB标识”(MRB ID),至少一个QFI,和一个显式的信元。
显式信元即是第一实施例中步骤1之中所描述的,用于“请求或指示gNB-CU-UP建立MRB 2,并指示gNB-CU-UP在MRB 1的PDCP COUNT发生翻转后,转而使用MRB 2来传输QoS流1的数据”的信息。
之后gNB-CU-UP会根据第一消息建立实施例一之中所描述的MRB 2,且以这个“MRB标识”作为MRB 2的标识,以前述至少一个QFI之中的任何一个QFI所指示的既有的QoS流作为第一实施例之中所提到的QoS流1,而以QoS流1当前所映射到的MRB作为实施例一之中所提到的MRB 1。后续步骤与第一实施例相同,此处从略。
在本申请第五实施例中,首先包含上述步骤S1步骤S2、步骤1、步骤2和步骤3,但是为了表述清晰,将gNB-CU-CP、gNB-CU-UP与gNB-DU在此改称源gNB-CU-CP、源gNB-CU-UP与源gNB-DU。
第一实施例中的步骤4、5、6是是在一些实施例中,若存在,其每一步都与第一实施例相同。此处需要指出的是,步骤4至6可以之中可以完全不发生,或者只发生步骤4,或者只发生步骤4和5,或者三个步骤都发生。
步骤7被替换为:由于某种原因,例如UE的移动,源gNB-CU-CP决定针对一个UE发起切换。该UE正在通过MRB 1或者MRB 2接收属于QoS流1的数据。请注意由于步骤4至6均不涉及源gNB-CU-CP,源gNB-CU-CP并不清楚步骤4至6是否已经发生,因此后续处理必须对上述两种情况均适用。
步骤8被替换为:源gNB-CU-UP代表源gNB向目标gNB发送旨在切换UE的信息,这部分信息可以直接通过Xn接口发送,也可以通过N2接口经由核心网转发。这部分信息之中包含针对MRB 1和/或MRB 2的配置信息,作为源侧信息供目标gNB参考使用。
特别地,前述MRB 1和/或MRB 2的配置信息之中还包含足够的信息,以指明MRB 1与MRB 2的关系是“原先使用MRB 1来传输QoS流1的数据,但在MRB 1的第一PDCP COUNT发生翻转后,转而使用MRB 2来传输QoS流1的数据”。这部分信息可以是源gNB-CU-UP在步骤S2之中所提供的“至少一个针对MRB 1的第一PDCP COUNT和/或至少一个针对QoS流1的第一下行MBS QFI序列号”,也可以是类似于第三实施例和第四实施例之中所描述的内容,但其中的“请求或指示gNB-CU-UP建立MRB 2,并且在MRB 1的PDCP COUNT发生翻转后,转而使用MRB 2来传输QoS流1的数据”应当替换为“指示原先使用MRB 1来传输QoS流1的数据,但在MRB 1的第一PDCP COUNT发生翻转后,转而使用MRB 2来传输QoS流1的数据”。
步骤9被替换为:目标gNB根据源gNB所提供的信息生成即将发送至UE的RRC配置信息。如果目标gNB先前已经在传输QoS流1的数据,并且通过MRB 3进行传输,并且MRB 1上映射的QoS流列表与MRB 3上映射的QoS流列表完全相同,并且MRB 3的PDCP COUNT接近232-1,那么RRC配置信息之中应当指明MRB 1应当重配为MRB 3。如果目标gNB先前已经在传输QoS流1的数据,并且通过MRB 4进行传输,并且MRB 2上映射的QoS流列表与MRB 4上映射的QoS流列表完全相同,并且MRB 4的PDCP COUNT接近0,那么RRC配置信息之中应当指明MRB 2应当重配为MRB 4。
后续步骤发生于目标gNB内部且与第一实施例之中步骤4及以后的步骤原理类似,此处不再重复。
需要指出的是,这里为了表述清晰,假设源gNB是一个分离型节点。但是,源gNB也可以是一个非分离型节点,只是考虑到建立一个新的MRB 2需要一定时间,为了使PDCP COUNT翻转归零之后的那几个数据包能够尽早发送,在MRB 1的PDCP COUNT与232-1较为接近但尚有一定距离的时候,像第一实施例中步骤3所描述的那样提前建立了MRB 2。在此情况下本实施例之中的步骤7至9依然适用。
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图15,为本申请实施例提供的一种通信装置150的结构示意图。图15所示的通信装置150可包括收发模块1501。收发模块1501可包括发送模块、接收模块、和/或处理模块。发送模块用于实现发送功能,接收模块用于实现接收功能,处理模块用于处理数据。收发模块1501可以实现发送功能、接收功能和/或处理功能。
通信装置150可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置150可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置150为第一网元,其包括:
收发模块,用于向第二网元发送第一消息;
其中,所述第一消息用于请求或指示所述第二网元在使用第一无线承载传输的第一服务质量QoS流的第一分组数据汇聚协议计数值PDCP COUNT达到最大值的情况下,使用第二无线承载来传输所述第一QoS流的数据。
所述第一无线承载在所述第一QoS流的第一PDCP COUNT达到最大值之前使用;所述第二无线承载与所述第一无线承载不同。
在一些实施例中,收发模块1501还用于:
获取第一无线承载的第一PDCP COUNT;
根据所述第一PDCP COUNT向所述第二网元发送所述第一消息。
在一些实施例中,收发模块1501还用于:
接收第二网元发送的第二消息,其中,所述第二消息中包括针对第一QoS流的第一下行多播广播系统服务质量流标识MBS QFI序列号和/或第一PDCP COUNT。
在一些实施例中,所述第二消息中包括针对第一QoS流的第一下行多播广播系统服务质量流标识MBS QFI序列号,收发模块1501还用于:
根据所述第一下行MBS QFI序列号与映射至所述第一无线承载的其他QoS流的下行MBS QFI序列号,确定所述第一PDCP COUNT。
在一些实施例中,收发模块1501还用于:
获取第一无线承载的第一PDCP COUNT;
根据所述第一PDCP COUNT与设定的最大值,向第二网元发送第一消息。
如图15所示,通信装置150还包括处理模块1502。所述处理模块1502可以用于实现发送功能、接收功能、和处理数据功能。
在一些实施例中,处理模块1502用于:
接收所述第二网元发送的第三消息,所述第三消息用于指示所述第二网元接受所述第一网元在所述第一消息中的请求或指示。
在一些实施例中,所述处理模块1502还用于:
获取所述第二无线承载的第二PDCP COUNT;
根据所述第二PDCP COUNT确定所述第一无线承载是否被停止使用。
在一些实施例中,所述处理模块1502还用于:
根据所述第二PDCP COUNT与设定的最小值,确定所述第一无线承载是否被停止使用。
在一些实施例中,所述处理模块1502还用于:
指示一个或多个终端设备执行重配过程以建立所述第二无线承载。
在一些实施例中,所述处理模块1502还用于:
接收第二网元发送的第一指示,所述第一指示用于指示使用所述第一无线承载的所述第一QoS流的第一PDCP COUNT即将达到最大值;根据所述第一指示,向第二网元发送第一消息;
其中,所述第一指示包含针对第一QoS流的第一指示和/或针对第一无线承载的第一指示。
在一些实施例中,所述处理模块1502还用于:
接收第二网元发送的第二指示,所述第二指示用于指示使用第一无线承载的第一QoS流的第一PDCP COUNT达到最大值,或所述第一QoS流的下行MBS QFI序列号对应的第一PDCP COUNT达到最大值,或,指示第二无线承载已启用,或,指示所述第一QoS流与第一无线承载之间的映射关系已经转变为所述第一QoS流与第二无线承载之间的映射关系;
根据所述第二指示,确定所述第一无线承载已停止使用;
其中,所述第二指示包含针对第一QoS流的第二指示、针对第一无线承载的第二指示、针对所述第二无线承载的第二指示中的一种或者多种。
在一些实施例中,所述处理模块1502还用于:
指示一个或多个终端设备执行重配过程以释放所述第一无线承载。
请参见图16,图16是本申请实施例提供的另一种通信装置160的结构示意图。通信装置160可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置160可以包括一个或多个处理器1601。处理器1601可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
在一些实施例中,通信装置160中还可以包括一个或多个存储器1602,其上可以存有计算机程序1603,处理器1601执行所述计算机程序1603,以使得通信装置160执行上述方法实施例中描述的方法。在一些实施例中,所述存储器1602中还可以存储有数据。通信装置160和存储器1602可以单独设置,也可以集成在一起。
在一些实施例中,通信装置160还可以包括收发器1604、天线1605。收发器1604可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1604可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
在一些实施例中,通信装置160中还可以包括一个或多个接口电路1606。接口电路1606用于接收代码指令并传输至处理器1601。处理器1601运行所述代码指令以使通信装置160执行上述方法实施例中描述的方法。
通信装置160为第一网元:处理器1601用于执行图3中的步骤301;执行图4中的步骤401和步骤402;图5中的步骤501。
通信装置160为第二网元:收发器1604用于执行图6中的步骤601。
在一种实现方式中,处理器1601中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1601可以存有计算机程序1603,计算机程序1603在处理器1601上运行,可使得通信装置160执行上述方法实施例中描述的方法。计算机程序1603可能固化在 处理器1601中,该种情况下,处理器1601可能由硬件实现。
在一种实现方式中,通信装置160可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图16的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,在一些实施例中,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图17所示的芯片的结构示意图。图17所示的芯片包括处理器1701和接口1702。其中,处理器1701的数量可以是一个或多个,接口1702的数量可以是多个。
在一些实施例中,芯片还包括存储器1703,存储器1703用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种无线承载的处理系统,该系统包括前述图15实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括前述图16实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例 如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种无线承载的处理方法,应用于第一网元,所述方法包括:
    向第二网元发送第一消息;
    其中,所述第一消息用于请求或指示所述第二网元在使用第一无线承载传输的第一服务质量(QoS)流的第一分组数据汇聚协议计数值(PDCP COUNT)达到最大值的情况下,使用第二无线承载来传输所述第一QoS流的数据。
  2. 根据权利要求1所述的方法,其中,所述第一无线承载在所述第一QoS流的第一PDCP COUNT达到最大值之前使用;所述第二无线承载与所述第一无线承载不同。
  3. 根据权利要求1或2所述的方法,其中,所述向第二网元发送第一消息,包括:
    获取第一无线承载的第一PDCP COUNT;
    根据所述第一PDCP COUNT向所述第二网元发送所述第一消息。
  4. 根据权利要求3所述的方法,其中,所述获取所述第一无线承载的第一PDCP COUNT,包括:
    接收第二网元发送的第二消息,其中,所述第二消息中包括针对第一QoS流的第一下行多播广播系统服务质量流标识(MBS QFI)序列号和/或第一PDCP COUNT。
  5. 根据权利要求4所述的方法,其中,所述第二消息中包括针对第一QoS流的第一下行多播广播系统服务质量流标识MBS QFI序列号,所述获取第一无线承载的第一PDCP COUNT,包括:
    根据所述第一下行MBS QFI序列号与映射至所述第一无线承载的其他QoS流的下行MBS QFI序列号,确定所述第一PDCP COUNT。
  6. 根据权利要求1或2所述的方法,其中,所述向第二网元发送第一消息,包括:
    获取第一无线承载的第一PDCP COUNT;
    根据所述第一PDCP COUNT与设定的最大值,向第二网元发送第一消息。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述方法还包括:
    接收所述第二网元发送的第三消息,所述第三消息用于指示所述第二网元接受所述第一网元在所述第一消息中的请求或指示。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述方法还包括:
    获取所述第二无线承载的第二PDCP COUNT;
    根据所述第二PDCP COUNT确定所述第一无线承载是否被停止使用。
  9. 根据权利要求8所述的方法,其中,所述根据所述第二PDCP COUNT,确定所述第一无线承载是否被停止使用,包括:
    根据所述第二PDCP COUNT与设定的最小值,确定所述第一无线承载是否被停止使用。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述方法还包括:
    指示一个或多个终端设备执行重配过程以建立所述第二无线承载。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述向第二网元发送第一消息,包括:
    接收第二网元发送的第一指示,所述第一指示用于指示使用所述第一无线承载的所述第一QoS流的第一PDCP COUNT即将达到最大值;根据所述第一指示,向第二网元发送第一消息;
    其中,所述第一指示包含针对第一QoS流的第一指示和/或针对第一无线承载的第一指示。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述方法还包括:
    接收第二网元发送的第二指示,所述第二指示用于指示使用第一无线承载的第一QoS流的第一PDCP COUNT达到最大值,或所述第一QoS流的下行MBS QFI序列号对应的第一PDCP COUNT达到最大值,或,指示第二无线承载已启用,或,指示所述第一QoS流与第一无线承载之间的映射关系已经转变为所述第一QoS流与第二无线承载之间的映射关系;
    根据所述第二指示,确定所述第一无线承载已停止使用;
    其中,所述第二指示包含针对第一QoS流的第二指示、针对第一无线承载的第二指示、针 对所述第二无线承载的第二指示中的一种或者多种。
  13. 根据权利要求8或12所述的方法,其中,所述方法还包括:
    指示一个或多个终端设备执行重配过程以释放所述第一无线承载。
  14. 一种通信装置,应用于第一网元,包括:
    收发模块,用于向第二网元发送第一消息;
    其中,所述第一消息用于请求或指示所述第二网元在使用第一无线承载传输的第一服务质量QoS流的第一分组数据汇聚协议计数值PDCP COUNT达到最大值的情况下,使用第二无线承载来传输所述第一QoS流的数据。
  15. 一种通信装置,包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至13中任一项所述的方法。
  16. 一种通信装置,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至13中任一项所述的方法。
  17. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至13中任一项所述的方法被实现。
  18. 一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现权利要求1至13中任一项所述的方法。
PCT/CN2023/109621 2022-08-05 2023-07-27 无线承载的处理方法及装置 WO2024027560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210941598.9 2022-08-05
CN202210941598.9A CN117580093A (zh) 2022-08-05 2022-08-05 一种无线承载的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2024027560A1 true WO2024027560A1 (zh) 2024-02-08

Family

ID=89848480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109621 WO2024027560A1 (zh) 2022-08-05 2023-07-27 无线承载的处理方法及装置

Country Status (2)

Country Link
CN (1) CN117580093A (zh)
WO (1) WO2024027560A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901796A (zh) * 2020-02-26 2020-11-06 中兴通讯股份有限公司 一种提升无线通信系统安全性的方法、装置及存储介质
WO2021158081A1 (ko) * 2020-02-05 2021-08-12 삼성전자 주식회사 무선 통신 시스템에서 신호를 송수신하기 위한 장치 및 방법
CN113556687A (zh) * 2020-04-23 2021-10-26 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
WO2022083627A1 (zh) * 2020-10-21 2022-04-28 大唐移动通信设备有限公司 传输方法及设备
WO2022133912A1 (zh) * 2020-12-24 2022-06-30 华为技术有限公司 侧行链路通信方法、装置和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021158081A1 (ko) * 2020-02-05 2021-08-12 삼성전자 주식회사 무선 통신 시스템에서 신호를 송수신하기 위한 장치 및 방법
CN111901796A (zh) * 2020-02-26 2020-11-06 中兴通讯股份有限公司 一种提升无线通信系统安全性的方法、装置及存储介质
CN113556687A (zh) * 2020-04-23 2021-10-26 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
WO2022083627A1 (zh) * 2020-10-21 2022-04-28 大唐移动通信设备有限公司 传输方法及设备
WO2022133912A1 (zh) * 2020-12-24 2022-06-30 华为技术有限公司 侧行链路通信方法、装置和系统

Also Published As

Publication number Publication date
CN117580093A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
US20200221538A1 (en) Data transmission method, terminal device, and network device
EP4336902A1 (en) Method for releasing remote terminal device and apparatus therefor
WO2021163901A1 (zh) 一种会话处理方法及其装置
WO2024065127A1 (zh) 控制中继设备信息发送的方法及其装置
WO2023225830A1 (zh) 中继连接方法及装置
WO2024027560A1 (zh) 无线承载的处理方法及装置
WO2023130321A1 (zh) 一种数据压缩方法和装置
WO2023220941A1 (zh) 一种数据前转信息的传输方法及其装置
WO2023147708A1 (zh) 一种人工智能会话的更新方法及其装置
WO2022266861A1 (zh) 寻呼处理方法、通信装置和存储介质
WO2023193274A1 (zh) 一种配置信息传输方法及其装置
WO2024000205A1 (zh) 传输控制方法及其装置
WO2024060143A1 (zh) 一种上报方法/装置/设备及存储介质
WO2024045042A1 (zh) 一种能力交互触发方法/装置/设备及存储介质
WO2024011639A1 (zh) 一种路径切换方法、装置、设备及存储介质
WO2024065550A1 (zh) 一种丢包处理方法及装置
WO2024011545A1 (zh) 切换方法及装置
WO2023193271A1 (zh) 一种双连接中终端设备小区组的更新方法及装置
WO2024087074A1 (zh) 传输配置方法、装置、设备及存储介质
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
US20240237141A1 (en) Method for releasing remote terminal
WO2024011546A1 (zh) 数据传输配置方法和装置
WO2024036520A1 (zh) 一种侧行链路逻辑信道标识的确定方法及装置
WO2023115487A1 (zh) 一种人工智能会话的创建方法及其装置
WO2024011431A1 (zh) 原因指示方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849268

Country of ref document: EP

Kind code of ref document: A1