WO2024027282A1 - 通信方法、装置、设备以及存储介质 - Google Patents

通信方法、装置、设备以及存储介质 Download PDF

Info

Publication number
WO2024027282A1
WO2024027282A1 PCT/CN2023/094897 CN2023094897W WO2024027282A1 WO 2024027282 A1 WO2024027282 A1 WO 2024027282A1 CN 2023094897 W CN2023094897 W CN 2023094897W WO 2024027282 A1 WO2024027282 A1 WO 2024027282A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
scheduling
network device
rrc establishment
free uplink
Prior art date
Application number
PCT/CN2023/094897
Other languages
English (en)
French (fr)
Inventor
石蒙
张佳胤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027282A1 publication Critical patent/WO2024027282A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18558Arrangements for managing communications, i.e. for setting up, maintaining or releasing a call between stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method, device, equipment and storage medium.
  • Non-Terrestrial Networks NTN
  • the terminal device In the initial access phase of the connection between the terminal device and the satellite, the terminal device is transmitting uplink information, such as radio resource control (RRC) establishment completion message (msg5), authentication NAS signaling, capability reporting message, and security mode During signaling, each uplink information and each repetition of uplink transmission information needs to be scheduled based on multiple signaling interactions, which inevitably results in large signaling overhead and increases the initial access delay. .
  • RRC radio resource control
  • Embodiments of the present application provide a communication method, device, equipment and storage medium, in order to reduce the signaling overhead in the initial access stage and reduce the initial access delay.
  • inventions of the present application provide a communication method.
  • the method includes: a terminal device receives a radio resource control RRC establishment message from a network device.
  • the RRC establishment message includes a first parameter and first information.
  • the first information Used to configure scheduling-free uplink resources, the first parameter is used to determine the validity period of the scheduling-free uplink resource; the terminal device sends an RRC establishment completion message to the network device during the scheduling-free uplink resource within the validity period. .
  • the network device and the terminal device transmit the RRC establishment completion message through the scheduling-free uplink resources within the effective time period, realizing the scheduling-free transmission of the RRC establishment process and avoiding the need for multiple signaling interactions.
  • the scheduling of uplink transmission RRC signaling reduces signaling overhead and RRC establishment delay.
  • the method further includes: the terminal device performing one or a combination of the following on the scheduling-free uplink resource within the valid period: Capability reporting process; security authentication and verification process.
  • scheduling-free transmission of any process in the initial access phase is realized, scheduling is avoided through multiple signaling interactions during the uplink transmission process, and signaling overhead and initial access delay are further reduced.
  • the first parameter includes the valid duration.
  • the first parameter directly indicates the effective duration, which improves the processing efficiency of the terminal device and reduces the initial access delay.
  • the first information includes a transmission period of the scheduling-free uplink resource, and the first parameter includes an effective number of the transmission period.
  • the first parameter indicates the effective number of transmission cycles, so that there is a complete transmission cycle within the configured effective duration.
  • the method before the terminal device receives the RRC establishment message from the network device, the method further includes: the terminal device sends a preamble sequence to the network device, the preamble sequence is used by the terminal device to request uplink. Enhance.
  • the preamble sequence sent by the terminal device requests uplink enhancement, avoiding the need to request uplink enhancement through signaling, thus saving signaling overhead.
  • the method before the terminal device receives the RRC establishment message from the network device, the method further includes: the terminal device sends a preamble sequence to the network device on the physical random access channel PRACH resource, the PRACH resources are used by the terminal device to request uplink enhancement.
  • the PRACH resource selected by the terminal device when sending the preamble sequence requests uplink enhancement, avoiding the need to request uplink enhancement through signaling, thus saving signaling overhead.
  • the method before the terminal device receives the RRC setup message from the network device, the method further includes: the terminal device sends an RRC setup request to the network device, where the RRC setup request includes an enhanced indication field,
  • the enhancement indication field is used by the terminal device to request uplink enhancement.
  • the enhancement indication field in the RRC establishment request sent by the terminal device requests uplink enhancement, which reduces the processing complexity of the terminal device compared to selecting resources or preamble sequences to request uplink enhancement.
  • the terminal device sends the RRC establishment completion message to the network device using the scheduling-free uplink resource within the valid duration, including: starting from the beginning of the valid duration, the terminal device The scheduling-free uplink resource within the valid time period sends the RRC establishment completion message to the network device; wherein the starting point of the valid time period is the physical layer reception time of the RRC setup message, or the starting point of the valid time period is The reception time of downlink control information DCI, which is used to activate the scheduling-free uplink resource.
  • the terminal device can start sending PUSCH to the network device on the scheduling-free uplink resource when receiving the uplink enhanced configuration information.
  • Sending PUSCH prevents the terminal equipment from always starting scheduling-free uplink transmission after receiving uplink enhanced configuration information, which improves the flexibility of transmission control.
  • the RRC establishment completion message is transmitted in the form of a cross-slot transmission block TBoMS, and the terminal device sends the RRC establishment completion message to the network device on the scheduling-free uplink resource within the valid period, This includes: the terminal device sending the RRC establishment completion message one or more times to the network device using the scheduling-free uplink resource within the valid period.
  • the transmission in the form of TBoMS realizes the transmission of the RRC establishment message with a large load, and does not perform segmentation at the MAC layer, thereby avoiding the overhead of adding a header when transmitting PUSCH.
  • the RRC establishment completion message is segmented at the media access control MAC layer. to multiple TBs and transmitted in the form of multiple TBs.
  • the terminal device sends an RRC establishment completion message to the network device using the scheduled uplink resources within the valid period, including: the terminal device uses the scheduled uplink resources within the valid period.
  • the scheduling-free uplink resource sends the RRC establishment completion message one or more times to the network device.
  • the RRC establishment message with a large load is transmitted in the form of multiple TBs, thereby realizing the transmission of the RRC establishment message with a large load.
  • inventions of the present application provide a communication method.
  • the method includes: a network device sends an RRC setup message to a terminal device.
  • the RRC setup message includes first parameters and first information.
  • the first information is used to configure scheduling-free The uplink resource, the first parameter is used to determine the validity period of the scheduling-free uplink resource; the network device receives the RRC establishment completion message from the terminal device for the scheduling-free uplink resource within the validity period.
  • the RRC establishment completion message is used to allow the terminal device to access, and the method further includes: the network device performing one or a combination of the following on the scheduling-free uplink resource within the valid period: Capability reporting process; security authentication and verification process.
  • the first parameter includes the valid duration.
  • the first information includes a transmission period of the scheduling-free uplink resource, and the first parameter includes an effective number of the transmission period.
  • the method before the network device sends the RRC establishment message to the terminal device, the method further includes: the network device receives a preamble sequence from the network device, the preamble sequence is used by the terminal device to request uplink. Enhance.
  • the method before the network device sends the RRC establishment message to the terminal device, the method further includes: the network device receives a preamble sequence from the terminal device on a PRACH resource, and the PRACH resource is used for the The end device requests uplink enhancement.
  • the method before the network device sends the RRC setup message to the terminal device, the method further includes: the network device receives an RRC setup request from the terminal device, where the RRC setup request includes an enhanced indication field, The enhancement indication field is used by the terminal device to request uplink enhancement.
  • the method before the network device sends the RRC setup message to the terminal device, the method further includes: the network device determines that the terminal device requests uplink enhancement based on at least one of the following; an uplink enhancement request of the RRC setup request ;RRC establishment requested uplink enhanced transmission.
  • the network device receives the RRC establishment completion message from the terminal device on the scheduling-free uplink resource within the valid period, including: the network device starts from the beginning of the valid period,
  • the scheduling-free uplink resource receives the RRC establishment completion message from the terminal device within the effective time period; wherein the starting point of the effective time period is the physical layer reception time of the RRC establishment message, or the start of the effective time period.
  • the starting time is the reception time of DCI, which is used to activate the scheduling-free uplink resource.
  • the RRC establishment completion message is transmitted in the form of TBoMS, and the network device receives the RRC establishment completion message from the terminal device on the scheduling-free uplink resource within the valid period, including: the The network device receives the RRC establishment completion message sent by the terminal device one or more times on the scheduling-free uplink resource within the valid period.
  • the RRC establishment completion message is segmented into multiple TBs at the media access control MAC layer and transmitted in the form of multiple TBs.
  • the resource receiving the RRC establishment completion message from the terminal device includes: the network device receiving the RRC establishment completion message one or more times from the terminal device on the scheduling-free uplink resource within the valid period.
  • inventions of the present application provide a communication method.
  • the method includes: a terminal device receiving a capability query request from a network device.
  • the capability query request includes a first parameter and first information.
  • the first information is used to configure Scheduling-free uplink resources, the first parameter is used to determine the validity period of the scheduling-free uplink resources; the terminal device sends capability reporting information to the network device during the scheduling-free uplink resources within the validity period.
  • the first parameter includes the valid duration.
  • the first information includes a transmission period of the scheduling-free uplink resource
  • the first parameter includes an effective number of transmission periods of the scheduling-free uplink resource
  • inventions of the present application provide a communication method.
  • the method includes: a network device sends a capability query request to a terminal device.
  • the capability query request includes a first parameter and first information, and the first information is used to configure the scheduling-free
  • the first parameter is used to determine the validity period of the scheduling-free uplink resource; the network device receives capability reporting information from the device within the validity period of the scheduling-free uplink resource.
  • the first parameter includes the valid duration.
  • the first information includes a transmission period of the scheduling-free uplink resource
  • the first parameter includes an effective number of transmission periods of the scheduling-free uplink resource
  • embodiments of the present application provide a communication device, including a module for performing the method in the above first aspect, the third aspect or each possible implementation, or including a module for performing the method in the above second aspect. , the module of the method in the fourth aspect or each possible implementation.
  • embodiments of the present application provide a chip, including: a processor configured to call and run computer instructions from a memory, so that a device installed with the chip executes the above-mentioned first aspect, second aspect, and third aspect. , the method in the fourth aspect or each possible implementation.
  • embodiments of the present application provide a computer-readable storage medium for storing computer program instructions.
  • the computer program causes the computer to execute the above-mentioned first aspect, second aspect, third aspect, fourth aspect, or each possible aspect. method in the implementation.
  • embodiments of the present application provide a computer program product, including computer program instructions.
  • the computer program instructions enable the computer to execute the above-mentioned first aspect, second aspect, third aspect, fourth aspect or each of the possible aspects. method in a possible implementation.
  • embodiments of the present application provide a communication device, including: a processor and a memory, the memory is used to store a computer program, the processor is used to call and run the computer program stored in the memory, and perform the following steps: Methods in the second aspect, the third aspect, the fourth aspect or each possible implementation manner.
  • embodiments of the present application provide a chip, including: a processor configured to call and run computer instructions from a memory, so that a device installed with the chip executes the first aspect, the second aspect, the third aspect, Methods in the fourth aspect or possible implementations.
  • embodiments of the present application provide a computer-readable storage medium for storing computer program instructions.
  • the computer program causes the computer to execute the first aspect, the second aspect, the third aspect, the fourth aspect, or any other possible aspect. method in the implementation.
  • embodiments of the present application provide a computer program product, including computer program instructions, which cause the computer to execute the first aspect, the second aspect, the third aspect, the fourth aspect or each possible implementation manner. method in.
  • embodiments of the present application provide a device, including a logic circuit and an input-output interface, wherein the input-output interface is used to receive signals from other communication devices other than the device and transmit them to the logic circuit or to Signals from the logic circuit are sent to other communication devices outside the device, and the logic circuit is used to execute code instructions to implement the first aspect, the second aspect, the third aspect, the fourth aspect, or various possible implementations. Methods.
  • Figure 1 is an architectural schematic diagram of a mobile communication system applied in an embodiment of the present application
  • Figure 2 is a schematic flow chart of an initial access provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a cross-slot transmission block provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 5 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 7 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 8a is a schematic diagram of an uplink transmission method provided by an embodiment of the present application.
  • Figure 8b is a schematic diagram of an uplink transmission method provided by an embodiment of the present application.
  • Figure 8c is a schematic diagram of an uplink transmission method provided by an embodiment of the present application.
  • Figure 9a is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 9b is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 9c is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 9d is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG 1 is a schematic architectural diagram of a mobile communication system applied in an embodiment of the present application.
  • the mobile communication system 100 includes a core network device 110, a base station 120 and at least one terminal device (terminal device 130 and terminal device 140 in Figure 1).
  • the terminal equipment is connected to the base station through wireless means.
  • the base station as a network device, is connected to the core network equipment through wireless or wired means.
  • the core network equipment and the base station can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the base station can be integrated on the same physical device, or some core network equipment can be integrated into one physical device. Functions and functions of some base stations.
  • Terminal equipment can be fixed or movable.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in Figure 1 .
  • the embodiments of the present application do not limit the number of core network equipment, base stations and terminal equipment included in the mobile communication system.
  • communication system 100 may also include satellite 150.
  • wireless communication may be performed between the terminal device 130 and the satellite 150 .
  • the network formed between the terminal device 130 and the satellite 150 may also be called NTN.
  • the satellite 150 has the function of a base station, and the terminal device 130 and the satellite 150 can communicate directly.
  • the satellite 150 can be called a network device.
  • wireless communication may be performed between the terminal device 130, the satellite 150 and the base station 120, and communication may be performed between the satellite 150 and the base station 120.
  • the network formed between the terminal device 130, the satellite 150 and the base station 120 is called NTN.
  • the communication between the terminal device 130 and the base station 120 needs to be relayed through the satellite 150.
  • the satellite 150 does not have the function of a base station and will Base station 120 is called network equipment.
  • Network equipment is the access equipment that terminal equipment wirelessly accesses into the mobile communication system. It can be a base station such as NodeB, an evolved base station such as evolved NodeB eNodeB, or new radio access technology (NR). ) Base stations in mobile communication systems, base stations in future mobile communication systems or access nodes in WiFi systems, etc. Network equipment can provide services to terminal devices in the form of a central unit (CU) and a distributed unit (DU). The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • CU central unit
  • DU distributed unit
  • Terminal equipment can also be called terminal Terminal, user equipment (UE), mobile station (MS), mobile terminal (mobile terminal, MT), etc.
  • the terminal device can be a mobile phone (mobile phone), tablet computer (Pad), computer with wireless transceiver function, virtual reality (Virtual Reality, VR) terminal device, augmented reality (Augmented Reality, AR) terminal device, industrial control (industrial control) ), wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, and wireless terminals in transportation safety , wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR Virtual Reality
  • AR Augmented Reality
  • industrial control industrial control
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky.
  • the embodiments of this application do not limit the application scenarios of network devices and terminal devices.
  • Network equipment and terminal equipment, and terminal equipment and terminal equipment can communicate through licensed spectrum (licensed spectrum), unlicensed spectrum (unlicensed spectrum), or both licensed spectrum and unlicensed spectrum. communication. Communication between network equipment and terminal equipment, and between terminal equipment and terminal equipment, can be carried out through spectrum below 6G, and can also be carried out through spectrum above 6G and above. It is also possible to use spectrum below 6G and spectrum above 6G at the same time. communicate. Book The embodiments of the application do not limit the spectrum resources used between the network device and the terminal device.
  • the communication method provided by this application can be applied to various communication systems, such as: satellite communication system, Long Term Evolution (LTE) system, fifth generation (5th Generation, 5G) mobile communication system, future sixth generation ( 6th Generation, 6G) mobile communication system.
  • LTE Long Term Evolution
  • 5G fifth generation
  • 6th Generation, 6G sixth generation
  • the initial access stage mainly includes: 1. Random access process; 2. Security authentication and verification process; 3. Capability reporting process; 4. Transmission parameter configuration.
  • Random access process generally includes a 2-step random access process and a 4-step random access process.
  • messages (msg) 1 to msg 4 are transmitted.
  • msg 1 is one or more preambles sent by the terminal device to the network device
  • msg 2 is the random access response sent by the network device to the terminal device
  • msg 3 is the radio resource control (radio resource control) sent by the terminal device to the network device.
  • control, RRC) establishment request such as RRCSetupRequest, RRC_SETUP_REQ
  • msg 4 is the RRC establishment message (such as RRC_SETUP, RRCSetup) sent by the network device to the terminal device.
  • the terminal device can send msg5, that is, an RRC establishment completion message (such as RRC_SETUP_CMP, RRC_Setup_Complete) to the network device.
  • RRC establishment completion message such as RRC_SETUP_CMP, RRC_Setup_Complete
  • the process of the terminal device from the RRC idle state (idle) to the RCC connected state (connected) can be realized.
  • Security authentication and verification process The process of identity identification and authentication between network equipment and terminal equipment through non-access stratum (NAS) signaling interaction. Including but not limited to: RRC uplink direct transmission message (RRC_UL_INFO_TRANSF), RRC downlink direct transmission message (RRC_DL_INFO_TRANSF), RRC security mode startup message (RRC_SECUR_MODE_CMD), RRC security mode completion message (RRC_SECUR_MODE_CMP).
  • RRC_UL_INFO_TRANSF RRC downlink direct transmission message
  • RRC_DL_INFO_TRANSF RRC security mode startup message
  • RRC_SECUR_MODE_CMP RRC security mode completion message
  • Capability reporting process The network device can send a capability query request (such as RRC_UE_CAP_ENQUIRY) to the terminal device. After receiving the capability query request, the terminal device can send a capability reporting message (such as RRC_UE_CAP_INFO) to the network device.
  • a capability query request such as RRC_UE_CAP_ENQUIRY
  • the terminal device After receiving the capability query request, the terminal device can send a capability reporting message (such as RRC_UE_CAP_INFO) to the network device.
  • Network equipment such as base stations
  • AMF access and mobility management function
  • RRC reconstruction messages such as RRC_RECFG
  • SRB signaling radio bearers
  • DRB data radio bearer
  • the terminal device establishes the corresponding packet data convergence protocol (PDCP) entity and configures relevant security parameters, and sends an RRC reconstruction completion message (such as RRC_RECFG_CMP) to the network device.
  • PDCP packet data convergence protocol
  • an uplink transmission process may include S1 to S5 as shown in Figure 2 .
  • S1 the terminal device sends a scheduling request (SR) to the network device;
  • S2 the network device sends downlink control information (DCI) to the terminal device;
  • S3, the terminal device sends a buffer status report (buffer status report) to the network device report, BSR);
  • S4 the network device sends uplink authorization information (UL grant) to the terminal device;
  • S5 the terminal device sends a physical uplink shared channel (PUSCH) to the network device.
  • the PUSCH may include but is not limited to the following One: RRC establishment completion message (msg5), authentication NAS signaling, Capability reporting messages, security mode signaling.
  • the signaling interaction process shown in Figure 2 is performed. Inevitably, the signaling overhead will be large and the initial access delay will be increased.
  • the uplink and downlink channel link budgets are limited.
  • C-band is the transmission frequency band for satellite communications.
  • IEEE 501-2002 standard it refers to the radio wave band with a frequency of 4-8GHz.
  • the uplink frequency range is 5.925-6.425GHz and the downlink frequency range is 3.7 -4.2GHz.
  • PUSCH needs to be transmitted in segments and repeated transmissions, which increases the number of times the terminal device sends PUSCH, and the segmentation and retransmission of each PUSCH are transmitted through DCI, further increasing the This reduces signaling overhead, affects system capacity, and increases initial access delay.
  • the initial access solution provided by the embodiment of this application introduces "scheduling-free uplink resources" and transmits PUSCH (such as RRC establishment completion message, authentication NAS signaling, capability reporting message, etc.) through the scheduling-free uplink resources within the effective time period. at least one of the safe mode signaling). It realizes scheduling-free transmission in the initial access stage, reduces signaling overhead, thereby increasing system capacity and reducing initial access delay.
  • PUSCH such as RRC establishment completion message, authentication NAS signaling, capability reporting message, etc.
  • the uplink transmission scheduling-free solution provided by the embodiment of the present application is explained by taking the initial access phase as an example, but this is not limited.
  • this application is also applicable to the RRC connection recovery phase, that is, triggering the process of the terminal device changing from the RRC inactive state (inactive) to the RRC connected state (connected).
  • the RRC connection recovery phase the RRC establishment message in the initial access phase can be replaced with an RRC recovery message
  • the RRC establishment completion message can be replaced with an RRC recovery completion message
  • other uplink messages in the RRC connection recovery phase RRC establishment The request can be replaced with an RRC recovery request.
  • the specific implementation methods and beneficial effects of eliminating the need for scheduling uplink messages such as the RRC recovery completion message can be found in the description of each implementation method in the initial access phase, and will not be described again for the sake of brevity.
  • the transmission symbols of uplink control information can be inserted into the 4 uplink time slots occupied by TBoMS repetition (repetition) #0.
  • N s is the number of slots occupied by TBoMS transmission
  • N RE is the number of RE resources scheduled on each slot
  • R is the code rate
  • Q m is the modulation order
  • v is the number of transmission layers.
  • the data after TBoMS channel coding is stored in the ring buffer, and the redundant version (RV) is used to indicate from which position in the ring buffer (positions k 0 to k 3 in Figure 3) the data is read.
  • RV redundant version
  • TBoMS can support rate matching (RM) after encoding to meet the number of bits that can be transmitted by the transmission physical channel.
  • RM rate matching
  • the number of repetitions M may be indicated by higher layer signaling.
  • the PUSCH, physical random access channel (PRACH), physical downlink control channel (PDCCH), etc. involved in the embodiments of this application can be understood as physical resources or through These resources transmit data, signaling, etc.
  • the terminal device sends data through PUSCH, which can also be expressed as the terminal device sends PUSCH; the terminal device sends control information, such as DCI, through PDCCH, which can also be expressed as the terminal device sends PDCCH; the terminal device sends a preamble through PRACH, also It can be expressed as the terminal device sending PRACH.
  • PRACH physical downlink control channel
  • PDCCH physical downlink control channel
  • predefinition can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • Preconfiguration can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in equipment (for example, including terminal equipment and network equipment). It can also be preconfigured through signaling, such as network equipment through This application can be implemented through signaling preconfiguration, etc. This application does not limit its specific implementation method.
  • the "protocol” involved in the embodiments of this application may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • multiple means two or more.
  • multiple transport blocks refer to two TB or more than two TB.
  • the terminal device may be, for example, any terminal device in the communication system shown in FIG. 1 , such as the terminal device 130 or the terminal device 140 .
  • the network device may be the satellite 150 in the communication system shown in Figure 1.
  • wireless communication can be carried out between the terminal device 130 and the satellite 150, or the satellite does not have the base station function, and the terminal device 130 and the base station 120 pass through The satellite 150 is relayed for communication.
  • the terminal equipment shown in the embodiments below can also be replaced by components in the terminal equipment, such as chips, chip systems, or other functional modules that can call and execute programs.
  • the network equipment can also be replaced by components in network equipment, such as Chips, chip systems, or other functional modules that can call programs and execute them.
  • FIG 4 is a schematic flow chart of the communication method 200 provided by the embodiment of the present application. As shown in Figure 4, the method 200 may include the following S210 and S220. Each step in the method 200 is described below.
  • the network device sends an RRC setup message to the terminal device.
  • the RRC setup message includes a first parameter and first information.
  • the first information is used to configure the scheduling-free uplink resource.
  • the first parameter is used to determine the scheduling-free uplink resource.
  • Validity duration (validduration).
  • the terminal device receives the RRC establishment message from the network device.
  • S220 The terminal device sends an RRC establishment completion message to the network device using the scheduling-free uplink resources within the valid period.
  • the network device receives the RRC establishment completion message from the terminal device using the scheduling-free uplink resources within the valid period.
  • the first parameter can limit the effective time of the uplink resources configured by the first information, so that the terminal device can perform scheduling-free uplink transmission on the uplink resources configured by the first information within the effective time, and perform the uplink transmission within the effective time.
  • Uplink resources that expire without scheduling after a certain period of time allow the uplink resources to be allocated to other terminal devices or used to implement other information transmission processes.
  • the first information may include but is not limited to: modulation and coding scheme (MCS), transmission cycle, time domain resource assignment (TDRA), frequency domain resource allocation (frequency domain resource allocation). , FDRA), number of repetitions, some or all of these categories.
  • MCS modulation and coding scheme
  • TDRA time domain resource assignment
  • FDRA frequency domain resource allocation
  • number of repetitions some or all of these categories.
  • the first parameter may include a valid duration, or include information indicating the valid duration.
  • the valid duration may be a specific configured time length, and the granularity (or minimum unit) of the valid duration may be symbols, time slots, system frames, milliseconds, seconds, etc. This application does not limit this.
  • the first parameter may be an effective number of transmission cycles.
  • the first information may include the transmission cycle of the scheduling-free uplink resource.
  • this application does not exclude the use of other information to indicate the scheduling-free
  • the transmission period of the uplink resource, or the protocol defines the transmission period of the uplink resource that is exempt from scheduling.
  • the terminal device may determine the above-mentioned effective duration based on the transmission period of the scheduling-free uplink resource and the effective number of transmission periods indicated by the first parameter.
  • the first example above directly indicates the valid duration, which improves the processing efficiency of the terminal device and reduces the initial access delay; the second example above indicates the valid number of transmission cycles, so that there is a complete transmission cycle within the configured valid duration.
  • the terminal device performs scheduling-free uplink transmission according to the scheduling-free uplink resources configured by the network device and the effective duration of the scheduling-free uplink resources to achieve uplink enhancement of the terminal device, so that the terminal device can
  • the RRC establishment completion message is sent to the network device using the scheduling-free uplink resources within the valid period, without going through signaling/data interaction processes such as SR, DCI, BSR, UL grant, etc., which reduces the signaling overhead, thereby improving the system capacity.
  • the initial access delay is reduced.
  • the terminal device may send at least one of an RRC establishment completion message, an authentication NAS signaling, a capability reporting message, and a security mode signaling using the scheduling-free uplink resources within the valid period.
  • the terminal device can sequentially send RRC establishment completion messages (such as S220), authentication NAS signaling (such as S310), capability reporting messages (such as S320), and security mode signaling within the scheduling-free uplink resources within the valid period. (such as S330) until the valid period ends.
  • RRC establishment completion messages such as S220
  • authentication NAS signaling such as S310
  • capability reporting messages such as S320
  • security mode signaling within the scheduling-free uplink resources within the valid period. (such as S330) until the valid period ends.
  • the communication method 300 between S210 and S330 may also include downlink authentication NAS signaling, downlink security mode signaling, downlink capability query request, etc. that are not shown in Figure 5. For simplicity of expression, No further details will be given here.
  • the RRC establishment message sent by the network device may also include second information.
  • the second information is used to indicate the uplink information sent by the terminal device without scheduling uplink resources within the valid period. For example, it may indicate that the terminal device sends the uplink information during the valid period.
  • the scheduled-free uplink resources within the duration send the RRC establishment completion message and authentication NAS signaling.
  • the scheduling-free transmission of the message configuration capability reporting information can be established through the above-mentioned RRC, or the scheduling-free transmission of the configuration capability reporting information can be requested through the capability query.
  • the communication method 400 includes the following S410 and S420.
  • the network device sends a capability query request to the terminal device.
  • the capability query request includes a first parameter and first information.
  • the first information is used to configure the scheduling-free uplink resources, and the first parameter is used to determine the validity of the scheduling-free uplink resources. duration.
  • the terminal device receives the capability query request from the network device.
  • S420 The terminal device sends capability reporting information to the network device using the scheduling-free uplink resources within the valid period.
  • the network device's scheduling-free uplink resources within the valid time period receive capability reporting information from the terminal device.
  • the capability query request carries the first parameter and the first information, so as to transmit the capability reporting information to the terminal device in a scheduling-free manner, that is, to achieve uplink enhancement of the capability reporting information.
  • the first parameter and the first information have been described in the above embodiments and will not be described again here.
  • the capability reporting process is generally later than the random access process and the security authentication and verification process. Therefore, the capability query request sent by the network device is generally used to indicate the upstream enhancement of the capability reporting information after the capability query request.
  • the terminal device responds to the capability query request sent by the network device, and based on the configuration of the capability query request, the scheduling-free uplink resources within the valid time period send capability reporting information to the network device without going through SR, DCI, Signaling/data interaction processes such as BSR and UL grant schedule uplink resources, reducing signaling overhead, thereby increasing system capacity and reducing initial access delay.
  • carrying the first information and the first parameter through the capability query request is only an example.
  • the first information and the first parameter can also be carried by the newly added physical downlink shared channel (PDSCH) after the capability query request, that is, the network device sends the capability query request to the terminal device Afterwards, the PDSCH carrying the first information and the first parameter is sent to the terminal equipment.
  • PDSCH physical downlink shared channel
  • the capability query request may only carry the first parameter.
  • the first information may be carried in the RRC establishment message.
  • the terminal device when the terminal device sends at least one of the RRC establishment completion message, authentication NAS signaling, capability reporting message, and security mode signaling, it is expressed as the terminal device sending PUSCH; it will carry the first information and the first Parameter information (such as RRC establishment message or capability query request) is expressed as uplink enhanced configuration information.
  • the terminal device may send PUSCH to the network device using the scheduling-free uplink resources within the valid duration starting from the beginning of the valid duration.
  • the starting point of the valid duration can be the physical layer reception time of the uplink enhanced configuration information, or the starting point of the valid duration can be the reception time of the PDSCH carrying the uplink enhanced configuration information;
  • Example 2 the starting point of the valid duration can be The reception time of the DCI, or the start of the validity period, may be the reception time of the PDCCH carrying the DCI.
  • the DCI is used to activate scheduling-free uplink resources.
  • the terminal device may start sending PUSCH to the network device on the scheduling-free uplink resource when receiving the uplink enhanced configuration information. It is possible to trigger terminal equipment without DCI to avoid scheduling. Sending PUSCH saves signaling overhead.
  • the terminal device when the terminal device receives the uplink enhanced configuration information, it does not start sending PUSCH in a scheduling-free manner, but waits for the DCI to be triggered before sending PUSCH, that is, activating the scheduling-free uplink resource through DCI.
  • Example 2 will be described below with reference to Figure 7, taking the uplink enhanced configuration information as an RRC establishment message and a PUSCH bearer RRC establishment completion message as an example.
  • the network device sends an RRC setup message to the terminal device to implement uplink enhanced configuration of the terminal device through the first parameter and the first information carried in the RRC setup message. It should be understood that after the terminal device performs uplink enhanced configuration, the scheduling-free uplink resources are not activated, and the terminal device waits for the activation of the scheduling-free uplink resources.
  • the network device sends DCI to the terminal device.
  • the terminal device activates the scheduling-free uplink resource, and the time when the DCI is received is regarded as the start of the effective duration.
  • the terminal device uses the reception time of the DCI as the start of the valid period and starts sending the RRC establishment completion message on the scheduling-free uplink resources within the valid period.
  • the scheduling-free uplink resources are activated through DCI to trigger the terminal device to start sending PUSCH to the network device on the scheduling-free uplink resources within the valid period, so as to prevent the terminal device from always starting to send PUSCH after receiving the uplink enhanced configuration information.
  • Scheduled uplink transmission improves the flexibility of transmission control.
  • the terminal equipment sends PUSCH on the uplink resource without scheduling within the valid period, which can include at least the following two transmission methods:
  • Method 1 Transmit in the form of TBoMS.
  • the terminal device can send one or more PUSCHs to the network device using scheduling-free uplink resources within the valid period.
  • the terminal device after DCI activates the scheduling-free uplink resource, the terminal device repeatedly sends TBoMS#0 on the scheduling-free uplink resource within the valid period, such as sending repetition #0 and repetition #1 of TBoMS#0.
  • the terminal device does not segment the PUSCH to be transmitted at the medium access control (MAC) layer, but sends the TBoMS corresponding to the PUSCH through multiple time slots in the physical layer. Or when the PUSCH is repeatedly transmitted, the repetition of the PUSCH is sent through multiple time slots.
  • MAC medium access control
  • This method of preconfiguring resources saves signaling overhead and transmission delay. For users whose time-frequency resources required for PUSCH transmission are less than the preconfigured 12 slots, using the full preconfigured available time slots allows the current user to obtain coverage improvement gains that reduce the code rate.
  • Multi-user resource reuse requires the network side to reuse resources in the time domain, frequency domain, or time-frequency domain during configuration.
  • the effective duration can be configured as 150ms, or the effective number of transmission cycles N p can be configured as 15.
  • the above configurations are examples and the actual values may be different.
  • Method 2 Transmit in multiple TBs.
  • the terminal device can send one or more PUSCHs to the network device using scheduling-free uplink resources within the valid period.
  • the terminal device can The PUSCH to be transmitted is segmented into multiple TBs, and multiple different TBs and one or more repetitions corresponding to each TB are transmitted through the physical layer.
  • the terminal device after DCI activates the scheduling-free uplink resources, the terminal device repeatedly sends TB#0 and TB#1 on the scheduling-free uplink resources within the valid period, including sending repetition #0 and repetition #1 of TB#0, And repetition #0 and repetition #1 of TB#1, where TB#0 and TB#1 are obtained by PUSCH segmentation.
  • multiple TBs obtained by PUSCH division can be transmitted in a time-sharing manner on the uplink resources without scheduling.
  • One TB generally occupies one time slot, and up to two TBs can be transmitted simultaneously.
  • PUSCH occupies multiple time slots.
  • this application does not exclude the situation that the PUSCH to be transmitted occupies one time slot or occupies symbols in one time slot.
  • the above-mentioned method one is transmitted in the form of TBoMS and does not perform segmentation at the MAC layer to avoid increasing the overhead of the header when transmitting PUSCH.
  • the network device may perform the above-mentioned uplink enhancement configuration (for example, sending uplink enhancement configuration information) to the terminal device in response to a request or event from the terminal device, to avoid configuring the uplink enhancement for the terminal device when the terminal device does not need uplink enhancement. Enhance.
  • This embodiment can be implemented on the basis of any of the embodiments shown in Figures 4 to 8.
  • Figures 9a to 9d take the implementation of this embodiment on the basis of Figure 4 as an example. The following is combined with Figures 9a to 9d Give an exemplary explanation.
  • the terminal device sends a preamble sequence (preamble) to the network device.
  • the preamble sequence is used by the terminal device to request uplink enhancement.
  • the network device can pre-configure two groups of preamble sequences to the terminal device, such as preamble sequence group A and preamble sequence group B.
  • the preamble sequences in preamble sequence group A are used to indicate that the terminal device does not request uplink enhancement
  • the preamble sequence group B is used to indicate that the terminal device does not request uplink enhancement.
  • the sign-in sequence in is used to instruct the terminal device to request uplink enhancement.
  • the terminal device selects a preamble sequence in the preamble sequence group B and sends it to the network device to instruct the terminal device to request uplink enhancement.
  • the terminal device sends a preamble sequence to the network device on the PRACH resource.
  • the difference from the above S610a is that the terminal device is instructed to request uplink in S610b. What is enhanced is not the preamble sequence, but the PRACH resource.
  • a PRACH resource is predefined or configured in advance.
  • the terminal device sends a preamble sequence on the PRACH resource, it indicates that the terminal device requests uplink enhancement, but sending a preamble sequence through other PRACH resources does not request uplink enhancement; or, pre- PRACH resource #0 and PRACH resource #1 are defined or pre-configured.
  • the terminal device sends a preamble sequence on PRACH resource #0, it indicates that the terminal device requests uplink enhancement, while sending a preamble sequence through PRACH resource #1 does not request uplink enhancement. .
  • the PRACH resource can be a time-frequency resource determined based on an access opportunity (Rach Occasion, RO), or the PRACH resource is a time-frequency resource corresponding to the RO.
  • RO Access Opportunity
  • the terminal device sends an RRC setup request to the network device on the PRACH resource.
  • the RRC setup request includes an enhancement indication field.
  • the enhancement indication field Used for terminal devices to request uplink enhancement.
  • the enhancement indication field can be a new bit in the RRC establishment request, for example, adding an Uplink Config Grant Valid field in the RRC establishment request; or the enhancement field can be an addition to the existing RRC establishment request. New definition of spare field.
  • the new fields in the RRC establishment message sent by the terminal device can also use other values to indicate whether the terminal device requests or does not request uplink enhancement, which is not limited in this application.
  • the uplink enhanced configuration information can also be new signaling.
  • the new signaling can include the above-mentioned first information and the first parameter, or the new signaling can include the first parameter.
  • the first information can be used to establish a message bearer through RRC.
  • the terminal device may determine whether to request uplink enhancement based on the network environment or its own transmission capability. For example, the terminal device can measure reference signal receiving power (RSRP), and determine whether to request uplink enhancement based on the measured RSRP value. For example, when the RSRP value is less than a threshold, the terminal device requests uplink enhancement to improve transmission quality; when the RSRP value is greater than the threshold, the terminal device does not request uplink enhancement.
  • RSRP reference signal receiving power
  • the network device may determine that the terminal device requests uplink enhancement according to at least one of the following:
  • the load of the RRC establishment request is smaller than the load of the RRC establishment completion message.
  • the above-mentioned PUSCH (such as carrying the RRC establishment completion message, capability reporting information, etc.) also needs to be uplink enhanced. Therefore, bind the uplink enhancement request of the above-mentioned PUSCH (such as carrying the RRC establishment completion message, capability reporting information, etc.) with the uplink enhancement request of the RRC establishment request; or bind the above-mentioned PUSCH (such as carrying the RRC establishment completion message, capability reporting information, etc.)
  • the uplink enhancement request is bound to the uplink enhancement transmission requested by RRC establishment.
  • the RRC establishment request has a corresponding uplink enhancement request, that is, when the terminal device requests an uplink enhancement request for the RRC establishment request, the network device can determine that the terminal device is responsible for the above-mentioned PUSCH (such as carrying the RRC establishment completion message, capability reporting information, etc.) to request uplink enhancement.
  • the terminal device can determine that the terminal device is responsible for the above-mentioned PUSCH (such as carrying the RRC establishment completion message, capability reporting information, etc.) to request uplink enhancement.
  • the network device configures uplink enhancement for the terminal device in response to the RRC establishment request, it is determined that the terminal device requests uplink enhancement for the above-mentioned PUSCH (such as carrying RRC establishment completion message, capability reporting information, etc.).
  • the network device may determine that the terminal device requests uplink enhancement for the above-mentioned PUSCH (such as bearer RRC establishment completion message, capability reporting information, etc.) .
  • the network equipment and the terminal equipment transmit the RRC establishment completion message through the uplink resources without scheduling within the effective time period, realizing the scheduling-free transmission in the initial access phase, reducing the signaling overhead and reducing the initial cost. Access delay.
  • FIG 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the device 700 may include: a transceiver module 710 and a processing module 720.
  • the communication device 700 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device, or a component (such as a chip or chip system, etc.) configured in the terminal device.
  • the communication device 700 may include performing the method 200 shown in Figure 4, the method 300 shown in Figure 5, the method 400 shown in Figure 6, the method 500 shown in Figure 7, and the method shown in Figure 9a in the embodiment of the present application.
  • each unit in the communication device 700 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding processes of each method.
  • the transceiver module 710 may be used to receive a radio resource control RRC establishment message from the network device.
  • the RRC establishment message includes a first parameter and a first information.
  • the first The information is used to configure the scheduling-free uplink resources, and the first parameter is used to determine the effective duration of the scheduling-free uplink resources;
  • the processing module 720 can be used to determine the effective duration and the scheduling-free uplink resources;
  • the transceiving module 710 It is also used to send an RRC establishment completion message to the network device using the scheduling-free uplink resource within the valid period.
  • the communication device 700 may correspond to the network device in the above method embodiment (such as the satellite 150 in Figure 1), for example, it may be a network device, or a component configured in the network device (such as a chip or chip system, etc.).
  • the communication device 700 may include performing the method 200 shown in Figure 4, the method 300 shown in Figure 5, the method 400 shown in Figure 6, the method 500 shown in Figure 7, and the method shown in Figure 9a in the embodiment of the present application.
  • each unit in the communication device 700 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding processes of each method.
  • the processing module 720 can be used to determine the first parameter and the first information; the transceiver module 710 can be used to send an RRC establishment message to the terminal device, where the RRC establishment message includes the The first parameter and the first information, the first information is used to configure the scheduling-free uplink resource, the first parameter is used to determine the validity period of the scheduling-free uplink resource; the transceiver module 710 is also used to configure the scheduling-free uplink resource during the valid period.
  • the scheduling-free uplink resource within the terminal device receives the RRC establishment completion message from the terminal device.
  • the transceiver unit 710 in the communication device 700 can be implemented by a transceiver, for example, it can correspond to the transceiver 810 in the communication device 800 shown in FIG. 11 .
  • the processing unit 720 may be implemented by at least one processor, for example, may correspond to the processor 820 in the communication device 800 shown in FIG. 11 .
  • the transceiver unit 710 in the communication device 700 may be implemented by a transceiver.
  • it may correspond to the transceiver 810 in the communication device 800 shown in FIG. 11 .
  • the processing unit 720 may be implemented by at least one processor, for example, may correspond to the communication device shown in FIG. 11 Processor 820 in 800.
  • the transceiver unit 710 in the communication device 700 can be implemented through an input/output interface, a circuit, etc., the communication device 700
  • the processing unit 720 in can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • FIG. 11 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 800 may include: a transceiver 810 , a processor 820 and a memory 830 .
  • the transceiver 810, the processor 820 and the memory 830 communicate with each other through internal connection paths.
  • the memory 830 is used to store instructions
  • the processor 820 is used to execute the instructions stored in the memory 830 to control the transceiver 810 to send signals and /or receive a signal.
  • the communication device 800 may correspond to the terminal device or network device in the above method embodiment, and may be used to perform various steps and/or processes performed by the terminal device or network device in the above method embodiment.
  • the memory 830 may include read-only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 830 can be a separate device or integrated into the processor 820 .
  • the processor 820 may be configured to execute instructions stored in the memory 830, and when the processor 820 executes the instructions stored in the memory, the processor 820 is configured to execute each of the above method embodiments corresponding to the terminal device or network device. steps and/or processes.
  • the communication device 800 is the terminal device in the previous embodiment.
  • the communication device 800 is the network device in the previous embodiment.
  • the transceiver 810 may include a transmitter and a receiver.
  • the transceiver 810 may further include an antenna, and the number of antennas may be one or more.
  • the processor 820, the memory 830 and the transceiver 810 may be devices integrated on different chips.
  • the processor 820 and the memory 830 can be integrated in the baseband chip, and the transceiver 810 can be integrated in the radio frequency chip.
  • the processor 820, the memory 830 and the transceiver 810 may also be devices integrated on the same chip. This application does not limit this.
  • the communication device 800 is a component configured in a terminal device, such as a chip, a chip system, etc.
  • the communication device 800 is a component configured in a network device, such as a chip, a chip system, etc.
  • the transceiver 820 may also be a communication interface, such as an input/output interface, a circuit, etc.
  • the transceiver 820, the processor 810 and the memory 830 can be integrated in the same chip, such as a baseband chip.
  • This application also provides a processing device, including at least one processor, the at least one processor being used to execute a computer program stored in the memory, so that the processing device executes the steps performed by the terminal device or the network device in the above method embodiment. method.
  • An embodiment of the present application also provides a processing device, including a processor and an input and output interface.
  • the input and output interface is coupled to the processor.
  • the input and output interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is used to execute a computer program, so that the processing device executes the method executed by the terminal device or the network device in the above method embodiment.
  • An embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method executed by the terminal device or the network device in the above method embodiment.
  • a field programmable gate array can be an application specific integrated circuit (ASIC), a system on chip (SoC), or a central processor unit (central processor unit).
  • CPU it can also be a network processor (network processor, NP), it can also be a digital signal processing circuit (digital signal processor, DSP), it can also be a microcontroller (micro controller unit, MCU), or it can be programmable Controller (programmable logic device, PLD) or other integrated chip.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, the computer causes the computer to execute the terminal in the above method embodiment. A method performed by a device or network device.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores program code.
  • the program code When the program code is run on a computer, it causes the computer to execute the above method embodiment.
  • the present application also provides a communication system, which may include the aforementioned terminal device and network device.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program and/or a computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process and/or thread of execution and a component can be localized on one computer and/or distributed between 2 or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes a number of instructions to enable a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc. The medium on which program code is stored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、装置、设备以及存储介质。该方法包括:终端设备接收来自于网络设备的无线资源控制RRC建立消息,该RRC建立消息包括第一参数和第一信息,该第一信息用于配置免调度的上行资源,该第一参数用于确定该免调度的上行资源的有效时长,该终端设备在有效时长内的该免调度的上行资源向网络设备发送RRC建立完成消息。实现了初始接入阶段的免调度传输,降低了信令开销,降低了初始接入时延。

Description

通信方法、装置、设备以及存储介质
本申请要求于2022年08月01日提交中国专利局、申请号为202210916931.0、申请名称为“通信方法、装置、设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、设备以及存储介质。
背景技术
目前,在一些通信系统中,如第五代移动通信系统(5th generation wireless system,5G)中,可以通过非地面网络(Non-Terrestrial Networks,NTN)连接卫星实现通信。
在终端设备与卫星连接的初始接入阶段中,终端设备在传输上行信息,如无线资源控制(radio resource control,RRC)建立完成消息(msg5)、鉴权NAS信令、能力上报消息、安全模式信令时,每个上行信息以及上行传输信息的每个重复,均需要基于多次信令交互实现上行资源的调度,不可避免的导致信令开销较大,并增大了初始接入时延。
发明内容
本申请实施例提供的一种通信方法、装置、设备以及存储介质,以期降低初始接入阶段的信令开销,并降低初始接入时延。
第一方面,本申请实施例提供一种通信方法,该方法包括:终端设备接收来自于网络设备的无线资源控制RRC建立消息,该RRC建立消息包括第一参数和第一信息,该第一信息用于配置免调度的上行资源,该第一参数用于确定该免调度的上行资源的有效时长;该终端设备在该有效时长内的该免调度的上行资源向该网络设备发送RRC建立完成消息。
通过第一方面提供的通信方法,网络设备和终端设备通过在有效时长内的免调度的上行资源传输RRC建立完成消息,实现了RRC建立过程的免调度传输,避免通过多次信令交互实现对上行传输RRC信令的调度,降低了信令开销,和RRC建立时延。
在一种可能的实施方式中,通过该RRC建立完成消息接入到该网络设备,该方法还包括:该终端设备在该有效时长内的该免调度的上行资源进行以下事项之一或组合:能力上报过程;安全鉴权及验证过程。
通过该实施方式提供的通信方法,实现了初始接入阶段中任意过程的免调度传输,避免在上行传输过程中通过多次信令交互进行调度,进一步降低信令开销和初始接入时延。
在一种可能的实施方式中,该第一参数包括该有效时长。
通过该实施方式提供的通信方法,第一参数直接指示有效时长,提高了终端设备的处理效率,降低了初始接入时延
在一种可能的实施方式中,该第一信息包括该免调度的上行资源的传输周期,该第一参数包括该传输周期的有效数量。
通过该实施方式提供的通信方法,第一参数指示传输周期的有效数量,使得配置的有效时长内具有完整的传输周期。
在一种可能的实施方式中,在该终端设备接收来自于网络设备的RRC建立消息之前,该方法还包括:该终端设备向该网络设备发送前导序列,该前导序列用于该终端设备请求上行增强。
通过该实施方式提供的通信方法,终端设备发送的前导序列请求上行增强,避免通过信令请求上行增强,节省了信令开销。
在一种可能的实施方式中,在该终端设备接收来自于网络设备的RRC建立消息之前,该方法还包括:该终端设备在物理随机接入信道PRACH资源上向该网络设备发送前导序列,该PRACH资源用于该终端设备请求上行增强。
通过该实施方式提供的通信方法,终端设备发送前导序列时选择的PRACH资源请求上行增强,避免通过信令请求上行增强,节省了信令开销。
在一种可能的实施方式中,在该终端设备接收来自于网络设备的RRC建立消息之前,该方法还包括:该终端设备向该网络设备发送RRC建立请求,该RRC建立请求包括增强指示字段,该增强指示字段用于该终端设备请求上行增强。
通过该实施方式提供的通信方法,终端设备发送的RRC建立请求中的增强指示字段请求上行增强,相比于选择资源或者前导序列请求上行增强而言,降低了终端设备的处理复杂度。
在一种可能的实施方式中,该终端设备在该有效时长内的该免调度的上行资源向该网络设备发送该RRC建立完成消息,包括:该终端设备从该有效时长的起始开始,在该有效时长内的该免调度的上行资源向该网络设备发送该RRC建立完成消息;其中,该有效时长的起始为该RRC建立消息的物理层接收时间,或者,该有效时长的起始为下行控制信息DCI的接收时间,该DCI用于激活该免调度的上行资源。
通过该实施方式提供的通信方法,终端设备可以在接收到上行增强配置信息时,即开始在免调度的上行资源向网络设备发送PUSCH。可以不再通过DCI触发终端设备以免调度的方式发送PUSCH,节省了信令开销;或者,通过DCI激活免调度的上行资源,以触发终端设备开始在有效时长内的免调度的上行资源向网络设备发送PUSCH,避免终端设备总是在接收到上行增强配置信息后开始免调度的上行传输,提高了传输控制的灵活性。
在一种可能的实施方式中,该RRC建立完成消息以跨时隙传输块TBoMS的形式传输,该终端设备在该有效时长内的该免调度的上行资源向该网络设备发送RRC建立完成消息,包括:该终端设备在该有效时长内的该免调度的上行资源向该网络设备发送一次或多次该RRC建立完成消息。
通过该实施方式提供的通信方法,以TBoMS的形式传输,实现了对负载较大的RRC建立消息的传输,且不在MAC层进行分段,避免在传输PUSCH时增加包头的开销。
在一种可能的实施方式中,该RRC建立完成消息在媒体接入控制MAC层分段得 到多个TB,并以多个TB的形式传输,该终端设备在该有效时长内的该免调度的上行资源向该网络设备发送RRC建立完成消息,包括:该终端设备在该有效时长内的该免调度的上行资源向该网络设备发送一次或多次该RRC建立完成消息。
通过该实施方式提供的通信方法,以多个TB的形式传输,实现了对负载较大的RRC建立消息的传输。
第二方面,本申请实施例提供一种通信方法,该方法包括:网络设备向终端设备发送RRC建立消息,该RRC建立消息包括第一参数和第一信息,该第一信息用于配置免调度的上行资源,该第一参数用于确定该免调度的上行资源的有效时长;该网络设备在该有效时长内的该免调度的上行资源接收来自于该终端设备的RRC建立完成消息。
在一种可能的实施方式中,通过该RRC建立完成消息使该终端设备接入,该方法还包括:该网络设备在该有效时长内的该免调度的上行资源进行以下事项之一或组合:能力上报过程;安全鉴权及验证过程。
在一种可能的实施方式中,该第一参数包括该有效时长。
在一种可能的实施方式中,该第一信息包括该免调度的上行资源的传输周期,该第一参数包括该传输周期的有效数量。
在一种可能的实施方式中,在该网络设备向终端设备发送RRC建立消息之前,该方法还包括:该网络设备接收来自于该网络设备的前导序列,该前导序列用于该终端设备请求上行增强。
在一种可能的实施方式中,在该网络设备向终端设备发送RRC建立消息之前,该方法还包括:该网络设备在PRACH资源上接收来自于该终端设备的前导序列,该PRACH资源用于该终端设备请求上行增强。
在一种可能的实施方式中,在该网络设备向终端设备发送RRC建立消息之前,该方法还包括:该网络设备接收来自于该终端设备的RRC建立请求,该RRC建立请求包括增强指示字段,该增强指示字段用于该终端设备请求上行增强。
在一种可能的实施方式中,在该网络设备向终端设备发送RRC建立消息之前,该方法还包括:该网络设备根据以下至少之一确定该终端设备请求上行增强;RRC建立请求的上行增强请求;RRC建立请求的上行增强传输。
在一种可能的实施方式中,该网络设备在该有效时长内的该免调度的上行资源接收来自于该终端设备的RRC建立完成消息,包括:该网络设备从该有效时长的起始开始,在该有效时长内的该免调度的上行资源接收来自于该终端设备的该RRC建立完成消息;其中,该有效时长的起始为该RRC建立消息的物理层接收时间,或者,该有效时长的起始为DCI的接收时间,该DCI用于激活该免调度的上行资源。
在一种可能的实施方式中,该RRC建立完成消息以TBoMS的形式传输,该网络设备在该有效时长内的该免调度的上行资源接收来自于该终端设备的RRC建立完成消息,包括:该网络设备在该有效时长内的该免调度的上行资源接收该终端设备发送的一次或多次该RRC建立完成消息。
在一种可能的实施方式中,该RRC建立完成消息在媒体接入控制MAC层分段得到多个TB,并以多个TB的形式传输,该网络设备在该有效时长内的该免调度的上行 资源接收来自于该终端设备的RRC建立完成消息,包括:该网络设备在该有效时长内的该免调度的上行资源接收该终端设备发送的一次或多次该RRC建立完成消息。
上述第二方面以及上述第二方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第三方面,本申请实施例提供一种通信方法,该方法包括:终端设备接收来自于网络设备的能力查询请求,该能力查询请求包括第一参数和第一信息,该第一信息用于配置免调度的上行资源,该第一参数用于确定该免调度的上行资源的有效时长;该终端设备在该有效时长内的该免调度的上行资源向该网络设备发送能力上报信息。
在一种可能的实施方式中,该第一参数包括该有效时长。
在一种可能的实施方式中,该第一信息包括该免调度的上行资源的传输周期,该第一参数包括免调度的上行资源的传输周期的有效数量。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信方法,该方法包括:网络设备向终端设备发送能力查询请求,该能力查询请求包括第一参数和第一信息,该第一信息用于配置免调度的上行资源,该第一参数用于确定该免调度的上行资源的有效时长;该网络设备在该有效时长内的该免调度的上行资源接收来自于该中的设备的能力上报信息。
在一种可能的实施方式中,该第一参数包括该有效时长。
在一种可能的实施方式中,该第一信息包括该免调度的上行资源的传输周期,该第一参数包括免调度的上行资源的传输周期的有效数量。
上述第四方面以及上述第四方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第五方面,本申请实施例提供一种通信装置,包括用于执行如上述第一方面、第三方面或各可能的实施方式中的方法的模块,或者,包括用于执行如上述第二方面、第四方面或各可能的实施方式中的方法的模块。
上述第五方面以及上述第五方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第六方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如上述第一方面、第二方面、第三方面、第四方面或各可能的实施方式中的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如上述第一方面、第二方面、第三方面、第四方面或各可能的实施方式中的方法。
第八方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如上述第一方面、第二方面、第三方面、第四方面或各可 能的实施方式中的方法。
第九方面,本申请实施例提供一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行如第一方面、第二方面、第三方面、第四方面或各可能的实现方式中的方法。
第十方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如第一方面、第二方面、第三方面、第四方面或各可能的实现方式中的方法。
第十一方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如第一方面、第二方面、第三方面、第四方面或各可能的实现方式中的方法。
第十二方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如第一方面、第二方面、第三方面、第四方面或各可能的实现方式中的方法。
第十三方面,本申请实施例提供一种装置,包括逻辑电路和输入输出接口,其中,该输入输出接口用于接收来自该装置之外的其他通信装置的信号并传输至该逻辑电路或将来自该逻辑电路的信号发送给该装置之外的其他通信装置,该逻辑电路用于执行代码指令以实现如第一方面、第二方面、第三方面、第四方面或各可能的实现方式中的方法。
附图说明
图1是本申请的实施例应用的移动通信系统的架构示意图;
图2是本申请实施例提供的一种初始接入的流程示意图;
图3是本申请实施例提供的一种跨时隙传输块的示意图;
图4是本申请实施例提供的一种通信方法的示意性流程图;
图5是本申请实施例提供的一种通信方法的示意性流程图;
图6是本申请实施例提供的一种通信方法的示意性流程图;
图7是本申请实施例提供的一种通信方法的示意性流程图;
图8a是本申请实施例提供的一种上行传输方式的示意图;
图8b是本申请实施例提供的一种上行传输方式的示意图;
图8c是本申请实施例提供的一种上行传输方式的示意图;
图9a是本申请实施例提供的一种通信方法的示意性流程图;
图9b是本申请实施例提供的一种通信方法的示意性流程图;
图9c是本申请实施例提供的一种通信方法的示意性流程图;
图9d是本申请实施例提供的一种通信方法的示意性流程图;
图10是本申请实施例提供的通信装置的示意性框图;
图11是本申请实施例提供的通信装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统100包括核心网设备110、基站120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与基站相连,基站作为一种网络设备,通过无线或有线方式与核心网设备连接。核心网设备与基站可以是独立的不同的物理设备,也可以是将核心网设备的功能与基站的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的基站的功能。终端设备可以是固定位置的,也可以是可移动的。该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、基站和终端设备的数量不做限定。
如图1所示,通信系统100还可以包括卫星150。作为一种示例,终端设备130和卫星150之间可以进行无线通信。终端设备130和卫星150之间所形成的网络还可以称为NTN。卫星150具有基站的功能,终端设备130和卫星150之间可以直接通信,卫星150可以称为网络设备。作为另一种示例,终端设备130、卫星150和基站120之间可以进行无线通信,卫星150与基站120之间可以通信。终端设备130、卫星150和基站120之间所形成的网络称为NTN,终端设备130与基站120之间的通信需要通过卫星150的中转,此种情况下,卫星150不具有基站的功能,将基站120称为网络设备。
网络设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站例如,NodeB、演进型基站,例如演进节点B eNodeB、新无线接入技术(new radio access technology,NR)移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等。网络设备可以以中心单元(central unit,CU)和分布式单元(distributed unit,DU)分离的形式为终端设备提供服务。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(selfdriving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G及6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G及以上的频谱进行通信。本 申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
应理解,本申请对于网络设备和终端设备的具体形式均不作限定。
本申请提供的通信方法可以应用于各种通信系统,例如:卫星通信系统、长期演进(Long Term Evolution,LTE)系统、第五代(5th Generation,5G)移动通信系统、未来的第六代(6th Generation,6G)移动通信系统。
在上述任一通信系统中,初始接入阶段主要包括:1、随机接入过程;2、安全鉴权及验证过程;3、能力上报过程;4、传输参数配置。
1、随机接入过程:一般包括2步随机接入过程和4步随机接入过程。在基于竞争的4步随机接入过程中,传输消息(msg)1至msg 4。其中,msg 1为终端设备向网络设备发送的一个或多个前导码;msg 2为网络设备向终端设备发送的随机接入响应;msg 3为终端设备向网络设备发送的无线资源控制(radio resource control,RRC)建立请求(如RRCSetupRequest,RRC_SETUP_REQ);msg 4为网络设备向终端设备发送的RRC建立消息(如RRC_SETUP,RRCSetup)。
在上述随机接入的竞争解决之后,终端设备可以向网络设备发送msg5,即RRC建立完成消息(如RRC_SETUP_CMP,RRC_Setup_Complete)。
在随机接入过程中可以实现终端设备由RRC空闲态(idle)到RCC连接态(connected)的过程。
2、安全鉴权及验证过程:网络设备和终端设备之间通过非接入层(non-access stratum,NAS)信令交互实现身份识别、鉴权的过程。包括但不限于:RRC上行直传消息(RRC_UL_INFO_TRANSF)、RRC下行直传消息(RRC_DL_INFO_TRANSF)、RRC安全模式启动消息(RRC_SECUR_MODE_CMD)、RRC安全模式完成消息(RRC_SECUR_MODE_CMP)。
3、能力上报过程:网络设备可以向终端设备发送能力查询请求(如RRC_UE_CAP_ENQUIRY),终端设备接收到该能力查询请求后可以向网络设备发送能力上报消息(如RRC_UE_CAP_INFO)。
4、传输参数配置:网络设备(如基站)可以向接入与移动性管理功能(access and mobility management function,AMF)透传终端设备的能力,并向终端设备发送RRC重建消息(如RRC_RECFG),指示终端设备建立信令无线承载(Signaling Radio Bearers,SRB)2和数据无线承载(data radio bearer,DRB)。终端设备建立对应的分组数据汇聚协议(packet data convergence protocol,PDCP)实体并配置相关安全参数,并向网络设备发送RRC重建完成消息(如RRC_RECFG_CMP)。
在上述终端设备的初始接入阶段中,终端设备进行能力上报之前,终端设备与网络设备之间通过多次信令交互过程,才能实现上行传输。示例性的,在一次上行传输过程中,可以包括如图2所示的S1至S5。S1,终端设备向网络设备发送调度请求(scheduling request,SR);S2,网络设备向终端设备发送下行控制信息(downlink control information,DCI);S3,终端设备向网络设备发送缓存状态报告(buffer status report,BSR);S4,网络设备向终端设备发送上行授权信息(UL grant);S5,终端设备向网络设备发送物理上行共享信道(physical uplink shared channel,PUSCH),该PUSCH可以包括但不限于以下之一:RRC建立完成消息(msg5)、鉴权NAS信令、 能力上报消息、安全模式信令。
终端设备每向网络设备发送一次PUSCH,均执行如图2所示的信令交互过程。不可避免的导致信令开销较大,增大了初始接入时延。
前述任一通信系统在终端设备的初始接入阶段,上下行信道链路预算有限。例如,C波段(C-band)作为卫星通信的传输频段,根据IEEE 501-2002标准,是指频率在4-8GHz的无线电波波段,通常上行频率范围为5.925-6.425GHz,下行频率范围为3.7-4.2GHz。受到上下行信道链路预算的限制,PUSCH需要进行分段传输和重复传输,增大了终端设备发送PUSCH的次数,并且每个PUSCH的分段和重传均通过DCI进行传输指示,进一步增大了信令开销,影响了系统容量,增大了初始接入时延。
针对初始接入阶段信令开销大,进而影响系统容量、增大初始接入时延的问题。本申请实施例提供的初始接入方案,引入“免调度的上行资源”,通过在有效时长内的免调度的上行资源传输PUSCH(如RRC建立完成消息、鉴权NAS信令、能力上报消息、安全模式信令中的至少一个)。实现了初始接入阶段的免调度传输,降低了信令开销,进而提升了系统容量、降低了初始接入时延。
需要说明的是,本申请实施例提供的上行传输的免调度方案,以应用于初始接入阶段为例进行说明,但并不对此进行限定。例如,本申请同样适用于RRC连接恢复阶段,也即触发终端设备由RRC非活动态(inactive)到RRC连接态的过程(connected)。当本申请实施例应用于RRC连接恢复阶段时,初始接入阶段的RRC建立消息可以替换为RRC恢复消息、RRC建立完成消息可以替换为RRC恢复完成消息等RRC连接恢复阶段的上行消息、RRC建立请求可以替换为RRC恢复请求。在RRC连接恢复阶段中对RRC恢复完成消息等上行消息的免调度,的具体实现方式以及有益效果均可以参见针对初始接入阶段中各实现方式的描述,为了简洁不再赘述。
为便于理解本申请实施例,首先对本申请中涉及到的跨时隙传输块(TB processing over multiple slots,TBoMS)作简单说明。
TBoMS可以占用多个时隙(slot)传输,且TBoMS可以支持重复传输。结合图3所示,重复次数M为2,单次传输TBoMS重复可以占用4个slot(Ns=4),其中,重复传输的两个TBoMS
中的TBoMS重复(repetition)#0占用的4个上行时隙中可以插入上行控制信息(uplink control information,UCI)的传输符号。
TBoMS的传输块大小(transport block size,TBS)Ninfo可以满足如下公式(1):
Ninfo=Ns·NRE·R·Qm·v          (1)
其中,Ns是TBoMS传输占用的slot数,NRE是每个slot上调度的RE资源数,R是码率,Qm是调制阶数,v是传输的层数。
TBoMS经过信道编码之后的数据存放在环形缓冲区中,通过冗余版本(Redundant Version,RV)指示从环形缓冲区的哪个位置(如图3中的k0~k3位置)读取数据。
TBoMS可以支持对编码后的速率匹配(Rate Matching,RM),以满足传输物理信道所能传输的比特数量。
可选的,重复次数M可以由高层信令指示。
为便于理解本申请实施例,做出如下几点说明。
第一,本申请实施例中涉及的PUSCH、物理随机接入信道(physical random access channel,PRACH)、物理下行控制信道(physical downlink control channel,PDCCH)等可以理解为物理资源,也可以理解为通过这些资源传输的数据、信令等。例如,终端设备通过PUSCH发送数据,也可以表述为终端设备发送PUSCH;终端设备通过PDCCH发送控制信息,如DCI,也可以表述为终端设备发送PDCCH;终端设备通过PRACH发送前导码(preamble),也可以表述为终端设备发送PRACH。本领域的技术人员可以理解其含义。
第二,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,也可以通过信令预配置,比如网络设备通过信令预配置等方式来实现,本申请对于其具体的实现方式不做限定。
第三,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第四,本申请实施例中,多个是指两个或两个以上。例如多个传输块(transport block,TB)是指两个TB或两个以上的TB。
下面将结合附图对本申请实施例提供的通信方法进行说明。
应理解,下文仅为便于理解和说明,主要以网络设备和终端设备之间的交互为例对本申请实施例所提供的方法进行说明。该终端设备例如可以是图1所示的通信系统中的终端设备任一终端设备,例如终端设备130或终端设备140。网络设备可以是图1所示的通信系统中卫星150,例如,卫星具有基站功能时,终端设备130和卫星150之间可以进行无线通信,或者卫星不具有基站功能,终端设备130与基站120通过卫星150的中转进行通信。
但应理解,这不应对本申请提供的方法的执行主体构成任何限定。只要能够通过运行有本申请实施例提供的方法的代码的程序,以执行本申请实施例提供的方法,便可以作为本申请实施例提供的方法的执行主体。例如,下文实施例所示的终端设备也可以替换为终端设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块,网络设备也可以替换为网络设中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块。
图4是本申请实施例提供的通信方法200的示意性流程图。如图4所示,该方法200可以包括如下S210和S220。下面对方法200中的各个步骤进行说明。
S210,网络设备向终端设备发送RRC建立消息,RRC建立消息包括第一参数和第一信息,该第一信息用于配置免调度的上行资源,该第一参数用于确定免调度的上行资源的有效时长(validduration)。
相应的,终端设备接收来自于网络设备的RRC建立消息。
S220,终端设备在有效时长内的免调度的上行资源向网络设备发送RRC建立完成消息。
相应的,网络设备在有效时长内的免调度的上行资源接收来自于终端设备的RRC建立完成消息。
需要说明的是,第一参数可以对第一信息配置的上行资源进行有效时间的限制,使终端设备在有效时长内,在第一信息配置的上行资源上进行免调度的上行传输,并在有效时长后失效免调度的上行资源,使该上行资源可以配置给其他终端设备或者用于实现其他信息传输过程。
可选的,第一信息可以包括但不限于:调制编码方案(modulation and coding scheme,MCS)、传输周期、时域资源分配(time domain resource assignment,TDRA)、频域资源分配(frequency domain resource allocation,FDRA)、重复次数这些种类中的部分或者全部。
在第一种示例中,第一参数可以包括有效时长,或者说包括指示有效时长的信息。该有效时长可以是配置的具体的时间长度,有效时长的粒度(或者说最小单位)可以是符号、时隙、系统帧、毫秒、秒等,本申请对此不做限定。
在第二种示例中,第一参数可以是传输周期的有效数量,此种情况下,第一信息可以包括免调度的上行资源的传输周期,当然,本申请也不排除通过其他信息指示免调度的上行资源的传输周期,或者协议定义免调度的上行资源的传输周期的情况。终端设备可以基于免调度的上行资源的传输周期以及第一参数指示的传输周期的有效数量,确定上述有效时长。
上述第一种示例直接指示有效时长,提高了终端设备的处理效率,降低了初始接入时延;上述第二种示例指示传输周期的有效数量,使得配置的有效时长内具有完整的传输周期。
终端设备根据网络设备配置的免调度的上行资源,以及免调度的上行资源的有效时长,进行免调度的上行传输,实现终端设备的上行增强,使得终端设备在接收到RRC建立消息后,即可以在有效时长内的免调度的上行资源向网络设备发送RRC建立完成消息,可以不经过SR、DCI、BSR、UL grant等信令/数据交互过程,降低了信令开销,进而提升了系统容量、降低了初始接入时延。
上述S210和S220仅以终端设备在有效时长内的免调度的上行资源发送RRC建立完成消息为例进行说明,但不应理解为对本申请的任何限定。如前所述,终端设备在有效时长内的免调度的上行资源可以进行能力上报过程和/或安全鉴权及验证过程。例如终端设备在有效时长内的免调度的上行资源可以发送RRC建立完成消息、鉴权NAS信令、能力上报消息、安全模式信令中的至少一个。参见图5,终端设备可以在有效时长内的免调度的上行资源依次发送RRC建立完成消息(如S220)、鉴权NAS信令(如S310)、能力上报消息(如S320)、安全模式信令(如S330),直至有效时长结束。可以理解的是,在通信方法300的S210至S330之间还可以包括图5未示出的下行的鉴权NAS信令、下行的安全模式信令、下行的能力查询请求等,为表述简洁,此处不再赘述。
可选的,网络设备发送的RRC建立消息中还可以包括第二信息,该第二信息用于指示终端设备在有效时长内的免调度的上行资源发送的上行信息,例如可以指示终端设备在有效时长内的免调度的上行资源发送RRC建立完成消息和鉴权NAS信令。
当网络设备需要配置终端设备在有效时长内的免调度的上行资源发送能力上报信息时,可以通过上述RRC建立消息配置能力上报信息的免调度传输,或者可以通过能力查询请求配置能力上报信息的免调度传输,参见图6所示的通信方法400,通信方法400包括如下S410和S420。
S410,网络设备向终端设备发送能力查询请求,该能力查询请求包括第一参数和第一信息,第一信息用于配置免调度的上行资源,第一参数用于确定免调度的上行资源的有效时长。
相应的,终端设备接收来自于网络设备的能力查询请求。
S420,终端设备在有效时长内的免调度的上行资源向网络设备发送能力上报信息。
相应的,网络设备在有效时长内的免调度的上行资源接收来自于终端设备的能力上报信息。
在上述S410中,能力查询请求携带有第一参数和第一信息,以实现对终端设备以免调度的方式传输能力上报信息,也即实现能力上报信息的上行增强。其中,第一参数和第一信息均已在上述实施例中说明,此处不再赘述。
能力上报过程一般晚于随机接入过程和安全鉴权及验证过程,因此,网络设备发送能力查询请求一般用于指示能力查询请求之后的能力上报信息的上行增强。如在上述S620中,终端设备响应于网络设备发送的能力查询请求,并基于能力查询请求的配置,在有效时长内的免调度的上行资源向网络设备发送能力上报信息,不经过SR、DCI、BSR、UL grant等信令/数据交互过程调度上行资源,降低了信令开销,进而提升了系统容量、降低了初始接入时延。
应理解,图6所示实施例中,通过能力查询请求承载第一信息和第一参数仅为一种示例。第一信息和第一参数还可以由能力查询请求之后的新增的物理下行共享信道(physical downlink shared channel,PDSCH)承载第一信息和第一参数,也即网络设备向终端设备发送能力查询请求之后,向终端设备发送承载第一信息和第一参数的PDSCH。
能力查询请求可以仅携带第一参数,可选的,当能力查询请求携带第一参数时,第一信息可以由RRC建立消息携带。
为便于理解,下文中将终端设备发送RRC建立完成消息、鉴权NAS信令、能力上报消息、安全模式信令中的至少一个,表述为终端设备发送PUSCH;将携带有第一信息和第一参数的信息(如RRC建立消息或能力查询请求),表述为上行增强配置信息。
上述图4至图6所示的任一实施例中,终端设备可以从有效时长的起始开始,在有效时长内的免调度的上行资源向网络设备发送PUSCH。示例一,有效时长的起始可以为上行增强配置信息的物理层接收时间,或者说有效时长的起始可以为承载上行增强配置信息的PDSCH的接收时间;示例二,有效时长的起始可以为DCI的接收时间,或者说有效时长的起始可以是承载该DCI的PDCCH的接收时间,该DCI用于激活免调度的上行资源。
在上述示例一中,终端设备可以在接收到上行增强配置信息时,即开始在免调度的上行资源向网络设备发送PUSCH。可以不通过DCI触发终端设备以免调度的方式 发送PUSCH,节省了信令开销。
在上述示例二中,终端设备在接收到上行增强配置信息时,并未开始以免调度的方式发送PUSCH,而是等待DCI触发后发送PUSCH,也即通过DCI激活该免调度的上行资源。下面结合图7,以上行增强配置信息为RRC建立消息、PUSCH承载RRC建立完成消息为例,对示例二进行说明。
在图7所示的通信方法500中,包括S210、S510和S220。
在上述S210中,网络设备向终端设备发送RRC建立消息,以通过RRC建立消息携带的第一参数和第一信息实现对终端设备的上行增强配置。应理解,终端设备进行上行增强配置后,免调度的上行资源并未被激活,终端设备等待免调度的上行资源的激活。
在S510中,网络设备向终端设备发送DCI,终端设备接收到该DCI后激活免调度的上行资源,也即将接收DCI的时间作为有效时长的起始。
在S220中,终端设备以DCI的接收时间作为有效时长的起始,开始在有效时长内的免调度的上行资源发送RRC建立完成消息。
上述示例二中,通过DCI激活免调度的上行资源,以触发终端设备开始在有效时长内的免调度的上行资源向网络设备发送PUSCH,避免终端设备总是在接收到上行增强配置信息后开始免调度的上行传输,提高了传输控制的灵活性。
本申请实施例中,终端设备在有效时长内的免调度的上行资源发送PUSCH,至少可以包括以下两种传输方式:
方式一、以TBoMS的形式传输。终端设备可以在有效时长内的免调度的上行资源向网络设备发送一次或多次PUSCH。参见图8a,在DCI激活免调度的上行资源后,终端设备在有效时长内的免调度的上行资源重复发送TBoMS#0,如发送TBoMS#0的重复#0和重复#1。应理解,在此传输方式下,终端设备不在媒体接入控制(medium access control,MAC)层对所要传输的PUSCH进行分段,而是通过物理层的多个时隙发送该PUSCH对应的TBoMS,或者在重复传输PUSCH时,通过多个时隙发送该PUSCH的重复。
举例而言,参见图8b,网络设备发送的上行增强配置信息中,通过第一信息指示终端设备的免调度的传输周期为P、PUSCH以TBoMS形式传输占用的时隙数Ns=6、重复次数K=2,例如PUSCH#0在第一个授权配置(configured grant configuration,CG)周期P占用12个slot,PUSCH#1在第二个CG周期P占用12个slot。对于这种预配置资源的方式,节省信令开销和传输时延。对于PUSCH传输所需的时频资源小于预配置的12个slot的用户,用满预配置的可用时隙使得当前用户获得降低码率的覆盖提升增益。多用户的资源复用需要网络侧在配置的时候,对资源进行时域或者频域或者时频域等的资源复用。
针对NTN场景提高PUSCH数据占用的slot数配置,例如新增16,24,32等。有效时长可以配置为150ms,或者传输周期的有效数量Np可以配置为15。以上配置均为示例性说明,实际取值可以不同。当配置的有效时长到期后,资源释放。
方式二、以多个TB的形式传输。终端设备可以在有效时长内的免调度的上行资源向网络设备发送一次或多次PUSCH。在此传输方式下,终端设备可以在MAC层对所 要传输的PUSCH进行分段得到多个TB,并通过物理层传输多个不同的TB以及各TB对应的一次或者多次重复。参见图8c,在DCI激活免调度的上行资源后,终端设备在有效时长内的免调度的上行资源重复发送TB#0和TB#1,包括发送TB#0的重复#0和重复#1,以及TB#1的重复#0和重复#1,其中,TB#0和TB#1是PUSCH分段得到的。
上述方式二中,PUSCH划分得到的多个TB可以在免调度的上行资源上分时传输,一个TB一般占用一个时隙,最多可以同时传输两个TB。
一般来说,PUSCH占用多个时隙,当然本申请并不排除所要传输的PUSCH占用一个时隙或者占用一个时隙内的符号的情况。
上述方式一相对于方式二,以TBoMS的形式传输,不在MAC层进行分段,避免在传输PUSCH时增加包头的开销。
在一些实施例中,网络设备可以响应于终端设备的请求或者事项对终端设备进行上述上行增强的配置(例如发送上行增强配置信息),避免在终端设备不需要上行增强时,为终端设备配置上行增强。本实施例可以在上述图4至图8所示的任一实施例的基础上实现,图9a至图9d均以在图4的基础上实现本实施例为例,下面结合图9a至图9d进行示例性的说明。
参见图9a,通信方法600a的S610a中,在网络设备向终端设备发送RRC建立消息之前,终端设备向网络设备发送前导序列(preamble),该前导序列用于终端设备请求上行增强。示例性的,网络设备可以预先向终端设备配置两组前导序列,如前导序列A组和前导序列B组,前导序列A组中的前导序列用于指示终端设备不请求上行增强,前导序列B组中的签到序列用于指示终端设备请求上行增强。终端设备选择前导序列B组中的一个前导序列发送至网络设备,以指示终端设备请求上行增强。
参见图9b,通信方法600b的S610b中,在网络设备向终端设备发送RRC建立消息之前,终端设备在PRACH资源上向网络设备发送前导序列,与上述S610a的区别在于,S610b中指示终端设备请求上行增强的不是前导序列,而是PRACH资源。示例性的,预定义或者预先配置有PRACH资源,当终端设备在该PRACH资源上发送前导序列时,表明终端设备请求上行增强,而通过其他PRACH资源发送前导序列则不请求上行增强;或者,预定义或者预先配置有PRACH资源#0和PRACH资源#1,当终端设备在PRACH资源#0上发送前导序列时,表明终端设备请求上行增强,而通过PRACH资源#1发送前导序列则不请求上行增强。
其中,PRACH资源可以是基于接入机会(Rach Occasion,RO)确定的时频资源,或者说PRACH资源是RO对应的时频资源。
参见图9c,通信方法600c的S610c中,在网络设备向终端设备发送RRC建立消息之前,终端设备在PRACH资源上向网络设备发送RRC建立请求,该RRC建立请求包括增强指示字段,该增强指示字段用于终端设备请求上行增强。
可选的,增强指示字段可以是RRC建立请求中的新增比特,例如在RRC建立请求中增加上行配置授权有效(Uplink Config Grant Valid)字段;或者增强字段可以是对现有RRC建立请求中的空闲(spare)字段的新的定义。
示例性的,终端设备发送的RRC建立消息中的新增字段(如 UplinkConfigGrantValid)或者spare字段,例如增强字段等于1时,指示终端设备请求上行增强;又例如,增强字段等于0时,指示终端设备不请求上行增强.或者,RRC建立消息中的新增字段(如UplinkConfigGrantValid)或者spare字段,等于0时,指示终端设备请求上行增强;等于1时,指示终端设备不请求上行增强。当然,终端设备发送的RRC建立消息中的新增字段(如UplinkConfigGrantValid)或者spare字段,还可以通过其他数值指示终端设备请求或者不请求上行增强,本申请对此不作限定。
除上述图9a至图9c所示的实施例,上行增强配置信息还可以为新增信令,新增信令可以包括上述第一信息和第一参数,或者新增信令可以包括第一参数。可选的,当新增信令包括第一参数时,第一信息可以通过RRC建立消息承载。
针对上述图9a至图9c所示的任一示例,终端设备可以基于网络环境或者自身传输能力确定是否请求上行增强。示例性的,终端设备可以测量参考信号接收功率(reference signal receiving power,RSRP),并根据测量的RSRP的值确定是否请求上行增强。例如,终端设备在RSRP的值小于阈值时请求上行增强以提高传输质量;在RSRP的值大于阈值时不请求上行增强。
参见图9d,通信方法600d的610d中,网络设备可以根据以下至少之一确定终端设备请求上行增强:
RRC建立请求的上行增强请求;
RRC建立请求的上行增强传输。
一般来说,RRC建立请求的负载小于RRC建立完成消息的负载,那么在RRC建立请求上行增强的情况下,上述PUSCH(如承载RRC建立完成消息、能力上报信息等)也需要上行增强。因此,将上述PUSCH(如承载RRC建立完成消息、能力上报信息等)的上行增强请求与RRC建立请求的上行增强请求绑定;或者将上述PUSCH(如承载RRC建立完成消息、能力上报信息等)的上行增强请求与RRC建立请求的上行增强传输绑定。
作为一种示例,RRC建立请求存在对应的上行增强请求,也即终端设备针对RRC建立请求请求过上行增强的情况下,网络设备可以确定终端设备针对上述PUSCH(如承载RRC建立完成消息、能力上报信息等)请求上行增强。
作为另一种示例,网络设备针对RRC建立请求对终端设备配置了上行增强,则确定终端设备针对上述PUSCH(如承载RRC建立完成消息、能力上报信息等)请求上行增强。
作为再一种示例,网络设备可以在终端设备以上行增强的方式向网络设备发送RRC建立请求的情况下,确定终端设备针对上述PUSCH(如承载RRC建立完成消息、能力上报信息等)请求上行增强。
因此,本申请实施例中,网络设备和终端设备通过在有效时长内的免调度的上行资源传输RRC建立完成消息,实现了初始接入阶段的免调度传输,降低了信令开销,降低了初始接入时延。
以上,结合图4至图9详细说明了本申请实施例提供的方法。以下,结合图10至图11详细说明本申请实施例提供的装置。
图10是本申请实施例提供的通信装置的示意性框图。如图10所示,该装置700可以包括:收发模块710和处理模块720。
可选地,该通信装置700可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置700可以包括执行本申请实施例中图4所示的方法200、图5所示的方法300、图6所示的方法400、图7所示的方法500、图9a所示的方法600a、图9b所示的方法600b、图9c所示的方法600c、图9d所述的方法600d中终端设备侧的方法的各单元。并且,该通信装置700中的各单元和上述其他操作和/或功能分别为了实现各方法的相应流程。
其中,当通信装置700用于执行终端侧的方法时,收发模块710可以用于接收来自于网络设备的无线资源控制RRC建立消息,该RRC建立消息包括第一参数和第一信息,该第一信息用于配置免调度的上行资源,该第一参数用于确定该免调度的上行资源的有效时长;处理模块720可以用于确定所述有效时长和所述免调度的上行资源;收发模块710还用于在该有效时长内的该免调度的上行资源向该网络设备发送RRC建立完成消息。
应理解,各单元执行的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选地,该通信装置700可对应于上文方法实施例中的网络设备(如图1中的卫星150),例如,可以为网络设备,或者配置于网络设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置700可以包括执行本申请实施例中图4所示的方法200、图5所示的方法300、图6所示的方法400、图7所示的方法500、图9a所示的方法600a、图9b所示的方法600b、图9c所示的方法600c、图9d所述的方法600d中网络侧的方法的各单元。并且,该通信装置700中的各单元和上述其他操作和/或功能分别为了实现各方法的相应流程。
其中,当通信装置700用于执行网络侧的方法时,处理模块720可以用于确定第一参数和第一信息;收发模块710可以用于向终端设备发送RRC建立消息,该RRC建立消息包括该第一参数和该第一信息,该第一信息用于配置免调度的上行资源,该第一参数用于确定该免调度的上行资源的有效时长;该收发模块710还用于在该有效时长内的该免调度的上行资源接收来自于该终端设备的RRC建立完成消息。
应理解,各单元执行的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置700为终端设备时,该通信装置700中的收发单元710可以通过收发器实现,例如可对应于图11中所示的通信装置800中的收发器810,该通信装置700中的处理单元720可通过至少一个处理器实现,例如可对应于图11中示出的通信装置800中的处理器820。
当该通信装置700为网络设备时,该通信装置700中的收发单元710可以通过收发器实现,例如可对应于图11中所示的通信装置800中的收发器810,该通信装置700中的处理单元720可通过至少一个处理器实现,例如可对应于图11中示出的通信装置 800中的处理器820。
当该通信装置700为配置于通信设备(如终端设备或网络设备)中的芯片或芯片系统时,该通信装置700中的收发单元710可以通过输入/输出接口、电路等实现,该通信装置700中的处理单元720可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图11是本申请实施例提供的通信装置的另一示意性框图。如图11所示,该通信装置800可以包括:收发器810、处理器820和存储器830。其中,收发器810、处理器820和存储器830通过内部连接通路互相通信,该存储器830用于存储指令,该处理器820用于执行该存储器830存储的指令,以控制该收发器810发送信号和/或接收信号。
应理解,该通信装置800可以对应于上述方法实施例中的终端设备或网络设备,并且可以用于执行上述方法实施例中终端设备或网络设备执行的各个步骤和/或流程。可选地,该存储器830可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器830可以是一个单独的器件,也可以集成在处理器820中。该处理器820可以用于执行存储器830中存储的指令,并且当该处理器820执行存储器中存储的指令时,该处理器820用于执行上述与终端设备或网络设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置800是前文实施例中的终端设备。
可选地,该通信装置800是前文实施例中的网络设备。
其中,收发器810可以包括发射机和接收机。收发器810还可以进一步包括天线,天线的数量可以为一个或多个。该处理器820和存储器830与收发器810可以是集成在不同芯片上的器件。如,处理器820和存储器830可以集成在基带芯片中,收发器810可以集成在射频芯片中。该处理器820和存储器830与收发器810也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置800是配置在终端设备中的部件,如芯片、芯片系统等。
可选地,该通信装置800是配置在网络设备中的部件,如芯片、芯片系统等。
其中,收发器820也可以是通信接口,如输入/输出接口、电路等。该收发器820与处理器810和存储器830都可以集成在同一个芯片中,如集成在基带芯片中。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中终端设备或网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和输入输出接口。所述输入输出接口与所述处理器耦合。所述输入输出接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述方法实施例中终端设备或网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中终端设备或网络设备执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可 编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例中终端设备或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中终端设备或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统可以包括前述的终端设备和网络设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存 储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备接收来自于网络设备的无线资源控制RRC建立消息,所述RRC建立消息包括第一参数和第一信息,所述第一信息用于配置免调度的上行资源,所述第一参数用于确定所述免调度的上行资源的有效时长;
    所述终端设备在所述有效时长内的所述免调度的上行资源向所述网络设备发送RRC建立完成消息。
  2. 根据权利要求1所述的方法,其特征在于,通过所述RRC建立完成消息接入到所述网络设备,所述方法还包括:
    所述终端设备在所述有效时长内的所述免调度的上行资源进行以下事项之一或组合:
    能力上报过程;
    安全鉴权及验证过程。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一参数包括所述有效时长。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括所述免调度的上行资源的传输周期,所述第一参数包括所述传输周期的有效数量。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,在所述终端设备接收来自于网络设备的RRC建立消息之前,所述方法还包括:
    所述终端设备向所述网络设备发送前导序列,所述前导序列用于所述终端设备请求上行增强。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,在所述终端设备接收来自于网络设备的RRC建立消息之前,所述方法还包括:
    所述终端设备在物理随机接入信道PRACH资源上向所述网络设备发送前导序列,所述PRACH资源用于所述终端设备请求上行增强。
  7. 根据权利要求1至4任一项所述的方法,其特征在于,在所述终端设备接收来自于网络设备的RRC建立消息之前,所述方法还包括:
    所述终端设备向所述网络设备发送RRC建立请求,所述RRC建立请求包括增强指示字段,所述增强指示字段用于所述终端设备请求上行增强。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述终端设备在所述有效时长内的所述免调度的上行资源向所述网络设备发送所述RRC建立完成消息,包括:
    所述终端设备从所述有效时长的起始开始,在所述有效时长内的所述免调度的上行资源向所述网络设备发送所述RRC建立完成消息;其中,
    所述有效时长的起始为所述RRC建立消息的物理层接收时间,或者,所述有效时长的起始为下行控制信息DCI的接收时间,所述DCI用于激活所述免调度的上行资源。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述RRC建立完成消息以跨时隙传输块TBoMS的形式传输,所述终端设备在所述有效时长内的所述免调度的上行资源向所述网络设备发送RRC建立完成消息,包括:
    所述终端设备在所述有效时长内的所述免调度的上行资源向所述网络设备发送一次或多次所述RRC建立完成消息。
  10. 根据权利要求1至8任一项所述的方法,其特征在于,所述RRC建立完成消息在媒体接入控制MAC层分段得到多个TB,并以多个TB的形式传输,所述终端设备在所述有效时长内的所述免调度的上行资源向所述网络设备发送RRC建立完成消息,包括:
    所述终端设备在所述有效时长内的所述免调度的上行资源向所述网络设备发送一次或多次所述RRC建立完成消息。
  11. 一种通信方法,其特征在于,所述方法包括:
    网络设备向终端设备发送RRC建立消息,所述RRC建立消息包括第一参数和第一信息,所述第一信息用于配置免调度的上行资源,所述第一参数用于确定所述免调度的上行资源的有效时长;
    所述网络设备在所述有效时长内的所述免调度的上行资源接收来自于所述终端设备的RRC建立完成消息。
  12. 根据权利要求11所述的方法,其特征在于,通过所述RRC建立完成消息使所述终端设备接入,所述方法还包括:
    所述网络设备在所述有效时长内的所述免调度的上行资源进行以下事项之一或组合:
    能力上报过程;
    安全鉴权及验证过程。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一参数包括所述有效时长。
  14. 根据权利要求11或12所述的方法,其特征在于,所述第一信息包括所述免调度的上行资源的传输周期,所述第一参数包括所述传输周期的有效数量。
  15. 根据权利要求11至14任一项所述的方法,其特征在于,在所述网络设备向终端设备发送RRC建立消息之前,所述方法还包括:
    所述网络设备接收来自于所述网络设备的前导序列,所述前导序列用于所述终端设备请求上行增强。
  16. 根据权利要求11至14任一项所述的方法,其特征在于,在所述网络设备向终端设备发送RRC建立消息之前,所述方法还包括:
    所述网络设备在PRACH资源上接收来自于所述终端设备的前导序列,所述PRACH资源用于所述终端设备请求上行增强。
  17. 根据权利要求11至14任一项所述的方法,其特征在于,在所述网络设备向终端设备发送RRC建立消息之前,所述方法还包括:
    所述网络设备接收来自于所述终端设备的RRC建立请求,所述RRC建立请求包括增强指示字段,所述增强指示字段用于所述终端设备请求上行增强。
  18. 根据权利要求11至14任一项所述的方法,其特征在于,在所述网络设备向终端设备发送RRC建立消息之前,所述方法还包括:
    所述网络设备根据以下至少之一确定所述终端设备请求上行增强;
    RRC建立请求的上行增强请求;
    RRC建立请求的上行增强传输。
  19. 根据权利要求11至18任一项所述的方法,其特征在于,所述网络设备在所述有效时长内的所述免调度的上行资源接收来自于所述终端设备的RRC建立完成消息,包括:
    所述网络设备从所述有效时长的起始开始,在所述有效时长内的所述免调度的上行资源接收来自于所述终端设备的所述RRC建立完成消息;其中,
    所述有效时长的起始为所述RRC建立消息的物理层接收时间,或者,所述有效时长的起始为DCI的接收时间,所述DCI用于激活所述免调度的上行资源。
  20. 根据权利要求11至19任一项所述的方法,其特征在于,所述RRC建立完成消息以TBoMS的形式传输,所述网络设备在所述有效时长内的所述免调度的上行资源接收来自于所述终端设备的RRC建立完成消息,包括:
    所述网络设备在所述有效时长内的所述免调度的上行资源接收所述终端设备发送的一次或多次所述RRC建立完成消息。
  21. 根据权利要求11至19任一项所述的方法,其特征在于,所述RRC建立完成消息在媒体接入控制MAC层分段得到多个TB,并以多个TB的形式传输,所述网络设备在所述有效时长内的所述免调度的上行资源接收来自于所述终端设备的RRC建立完成消息,包括:
    所述网络设备在所述有效时长内的所述免调度的上行资源接收所述终端设备发送的一次或多次所述RRC建立完成消息。
  22. 一种通信方法,其特征在于,所述方法包括:
    终端设备接收来自于网络设备的能力查询请求,所述能力查询请求包括第一参数和第一信息,所述第一信息用于配置免调度的上行资源,所述第一参数用于确定所述免调度的上行资源的有效时长;
    所述终端设备在所述有效时长内的所述免调度的上行资源向所述网络设备发送能力上报信息。
  23. 根据权利要求22所述的方法,其特征在于,所述第一参数包括所述有效时长。
  24. 根据权利要求22所述的方法,其特征在于,所述第一信息包括所述免调度的上行资源的传输周期,所述第一参数包括免调度的上行资源的传输周期的有效数量。
  25. 一种通信方法,其特征在于,所述方法包括:
    网络设备向终端设备发送能力查询请求,所述能力查询请求包括第一参数和第一信息,所述第一信息用于配置免调度的上行资源,所述第一参数用于确定所述免调度的上行资源的有效时长;
    所述网络设备在所述有效时长内的所述免调度的上行资源接收来自于所述终端设备的能力上报信息。
  26. 根据权利要求25所述的方法,其特征在于,所述第一参数包括所述有效时长。
  27. 根据权利要求25所述的方法,其特征在于,所述第一信息包括所述免调度的上行资源的传输周期,所述第一参数包括免调度的上行资源的传输周期的有效数量。
  28. 一种通信装置,其特征在于,包括用于执行如权利要求1至10、22至24中任 一项所述方法的模块,或者,包括用于执行如权利要求11至21、25至27中的任一项所述方法的模块。
  29. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至27中任一项所述的方法。
  30. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有所述芯片的设备执行如权利要求1至27中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计算机程序使得计算机执行如权利要求1至27中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至27中任一项所述的方法。
PCT/CN2023/094897 2022-08-01 2023-05-17 通信方法、装置、设备以及存储介质 WO2024027282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210916931.0A CN117560775A (zh) 2022-08-01 2022-08-01 通信方法、装置、设备以及存储介质
CN202210916931.0 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024027282A1 true WO2024027282A1 (zh) 2024-02-08

Family

ID=89809704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094897 WO2024027282A1 (zh) 2022-08-01 2023-05-17 通信方法、装置、设备以及存储介质

Country Status (2)

Country Link
CN (1) CN117560775A (zh)
WO (1) WO2024027282A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651705A (zh) * 2008-08-15 2010-02-17 华为技术有限公司 一种协商定位能力的方法及装置
CN102056221A (zh) * 2009-11-03 2011-05-11 大唐移动通信设备有限公司 一种定位处理方法及设备
CN109413744A (zh) * 2017-08-18 2019-03-01 华为技术有限公司 通信方法与设备
US20200029306A1 (en) * 2018-07-20 2020-01-23 Shanghai Langbo Communication Technology Company Limited Method and device in ue and base station for wireless communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651705A (zh) * 2008-08-15 2010-02-17 华为技术有限公司 一种协商定位能力的方法及装置
CN102056221A (zh) * 2009-11-03 2011-05-11 大唐移动通信设备有限公司 一种定位处理方法及设备
CN109413744A (zh) * 2017-08-18 2019-03-01 华为技术有限公司 通信方法与设备
US20200029306A1 (en) * 2018-07-20 2020-01-23 Shanghai Langbo Communication Technology Company Limited Method and device in ue and base station for wireless communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIERRA WIRELESS: "Transmission of Data Grant-Free in Inactive State", 3GPP TSG RAN WG2 MEETING #96 R2-168595, 13 November 2016 (2016-11-13), XP051178165 *

Also Published As

Publication number Publication date
CN117560775A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
EP3709733B1 (en) Resource configuration method in d2d communication, terminal device, and network device
JP6708744B2 (ja) データ伝送方法
WO2018082668A1 (zh) 无线通信方法和装置
KR20180127967A (ko) 무선 자원 제어 연결을 설정하기 위한 방법 및 장치
CN112153750B (zh) 一种随机接入的方法及通信装置
WO2022152003A1 (zh) 非激活态下数据传输方法及装置
JP6987143B2 (ja) ハイブリッド自動再送要求フィードバック方法及び装置
JP2019507968A (ja) サービス伝送のための方法、移動局及びネットワークデバイス
US20200396728A1 (en) Communication Method And Communications Apparatus
WO2021013254A1 (zh) 一种通信方法、装置及存储介质
JP7237983B2 (ja) 早期データ伝送のためのプロトコル・データ・ユニットの作成
WO2019137483A1 (zh) 数据包的传输方法及通信装置
CN115119311A (zh) 传输小数据的方法和通信装置
CN114424650A (zh) 获取侧行链路资源的方法和装置
WO2024027282A1 (zh) 通信方法、装置、设备以及存储介质
US20220159685A1 (en) Data transmission method and apparatus
WO2022067614A1 (zh) 无线通信方法、终端设备和网络设备
WO2022120516A1 (zh) 通信方法、设备和系统
CN111867063B (zh) 上行传输方法和通信装置
WO2021087886A1 (zh) 定时器设置方法及相关设备
CN113810949A (zh) 数据传输方法和装置
WO2024051428A1 (zh) 信息传输的方法和装置
WO2023245492A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022233033A1 (zh) 无线通信的方法及设备
US20240080817A1 (en) Wireless communication method, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848992

Country of ref document: EP

Kind code of ref document: A1