WO2024027277A1 - 一种小区标识配置方法及通信装置 - Google Patents

一种小区标识配置方法及通信装置 Download PDF

Info

Publication number
WO2024027277A1
WO2024027277A1 PCT/CN2023/094350 CN2023094350W WO2024027277A1 WO 2024027277 A1 WO2024027277 A1 WO 2024027277A1 CN 2023094350 W CN2023094350 W CN 2023094350W WO 2024027277 A1 WO2024027277 A1 WO 2024027277A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
identity
iab node
iab
cell identity
Prior art date
Application number
PCT/CN2023/094350
Other languages
English (en)
French (fr)
Inventor
孙飞
朱元萍
史玉龙
朱世超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027277A1 publication Critical patent/WO2024027277A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a cell identity configuration method and a communication device.
  • PCI Physical cell identifier
  • 5G fifth-generation
  • Each cell corresponds to a PCI.
  • the pre-configured PCI can be used to perform operations on different cells. Downlink signal synchronization, signal demodulation, signal switching and other operations.
  • the cell location is fixed, and the PCI configured for the cell is also fixed.
  • IAB integrated access and backhaul
  • the location of the IAB node in the IAB network is not fixed.
  • the cells under the IAB node can move flexibly. For example, if the location changes as the vehicle moves, if the PCI of the cell under the IAB node is still pre-configured to be a fixed value, signal collision may occur in cells with the same PCI configuration due to the change in the location of the IAB node. situation, so existing PCI preconfiguration methods are not applicable.
  • This application provides a cell identity configuration method and a communication device to adapt to the needs of mobile cells and avoid cell signal collisions.
  • this application provides a cell identity configuration method.
  • This method can be executed by the centralized unit of the IAB host node, that is, the donor CU.
  • the host node obtains the cell identity of the neighboring cell of the current first cell; the first cell is The serving cell under the first IAB node; the host node determines that the cell identity of the first cell is the same as the cell identity of the neighboring cell, then activates the second cell and switches the mobile terminal in the first cell to the second cell; the second cell The cell identity of is different from the cell identity of the adjacent cell, and the second cell is a cell other than the first cell under the first IAB node.
  • the host node obtains the cell identity of the neighbor cell of the serving cell of the IAB node, and determines that the cell identity of the neighbor cell is the same as the cell identity of the serving cell, that is, when there is a conflict, the host node activates the second cell under the IAB node, and can Switch the terminals in the previous serving cell to the second cell to receive services.
  • Configuring the cell identity in this way can avoid the conflict between the IAB cell and the cell identity of the neighboring cell during the movement, and ensure the stability of the business between the IAB node and the mobile terminal. , ensuring the service experience of the mobile terminal, and this method does not require reconfiguration of the cell identity of the current serving cell, avoiding the situation where the mobile terminal re-enters the network and the connection is interrupted.
  • the cell identity of the first cell is the same as the cell identity of the adjacent cell, including one or more of the following:
  • the first cell and adjacent cells use the same cell identity
  • the cell identity of the first cell is the same as the remainder modulo N of the cell identity of the adjacent cell, where N is 3 or 30.
  • the cell identity of the first cell is the same as the cell identity of the adjacent cell.
  • the same cell identity can be used, or the cell identity can be the same after taking a modulo. In this way, more cells that are the same as the first cell can be found. Identify conflicting cell identities to ensure the service quality of mobile terminals in the cell.
  • the cell identifier includes one of the following: PCI, global cell identifier (cell global identifier, CGI).
  • this application provides a cell identity configuration method, which can be executed by an IAB node, wherein the first IAB node obtains the cell identity of the neighboring cell of the current first cell; the first cell is under the first IAB node. serving cell; the first IAB node determines that the cell identity of the first cell is the same as the cell identity of the adjacent cell, and updates the cell identity of the first cell; the updated cell identity of the first cell is different from the cell identity of the adjacent cell.
  • the IAB node determines that the current serving cell of the mobile terminal is the same as the cell identity of the neighboring cell. In order to ensure the service quality of the mobile terminal, it directly updates the cell identity of the current serving cell so that the cell identity of the serving cell is consistent with that of the neighboring cell. The cell identities do not conflict.
  • the cell identity configuration method is relatively intuitive, easy to operate, and can ensure the business experience of mobile terminals.
  • updating the cell identity of the first cell includes: the first IAB node sending the cell identity of the first cell to the host node; and the first IAB node receiving the updated cell identity of the first cell from the host node.
  • the cell ID of a cell includes: the first IAB node sending the cell identity of the first cell to the host node; and the first IAB node receiving the updated cell identity of the first cell from the host node.
  • this application determines to update the cell identity of the first cell, it can also obtain the updated cell identity of the first cell from the host node, without the need for the IAB node to configure itself. In this way, the data processing volume of the IAB node can be reduced and the data processing efficiency can be improved. .
  • the cell identity of the first cell is the same as the cell identity of the adjacent cell, including one or more of the following:
  • the first cell and adjacent cells use the same cell identity
  • the cell identity of the first cell is the same as the remainder modulo N of the cell identity of the adjacent cell, where N is 3 or 30.
  • the cell identity of the first cell is the same as the cell identity of the adjacent cell.
  • the same cell identity can be used, or the cell identity can be the same after taking a modulo. In this way, more cells that are the same as the first cell can be found. Identify conflicting cell identities to ensure the service quality of mobile terminals in the cell.
  • the cell identifier includes one of the following: PCI or CGI.
  • the present application provides a cell identity configuration method, which can be executed by an IAB node, wherein the first IAB node obtains a corresponding relationship, and the corresponding relationship includes a corresponding relationship between parameter values of different first parameters and different cell identities.
  • the first parameter includes at least one of the following: service area, service time; the first IAB node determines the target parameter value of the first parameter; the first IAB node determines the corresponding Target cell identifier: Configure the target cell identifier to the first cell, and the first cell is any cell under the first IAB node.
  • the IAB node in order to avoid the conflict between the cell identity of the cell under its jurisdiction and the cell identity of the adjacent cell, the IAB node can configure the cell identity for the cell based on the service area or service time to ensure the global uniqueness of the cell identity. In this way, the service quality of the mobile terminal can be ensured, so that the cell identity of the serving cell does not conflict with the cell identity of the neighboring cell, and the service experience of the mobile terminal can be guaranteed.
  • the first IAB node determines the first service area based on the current location of the first IAB node, and uses the area information of the first service area as the target parameter value of the first parameter; or, The first IAB node determines the first service time based on the current time and uses the first service time as the target parameter value of the first parameter; or, the first The IAB node determines the second service area based on the current location of the first IAB node, and determines the second service time based on the current time; the first IAB node determines the area information of the second service area and the second service time as the first The target parameter value of the parameter.
  • the target parameter value of the first parameter determined in this way can be more flexible, accurate and reliable.
  • the cell identifier includes one of the following: PCI or CGI.
  • inventions of the present application provide a communication device.
  • the communication device may be a receiving device or a chip provided inside the receiving device, or may be a sending device or a chip provided inside the sending device.
  • the communication device has the function of implementing the first aspect, the second aspect, or the third aspect.
  • the communication device includes modules or units or means (means) corresponding to the steps involved in any one of the above first aspects.
  • the module or unit or means corresponding to the steps involved in executing any one of the above second aspects or the modules, units or means corresponding to the steps involved in any one of the above third aspects, and the functions, units or means can be implemented by Software implementation, or hardware implementation, or hardware can execute corresponding software implementation.
  • the communication device includes a processing unit and a transceiver unit, where the transceiver unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the transceiver unit is used to obtain the third The cell identity of a neighboring cell of a cell; the processing unit can be used to perform some internal operations of the communication device.
  • the transceiver unit may be called an input-output unit, a communication unit, etc., the transceiver unit may be a transceiver, and the processing unit may be a processor.
  • the transceiver unit may be an input-output interface, an input-output circuit, or an input-output pin, etc., and may also be called an interface, a communication interface, or an interface circuit, etc.;
  • the processing unit may be a processor, a processing circuit or a logic circuit, etc.
  • the communication device includes a processor and may also include a transceiver, the transceiver is used to send and receive signals, and the processor executes program instructions to complete the first aspect or the second aspect. method in any possible design or implementation.
  • the communication device may also include one or more memories, the memory is used to be coupled with the processor, and the memory may store the necessary computer to implement the functions involved in the above-mentioned first aspect, second aspect or third aspect. program or instructions.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements any possible design of the first aspect, the second aspect, or the third aspect, or Methods in the implementation.
  • the communication device includes a processor, which may be coupled to a memory.
  • the memory may store necessary computer programs or instructions to implement the functions involved in the above-mentioned first aspect, second aspect, or third aspect.
  • the processor can execute the computer program or instructions stored in the memory.
  • the communication device implements any possible design of the first aspect, the second aspect, or the third aspect, or Methods in the implementation.
  • the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit and execute any of the above first aspect, second aspect, or third aspect.
  • the processor can be implemented by hardware or software.
  • the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor can be implemented by software.
  • the processor may be a general-purpose processor implemented by reading software code stored in memory.
  • the above processors may include one or more, and the memory may include one or more.
  • the memory can be integrated with the processor, or the memory can be provided separately from the processor. During the specific implementation process, the memory and the processor can be integrated on the same chip, or they can be respectively provided on different chips.
  • the embodiments of this application do not specify the type of memory and the relationship between the memory and the processor. There are no restrictions on how to set up the device.
  • the present application provides a chip system, which includes a processor and may also include a memory, for implementing any of the possible designs of the first aspect, the second aspect, or the third aspect.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • the present application also provides a computer-readable storage medium.
  • Computer-readable instructions are stored in the computer-readable storage medium.
  • the computer executes the steps as described in the first aspect or the third aspect. Methods in any of the possible designs of the second aspect or the third aspect.
  • the present application provides a computer program product containing instructions that, when run on a computer, cause the computer to execute the method of each embodiment of the first aspect, the second aspect, or the third aspect.
  • Figure 1 shows a schematic diagram of a communication system provided by an embodiment of the present application
  • Figure 2A shows a schematic diagram of the IAB network user plane protocol stack
  • Figure 2B shows a schematic diagram of the IAB network control plane protocol stack
  • Figure 3 shows a schematic diagram of the IAB networking scenario
  • Figure 4A shows a schematic diagram of an IAB network architecture
  • Figure 4B shows a schematic diagram of another IAB network architecture
  • Figure 5 shows a schematic diagram of a mobile IAB node
  • Figure 6 shows a schematic diagram of a mobile IAB scenario
  • Figure 7 shows a schematic flow chart of a cell identity configuration method provided by an embodiment of the present application.
  • Figure 8A shows a schematic flowchart of another cell identity configuration method provided by an embodiment of the present application.
  • Figure 8B shows a schematic flowchart of yet another cell identity configuration method provided by an embodiment of the present application.
  • Figure 9 shows a schematic diagram of another mobile IAB scenario
  • Figure 10 shows a schematic flow chart of a cell identity configuration method provided by an embodiment of the present application.
  • Figure 11 shows a schematic flowchart of another cell identity configuration method provided by an embodiment of the present application.
  • Figure 12 shows a schematic flowchart of yet another cell identity configuration method provided by an embodiment of the present application.
  • Figure 13 shows a schematic flowchart of yet another cell identity configuration method provided by an embodiment of the present application.
  • Figure 14 shows a schematic flowchart of yet another cell identity configuration method provided by an embodiment of the present application.
  • Figure 15 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 16 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 17 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 1 is a schematic architectural diagram of a communication system applied in an embodiment of the present application.
  • the communication system includes core The heart network device 110, the wireless access network device 120, the wireless backhaul device 130 and at least one terminal device (exemplarily described as terminal device 140 and terminal device 150 in Figure 1).
  • the terminal equipment is connected to the wireless backhaul equipment through wireless means, and is connected to the wireless access network equipment through one or more wireless backhaul equipment. In addition, some terminal equipment can also be directly connected to the wireless access network equipment through wireless means) .
  • Wireless access network equipment is connected to core network equipment through wireless or wired methods.
  • the core network equipment and the radio access network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the radio access network equipment can be integrated on the same physical device, or they can be one physical device. It integrates some functions of core network equipment and some functions of wireless access network equipment, which is not limited in this application. Terminal equipment can be fixed or movable. It should be understood that the mobile communication system shown in Figure 1 is only a schematic diagram. The communication system may also include other network equipment, such as wireless relay equipment or wireless backhaul equipment, which are not shown in Figure 1 . Moreover, the embodiments of this application do not limit the number of core network equipment, wireless access network equipment, wireless backhaul equipment, and terminal equipment included in the mobile communication system.
  • the wireless access network equipment is the access equipment that the terminal equipment wirelessly accesses into the mobile communication system, and can be a base station NodeB, an evolved base station eNodeB, a base station in a 5G mobile communication system, or a base station in a future mobile communication system. Base stations or access nodes in WiFi systems, etc.
  • Terminal equipment can also be called terminal, UE, mobile station (MS), mobile terminal (mobile terminal, MT), etc.
  • the terminal device can be a mobile phone (mobile phone), tablet computer (Pad), computer with wireless transceiver function, virtual reality (VR) terminal device, augmented reality (AR) terminal device, industrial control (industrial control) ), wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • mobile phone mobile phone
  • tablet computer Pad
  • computer with wireless transceiver function virtual reality (VR) terminal device
  • AR augmented reality terminal device
  • industrial control industrial control
  • the wireless backhaul device can provide backhaul services for its sub-nodes.
  • it can be a relay node in a long term evolution (LTE) system, an IAB node in a 5G system, or other devices that can provide wireless relay functions.
  • Wireless access network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky.
  • the embodiments of this application do not limit the application scenarios of wireless access network equipment and terminal equipment.
  • Wireless access network equipment and terminal equipment, and terminal equipment and terminal equipment can communicate through licensed spectrum (licensed spectrum), unlicensed spectrum (unlicensed spectrum), or both licensed spectrum and unlicensed spectrum.
  • Wireless access network equipment and terminal equipment, and terminal equipment and terminal equipment can communicate through spectrum below 6 gigahertz (GHz), can also communicate through spectrum above 6GHz, and can also use spectrum below 6GHz at the same time. spectrum and spectrum above 6GHz for communication.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used between the radio access network device and the terminal device.
  • Each of the above network elements can be either a network element implemented on dedicated hardware, a software instance running on dedicated hardware, or an instance of a virtualized function on an appropriate platform.
  • the embodiments of this application may also be applied to other future-oriented communication technologies.
  • the network architecture and business scenarios described in this application are for the purpose of explaining the technical solutions of this application more clearly and do not constitute a limitation on the technical solutions provided by this application. Those of ordinary skill in the art will know that with the evolution of network architecture and new business scenarios, The technical solution provided by this application is also applicable to similar technical problems.
  • IAB network Considering the small coverage of high-frequency bands, in order to ensure network coverage performance and provide network coverage in some remote areas, fiber deployment is difficult and costly, and flexible and convenient access and backhaul solutions need to be designed. . IAB technology emerged as the times require. Its access link and backhaul link both use wireless transmission solutions to avoid fiber deployment and reduce equipment costs.
  • Multi-hop networking may be used in the IAB network.
  • IAB nodes can support dual connectivity (DC) or multi-connectivity (multi-connectivity) to cope with possible abnormal situations in the backhaul link (for example, interruption of the wireless link or (blockage and load fluctuation, etc.) to improve the reliability of transmission. Therefore, the IAB network can support multi-hop and multi-connection networking, and there may be multiple routing paths between the terminal device and the host base station. Among them, on a path, there is a certain hierarchical relationship between IAB nodes, as well as between the IAB node and the host base station serving the IAB node. Each IAB node regards the node that provides backhaul service as the parent node. Correspondingly, Each IAB node is considered a child node of its parent node.
  • wireless link failure or congestion may cause wireless link failure or congestion.
  • the wireless link between the UE and the IAB host node may be blocked.
  • the main reasons for wireless link failure are when the physical layer indicates that there is a problem with the wireless link for more than a certain period of time, or random access fails, or radio link layer control (radio link control, RLC) fails.
  • RLC radio link layer control
  • Wireless link congestion may mean that the amount of uplink or downlink cached data to be transmitted by an IAB node on a certain link exceeds a certain threshold.
  • the IAB node can include a mobile terminal (mobile termination, MT) part and a distributed unit (distributed unit, DU) part.
  • MT mobile terminal
  • DU distributed unit
  • the IAB node when the IAB node faces its parent node, it can be regarded as a terminal device that accesses the parent node, that is, it plays the role of MT; when the IAB faces its child node, it can be regarded as providing backhaul for the child node.
  • the service network device plays the role of DU.
  • the child node here may be another IAB node or terminal device.
  • the IAB host node can be an access network element with complete base station functions, such as the host base station DgNB, or it can be an access network element in the form of a centralized unit (CU) and DU separation.
  • the IAB host node is connected to Core network elements that serve terminal devices (for example, connected to the 5G core network) and provide wireless backhaul functions for IAB nodes.
  • the centralized unit of the IAB host node is referred to as donor CU
  • the distributed unit of the IAB host node is referred to as donor DU.
  • the donor CU may also be the control plane (CP) and user plane (user plane). , UP) separated form, for example, a CU can be composed of one CU-CP and one (or more) CU-UP.
  • the access IAB node refers to the IAB node that the terminal device accesses, that is, the IAB node that provides services for the terminal device.
  • the access IAB node transmits the uplink data packet sent by the terminal device to the target donor DU through one or more other IAB nodes, and the target donor DU then transmits the uplink data packet to the corresponding donor CU-UP.
  • the donor CU-UP will transmit the downlink data packet sent to the terminal device to the corresponding donor DU, through one or more other IAB nodes or through a direct connection back
  • the transmission link is transmitted to the access IAB node corresponding to the terminal device, and the access IAB node transmits the received downlink data packet to the terminal device;
  • donor CU-UP will send it to the IAB
  • the node's downlink data packet is transmitted to the corresponding donor DU, and is transmitted to the parent node of the IAB node through one or more other IAB nodes or through a direct backhaul link.
  • the parent node of the IAB node then transmits the received downlink data packet. So far IAB nodes.
  • the target node is the access IAB node corresponding to the terminal device. If the terminal node is an IAB node, the target node is the parent node of the IAB node.
  • the termination node is donor CU-UP, and the target node is the donor DU corresponding to donor CU-UP. Among them, the target node can also be called the target receiving node.
  • the target node is donor DU
  • the first node is the access IAB node, or the intermediate IAB node (hereinafter referred to as the access IAB node) between the access IAB node and the IAB host node is the intermediate IAB node)
  • the source node is the access IAB node.
  • the access IAB node here is the IAB node accessed by the terminal device that sends the uplink data packet. If the data packet is a downlink data packet sent to the terminal device, the destination node is the access IAB node, the first node is the donor DU, or the intermediate IAB node, the source node is the donor DU.
  • the access IAB node here is the node accessed by the terminal device that receives the downlink data packet; or if the data packet is a downlink data packet sent to the IAB node, the target node is the parent node of the IAB node, and the first node is the donor DU, or intermediate IAB node.
  • the backhaul adaptation protocol layer (BAP) is a newly introduced protocol layer in the IAB network. Its main function is to complete routing and bearer mapping in the IAB network.
  • the BAP layer exists on the DU side of the IAB host node, the intermediate IAB node, and the MT side of the access IAB node, and the BAP layer is located above the RLC protocol layer.
  • the MT and DU of the intermediate IAB node may share a backhaul adaptation layer entity, or the MT and DU may each have a separate backhaul adaptation layer entity.
  • FIG. 2A is a schematic diagram of the user plane protocol architecture in the IAB network
  • FIG. 2B is a schematic diagram of the control plane protocol architecture in the IAB network.
  • the peer protocol layers include the RLC layer, media access control (media access control, MAC) layer and physical (physical, PHY) )layer.
  • IAB node (node) 2-DU and IAB host (donor) CU-UP establish an F1-U interface.
  • the peer protocol layer includes general packet radio service (GPRS) user plane tunneling protocol (GPRS tunneling protocol) for the user plane (GTP-U) layer and user datagram protocol (UDP) layer.
  • GPRS general packet radio service
  • GTP-U user plane tunneling protocol
  • UDP user datagram protocol
  • IAB donor DU 1 and IAB donor CU 1 are connected through wired connections.
  • the peering protocol layers include the Internet Protocol (IP) layer, L2 and L1.
  • BL is established between IAB node 2 and IAB node 1, and between IAB node 1 and IAB donor DU.
  • the peer protocol layers include BAP layer, RLC layer, MAC layer and PHY layer.
  • SCTP peer-to-peer stream control transmission protocol
  • PDCP packet data convergence protocol
  • SCTP peer-to-peer stream control transmission protocol
  • PDCP packet data convergence protocol
  • a peer-to-peer IP layer is established between IAB donor DU-UP.
  • the DU of the IAB access node implements some functions of the single air interface gNB-DU (that is, establishing a peer-to-peer RLC layer, MAC with the terminal layer and PHY layer functions, as well as the functions of the GTP-U layer and UDP layer that establish peering with IAB donor CU-UP).
  • the DU of the IAB access node (IAB node 2) implements the function of gNB-DU with a single air interface; the IAB donor CU-UP implements the function of gNB-CU with a single air interface.
  • PDCP packets are encapsulated and transmitted in the GTP-U tunnel between the access IAB node (IAB node 2) and IAB donor CU-UP.
  • the GTP-U tunnel is established on the F1-U interface.
  • a Uu interface is established between the terminal and IAB node 2-DU.
  • the peer protocol layers include the RLC layer, MAC layer and PHY layer.
  • IAB node 2-DU and IAB donor CU 1 have an F1-C interface, and the peer protocol layers include F1 application protocol (F1 AP) and SCTP layer.
  • F1 AP application protocol
  • IAB donor DU and IAB donor CU-UP are connected through wired connections, and the peer protocol layers include IP layer, L2 and L1.
  • BL is established between IAB node 2 and IAB node 1, and between IAB node 1 and IAB donor DU.
  • the peer protocol layers include the Backhaul Adaptation Protocol (BAP) layer, RLC layer, and MAC layer. and the physical (PHY) layer.
  • BAP Backhaul Adaptation Protocol
  • RLC layer Radio Link Control Protocol
  • PHY physical
  • a peering RRC layer and a PDCP layer are established between the terminal and the IAB donor CU-UP, and a peering IP layer is established between the IAB node 1-DU and the IAB donor DU.
  • the BAP layer has at least one of the following capabilities: adding routing information (Routing info) that can be recognized by the IAB node to the data packet, performing routing based on the routing information that can be recognized by the IAB node, performing routing information for the data packet. Contains quality of service (QoS) mapping on multiple links of IAB nodes.
  • QoS quality of service
  • the bearer mapping on the multi-segment link may be: based on the identification of the terminal's radio bearer (RB) carried by the data packet in the backhaul link, performing from the terminal's RB to the RLC bearer on the backhaul link. Or mapping of RLC channels or logical channels.
  • the BAP performs the data radio bearer (DRB) or signaling radio bearer (SRB) of the terminal to the RLC bearer on the backhaul link.
  • DRB data radio bearer
  • SRB signaling radio bearer
  • the RLC bearer is a channel, such as a backhaul (BH) RLC channel (CH) in Figure 2A or 2B as an example.
  • BH backhaul
  • CH RLC channel
  • the control plane protocol stack of the IAB network is compared with the control plane protocol stack of a single air interface.
  • the DU connected to the IAB node (IAB node 2) implements the function of gNB-DU with a single air interface (that is, establishing peering with the terminal).
  • the DU connected to the IAB node in the IAB network implements the function of gNB-DU with a single air interface; the IAB donor C-UP implements the function of gNB-CU with a single air interface.
  • RRC messages are encapsulated and transmitted in F1AP messages between the access IAB node and IAB donor CU-UP.
  • the terminal encapsulates the RRC message in a PDCP protocol data unit (PDU), and sends it to IAB node 2-DU after being processed by the RLC layer, MAC layer and PHY layer in sequence.
  • PDU PDCP protocol data unit
  • IAB node 2-DU obtains PDCP PDU after being processed by the PHY layer, MAC layer and RLC layer in sequence, encapsulates the PDCP PDU in the F1AP message, and obtains the IP packet after being processed by the SCTP layer and IP layer in sequence, IAB node 2-MT
  • IAB node 1-DU After the IP packet is processed by the BAP layer, RLC layer, MAC layer and PHY layer, IAB node 1-DU, similarly, IAB node 1-MT sends the IP packet to IAB donor DU.
  • IAB donor DU parses the IP packet, it sends the IP packet to IAB donor CU-UP.
  • IAB donor CU-UP processes the IP packet through the SCTP layer, F1AP layer and PDCP layer in order to obtain the RRC message. The downward direction is similar and will not be described here.
  • an IAB node may have one or more roles, and the IAB node may have a protocol stack for the one or more roles; or, the IAB node may have a set of protocol stacks, and the protocol stack may be specific to the IAB node. Different roles are processed using the protocol layers corresponding to different roles. The following is an example of a protocol stack in which the IAB node has one or more roles:
  • the IAB nodes can act as ordinary terminals when accessing the IAB network.
  • the MT of the IAB node has the protocol stack of an ordinary terminal, such as the protocol stack of the terminal in Figure 2A and Figure 2B, that is, the RRC layer, the PDCP layer, the RLC layer, the MAC layer and the PHY layer.
  • the RRC message of the IAB node is encapsulated in the F1AP message between the parent node of the IAB node and the IAB donor CU; on the user plane, the PDCP packet of the IAB node is encapsulated in the F1AP message between the parent node of the IAB node and the IAB donor CU. Transmitted in GTP-U tunnel.
  • the IAB node can still act as a normal terminal, for example, transmit its own uplink and/or downlink data packets with the IAB donor, perform measurements through the RRC layer, etc.
  • the IAB node After the IAB node is connected to the IAB network, the IAB node can provide access services to the terminal, thereby acting as an access IAB node. At this time, the IAB node has a protocol stack for accessing the IAB node, such as Figure 2A and Figure 2 The protocol stack of IAB node 2 in 2B.
  • the IAB node's interface facing its parent node can have two sets of protocol stacks, one is the protocol stack for ordinary terminals, and the other is the protocol stack that provides backhaul services for terminals (ie: access protocol stack of the IAB node).
  • the same protocol layers of the two sets of protocol stacks can be shared.
  • the two sets of protocol stacks correspond to the same RLC layer, MAC layer, PHY layer, or BAP layer.
  • the IAB node After the IAB node is connected to the IAB network, the IAB node can act as an intermediate IAB node. At this time, the IAB node has the protocol stack of the intermediate IAB node, such as the protocol stack of IAB node 1 in Figure 2A and Figure 2B.
  • the IAB node's interface facing its parent node can have two sets of protocol stacks, one is a protocol stack for ordinary terminals, and the other is a protocol stack that provides backhaul services for child IAB nodes (i.e.: The protocol stack of the intermediate IAB node).
  • the same protocol layers of the two sets of protocol stacks can be shared.
  • the two sets of protocol stacks correspond to the same RLC layer, MAC layer, PHY layer, or BAP layer.
  • the IAB node can play the role of an access IAB node and an intermediate IAB node at the same time.
  • the IAB node can be an access IAB node for some terminals, and an intermediate IAB node for other terminals.
  • the IAB node There can be three sets of protocol stacks, one is the protocol stack of the above-mentioned ordinary terminal, one is the protocol stack of the access IAB node, and one is the protocol stack of the intermediate IAB node.
  • the same protocol layers of the three sets of protocol stacks can be shared.
  • the three sets of protocol stacks all correspond to the same RLC layer, MAC layer, PHY layer, or BAP layer.
  • Figure 2A and Figure 2B are introduced using the IAB network as an example.
  • the contents of Figure 2A and Figure 2B are also applicable to other types of relay networks other than the IAB network.
  • the control plane protocol stack architecture of the relay network can refer to Figure 2B
  • the user plane protocol stack architecture of the relay network can refer to Figure 2A.
  • the IAB node in Figure 2A and Figure 2B can be replaced with a relay.
  • IAB node 2 can be replaced with relay node 2
  • IAB node 1 can be replaced with relay node 1
  • IAB donor can be replaced with a host node.
  • Host The node has CU and DU protocol stacks, and the remaining contents are the same as those described in Figures 2A and 2B.
  • FIG. 3 shows a schematic diagram of the IAB networking scenario.
  • the parent node of IAB node 1 is DgNB
  • IAB node 1 is the parent node of IAB node 2 and IAB node 3
  • IAB node 2 and IAB node 3 are both the parent nodes of IAB node4
  • the parent node of IAB node 5 is IAB node 3.
  • the uplink data packet sent by UE1 can be transmitted to the DgNB via one or more IAB nodes, and then sent by the DgNB to the mobile gateway device (for example, the user plane functional unit in the 5G core network).
  • the downlink data packet will be received by the DgNB from the mobile gateway device and then sent to UE1 through one or more IAB nodes. The same applies to UE2.
  • path 1 UE1 ⁇ IAB node4 ⁇ IAB node3 ⁇ IAB node 1 ⁇ DgNB
  • path 2 UE1 ⁇ IAB node4 ⁇ IAB node2 ⁇ IAB node 1 ⁇ DgNB.
  • IAB node4 is the access IAB node of UE1.
  • IAB node3 and IAB node 1 are intermediate IAB nodes.
  • IAB node2 and IAB node 1 are intermediate IAB nodes.
  • DgNB is the target node.
  • path 3 UE2 ⁇ IAB node4 ⁇ IAB node3 ⁇ IAB node 1 ⁇ DgNB
  • path 4 UE2 ⁇ IAB node4 ⁇ IAB node2 ⁇ IAB node 1 ⁇ DgNB
  • path 5 UE2 ⁇ IAB node5 ⁇ IAB node2 ⁇ IAB node 1 ⁇ DgNB.
  • IAB node4 is the access IAB node of UE1, IAB node3 and IAB node 1 are the intermediate IAB nodes.
  • IAB node4 is the access IAB node of UE1, IAB node2 and IAB node 1 are Intermediate IAB node
  • IAB node5 is the access IAB node of UE1, IAB node2 and IAB node 1 are intermediate IAB nodes.
  • DgNB is the target node.
  • Figure 4A shows a schematic diagram of an IAB network architecture, including an independent networking (SA) IAB network and a non-standalone networking (NSA) IAB network.
  • IAB node includes MT part and DU part.
  • Figure 4A takes IAB node1 and IAB node2 as examples to illustrate.
  • IAB donor can be further divided into DU and CU parts.
  • CU can also be divided into CU-CP and CU-UP parts.
  • Figure In 4A IAB donor1 and IAB donor2 are used as examples to illustrate.
  • the DU part of each IAB node has an F1 interface with the IAB donor CU.
  • the F1 interface includes two parts: the control plane and the user plane.
  • the user plane part is maintained between IAB-DU and IAB donor CU-UP.
  • the control surface part is maintained between IAB-DU and IAB donor CU-CP.
  • the F1 interface between IAB-DU and IAB donor CU is not shown in Figure 4A.
  • the UE and the DU of the IAB node are connected through the NR Uu interface, and the MT and DU in each IAB node are connected through the NR BH interface.
  • IAB donor CU-CP and IAB donor CU-UP are connected through the E1 interface.
  • the IAB node When the IAB node works in SA mode, the IAB node can be single-connected to one parent node, or dual-connected to two parent nodes.
  • the two parent nodes can be controlled by the same IAB donor, or controlled by different IAB donors. .
  • the IAB donor can be connected to the 5G core network (5G core, 5GC), which is the dotted line part in the figure.
  • IAB-donor-CU-CP is connected to the control plane network element in 5GC (such as access and mobility management function AMF) through the NG control plane interface (NG-C), and IAB-donor-CU-UP is connected to the control plane network element through the NG control plane interface (NG-C).
  • the NG user plane interface (NG-U) is connected to the user plane network elements in 5GC (such as user plane function UPF).
  • IAB-donor-CU-UP can connect to the EPC through the S1 user plane interface (such as connecting to the serving gateway (SGW)), MeNB and IAB There is an LTE Uu air interface connection between the MTs of the node. There is an X2/Xn-C interface between the MeNB and IAB-donor-CU-CP.
  • the MeNB is connected to the EPC through the S1 interface (including the S1 interface user plane and the S1 interface control plane). .
  • IAB-donor-CU-UP and EPC are connected through the S1 interface user plane (S1-U).
  • the MeNB in Figure 4A can also be replaced by the 5G base station gNB.
  • the dotted LTE-Uu interface in Figure 4A is correspondingly replaced with the NR-Uu interface.
  • the gNB can establish a user plane and 5G base station with the 5GC. / Or control plane interface, gNB and IAB-donor provide dual connection services for IAB nodes. gNB can serve as the main base station of the IAB node, or the role of the secondary base station.
  • FIG. 4B shows a schematic diagram of another IAB network architecture.
  • This network structure is an IAB network architecture based on Open RAN (Open RAN, O-RAN).
  • RIC is an O-RAN intelligent controller, which is used to collect network information and To perform necessary optimization tasks, it communicates with Donor-CU and IAB-DU through the E2 interface, that is, RIC can directly control IAB-DU, or control IAB-DU through Donor-CU.
  • Cell identification It can be indicated by PCI or CGI. It is an important parameter of the cell. Each cell will correspond to a cell. Area identification is used to distinguish different cells. Based on the cell identification, downlink signal synchronization, signal demodulation and signal switching can be performed.
  • the cell identifier is PCI as an example for detailed explanation.
  • 5G includes a total of 1,008 PCIs, of which 10,008 PCIs are divided into 336 groups, each group including 3 PCIs, as follows:
  • PCI planning mainly follows the following principles:
  • Adjacent cells cannot be assigned the same PCI. If neighboring cells allocate the same PCI, the UE will not be able to detect the neighboring cells in the overlapping coverage area, affecting handover and camping.
  • the frequency of the serving cell is the same, and the adjacent cells cannot be assigned the same PCI. If the same PCI is assigned, when the UE reports the neighbor cell PCI to the base station where the source cell is located, the source base station cannot determine the target switching cell based on the PCI.
  • PCI mode30 Based on 3GPP PUSCH DMRS ZC sequence group number is related to PCI mode30; for PUCCH DMRS and SRS, the algorithm uses PCI mode30 as the high-level configuration ID to select the sequence group. Therefore, the PCI mode30 of adjacent cells should be staggered as much as possible to ensure the correct demodulation of the uplink signal.
  • the cell identity can be configured through OAM, or the IAB node establishes the F1 interface with the CU and reports the configured cell identity to the CU, or the CU reconfigures the cell based on the cell identity and other information reported by the IAB node.
  • the identification is not explained in detail here. In short, the cell identification is pre-configured.
  • the IAB node is fixed at a certain location, that is, deployed statically.
  • the IAB node can be installed on the vehicle and moved with the vehicle, as shown in Figure 5.
  • vehicle VMR1 receives services under gNB1.
  • Vehicle VMR1 is equipped with IAB node 1.
  • the cell identifier configured under IAB node 1 is PCI#1.
  • VMR1 moves to gNB2 to receive services.
  • gNB2 also provides services for vehicle VMR2.
  • the subordinate of IAB node 2 carried by VMR2 is also configured with cell identity PCI#1, then the two cell identities are the same, cell collision will occur, affecting traffic. letter quality.
  • the existing static PCI configuration method is no longer applicable.
  • static PCI if static PCI is used, it may conflict with the PCI of neighboring cells during the movement of IAB cells. A new method is urgently needed. Cell ID configuration method to avoid signal collision.
  • the IAB-DU of IAB node 1 performs data transmission under the management of Donor-CU.
  • the IAB-DU of IAB node 1 is still under the management of Donor-CU. Data transmission is performed under this condition. It can be understood that when IAB node 1 moves from location 1 to location 2, it does not switch the serving Donor-CU.
  • this application provides a cell identity configuration method, which can be performed through the interaction between UE, IAB node and host node (Donor-CU), where the IAB node includes IAB-DU and IAB-MT.
  • the host node can establish F1 connections with multiple IAB nodes for data exchange.
  • only one IAB node is used as an example.
  • it is not limited to the IAB node when configuring the cell identifier. quantity.
  • the IAB node is the first IAB node, and the first IAB node includes IAB1-MT and IAB1-DU.
  • the host node is Donor-CU1 as an example. Execute as follows:
  • Step 701a IAB1-MT obtains the cell identifier of the neighboring cell of the current first cell, and the first cell is the serving cell under the first IAB node.
  • Step 701b The UE obtains the cell identity of the neighboring cell of the current first cell.
  • steps 701a and 701b can be selectively executed, or both can be executed.
  • This application is not specifically limited here, but the neighboring cells of the first cell obtained by the IAB-MT may be the same as the neighboring cells of the first cell obtained by the UE. Neighboring cells of a cell may be the same or different.
  • the cell identifiers of neighboring cells obtained by the IAB-MT and the UE may be partially or entirely the same, which is not specifically limited in this application.
  • the neighboring cells of the first cell may be cells under other IAB nodes (the IAB node may be mobile or fixed), or may be cells under non-IAB nodes, that is, conventional
  • the configured cell is not specifically limited in this application.
  • IAB1-MT is currently located at location A.
  • Cell 1 of IAB1 is currently a serving cell (that is, a cell that provides communication services for mobile terminals under the first IAB node).
  • Its neighboring cells include the IAB node, that is, cell X under IAB2. and cell A under a non-IAB node, then IAB1-MT can obtain the cell identifiers of cell Then IAB1-MT can obtain the cell ID of cell Y.
  • the cell identifier may be PCI or CGI, which is not specifically limited in this application.
  • Step 702a IAB1-MT sends the cell identifier of the neighboring cell to Donor-CU1.
  • Step 702b The UE sends the cell identity of the neighboring cell to Donor-CU1.
  • step 701a and step 701b can be selectively executed, or both can be executed. This application is not specifically limited here, but when step 701a exists, step 702a must exist, and when step 701b exists, there must exist Step 702b.
  • Donor-CU1 obtains the cell identity of the neighboring cell.
  • Step 703 Donor-CU1 determines that the cell identity of the first cell is the same as the cell identity of the adjacent cell, and then activates the second cell; the cell identity of the second cell is different from the cell identity of the adjacent cell, and the second cell is in the first IAB node. Cells other than the first cell.
  • the cell identity of the first cell and the cell identity of the adjacent cell may include the following situations:
  • Case 1 The first cell and the adjacent cell use the same cell identity; where the same cell identity can be used What is understood to be partially the same can also be understood to be completely identical.
  • the cell identities of the first cell include PCI1, PCI2, and PCI3, and the cell identities of the adjacent cells of the first cell include: PCI1, PCI3, and PCI5.
  • the cell identities PCI1 and PCI3 of the first cell are the same as the PCI1 and PCI3 of the adjacent cells. If they are the same, it can be understood that the same cell identifier is used.
  • the cell identifiers of the first cell include PCI1 and PCI2, and the cell identifiers of the neighboring cells of the first cell include: PCI1 and PCI2.
  • the cell identifiers PCI1 and PCI2 of the first cell are the same as the PCI1 and PCI2 of the neighboring cells, which can be understood as Use the same cell ID.
  • Case 2 The cell identity of the first cell and the cell identity of the adjacent cell are the same after taking the remainder modulo N; where N can be 3 or 30.
  • N When processing the synchronization signal, N is 3, and when processing the uplink reference signal, N is 30.
  • the cell identities of the first cell include PCI1 and PCI3
  • the cell identities of the adjacent cells of the first cell include: PCIA and PCIB, where the remainder of the cell identities PCI1 and PCI3 of the first cell and the PCIA and PCIB of the adjacent cells modulo 3 are taken. If they are the same, it can be understood that the same cell identifier is used.
  • the cell identity of the first cell is the same as that of the adjacent cell. It can be seen that there is a conflict between the cell identities of the first cell and the adjacent cell, so as to avoid continuing to use the current cell identity to affect the terminal service quality.
  • Donor-CU1 and IAB1-DU have established an F1 connection, and both Donor-CU1 and IAB1-DU know the activated cells and inactive cells under the first IAB node. You can refer to the following steps to activate the second cell:
  • Step 703a Donor-CU1 sends a GNB-CU CONFIGURATION UPDATE (configuration update) instruction to IAB1-DU, which is used to determine the activation of the second cell.
  • GNB-CU CONFIGURATION UPDATE configuration update
  • Step 703b IAB1-DU activates the second cell.
  • Step 703c IAB1-DU sends GNB-CU CONFIGURATION UPDATE ACK (configuration update confirmation) to Donor-CU1.
  • Step 704 Donor-CU1 switches the mobile terminal (that is, UE) in the first cell to the second cell.
  • the first cell can be deactivated and reactivated when there is other communication requirements.
  • Configuring the cell identity in this way can avoid the conflict between the IAB cell and the cell identity of the neighboring cell during the movement, and can ensure the stability of the business between the IAB node and the mobile terminal, and ensure the service experience of the mobile terminal, and this method does not require reconfiguration of the current location.
  • the cell identification of the former serving cell avoids the situation where the mobile terminal re-enters the network and the connection is interrupted.
  • Donor-CU can configure a globally unique cell identity for the cells under the IAB node to distinguish the existing cell identities, thereby ensuring that the IAB node moves It does not conflict with the cell identities of other cells.
  • cell 1 under IAB node 1 is configured with cell identities IAB1-PCI1, etc. There is no specific limit here. It is enough to ensure that the cell identities of cells under IAB node are globally unique.
  • the cell identity under the IAB node still uses the existing configuration method, but Donor-CU can additionally broadcast the indication information of the IAB cell.
  • the Donor-CU sends the indication information of the IAB cell to the IAB-DU.
  • the IAB-DU internally transmits the indication information to the UE, so that the UE accessing the IAB node can distinguish the cell identity and avoid conflicts.
  • the indication information sent by the Donor-CU includes information such as the cell identity belonging to the cell 1 of the IAB node 1. .
  • the IAB node can report the identity of the IAB node to Donor-CU through IAB-MT or IAB-DU, or report an indication message that the cell identity under the IAB node does not need to be changed, then Donor-CU directly broadcasts the identity of the IAB node. Identification information allows mobile terminals under the IAB node to distinguish neighboring cells when they find that they have the same identity to avoid conflicts.
  • the IAB-DU can send the IAB node identifier through the F1 message
  • the IAB-MT can send the IAB node identifier to the Donor-CU through the RRC message.
  • the Donor-CU can additionally broadcast the IAB node identifier so that the UE can discover the IAB.
  • IAB-DU can also send indication information that the cell identity under the IAB node does not need to be changed to avoid Donor-CU reconfiguring the cell identity under the IAB node.
  • IAB node 1 sends the identity 1 of IAB node 1 to Donor-CU. Then, the instruction information that does not need to be changed is sent to Donor-CU, then Donor-CU will not reconfigure the cell identity under IAB node 1.
  • the IAB-DU of IAB node 1 performs data transmission under the management of Donor-CU1.
  • the IAB-DU of IAB node 1 is under the management of Donor-CU2.
  • Data transmission can be understood as IAB node 1 switching the serving Donor-CU when moving from location 1 to location 2.
  • this application provides a cell identity configuration method, which can be performed through the interaction between the IAB node and the first host node (Donor-CU1) and the second host node (Donor-CU2), where the IAB node includes IAB1-DU and IAB1-MT. Execute as follows:
  • Step 1001 Donor-CU1 sends a handover request message to Donor-CU2.
  • the handover request message includes the cell configuration information under the first IAB node.
  • the cell configuration information under the first IAB node includes the cell identification of the activated cell and the cell identification of the inactive cell.
  • Donor-CU1 is configured with activated cells: cell identity PCI1 of cell 1 and cell identity PCI2 of cell 2, and inactive cells: cell identity PCI3 of cell 3 and cell identity PCI4 of cell 4.
  • Step 1002 Donor-CU2 replies with a handover request response message.
  • the handover request response message includes the cell configuration information under the reconfigured first IAB node; the cell identifier of the reconfigured first IAB node is different from the cell identifier of the neighboring cell.
  • Donor-CU2 finds that after the F1 interface is switched, the cell identity of the new cell to be activated under the first IAB node conflicts with the cell identity of the neighboring cell.
  • the cell identity of the new cell to be activated can be reconfigured. logo.
  • Step 1003 Donor-CU1 sends an activation indication message to IAB1-DU.
  • the activation indication message includes the reconfigured cell configuration information under the first IAB node.
  • Step 1004 Donor-CU2 establishes an F1 connection with the first IAB node.
  • Configuring the cell identity in this way can prevent the IAB cell from conflicting with the cell identity of the neighboring cell during the movement process and when switching the host node, and can ensure the stability of the business between the IAB node and the mobile terminal, and ensure the service of the mobile terminal. experience.
  • Step 1101 IAB1-MT obtains the cell identifier of the neighboring cell of the current first cell, and the first cell is the serving cell under the first IAB node.
  • Step 1102A IAB1-MT determines that the cell identity of the first cell is the same as the cell identity of the adjacent cell, and instructs IAB1-DU to update the cell identity of the first cell.
  • step 703 the cell identity of the first cell is the same as the cell identity of the adjacent cell, which will not be described again here.
  • Step 1102B IAB1-DU updates the cell identity of the first cell; the updated cell identity of the first cell is different from the cell identity of the adjacent cell.
  • Step 1103A IAB1-MT sends the cell identifier of the first cell to Donor-CU.
  • Step 1103B Donor-CU updates the cell identity of the first cell.
  • Step 1103C Donor-CU sends the updated cell identity of the first cell to the first IAB node.
  • steps 1102A to 1102B and steps 1103A to 1103B can be optionally executed, and are not specifically limited in this application.
  • IAB1-MT sends the cell identity of the first cell to Donor-CU1, and updates the cell identity of the first cell based on the process of switching Donor-CU in Figure 10 above. .
  • Configuring the cell identity in this way can avoid conflicts between the IAB cell and the cell identity of neighboring cells during the movement process, and can ensure the stability of the business between the IAB node and the mobile terminal and ensure the service experience of the mobile terminal.
  • Step 1201 The first IAB node obtains a corresponding relationship.
  • the corresponding relationship includes a corresponding relationship between parameter values of different first parameters and different cell identities.
  • the first parameters include at least one of the following: service area and service time.
  • the corresponding relationship may be issued by the Donor-CU that has a connection relationship with the first IAB node, or may be configured by the network, such as OAM, which is not specifically limited in this application.
  • the corresponding relationship can be configured with reference to the following Table 2.
  • Table 2 In actual application, only the first and second columns of Table 2 may exist, or only the first and third columns may exist, or all three columns may exist. , this application is not specifically limited here.
  • the cell of the IAB node can be configured with the PCIA cell identifier.
  • Step 1202 The first IAB node determines the target parameter value of the first parameter.
  • the first IAB node may determine the first service area based on the current location of the first IAB node, and use the area information of the first service area as the target parameter value of the first parameter; for example, the first IAB The node is at position 1 with longitude 30 and latitude 120. This position 1 happens to be in area A. Then area A can be used as the target parameter value of the first parameter.
  • the first IAB node can determine the first service time based on the current time, and use the first service time as the target parameter value of the first parameter; for example, the current time is 14 o'clock, which happens to be within the range of time period 1 within, then time period 1 can be used as the target parameter value of the first parameter.
  • the first IAB node can also determine the second service area based on the current location of the first IAB node, and determine the second service time based on the current time; the first IAB node determines the area of the second service area.
  • the information and the second service time are jointly determined as the target parameter value of the first parameter.
  • the current time is 14 o'clock, which is exactly within the range of time period 1.
  • the first IAB node is at position 2 with longitude 35 and latitude 125. This position 2 happens to be in area B. Then time period 1 and area B can be used together as The target parameter value of the first parameter.
  • Step 1203 The first IAB node determines the corresponding target cell identifier according to the corresponding relationship and the target parameter value of the first parameter, and configures the target cell identifier to the first cell.
  • the first cell is any cell under the first IAB node.
  • the IAB node is configured based on the service area or service time to ensure the global uniqueness of the cell identity. In this way, the service of the mobile terminal can be guaranteed.
  • the quality of service ensures that the cell identity of the serving cell does not conflict with the cell identity of neighboring cells, and the service experience of mobile terminals can be guaranteed.
  • Step 1301A The IAB-DU reports the configuration information of the cell identity of the cell under the IAB-DU through the E2 interface.
  • Step 1301B Donor-CU reports the configuration information of the cell identity of the cell under Donor-CU through the E2 interface.
  • steps 1301A and 1301B can be selectively executed, or both can be executed, and are not specifically limited in this application.
  • the RIC can learn the configuration information of the cell identities of multiple cells under it.
  • Step 1302 Donor-CU determines the cell identity of the conflicting IAB-DU and reports the cell identity of the conflicting IAB-DU to the RIC.
  • the RIC may determine whether there is a conflict by itself after obtaining the reported configuration information of the cell identity of the cell, which is not specifically limited in this application.
  • Step 1303 The RIC sends the cell identifier of the conflicting IAB-DU that needs to be reconfigured to the Donor-CU.
  • Step 1304 Donor-CU reconfigures the cell identity of the conflicting IAB-DU.
  • Step 1305 The RIC reconfigures the cell identity of the IAB-DU of the conflicting cell.
  • steps 1303 to 1304 and step 1305 can be optionally executed, and are not specifically limited in this application.
  • Step 1401 RIC delivers the corresponding relationship to the IAB-DU through the E2 interface.
  • the corresponding relationship includes the corresponding relationship between the parameter values of different first parameters and different cell identities.
  • the first parameters include at least one of the following: service area, service time . This process can be understood with reference to the above-mentioned step 1201, and will not be repeated in detail here.
  • Step 1402 IAB-DU determines the target parameter value of the first parameter. This process can be understood with reference to the above-mentioned step 1202, and will not be repeated in detail here.
  • Step 1403 The IAB-DU determines the corresponding target cell identifier according to the corresponding relationship and the target parameter value of the first parameter, and configures the target cell identifier to the first cell.
  • the first cell is any cell under the first IAB node.
  • Configuring the cell identity based on the service area and/or service time can avoid the conflict between the IAB cell and the cell identity of the neighboring cell during the movement process, and can ensure the stability of the business between the IAB node and the mobile terminal, and ensure the service experience of the mobile terminal.
  • each device may include a corresponding hardware structure and/or software module to perform each function.
  • each device may include a corresponding hardware structure and/or software module to perform each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide the device into functional units according to the above method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • FIG. 15 shows a possible exemplary block diagram of the communication device involved in the embodiment of the present application.
  • the communication device 1500 may include: a processing unit 1501 and a transceiver unit 1502.
  • the processing unit 1501 is used to control and manage the operations of the communication device 1500 .
  • the transceiver unit 1502 is used to support communication between the communication device 1500 and other devices.
  • the transceiver unit 1502 may include a receiving unit and/or a sending unit, Used to perform receiving and sending operations respectively.
  • the communication device 1500 may also include a storage unit for storing program codes and/or data of the communication device 1500 .
  • the transceiver unit may be called an input-output unit, a communication unit, etc.
  • the transceiver unit may be a transceiver
  • the processing unit may be a processor.
  • the communication device is a module (such as a chip) in a communication device
  • the transceiver unit may be an input-output interface, an input-output circuit, or an input-output pin, etc., and may also be called an interface, a communication interface, or an interface circuit, etc.
  • the processing unit may be a processor, a processing circuit or a logic circuit, etc.
  • the device may be the above-mentioned terminal equipment, IAB-DU, donor CU, etc.
  • the transceiver unit 1502 of the communication device 1500 obtains the cell identity of the neighboring cell of the current first cell; the first cell is the serving cell under the first IAB node; the processing unit 1501 is used to determine the cell identity of the first cell. If the cell identity of the second cell is the same as that of the adjacent cell, activate the second cell and switch the mobile terminal in the first cell to the second cell; the cell identity of the second cell is different from that of the adjacent cell, and the second cell is the first IAB. Cells under the node except the first cell.
  • the cell identity of the first cell is the same as the cell identity of the adjacent cell, including one or more of the following: the first cell and the adjacent cell use the same cell identity; or the first cell uses the same cell identity as the adjacent cell.
  • the cell identity is the same as the remainder modulo N of the cell identity of the adjacent cell, where N is 3 or 30.
  • the cell identifier includes one of the following: PCI or CGI.
  • the transceiver unit 1502 of the communication device 1500 obtains the cell identity of the neighboring cell of the current first cell; the first cell is the serving cell under the first IAB node; the processing unit 1501 is used to determine the cell identity of the first cell. If the identity is the same as the cell identity of the adjacent cell, the cell identity of the first cell is updated; the updated cell identity of the first cell is different from the cell identity of the adjacent cell.
  • the transceiver unit 1502 when the transceiver unit 1502 obtains the cell identity of the neighboring cell of the current first cell, it may be used to send the cell identity of the first cell to the host node; and receive the updated cell identity of the first cell from the host node. Community ID.
  • the cell identity of the first cell is the same as the cell identity of the adjacent cell, including one or more of the following: the first cell and the adjacent cell use the same cell identity; or the first cell uses the same cell identity as the adjacent cell.
  • the cell identity is the same as the remainder modulo N of the cell identity of the adjacent cell, where N is 3 or 30.
  • the cell identifier includes one of the following: PCI or CGI.
  • the transceiver unit 1502 of the communication device 1500 obtains a corresponding relationship.
  • the corresponding relationship includes a corresponding relationship between parameter values of different first parameters and different cell identities.
  • the first parameters include at least one of the following: service area, service time; the processing unit 1501 is used to determine the target parameter value of the first parameter; determine the corresponding target cell identifier according to the corresponding relationship and the target parameter value of the first parameter, and configure the target cell identifier to the first cell. It is any cell under the first IAB node.
  • the processing unit 1501 when it determines the target parameter value of the first parameter, it may determine the first service area based on the current location of the first IAB node, and use the area information of the first service area as The target parameter value of the first parameter; or, the processing unit 1501 can determine the first service time based on the current time, and use the first service time as the target parameter value of the first parameter; or, the processing unit 1501 can determine the first service time based on the current first IAB node
  • the first IAB node determines the second service area and the second service time based on the current time; the first IAB node determines the area information of the second service area and the second service time as the target parameter value of the first parameter.
  • the first IAB node may be the communication device 1500 or the communication device where the communication device 1500 is located.
  • the cell identifier includes one of the following: PCI or CGI.
  • the terminal device takes a mobile phone as an example.
  • the terminal equipment includes a processor, memory, radio frequency circuit, antenna and input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, process data of software programs, etc.
  • Memory is mainly used to store software programs and data.
  • Radio frequency circuits are mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG 16. For ease of illustration, only one memory and processor are shown in Figure 16. In an actual terminal device product, there may be one or more processors and one or more memories. Memory can also be called storage media or storage devices. The memory may be provided independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and the radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device 1600 includes a transceiver unit 1610 and a processing unit 1620.
  • the transceiver unit 1610 may also be called a transceiver, a transceiver, a transceiver device, etc.
  • the processing unit 1620 may also be called a processor, a processing board, a processing module, a processing device, etc.
  • the devices used to implement the receiving function in the transceiving unit 1610 can be regarded as receiving units, and the devices used in the transceiving unit 1610 used to implement the transmitting function can be regarded as sending units. That is, the transceiving unit 1610 includes a receiving unit and a transmitting unit.
  • the transceiver unit may sometimes also be called a transceiver, transceiver, or transceiver circuit.
  • the receiving unit may also be called a receiver, receiver, or receiving circuit.
  • the sending unit may sometimes be called a transmitter, transmitter or transmitting circuit.
  • transceiving unit 1610 is used to perform sending operations and receiving operations on the terminal device in the above method embodiment
  • processing unit 1620 is used to perform other operations on the terminal device in addition to the sending and receiving operations in the above method embodiment.
  • the chip When the terminal device is a chip, the chip includes a transceiver unit 1610 and a processing unit 1620.
  • the transceiver unit 1610 may be an input-output circuit or a communication interface;
  • the processing unit 1620 is a processor or microprocessor, integrated circuit or logic circuit integrated on the chip.
  • This application also provides a network device.
  • FIG 17 it is a schematic structural diagram of a network device 1700 provided by an embodiment of the present application.
  • the network device 1700 can be applied to the system shown in Figure 1.
  • the network device 1700 can be an IAB-DU or a donor CU. Use To perform the functions of the network device in the above method embodiment. It should be understood that the following are only examples. In future communication systems, network equipment may have other forms and configurations.
  • the network device 1700 may include CU, DU and AAU. Compared with the network device in the LTE communication system, it consists of one or more radio frequency units, such as remote radio unit (RRU). ) and one or more indoor baseband processing units (building base band unit, BBU):
  • RRU remote radio unit
  • BBU building base band unit
  • the non-real-time part of the original BBU will be separated and redefined as CU, which is responsible for processing non-real-time protocols and services.
  • Some of the physical layer processing functions of the BBU will be merged with the original RRU and passive antenna into AAU, and the remaining functions of the BBU will be redefined as DU.
  • CU and DU are distinguished by the real-time nature of processing content, and AAU is a combination of RRU and antenna.
  • CU, DU, and AAU can be separated or combined. Therefore, there will be multiple network deployment forms.
  • One possible deployment form is shown in Figure 17, which is consistent with traditional 4G network equipment.
  • CU and DU are deployed on the same hardware. It should be understood that Figure 17 is only an example and does not limit the scope of protection of this application.
  • the deployment form can also be DU deployed in the BBU computer room, CU centralized deployment or DU centralized deployment, CU centralized at a higher level, etc.
  • the AAU 1800 can implement transceiver functions corresponding to the transceiver unit 1502 in Figure 15.
  • the AAU 1800 may also be called a transceiver, a transceiver circuit, a transceiver, etc., and may include at least one antenna 1801 and a radio frequency unit 1802.
  • the AAU 1800 may include a receiving unit and a transmitting unit.
  • the receiving unit may correspond to a receiver (or receiver or receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the internal processing functions that can be implemented by the CU and DU 1900 correspond to the functions of the processing unit 1501 in Figure 15.
  • the CU and DU1900 can control network devices, etc., and can be called controllers.
  • the AAU, CU and DU may be physically placed together or physically separated.
  • the network equipment is not limited to the form shown in Figure 17, and can also be in other forms: for example: including BBU and adaptive radio unit (ARU), or including BBU and AAU; it can also be customer terminal equipment (customer terminal equipment). premises equipment (CPE), and can also be in other forms, which is not limited by this application.
  • BBU and adaptive radio unit ARU
  • BBU and AAU BBU and AAU
  • customer terminal equipment customer terminal equipment
  • premises equipment CPE
  • CPE premises equipment
  • the CU and DU1900 can be composed of one or more single boards. Multiple single boards can jointly support a single access standard wireless access network (such as an LTE network), or can support different access standards respectively. Wireless access network (such as LTE network, 5G network, future network or other networks).
  • the CU and DU 1900 also include a memory 1901 and a processor 1902.
  • the memory 1901 is used to store necessary instructions and data.
  • the processor 1902 is used to control the network device to perform necessary actions, for example, to control the network device to perform the operation process of the network device in the above method embodiment.
  • the memory 1901 and processor 1902 may serve one or more single boards. In other words, the memory and processor can be set independently on each board. It is also possible for multiple boards to share the same memory and processor. In addition, necessary circuits can also be installed on each board.
  • the network device 1700 shown in FIG. 17 can implement the network device functions involved in the method embodiment of FIG. 7 .
  • the operations and/or functions of each unit in the network device 1700 are respectively intended to implement the corresponding processes executed by the network device in the method embodiments of this application. To avoid repetition, detailed descriptions are appropriately omitted here.
  • the structure of the network device illustrated in Figure 17 is only one possible form, and should not constitute any limitation on the embodiment of the present application. This application does not exclude the possibility of other forms of network equipment structures that may appear in the future.
  • the above-mentioned CU and DU 1900 can be used to perform the actions implemented by the network device described in the previous method embodiment, and the AAU 1800 can be used to perform the actions described in the previous method embodiment that the network device sends to or receives from the terminal device.
  • the AAU 1800 can be used to perform the actions described in the previous method embodiment that the network device sends to or receives from the terminal device.
  • An embodiment of the present application also provides a communication system, which includes a terminal device and a network device.
  • the terminal device is used to perform all or part of the steps performed by the terminal device in the embodiment shown in FIG. 7 .
  • the network device is used to perform all or part of the steps performed by the network device in the embodiment shown in FIG. 7 .
  • embodiments of the present application also provide a readable storage medium, which stores instructions. When the instructions are executed, the method in any of the above embodiments is implemented.
  • the readable storage medium can include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk, etc. that can store program code. medium.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may employ computer-usable storage media (including but not limited to magnetic disk storage, compact disc read-only memory (CD-ROM)) containing computer-usable program code therein. , optical storage, etc.).
  • computer-usable storage media including but not limited to magnetic disk storage, compact disc read-only memory (CD-ROM)
  • CD-ROM compact disc read-only memory
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction apparatus, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种小区标识配置方法及通信装置,涉及通信技术领域。宿主节点获取当前第一小区的邻小区的小区标识;第一小区为第一接入回传一体化IAB节点下的服务小区;宿主节点确定第一小区的小区标识与邻小区的小区标识相同,则激活第二小区,并将第一小区中的移动终端切换至第二小区;第二小区的小区标识与邻小区的小区标识不同,第二小区为第一IAB节点下除第一小区以外的小区。通过该方式进行小区标识配置可以避免IAB小区在移动过程中与邻区的小区标识发生冲突,且可保证IAB节点与移动终端业务的稳定性,保证移动终端的业务体验,且该方式无需重配当前服务小区的小区标识,避免了移动终端重新入网出现连接中断的情况出现。

Description

一种小区标识配置方法及通信装置
相关申请的交叉引用
本申请要求在2022年07月30日提交中国专利局、申请号为202210911479.9、申请名称为“一种小区标识配置方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种小区标识配置方法及通信装置。
背景技术
物理小区标识(physical cell identifier,PCI)是第五代(5th-generation,5G)移动通信系统中用于指示小区的参数,每个小区对应一个PCI,基于预配置的PCI可用于执行不同小区的下行信号的同步、信号解调及信号切换等操作。通常小区位置是固定不变的,为小区配置的PCI也是固定不变的。
然而为了减少光纤部署,降低部署成本,5G移动通信系统中引入了接入回传一体化(integrated access and backhaul,IAB)网络技术,IAB网络中的IAB节点的位置并非固定不变的,IAB节点下的小区可以灵活移动,如随着车辆的移动而发生位置变化,若仍然预配置IAB节点下的小区的PCI为固定值,则可能因为IAB节点位置的变化,配置相同PCI的小区出现信号碰撞的情况,因此现有的PCI预配置方法则不适用。
发明内容
本申请提供一种小区标识配置方法及通信装置,以适配移动的小区的需求,避免小区信号碰撞的情况出现。
第一方面,本申请提供一种小区标识配置方法,该方法可通过IAB宿主节点的集中式单元也即donor CU来执行,宿主节点获取当前第一小区的邻小区的小区标识;第一小区为第一IAB节点下的服务小区;宿主节点确定第一小区的小区标识与邻小区的小区标识相同,则激活第二小区,并将第一小区中的移动终端切换至第二小区;第二小区的小区标识与邻小区的小区标识不同,第二小区为第一IAB节点下除第一小区以外的小区。
本申请中,宿主节点获取IAB节点的服务小区的邻小区的小区标识,确定邻小区的小区标识与服务小区的小区标识相同也即存在冲突时,则激活IAB节点下的第二小区,并可将之前服务小区的终端切换到第二小区接收服务,通过该方式进行小区标识配置可以避免IAB小区在移动过程中与邻区的小区标识发生冲突,且可保证IAB节点与移动终端业务的稳定性,保证移动终端的业务体验,且该方式无需重配当前服务小区的小区标识,避免了移动终端重新入网出现连接中断的情况出现。
在一种可选的方式中,第一小区的小区标识与邻小区的小区标识相同,包括以下中的一种或多种:
第一小区与邻小区采用相同的小区标识;
第一小区的小区标识与邻小区的小区标识模N取余数后相同;其中,N为3,或30。
本申请中确定第一小区的小区标识与邻小区的小区标识相同可以是采用相同的小区标识,也可以是小区标识取模后相同,通过这种方式可以找出更多与第一小区的小区标识冲突的小区标识,保证小区下移动终端的服务质量。
在一种可选的方式中,小区标识包括以下中的一种:PCI、全球小区标识(cell global identifier,CGI)。
第二方面,本申请提供一种小区标识配置方法,该方法可通过IAB节点来执行,其中,第一IAB节点获取当前第一小区的邻小区的小区标识;第一小区为第一IAB节点下的服务小区;第一IAB节点确定第一小区的小区标识与邻小区的小区标识相同,更新第一小区的小区标识;更新后的第一小区的小区标识与邻小区的小区标识不同。
本申请中,IAB节点确定当前移动终端的服务小区与邻小区的小区标识相同,为了保证移动终端的服务质量,直接将当前服务小区的小区标识进行更新,使得服务小区的小区标识与邻小区的小区标识不冲突,该小区标识配置方式比较直观,操作简便,且可保证移动终端的业务体验。
在一种可选的方式中,所述更新所述第一小区的小区标识,包括:第一IAB节点将第一小区的小区标识发送至宿主节点;第一IAB节点从宿主节点接收更新的第一小区的小区标识。
本申请在确定更新第一小区的小区标识时,也可从宿主节点获取更新的第一小区的小区标识,无需IAB节点自行配置,通过该方式可以减少IAB节点的数据处理量,提高数据处理效率。
在一种可选的方式中,第一小区的小区标识与邻小区的小区标识相同,包括以下中的一种或多种:
第一小区与邻小区采用相同的小区标识;
第一小区的小区标识与邻小区的小区标识模N取余数后相同;其中,N为3,或30。
本申请中确定第一小区的小区标识与邻小区的小区标识相同可以是采用相同的小区标识,也可以是小区标识取模后相同,通过这种方式可以找出更多与第一小区的小区标识冲突的小区标识,保证小区下移动终端的服务质量。
在一种可选的方式中,小区标识包括以下中的一种:PCI、CGI。
第三方面,本申请提供一种小区标识配置方法,该方法可通过IAB节点来执行,其中,第一IAB节点获取对应关系,对应关系包括不同第一参数的参数值与不同小区标识的对应关系,第一参数包括以下中的至少一种:服务区域、服务时间;第一IAB节点确定第一参数的目标参数值;第一IAB节点根据对应关系和第一参数的目标参数值,确定对应的目标小区标识,将目标小区标识配置给第一小区,第一小区为第一IAB节点下的任一小区。
本申请中,IAB节点为了避免其管辖下的小区的小区标识与邻小区的小区标识发生冲突,可以基于服务区域,或服务时间情况为小区进行配置小区标识,以保证小区标识的全局唯一性,通过该方式可以保证移动终端的服务质量,使得服务小区的小区标识与邻小区的小区标识不冲突,且可保证移动终端的业务体验。
在一种可选的方式中,第一IAB节点基于当前第一IAB节点所处的位置,确定第一服务区域,并将第一服务区域的区域信息作为第一参数的目标参数值;或,第一IAB节点基于当前时间确定第一服务时间,并将第一服务时间作为第一参数的目标参数值;或,第一 IAB节点基于当前第一IAB节点所处的位置,确定第二服务区域,并基于当前时间确定第二服务时间;第一IAB节点将第二服务区域的区域信息以及第二服务时间确定为第一参数的目标参数值。
通过该方式确定的第一参数的目标参数值,可以更加灵活,且准确可靠。
在一种可选的方式中,小区标识包括以下中的一种:PCI、CGI。
第四方面,本申请实施例提供一种通信装置,所述通信装置可以为接收设备或者设置在接收设备内部的芯片,还可以为发送设备或者设置在发送设备内部的芯片。所述通信装置具备实现上述第一方面或第二方面或第三方面的功能,比如,所述通信装置包括执行上述第一方面中任一方面涉及步骤所对应的模块或单元或手段(means)或执行上述第二方面中任一方面涉及步骤所对应的模块或单元或手段或执行上述第三方面中任一方面涉及步骤所对应的模块或单元或手段,所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、收发单元,其中,收发单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,收发单元用于获取第一小区的邻小区的小区标识;处理单元可以用于执行该通信装置的一些内部操作。所述收发单元可以称为输入输出单元、通信单元等,所述收发单元可以是收发器;所述处理单元可以是处理器。当通信装置是通信设备中的模块(如,芯片)时,所述收发单元可以是输入输出接口、输入输出电路或输入输出管脚等,也可以称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
在又一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述第一方面或第二方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,所述存储器可以保存实现上述第一方面或第二方面或第三方面中涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第二方面或第三方面任意可能的设计或实现方式中的方法。
在又一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第一方面或第二方面或第三方面中涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第二方面或第三方面任意可能的设计或实现方式中的方法。
在又一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面或第二方面或第三方面任意可能的设计或实现方式中的方法。
可以理解地,上述第四方面中,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。此外,以上处理器可以包括一个或多个,存储器可以包括一个或多个。存储器可以与处理器集成在一起,或者存储器与处理器分离设置。在具体实现过程中,存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理 器的设置方式不做限定。
第五方面,本申请提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第二方面或第三方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机可读指令,当计算机可读指令在计算机上运行时,以使得计算机执行如第一方面或第二方面或第三方面中任一种可能的设计中的方法。
第七方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面或第三方面的各实施例的方法。
上述第二方面至第七方面可以达到的技术效果,请参照上述第一方面中相应可能设计方案可以达到的技术效果说明,本申请这里不再重复赘述。
附图说明
图1示出了本申请实施例提供的一种通信系统的示意图;
图2A示出了IAB网络用户面协议栈的示意图;
图2B示出了IAB网络控制面协议栈的示意图;
图3示出了IAB组网的场景示意图;
图4A示出了一种IAB网络架构示意图;
图4B示出了另一种IAB网络架构示意图;
图5示出了一种移动IAB节点的示意图;
图6示出了一种移动IAB场景示意图;
图7示出了本申请实施例提供的一种小区标识配置方法的流程示意图;
图8A示出了本申请实施例提供的另一种小区标识配置方法的流程示意图;
图8B示出了本申请实施例提供的又一种小区标识配置方法的流程示意图;
图9示出了另一种移动IAB场景示意图;
图10示出了本申请实施例提供的一种小区标识配置方法的流程示意图;
图11示出了本申请实施例提供的另一种小区标识配置方法的流程示意图;
图12示出了本申请实施例提供的又一种小区标识配置方法的流程示意图;
图13示出了本申请实施例提供的再一种小区标识配置方法的流程示意图;
图14示出了本申请实施例提供的还一种小区标识配置方法的流程示意图;
图15示出了本申请实施例提供的通信装置的结构示意图;
图16示出了本申请实施例提供的通信装置的结构示意图;
图17示出了本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1为本申请实施例应用的通信系统的架构示意图。如图1所示,该通信系统包括核 心网设备110、无线接入网设备120、无线回传设备130和至少一个终端设备(图1中以终端设备140和终端设备150进行示例性描述)。终端设备通过无线的方式与无线回传设备相连,并通过一个或多个无线回传设备与无线接入网设备相连,此外,部分终端设备也可以直接与无线接入网设备通过无线方式相连)。无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能,本申请对此不作限定。终端设备可以是固定位置的,也可以是可移动的。应理解的是,如图1所示的移动通信系统仅为示意图,该通信系统中还可以包括其它网络设备,例如还可以包括无线中继设备或无线回传设备,在图1中未画出。且本申请实施例对该移动通信系统中包括的核心网设备、无线接入网设备、无线回传设备和终端设备的数量不做限定。
其中,无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、5G移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。终端设备也可以称为终端(terminal)、UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。
终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
其中,无线回传设备可以为其子节点提供回传服务。具体的,其可以是长期演进(long term evolution,LTE)系统中的中继节点,5G系统中的IAB节点,或者其他能够提供无线中继功能的设备。无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不作限定。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
上述各网元既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例。此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语作简单说明。
1)IAB网络:考虑到高频段的覆盖范围小,为了保障网络的覆盖性能,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。IAB技术应运而生,其接入链路(Access Link)和回传链路(Backhaul Link)皆采用无线传输方案,避免光纤部署,降低了设备成本。
在IAB网络中可能采用多跳组网。考虑到业务传输可靠性的需求,IAB节点可以支持双连接(dual connectivity,DC)或者多连接(multi-connectivity),以应对回传链路可能发生的异常情况(例如,无线链路的中断或阻塞(blockage)及负载波动等),提高传输的可靠性保障。因此,IAB网络可以支持多跳和多连接组网,在终端设备和宿主基站之间可能存在多条路由路径。其中,在一条路径上,IAB节点之间,以及IAB节点和为IAB节点服务的宿主基站有确定的层级关系,每个IAB节点将为其提供回传服务的节点视为父节点,相应地,每个IAB节点可视为其父节点的子节点。
应理解的是,无线链路的中断(outage)或阻塞(blockage)均可能导致无线链路失败或拥塞。例如,当UE与IAB宿主节点之间存在建筑物遮挡时,可能导致UE与IAB宿主节点之间的无线链路阻塞。现有技术中,无线链路失败的原因主要有当物理层指示无线链路出现问题且超过一定时长或随机接入发生失败或无线链路层控制(radio link control,RLC)失败。应理解的是,无线链路失败还可能有其他原因,本申请实施例对此不做限定。无线链路拥塞可以是指某个IAB节点在某条链路上所要传输的上行或下行缓存数据量超过一定门限。
其中,IAB节点内部可以包括移动终端(mobile termination,MT)部分和分布式单元(distributed unit,DU)部分。其中,当IAB节点面向其父节点时,可以被看作是接入父节点的终端设备,即作为MT的角色;当IAB面向其子节点时,其可被看作是为子节点提供回传服务的网络设备,即作为DU的角色,其中,这里的子节点可能是另一个IAB节点或者终端设备。
IAB宿主节点可以是一个具有完整基站功能的接入网网元,例如宿主基站DgNB,还可以是集中式单元(centralized unit,CU)和DU分离形态的接入网网元,IAB宿主节点连接到为终端设备服务的核心网(例如连接到5G核心网)网元,并为IAB节点提供无线回传功能。为便于表述,将IAB宿主节点的集中式单元简称为donor CU,IAB宿主节点的分布式单元简称为donor DU,其中donor CU还有可能是控制面(control plane,CP)和用户面(user plane,UP)分离的形态,例如CU可由一个CU-CP和一个(或多个)CU-UP组成。
在本申请实施例中,接入IAB节点是指终端设备接入的IAB节点,即为终端设备提供服务的IAB节点。在IAB上行传输过程中,接入IAB节点将终端设备发送的上行数据包经过一个或多个其他IAB节点传输至目标donor DU,目标donor DU再将上行数据包传输至对应的donor CU-UP。在IAB下行传输过程中,如果数据包是发给终端设备的,donor CU-UP将发送给终端设备的下行数据包传输至对应的donor DU,经过一个或多个其他IAB节点或通过直连回传链路传输至终端设备对应的接入IAB节点,接入IAB节点将接收到的下行数据包传输至终端设备;如果数据包是发给某个IAB节点的,donor CU-UP将发送给IAB节点的下行数据包传输至对应的donor DU,经过一个或多个其他IAB节点或通过直连回传链路传输至IAB节点的父节点,IAB节点的父节点再将接收到的下行数据包传输至这 个IAB节点。
应理解的是,在IAB下行传输过程中,若数据包最终到达的节点(以下简称为终结节点)为终端设备,目标节点为该终端设备对应的接入IAB节点。若终结节点为某个IAB节点,目标节点为该IAB节点的父节点。在IAB上行传输过程中,终结节点为donor CU-UP,目标节点为该donor CU-UP对应的donor DU。其中,目标节点又可称为目标接收节点。
因此,在本申请实施例中,若数据包为上行数据包,目标节点为donor DU,第一节点为接入IAB节点,或接入IAB节点与IAB宿主节点之间的中间IAB节点(以下简称为中间IAB节点),源节点为接入IAB节点。其中,这里的接入IAB节点为发送上行数据包的终端设备接入的IAB节点。若数据包为发送给终端设备的下行数据包,目标节点为接入IAB节点,第一节点为donor DU,或中间IAB节点,源节点为donor DU。其中,这里的接入IAB节点为接收下行数据包的终端设备接入的节点;或者若数据包为发送给IAB节点的下行数据包,目标节点为该IAB节点的父节点,第一节点为donor DU,或中间IAB节点。
回传适配协议层(backhaul adaptation protocol,BAP)是IAB网络中新引入的协议层,其主要功能是完成IAB网络中的路由和承载映射。一种可能的协议架构,在IAB宿主节点的DU侧、中间IAB节点以及接入IAB节点的MT侧均存在BAP层,且BAP层位于RLC协议层之上。另外,中间IAB节点的MT和DU可能共用一个回传适配层实体,也有可能MT和DU分别单独有一个回传适配层实体。
示例性的,请参见图2A和图2B,其中图2A为IAB网络中的用户面协议架构的示意图,图2B为IAB网络中的控制面协议架构的示意图。
如图2A所示,对于用户面而言,终端和IAB2-DU之间建立有Uu接口,对等的协议层包括RLC层、媒体访问控制(media access control,MAC)层和物理(physical,PHY)层。IAB节点(node)2-DU和IAB宿主(donor)CU-UP建立有F1-U接口,对等的协议层包括通用分组无线服务(general packet radio service,GPRS)用户面隧道协议(GPRS tunnelling protocol for the user plane,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层。IAB donor DU 1和IAB donor CU 1之间通过有线连接,对等的协议层包括网际互连协议(internet protocol,IP)层、L2和L1。IAB node 2和IAB node 1之间,以及IAB node 1和IAB donor DU之间均建立有BL,对等的协议层包括BAP层、RLC层、MAC层以及PHY层。另外,终端和IAB donor CU-UP之间建立有对等的流控制传输协议(stream control transmission protocol,SCTP)层和分组数据汇聚层协议(packet data convergence protocol,PDCP)层,IAB node 2-DU和IAB donor DU-UP之间建立有对等的IP层。
可以看出,IAB网络的用户面协议栈与单空口的用户面协议栈相比,IAB接入节点的DU实现了单空口的gNB-DU的部分功能(即与终端建立对等RLC层、MAC层和PHY层的功能,以及与IAB donor CU-UP建立对等的GTP-U层、UDP层的功能)。可以理解,IAB接入节点(IAB node 2)的DU实现了单空口的gNB-DU的功能;IAB donor CU-UP实现了单空口的gNB-CU的功能。
在用户面上,PDCP数据包封装在接入IAB节点(IAB node 2)和IAB donor CU-UP之间的GTP-U隧道中传输。GTP-U隧道建立在F1-U接口上。
对于控制面而言,如图2B所示,终端和IAB node 2-DU之间建立有Uu接口,对等的协议层包括RLC层、MAC层和PHY层。IAB node 2-DU和IAB donor CU 1建立有F1-C接口,对等的协议层包括F1应用协议(F1 application protocol,F1AP)、SCTP层。IAB donor  DU和IAB donor CU-UP之间通过有线连接,对等的协议层包括IP层、L2和L1。IAB node 2和IAB node 1之间,以及IAB node 1和IAB donor DU之间均建立有BL,对等的协议层包括回传适配协议(Bakhaul Adaptation Protocol,BAP)层、RLC层、MAC层以及物理(physical,PHY)层。另外,终端和IAB donor CU-UP之间建立有对等的RRC层和PDCP层,IAB node 1-DU和IAB donor DU之间建立有对等的IP层。BAP层具备以下能力中的至少一种:为数据包添加能被IAB节点识别出的路由信息(Routing info)、基于所述能被IAB节点识别出的路由信息执行路由选择、为数据包执行在包含IAB节点的多段链路上的服务质量(quality of service,QoS)映射。所述多段链路上的承载映射可以为:在回传链路中基于数据包携带的终端的无线承载(radio bearer,RB)的标识,执行从终端的RB到回传链路上的RLC承载或RLC信道或逻辑信道的映射。例如BAP执行终端的数据无线承载(data radio bearer,DRB)或信令无线承载(signaling radio bearer,SRB)到回传链路上的RLC承载。基于入口链路(即接收数据包的链路)和出口链路(即发送数据包的链路)的RLC承载、RLC信道和逻辑信道中的任意两个或更多个之间的对应关系,执行从入口链路的RB或RLC承载或RLC信道或逻辑信道,到出口链路的RB或RLC承载或RLC信道或逻辑信道的映射。其中,RLC承载在图2A或图2B中以信道,例如回传(backhaul,BH)RLC信道(channe,CH)为例。
可以看出,IAB网络的控制面协议栈与单空口的控制面协议栈相比,接入IAB节点(IAB node 2)的DU实现了单空口的gNB-DU的功能(即与终端建立对等RLC层、MAC层和PHY层的功能,以及与CU建立对等的F1AP层、SCTP层的功能)。可以理解,IAB网络中接入IAB节点的DU实现了单空口的gNB-DU的功能;IAB donor C-UP实现了单空口的gNB-CU的功能。
在控制面上,RRC消息封装在接入IAB节点和IAB donor CU-UP之间的F1AP消息中传输。具体地,在上行方向上,终端将RRC消息封装在PDCP协议数据单元(protocol data unit,PDU)中,并依次经过RLC层、MAC层和PHY层的处理后发送至IAB node 2-DU。IAB node 2-DU依次经过PHY层、MAC层和RLC层的处理后得到PDCP PDU,将PDCP PDU封装在F1AP消息中,并依次经过SCTP层、IP层处理后得到IP包,IAB node 2-MT将IP包分别通过BAP层、RLC层、MAC层和PHY层的处理后IAB node 1-DU,同理,IAB node 1-MT将该IP包发送至IAB donor DU。IAB donor DU解析得到IP包后,将该IP包发送至IAB donor CU-UP,IAB donor CU-UP将该IP包依次通过SCTP层、F1AP层和PDCP层的处理后得到RRC消息。下行方向类似,在此不再描述。
需要说明的是,一个IAB节点可能具备一个或者多个角色,该IAB节点可以拥有该一个或者多个角色的协议栈;或者,IAB节点可以具有一套协议栈,该协议栈可以针对IAB节点的不同角色,使用不同角色对应的协议层进行处理。下面以该IAB节点拥有该一个或者多个角色的协议栈为例进行说明:
(1)普通终端的协议栈
IAB节点在接入IAB网络时,可以充当普通终端的角色。此时,该IAB节点的MT具有普通终端的协议栈,例如图2A和图2B中的终端的协议栈,即RRC层、PDCP层、RLC层、MAC层和PHY层,其中,控制面上,IAB节点的RRC消息是封装在IAB节点的父节点与IAB donor CU之间的F1AP消息中传输的;用户面上,IAB节点的PDCP数据包封装在IAB节点的父节点与IAB donor CU之间的GTP-U隧道中传输的。
另外,该IAB节点接入IAB网络后,该IAB节点仍然可以充当普通终端的角色,例如,与IAB donor传输自己的上行和/或下行的数据包,通过RRC层执行测量等等。
(2)接入IAB节点的协议栈
IAB节点在接入IAB网络后,该IAB节点可以为终端提供接入服务,从而充当一个接入IAB节点的角色,此时,该IAB节点具有接入IAB节点的协议栈,例如图2A和图2B中的IAB node 2的协议栈。
在这种情况下,该IAB节点面向其父节点的接口上可以有两套协议栈,一套是普通终端的协议栈,另一套是为终端提供回传服务的协议栈(即:接入IAB节点的协议栈)。可选的,该两套协议栈的相同的协议层可以共享,例如该两套协议栈均对应相同的RLC层,MAC层,PHY层,或者BAP层。
(3)中间IAB节点的协议栈
IAB节点在接入IAB网络后,该IAB节点可以充当一个中间IAB节点的角色,此时,该IAB节点具有中间IAB节点的协议栈,例如图2A和图2B中的IAB node 1的协议栈。
在这种情况下,该IAB节点面向其父节点的接口上可以有两套协议栈,一套是普通终端的协议栈,另一套是为子IAB节点提供回传服务的协议栈(即:中间IAB节点的协议栈)。可选的,该两套协议栈的相同的协议层可以共享,例如该两套协议栈均对应相同的RLC层,MAC层,PHY层,或者BAP层。
另外,IAB节点可以同时承担接入IAB节点和中间IAB节点的角色,例如,IAB节点可以针对某些终端是接入IAB节点,针对另一些终端而言,是中间IAB节点,此时该IAB节点可以有三套协议栈,一套为上述普通终端的协议栈,一套为接入IAB节点的协议栈,一套为中间IAB节点的协议栈。可选的,该三套协议栈的相同的协议层可以共享,例如该三套协议栈均对应相同的RLC层,MAC层,PHY层,或者BAP层。
需要说明的是,图2A和图2B以IAB网络为例进行了介绍,图2A和图2B的内容同样适用于IAB网络以外的其他类型中继网络,该中继网络的控制面协议栈架构可以参考图2B,该中继网络的用户面协议栈架构可以参考图2A。图2A和图2B中的IAB节点可以替换成中继(relay),例如IAB node 2可以替换成中继节点2,IAB node 1可以替换成中继节点1,IAB donor可以替换成宿主节点,宿主节点具有CU和DU协议栈,其余内容与图2A和图2B中描述的内容相同,具体可以参考图2A和图2B的描述,在此不再赘述。
如图3所示为IAB组网场景的示意图。其中,IAB node 1的父节点为DgNB,IAB node 1又为IAB node 2和IAB node 3的父节点,IAB node 2和IAB node 3均为IAB node4的父节点,IAB node 5的父节点为IAB node 3。UE1发送的上行数据包可以经一个或多个IAB节点传输至DgNB后,再由DgNB发送至移动网关设备(例如,5G核心网中的用户平面功能单元)。下行数据包将由DgNB从移动网关设备处接收后,通过一个或多个IAB节点发送至UE1。同理适用于UE2。
UE1和DgNB之间的数据包传输有两条可用的路径。其中,路径1:UE1→IAB node4→IAB node3→IAB node 1→DgNB;路径2:UE1→IAB node4→IAB node2→IAB node 1→DgNB。
其中,IAB node4为UE1的接入IAB节点,在路径1中,IAB node3和IAB node 1为中间IAB节点,在路径2中,IAB node2和IAB node 1为中间IAB节点。DgNB为目标节点。
UE2和DgNB之间的数据传输有三条可用的路径。其中,路径3:UE2→IAB node4→IAB node3→IAB node 1→DgNB;路径4:UE2→IAB node4→IAB node2→IAB node 1→DgNB;路径5:UE2→IAB node5→IAB node2→IAB node 1→DgNB。
其中,在路径3中,IAB node4为UE1的接入IAB节点,IAB node3和IAB node 1为中间IAB节点,在路径4中,IAB node4为UE1的接入IAB节点,IAB node2和IAB node 1为中间IAB节点,在路径5中,IAB node5为UE1的接入IAB节点,IAB node2和IAB node 1为中间IAB节点。DgNB为目标节点。
应理解的是,图3所示的IAB组网场景仅仅是示例性的,支持多跳和多连接组网IAB网络中还有更多其他的可能性,此处不再一一列举。
图4A示出一种IAB网络架构的示意图,包括独立组网(SA)的IAB网络,以及非独立组网(NSA)的IAB网络。IAB node包含MT部分和DU部分,图4A中以,IAB node1和IAB node2为例来说明,IAB donor可以进一步分为DU和CU部分,CU还可分为CU-CP和CU-UP部分,图4A中以IAB donor1和IAB donor2为例来说明。
每个IAB节点的DU部分,与IAB donor CU之间有F1接口,该F1接口包含控制面和用户面两部分,其中用户面的部分是IAB-DU与IAB donor CU-UP之间维护的,而控制面部分是IAB-DU与IAB donor CU-CP之间维护的。IAB-DU和IAB donor CU之间的F1接口,在图4A中未示出。其中,UE与IAB node的DU通过NR Uu接口连接,各IAB node中的MT和DU通过NR BH接口连接。IAB donor CU-CP与IAB donor CU-UP之间通过E1接口连接。
在IAB节点工作在SA模式时,IAB node可以单连接到一个父节点,或者双连接到两个父节点,其中这两个父节点可以由同一个IAB donor控制,或者分别由不同的IAB donor控制。IAB node的DU部分与一个IAB donor之间建立F1接口即可,该IAB donor可以连接到5G核心网(5G core,5GC),即图中的虚线部分。其中IAB-donor-CU-CP与通过NG控制面接口(NG-C)连接到5GC中的控制面网元(例如接入和移动性管理功能AMF),其中IAB-donor-CU-UP与通过NG用户面接口(NG-U)连接到5GC中的用户面网元(例如用户面功能UPF)。
当IAB节点工作在NSA模式(或者说EN-DC模式)时,IAB-donor-CU-UP可以通过S1用户面接口连接到EPC(例如连接到业务网关(serving gateway,SGW)),MeNB与IAB node的MT之间有LTE Uu空口连接,MeNB与IAB-donor-CU-CP之间有X2/Xn-C接口,MeNB通过S1接口连接到EPC(包括S1接口用户面,以及S1接口控制面)。如,IAB-donor-CU-UP与EPC之间通过S1接口用户面(S1-U)连接。
另一种可能的情况,图4A中的MeNB也可以换成5G的基站gNB,图4A中的虚线LTE-Uu接口相应的被替换为NR-Uu接口,gNB可以和5GC之间建立用户面和/或控制面的接口,gNB和IAB-donor为IAB节点提供双连接服务,gNB可以作为IAB节点的主基站的角色,或者辅基站的角色。
图4B示出了另一种IAB网络架构的示意图,该网络结构是基于开放式RAN(Open RAN,O-RAN)的IAB网络架构,RIC为O-RAN智能控制器,用于收集网络信息并执行必要的优化任务,其与Donor-CU,IAB-DU通过E2接口通信,即RIC可以直接控制IAB-DU,或者通过Donor-CU控制IAB-DU。
2)小区标识:可通过PCI或CGI来指示,是小区重要参数,每个小区会对应一个小 区标识,用于区分不同的小区,基于小区标识可进行下行信号的同步、信号解调以及信号切换。在此以小区标识为PCI为例来具体说明。5G中一共包括1008个PCI,其中10008个PCI被分为336个组,每组包括3个PCI,如下所示:
其中,
参阅表1,5G的PCI相对LTE的主要区别如下:
表1
PCI规划主要遵循原理如下:
a)、相邻小区不能分配相同的PCI。若邻近小区分配相同的PCI,会导致UE在重叠覆盖区域无法检测到邻近小区,影响切换、驻留。
b)、服务小区的频率相同,相邻小区不能分配相同的PCI,若分配相同的PCI,则当UE上报邻区PCI到源小区所在的基站时,源基站无法基于PCI判断目标切换小区。
基于3GPP PUSCH DMRS ZC序列组号与PCI mode30相关;对于PUCCH DMRS、SRS,算法使用PCI mode30作为高层配置ID,选择序列组。所以,相邻小区的PCI mode30应尽量错开,保证上行信号的正确解调。
在IAB网络中,小区标识可通过OAM配置,或者是IAB节点与CU建立F1接口后,将配置好的小区标识上报至CU,或者是CU基于IAB节点上报的小区标识以及其他信息,重新配置小区标识,在此不具体说明,总而言之,该小区标识为预先配置的。
在R16/17中IAB节点是固定设置在某个位置,也即静态部署的,R18中IAB节点可以安装在车上,随车辆一起移动,如图5所示。如车辆VMR1在gNB1下接收服务,车辆VMR1搭载有IAB节点1,IAB节点1下属配置的小区标识为PCI#1,VMR1在移动过程中,移动到gNB2下接收服务,gNB2还为车辆VMR2提供服务,若VMR2搭载的IAB节点2下属也配置有小区标识PCI#1,那么两个小区标识相同,则会发生小区碰撞,影响通 信质量。由此可知,现有的静态PCI配置方法不再适用,针对R18移动IAB场景,若使用静态的PCI,在IAB小区移动的过程中,可能会与邻区的PCI发生冲突,亟需一种新的小区标识配置方法以避免信号碰撞的情况出现。
接下来分不同的场景来介绍小区标识的配置方案:
场景一、IAB节点在移动过程中,IAB-DU与Donor-CU的F1连接关系保持不变
如图6所示,车辆在位置1时,IAB节点1的IAB-DU在Donor-CU的管理下进行数据传输,车辆在位置2时,IAB节点1的IAB-DU依然在Donor-CU的管理下进行数据传输,可以理解为IAB节点1在从位置1移动到位置2时,并未切换服务的Donor-CU。
参阅图7,本申请提供一种小区标识配置方法,该方法可通过UE、IAB节点与宿主节点(Donor-CU)的交互来执行,其中,IAB节点包括IAB-DU和IAB-MT。在实际应用时,宿主节点可以与多个IAB节点建立F1连接从而进行数据交互,在此仅以一个IAB节点为例来说明,但是在实际应用时,并不限定小区标识配置时,IAB节点的数量。图7中,以IAB节点为第一IAB节点,第一IAB节点包括IAB1-MT和IAB1-DU为例来说明,宿主节点为Donor-CU1为例。执行如下:
步骤701a,IAB1-MT获取当前第一小区的邻小区的小区标识,第一小区为第一IAB节点下的服务小区。
步骤701b,UE获取当前第一小区的邻小区的小区标识。
需要说明的是,在实际应用时,步骤701a和步骤701b可选择执行,也可均执行,本申请在此不具体限定,但是IAB-MT获取的第一小区的邻小区可能和UE获取的第一小区的邻小区是相同的,也可能是不同的,IAB-MT和UE获取的邻小区的小区标识可能存在部分相同,也可能全部相同,本申请在此不具体限定。
在移动IAB节点的场景中,第一小区的邻小区可能是其他IAB节点(该IAB节点可能是移动的也可能是位置固定的)下的小区,也可能是非IAB节点下的小区,也即常规配置的小区,本申请在此不具体限定。例如,IAB1-MT当前位于位置A,当前IAB1的小区1为服务小区(也即为第一IAB节点下的移动终端提供通信服务的小区),其邻小区包括IAB节点也即IAB2下的小区X以及非IAB节点下的小区A,那么IAB1-MT可获取小区X和小区A的小区标识;IAB1-MT当前位于位置B,当前IAB1的小区1为服务小区,其邻小区包括IAB节点也即IAB3下的小区Y,那么IAB1-MT可获取小区Y的小区标识。
其中,小区标识可以为PCI或者CGI,本申请在此不具体限定。
步骤702a,IAB1-MT将邻小区的小区标识发送至Donor-CU1。
步骤702b,UE将邻小区的小区标识发送至Donor-CU1。
需要说明的是,在实际应用时,步骤701a和步骤701b可选择执行,也可均执行,本申请在此不具体限定,但是存在步骤701a时,必然存在步骤702a,存在步骤701b时,必然存在步骤702b。
相应地,Donor-CU1获取邻小区的小区标识。
步骤703,Donor-CU1确定第一小区的小区标识与邻小区的小区标识相同,则激活第二小区;第二小区的小区标识与邻小区的小区标识不同,第二小区为第一IAB节点中除第一小区以外的小区。
可选的,第一小区的小区标识与邻小区的小区标识相同可包括以下情况:
情况1:第一小区与邻小区采用相同的小区标识;其中,该采用相同的小区标识可以 理解为部分相同也可以理解为完全相同。如,第一小区的小区标识包括PCI1、PCI2、PCI3,第一小区的邻小区的小区标识包括:PCI1、PCI3、PCI5,其中,第一小区的小区标识PCI1、PCI3与邻小区的PCI1和PCI3相同,则可理解为采用相同的小区标识。第一小区的小区标识包括PCI1、PCI2,第一小区的邻小区的小区标识包括:PCI1、PCI2,其中,第一小区的小区标识PCI1、PCI2与邻小区的PCI1和PCI2相同,则可理解为采用相同的小区标识。
情况2:第一小区的小区标识与邻小区的小区标识模N取余数后相同;其中,N可以为3,或30。在处理同步信号时,N为3,处理上行参考信号时,N为30,可参照上述表1来理解在此不赘述。假定第一小区的小区标识包括PCI1、PCI3,第一小区的邻小区的小区标识包括:PCIA、PCIB,其中,第一小区的小区标识PCI1、PCI3与邻小区的PCIA和PCIB模3后取余数相同,则可理解为采用相同的小区标识。
通过上述情况判断第一小区的小区标识与邻小区的小区标识相同,可知第一小区与邻小区的小区标识存在冲突,避免继续采用当前的小区标识影响终端服务质量。
具体地,在执行步骤703时,Donor-CU1与IAB1-DU已经建立F1连接,Donor-CU1与IAB1-DU均知晓第一IAB节点下的激活小区以及未激活小区。可参照如下步骤激活第二小区:
步骤703a,Donor-CU1向IAB1-DU发送GNB-CU CONFIGURATION UPDATE(配置更新)指令,该指令用于确定激活第二小区。
步骤703b,IAB1-DU激活第二小区。
步骤703c,IAB1-DU发送GNB-CU CONFIGURATION UPDATE ACK(配置更新确认)至Donor-CU1。
步骤704,Donor-CU1将第一小区中的移动终端(也即UE)切换至第二小区。
此外,在执行步骤704后,可去激活第一小区,在其他有通信需求的情况下再激活。
通过该方式进行小区标识配置可以避免IAB小区在移动过程中与邻区的小区标识发生冲突,且可保证IAB节点与移动终端业务的稳定性,保证移动终端的业务体验,且该方式无需重配当前服务小区的小区标识,避免了移动终端重新入网出现连接中断的情况出现。
可选的,在不采用图7中的小区标识配置方案时,Donor-CU可以为IAB节点下的小区配置全局唯一的小区标识以区别现有的小区标识,从而保证IAB节点在移动的过程中与其他小区的小区标识不发生冲突,例如,IAB节点1下的小区1配置小区标识IAB1-PCI1等,在此不具体限定,保证IAB节点下小区的小区标识全局唯一即可。
可选的,IAB节点下的小区标识依然采用现有的配置方法,但是Donor-CU可以额外广播IAB小区的指示信息,如图8A所示,Donor-CU发送IAB小区的指示信息至IAB-DU,IAB-DU将指示信息内部传输至UE,以便接入IAB节点的UE可以区分小区标识,避免发生冲突,如,Donor-CU发送的指示信息包括该小区标识属于IAB节点1的小区1等信息。
可选的,IAB节点可通过IAB-MT或者IAB-DU上报IAB节点的标识至Donor-CU,或者上报IAB节点下的小区标识不需要更改的指示消息,那么Donor-CU则直接广播IAB节点的标识信息,以便IAB节点下的移动终端在发现邻小区标识相同时,进行区分,避免冲突的发生。如图8B所示,IAB-DU可通过F1消息发送IAB节点标识,IAB-MT可通过RRC消息发送IAB节点标识至Donor-CU,Donor-CU可以额外广播IAB节点的标识,以便UE在发现IAB小区的标识与邻小区的标识相同时,可以进一步区分小区。可选的, IAB-DU还可发送IAB节点下的小区标识无需更改的指示信息,以避免Donor-CU对IAB节点下的小区标识的重配,如,IAB节点1向Donor-CU发送IAB节点1的标识1后,又向Donor-CU发送无需更改的指示信息,那么Donor-CU则不会对IAB节点1下的小区标识进行重新配置。
场景二、IAB节点在移动过程中,IAB-DU由Donor-CU1切换至Donor-CU2
如图9所示,车辆在位置1时,IAB节点1的IAB-DU在Donor-CU1的管理下进行数据传输,车辆在位置2时,IAB节点1的IAB-DU在Donor-CU2的管理下进行数据传输,可以理解为IAB节点1在从位置1移动到位置2时,切换服务的Donor-CU。
参阅图10,本申请提供一种小区标识配置方法,该方法可通过IAB节点与第一宿主节点(Donor-CU1)和第二宿主节点(Donor-CU2)的交互来执行,其中,IAB节点包括IAB1-DU和IAB1-MT。执行如下:
步骤1001,Donor-CU1向Donor-CU2发送切换请求消息,切换请求消息中包括第一IAB节点下的小区配置信息。
其中,第一IAB节点下的小区配置信息,包括激活小区的小区标识以及未激活小区的小区标识。如,Donor-CU1配置了激活小区:小区1的小区标识PCI1、小区2的小区标识PCI2,未激活小区:小区3的小区标识PCI3、小区4的小区标识PCI4。
步骤1002,Donor-CU2回复切换请求响应消息,切换请求响应消息包括重配的第一IAB节点下的小区配置信息;重配的第一IAB节点的小区标识与邻小区的小区标识不同。
例如,Donor-CU2接收切换请求消息后,发现F1接口发生切换后,第一IAB节点下待激活的新小区的小区标识与邻小区的小区标识存在冲突,可以重新配置待激活的新小区的小区标识。
步骤1003,Donor-CU1向IAB1-DU发送激活指示消息,激活指示消息包括重配的第一IAB节点下的小区配置信息。
步骤1004,Donor-CU2与第一IAB节点建立F1连接。
通过该方式进行小区标识配置可以避免IAB小区在移动过程中,且在切换宿主节点时,与邻区的小区标识发生冲突,且可保证IAB节点与移动终端业务的稳定性,保证移动终端的业务体验。
此外,还要说明的是,无论上述IAB节点是否切换Donor-CU,可参阅图11,进行小区标识的配置,执行如下:
步骤1101,IAB1-MT获取当前第一小区的邻小区的小区标识,第一小区为第一IAB节点下的服务小区。
步骤1102A,IAB1-MT确定第一小区的小区标识与邻小区的小区标识相同,指示IAB1-DU更新第一小区的小区标识。
可参照上述步骤703来理解第一小区的小区标识与邻小区的小区标识相同,在此不赘述。
步骤1102B,IAB1-DU更新第一小区的小区标识;更新后的第一小区的小区标识与邻小区的小区标识不同。
步骤1103A,IAB1-MT将第一小区的小区标识发送至Donor-CU。
步骤1103B,Donor-CU更新第一小区的小区标识。
步骤1103C,Donor-CU将更新的第一小区的小区标识发送至第一IAB节点。
需要说明的是,上述的步骤1102A~步骤1102B,与步骤1103A~步骤1103B可选择执行,本申请在此不具体限定。此外,在IAB节点切换Donor-CU场景中,步骤1103A中IAB1-MT将第一小区的小区标识发送至Donor-CU1,基于上述图10中间切换Donor-CU的流程来更新第一小区的小区标识。
通过该方式进行小区标识配置可以避免IAB小区在移动过程中与邻区的小区标识发生冲突,且可保证IAB节点与移动终端业务的稳定性,保证移动终端的业务体验。
此外,还要说明的是,无论上述IAB节点是否切换Donor-CU,可参阅图12,进行小区标识的配置,执行如下:
步骤1201,第一IAB节点获取对应关系,对应关系包括不同第一参数的参数值与不同小区标识的对应关系,第一参数包括以下中的至少一种:服务区域、服务时间。
需要说明的是,该对应关系可能是与第一IAB节点存在连接关系的Donor-CU下发的,还可能是网络配置的,如OAM,本申请在此不具体限定。其中,对应关系可参照下述表2来配置,在实际应用时,可仅存在表2的第一列和第二列,也可仅存在第一列和第三列,还可以三列均存在,本申请在此并不具体下限定,如在表格为三列时,IAB节点在处于区域1,且当前为星期五的情况下,可以为IAB节点的小区配置为PCIA的小区标识。
表2
步骤1202,第一IAB节点确定第一参数的目标参数值。
一种方式中,第一IAB节点可基于当前第一IAB节点所处的位置,确定第一服务区域,并将第一服务区域的区域信息作为第一参数的目标参数值;如,第一IAB节点处于经度30,纬度120的位置1,该位置1恰好位于区域A,那么可将区域A作为第一参数的目标参数值。
另一种方式中,第一IAB节点可基于当前时间确定第一服务时间,并将第一服务时间作为第一参数的目标参数值;如,当前时间为14点,恰好位于时间段1的范围内,那么可将时间段1作为第一参数的目标参数值。
再一种方式中,第一IAB节点还可以基于当前第一IAB节点所处的位置,确定第二服务区域,并基于当前时间确定第二服务时间;第一IAB节点将第二服务区域的区域信息以及第二服务时间共同确定为第一参数的目标参数值。如,当前时间为14点,恰好位于时间段1的范围内,第一IAB节点处于经度35,纬度125的位置2,该位置2恰好位于区域B,那么可将时间段1和区域B共同作为第一参数的目标参数值。
步骤1203,第一IAB节点根据对应关系和第一参数的目标参数值,确定对应的目标小区标识,将目标小区标识配置给第一小区,第一小区为第一IAB节点下的任一小区。
IAB节点为了避免其下的小区标识与邻小区的小区标识发生冲突,基于服务区域,或服务时间情况进行配置,保证小区标识的全局唯一性,通过该方式可以保证移动终端的服 务质量,使得服务小区的小区标识与邻小区的小区标识不冲突,且可保证移动终端的业务体验。
在采用图4B的IAB网络架构时,可参阅图13来执行小区标识的配置方案,具体如下:
步骤1301A,IAB-DU通过E2接口上报IAB-DU下小区的小区标识的配置信息。
步骤1301B,Donor-CU通过E2接口上报Donor-CU下小区的小区标识的配置信息。
上述步骤1301A和步骤1301B可选择执行,也可均执行,本申请在此不具体限定。通过步骤1301A,或/和,步骤1301B,RIC可以知晓其下的多个小区的小区标识的配置信息。
步骤1302,Donor-CU确定存在冲突的IAB-DU的小区标识,上报冲突的IAB-DU的小区标识至RIC。
当然在实际应用时,可能是在RIC获取上报的小区的小区标识的配置信息后自行判断的是否存在冲突,本申请在此不具体限定。
步骤1303,RIC向Donor-CU发送需要重新配置的存在冲突的IAB-DU的小区标识。
步骤1304,Donor-CU重新配置存在冲突的IAB-DU的小区标识。
步骤1305,RIC重新配置存在冲突小区的IAB-DU的小区标识。
上述步骤1303~步骤1304与步骤1305可选择执行,本申请在此不具体限定。
此外,还可参阅图14,进行小区标识的配置,执行如下:
步骤1401,RIC通过E2接口下发对应关系至IAB-DU,对应关系包括不同第一参数的参数值与不同小区标识的对应关系,第一参数包括以下中的至少一种:服务区域、服务时间。该过程可参照上述步骤1201来理解,在此不详细重复赘述。
步骤1402,IAB-DU确定第一参数的目标参数值。该过程可参照上述步骤1202来理解,在此不详细重复赘述。
步骤1403,IAB-DU根据对应关系和第一参数的目标参数值,确定对应的目标小区标识,将目标小区标识配置给第一小区,第一小区为第一IAB节点下的任一小区。
基于服务区域和/或服务时间进行小区标识配置可以避免IAB小区在移动过程中与邻区的小区标识发生冲突,且可保证IAB节点与移动终端业务的稳定性,保证移动终端的业务体验。
上述主要从设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,各个设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图15示出了本申请实施例中所涉及的通信装置的可能的示例性框图。如图15所示,通信装置1500可以包括:处理单元1501和收发单元1502。处理单元1501用于对通信装置1500的动作进行控制管理。收发单元1502用于支持通信装置1500与其他设备的通信。可选地,收发单元1502可以包括接收单元和/或发送单元, 分别用于执行接收和发送操作。可选的,通信装置1500还可以包括存储单元,用于存储通信装置1500的程序代码和/或数据。所述收发单元可以称为输入输出单元、通信单元等,所述收发单元可以是收发器;所述处理单元可以是处理器。当通信装置是通信设备中的模块(如,芯片)时,所述收发单元可以是输入输出接口、输入输出电路或输入输出管脚等,也可以称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。具体地,该装置可以为上述的终端设备、IAB-DU、donor CU等。
在一个实施例中,通信装置1500的收发单元1502获取当前第一小区的邻小区的小区标识;第一小区为第一IAB节点下的服务小区;处理单元1501用于确定第一小区的小区标识与邻小区的小区标识相同,则激活第二小区,并将第一小区中的移动终端切换至第二小区;第二小区的小区标识与邻小区的小区标识不同,第二小区为第一IAB节点下除第一小区以外的小区。
在一种可选的方式中,第一小区的小区标识与邻小区的小区标识相同,包括以下中的一种或多种:第一小区与邻小区采用相同的小区标识;或者第一小区的小区标识与邻小区的小区标识模N取余数后相同,其中,N为3,或30。
在一种可选的方式中,小区标识包括以下中的一种:PCI、CGI。
在另一个实施例中,通信装置1500的收发单元1502获取当前第一小区的邻小区的小区标识;第一小区为第一IAB节点下的服务小区;处理单元1501用于确定第一小区的小区标识与邻小区的小区标识相同,更新第一小区的小区标识;更新后的第一小区的小区标识与邻小区的小区标识不同。
在一种可选的方式中,收发单元1502获取当前第一小区的邻小区的小区标识时,可以用于将第一小区的小区标识发送至宿主节点;从宿主节点接收更新的第一小区的小区标识。
在一种可选的方式中,第一小区的小区标识与邻小区的小区标识相同,包括以下中的一种或多种:第一小区与邻小区采用相同的小区标识;或者第一小区的小区标识与邻小区的小区标识模N取余数后相同;其中,N为3,或30。
在一种可选的方式中,小区标识包括以下中的一种:PCI、CGI。
在又一个实施例中,通信装置1500的收发单元1502获取对应关系,对应关系包括不同第一参数的参数值与不同小区标识的对应关系,第一参数包括以下中的至少一种:服务区域、服务时间;处理单元1501,用于确定第一参数的目标参数值;根据对应关系和第一参数的目标参数值,确定对应的目标小区标识,将目标小区标识配置给第一小区,第一小区为第一IAB节点下的任一小区。
在一种可选的方式中,处理单元1501确定第一参数的目标参数值时,可以基于当前第一IAB节点所处的位置,确定第一服务区域,并将第一服务区域的区域信息作为第一参数的目标参数值;或,处理单元1501可以基于当前时间确定第一服务时间,并将第一服务时间作为第一参数的目标参数值;或,处理单元1501可以基于当前第一IAB节点所处的位置,确定第二服务区域,并基于当前时间确定第二服务时间;第一IAB节点将第二服务区域的区域信息以及第二服务时间确定为第一参数的目标参数值。其中,第一IAB节点可以为通信装置1500或者为通信装置1500所在的通信设备。
在一种可选的方式中,小区标识包括以下中的一种:PCI、CGI。
此外,如图16所示,为本申请提供的一种简化的终端设备的结构示意图。为了便于 理解和图示方式,图16中,终端设备以手机作为例子。如图16所示,终端设备包括处理器、存储器、射频电路、天线及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。
存储器主要用于存储软件程序和数据。
射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。
天线主要用于收发电磁波形式的射频信号。
输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为便于说明,图16中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图16所示,终端设备1600包括收发单元1610和处理单元1620。收发单元1610也可以称为收发器、收发机、收发装置等。处理单元1620也可以称为处理器,处理单板,处理模块、处理装置等。
可选的,可以将收发单元1610中用于实现接收功能的器件视为接收单元,将收发单元1610中用于实现发送功能的器件视为发送单元,即收发单元1610包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1610用于执行上述方法实施例中终端设备的发送操作和接收操作,处理单元1620用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
当该终端设备为芯片时,该芯片包括收发单元1610和处理单元1620。其中,该收发单元1610可以是输入输出电路或通信接口;处理单元1620为该芯片上集成的处理器或者微处理器或者集成电路或者逻辑电路。
本申请还提供一种网络设备。如图17所示,为本申请实施例提供的网络设备1700的结构示意图,该网络设备1700可应用于如图1所示的系统中,例如网络设备1700可以为IAB-DU、donor CU,用以执行上述方法实施例中网络设备的功能。应理解以下仅为示例,未来通信系统中,网络设备可以有其他形态和构成。
举例来说,在5G通信系统中,网络设备1700可以包括CU、DU和AAU,相比于LTE通信系统中的网络设备由一个或多个射频单元,如射频拉远单元(remote radio unit,RRU)和一个或多个室内基带处理单元(building base band unit,BBU)来说:
原BBU的非实时部分将分割出来,重新定义为CU,负责处理非实时协议和服务、BBU的部分物理层处理功能与原RRU及无源天线合并为AAU、BBU的剩余功能重新定义为DU,负责处理物理层协议和实时服务。简而言之,CU和DU,以处理内容的实时性进行区分、AAU为RRU和天线的组合。
CU、DU、AAU可以采取分离或合设的方式,所以,会出现多种网络部署形态,一种可能的部署形态如图17所示与传统4G网络设备一致,CU与DU共硬件部署。应理解,图17只是一种示例,对本申请的保护范围并不限制,例如,部署形态还可以是DU部署在BBU机房,CU集中部署或DU集中部署,CU更高层次集中等。
所述AAU1800可以实现收发功能与图15中的收发单元1502对应。可选地,该AAU1800还可以称为收发机、收发电路、或者收发器等,其可以包括至少一个天线1801和射频单元1802。可选地,AAU1800可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述CU和DU1900可以实现的内部处理功能与图15中的处理单元1501的功能对应。可选地,该CU和DU1900可以对网络设备进行控制等,可以称为控制器。所述AAU与CU和DU可以是物理上设置在一起,也可以物理上分离设置的。
另外,网络设备不限于图17所示的形态,也可以是其它形态:例如:包括BBU和自适应无线单元(adaptive radio unit,ARU),或者包括BBU和AAU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
在一个示例中,所述CU和DU1900可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网,未来网络或其他网)。所述CU和DU1900还包括存储器1901和处理器1902。所述存储器1901用以存储必要的指令和数据。所述处理器1902用于控制网络设备进行必要的动作,例如用于控制网络设备执行上述方法实施例中关于网络设备的操作流程。所述存储器1901和处理器1902可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图17所示的网络设备1700能够实现图7的方法实施例中涉及的网络设备功能。网络设备1700中的各个单元的操作和/或功能,分别为了实现本申请方法实施例中由网络设备执行的相应流程。为避免重复,此处适当省略详述描述。图17示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备结构的可能。
上述CU和DU1900可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU1800可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种通信系统,该通信系统包括终端设备和网络设备。终端设备用于执行上述图7所示的实施例中终端设备执行的全部或部分步骤。网络设备用于执行图7所示的实施例中网络设备执行的全部或部分步骤。
基于以上实施例,本申请实施例还提供一种可读存储介质,该可读存储介质存储有指令,当所述指令被执行时,使上述任一实施例中的方法被实施。该可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码 的介质。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、紧凑型光盘只读储存器(compact disc read-only memory,CD-ROM)、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理装置的处理器以产生一个机器,使得通过计算机或其他可编程数据处理装置的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理装置以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理装置上,使得在计算机或其他可编程装置上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程装置上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (24)

  1. 一种小区标识配置方法,其特征在于,包括:
    宿主节点获取当前第一小区的邻小区的小区标识;所述第一小区为第一接入回传一体化IAB节点下的服务小区;
    所述宿主节点确定所述第一小区的小区标识与所述邻小区的小区标识相同,则激活第二小区,并将所述第一小区中的移动终端切换至所述第二小区;所述第二小区的小区标识与所述邻小区的小区标识不同,所述第二小区为所述第一IAB节点下除所述第一小区以外的小区。
  2. 根据权利要求1所述的方法,其特征在于,所述第一小区的小区标识与所述邻小区的小区标识相同,包括以下中的一种或多种:
    所述第一小区与所述邻小区采用相同的小区标识;
    所述第一小区的小区标识与所述邻小区的小区标识模N取余数后相同,其中,所述N为3,或30。
  3. 根据权利要求1或2所述的方法,其特征在于,所述小区标识包括以下中的一种:
    小区物理标识PCI、全球小区标识CGI。
  4. 一种小区标识配置方法,其特征在于,包括:
    第一接入回传一体化IAB节点获取当前第一小区的邻小区的小区标识;所述第一小区为所述第一IAB节点下的服务小区;
    所述第一IAB节点确定所述第一小区的小区标识与所述邻小区的小区标识相同,更新所述第一小区的小区标识;更新后的所述第一小区的小区标识与所述邻小区的小区标识不同。
  5. 根据权利要求4所述的方法,其特征在于,所述更新所述第一小区的小区标识,包括:
    所述第一IAB节点将所述第一小区的小区标识发送至宿主节点;
    所述第一IAB节点从所述宿主节点接收更新的所述第一小区的小区标识。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一小区的小区标识与所述邻小区的小区标识相同,包括以下中的一种或多种:
    所述第一小区与所述邻小区采用相同的小区标识;
    所述第一小区的小区标识与所述邻小区的小区标识模N取余数后相同;
    其中,所述N为3,或30。
  7. 根据权利要求5或6所述的方法,其特征在于,所述小区标识包括以下中的一种:
    小区物理标识PCI、全球小区标识CGI。
  8. 一种小区标识配置方法,其特征在于,包括:
    第一接入回传一体化IAB节点获取对应关系,所述对应关系包括不同第一参数的参数值与不同小区标识的对应关系,所述第一参数包括以下中的至少一种:服务区域、服务时间;
    所述第一IAB节点确定所述第一参数的目标参数值;
    所述第一IAB节点根据所述对应关系和所述第一参数的目标参数值,确定对应的目标小区标识,将所述目标小区标识配置给第一小区,所述第一小区为所述第一IAB节点下的 任一小区。
  9. 根据权利要求8所述的方法,其特征在于,所述第一IAB节点确定所述第一参数的目标参数值,包括:
    所述第一IAB节点基于当前所述第一IAB节点所处的位置,确定第一服务区域,并将所述第一服务区域的区域信息作为所述第一参数的目标参数值;或,
    所述第一IAB节点基于当前时间确定第一服务时间,并将所述第一服务时间作为所述第一参数的目标参数值;或,
    所述第一IAB节点基于当前所述第一IAB节点所处的位置,确定第二服务区域,并基于当前时间确定第二服务时间;所述第一IAB节点将所述第二服务区域的区域信息以及所述第二服务时间确定为所述第一参数的目标参数值。
  10. 根据权利要求8或9所述的方法,其特征在于,所述小区标识包括以下中的一种:
    小区物理标识PCI、全球小区标识CGI。
  11. 一种通信装置,其特征在于,包括:实现如权利要求1-3中任一项、或如权利要求4-7中任一项、或如权利要求8-10中任一项所述的方法的功能模块。
  12. 一种通信装置,其特征在于,包括:
    收发单元,用于获取当前第一小区的邻小区的小区标识;所述第一小区为第一接入回传一体化IAB节点下的服务小区;
    处理单元,用于确定所述第一小区的小区标识与所述邻小区的小区标识相同,则激活第二小区,并将所述第一小区中的移动终端切换至所述第二小区;所述第二小区的小区标识与所述邻小区的小区标识不同,所述第二小区为所述第一IAB节点下除所述第一小区以外的小区。
  13. 根据权利要求12所述的装置,其特征在于,所述第一小区的小区标识与所述邻小区的小区标识相同,包括以下中的一种或多种:
    所述第一小区与所述邻小区采用相同的小区标识;
    所述第一小区的小区标识与所述邻小区的小区标识模N取余数后相同,其中,所述N为3,或30。
  14. 根据权利要求12或13所述的装置,其特征在于,所述小区标识包括以下中的一种:
    小区物理标识PCI、全球小区标识CGI。
  15. 一种通信装置,其特征在于,包括:
    收发单元,用于获取当前第一小区的邻小区的小区标识;所述第一小区为第一IAB节点下的服务小区;
    处理单元,用于确定所述第一小区的小区标识与所述邻小区的小区标识相同,更新所述第一小区的小区标识;更新后的所述第一小区的小区标识与所述邻小区的小区标识不同。
  16. 根据权利要求15所述的装置,其特征在于,所述收发单元,具体用于:
    将所述第一小区的小区标识发送至宿主节点;
    从所述宿主节点接收更新的所述第一小区的小区标识。
  17. 根据权利要求15或16所述的装置,其特征在于,所述第一小区的小区标识与所述邻小区的小区标识相同,包括以下中的一种或多种:
    所述第一小区与所述邻小区采用相同的小区标识;
    所述第一小区的小区标识与所述邻小区的小区标识模N取余数后相同;
    其中,所述N为3,或30。
  18. 根据权利要求16或17所述的装置,其特征在于,所述小区标识包括以下中的一种:
    小区物理标识PCI、全球小区标识CGI。
  19. 一种通信装置,其特征在于,包括:
    收发单元,用于获取对应关系,所述对应关系包括不同第一参数的参数值与不同小区标识的对应关系,所述第一参数包括以下中的至少一种:服务区域、服务时间;
    处理单元,用于确定所述第一参数的目标参数值;并根据所述对应关系和所述第一参数的目标参数值,确定对应的目标小区标识,将所述目标小区标识配置给第一小区,所述第一小区为第一IAB节点下的任一小区。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元,具体用于基于当前所述第一IAB节点所处的位置,确定第一服务区域,并将所述第一服务区域的区域信息作为所述第一参数的目标参数值;或,
    基于当前时间确定第一服务时间,并将所述第一服务时间作为所述第一参数的目标参数值;或,
    基于当前所述第一IAB节点所处的位置,确定第二服务区域,并基于当前时间确定第二服务时间;所述第一IAB节点将所述第二服务区域的区域信息以及所述第二服务时间确定为所述第一参数的目标参数值。
  21. 根据权利要求19或20所述的装置,其特征在于,所述小区标识包括以下中的一种:
    小区物理标识PCI、全球小区标识CGI。
  22. 一种通信装置,其特征在于,包括:至少一个处理器,所述处理器用于与存储器耦合;
    所述至少一个处理器,用于执行所述存储器存储的计算机程序或指令,以使得如权利要求1-3中任一项、或如权利要求4-7中任一项、或如权利要求8-10中任一项所述的方法被执行。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被计算机执行时,使得如权利要求1-3中任一项、或如权利要求4-7中任一项、或如权利要求8-10中任一项所述的方法被执行。
  24. 一种包含计算机程序或指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得上述权利要求1-3中任一项、或如权利要求4-7中任一项、或如权利要求8-10中任一项所述的方法被执行。
PCT/CN2023/094350 2022-07-30 2023-05-15 一种小区标识配置方法及通信装置 WO2024027277A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210911479.9 2022-07-30
CN202210911479.9A CN117528677A (zh) 2022-07-30 2022-07-30 一种小区标识配置方法及通信装置

Publications (1)

Publication Number Publication Date
WO2024027277A1 true WO2024027277A1 (zh) 2024-02-08

Family

ID=89757221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094350 WO2024027277A1 (zh) 2022-07-30 2023-05-15 一种小区标识配置方法及通信装置

Country Status (2)

Country Link
CN (1) CN117528677A (zh)
WO (1) WO2024027277A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112996061A (zh) * 2019-12-12 2021-06-18 维沃移动通信有限公司 小区重配置方法、网络控制节点和移动iab节点
CN114223259A (zh) * 2019-08-16 2022-03-22 高通股份有限公司 移动网络的条件切换
WO2022061780A1 (en) * 2020-09-25 2022-03-31 Nokia Shanghai Bell Co., Ltd. Methods, apparatuses and computer readable media for integrated access and backhaul communication
CN114270915A (zh) * 2019-08-20 2022-04-01 高通股份有限公司 移动iab网络中的pci改变的指示
CN114303403A (zh) * 2019-08-20 2022-04-08 高通股份有限公司 移动iab网络的分布式pci管理

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114223259A (zh) * 2019-08-16 2022-03-22 高通股份有限公司 移动网络的条件切换
CN114270915A (zh) * 2019-08-20 2022-04-01 高通股份有限公司 移动iab网络中的pci改变的指示
CN114303403A (zh) * 2019-08-20 2022-04-08 高通股份有限公司 移动iab网络的分布式pci管理
CN112996061A (zh) * 2019-12-12 2021-06-18 维沃移动通信有限公司 小区重配置方法、网络控制节点和移动iab节点
WO2022061780A1 (en) * 2020-09-25 2022-03-31 Nokia Shanghai Bell Co., Ltd. Methods, apparatuses and computer readable media for integrated access and backhaul communication

Also Published As

Publication number Publication date
CN117528677A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US11546811B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
US20210219368A1 (en) Relay apparatus
US20210160735A1 (en) Relay apparatus
EP4132097A1 (en) Communication method, apparatus and system
WO2022028493A1 (zh) 一种iab节点的配置方法及通信装置
CN114258731B (zh) 集成接入回程网络中的集中式单元及其操作方法
WO2022151400A1 (zh) 一种用于接入回传一体化iab系统中的通信方法和通信装置
CN105992398B (zh) 一种通信系统、通信网络、通信设备和通信方法
WO2021218938A1 (zh) 一种资源协调方法及装置
US20230039422A1 (en) Infrastructure equipment, central unit nodes and methods
EP4014359B1 (en) Methods, network node and computer program product for resource configuration of iab based on capability
CN115707149A (zh) 通信方法和通信装置
CN110876171B (zh) 一种多跳数据传输方法及装置
WO2024027277A1 (zh) 一种小区标识配置方法及通信装置
US20220174535A1 (en) Methods and apparatuses for duplication communication
CN114642076A (zh) 一种接入回传控制方法及装置
WO2024093833A1 (zh) 一种通信方法和通信装置
EP4221338A1 (en) Communication method for integrated access and backhaul (iab) system, and related device
CN115811760B (zh) 双连接和载波聚合组网的数据分流方法及系统
WO2022160288A1 (zh) 一种无线通信的方法和装置
WO2024026803A1 (zh) 移动节点的配置方法和宿主设备
EP4325798A1 (en) Communication method and apparatus
KR20220017375A (ko) 무선 통신 시스템에서 사이드링크를 이용한 중계 방법 및 장치
CN117835337A (zh) 一种通信方法及相关设备
CN115707029A (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848987

Country of ref document: EP

Kind code of ref document: A1