WO2024027351A1 - 一种用于虚拟电厂的优化调节方法及系统 - Google Patents

一种用于虚拟电厂的优化调节方法及系统 Download PDF

Info

Publication number
WO2024027351A1
WO2024027351A1 PCT/CN2023/100558 CN2023100558W WO2024027351A1 WO 2024027351 A1 WO2024027351 A1 WO 2024027351A1 CN 2023100558 W CN2023100558 W CN 2023100558W WO 2024027351 A1 WO2024027351 A1 WO 2024027351A1
Authority
WO
WIPO (PCT)
Prior art keywords
usage
power
total
information
electricity consumption
Prior art date
Application number
PCT/CN2023/100558
Other languages
English (en)
French (fr)
Inventor
杨桦
张承宇
孙成富
徐尔丰
周翀
Original Assignee
浙江浙能能源服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江浙能能源服务有限公司 filed Critical 浙江浙能能源服务有限公司
Priority to ZA2023/07235A priority Critical patent/ZA202307235B/en
Publication of WO2024027351A1 publication Critical patent/WO2024027351A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to the technical field of power plant regulation, and in particular to an optimized regulation method and system for a virtual power plant.
  • a virtual power plant is a kind of power supply coordination management that uses advanced information and communication technology and software systems to realize the aggregation and coordination optimization of DERs such as DG, energy storage systems, controllable loads, and electric vehicles, so as to participate in the power market and power grid operation as a special power plant. system.
  • the core of the virtual power plant concept can be summarized as "communication” and "aggregation”.
  • the key technologies of virtual power plants mainly include coordination control technology, smart metering technology and information communication technology.
  • the most attractive function of virtual power plants is that they can aggregate DERs to participate in the operation of the power market and ancillary service markets, and provide management and ancillary services for distribution networks and transmission networks.
  • the solution idea of "virtual power plant” has great market potential in our country. It is undoubtedly a good choice for China, which is facing the "contradiction between power shortage and low energy efficiency”.
  • the internal storage system of the virtual power plant usually only plays a storage role during the storage process.
  • the internal storage capacity of the storage system changes and cannot be adjusted according to the changes generated during the storage process.
  • Analysis of power consumption information prevents the virtual power plant from performing adjustments based on stored power during operation. Therefore, the present invention proposes an optimized adjustment method and system for the virtual power plant.
  • the purpose of the present invention is to provide an optimized adjustment method and system for a virtual power plant.
  • the present invention is based on obtaining the power consumption information generated by the virtual power plant savings system, and analyzing the power consumption information to obtain the power consumption information.
  • an optimized adjustment method for a virtual power plant includes the following steps:
  • Step S1 Obtain the electricity consumption information generated by the virtual power plant savings system, and transmit the electricity consumption information to the power plant data analysis module.
  • the power plant data analysis module analyzes the electricity consumption information and obtains the stored electricity consumption data;
  • Step S2 Transfer the stored power consumption data to the power statistics module.
  • the power statistics module performs statistics based on the stored power consumption data to obtain battery power consumption reference data;
  • Step S3 Transmit the battery power reference data to the power plant data analysis module to analyze the battery and determine the battery usage;
  • Step S4 If the usage is normal, define the normal usage data as normal information, send the normal information to the power adjustment module, and adjust the power usage through the power regulation module according to the changes in power. If the usage is abnormal, define the abnormal usage data as abnormal. information, transmit abnormal information to the power alarm module, and issue an alarm through the power alarm module.
  • the power consumption information includes time information, battery usage information and battery charging times information; the time information, battery usage information and battery charging times information are transmitted to the power plant data analysis module;
  • the power plant data analysis module receives time information, battery usage information and battery charging times information for analysis.
  • the specific analysis steps are as follows:
  • Step S11 Obtain the usage time of each charge according to the time information, obtain the total number of charges according to the number of charges information, set the total number of charges to n times, and obtain the time value from the first to the nth charge; thus obtained Multiple usage time values;
  • Step S12 Obtain information on the number of times the battery is used during a single charge according to the battery usage information, obtain the time value, current value, and voltage value of each use, and calculate each time value according to the time value, current value, and voltage value of each use. Obtain the total amount of electricity used, and obtain the total number of times and total amount of electricity used;
  • Step S13 Obtain the total number of times and the total amount of electricity used after the first to nth charging respectively;
  • Step S14 Obtain the battery operating temperature value according to the battery usage information; define the usage time value, total number of electricity consumption, operating temperature value and total electricity consumption as stored electricity consumption data; transfer the stored electricity consumption data to power statistics module.
  • step S2 when the power statistics module performs statistics, the specific steps are as follows:
  • Step S21 The power statistics module receives the usage time value, the total number of electricity consumption, the operating temperature value and the total electricity consumption for statistics; sets the working interval according to the operating temperature value, and sets the first temperature interval, the second temperature interval and the second temperature interval in order of the temperature. temperature interval, third temperature interval and fourth temperature interval;
  • Step S22 Arrange a plurality of total electricity consumption values according to the total electricity consumption in the first temperature interval, the second temperature interval, the third temperature interval or the fourth temperature interval in order of time, and for each total electricity consumption value The total number of electricity usage and usage time value are obtained;
  • Step S23 Establish a first plane rectangular coordinate system with the abscissa as the time unit and the ordinate as the total power consumption value. Express multiple total power consumption values in the first plane rectangular coordinate system through coordinate points. For multiple The coordinate points are smoothly connected with curves to form a total electricity consumption curve;
  • Step S24 Establish a second plane rectangular coordinate system with the abscissa as the time unit and the ordinate as the total number of times of electricity consumption. Express the multiple total times of electricity consumption in the second plane rectangular coordinate system through coordinate points. For multiple coordinate points Smoothly connect with curves to form a curve chart of the total number of electricity consumption;
  • Step S25 Use the abscissa as the time unit and the ordinate as the usage time value to establish a third plane rectangular coordinate system. Multiple usage time values are expressed in the third plane rectangular coordinate system through coordinate points. Multiple coordinate points are expressed as curves. Smooth connection to form a usage time curve;
  • Step S26 Define the total power consumption curve, the total power consumption times curve and the usage time curve as the battery power consumption reference data.
  • step S3 when performing analysis, the specific steps are as follows:
  • Step S31 The power plant data analysis module analyzes the battery power consumption reference data and observes the changes in usage time value, total number of power consumption and total power consumption over time, as well as changes in usage time value, total power consumption in different temperature ranges. Changes in frequency and total electricity consumption;
  • Step S32 Based on the rise and fall of the curve, determine the relationship between temperature and total electricity consumption, and determine the relationship between usage time value, total electricity consumption, and total number of electricity consumption;
  • Step S33 If the total electricity consumption gradually decreases with the increase of temperature, it is judged that the usage is abnormal; if the total electricity consumption gradually increases with the increase of temperature, it is judged that the usage is normal;
  • Step S34 If the total power consumption is proportional to the usage time value, it is judged that the usage is normal, otherwise it is judged that the usage is abnormal;
  • Step S35 If the total amount of electricity used is always proportional to the total number of times used, it is determined that the usage is abnormal. If the total amount of electricity used is inversely proportional to the total number of times used, it is judged that the usage is normal.
  • An optimized regulation system for a virtual power plant including a power plant information acquisition module, a power plant data analysis module, a power statistics module, a power regulation module, a power alarm module and a server; the power plant information acquisition module, power plant data analysis module, power statistics The module, power regulation module and power alarm module are respectively connected to the server data;
  • the power plant information acquisition module acquires the electricity consumption information generated by the virtual power plant savings system, and transmits the electricity consumption information to the power plant data analysis module.
  • the power plant data analysis module analyzes the electricity consumption information to obtain stored electricity consumption data;
  • the normal usage data will be defined as normal information, and the normal information will be sent to the power regulation module.
  • the power usage will be adjusted through the power regulation module according to the changes in power.
  • the abnormal usage data will be defined as abnormal information, and the power usage will be adjusted.
  • the abnormal information is transmitted to the power alarm module, and the power alarm module issues an alarm.
  • the power consumption information includes time information, battery usage information and battery charging frequency information; the time information, battery usage information and battery charging frequency information are transmitted to the power plant data analysis module; the power plant data analysis module receives the time information, battery usage information and Analyze battery charging times information;
  • the battery usage information the information about the number of times the battery is used during a single charge is obtained, and the time value, current value, and voltage value of each use are obtained.
  • the usage of each use is obtained based on the time value, current value, and voltage value of each use. Obtain the total amount of electricity and obtain the total number of times and total electricity consumption;
  • the total number of times of electricity usage and the total amount of electricity used after the first to nth charging are obtained respectively; the battery operating temperature value is obtained according to the battery usage information; the usage time value, total number of electricity usage, and operating temperature are obtained.
  • the numerical value and the total amount of electricity consumption are defined as stored electricity consumption data; the stored electricity consumption data is transmitted to the power statistics module.
  • the power statistics module receives the usage time value, the total number of electricity consumption, the operating temperature value and the total electricity consumption for statistics; sets the working interval according to the operating temperature value, and sets the first temperature interval, the second temperature interval, the third temperature interval and the fourth temperature interval;
  • a plurality of total electricity consumption values are arranged according to the total electricity consumption in the order of time, and the electricity consumption of each total electricity consumption value is The total number of times and the usage time value are obtained;
  • a first plane rectangular coordinate system is established. Multiple total electricity consumption values are expressed in the first plane rectangular coordinate system through coordinate points. For multiple coordinate points, The curves are connected smoothly to form a total electricity consumption curve;
  • the abscissa as the time unit and the ordinate as the total number of times of power consumption to establish the second plane rectangular coordinate.
  • the multiple total times of electricity consumption are expressed in the second plane rectangular coordinate system through coordinate points, and the multiple coordinate points are smoothly connected with curves to form a curve chart of the total number of electricity consumption;
  • the power plant data analysis module analyzes the battery power consumption reference data, and observes the changes in the usage time value, the total number of power consumption and the total power consumption over time, as well as the usage time value and power consumption in different temperature ranges. According to the changes in the total number of times of electricity consumption and the total amount of electricity consumption, according to the rise and fall of the curve, the relationship between temperature and total electricity consumption is judged, and the relationship between the usage time value, total electricity consumption and total number of electricity consumption is judged; if the total amount of electricity consumption changes with As the temperature gradually decreases, the usage is judged to be abnormal. If the total power consumption gradually increases with the increase of temperature, the usage is judged to be normal.
  • the usage is judged to be normal. Otherwise, the usage is judged to be abnormal. If the total amount of electricity consumed is always proportional to the total number of times used, the usage is judged to be abnormal. If the total amount of electricity used is inversely proportional to the total number of times used, the usage is judged to be normal.
  • the present invention is based on obtaining the electricity consumption information generated by the virtual power plant savings system, analyzing the electricity consumption information to obtain electricity consumption data, performing calculation and analysis based on the past electricity consumption data, determining the normal and abnormal information of the acquired data, and analyzing the changes in electricity consumption. Adjust power consumption or issue an alarm through the power alarm module to perform timely maintenance.
  • the present invention obtains the total number of charging times, conducts a comprehensive analysis of the power consumption based on the total number of charging times, and performs optimization and adjustment based on the analysis results to improve the optimization effect of the virtual power plant.
  • Figure 1 is a functional block diagram of an optimized regulation system for a virtual power plant according to the present invention
  • Figure 2 is a method step diagram of an optimization and adjustment method for a virtual power plant according to the present invention.
  • an optimized regulation system for a virtual power plant including a power plant information acquisition module, a power plant data analysis module, a power statistics module, a power regulation module, a power alarm module and a server; power plant information
  • the acquisition module, power plant data analysis module, power statistics module, power regulation module and power alarm module are respectively connected to the server data;
  • the power plant information acquisition module acquires the electricity consumption information generated by the virtual power plant savings system, and transmits the electricity consumption information to the power plant data analysis module.
  • the power plant data analysis module analyzes the electricity consumption information and obtains the stored electricity consumption data. ;
  • Electricity usage information includes time information, battery usage information and battery charging times information; transmit time information, battery usage information and battery charging times information to the power plant data analysis module;
  • the power plant data analysis module receives time information, battery usage information and battery charging times information for analysis
  • the battery usage information the information about the number of times the battery is used during a single charge is obtained, and the time value, current value, and voltage value of each use are obtained.
  • the usage of each use is obtained based on the time value, current value, and voltage value of each use. Obtain the total amount of electricity and obtain the total number of times and total electricity consumption;
  • the usage time value, total number of electricity consumption, operating temperature value and total electricity consumption are defined as stored electricity consumption data; the stored electricity consumption data is transmitted to the power statistics module.
  • the power statistics module receives the usage time value, the total number of electricity consumption, the operating temperature value and the total electricity consumption for statistics; sets the working interval according to the operating temperature value, and sets the first temperature interval, the second temperature interval, and the second temperature interval in the order of the temperature.
  • a plurality of total electricity consumption values are arranged according to the total electricity consumption in the order of time, and the electricity consumption of each total electricity consumption value is The total number of times and the usage time value are obtained;
  • a first plane rectangular coordinate system is established. Multiple total electricity consumption values are expressed in the first plane rectangular coordinate system through coordinate points. For multiple coordinate points, The curves are connected smoothly to form a total electricity consumption curve;
  • the power plant data analysis module analyzes the battery power consumption reference data and observes the changes in usage time value, total number of electricity usage and total power consumption over time, as well as changes in usage time value, total number of electricity usage and usage in different temperature ranges. Changes in total electricity consumption, according to the rise and fall of the curve, determine the relationship between temperature and total electricity consumption, and determine the relationship between usage time value, total electricity consumption and total number of electricity consumption; if the total electricity consumption increases with the temperature Gradually decreases, then the usage is judged to be abnormal. If the total power consumption gradually increases with the increase of temperature, the usage is judged to be normal. If the total power consumption is proportional to the usage time value, the usage is judged to be normal. Otherwise, the usage is judged to be abnormal. If the total amount of electricity used is always directly proportional to the total number of times used, the usage is judged to be abnormal; if the total amount of electricity used is inversely proportional to the total number of times used, the usage is judged to be normal;
  • the normal usage data will be defined as normal information, and the normal information will be sent to the power regulation module.
  • the power usage will be adjusted through the power regulation module according to the changes in power.
  • the abnormal usage data will be defined as abnormal information, and the power usage will be adjusted.
  • the abnormal information is sent to the power alarm module, and an alarm is issued through the power alarm module.
  • an optimized adjustment method for a virtual power plant specifically includes the following steps when adjusting power consumption:
  • Step S1 Obtain the electricity consumption information generated by the virtual power plant savings system, and transmit the electricity consumption information to the power plant data analysis module.
  • the power plant data analysis module analyzes the electricity consumption information and obtains the stored electricity consumption data;
  • Electricity usage information includes time information, battery usage information and battery charging times information; transmit time information, battery usage information and battery charging times information to the power plant data analysis module;
  • the power plant data analysis module receives time information, battery usage information and battery charging times information for analysis.
  • the specific analysis steps are as follows:
  • Step S11 Obtain the usage time of each charge according to the time information, obtain the total number of charges according to the number of charges information, set the total number of charges to n times, and obtain the time value from the first to the nth charge; thus obtained Multiple usage time values;
  • Step S12 Obtain information on the number of times the battery is used during a single charge according to the battery usage information, obtain the time value, current value, and voltage value of each use, and calculate each time value according to the time value, current value, and voltage value of each use. Obtain the total amount of electricity used, and obtain the total number of times and total amount of electricity used;
  • Step S13 Obtain the total number of times and the total amount of electricity used after the first to nth charging respectively;
  • Step S14 Obtain the battery operating temperature value according to the battery usage information; define the usage time value, total number of electricity consumption, operating temperature value and total electricity consumption as stored electricity consumption data; transfer the stored electricity consumption data to power statistics module.
  • Step S2 Transfer the stored power consumption data to the power statistics module.
  • the power statistics module performs statistics based on the stored power consumption data to obtain battery power consumption reference data;
  • Step S21 The power statistics module receives the usage time value, the total number of electricity consumption, the operating temperature value and the total electricity consumption for statistics; sets the working interval according to the operating temperature value, and sets the first temperature interval, the second temperature interval and the second temperature interval in order of the temperature. temperature interval, third temperature interval and fourth temperature interval;
  • Step S22 Arrange a plurality of total electricity consumption values according to the total electricity consumption in the first temperature interval, the second temperature interval, the third temperature interval or the fourth temperature interval in order of time, and for each total electricity consumption value The total number of electricity usage and usage time value are obtained;
  • Step S23 Establish a first plane rectangular coordinate system with the abscissa as the time unit and the ordinate as the total power consumption value. Express multiple total power consumption values in the first plane rectangular coordinate system through coordinate points. For multiple The coordinate points are smoothly connected with curves to form a total electricity consumption curve;
  • Step S24 Establish a second plane rectangular coordinate system with the abscissa as the time unit and the ordinate as the total number of times of electricity consumption. Express the multiple total times of electricity consumption in the second plane rectangular coordinate system through coordinate points. For multiple coordinate points Smoothly connect with curves to form a curve chart of the total number of electricity consumption;
  • Step S25 Use the abscissa as the time unit and the ordinate as the time value to establish a third level.
  • the plane Cartesian coordinate system multiple usage time values are represented in the third plane Cartesian coordinate system through coordinate points, and the multiple coordinate points are smoothly connected with curves to form a usage time curve graph;
  • Step S26 Define the total power consumption curve, the total power consumption curve and the usage time curve as battery power reference data
  • Step S3 Transmit the battery power reference data to the power plant data analysis module to analyze the battery and determine the battery usage;
  • Step S31 The power plant data analysis module analyzes the battery power consumption reference data and observes the changes in usage time value, total number of power consumption and total power consumption over time, as well as changes in usage time value, total power consumption in different temperature ranges. Changes in frequency and total electricity consumption;
  • Step S32 Based on the rise and fall of the curve, determine the relationship between temperature and total electricity consumption, and determine the relationship between usage time value, total electricity consumption, and total number of electricity consumption;
  • Step S33 If the total electricity consumption gradually decreases with the increase of temperature, it is judged that the usage is abnormal; if the total electricity consumption gradually increases with the increase of temperature, it is judged that the usage is normal;
  • Step S34 If the total power consumption is proportional to the usage time value, it is judged that the usage is normal, otherwise it is judged that the usage is abnormal;
  • Step S35 If the total amount of electricity used is always proportional to the total number of times used, it is judged that the usage is abnormal; if the total amount of electricity is inversely proportional to the total number of times used, it is judged that the use is normal;
  • Step S4 If the usage is normal, define the normal usage data as normal information, send the normal information to the power adjustment module, and adjust the power usage through the power regulation module according to the changes in power. If the usage is abnormal, define the abnormal usage data as abnormal. information, transmit abnormal information to the power alarm module, and issue an alarm through the power alarm module.
  • the above formulas are all dimensionless and numerical calculations.
  • the formula is a formula obtained by collecting a large amount of data for software simulation to obtain the most recent real situation.
  • the preset parameters in the formula are set by those skilled in the field according to the actual situation. For example, if there is a weight coefficient and proportional coefficient, the size of which is set to a specific value obtained by quantifying each parameter to facilitate subsequent comparison. Regarding the weight The size of the weight coefficient and the proportional coefficient can be used as long as it does not affect the proportional relationship between the parameter and the quantized value.
  • embodiments of the present invention may be provided as methods, systems or computer program products.
  • the invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects.
  • the invention may take the form of a computer program product embodied on one or more computer-usable storage media embodying computer-usable program code therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Mathematical Optimization (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Primary Health Care (AREA)
  • Power Engineering (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Public Health (AREA)
  • Software Systems (AREA)
  • Educational Administration (AREA)
  • Databases & Information Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供一种用于虚拟电厂的优化调节方法及系统,具体如下:电厂信息获取模块对虚拟电厂储蓄系统产生的用电信息进行获取,将用电信息输送至电厂数据分析模块,电厂数据分析模块对用电信息进行分析,得到存储用电数据;将存储用电数据输送至电力统计模块,所述电力统计模块基于存储用电数据进行统计,得到电池用电参考数据;将电池用电参考数据输送至电厂数据分析模块对电池进行分析,判断电池使用情况;本发明基于对虚拟电厂储蓄系统产生的用电信息进行获取,对用电信息进行分析得到用电数据,根据过去的用电数据进行计算分析,判断获取数据正常异常信息,对电量变化情况进行用电调节或通过电力警报模块进行警报,及时进行维修。

Description

一种用于虚拟电厂的优化调节方法及系统 技术领域
本发明涉及电厂调节技术领域,尤其涉及一种用于虚拟电厂的优化调节方法及系统。
背景技术
虚拟电厂是一种通过先进信息通信技术和软件系统,实现DG、储能系统、可控负荷、电动汽车等DER的聚合和协调优化,以作为一个特殊电厂参与电力市场和电网运行的电源协调管理系统。虚拟电厂概念的核心可以总结为“通信”和“聚合”。虚拟电厂的关键技术主要包括协调控制技术、智能计量技术以及信息通信技术。虚拟电厂最具吸引力的功能在于能够聚合DER参与电力市场和辅助服务市场运行,为配电网和输电网提供管理和辅助服务。“虚拟电厂”的解决思路在我国有着非常大的市场潜力,对于面临“电力紧张和能效偏低矛盾”的中国来说,无疑是一种好的选择。
现有技术中,虚拟电厂在进行使用过程中其内部存储系统在存储过程中,通常只是起到存储的作用,在长时间使用时,存储系统内部存储容量发生变化不能够根据存储过程中产生的用电信息进行分析,使得虚拟电厂在进行工作过程中不能够基于存储电量进行调节,因此本发明提出了一种用于虚拟电厂的优化调节方法及系统。
发明内容
针对现有技术存在的不足,本发明目的是提供一种用于虚拟电厂的优化调节方法及系统,本发明基于对虚拟电厂储蓄系统产生的用电信息进行获取,对用电信息进行分析得到用电数据,根据过去的用电数据进行计算分析,判断获取数据正常异常信息,对电量变化情况进行用电调节或 通过电力警报模块进行警报,及时进行维修。
为了实现上述目的,本发明是通过如下的技术方案来实现:一种用于虚拟电厂的优化调节方法,所述调节方法包括以下步骤:
步骤S1:对虚拟电厂储蓄系统产生的用电信息进行获取,将用电信息输送至电厂数据分析模块,电厂数据分析模块对用电信息进行分析,得到存储用电数据;
步骤S2:将存储用电数据输送至电力统计模块,电力统计模块基于存储用电数据进行统计,得到电池用电参考数据;
步骤S3:将电池用电参考数据输送至电厂数据分析模块对电池进行分析,判断电池使用情况;
步骤S4:若使用正常,将使用正常数据定义为正常信息,将正常信息输送至电力调节模块,根据电量的变化情况通过电力调节模块进行用电调节,若使用异常,将使用异常数据定义为异常信息,将异常信息输送至电力警报模块,通过电力警报模块发出警报。
进一步地,所述步骤S1中,用电信息包括时间信息、电池使用信息以及电池充电次数信息;将时间信息、电池使用信息以及电池充电次数信息输送至电厂数据分析模块;
电厂数据分析模块接收时间信息、电池使用信息以及电池充电次数信息进行分析,具体分析步骤如下:
步骤S11:根据时间信息获取每一次充电的使用时间,根据充电次数信息获取充电总次数,设定充电总次数为n次,对第一次至第n次充电的时间数值进行获取;由此获得多个使用时间值;
步骤S12:根据电池使用信息获取电池在一次充电时的使用次数信息,对每次使用的时间数值以及电流数值、电压数值进行获取,根据每次使用的时间数值以及电流数值、电压数值对每次使用的用电总量进行获取,得到用电总次数以及用电总量;
步骤S13:分别对第一次至第n次充电后使用的用电总次数以及用电总量进行获取;
步骤S14:根据电池使用信息对电电池工作温度数值进行获取;将使用时间值、用电总次数、工作温度数值以及用电总量定义为存储用电数据;将存储用电数据输送至电力统计模块。
进一步地,所述步骤S2中,电力统计模块在进行统计时,具体步骤如下:
步骤S21:电力统计模块接收使用时间值、用电总次数、工作温度数值以及用电总量进行统计;根据工作温度数值设定工作区间,按照温度的大小顺序设定第一温度区间、第二温度区间、第三温度区间以及第四温度区间;
步骤S22:第一温度区间、第二温度区间、第三温度区间或第四温度区间内按照时间的先后顺序根据用电总量排列多个用电总量值,对每个用电总量值的用电总次数以及使用时间值进行获取;
步骤S23:以横坐标为时间单位,纵坐标为用电总量值建立第一平面直角坐标系,将多个用电总量值通过坐标点在第一平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成用电总量曲线图;
步骤S24:以横坐标为时间单位,纵坐标为用电总次数建立第二平面直角坐标系,将多个用电总次数通过坐标点在第二平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成用电总次数曲线图;
步骤S25:以横坐标为时间单位,纵坐标为使用时间值建立第三平面直角坐标系,将多个使用时间值通过坐标点在第三平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成使用时间曲线图;
步骤S26:将用电总量曲线图、用电总次数曲线图以及使用时间曲线图定义为电池用电参考数据。
进一步地,所述步骤S3中,在进行分析时,具体步骤如下:
步骤S31:电厂数据分析模块根据电池用电参考数据进行分析,观察随着时间的变化使用时间值、用电总次数以及用电总量的变化以及在不同温度区间下使用时间值、用电总次数以及用电总量变化;
步骤S32:根据曲线的升降,判断温度与用电总量的关系,判断使用时间值、用电总量以及用电总次数之间的关系;
步骤S33:若用电总量随着温度的升高逐渐降低,则判断使用异常,若用电总量随着温度的升高逐渐升高,则判断使用正常;
步骤S34:若用电总量与使用时间值成正比,则判断使用正常,否则判断使用异常;
步骤S35:若用电总量与用电总次数一直呈正比则判断使用异常,若用电总量与用电总次数呈反比则判断使用正常。
一种用于虚拟电厂的优化调节系统,包括电厂信息获取模块、电厂数据分析模块、电力统计模块、电力调节模块、电力警报模块以及服务器;所述电厂信息获取模块、电厂数据分析模块、电力统计模块、电力调节模块以及电力警报模块分别与服务器数据连接;
所述电厂信息获取模块对虚拟电厂储蓄系统产生的用电信息进行获取,将用电信息输送至电厂数据分析模块,电厂数据分析模块对用电信息进行分析,得到存储用电数据;
将存储用电数据输送至电力统计模块,所述电力统计模块基于存储用电数据进行统计,得到电池用电参考数据;
将电池用电参考数据输送至电厂数据分析模块对电池进行分析,判断电池使用情况;
若使用正常,将使用正常数据定义为正常信息,将正常信息输送至电力调节模块,根据电量的变化情况通过电力调节模块进行用电调节,若使用异常,将使用异常数据定义为异常信息,将异常信息输送至电力警报模块,所述电力警报模块发出警报。
进一步地,用电信息包括时间信息、电池使用信息以及电池充电次数信息;将时间信息、电池使用信息以及电池充电次数信息输送至电厂数据分析模块;电厂数据分析模块接收时间信息、电池使用信息以及电池充电次数信息进行分析;
根据时间信息获取每一次充电的使用时间,根据充电次数信息获取充电总次数,设定充电总次数为n次,对第一次至第n次充电的时间数值进行获取;由此获得多个使用时间值;
根据电池使用信息获取电池在一次充电时的使用次数信息,对每次使用的时间数值以及电流数值、电压数值进行获取,根据每次使用的时间数值以及电流数值、电压数值对每次使用的用电总量进行获取,得到用电总次数以及用电总量;
分别对第一次至第n次充电后使用的用电总次数以及用电总量进行获取;根据电池使用信息对电电池工作温度数值进行获取;将使用时间值、用电总次数、工作温度数值以及用电总量定义为存储用电数据;将存储用电数据输送至电力统计模块。
进一步地,所述电力统计模块接收使用时间值、用电总次数、工作温度数值以及用电总量进行统计;根据工作温度数值设定工作区间,按照温度的大小顺序设定第一温度区间、第二温度区间、第三温度区间以及第四温度区间;
第一温度区间、第二温度区间、第三温度区间或第四温度区间内按照时间的先后顺序根据用电总量排列多个用电总量值,对每个用电总量值的用电总次数以及使用时间值进行获取;
以横坐标为时间单位,纵坐标为用电总量值建立第一平面直角坐标系,将多个用电总量值通过坐标点在第一平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成用电总量曲线图;
以横坐标为时间单位,纵坐标为用电总次数建立第二平面直角坐标 系,将多个用电总次数通过坐标点在第二平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成用电总次数曲线图;
以横坐标为时间单位,纵坐标为使用时间值建立第三平面直角坐标系,将多个使用时间值通过坐标点在第三平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成使用时间曲线图;
将用电总量曲线图、用电总次数曲线图以及使用时间曲线图定义为电池用电参考数据,将电池用电参考数据输送至电厂数据分析模块。
进一步地,所述电厂数据分析模块根据电池用电参考数据进行分析,观察随着时间的变化使用时间值、用电总次数以及用电总量的变化以及在不同温度区间下使用时间值、用电总次数以及用电总量变化,根据曲线的升降,判断温度与用电总量的关系,判断使用时间值、用电总量以及用电总次数之间的关系;若用电总量随着温度的升高逐渐降低,则判断使用异常,若用电总量随着温度的升高逐渐升高,则判断使用正常,若用电总量与使用时间值成正比,则判断使用正常,否则判断使用异常,若用电总量与用电总次数一直呈正比则判断使用异常,若用电总量与用电总次数呈反比则判断使用正常。
本发明的有益效果:
1.本发明基于对虚拟电厂储蓄系统产生的用电信息进行获取,对用电信息进行分析得到用电数据,根据过去的用电数据进行计算分析,判断获取数据正常异常信息,对电量变化情况进行用电调节或通过电力警报模块进行警报,及时进行维修。
2.本发明通过对充电总次数进行获取,根据充电总次数获取每次使用情况对电量进行综合分析,根据分析结果进行优化调节,提高虚拟电厂的优化效果。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明 的其它特征、目的和优点将会变得更明显:
图1为本发明一种用于虚拟电厂的优化调节系统的原理框图;
图2为本发明一种用于虚拟电厂的优化调节方法的方法步骤图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
本发明中,请参阅图1和图2,一种用于虚拟电厂的优化调节系统,包括电厂信息获取模块、电厂数据分析模块、电力统计模块、电力调节模块、电力警报模块以及服务器;电厂信息获取模块、电厂数据分析模块、电力统计模块、电力调节模块以及电力警报模块分别与服务器数据连接;
在本实施例中,电厂信息获取模块对虚拟电厂储蓄系统产生的用电信息进行获取,将用电信息输送至电厂数据分析模块,电厂数据分析模块对用电信息进行分析,得到存储用电数据;
用电信息包括时间信息、电池使用信息以及电池充电次数信息;将时间信息、电池使用信息以及电池充电次数信息输送至电厂数据分析模块;
电厂数据分析模块接收时间信息、电池使用信息以及电池充电次数信息进行分析;
根据时间信息获取每一次充电的使用时间,根据充电次数信息获取充电总次数,设定充电总次数为n次,对第一次至第n次充电的时间数值进行获取;由此获得多个使用时间值;
根据电池使用信息获取电池在一次充电时的使用次数信息,对每次使用的时间数值以及电流数值、电压数值进行获取,根据每次使用的时间数值以及电流数值、电压数值对每次使用的用电总量进行获取,得到用电总次数以及用电总量;
分别对第一次至第n次充电后使用的用电总次数以及用电总量进行获取;
根据电池使用信息对电电池工作温度数值进行获取;
将使用时间值、用电总次数、工作温度数值以及用电总量定义为存储用电数据;将存储用电数据输送至电力统计模块。
将存储用电数据输送至电力统计模块,电力统计模块基于存储用电数据进行统计,得到电池用电参考数据;
电力统计模块接收使用时间值、用电总次数、工作温度数值以及用电总量进行统计;根据工作温度数值设定工作区间,按照温度的大小顺序设定第一温度区间、第二温度区间、第三温度区间以及第四温度区间;
第一温度区间、第二温度区间、第三温度区间或第四温度区间内按照时间的先后顺序根据用电总量排列多个用电总量值,对每个用电总量值的用电总次数以及使用时间值进行获取;
以横坐标为时间单位,纵坐标为用电总量值建立第一平面直角坐标系,将多个用电总量值通过坐标点在第一平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成用电总量曲线图;
以横坐标为时间单位,纵坐标为用电总次数建立第二平面直角坐标系,将多个用电总次数通过坐标点在第二平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成用电总次数曲线图;
以横坐标为时间单位,纵坐标为使用时间值建立第三平面直角坐标系,将多个使用时间值通过坐标点在第三平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成使用时间曲线图;
将用电总量曲线图、用电总次数曲线图以及使用时间曲线图定义为电池用电参考数据;
将电池用电参考数据输送至电厂数据分析模块对电池进行分析,判断电池使用情况;
电厂数据分析模块根据电池用电参考数据进行分析,观察随着时间的变化使用时间值、用电总次数以及用电总量的变化以及在不同温度区间下使用时间值、用电总次数以及用电总量变化,根据曲线的升降,判断温度与用电总量的关系,判断使用时间值、用电总量以及用电总次数之间的关系;若用电总量随着温度的升高逐渐降低,则判断使用异常,若用电总量随着温度的升高逐渐升高,则判断使用正常,若用电总量与使用时间值成正比,则判断使用正常,否则判断使用异常,若用电总量与用电总次数一直呈正比则判断使用异常,若用电总量与用电总次数呈反比则判断使用正常;
若使用正常,将使用正常数据定义为正常信息,将正常信息输送至电力调节模块,根据电量的变化情况通过电力调节模块进行用电调节,若使用异常,将使用异常数据定义为异常信息,将异常信息输送至电力警报模块,通过电力警报模块发出警报。
发明中,一种用于虚拟电厂的优化调节方法在进行用电调节时具体包括以下步骤:
步骤S1:对虚拟电厂储蓄系统产生的用电信息进行获取,将用电信息输送至电厂数据分析模块,电厂数据分析模块对用电信息进行分析,得到存储用电数据;
用电信息包括时间信息、电池使用信息以及电池充电次数信息;将时间信息、电池使用信息以及电池充电次数信息输送至电厂数据分析模块;
电厂数据分析模块接收时间信息、电池使用信息以及电池充电次数信息进行分析,具体分析步骤如下:
步骤S11:根据时间信息获取每一次充电的使用时间,根据充电次数信息获取充电总次数,设定充电总次数为n次,对第一次至第n次充电的时间数值进行获取;由此获得多个使用时间值;
步骤S12:根据电池使用信息获取电池在一次充电时的使用次数信息,对每次使用的时间数值以及电流数值、电压数值进行获取,根据每次使用的时间数值以及电流数值、电压数值对每次使用的用电总量进行获取,得到用电总次数以及用电总量;
步骤S13:分别对第一次至第n次充电后使用的用电总次数以及用电总量进行获取;
步骤S14:根据电池使用信息对电电池工作温度数值进行获取;将使用时间值、用电总次数、工作温度数值以及用电总量定义为存储用电数据;将存储用电数据输送至电力统计模块。
步骤S2:将存储用电数据输送至电力统计模块,电力统计模块基于存储用电数据进行统计,得到电池用电参考数据;
电力统计模块在进行统计时,具体步骤如下:
步骤S21:电力统计模块接收使用时间值、用电总次数、工作温度数值以及用电总量进行统计;根据工作温度数值设定工作区间,按照温度的大小顺序设定第一温度区间、第二温度区间、第三温度区间以及第四温度区间;
步骤S22:第一温度区间、第二温度区间、第三温度区间或第四温度区间内按照时间的先后顺序根据用电总量排列多个用电总量值,对每个用电总量值的用电总次数以及使用时间值进行获取;
步骤S23:以横坐标为时间单位,纵坐标为用电总量值建立第一平面直角坐标系,将多个用电总量值通过坐标点在第一平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成用电总量曲线图;
步骤S24:以横坐标为时间单位,纵坐标为用电总次数建立第二平面直角坐标系,将多个用电总次数通过坐标点在第二平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成用电总次数曲线图;
步骤S25:以横坐标为时间单位,纵坐标为使用时间值建立第三平 面直角坐标系,将多个使用时间值通过坐标点在第三平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成使用时间曲线图;
步骤S26:将用电总量曲线图、用电总次数曲线图以及使用时间曲线图定义为电池用电参考数据;
步骤S3:将电池用电参考数据输送至电厂数据分析模块对电池进行分析,判断电池使用情况;
在进行分析时,具体步骤如下:
步骤S31:电厂数据分析模块根据电池用电参考数据进行分析,观察随着时间的变化使用时间值、用电总次数以及用电总量的变化以及在不同温度区间下使用时间值、用电总次数以及用电总量变化;
步骤S32:根据曲线的升降,判断温度与用电总量的关系,判断使用时间值、用电总量以及用电总次数之间的关系;
步骤S33:若用电总量随着温度的升高逐渐降低,则判断使用异常,若用电总量随着温度的升高逐渐升高,则判断使用正常;
步骤S34:若用电总量与使用时间值成正比,则判断使用正常,否则判断使用异常;
步骤S35:若用电总量与用电总次数一直呈正比则判断使用异常,若用电总量与用电总次数呈反比则判断使用正常;
步骤S4:若使用正常,将使用正常数据定义为正常信息,将正常信息输送至电力调节模块,根据电量的变化情况通过电力调节模块进行用电调节,若使用异常,将使用异常数据定义为异常信息,将异常信息输送至电力警报模块,通过电力警报模块发出警报。
上述公式均是去量纲取其数值计算,公式是由采集大量数据进行软件模拟得到最近真实情况的一个公式,公式中的预设参数由本领域的技术人员根据实际情况进行设置,如存在权重系数和比例系数,其设置的大小是为了将各个参数进行量化得到的一个具体的数值,便于后续比较,关于权 重系数和比例系数的大小,只要不影响参数与量化后数值的比例关系即可。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。
以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

  1. 一种用于虚拟电厂的优化调节方法,其特征在于,所述调节方法包括以下步骤:
    步骤S1:对虚拟电厂储蓄系统产生的用电信息进行获取,将用电信息输送至电厂数据分析模块,电厂数据分析模块对用电信息进行分析,得到存储用电数据;
    步骤S2:将存储用电数据输送至电力统计模块,电力统计模块基于存储用电数据进行统计,得到电池用电参考数据;
    步骤S3:将电池用电参考数据输送至电厂数据分析模块对电池进行分析,判断电池使用情况;
    步骤S4:若使用正常,将使用正常数据定义为正常信息,将正常信息输送至电力调节模块,根据电量的变化情况通过电力调节模块进行用电调节,若使用异常,将使用异常数据定义为异常信息,将异常信息输送至电力警报模块,通过电力警报模块发出警报。
  2. 根据权利要求1所述的一种用于虚拟电厂的优化调节方法,其特征在于,所述步骤S1中,用电信息包括时间信息、电池使用信息以及电池充电次数信息;将时间信息、电池使用信息以及电池充电次数信息输送至电厂数据分析模块;
    电厂数据分析模块接收时间信息、电池使用信息以及电池充电次数信息进行分析,具体分析步骤如下:
    步骤S11:根据时间信息获取每一次充电的使用时间,根据充电次数信息获取充电总次数,设定充电总次数为n次,对第一次至第n次充电的时间数值进行获取;由此获得多个使用时间值;
    步骤S12:根据电池使用信息获取电池在一次充电时的使用次数信息,对每次使用的时间数值以及电流数值、电压数值进行获取,根据每 次使用的时间数值以及电流数值、电压数值对每次使用的用电总量进行获取,得到用电总次数以及用电总量;
    步骤S13:分别对第一次至第n次充电后使用的用电总次数以及用电总量进行获取;
    步骤S14:根据电池使用信息对电电池工作温度数值进行获取;将使用时间值、用电总次数、工作温度数值以及用电总量定义为存储用电数据;将存储用电数据输送至电力统计模块。
  3. 根据权利要求1所述的一种用于虚拟电厂的优化调节方法,其特征在于,所述步骤S2中,电力统计模块在进行统计时,具体步骤如下:
    步骤S21:电力统计模块接收使用时间值、用电总次数、工作温度数值以及用电总量进行统计;根据工作温度数值设定工作区间,按照温度的大小顺序设定第一温度区间、第二温度区间、第三温度区间以及第四温度区间;
    步骤S22:第一温度区间、第二温度区间、第三温度区间或第四温度区间内按照时间的先后顺序根据用电总量排列多个用电总量值,对每个用电总量值的用电总次数以及使用时间值进行获取;
    步骤S23:以横坐标为时间单位,纵坐标为用电总量值建立第一平面直角坐标系,将多个用电总量值通过坐标点在第一平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成用电总量曲线图;
    步骤S24:以横坐标为时间单位,纵坐标为用电总次数建立第二平面直角坐标系,将多个用电总次数通过坐标点在第二平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成用电总次数曲线图;
    步骤S25:以横坐标为时间单位,纵坐标为使用时间值建立第三平面直角坐标系,将多个使用时间值通过坐标点在第三平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成使用时间曲线图;
    步骤S26:将用电总量曲线图、用电总次数曲线图以及使用时间曲 线图定义为电池用电参考数据。
  4. 根据权利要求1所述的一种用于虚拟电厂的优化调节方法,其特征在于,所述步骤S3中,在进行分析时,具体步骤如下:
    步骤S31:电厂数据分析模块根据电池用电参考数据进行分析,观察随着时间的变化使用时间值、用电总次数以及用电总量的变化以及在不同温度区间下使用时间值、用电总次数以及用电总量变化;
    步骤S32:根据曲线的升降,判断温度与用电总量的关系,判断使用时间值、用电总量以及用电总次数之间的关系;
    步骤S33:若用电总量随着温度的升高逐渐降低,则判断使用异常,若用电总量随着温度的升高逐渐升高,则判断使用正常;
    步骤S34:若用电总量与使用时间值成正比,则判断使用正常,否则判断使用异常;
    步骤S35:若用电总量与用电总次数一直呈正比则判断使用异常,若用电总量与用电总次数呈反比则判断使用正常。
  5. 一种用于虚拟电厂的优化调节系统,其特征在于,包括电厂信息获取模块、电厂数据分析模块、电力统计模块、电力调节模块、电力警报模块以及服务器;所述电厂信息获取模块、电厂数据分析模块、电力统计模块、电力调节模块以及电力警报模块分别与服务器数据连接;
    所述电厂信息获取模块对虚拟电厂储蓄系统产生的用电信息进行获取,将用电信息输送至电厂数据分析模块,电厂数据分析模块对用电信息进行分析,得到存储用电数据;
    将存储用电数据输送至电力统计模块,所述电力统计模块基于存储用电数据进行统计,得到电池用电参考数据;
    将电池用电参考数据输送至电厂数据分析模块对电池进行分析,判断电池使用情况;
    若使用正常,将使用正常数据定义为正常信息,将正常信息输送至 电力调节模块,根据电量的变化情况通过电力调节模块进行用电调节,若使用异常,将使用异常数据定义为异常信息,将异常信息输送至电力警报模块,所述电力警报模块发出警报。
  6. 根据权利要求5所述的一种用于虚拟电厂的优化调节系统,其特征在于,用电信息包括时间信息、电池使用信息以及电池充电次数信息;将时间信息、电池使用信息以及电池充电次数信息输送至电厂数据分析模块;电厂数据分析模块接收时间信息、电池使用信息以及电池充电次数信息进行分析;
    根据时间信息获取每一次充电的使用时间,根据充电次数信息获取充电总次数,设定充电总次数为n次,对第一次至第n次充电的时间数值进行获取;由此获得多个使用时间值;
    根据电池使用信息获取电池在一次充电时的使用次数信息,对每次使用的时间数值以及电流数值、电压数值进行获取,根据每次使用的时间数值以及电流数值、电压数值对每次使用的用电总量进行获取,得到用电总次数以及用电总量;
    分别对第一次至第n次充电后使用的用电总次数以及用电总量进行获取;根据电池使用信息对电电池工作温度数值进行获取;将使用时间值、用电总次数、工作温度数值以及用电总量定义为存储用电数据;将存储用电数据输送至电力统计模块。
  7. 根据权利要求6所述的一种用于虚拟电厂的优化调节系统,其特征在于,所述电力统计模块接收使用时间值、用电总次数、工作温度数值以及用电总量进行统计;根据工作温度数值设定工作区间,按照温度的大小顺序设定第一温度区间、第二温度区间、第三温度区间以及第四温度区间;
    第一温度区间、第二温度区间、第三温度区间或第四温度区间内按照时间的先后顺序根据用电总量排列多个用电总量值,对每个用电总量 值的用电总次数以及使用时间值进行获取;
    以横坐标为时间单位,纵坐标为用电总量值建立第一平面直角坐标系,将多个用电总量值通过坐标点在第一平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成用电总量曲线图;
    以横坐标为时间单位,纵坐标为用电总次数建立第二平面直角坐标系,将多个用电总次数通过坐标点在第二平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成用电总次数曲线图;
    以横坐标为时间单位,纵坐标为使用时间值建立第三平面直角坐标系,将多个使用时间值通过坐标点在第三平面直角坐标系中表示,对多个坐标点以曲线平滑连接,构成使用时间曲线图;
    将用电总量曲线图、用电总次数曲线图以及使用时间曲线图定义为电池用电参考数据,将电池用电参考数据输送至电厂数据分析模块。
  8. 根据权利要求7所述的一种用于虚拟电厂的优化调节系统,其特征在于,所述电厂数据分析模块根据电池用电参考数据进行分析,观察随着时间的变化使用时间值、用电总次数以及用电总量的变化以及在不同温度区间下使用时间值、用电总次数以及用电总量变化,根据曲线的升降,判断温度与用电总量的关系,判断使用时间值、用电总量以及用电总次数之间的关系;若用电总量随着温度的升高逐渐降低,则判断使用异常,若用电总量随着温度的升高逐渐升高,则判断使用正常,若用电总量与使用时间值成正比,则判断使用正常,否则判断使用异常,若用电总量与用电总次数一直呈正比则判断使用异常,若用电总量与用电总次数呈反比则判断使用正常。
PCT/CN2023/100558 2023-02-13 2023-06-16 一种用于虚拟电厂的优化调节方法及系统 WO2024027351A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2023/07235A ZA202307235B (en) 2023-02-13 2023-07-19 Optimization regulation method and system for virtual power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310100600.4 2023-02-13
CN202310100600.4A CN115796406B (zh) 2023-02-13 2023-02-13 一种用于虚拟电厂的优化调节方法及系统

Publications (1)

Publication Number Publication Date
WO2024027351A1 true WO2024027351A1 (zh) 2024-02-08

Family

ID=85430824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100558 WO2024027351A1 (zh) 2023-02-13 2023-06-16 一种用于虚拟电厂的优化调节方法及系统

Country Status (4)

Country Link
CN (1) CN115796406B (zh)
LU (1) LU504833B1 (zh)
WO (1) WO2024027351A1 (zh)
ZA (1) ZA202307235B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115796406B (zh) * 2023-02-13 2023-04-18 浙江浙能能源服务有限公司 一种用于虚拟电厂的优化调节方法及系统
CN116088400B (zh) * 2023-04-10 2023-06-20 江苏雄越石油机械设备制造有限公司 一种锲式井口闸阀的加工控制系统
CN116566057B (zh) * 2023-05-25 2024-04-26 浙江浙能能源服务有限公司 一种用于虚拟电厂的用户终端故障检测系统
CN117040026B (zh) * 2023-08-28 2024-05-17 浙江浙能能源服务有限公司 一种用于虚拟电厂的功率调节的运行方法
CN117077978A (zh) * 2023-10-11 2023-11-17 浙江浙能能源服务有限公司 一种跨区域新能源蓄能方法及系统
CN117332236B (zh) * 2023-10-30 2024-05-07 国网浙江省电力有限公司乐清市供电公司 一种虚拟电厂的数据跟踪检测方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105631599A (zh) * 2015-12-30 2016-06-01 国网甘肃省电力公司电力科学研究院 一种虚拟电厂多目标运行调度方法
KR20190105173A (ko) * 2018-02-22 2019-09-16 (주)솔라라이트 에너지 저장 장치를 이용한 가상 발전소
CN110298594A (zh) * 2019-07-04 2019-10-01 北京华建网源电力设计研究院有限公司 一种虚拟电厂的负荷自动调节系统及方法
US20210370791A1 (en) * 2020-06-01 2021-12-02 Toyota Jidosha Kabushiki Kaisha Control device for virtual power plant
CN115389958A (zh) * 2022-10-28 2022-11-25 江苏海铂德能源科技有限公司 一种锂离子电池运行安全性评估方法及系统
CN115796406A (zh) * 2023-02-13 2023-03-14 浙江浙能能源服务有限公司 一种用于虚拟电厂的优化调节方法及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761338B (zh) * 2018-05-22 2020-05-22 金龙联合汽车工业(苏州)有限公司 一种在线更新电池ocv曲线的方法和装置
CN110336274B (zh) * 2019-07-01 2022-12-09 上海电力学院 增设虚拟电厂调节器的虚拟电厂运行方法
CN110362031B (zh) * 2019-07-02 2021-09-24 深圳供电局有限公司 一种虚拟电厂运行事故风险实时检测系统及方法
CN112001752A (zh) * 2020-08-18 2020-11-27 四川大学 基于有限理性的多虚拟电厂动态博弈交易行为分析方法
CN113922368B (zh) * 2021-10-09 2023-06-13 浙江浙达能源科技有限公司 一种面向虚拟电厂集群的动态优化重组方法
CN114239956A (zh) * 2021-12-15 2022-03-25 国网冀北电力有限公司秦皇岛供电公司 虚拟电厂的资源配置方法、装置及终端
CN114429274A (zh) * 2021-12-21 2022-05-03 国网浙江省电力有限公司电力科学研究院 基于多种资源聚合的虚拟电厂调节能力评估方法及系统
CN115021280A (zh) * 2022-05-30 2022-09-06 华能桐乡燃机热电有限责任公司 一种基于虚拟电厂运行模式下光储一体机agc负荷调节的系统及方法
CN115018554A (zh) * 2022-06-30 2022-09-06 天津大学 一种计及综合能源资源的虚拟电厂二次调频方法
CN115563885A (zh) * 2022-11-09 2023-01-03 大唐(赤峰)新能源有限公司 一种风电厂储能电池能量转换系统
CN115684809B (zh) * 2022-11-11 2023-06-16 浙江浙能能源服务有限公司 一种基于虚拟电厂的用户端用电测试系统
CN115498640B (zh) * 2022-11-14 2023-03-21 江苏海铂德能源科技有限公司 一种基于虚拟电厂的微电网能源控制方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105631599A (zh) * 2015-12-30 2016-06-01 国网甘肃省电力公司电力科学研究院 一种虚拟电厂多目标运行调度方法
KR20190105173A (ko) * 2018-02-22 2019-09-16 (주)솔라라이트 에너지 저장 장치를 이용한 가상 발전소
CN110298594A (zh) * 2019-07-04 2019-10-01 北京华建网源电力设计研究院有限公司 一种虚拟电厂的负荷自动调节系统及方法
US20210370791A1 (en) * 2020-06-01 2021-12-02 Toyota Jidosha Kabushiki Kaisha Control device for virtual power plant
CN115389958A (zh) * 2022-10-28 2022-11-25 江苏海铂德能源科技有限公司 一种锂离子电池运行安全性评估方法及系统
CN115796406A (zh) * 2023-02-13 2023-03-14 浙江浙能能源服务有限公司 一种用于虚拟电厂的优化调节方法及系统

Also Published As

Publication number Publication date
CN115796406A (zh) 2023-03-14
ZA202307235B (en) 2024-03-27
LU504833B1 (en) 2024-03-08
CN115796406B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2024027351A1 (zh) 一种用于虚拟电厂的优化调节方法及系统
CN103733463B (zh) 基于市场数据来控制能量服务的方法及装置
CN114243779B (zh) 基于虚拟电厂的用户可调负荷资源需求响应方法及系统
US20090063257A1 (en) Automated peak demand controller
CN102074954A (zh) 一种城乡配电网综合节能评估与决策方法
CN103618383A (zh) 配电网监测管理系统
CN109713666B (zh) 一种基于K-means聚类的电力市场下分布式储能经济性调控方法
CN107798475A (zh) 一种需求侧负荷调整方案的制定方法及装置
US10778028B2 (en) Power information management system, management method, computer-readable storage medium, power information management server, communication terminal, and power system
CN111446711A (zh) 一种基于需求响应的荷储联合优化运行方法
CN109617099A (zh) 一种虚拟储能协调控制系统及其方法
CN115684809A (zh) 一种基于虚拟电厂的用户端用电测试系统
CN116914847A (zh) 一种虚拟电厂内多台发电机组聚合互补及优化调度方法
CN108921368A (zh) 基于虚拟发电厂的均衡合作博弈控制器
Zhou et al. Designing pricing incentive mechanism for proactive demand response in smart grid
CN104333140A (zh) 一种电力远程数据采集系统
CN116780644A (zh) 一种微电网源储荷协同参与响应电网调峰需求方法
JP2017050911A (ja) 運転計画の算出装置、算出方法及びコンピュータプログラム
CN112085371B (zh) 一种基于5g通信的电力需求响应系统及控制方法
CN117314598B (zh) 一种储能设备租赁容量调整方法、装置和存储介质
CN116628413B (zh) 一种用户侧储能装置容量的计算方法
TWI762128B (zh) 利用多目標強化學習之能源管理裝置及方法
CN117590067B (zh) 节能智能电表及数据分析系统
CN113625172A (zh) 锂电池储能运营效益影响因子分析方法
Kolomiichuk ANALYSIS OF FINANCIAL AND TECHNICAL INDICATORS OF SYSTEM EFFICIENCY IN DYNAMIC MODES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849061

Country of ref document: EP

Kind code of ref document: A1