WO2024027257A1 - Digital micromirror array chip and manufacturing method therefor - Google Patents

Digital micromirror array chip and manufacturing method therefor Download PDF

Info

Publication number
WO2024027257A1
WO2024027257A1 PCT/CN2023/093167 CN2023093167W WO2024027257A1 WO 2024027257 A1 WO2024027257 A1 WO 2024027257A1 CN 2023093167 W CN2023093167 W CN 2023093167W WO 2024027257 A1 WO2024027257 A1 WO 2024027257A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital micromirror
array
unit
micromirror array
digital
Prior art date
Application number
PCT/CN2023/093167
Other languages
French (fr)
Chinese (zh)
Inventor
张炜
Original Assignee
加维纳米(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加维纳米(北京)科技有限公司 filed Critical 加维纳米(北京)科技有限公司
Publication of WO2024027257A1 publication Critical patent/WO2024027257A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

Embodiments of the present application provide a digital micromirror array chip and a manufacturing method therefor.The method comprises: forming a digital micromirror array on a nano-film according to a micromirror unit structure and an array arrangement designed for an optical modulation objective, the digital micromirror array comprising a plurality of digital micromirror units arranged in an array, and each digital micromirror unit having the micromirror unit structure; according to the micromirror unit structure, the array arrangement, and the optical modulation objective, preparing, at the digital micromirror array, an external drive circuit capable of independently controlling each digital micromirror unit; and packaging the digital micromirror array and the external drive circuit to form a digital micromirror array chip.

Description

数字微镜阵列芯片及其制备方法Digital micromirror array chip and preparation method thereof
相关申请的交叉引用Cross-references to related applications
本申请要求于2022年8月1日提交的第202210914727.5号中国专利申请的优先权和权益,所述中国专利申请的全部公开内容通过引用包含于此。This application claims the priority and rights of Chinese patent application No. 202210914727.5 filed on August 1, 2022. The entire disclosure content of the Chinese patent application is incorporated herein by reference.
技术领域Technical field
本申请涉及微纳加工技术,尤其涉及数字微镜阵列芯片制备方法及数字微镜阵列芯片。The present application relates to micro-nano processing technology, and in particular to a digital micromirror array chip preparation method and a digital micromirror array chip.
背景技术Background technique
数字微镜阵列芯片(Digital Micromirror Array Chip)是一种阵列排布、可独立寻址控制的、调制参量为数字化状态位的微纳结构器件。Digital Micromirror Array Chip is a micro-nano structure device with array arrangement, independently addressable control, and whose modulation parameters are digital state bits.
微纳结构(micro-nano structure)通常是指具有亚波长尺寸的形貌特征结构。该尺度下,表面结构形貌可产生独特的物理特性。通过改变微纳结构的形状、尺寸和/或材料可以实现对入射光的振幅、位相、偏振态的调制,实现光场的调控并产生特殊的光学效应。Micro-nano structure usually refers to a morphological feature structure with sub-wavelength size. At this scale, surface structural morphology can produce unique physical properties. By changing the shape, size and/or material of the micro-nano structure, the amplitude, phase and polarization state of the incident light can be modulated, the light field can be controlled and special optical effects can be produced.
随着光电产品如各类可穿戴设备的小型化、微型化趋势,需要尺寸更小、像素密度更高的光控阵列器件,以实现光“开关”或能量调节等功能。数字微镜阵列芯片具有可动态调制的微纳结构形式,在此方面具有效果。With the trend of miniaturization and miniaturization of optoelectronic products such as various wearable devices, optical control array devices with smaller size and higher pixel density are needed to realize functions such as light "switching" or energy regulation. The digital micromirror array chip has a dynamically modifiable micro-nano structure form, which is effective in this regard.
由于数字微镜阵列芯片是一种微纳尺度的高精密集成器件,其像素密度、调制角度、“开关”速度、稳定性、制备工艺、材料等方面,有一定局限和性能平衡难度。Since the digital micromirror array chip is a high-precision integrated device at the micro-nano scale, its pixel density, modulation angle, "switching" speed, stability, preparation process, materials, etc. have certain limitations and difficulty in performance balance.
关于数字微镜阵列芯片,有一种采取静电力驱动的扭杆式微结构,该结构的制备相对简单,但扭转力具有较明显的非线性特征,扭转特性限制了调制角度,同时也增加了调控难度。还有一种基于铰链连接、悬臂梁支撑的微型反射镜结构,该结构的单像素尺寸通常在数个微米量级,这限制了“开关”速度的进一步提升。同时,此类结构为多层三维结构,制备工 艺复杂,成品率低。Regarding the digital micromirror array chip, there is a torsion bar microstructure driven by electrostatic force. The preparation of this structure is relatively simple, but the torsion force has obvious nonlinear characteristics. The torsion characteristics limit the modulation angle and also increase the difficulty of control. . There is also a micro-mirror structure based on hinge connection and cantilever beam support. The single pixel size of this structure is usually on the order of several microns, which limits the further improvement of the "switching" speed. At the same time, this type of structure is a multi-layered three-dimensional structure, and the preparation process The process is complex and the yield is low.
发明内容Contents of the invention
有鉴于此,本申请的一个或更多个实施例提供了一种制备数字微镜阵列芯片的方法,所述方法包括:In view of this, one or more embodiments of the present application provide a method of preparing a digital micromirror array chip, the method including:
根据基于光学调制目标而设计的微镜单元结构和阵列排布,在纳米薄膜上形成数字微镜阵列,所述数字微镜阵列包括按照所述阵列排布的多个数字微镜单元,每个所述数字微镜单元具有所述微镜单元结构;According to the micromirror unit structure and array arrangement designed based on the optical modulation target, a digital micromirror array is formed on the nanofilm. The digital micromirror array includes a plurality of digital micromirror units arranged according to the array, each The digital micromirror unit has the micromirror unit structure;
根据所述微镜单元结构、所述阵列排布以及所述光学调制目标,在所述数字微镜阵列处制备能够对每个所述数字微镜单元进行独立控制的外部驱动电路;According to the micromirror unit structure, the array arrangement and the optical modulation target, prepare an external drive circuit at the digital micromirror array that can independently control each digital micromirror unit;
对所述数字微镜阵列和所述外部驱动电路进行封装,以形成数字微镜阵列芯片。The digital micromirror array and the external driving circuit are packaged to form a digital micromirror array chip.
本申请的一个或更多个实施例还提供:One or more embodiments of the present application also provide:
一种数字微镜阵列芯片,包括纳米薄膜、数字微镜阵列和外部驱动电路,A digital micromirror array chip, including a nanofilm, a digital micromirror array and an external drive circuit,
其中,所述数字微镜阵列设置于所述纳米薄膜上,包括按照阵列排布的多个数字微镜单元;Wherein, the digital micromirror array is disposed on the nanofilm and includes a plurality of digital micromirror units arranged in an array;
所述外部驱动电路设置在所述数字微镜阵列处,用于对每个所述数字微镜单元进行独立控制。The external driving circuit is provided at the digital micromirror array and is used to independently control each digital micromirror unit.
附图说明Description of the drawings
图1是本申请实施例的数字微镜阵列芯片制备方法的流程图;Figure 1 is a flow chart of a digital micromirror array chip preparation method according to an embodiment of the present application;
图2是本申请实施例的基于纳米形变制造技术的数字微镜阵列芯片制备方法的流程图;Figure 2 is a flow chart of a digital micromirror array chip preparation method based on nanodeformation manufacturing technology according to an embodiment of the present application;
图3a是本申请实施例的基于纳米形变制造工艺的数字微镜单元顶视图;Figure 3a is a top view of a digital micromirror unit based on a nanodeformation manufacturing process according to an embodiment of the present application;
图3b是本申请实施例的基于纳米形变制造工艺的数字微镜单元等轴侧视图;Figure 3b is an isometric side view of the digital micromirror unit based on the nanodeformation manufacturing process according to the embodiment of the present application;
图3c是本申请实施例的基于纳米形变制造工艺的数字微镜单元前视图; Figure 3c is a front view of the digital micromirror unit based on the nanodeformation manufacturing process according to the embodiment of the present application;
图3d是本申请实施例的基于纳米形变制造工艺的数字微镜阵列等轴侧视图;Figure 3d is an isometric side view of the digital micromirror array based on the nanodeformation manufacturing process according to the embodiment of the present application;
图4a是本申请实施例的为单像素微镜施加外部电压的电极前视图;Figure 4a is a front view of an electrode that applies an external voltage to a single-pixel micromirror according to an embodiment of the present application;
图4b是本申请实施例的为阵列提供可独立控制的外部电压的电极顶视图;Figure 4b is a top view of an electrode that provides an independently controllable external voltage for the array according to an embodiment of the present application;
图5a是本申请实施例的未对数字微镜单元施加外部电压信号时表面结构对入射光的调制示意图;Figure 5a is a schematic diagram of the modulation of incident light by the surface structure when no external voltage signal is applied to the digital micromirror unit according to the embodiment of the present application;
图5b是本申请实施例的对数字微镜单元施加了外部电压信号后,表面结构对入射光的调制示意图。Figure 5b is a schematic diagram of the modulation of incident light by the surface structure after an external voltage signal is applied to the digital micromirror unit according to the embodiment of the present application.
具体实施方式Detailed ways
下面将结合附图详细描述本申请一个或多个实施例。所描述的实施例仅仅是例示性的,并不旨在限制本申请。One or more embodiments of the present application will be described in detail below with reference to the accompanying drawings. The described embodiments are illustrative only and are not intended to limit the application.
如图1所示,根据本申请实施例的数字微镜阵列芯片制备方法包括步骤101至103。As shown in Figure 1, the digital micromirror array chip preparation method according to the embodiment of the present application includes steps 101 to 103.
在步骤101,根据基于光学调制目标而设计的微镜单元结构和阵列排布,在纳米薄膜上形成数字微镜阵列。该数字微镜阵列包括按照该阵列排布的多个数字微镜单元,每个数字微镜单元具有该微镜单元结构。In step 101, a digital micromirror array is formed on the nanofilm according to the micromirror unit structure and array arrangement designed based on the optical modulation target. The digital micromirror array includes a plurality of digital micromirror units arranged according to the array, and each digital micromirror unit has the micromirror unit structure.
在一种实现方式中,根据基于期望的光学调制目标而设计的微镜单元结构和阵列排布,采用微加工技术在纳米薄膜上剪裁出数字微镜阵列。光学调制目标可以包括入射光调制目标。微加工技术可以包括聚焦离子束或电子束曝光等。纳米薄膜可以包括纳米导电薄膜。纳米导电薄膜可以包括金、铝等。In one implementation, a digital micromirror array is cut out on a nanofilm using micromachining technology based on the micromirror unit structure and array arrangement designed based on the desired optical modulation target. The optical modulation target may include an incident light modulation target. Micromachining techniques can include focused ion beam or electron beam exposure, among others. Nanofilms may include nanoconductive films. Nano conductive films can include gold, aluminum, etc.
在一种实现方式中,如图3a和图3b所示,每个数字微镜单元10可以具有纳米剪纸结构,例如包括中心镜面区域以及连接到中心镜面区域的回转(蛇形或多个弓字型)剪切结构。如图3d所示,多个数字微镜单元10可以布置成数字微镜阵列11。In one implementation, as shown in FIGS. 3a and 3b , each digital micromirror unit 10 may have a nano-cut paper structure, for example, including a central mirror area and a rotation (snake shape or multiple bow shapes) connected to the central mirror area. type) shear structure. As shown in FIG. 3d , a plurality of digital micromirror units 10 may be arranged into a digital micromirror array 11.
在步骤102,根据所述微镜单元结构、所述阵列排布以及所述光学调制目标,在数字微镜阵列处制备能够对每个数字微镜单元进行独立控制的外部驱动电路。In step 102, according to the micromirror unit structure, the array arrangement, and the optical modulation target, an external driving circuit capable of independently controlling each digital micromirror unit is prepared at the digital micromirror array.
在一种实现方式中,根据所述微镜单元结构、所述阵列排布以及所述 光学调制目标而在每个数字微镜单元的中心镜面区域下方制备对应的透明电极,该透明电极通过绝缘层与该数字微镜单元的中心镜面区域连接,每个数字微镜单元与对应的透明电极可构成一个像素。所制备的与多个数字微镜单元一一对应的多个透明电极组成电极阵列,从而形成能够对每个数字微镜单元进行独立控制的外部驱动电路。In one implementation, according to the micromirror unit structure, the array arrangement and the Optically modulate the target and prepare a corresponding transparent electrode under the central mirror area of each digital micromirror unit. The transparent electrode is connected to the central mirror area of the digital micromirror unit through an insulating layer. Each digital micromirror unit is connected to the corresponding transparent electrode. The electrodes make up a pixel. The prepared plurality of transparent electrodes corresponding one-to-one to the plurality of digital micromirror units form an electrode array, thereby forming an external drive circuit capable of independently controlling each digital micromirror unit.
在步骤103,对所述数字微镜阵列和所述外部驱动电路进行封装,以形成数字微镜阵列芯片。In step 103, the digital micromirror array and the external driving circuit are packaged to form a digital micromirror array chip.
在形成数字微镜阵列芯片后,可以向数字微镜阵列芯片中的外部驱动电路施加外部电压信号,以独立控制数字微镜阵列芯片中每个数字微镜单元的形变。After the digital micromirror array chip is formed, an external voltage signal can be applied to the external driving circuit in the digital micromirror array chip to independently control the deformation of each digital micromirror unit in the digital micromirror array chip.
在一种实现方式中,对于每个数字微镜单元,可以经由所述外部驱动电路中与该数字微镜单元对应的透明电极,向该数字微镜单元施加外部电压信号,以使该数字微镜单元的回转剪切结构受到诸如静电力或磁场力的作用而形成形变拉伸,最终使得该数字微镜单元的中心镜面区域整体发生角度偏转,从而产生三维形变,其中,该数字微镜单元的中心镜面区域会随着电压的增加逐渐远离初始纳米薄膜平面。这样,能够实现对纳米剪纸结构的形变调制,故上述纳米剪纸结构也可以被称为纳米形变结构。In one implementation, for each digital micromirror unit, an external voltage signal can be applied to the digital micromirror unit via a transparent electrode corresponding to the digital micromirror unit in the external drive circuit, so that the digital micromirror unit The rotational shear structure of the mirror unit is deformed and stretched due to the action of electrostatic force or magnetic field force, which ultimately causes the entire central mirror area of the digital micromirror unit to undergo angular deflection, thereby producing three-dimensional deformation, wherein the digital micromirror unit The central mirror area will gradually move away from the initial nanofilm plane as the voltage increases. In this way, the deformation modulation of the nano-paper-cut structure can be realized, so the above-mentioned nano-paper structure can also be called a nano-deformation structure.
参见图2,根据本申请实施例的基于纳米形变制造技术的数字微镜阵列芯片制备方法可以包括下列步骤。Referring to Figure 2, a method for preparing a digital micromirror array chip based on nanodeformation manufacturing technology according to an embodiment of the present application may include the following steps.
第一步,依据所期望的光学调制目标(例如入射光调制目标)设计所需的微镜单元结构和阵列排布以获得微镜阵列图案,并根据该微镜阵列图案在纳米薄膜上形成数字微镜阵列。在一种实现方式中,为形成数字微镜阵列中的每个数字微镜单元,采用聚焦离子束或电子束曝光等微加工技术在纳米导电薄膜(包括金、铝等材料)上剪裁出与所设计的微镜单元结构对应的图案。如图3a和图3b所示,每个数字微镜单元10包括中心镜面区域和连接到中心镜面区域的回转剪切结构。例如,每个数字微镜单元10的尺寸为3微米×3微米,中心镜面区域的尺寸为2.6微米×2.1微米。如图3c所示,每个数字微镜单元10可以包括具有中心镜面区域和回转剪切结构的金属结构层、绝缘层以及衬底,其中,V表示施加给数字微镜单元的电压。回转剪切结构被施加垂直于加工平面的外界应力后形成形变拉伸, 最终使得中心镜面区域整体偏转一定角度,该角度例如为15°。所形成的多个数字微镜单元10按照所设计的阵列排布排列成数字微镜阵列11,如图3d所示。The first step is to design the required micromirror unit structure and array arrangement according to the desired optical modulation target (such as the incident light modulation target) to obtain a micromirror array pattern, and form numbers on the nanofilm according to the micromirror array pattern. Micromirror array. In one implementation, in order to form each digital micromirror unit in the digital micromirror array, micromachining techniques such as focused ion beam or electron beam exposure are used to cut out and Pattern corresponding to the designed micromirror unit structure. As shown in Figures 3a and 3b, each digital micromirror unit 10 includes a central mirror area and a rotational shear structure connected to the central mirror area. For example, the size of each digital micromirror unit 10 is 3 microns×3 microns, and the size of the central mirror area is 2.6 microns×2.1 microns. As shown in FIG. 3c , each digital micromirror unit 10 may include a metal structure layer having a central mirror area and a rotational shear structure, an insulating layer, and a substrate, where V represents the voltage applied to the digital micromirror unit. The rotary shear structure is deformed and stretched after being subjected to external stress perpendicular to the processing plane. Finally, the entire central mirror area is deflected to a certain angle, for example, 15°. The plurality of digital micromirror units 10 formed are arranged into a digital micromirror array 11 according to the designed array arrangement, as shown in Figure 3d.
第二步,依据所获得的微镜阵列图案以及所期望的光学调制目标在数字微镜阵列处制备外部驱动电路。如图4a所示,可以在每个数字微镜单元的中心镜面区域下方制备对应的透明电极,该透明电极通过绝缘层与该数字微镜单元的中心镜面区域连接,每个数字微镜单元与对应的透明电极可构成一个像素。例如,该绝缘层厚685纳米。所制备的与多个数字微镜单元一一对应的多个透明电极组成电极阵列20,从而形成能够对每个数字微镜单元进行独立控制的外部驱动电路21,如图4b所示。In the second step, an external driving circuit is prepared at the digital micromirror array according to the obtained micromirror array pattern and the desired optical modulation target. As shown in Figure 4a, a corresponding transparent electrode can be prepared under the central mirror area of each digital micromirror unit. The transparent electrode is connected to the central mirror area of the digital micromirror unit through an insulating layer. Each digital micromirror unit is connected to Corresponding transparent electrodes can constitute a pixel. For example, the insulation layer is 685 nanometers thick. The prepared multiple transparent electrodes corresponding to the multiple digital micromirror units one-to-one form an electrode array 20, thereby forming an external driving circuit 21 that can independently control each digital micromirror unit, as shown in Figure 4b.
第三步,对数字微镜阵列和外部驱动电路进行封装,以形成可通过向外部驱动电路施加外部电压信号而独立驱动各像素的数字微镜阵列芯片。In the third step, the digital micromirror array and the external driving circuit are packaged to form a digital micromirror array chip that can independently drive each pixel by applying an external voltage signal to the external driving circuit.
第四步,通过向外部驱动电路施加外部电压信号,使得各个数字微镜单元受到静电力的作用而产生三维形变,其中中心镜面区域随着外部电压信号的增加逐渐远离初始纳米薄膜平面,从而实现对纳米剪纸结构的形变调制。参见图5a和图5b,入射光角度不变,随着镜面表面角度的偏转,反射光角度发生改变并获得所设计的调制。图5a和图5b中,方框代表探测器,用于探测反射光,其中0和1分别对应探测反射光的两个位置;V表示施加给数字微镜单元的电压,V1表示电压V的具体赋值,V1不为零。在一个实现方式中,数字微镜单元偏转15°,可调制出射光角度偏转30°。在入射光角度不变的情况下,若对数字微镜单元施加的外部电压V的值V1不为零,则该数字微镜单元的中心镜面区域的表面(即镜面)会偏转一定角度,导致该镜面的反射光的角度改变,从而获得所设计的调制。例如,数字微镜单元的镜面偏转15°,可调制出射光(即反射光)角度偏转30°。这样,可以通过施加外部信号实现对入射光角度的像素级动态调制。The fourth step is to apply an external voltage signal to the external drive circuit, so that each digital micromirror unit is affected by electrostatic force and produces three-dimensional deformation. The central mirror area gradually moves away from the initial nanofilm plane as the external voltage signal increases, thereby achieving Deformation modulation of nano-kirigami structures. Referring to Figure 5a and Figure 5b, the angle of the incident light remains unchanged. As the angle of the mirror surface is deflected, the angle of the reflected light changes and the designed modulation is obtained. In Figure 5a and Figure 5b, the box represents the detector, which is used to detect reflected light, where 0 and 1 respectively correspond to the two positions for detecting reflected light; V represents the voltage applied to the digital micromirror unit, and V1 represents the specific voltage V Assignment, V1 is not zero. In one implementation, the digital micromirror unit is deflected by 15° and can modulate the outgoing light angle to be deflected by 30°. When the angle of incident light remains unchanged, if the value V1 of the external voltage V applied to the digital micromirror unit is not zero, the surface of the central mirror area of the digital micromirror unit (ie, the mirror) will deflect at a certain angle, resulting in The angle of the reflected light from this mirror changes to obtain the designed modulation. For example, if the mirror surface of the digital micromirror unit is deflected by 15°, the emitted light (ie, reflected light) can be modulated to deflect by 30°. In this way, pixel-level dynamic modulation of the incident light angle can be achieved by applying external signals.
本申请实施例所调制的对象包括但不限于出射光的振幅、位相。所需调制效果可以由不同几何形状的数字微镜单元实现。The objects modulated by the embodiments of the present application include but are not limited to the amplitude and phase of the emitted light. The required modulation effects can be achieved by digital micromirror units of different geometries.
本申请实施例的基于纳米形变结构的数字微镜阵列芯片能够通过改变外部输入信号实现对数字微镜单元的空间形变控制,进而实现对出射光特性的动态调制,可用于数字光学处理、波前整形、信息加密、动态全息显 示等领域。The digital micromirror array chip based on the nanodeformation structure of the embodiment of the present application can realize spatial deformation control of the digital micromirror unit by changing the external input signal, thereby achieving dynamic modulation of the characteristics of the emitted light, and can be used for digital optical processing, wavefront Shaping, information encryption, dynamic holographic display display and other fields.
从上述描述可以看出,本申请实施例给出了一种数字微镜。该结构可通过聚焦离子束、电子束曝光等技术将结构阵列加工至纳米薄膜上,再通过外界电压信号的输入实现纳米结构的三维形变,进而改变其光学响应,实现出射光特性的调控。外界电信号的引入可以实现微镜单元的连续弹性形变,借此实现对入射光的动态调制。It can be seen from the above description that the embodiment of the present application provides a digital micromirror. This structure can process the structural array onto the nanofilm through technologies such as focused ion beam and electron beam exposure, and then realize the three-dimensional deformation of the nanostructure through the input of external voltage signals, thereby changing its optical response and controlling the characteristics of the emitted light. The introduction of external electrical signals can achieve continuous elastic deformation of the micromirror unit, thereby achieving dynamic modulation of incident light.
作为新型三维微纳加工技术,纳米形变结构可以高效实现三维结构制备。借助外部驱动,例如静电力、磁场力等,可实现三维结构的动态控制。通过像素阵列化,可实现独立像素控制,进而实现微镜阵列芯片对光在阵列维度上的“开关”及能量调制。同时,该方法易于集成化。As a new three-dimensional micro-nano processing technology, nanodeformation structures can efficiently achieve three-dimensional structure preparation. With the help of external drives, such as electrostatic force, magnetic field force, etc., dynamic control of three-dimensional structures can be achieved. Through pixel arraying, independent pixel control can be achieved, thereby realizing the "switching" and energy modulation of light in the array dimension by the micromirror array chip. At the same time, this method is easy to integrate.
综上所述,在本申请实施例中:To sum up, in the embodiment of this application:
1、为获得微米/百纳米级像素结构,提供一种纳米结构形变技术,可实现三维可形变纳米结构的制备。可通过对结构设计参数的优化实现不同的光学调制效果。可调制像素阵列,通过聚焦离子束、电子束曝光、纳米压印等微加工技术,加工至纳米薄膜表面。1. In order to obtain micron/hundred-nanometer pixel structures, a nanostructure deformation technology is provided, which can realize the preparation of three-dimensional deformable nanostructures. Different optical modulation effects can be achieved by optimizing structural design parameters. The modulated pixel array is processed onto the surface of the nanofilm through micro-processing technologies such as focused ion beam, electron beam exposure, and nanoimprinting.
2、为对像素结构进行独立的动态控制以实现出射光调制效果,期望在纳米薄膜外添加外部电压驱动单元。基于纳米形变技术制备的二维结构在外部电压的静电力等作用下发生弹性形变,形成三维结构,实现对出射光特性的调制。2. In order to independently dynamically control the pixel structure to achieve the outgoing light modulation effect, it is expected to add an external voltage driving unit outside the nanofilm. The two-dimensional structure prepared based on nanodeformation technology undergoes elastic deformation under the action of electrostatic force of external voltage to form a three-dimensional structure, thereby achieving modulation of the characteristics of the emitted light.
3、为提升数字微镜阵列芯片性能,采用纳米形变加工技术,可以实现百纳米精度的加工制备,可以实现更小的微镜单元,获得更快的调制速率与更高的像素密度。3. In order to improve the performance of digital micromirror array chips, nanodeformation processing technology is used to achieve processing and preparation with hundreds of nanometer precision, to achieve smaller micromirror units, to obtain faster modulation rates and higher pixel density.
本申请实施例还提供一种数字微镜阵列芯片,其可以是按照上述的制备方法制备的。如图3a、图3b、图3c、图3d、图4a、图4b、图5a、图5b所示,该数字微镜阵列芯片可以包括纳米薄膜、数字微镜阵列和外部驱动电路。An embodiment of the present application also provides a digital micromirror array chip, which can be prepared according to the above preparation method. As shown in Figures 3a, 3b, 3c, 3d, 4a, 4b, 5a, and 5b, the digital micromirror array chip may include a nanofilm, a digital micromirror array, and an external drive circuit.
所述数字微镜阵列设置于所述纳米薄膜上,包括按照阵列排布的多个数字微镜单元。所述外部驱动电路设置在所述数字微镜阵列处,用于对每个所述数字微镜单元进行独立控制。每个数字微镜单元可以在外部驱动电路的控制下产生三维形变。 The digital micromirror array is disposed on the nanofilm and includes a plurality of digital micromirror units arranged in an array. The external driving circuit is provided at the digital micromirror array and is used to independently control each digital micromirror unit. Each digital micromirror unit can produce three-dimensional deformation under the control of an external drive circuit.
在一种实现方式中,每个数字微镜单元包括一个中心镜面区域以及连接到该中心镜面区域的回转(蛇形或弓形)剪切结构。例如,所述数字微镜单元的尺寸为3微米×3微米,所述中心镜面区域的尺寸为2.6微米×2.1微米。In one implementation, each digital micromirror unit includes a central mirror region and a convoluted (serpentine or arcuate) shear structure connected to the central mirror region. For example, the size of the digital micromirror unit is 3 microns × 3 microns, and the size of the central mirror area is 2.6 microns × 2.1 microns.
在一种实现方式中,外部驱动电路包括多个透明电极。多个透明电极分别通过绝缘层设置于相应的数字微镜单元处,用于根据施加的外部电压,对相应的数字微镜单元进行独立控制。例如,绝缘层厚为685纳米。若在相应透明电极的控制下所述数字微镜单元的中心镜面区域整体偏转角度为15°,则所述数字微镜单元的出射光的偏转角度为30°。In one implementation, the external drive circuit includes a plurality of transparent electrodes. A plurality of transparent electrodes are respectively arranged at the corresponding digital micromirror unit through an insulating layer, and are used to independently control the corresponding digital micromirror unit according to the applied external voltage. For example, the insulation layer thickness is 685 nanometers. If the overall deflection angle of the central mirror area of the digital micromirror unit is 15° under the control of the corresponding transparent electrode, then the deflection angle of the emitted light from the digital micromirror unit is 30°.
具体地,根据本申请实施例的基于纳米形变制造技术的数字微镜阵列芯片可以包含由纳米技术制备的微镜表面,并附加外部驱动电路作为电信号输入模块。其中所设计的每个数字微镜单元的中心镜面区域作为调制单元部分悬空式地布置在数字微镜阵列芯片的上表面,单个数字微镜单元的尺寸为几百纳米至十几微米,例如,3微米。当施加电信号后,外部电场对悬空的中心镜面区域施加库仑力而引发数字微镜单元的弹性形变,从而改变数字微镜单元对入射光的响应特性,实现对出射光的动态、可寻址调控。封装后芯片通过电极可引入外部驱动电压,完成工程化应用。Specifically, the digital micromirror array chip based on nanodeformation manufacturing technology according to the embodiment of the present application can include a micromirror surface prepared by nanotechnology, and an external driving circuit is attached as an electrical signal input module. The central mirror area of each designed digital micromirror unit is arranged as a modulation unit part in a suspended manner on the upper surface of the digital micromirror array chip. The size of a single digital micromirror unit ranges from several hundred nanometers to more than ten microns, for example, 3 microns. When an electrical signal is applied, the external electric field exerts a Coulomb force on the suspended central mirror area, causing the elastic deformation of the digital micromirror unit, thereby changing the response characteristics of the digital micromirror unit to incident light and achieving dynamic and addressable response to the outgoing light. Regulation. After packaging, the chip can introduce external driving voltage through the electrodes to complete engineering applications.
通过施加外部信号实现对入射光角度的像素级动态调制。本申请实施例方法所涉及调制效果包括但不限于出射光的振幅、位相,所需调制效果可以由不同几何形状的数字微镜单元所实现。Pixel-level dynamic modulation of the incident light angle is achieved by applying external signals. The modulation effects involved in the methods of the embodiments of this application include but are not limited to the amplitude and phase of the emitted light. The required modulation effects can be achieved by digital micromirror units of different geometric shapes.
以上描述的实施例仅用以说明本申请,而非对其限制。本领域的普通技术人员应当理解,可以对前述各实施例进行修改,或者对其中部分或者全部技术特征进行等同替换。这些修改或者替换也落入本申请的范围。 The embodiments described above are only used to illustrate the present application, but not to limit it. Persons of ordinary skill in the art will understand that modifications may be made to each of the foregoing embodiments, or some or all of the technical features thereof may be replaced by equivalents. These modifications or substitutions also fall within the scope of this application.

Claims (10)

  1. 一种制备数字微镜阵列芯片的方法,包括:A method of preparing a digital micromirror array chip, including:
    根据基于光学调制目标而设计的微镜单元结构和阵列排布,在纳米薄膜上形成数字微镜阵列,所述数字微镜阵列包括按照所述阵列排布的多个数字微镜单元,每个所述数字微镜单元具有所述微镜单元结构;According to the micromirror unit structure and array arrangement designed based on the optical modulation target, a digital micromirror array is formed on the nanofilm. The digital micromirror array includes a plurality of digital micromirror units arranged according to the array, each The digital micromirror unit has the micromirror unit structure;
    根据所述微镜单元结构、所述阵列排布以及所述光学调制目标,在所述数字微镜阵列处制备能够对每个所述数字微镜单元进行独立控制的外部驱动电路;According to the micromirror unit structure, the array arrangement and the optical modulation target, prepare an external drive circuit at the digital micromirror array that can independently control each digital micromirror unit;
    对所述数字微镜阵列和所述外部驱动电路进行封装,以形成数字微镜阵列芯片。The digital micromirror array and the external driving circuit are packaged to form a digital micromirror array chip.
  2. 根据权利要求1所述的方法,还包括:The method of claim 1, further comprising:
    通过向所述数字微镜阵列芯片中的所述外部驱动电路施加外部电压信号,独立控制所述数字微镜阵列芯片中每个所述数字微镜单元的形变。By applying an external voltage signal to the external driving circuit in the digital micromirror array chip, the deformation of each digital micromirror unit in the digital micromirror array chip is independently controlled.
  3. 根据权利要求1所述的方法,其中,在所述纳米薄膜上形成所述数字微镜阵列包括:The method of claim 1, wherein forming the digital micromirror array on the nanofilm includes:
    采用微加工技术在所述纳米薄膜上剪裁出所述数字微镜阵列。The digital micromirror array is cut out on the nanofilm using micromachining technology.
  4. 根据权利要求2所述的方法,其中,在所述纳米薄膜上形成所述数字微镜阵列包括:The method of claim 2, wherein forming the digital micromirror array on the nanofilm includes:
    采用微加工技术在所述纳米薄膜上剪裁出所述数字微镜阵列。The digital micromirror array is cut out on the nanofilm using micromachining technology.
  5. 根据权利要求2所述的方法,其中,每个所述微镜单元结构包括中心镜面区域以及连接到所述中心镜面区域的回转剪切结构。The method of claim 2, wherein each of the micromirror unit structures includes a central mirror region and a rotational shear structure connected to the central mirror region.
  6. 根据权利要求5所述的方法,其中,在所述数字微镜阵列处制备所述外部驱动电路包括:The method of claim 5, wherein preparing the external driving circuit at the digital micromirror array includes:
    在每个所述数字微镜单元的所述中心镜面区域下方制备一个透明电极,以形成电极阵列,所述电极阵列构成所述外部驱动电路,其中,所述透明电极通过绝缘层与位于所述透明电极上方的所述中心镜面区域连接。 A transparent electrode is prepared under the central mirror area of each digital micromirror unit to form an electrode array. The electrode array constitutes the external driving circuit, wherein the transparent electrode is connected to the external driving circuit through an insulating layer. The central mirror area is connected above the transparent electrode.
  7. 根据权利要求6所述的方法,其中,独立控制所述数字微镜阵列芯片中每个所述数字微镜单元的形变包括:The method of claim 6, wherein independently controlling the deformation of each digital micromirror unit in the digital micromirror array chip includes:
    对于每个所述数字微镜单元,经由所述外部驱动电路中与该数字微镜单元对应的所述透明电极,向该数字微镜单元施加所述外部电压信号,以使该数字微镜单元的所述回转剪切结构受到静电力的作用而形成形变拉伸。For each of the digital micromirror units, the external voltage signal is applied to the digital micromirror unit via the transparent electrode corresponding to the digital micromirror unit in the external drive circuit, so that the digital micromirror unit The rotary shear structure is deformed and stretched under the action of electrostatic force.
  8. 一种数字微镜阵列芯片,包括纳米薄膜、数字微镜阵列和外部驱动电路,A digital micromirror array chip, including a nanofilm, a digital micromirror array and an external drive circuit,
    其中,所述数字微镜阵列设置于所述纳米薄膜上,包括按照阵列排布的多个数字微镜单元;Wherein, the digital micromirror array is disposed on the nanofilm and includes a plurality of digital micromirror units arranged in an array;
    所述外部驱动电路设置在所述数字微镜阵列处,用于对每个所述数字微镜单元进行独立控制。The external driving circuit is provided at the digital micromirror array and is used to independently control each digital micromirror unit.
  9. 根据权利要求8所述的数字微镜阵列芯片,其中,每个所述数字微镜单元包括中心镜面区域以及连接所述中心镜面区域的回转剪切结构。The digital micromirror array chip according to claim 8, wherein each digital micromirror unit includes a central mirror area and a rotational shear structure connecting the central mirror area.
  10. 根据权利要求9所述的数字微镜阵列芯片,其中,所述外部驱动电路包括与所述多个数字微镜单元分别对应的多个透明电极,The digital micromirror array chip according to claim 9, wherein the external driving circuit includes a plurality of transparent electrodes respectively corresponding to the plurality of digital micromirror units,
    所述多个透明电极中的每个透明电极设置在所述多个数字微镜单元中与该透明电极对应的一个数字微镜单元的所述中心镜面区域下方,并通过绝缘层与该数字微镜单元的所述中心镜面区域连接,用于在被施加外部电压时使该数字微镜单元的所述回转剪切结构受到静电力的作用而形成形变拉伸。 Each transparent electrode among the plurality of transparent electrodes is disposed below the central mirror area of a digital micromirror unit corresponding to the transparent electrode among the plurality of digital micromirror units, and is connected to the digital micromirror unit through an insulating layer. The central mirror area of the mirror unit is connected to cause the rotational shear structure of the digital micromirror unit to be subjected to the action of electrostatic force to form deformation and stretching when an external voltage is applied.
PCT/CN2023/093167 2022-08-01 2023-05-10 Digital micromirror array chip and manufacturing method therefor WO2024027257A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210914727.5 2022-08-01
CN202210914727.5A CN114967108B (en) 2022-08-01 2022-08-01 Digital micromirror array chip preparation method and digital micromirror array chip

Publications (1)

Publication Number Publication Date
WO2024027257A1 true WO2024027257A1 (en) 2024-02-08

Family

ID=82968938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093167 WO2024027257A1 (en) 2022-08-01 2023-05-10 Digital micromirror array chip and manufacturing method therefor

Country Status (2)

Country Link
CN (1) CN114967108B (en)
WO (1) WO2024027257A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967108B (en) * 2022-08-01 2022-10-21 加维纳米(北京)科技有限公司 Digital micromirror array chip preparation method and digital micromirror array chip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773146A (en) * 2016-12-14 2017-05-31 平顶山学院 A kind of reflecting plasma nanostructured photoswitch and preparation method thereof
CN110609347A (en) * 2018-06-14 2019-12-24 中国科学院物理研究所 Preparation method for forming polarization rotator through nano paper-cut
CN112162419A (en) * 2020-09-07 2021-01-01 北京理工大学 Photoelectric dynamic modulation system and method based on nano paper-cut super-structured surface
CN114967108A (en) * 2022-08-01 2022-08-30 加维纳米(北京)科技有限公司 Digital micromirror array chip preparation method and digital micromirror array chip

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100254942B1 (en) * 1996-09-24 2000-05-01 전주범 A bonding method of the pad of thin film actuated mirror arrays
US6900915B2 (en) * 2001-11-14 2005-05-31 Ricoh Company, Ltd. Light deflecting method and apparatus efficiently using a floating mirror
JP4101675B2 (en) * 2003-02-21 2008-06-18 株式会社トプコン Variable shape mirror
US7161729B2 (en) * 2004-05-28 2007-01-09 Angstrom Inc. Array of micromirror array lenses
CA2464207C (en) * 2004-04-14 2011-03-29 Institut National D'optique Light modulating microdevice
KR100574465B1 (en) * 2004-05-21 2006-04-27 삼성전자주식회사 Method for fabrication of vertical offset structure
CN111498072A (en) * 2020-04-23 2020-08-07 河海大学 Deformable bionic fish fin structure and preparation method thereof
CN212963671U (en) * 2020-09-22 2021-04-13 苏州大学 Step motor based nano resonator vibration mode visualization device
CN113878866B (en) * 2021-09-08 2022-10-14 煤炭科学研究总院有限公司 Three-dimensional film forming method based on electric field regulation and control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773146A (en) * 2016-12-14 2017-05-31 平顶山学院 A kind of reflecting plasma nanostructured photoswitch and preparation method thereof
CN110609347A (en) * 2018-06-14 2019-12-24 中国科学院物理研究所 Preparation method for forming polarization rotator through nano paper-cut
CN112162419A (en) * 2020-09-07 2021-01-01 北京理工大学 Photoelectric dynamic modulation system and method based on nano paper-cut super-structured surface
CN114967108A (en) * 2022-08-01 2022-08-30 加维纳米(北京)科技有限公司 Digital micromirror array chip preparation method and digital micromirror array chip

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Operator's and parts manual MM60 AND MM72 Series II Mulchers", BRADCO, 10 February 2000 (2000-02-10), XP093134809, Retrieved from the Internet <URL:https://taletattachments.com/files/bradco/om790.pdf> [retrieved on 20240226] *

Also Published As

Publication number Publication date
CN114967108B (en) 2022-10-21
CN114967108A (en) 2022-08-30

Similar Documents

Publication Publication Date Title
US7019876B2 (en) Micro-mirror with rotor structure
US8270054B2 (en) High-speed multi-dimensional beam scanning system with angle amplification
US7538932B2 (en) High contrast spatial light modulator
WO2024027257A1 (en) Digital micromirror array chip and manufacturing method therefor
KR100743315B1 (en) Micro-mirror device and Micro-mirror device array of using the same
US6914711B2 (en) Spatial light modulator with hidden comb actuator
US7005775B2 (en) Microfabricated torsional drive utilizing lateral electrostatic force
US7116463B2 (en) High angular deflection micro-mirror system
KR20180052356A (en) Liquid crystal light deflector
US20090279163A1 (en) Micromachine structure
TWI659924B (en) Interdigitating vertical dampers for mems-based actuators
CN105829937A (en) Device and method for micro-electro-mechanical-system photonic switch
US20230341596A1 (en) Variable Mesh Low Mass MEMS Mirrors
CN112162419A (en) Photoelectric dynamic modulation system and method based on nano paper-cut super-structured surface
US7821700B2 (en) Dynamic motile medium
US10209511B2 (en) Spatial light modulator for actuating microelectromechanical systems (MEMS) structures
Cornelissen et al. Development of a 4096 element MEMS continuous membrane deformable mirror for high contrast astronomical imaging
Bifano et al. Micromachined deformable mirror for optical wavefront compensation
US20030025981A1 (en) Micromachined optical phase shift device
US20220119243A1 (en) Mems actuator element and mems actuator array with a plurality of mems actuator elements
CN107015301B (en) Device for precisely and continuously adjusting period of metal nano grating by temperature control double-V-shaped structure
US20220382042A1 (en) Electrostatic actuation for diffractive optical devices
JP2012123398A (en) Interference modulator and method of controlling array thereof
CN110346930B (en) MEMS micro-mirror and MEMS optical switch
NL2002213C2 (en) Deformable mirror with internal reflection.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848968

Country of ref document: EP

Kind code of ref document: A1