WO2024027216A1 - 一种通信方法、装置及存储介质 - Google Patents

一种通信方法、装置及存储介质 Download PDF

Info

Publication number
WO2024027216A1
WO2024027216A1 PCT/CN2023/090112 CN2023090112W WO2024027216A1 WO 2024027216 A1 WO2024027216 A1 WO 2024027216A1 CN 2023090112 W CN2023090112 W CN 2023090112W WO 2024027216 A1 WO2024027216 A1 WO 2024027216A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
configuration parameter
transmission configuration
information
configuration
Prior art date
Application number
PCT/CN2023/090112
Other languages
English (en)
French (fr)
Inventor
杨美英
王加庆
罗晨
郑方政
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2024027216A1 publication Critical patent/WO2024027216A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a communication method, device and storage medium.
  • XR business including augmented reality (Augmented Reality, AR), virtual reality (VR), mixed reality (Mixed Reality, MR), free scheduling (Configured Grant, CG, also known as configuration scheduling or configuration authorization), etc.
  • AR Augmented Reality
  • VR virtual reality
  • MR Mixed reality
  • CG Configured Grant
  • CG also known as configuration scheduling or configuration authorization
  • the characteristics of XR services include: for downlink transmission and uplink transmission, the size of data packets of XR services changes dynamically, resulting in large adjustments to data packets in a short period of time.
  • the requirements for XR service transmission performance include: low latency, high-speed transmission and high reliability need to be met at the same time.
  • the present disclosure provides a communication method, device and storage medium for dynamically adjusting CG/SPS configuration parameters.
  • a communication method including:
  • the terminal receives the first information sent by the network device.
  • the first information includes N first transmission configuration parameters, where N is an integer greater than or equal to 1; wherein, each of the N first transmission configuration parameters
  • the first transmission configuration parameter is associated with at least one second transmission configuration parameter, and the first transmission configuration parameter and the second transmission configuration parameter are scheduling-free (CG) configuration parameters, or are semi-persistent scheduling (SPS) configuration parameters;
  • CG scheduling-free
  • SPS semi-persistent scheduling
  • the terminal performs first data transmission according to at least one first transmission configuration parameter among the N first transmission configuration parameters and a second transmission configuration parameter associated with the at least one first transmission configuration parameter.
  • association between each first transmission configuration parameter and the second transmission configuration parameter among the N first transmission configuration parameters is preconfigured or predefined.
  • the first information includes a first transmission configuration parameter
  • the first transmission configuration parameter is one of M first transmission configuration parameters reported by the terminal to the network device, and the M is an integer greater than or equal to N; before the terminal receives the first information sent by the network device, the method further includes: the terminal sends M first transmission configuration parameters to the network device, and the Mth At least one second transmission configuration parameter associated with each first transmission configuration parameter in a transmission configuration parameter.
  • the first transmission configuration parameter is time domain resource information, or frequency domain resource information, or time-frequency resource information; wherein the time-frequency resource information includes time domain resource information and frequency domain resource information.
  • the at least one second transmission configuration parameter includes at least one of the following: modulation coding scheme (MCS), redundancy version, transmit power parameter, time domain resource information, frequency domain resource information, time-frequency resource information,
  • MCS modulation coding scheme
  • the time-frequency resource information includes time-domain resource information and frequency-domain resource information.
  • the time domain resource information includes at least one of the following:
  • the transmission time length of the first data transmission is the transmission time length of the first data transmission
  • the time domain resource information is time domain resource information based on at least one of the following: symbols, time slots, subframes, and radio frames.
  • the frequency domain resource information includes at least one of the following:
  • the starting frequency domain position of the first data transmission is the starting frequency domain position of the first data transmission
  • the frequency domain resources occupied by the first data transmission are occupied by the first data transmission.
  • the frequency domain resource information is frequency domain resource information based on at least one of the following: resource unit (RE), resource block (RB), resource block group (RBG), partial bandwidth (BWP), component carrier ( CC).
  • RE resource unit
  • RB resource block
  • RBG resource block group
  • BWP partial bandwidth
  • CC component carrier
  • the first transmission configuration parameter is a first CG configuration parameter
  • the second transmission configuration parameter is a second CG configuration parameter
  • the terminal performs the configuration according to at least one of the N first transmission configuration parameters.
  • Performing the first data transmission includes: the terminal selects a target CG configuration from the N first CG configuration parameters. parameters; the terminal obtains the second CG configuration parameter associated with the target CG configuration parameter according to the target CG configuration parameter; the terminal obtains the second CG configuration parameter associated with the target CG configuration parameter according to the target CG configuration parameter and the second CG configuration parameter associated with the target CG configuration parameter.
  • the method further includes: the terminal receiving second information sent by the network device, where the second information includes at least one of the following:
  • First indication information used to indicate that the first CG configuration parameter used for the first data transmission and the second CG configuration parameter associated with the first CG configuration parameter are available or unavailable;
  • Second indication information used to indicate each first transmission configuration parameter among the N first CG configuration parameters used for the first data transmission and the relationship between each first transmission configuration parameter among the N first CG configuration parameters.
  • the second CG transmission configuration parameter associated with the transmission configuration parameter is available or unavailable;
  • the third indication information is used to indicate one or more CG configurations that need to be deleted or skipped among the CG configurations used for the first data transmission.
  • the first transmission configuration parameter is a first SPS configuration parameter
  • the second transmission configuration parameter is a second SPS configuration parameter
  • the terminal configures the transmission configuration according to at least one of the N first transmission configuration parameters.
  • Performing the first data transmission includes: the terminal performs the first data transmission according to the N first SPS configuration parameters and each first The second SPS configuration parameter associated with the SPS configuration parameter receives data sent by the network device.
  • the first information also includes third information, used to indicate at least one of the transmission configurations used for the first data transmission that needs to be skipped, and the transmission configuration includes a CG configuration or an SPS configuration.
  • the method further includes: the terminal does not use the at least one transmission configuration that needs to be skipped to perform the first data transmission, or does not use the at least one transmission configuration that needs to be skipped during the first data transmission.
  • transmission configuration parameters below.
  • the third information includes: fourth indication information, used to indicate that among the transmission configurations used for the first data transmission, the transmission configuration closest to the first time needs to be skipped; or, the transmission configuration that needs to be skipped Index of the transport configuration.
  • the terminal receiving the first information sent by the network device includes: the terminal receiving downlink control information DCI sent by the network device on the physical downlink control channel PDCCH, and the DCI includes the first information;
  • the terminal receives the first information sent by the network device on the physical downlink shared channel PDSCH; or the terminal receives a downlink reference signal sent by the network device, the downlink reference signal carries the first information.
  • a communication method including:
  • the network device sends first information to the terminal, where the first information includes N first transmission configuration parameters, where N is an integer greater than or equal to 1; wherein each of the N first transmission configuration parameters A transmission configuration parameter is associated with at least one second transmission configuration parameter, and the first transmission configuration parameter and the second transmission configuration parameter are CG configuration parameters or SPS configuration parameters;
  • At least one first transmission configuration parameter among the N first transmission configuration parameters, and a second transmission configuration parameter associated with the at least one first transmission configuration parameter, are used for first data transmission.
  • association between each first transmission configuration parameter and the second transmission configuration parameter among the N first transmission configuration parameters is preconfigured or predefined.
  • the first information includes a first transmission configuration parameter
  • the first transmission configuration parameter is one of M first transmission configuration parameters reported by the terminal to the network device, and the M is an integer greater than or equal to N; before the network device sends the first information to the terminal, the method further includes: the network device receives M first transmission configuration parameters sent by the terminal, and At least one second transmission configuration parameter associated with each of the M first transmission configuration parameters.
  • the first transmission configuration parameter is time domain resource information, or frequency domain resource information, or time-frequency resource information; wherein the time-frequency resource information includes time domain resource information and frequency domain resource information.
  • the at least one second transmission configuration parameter includes at least one of the following: modulation coding mechanism MCS, redundancy version, transmit power parameter, time domain resource information, frequency domain resource information, time-frequency resource information, the Time-frequency resource information includes time-domain resource information and frequency-domain resource information.
  • the time domain resource information includes at least one of the following:
  • the transmission time length of the first data transmission is the transmission time length of the first data transmission
  • the time domain resource information is time domain resource information based on at least one of the following: symbols, time slots, subframes, and radio frames.
  • the frequency domain resource information includes at least one of the following:
  • the starting frequency domain position of the first data transmission is the starting frequency domain position of the first data transmission
  • the frequency domain resources occupied by the first data transmission are occupied by the first data transmission.
  • the frequency domain resource information is frequency domain resource information based on at least one of the following: RE, RB, RBG, BWP, CC.
  • the first transmission configuration parameter is a first CG configuration parameter
  • the second transmission configuration parameter is a second CG configuration parameter
  • the method further includes: the network device respectively determines the configuration parameters according to the N first CG configuration parameters and second CG configuration parameters associated with each first CG configuration parameter, and receive data sent by the terminal.
  • the method further includes: the network device The equipment sends second information to the terminal, where the second information includes at least one of the following:
  • First indication information used to indicate that the first CG configuration parameter used for the first data transmission and the second CG configuration parameter associated with the first CG configuration parameter are available or unavailable;
  • Second indication information used to indicate each first transmission configuration parameter among the N first CG configuration parameters used for the first data transmission and the relationship between each first transmission configuration parameter among the N first CG configuration parameters.
  • the second CG transmission configuration parameter associated with the transmission configuration parameter is available or unavailable;
  • the third indication information is used to indicate one or more CG configurations that need to be deleted or skipped among the CG configurations used for the first data transmission.
  • the first transmission configuration parameter is a first SPS configuration parameter
  • the second transmission configuration parameter is a second SPS configuration parameter
  • the method further includes: the network device determines configuration parameters and second SPS configuration parameters associated with each first SPS configuration parameter, and send data to the terminal.
  • the first information also includes third information, used to indicate at least one of the transmission configurations used for the first data transmission that needs to be skipped, and the transmission configuration includes a CG configuration or an SPS configuration. .
  • the third information includes: fourth indication information, used to indicate that among the transmission configurations used for the first data transmission, the transmission configuration closest to the first time needs to be skipped; or, the transmission configuration that needs to be skipped Index of the transport configuration.
  • the network device sends the first information to the terminal, including: the network device sends downlink control information DCI to the terminal on the physical downlink control channel PDCCH, and the DCI includes the first information. information; or, the network device sends the first information to the terminal on the physical downlink shared channel PDSCH; or, the network device sends a downlink reference signal to the terminal, and the downlink reference signal carries the first information.
  • a terminal including a processing unit and a transceiver unit; the transceiver unit is configured to receive first information sent by a network device, where the first information includes N first transmission configuration parameters, where N is An integer greater than or equal to 1; wherein each first transmission configuration parameter among the N first transmission configuration parameters is associated with at least one second transmission configuration parameter, and the first transmission configuration parameter and the second transmission configuration
  • the parameters are scheduling-free CG configuration parameters, or semi-persistent scheduling SPS configuration parameters;
  • the processing unit is configured to configure parameters according to at least one first transmission configuration parameter among the N first transmission configuration parameters, and with the at least one first transmission configuration parameter. Perform first data transmission with the second transmission configuration parameter associated with the first transmission configuration parameter.
  • a network device including a processing unit and a transceiver unit; the transceiver unit is configured to send first information to a terminal, where the first information includes N first transmission configuration parameters, where N is greater than Or an integer equal to 1; wherein each first transmission configuration parameter among the N first transmission configuration parameters is associated with at least one second transmission configuration parameter, the first transmission configuration parameter and the second transmission configuration parameter Configuration parameters for scheduling-free CG, or configuration parameters for semi-persistent scheduling SPS; wherein, at least one first transmission configuration among the N first transmission configuration parameters configuration parameters, and a second transmission configuration parameter associated with the at least one first transmission configuration parameter for the first data transmission.
  • a communication device including: a processor, a memory, and a transceiver; the transceiver receives and sends data under the control of the processor; the memory stores computer instructions; and the processor , used to read the computer instructions and execute the method described in any one of the above first aspects.
  • a sixth aspect provides a communication device, including: a processor, a memory, and a transceiver; the transceiver receives and sends data under the control of the processor; the memory stores computer instructions; and the processor , used to read the computer instructions and execute the method described in any one of the above second aspects.
  • a computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions are used to cause the computer to execute the above-mentioned first aspect or second aspect. any of the methods described.
  • An eighth aspect provides a computer program product, which, when called by a computer, causes the computer to execute the method described in any one of the first aspect or the second aspect.
  • the network device can send the first transmission configuration parameter in the transmission configuration (such as CG configuration or SPS configuration) to the terminal through the first information, so that the terminal can obtain the information associated with it based on the first transmission configuration parameter.
  • At least one second transmission configuration parameter so that the first data transmission is performed according to the first transmission configuration parameter and the second transmission configuration parameter associated with it, and the transmission configuration parameters can be dynamically adjusted through the first information, while signaling overhead can also be saved.
  • Embodiments of the present disclosure also provide a communication method, device and storage medium to simultaneously activate and deactivate CG/SPS configuration through a DCI.
  • a ninth aspect provides a communication method, including: a terminal receiving a first signaling sent by a network device, the first signaling including activation indication information and deactivation indication information, the activation indication information being used to indicate activation of at least A transmission configuration of semi-persistent transmission, the deactivation indication information is used to indicate deactivation of at least one transmission configuration of semi-persistent transmission.
  • the method further includes: the terminal performs semi-persistent data transmission according to the first signaling.
  • the first signaling includes at least one of the following:
  • At least one flag that deactivates semi-persistent transmission At least one flag that deactivates semi-persistent transmission
  • Transport configuration parameters that activate semi-persistent transmission are
  • the first signaling is DCI scrambled based on the configured CS-RNTI, or scrambled based on the C-RNTI. Interfering DCI.
  • the first signaling is DCI
  • the DCI is activation signaling or deactivation signaling.
  • the transmission configuration of semi-persistent transmission includes CG configuration or SPS configuration.
  • a communication method including: a network device sends a first signaling to a terminal, the first signaling includes activation indication information and deactivation indication information, and the activation indication information is used to indicate activation of at least one The transmission configuration of semi-persistent transmission, the deactivation indication information is used to indicate deactivation of at least one transmission configuration of semi-persistent transmission.
  • the first signaling includes at least one of the following:
  • At least one flag that deactivates semi-persistent transmission At least one flag that deactivates semi-persistent transmission
  • Transport configuration parameters that activate semi-persistent transmission are
  • the first signaling is DCI scrambled based on the configured CS-RNTI, or DCI scrambled based on the C-RNTI.
  • the first signaling is DCI
  • the DCI is activation signaling or deactivation signaling.
  • the transmission configuration of semi-persistent transmission includes CG configuration or SPS configuration.
  • a terminal including a processing unit and a transceiver unit; the transceiver unit is configured to receive first signaling sent by a network device, where the first signaling includes activation indication information and deactivation indication information.
  • the activation indication information is used to indicate activating the transmission configuration of at least one semi-persistent transmission
  • the deactivation indication information is used to indicate deactivating the transmission configuration of at least one semi-persistent transmission.
  • a network device including a processing unit and a transceiver unit; the transceiver unit is used to send first signaling to a terminal, where the first signaling includes activation indication information and deactivation indication information,
  • the activation indication information is used to indicate activating a transmission configuration of at least one semi-persistent transmission
  • the deactivation indication information is used to indicate deactivating a transmission configuration of at least one semi-persistent transmission.
  • a communication device including: a processor, a memory, and a transceiver; the transceiver receives and sends data under the control of the processor; the memory stores computer instructions; and the processing A device configured to read the computer instructions and execute the method described in any one of the ninth aspects.
  • a communication device including: a processor, a memory, and a transceiver; the transceiver receives and sends data under the control of the processor; the memory stores computer instructions; and the processing A device configured to read the computer instructions and execute the method described in any one of the tenth aspects above.
  • a computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions are used to cause the computer to execute the ninth aspect or the tenth aspect. middle any of the methods described.
  • a sixteenth aspect provides a computer program product that, when called by a computer, causes the computer to execute the method described in any one of the ninth or tenth aspects.
  • activation signaling or deactivation signaling is used to simultaneously activate and deactivate transmission configurations, which can reduce collisions that occur during data transmission based on multiple transmission configurations or multiple dynamic parameters under the transmission configuration ( Especially big data transmission), so that multiple semi-persistent transmission transmission configurations can be activated and deactivated faster, or multiple dynamic parameters under the semi-persistent transmission configuration, thereby reducing conflicting semi-persistent transmissions.
  • Figure 1a and Figure 1b are schematic distribution diagrams of XR business characteristics
  • Figure 2 is a schematic diagram of configuring multiple SPS transmission configurations to adapt to packet jitter and variable packet size of XR services;
  • Figure 3 is a schematic diagram of CG/SPS configuration activation through DCI
  • Figure 4 is a schematic diagram of a communication system architecture in an embodiment of the present disclosure.
  • Figure 5 is a schematic flow chart of a communication method provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic flowchart of a communication method provided by another embodiment of the present disclosure.
  • Figure 7 is a schematic flow chart of Example 1 in the embodiment of the present disclosure.
  • Figure 8 is a schematic diagram illustrating the offsets of different starting positions associated with different dynamic parameters under CG configuration in an embodiment of the present disclosure
  • Figure 9 is a schematic diagram of different dynamic parameters associated with different periods under CG configuration in an embodiment of the present disclosure.
  • Figure 10 is a schematic flow diagram of Example 2 in the embodiment of the present disclosure.
  • Figure 11 is a schematic diagram illustrating the offsets of different starting frequency domain positions associated with different dynamic parameters under CG configuration in an embodiment of the present disclosure
  • Figure 12 is a schematic flow diagram of Example 3 in the embodiment of the present disclosure.
  • Figure 13 is a schematic flow diagram of Example 4 in the embodiment of the present disclosure.
  • Figure 14 is a schematic diagram of dynamic parameter configuration of semi-persistent transmission using CS-RNTI scrambling in an embodiment of the present disclosure
  • Figure 15 is a schematic flow diagram of Example 5 in the embodiment of the present disclosure.
  • Figure 16 is a schematic diagram of semi-persistent transmission skip indication using C-RNTI scrambling in an embodiment of the present disclosure
  • Figure 17 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • Figure 18 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • Figure 19 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • the term “multiple” refers to two or more, and other quantifiers are similar to it.
  • CG/SPS configuration is used to indicate CG configuration or Semi-Persist Scheduling (SPS) configuration.
  • a scheduling-free semi-persistent transmission configuration may be a CG configuration or an SPS configuration.
  • CG configuration is used for uplink transmission
  • SPS configuration is used for downlink transmission.
  • an index can be used to uniquely identify it.
  • an SPS configuration an index can be used to uniquely identify it.
  • a CG configuration can include one or more parameters (also known as CG configuration parameters, or dynamic parameters). For example, it can include CG transmission cycle, time-frequency resources, modulation coding mechanism (Modulation Code Scheme, MCS), time Domain offset, frequency domain offset, etc.
  • parameters also known as CG configuration parameters, or dynamic parameters.
  • it can include CG transmission cycle, time-frequency resources, modulation coding mechanism (Modulation Code Scheme, MCS), time Domain offset, frequency domain offset, etc.
  • MCS Modulation Code Scheme
  • An SPS configuration can include one or more parameters (also called SPS configuration parameters, or dynamic parameters). For example, it can include SPS transmission cycle, time-frequency resources, MCS, time domain offset, frequency domain offset, etc. .
  • CG technology can effectively reduce transmission latency, but there is still a lot of room for improvement.
  • the truncated Gaussian distribution can be used to represent the packet size and jitter.
  • the modeling method for the uplink single video stream of AR is consistent with the modeling method of the downlink single video stream packet size and jitter.
  • Figure 1a and Figure 1b Take Figure 1a and Figure 1b as an example.
  • Figure 1a is a schematic diagram of XR data packet service distribution
  • Figure 1b is a diagram of XR data packet jitter. Distribution diagram.
  • the abscissa is the size of the data packet and the jitter size
  • the ordinate is probability statistics.
  • Type 1 uplink scheduling-free transmission solutions are divided into two types: Type 1 and Type 2:
  • the transmission parameters of the Physical Uplink Shared Channel are configured through Radio Resource Control (Radio Resource Configuration, RRC), and periodic PUSCH transmission opportunities can be determined based on the configuration information.
  • RRC Radio Resource Control
  • PUSCH transmission can be performed directly at the nearest transmission opportunity.
  • the transmission parameters of PUSCH are jointly configured through RRC and Physical Downlink Control Channel (PDCCH).
  • the RRC configuration period and offset, data rate related parameters (such as MCS), time-frequency resources and other parameters , PDCCH activation signaling notifies the configured Type2 activation and indicates scheduling information at the same time. Only after receiving the activation signaling, the terminal can use the corresponding PUSCH resources for uplink scheduling-free transmission. If you want to release Type2PUSCH resources, you can do this by sending PDCCH deactivation signaling.
  • CG/SPS configurations In order to overcome the problem of random packets caused by jitter, one possible solution is to configure multiple scheduling-free semi-persistent transmission configurations (hereinafter referred to as CG/SPS configurations).
  • the maximum number of configurations supported by CG/SPS is 12, including the CG configuration of Type 1; further, the index of the CG/SPS configuration is composed of 4 of the Hybrid Automatic Repeat reQuest (HARQ) Bit indication, cannot be supported at this time Enough CG/SPS configurations.
  • HARQ Hybrid Automatic Repeat reQuest
  • one downlink control information can only activate one CG/SPS configuration. If multiple CG/SPS configurations need to be activated, multiple DCI indications are required, resulting in Requires more delay and signaling overhead.
  • one DCI when DCI carries activation signaling, one DCI can only activate one CG/SPS configuration at the same time.
  • multiple CG/SPS propagation configurations need to be activated, multiple DCIs need to be sent; if each time slot is sent If one activation DCI is used, the activation time of multiple CG/SPS configurations will be longer; if multiple activation DCIs are sent in each time slot, the activation time of multiple CG/SPS configurations can be reduced by part, but the activation time of multiple CG/SPS configurations can be reduced by a part.
  • Blind detection of multiple DCIs configured with activated CG/SPS will increase the terminal overhead to a certain extent.
  • Reactivation of the CG/SPS configuration only includes the reactivation of the parameters indicated by DCI.
  • Parameters such as cycle, MCS, and time-frequency resources cannot be reactivated through DCI.
  • dynamic adjustment of parameters such as cycle, MCS, and time-frequency resources requires matching.
  • the packet size and packet jitter of XR business are very necessary.
  • embodiments of the present disclosure provide a communication method and a device thereof.
  • the dynamic parameters under the CG/SPS configuration are changed by combining the explicit indication mode and the implicit indication mode, thereby dynamically adjusting the data transmission, which can make the data transmission more consistent with the variable nature of the XR service.
  • Data packet size reduces terminal/service conflicts and collisions.
  • changing the dynamic parameters under the CG/SPS configuration refers to adjusting the internal parameters of the CG/SPS configuration while the CG/SPS index remains unchanged, for example, parameters related to the data transmission rate, more specifically , which can include MCS, time-frequency resources, CG/SPS transmission cycle, etc.
  • activation of one or more CG/SPS configurations and deactivation of another one or more CG/SPS configurations are implemented through one signaling (such as DCI) to save signaling overhead.
  • FIG 4 schematically shows a network system architecture applicable to embodiments of the present disclosure.
  • the communication system shown in Figure 4 includes a network device 101 and a terminal 102.
  • the network device 101 can send transmission scheduling related information to the terminal 102, and the terminal 102 can perform data transmission based on the received transmission scheduling related information.
  • the network device 101 is a device that provides wireless communication functions for terminals, and is used to receive uplink signals from the terminal 102 or send downlink signals to the terminal 102.
  • Network equipment 101 includes but is not limited to: gNB in 5G, Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC), Base Transceiver Station (Base Transceiver Station, BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), transmission point (Transmitting and Receiving Point, TRP), transmitting point (Transmitting Point, TP) ), mobile switching center, etc.
  • the base station in this disclosure may also be a device that provides wireless communication functions for terminals in other communication systems that may appear in the future.
  • the terminal 102 is an entity on the user side that is used to receive or transmit signals, and is used to send uplink signals to network equipment or receive downlink signals from network equipment.
  • the terminal can also be called UE (User Equipment).
  • Terminal 102 may be a device that provides voice and/or data connectivity to a user.
  • the terminal may include a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal can be: mobile phone (Mobile Phone), tablet computer, notebook computer, handheld computer, mobile Internet device (Mobile Internet Device, MID), wearable device, virtual reality (Virtual Reality, VR) device, augmented reality (Augmented) Reality (AR) equipment, wireless terminals in industrial control (Industrial Control), wireless terminals in self-driving (Self-Driving), wireless terminals in smart grid (Smart Grid), wireless terminals in transportation safety (Transportation Safety) Terminals, wireless terminals in Smart City, or wireless terminals in Smart Home, etc.
  • FIG. 4 is only an example and does not limit the type of communication system and the number and type of devices included in the communication system.
  • the network architecture and business scenarios described in the embodiments of the present disclosure are for illustrating the technical solutions of the embodiments of the present disclosure and do not constitute a limitation on the technical solutions provided by the embodiments of the present disclosure.
  • Those of ordinary skill in the art will know that with the evolution of network architecture, and the emergence of new business scenarios, the technical solutions provided by the embodiments of the present disclosure are equally applicable to similar technical problems.
  • FIG. 5 a schematic flow chart of a communication method provided by an embodiment of the present disclosure is shown. As shown in the figure, the process may include the following steps:
  • S501 The network device sends the first information to the terminal.
  • the first information includes N first transmission configuration parameters, where N is an integer greater than or equal to 1.
  • Each of the N first transmission configuration parameters is associated with at least one second transmission configuration parameter.
  • N first transmission configuration parameters means N first transmission configuration parameters under a certain transmission configuration. Taking the first CG configuration as an example, the value of the time domain offset in the initial first CG configuration is 2 subframes, and the value of the time domain offset included in the first information is 3 subframes, that is, the value The time domain offset with a value of 3 subframes is the updated time domain offset parameter under the first CG configuration.
  • the N first transmission configuration parameters are updated first transmission configuration parameters. That is to say, the network device can update the values of some transmission configuration parameters through the first information.
  • the first transmission configuration parameter and the second transmission configuration parameter are CG configuration parameters.
  • the first transmission configuration parameter and the second transmission configuration parameter are different parameters within the same CG configuration.
  • the first transmission configuration parameter and the second transmission configuration parameter are SPS configuration parameters.
  • the first transmission configuration parameter and the second transmission configuration parameter are different parameters within the same SPS configuration.
  • the first transmission configuration parameter may include one parameter or multiple parameters.
  • the first transmission configuration parameter may include one parameter or multiple parameters.
  • the first transmission configuration parameter is time domain resource information, or frequency domain resource information, or time-frequency resource information.
  • the time-frequency resource information includes time-domain resource information and frequency-domain resource information.
  • the time domain resource information may include at least one of the following:
  • the starting time domain position of the first data transmission is the starting time domain position of the first data transmission.
  • the first data transmission may refer to uplink transmission or downlink transmission between the terminal and the network device. If the first transmission configuration parameter and the second transmission configuration parameter are CG configuration parameters, the first data transmission is uplink transmission.
  • the uplink transmission may include one or more CG opportunities (CG occation). In the time domain window of the one or more CG occations, the terminal sends data to the network device. If the first transmission configuration parameter and the second transmission configuration parameter are SPS configuration parameters, then the first data transmission is downlink transmission.
  • the downlink transmission may include one or more SPS opportunities (SPS occation). In the time domain window of the one or more SPS occations, the network device sends data to the terminal.
  • the starting time domain position indicates that the first data transmission starts at the time domain starting position.
  • the starting time domain position can be the starting position of the time domain window corresponding to one or more CG occations.
  • the starting time domain position can be the starting position of the time domain window corresponding to one or more SPS occations. The position where the domain window starts.
  • the above time domain resource information may be time domain resource information based on at least one of the following: symbols, timeslots, subframes, and radio frames.
  • the above-mentioned starting time domain position may be the frame number of the starting radio frame, or the frame number of the starting subframe, or the index of the starting timeslot, or the index of the starting symbol.
  • the above-mentioned starting time domain position may also be a combination of the above-mentioned information.
  • the above-mentioned starting time domain position may be the frame number of the wireless frame and the subframe number within the wireless frame (indicating that the starting time domain position is within the wireless frame). of the subframe), or the frame number of the wireless frame and the index of the symbol in the wireless frame, etc.
  • other combinations may also be included, which are not listed here.
  • the first data transmission can be started based on the starting time domain position of the first data transmission as the starting point and after delaying the time offset.
  • the above time domain resource information may be time domain resource information based on at least one of the following: symbols, time slots, subframes, and radio frames.
  • the above time offset may be a symbol offset (such as the number of offset symbols), or a time slot offset (such as the number of offset time slots), or a subframe offset (such as the number of offset subframes). number of frames), or wireless frame offset (such as the number of offset wireless frames).
  • the above time offset position may also be a combination of the above information.
  • the above time offset may be a subframe offset and a symbol offset, indicating that the total time offset is the subframe offset plus the symbol offset. By analogy, other combinations may also be included, which are not listed here.
  • the transmission time length of the first data transmission is the transmission time length of the first data transmission.
  • the above time domain resource information may be time domain resource information based on at least one of the following: symbols, time slots, subframes, and radio frames.
  • the above-mentioned transmission time length can be expressed by the number of symbols, or the number of time slots, or the number of subframes, or radio frames.
  • the above time domain resource information may be time domain resource information based on at least one of the following: symbols, time slots, subframes, and radio frames.
  • the above-mentioned transmission period can be expressed by the number of symbols, or the number of time slots, or the number of subframes, or the number of radio frames.
  • time domain resource information may also be time domain resource information based on other time units, and the embodiments of the present disclosure do not limit this.
  • the frequency domain resource information may include at least one of the following:
  • the starting frequency domain position of the first data transmission is the starting frequency domain position of the first data transmission.
  • the above time domain resource information (that is, the starting frequency domain position) can be frequency domain resource information based on at least one of the following: resource unit (Resource Element, RE), resource block (Resource Block, RB), resource block Group (Resource Block Group, RBG), Bandwidth Part (BWP), Component Carrier (Component Carrier, CC), etc.
  • the above-mentioned starting frequency domain position may be the index of the starting RE, or the index of the starting RB, or the index of the starting RBG, or the index of the starting BWP, or the starting carrier (such as a subcarrier or component carrier) index.
  • the above-mentioned starting frequency domain position may also be a combination of the above-mentioned information.
  • the above-mentioned starting frequency domain position may be an index of an RB and an index of an RE, indicating that the starting frequency domain position is the RE in the RB.
  • other combinations may also be included, which are not listed here.
  • the terminal and the network device can start the process based on the starting frequency position of the first data transmission as the starting point and the offset position according to the frequency offset. Line first data transfer.
  • the above frequency domain resource information may be frequency resource information based on at least one of the following: RE, RB, RBG, BWP, CC, etc.
  • the above frequency offset can be an RE offset (such as the number of REs), or an RB offset (such as the number of RBs), or an RGB offset (such as the number of RGBs), or a BWP offset (such as the BWP number), or CC offset (such as CC number).
  • the frequency offset position may also be a combination of the above information.
  • the frequency offset may be the number of RBs and the number of REs, indicating that the total frequency offset is the number of RBs plus the number of REs. By analogy, other combinations may also be included, which are not listed here.
  • Frequency domain resources occupied by the first data transmission are Frequency domain resources occupied by the first data transmission.
  • the frequency domain resources occupied by the first data transmission may be the total (all) frequency domain resources occupied by the first data transmission.
  • the above frequency domain resource information may be frequency resource information based on at least one of the following: RE, RB, RBG, BWP, CC, etc.
  • the total frequency domain resources mentioned above may be the number of REs, the number of RBs, the number of RGBs, the number of BWPs, or the number of CCs.
  • the frequency resources mentioned above may also be a combination of the above information.
  • the frequency offset may be the number of RBs and the number of REs, indicating that the total frequency domain resource is the number of RBs plus the number of REs.
  • frequency domain resource information may also be frequency domain resource information based on other frequency units, and the embodiments of the present disclosure do not limit this.
  • the at least one second transmission configuration parameter includes at least one of the following: MCS, redundancy version (Redundancy Version, RV), transmit power parameter, time domain resource information, frequency domain resource information , time-frequency resource information.
  • the time-frequency resource information includes time-domain resource information and frequency-domain resource information.
  • MCS may further include: at least one of MCS index (MCS index) and MCS adjustment amount (delta MCS).
  • the time domain resource information includes at least one of the following:
  • the transmission time length of the first data transmission is the transmission time length of the first data transmission
  • the time domain resource information is time domain resource information based on at least one of the following: symbols, time slots, subframes, and radio frames.
  • the frequency domain resource information includes at least one of the following:
  • the starting frequency domain position of the first data transmission is the starting frequency domain position of the first data transmission
  • Frequency domain resources occupied by the first data transmission are Frequency domain resources occupied by the first data transmission.
  • the frequency domain resource information is frequency domain resource information based on at least one of the following: RE, RB, RBG, BWP, CC.
  • the first transmission configuration parameters include: time offset offset1, time offset offset2. time offset offset3;
  • the second transmission configuration parameters include: transmission cycle, MCS and other parameters associated with time offset offset1, transmission cycle, MCS, RV version, transmission power, time-frequency resources and other parameters associated with time offset offset2, and parameters such as time offset offset3 Associated transmission cycle, MCS, RV version, transmission power, time-frequency resources and other parameters.
  • the first transmission configuration parameters include: transmission period 1, transmission period 2, and transmission period 3;
  • the second transmission configuration parameters include: time offset offset1, MCS and other parameters associated with transmission cycle 1, time offset offset2, MCS, RV version, transmission power, time-frequency resources and other parameters associated with transmission cycle 2, and transmission cycle 3Associated time offset offset3, MCS, RV version, transmit power, time-frequency resources and other parameters.
  • the terminal receives the DCI sent by the network device on the physical downlink control channel (Physical Downlink Control Channel, PDCCH), the DCI includes the first information, optionally, the The DCI may be a DCI that activates the transmission configuration (such as CG configuration or SPS configuration). That is to say, the first information (such as the first transmission configuration parameter) may be sent to the terminal through the DCI that activates the transmission configuration.
  • the terminal receives the first information sent by the network device on the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), that is to say, the first information (such as the first A transmission configuration parameter) may be sent to the terminal through PDSCH.
  • the terminal receives a downlink reference signal sent by the network device.
  • the downlink reference signal carries the first information, that is, the first information (such as the first transmission configuration parameters) can be sent to the terminal through the downlink reference signal.
  • the reference signal may include a channel state information reference signal (Channel State Information-Reference Signal, CSI-RS), a timing reference signal (Timing Reference Signal, TRS), a synchronization signal block (Synchronization Signal Block, SSB), Positioning reference signals, etc., the embodiments of the present disclosure do not limit this.
  • the network device can indicate to the terminal the CG configuration parameters (ie, dynamic parameters) at the CG transmission location.
  • the network device can send DCI before the transmission position of the configured CG to indicate the dynamic parameters of the CG at the transmission position of this CG (such as the first CG mentioned above). configuration parameters).
  • the terminal does not detect the DCI at the CG transmission location, the CG dynamic parameters at the initial CG transmission location are used for uplink data transmission.
  • the DCI can carry the CG configuration index.
  • the network device can indicate to the terminal the SPS configuration parameters (ie, dynamic parameters) at the SPS transmission location.
  • the network device can send DCI before the configured SPS transmission position to indicate the dynamic parameters of the SPS at the current SPS transmission position (such as the above-mentioned first SPS configuration parameter).
  • the terminal does not detect the DCI at the SPS transmission location, the SPS dynamic parameters at the initial SPS transmission location are used for uplink data transmission.
  • the DCI can carry the SPS configured index.
  • the association between each of the N first transmission configuration parameters and the second transmission configuration parameter may be preconfigured or predefined.
  • the association between each of the N first transmission configuration parameters and the second transmission configuration parameter can be configured in the terminal and the network device in advance; the N first transmission configuration parameters can also be defined in the protocol.
  • An association relationship between each first transmission configuration parameter and the second transmission configuration parameter in the transmission configuration parameters is not limited to, but not limited to, but not limited to, but not limited to the association between each of the N first transmission configuration parameters and the second transmission configuration parameter.
  • the association between the first transmission configuration parameter and the second transmission configuration parameter may be set through RRC signaling.
  • the network device can select the first transmission configuration parameters that match the current business requirements according to the pre-configured or pre-defined association relationships, and further according to the service characteristic requirements, and send them to the terminal through the first information, so that Data transmission between network equipment and terminals is adapted to current business needs.
  • the association between each of the N first transmission configuration parameters and the second transmission configuration parameter is reported by the terminal to the network device.
  • the first information includes a first transmission configuration parameter
  • the first transmission configuration parameter is one of M first transmission configuration parameters reported by the terminal to the network device
  • the M is an integer greater than or equal to N.
  • the terminal before receiving the first information sent by the network device, the terminal sends M first transmission configuration parameters to the network device, and at least one of the M first transmission configuration parameters associated with each first transmission configuration parameter.
  • a second transport configuration parameter is optionally, the M first transmission configuration parameters are first transmission configuration parameters expected by the terminal.
  • the network device can select N from the above-mentioned M first transmission configuration parameters (for example, based on channel status, etc.) and send them to the terminal, that is, the network device can confirm one of the N sets of transmission configuration parameters.
  • a group or multiple groups, wherein a group of transmission configuration parameters may include a first transmission configuration parameter and at least one second transmission configuration parameter associated therewith.
  • the terminal may determine M first transmission configuration parameters expected by the terminal according to the channel state, and at least one second transmission configuration parameter associated with each of the M first transmission configuration parameters.
  • the terminal can determine the channel status through the reciprocity of the uplink channel and the downlink channel. For example, the following method can be used Determine the transmission configuration parameters expected by the terminal (including the first transmission configuration parameter and the second transmission configuration parameter):
  • Method 1 The status of the uplink channel can be obtained through the downlink reference signal, thereby estimating parameters such as MCS;
  • Method 2 Obtain the uplink MCS and other parameters through the MCS parameters of the PDSCH scheduled by DCI.
  • the terminal can report the above parameters to the network device through uplink signals.
  • the uplink signal may include at least one of the following: an uplink scheduling request (Scheduling Request, SR) signal, a wake-up signal (Wake-Up Signal, WUS), a random access channel (Radom Access Channel, RACH) preamble signal, sounding reference signal (Sounding Reference Signal, SRS), physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) signal, physical uplink control channel (Physical Uplink Control Channel, PUCCH) signal.
  • SRS Sounding Reference Signal
  • PUSCH Physical Uplink shared channel
  • PUCCH Physical Uplink Control Channel
  • MAC-CE Media Access Control-Control Element
  • the terminal can dynamically report the transmission configuration parameters through the uplink signal, so that the network can promptly update the transmission configuration parameters of the terminal through the first information according to the transmission configuration parameters expected by the terminal side to adapt to the terminal's Data transmission needs, or to adapt to business characteristics.
  • the terminal performs first data transmission according to at least one first transmission configuration parameter among the N first transmission configuration parameters and the second transmission configuration parameter associated with the at least one first transmission configuration parameter. That is to say, the terminal may apply (or use) at least one first transmission configuration parameter among the N first transmission configuration parameters and a second transmission configuration parameter associated with the at least one first transmission configuration parameter. ) first data transmission.
  • the first transmission configuration parameter and the second transmission configuration parameter are SPS configuration parameters (specifically, the first transmission configuration parameter is the first SPS configuration parameter, and the second transmission configuration parameter is the second SPS configuration parameter), the first data transmission is downlink data transmission.
  • the network device can select a target SPS configuration parameter from the N first SPS configuration parameters (for example, select based on the BSR reported by the terminal, or select based on factors such as channel status), and select it based on the selected target
  • the SPS configuration parameters are associated with the second SPS configuration parameters associated with the target SPS configuration parameters, and data is sent to the terminal based on the corresponding resources; on the terminal side, the terminal is associated according to the above N first SPS configuration parameters and each first SPS configuration parameter
  • the second SPS configuration parameter is used to receive data sent by the network device based on the corresponding resources.
  • the first transmission configuration parameter and the second transmission configuration parameter are CG configuration parameters (specifically, the first transmission configuration parameter is the first CG configuration parameter, and the second transmission parameter is the second CG configuration parameter). parameter)
  • the first data transmission is uplink data transmission.
  • the terminal selects the target CG configuration parameter from the N first CG configuration parameters, obtains the second CG configuration parameter associated with the target CG configuration parameter according to the target CG configuration parameter, and then configures it according to the target CG configuration parameter. Parameters and the second CG associated with the target CG configuration parameters Configure parameters to send data to network devices.
  • the terminal can select the target CG configuration parameters from the N first CG configuration parameters based on factors such as current channel status, Transport Block (TB) size, cache status, transmission requirements and other factors.
  • the terminal can send data to the network device through PUSCH.
  • the network device can receive the data sent by the terminal based on the corresponding resources according to the N first CG configuration parameters and the second CG configuration parameters associated with each first CG configuration parameter. That is to say, the network device can reserve the multiple resources according to the N first CG configuration parameters and the multiple resources corresponding to the associated second CG configuration parameters, and use the reserved resources to The data sent is received blindly.
  • the terminal can send a buffer status report (Buffer Stage Report, BSR) to the network device.
  • BSR Buffer Stage Report
  • the TB size of the terminal can be determined based on the BSR reported by the terminal, so that in S502, a first CG configuration parameter can be selected from the N first CG configuration parameters based on the TB size of the terminal.
  • a CG configuration parameter and receives the data sent by the terminal according to the first CG configuration parameter and the second CG configuration parameter associated with it. In this way, there is no need to compare N first CG configuration parameters and their associated second CG Multiple resources corresponding to configuration parameters are reserved, which can improve resource utilization.
  • the network device can send the first transmission configuration parameter in the transmission configuration (such as CG configuration or SPS configuration) to the terminal through the first information, so that the terminal can obtain the information associated with it based on the first transmission configuration parameter.
  • At least one second transmission configuration parameter so that the first transmission configuration parameter and the second transmission configuration parameter associated with it are applied to the first data transmission, so that the transmission configuration parameters can be dynamically adjusted through the first information, and signaling overhead can also be saved.
  • Some of the above-mentioned embodiments of the present disclosure use a combination of explicit indication (that is, indicating the first transmission configuration parameter) and implicit indication (that is, determining the second transmission configuration parameter associated with the first transmission configuration parameter based on the first transmission configuration parameter) to change the CG configuration or Dynamic parameters or CG/SPS configuration under SPS configuration (such as skipping or deleting CG/SPS configuration), thereby adjusting the data transmission rate, making the data transmission more consistent with the variable packet size business characteristics of the XR service, and reducing the terminal/ Business conflicts and collisions.
  • explicit indication that is, indicating the first transmission configuration parameter
  • implicit indication that is, determining the second transmission configuration parameter associated with the first transmission configuration parameter based on the first transmission configuration parameter
  • the method further includes the following steps:
  • S503 The network device sends the second information to the terminal.
  • the second information is feedback information from the network device for the first data transmission.
  • the feedback information can be used for conflict resolution.
  • the second information may include at least one of the following:
  • the first indication information is used to indicate that the first CG configuration parameter sent by the network device and its corresponding second CG transmission configuration parameter are available or unavailable, and the first CG configuration parameter belongs to the first CG configuration.
  • the first indication information is 1-bit information.
  • the first information sent by the network device to the terminal includes the first CG transmission configuration parameters (such as time domain offset) within the first CG configuration.
  • the network device can generate the first indication information and send the first indication information to the terminal according to the data reception status of the terminal to indicate the first CG transmission configuration parameter under the first CG configuration. (such as time domain offset) and whether its corresponding second CG configuration parameter is available, for example, if the network device receives the first CG transmission configuration parameter and the resources corresponding to its corresponding second CG transmission configuration parameter. If the data is sent by the terminal, the value of the generated indication information is 0, indicating that it is available; otherwise, the value of the generated indication information is 1, indicating that it is unavailable. vice versa.
  • the second indication information is used to indicate whether each first CG transmission configuration parameter and its corresponding second CG configuration parameter among the N first CG configuration parameters are available, and the N first CG configuration parameters belong to the same CG. configuration.
  • the second indication information is N-bit information, where each bit corresponds to one of the N first transmission configuration parameters.
  • the first information sent by the network device to the terminal includes N first CG transmission configuration parameters within the first CG configuration.
  • the network device can generate second indication information based on the data reception status of the terminal and send the second indication information to the terminal to indicate the N first CG transmission configurations under the first CG configuration. Whether the parameters and their corresponding second CG configuration parameters are available.
  • the network device receives the data sent by the terminal based on the resources corresponding to a certain first CG transmission configuration parameter and its corresponding second CG transmission configuration parameter, Then N bits of information are generated, and the bit corresponding to the first CG transmission configuration parameter is set to 0, indicating that the corresponding first CG transmission configuration parameter and the second CG transmission configuration parameter are available, and the other bits are set to 1. vice versa.
  • the third indication information is used to indicate one or more CG configurations that need to be deleted or skipped.
  • the third indication information may be an index of the one or more CG configurations that need to be deleted or skipped.
  • the third indication information may be multiple bit indication information.
  • the network device may determine that the time-frequency resource corresponding to one or more CG configurations applied to the first data transmission occurs more frequently based on the situation of the first data transmission (that is, the reception situation of the data sent by the terminal). data transmission collision situation, so it can be determined to skip or delete one or more CG configurations to reduce or avoid the occurrence of collisions. For example, if the network device determines that there are many collisions on the time-frequency resources corresponding to the first CG configuration and the second CG configuration, it may determine to delete or skip one of the CG configurations (for example, delete or skip the second CG configuration).
  • skipping a CG configuration means that during the first data transmission process, the first CG configuration is not used, or the transmission configuration parameters under the first CG configuration are not used (the initial CG configuration parameters under the first CG configuration can be used).
  • Transmission configuration parameters the initial transmission configuration parameters may refer to CG configuration parameters configured through RRC signaling).
  • the first information sent by the network device also includes third information, where the third information is used to indicate one or more items that need to be skipped in the transmission configuration for the first data transmission.
  • transmission configuration in, The transmission configuration includes CG configuration or SPS configuration.
  • the terminal may not use the corresponding transmission configuration parameters of one or more transmission configurations in the first data transmission process according to the third information, or may not use the corresponding transmission configuration parameters in the first data transmission process.
  • Transmission configuration parameters under one or more transmission configurations (initial transmission configuration parameters under the one or more transmission configurations may be used, and the initial transmission configuration parameters may refer to transmission configuration parameters configured through RRC signaling).
  • the network device can determine that there are many collisions on the time-frequency resources corresponding to one or more transmission configurations based on the reception of data sent by the terminal. Skip the one or more transport configurations.
  • the third information includes one of the following:
  • the fourth indication information is used to indicate that among the transmission configurations used for the first data transmission, the transmission configuration closest to the first time needs to be skipped.
  • the fourth indication information may be 1-bit information.
  • the first time is the current time.
  • FIG. 6 a schematic flow chart of another communication method is provided according to an embodiment of the present disclosure. As shown in the figure, the process may include the following steps:
  • the network device sends the first signaling to the terminal.
  • the first signaling is DCI.
  • the DCI includes activation indication information and deactivation indication information.
  • the activation indication information is used to indicate activation of the transmission configuration of at least one half-persistent transmission.
  • the deactivation indication information is used to indicate the deactivation of at least one half-persistent transmission. Transport configuration for persistent transfers.
  • the transmission configuration includes CG configuration or SPS configuration.
  • the network device can determine the transmission configuration that needs to be activated and/or deactivated according to the data reception situation, thereby reducing the collision of data transmission under multiple transmission configurations (especially big data transmission).
  • carrying activation instructions and deactivation instructions in one DCI can activate or deactivate multiple transmission configurations faster, or activate or deactivate multiple dynamic parameters under the transmission configuration, thus reducing the occurrence of traffic accidents.
  • the DCI is activation signaling for semi-persistent transmission or deactivation signaling for semi-persistent transmission.
  • the first signaling (such as activation signaling) may include at least one of the following:
  • At least one flag that deactivates semi-persistent transmission At least one flag that deactivates semi-persistent transmission
  • At least one identifier of activated semi-persistent transmission and an identifier of deactivated semi-persistent transmission (in this case, the identifiers of deactivated and activated semi-persistent transmission are the same);
  • Configuration for activating semi-persistent transmission (the configuration is the same as mentioned above, including time and frequency resources, MCS, RV version, transmission cycle, etc.).
  • the activation signaling may include dynamic signaling.
  • the dynamic signaling may be DCI scrambled based on the configured scheduled radio network temporary identifier (Configured Scheduling Radio Network Temporary Identifier, CS-RNTI), or may be based on the cell-radio network temporary identifier (Cell-Radio Network Temporary Identifier, C-RNTI) scrambled DCI.
  • CS-RNTI Configured Scheduling Radio Network Temporary Identifier
  • C-RNTI Cell-Radio Network Temporary Identifier
  • bit field of the DCI indicates at least one of the above activation signaling.
  • the above process may also include the following steps:
  • S602 The terminal performs semi-persistent data transmission according to the first signaling.
  • the terminal may activate the corresponding at least one transmission configuration according to the activation indication information, and deactivate the corresponding at least one transmission configuration according to the deactivation indication information.
  • activating a transmission configuration includes using the terminal to use at least one transmission configuration activated by the activation indication information for the first data transmission; deactivating a transmission configuration includes giving up using at least one transmission configuration indicated by the deactivation indication information for data transmission. transmission.
  • the terminal performs data transmission at the same time domain position according to the indicated time domain position of at least one activated semi-persistent scheduled semi-persistent transmission according to the received activation indication information, and According to the received deactivation indication information, data is no longer sent or data transmission is monitored at the corresponding time domain position.
  • Example 1 This example is an example of the process shown in Figure 5 above.
  • Example 1 is a schematic flowchart of Example 1 in the embodiment of the present disclosure.
  • the process may include the following steps:
  • the base station configures the transmission configuration (CG/SPS configuration) of semi-persistent transmission to the terminal through RRC signaling, and the dynamic parameters under the transmission configuration of semi-persistent transmission.
  • CG/SPS configuration transmission configuration of semi-persistent transmission to the terminal through RRC signaling
  • the base station configures multiple transmission configurations of semi-persistent transmission, where the semi-persistent transmission includes downlink SPS transmission and/or uplink CG transmission.
  • the transmission configuration of semi-persistent transmission includes CG configuration and/or SPS configuration.
  • the transmission configuration of semi-persistent transmission includes all configuration parameters required for transmission.
  • a transmission configuration (such as GP configuration or SPS configuration)
  • dynamic parameters of semi-persistent transmission It may include at least one of the following: modulation and coding mechanism table identification, MCS, number of transmissions, RV version number, period, power control parameter (PO) and alpha parameter set index, time-frequency resource configuration, frequency hopping identification, new data indicator ( New Data Indication), the time offset of the starting position of the time domain, the duration of the transmission, etc.
  • the modulation and coding mechanism table includes an MCS table index number, an MCS index number, a modulation order, a data transmission rate, and at least one parameter of a coding rate;
  • MCS refers to the modulation and coding method, which may include an MCS indication (index).
  • the reference value includes at least one of the following: the MCS value of the reference, the MCS value of the reference point.
  • the reference point may include a time domain position, a frequency domain position, a semi-persistent Transport configuration.
  • Different modulation and coding mechanism tables include different combinations of at least one parameter; the number of transmissions represents the total number of data transmissions within the period; the RV version number represents the redundancy of transmission blocks for data transmission The version number includes 0, 1, 2, and 3; the period indicates that within this time range, the terminal can perform scheduling-free operation; the power control parameter PO and alpha parameter set index are a set of path losses Unique index for the combination of compensation parameter PO and adjustment factor alpha.
  • dynamic parameters are associated with the properties of the packet to be transmitted.
  • Different dynamic parameters are associated with different packet attributes.
  • the different data packet attributes include at least one of the following: data packet size, quality of service (QoS) requirements of the data packet, where the QoS requirements of the data packet include transmission rate, reliability, time At least one of the extensions. For example, if the data packet meets the first threshold, it can be configured as a semi-persistent first dynamic parameter set; if the data packet meets the second threshold, it can be configured as a semi-persistent second dynamic parameter set; if the data packet meets the third Threshold, which can be configured as a semi-persistent third dynamic parameter group.
  • QoS quality of service
  • the base station sends the first information to the terminal.
  • the first information includes at least one time domain position under the transmission configuration of semi-persistent transmission.
  • the base station can configure the time domain position of semi-persistent transmission for the terminal through the first information, for example, including at least one of the following: the starting time domain position of semi-persistent transmission, the time offset relative to the starting time domain position, The duration of transmission, the period of semi-persistent transmission, etc.
  • the time domain position of semi-persistent transmission may include at least one time domain position, such as at least one of the following: at least one starting time domain position of semi-persistent transmission, at least one interval relative to the starting time domain position. Offset, at least one transmission duration, at least one half-duration transmission period.
  • the time domain position of semi-persistent transmission configured by the base station can be parameters based on the following time units: symbols, timeslots, subframes, and radio frames.
  • the dynamic parameters of semi-persistent transmission configured by the base station may include at least one set of dynamic parameters.
  • Different dynamic parameter groups contain at least one different dynamic parameter.
  • Different dynamic parameters of semi-persistent transmission are associated with different time-domain resource positions of semi-persistent transmission, that is, the positions of different semi-persistent transmission resources, thereby achieving implicit indication of different dynamic parameters of semi-persistent transmission.
  • one CG configuration can configure the offset of the starting position of multiple time slots.
  • multiple transmission starting positions are configured at the time domain position of each CG occasion.
  • Different starting positions are associated with different dynamic parameters of the CG configuration, for example: offset1 is associated with dynamic parameter 1, offset2 is associated with dynamic parameter 2, and offset3 is associated with dynamic parameter 3.
  • multiple time domain periods can be configured under one CG configuration, thereby configuring multiple transmission starting positions within the transmission duration of each CG occurrence.
  • Different transmission cycles are associated with different dynamic parameters configured in the CG. For example, cycle 1 is associated with dynamic parameter 1, cycle 2 is associated with dynamic parameter 2, and cycle 3 is associated with dynamic parameter 3.
  • the base station can configure the time domain position of semi-persistent transmission in the following manner, for example, including dynamic configuration, where the dynamic configuration includes sending DCI.
  • a terminal there may be multiple active semi-persistent transmission configurations at the same time.
  • S703 The terminal transmits data according to the time domain position indicated in S702 and the dynamic parameters associated with it.
  • the terminal determines a time domain position based on the different time domain positions indicated in S702, and determines the dynamic parameters of semi-persistent transmission associated with the time domain position, forming a set of dynamic parameters, and performs data processing based on the set of dynamic parameters. transmission.
  • the data transmission may include:
  • the terminal receives the PDSCH at the time domain position configured by the base station in S702.
  • the terminal can monitor the Demodulation Reference Signal (DMRS) at different time domain positions, or monitor the PDSCH, thereby receiving the PDSCH.
  • DMRS Demodulation Reference Signal
  • the terminal demodulates and decodes the data based on the received PDSCH and the dynamic parameters associated with the time domain position.
  • the terminal sends PUSCH at the time domain position in the determined set of CG dynamic parameters. Specifically, the terminal sends PUSCH at the time domain position associated with the dynamic parameters according to the obtained threshold configuration of the data packet and the association of the CG dynamic parameters.
  • Example 2 This example is an example of the process shown in Figure 5 above.
  • the base station configures the transmission configuration (CG/SPS configuration) of semi-persistent transmission to the terminal through RRC signaling, and the dynamic parameters under the transmission configuration of semi-persistent transmission.
  • CG/SPS configuration transmission configuration of semi-persistent transmission to the terminal through RRC signaling
  • dynamic parameters under the transmission configuration of semi-persistent transmission.
  • the base station sends the first information to the terminal.
  • the first information includes at least one frequency domain position under the transmission configuration of semi-persistent transmission.
  • the base station can configure the frequency domain position of semi-persistent transmission for the terminal through the first information, for example, including at least one of the following: the starting frequency domain position of semi-persistent transmission, the frequency offset relative to the starting frequency domain position, Frequency domain resources occupied by transmission.
  • the starting frequency domain position of the semi-persistent transmission includes at least one frequency domain position, such as the following: One item missing: at least one starting frequency domain position of semi-persistent transmission, at least one frequency offset relative to the starting frequency domain position, and at least one frequency domain resource occupied by the transmission.
  • the base station configures the frequency domain location of semi-persistent transmission, which can be based on the parameters of the following frequency units: RE, RB, RBG, BWP, CC.
  • the dynamic parameters of semi-persistent transmission configured by the base station may include at least one set of dynamic parameters.
  • Different dynamic parameter groups contain at least one different dynamic parameter.
  • Different dynamic parameters of semi-persistent transmission are associated with different frequency domain resource locations of semi-persistent transmission, that is, the locations of different semi-persistent transmission resources, thereby achieving implicit indication of different dynamic parameters of semi-persistent transmission.
  • one CG configuration can configure the offset of multiple frequency domain starting positions, thereby configuring the starting frequency of multiple transmissions at the frequency domain position of each CG occurrence. domain location.
  • Different frequency domain starting positions are associated with different dynamic parameters of the CG configuration. For example: starting RB index1 is associated with dynamic parameter 1, starting RB index2 is associated with dynamic parameter 2, and starting RB index3 is associated with dynamic parameter 3.
  • the base station can configure the frequency domain location of semi-persistent transmission in the following manner, for example, including dynamic configuration, where the dynamic configuration includes sending DCI.
  • a terminal there may be multiple active semi-persistent transmission configurations at the same time.
  • S1003 The terminal transmits data according to the frequency domain position indicated in S1002 and the dynamic parameters associated with it.
  • the terminal determines a frequency domain position based on the different frequency domain positions indicated in S1002, and determines the dynamic parameters of semi-persistent transmission associated with the frequency domain position, forming a set of dynamic parameters, and performs data processing based on the set of dynamic parameters. transmission.
  • the data transmission may include:
  • the terminal receives the PDSCH at the frequency domain location configured by the base station in S1002. For example, the terminal may monitor DMRS or PDSCH at different frequency domain positions, thereby receiving PDSCH.
  • the terminal demodulates and decodes the data according to the received PDSCH and the dynamic parameters associated with the frequency domain position.
  • the terminal sends PUSCH at the frequency domain position in the determined set of CG dynamic parameters. Specifically, based on the association between the obtained threshold configuration of the data packet and the CG dynamic parameters, the terminal sends PUSCH at the frequency domain position associated with the dynamic parameters and at the transmission time position configured by the CG.
  • Example 3 This example is an example of the process shown in Figure 5 above.
  • the base station configures the transmission configuration (CG/SPS configuration) of semi-persistent transmission to the terminal through RRC signaling, and the dynamic parameters under the transmission configuration of semi-persistent transmission.
  • CG/SPS configuration transmission configuration of semi-persistent transmission to the terminal through RRC signaling
  • dynamic parameters under the transmission configuration of semi-persistent transmission.
  • the base station sends the first information to the terminal.
  • the first information includes at least one time-frequency position under the transmission configuration of semi-persistent transmission.
  • the base station can configure the time-frequency position of semi-persistent transmission for the terminal through the first information, for example, including at least one of the following: the starting frequency domain position of semi-persistent transmission, and the time offset relative to the starting frequency domain position. , the frequency domain resources occupied by the transmission, the starting time domain position of the semi-persistent transmission, the time offset relative to the starting time domain position, the duration of the transmission, and the period of the semi-persistent transmission.
  • the time-frequency position of semi-persistent transmission may include at least one time domain position and a frequency domain position, for example, at least one of the following: at least one starting time domain position of semi-persistent transmission, at least one relative to the starting time domain position time offset, the duration of at least one transmission, the period of at least one semi-persistent transmission, the starting frequency domain position of at least one semi-persistent transmission, at least one frequency offset relative to the starting frequency domain position, at least one transmission occupancy frequency domain resources.
  • the base station configures the frequency domain location of semi-persistent transmission, which can be based on the parameters of the following frequency units: RE, RB, RBG, BWP, CC.
  • the time domain position of semi-persistent transmission configured by the base station can be parameters based on the following time units: symbols, timeslots, subframes, and radio frames.
  • the dynamic parameters of semi-persistent transmission configured by the base station may include at least one set of dynamic parameters.
  • Different dynamic parameter groups contain at least one different dynamic parameter.
  • Different dynamic parameters of semi-persistent transmission are associated with different time-frequency resource locations of semi-persistent transmission, that is, the locations of different semi-persistent transmission resources, thereby achieving implicit indication of different dynamic parameters of semi-persistent transmission.
  • the base station can configure the time-frequency position of semi-persistent transmission in the following manner, for example, including dynamic configuration, where the dynamic configuration includes sending DCI.
  • a terminal there may be multiple active semi-persistent transmission configurations at the same time.
  • S1203 The terminal performs data transmission according to the time-frequency position indicated in S1202 and the dynamic parameters associated with it.
  • the terminal determines a time-frequency position based on the different time-frequency positions indicated in S1202, and determines the dynamic parameters of semi-persistent transmission associated with the frequency domain position to form a set of dynamic parameters, and performs data processing based on the set of dynamic parameters. transmission.
  • the data transmission may include:
  • the terminal receives the PDSCH at the time-frequency position configured by the base station in S1002.
  • the terminal can monitor DMRS at different frequency domain positions and time domain positions, or monitor PDSCH, thereby receiving PDSCH.
  • the terminal demodulates and decodes the data according to the received PDSCH and the dynamic parameters associated with the frequency domain position and time domain position.
  • the terminal sends PUSCH at the time-frequency position in the determined set of CG dynamic parameters. Specifically, the terminal sends PUSCH at the time-frequency position associated with the dynamic parameters based on the association between the obtained threshold configuration of the data packet and the CG dynamic parameters.
  • Example 4 This example is an example of the process shown in Figure 5 above.
  • the base station configures the transmission configuration (CG/SPS configuration) of semi-persistent transmission to the terminal through RRC signaling, and the dynamic parameters under the transmission configuration of semi-persistent transmission.
  • CG/SPS configuration transmission configuration of semi-persistent transmission to the terminal through RRC signaling
  • dynamic parameters under the transmission configuration of semi-persistent transmission.
  • S1302 The terminal reports dynamic parameters for semi-persistent transmission.
  • the dynamic parameters of semi-persistent transmission reported by the terminal are the dynamic parameters expected by the terminal.
  • the terminal can determine the dynamic parameters of its desired semi-persistent transmission based on the size of the data packet to be transmitted, channel transmission conditions, etc. For example, the following method can be used to obtain the location of the time-frequency resource for semi-persistent transmission:
  • Method 1 Based on the reciprocity of the uplink channel and the downlink channel, obtain the status of the uplink channel through the downlink reference signal to estimate the MCS;
  • Method 2 Obtain the uplink MCS parameters through the MCS parameters of the PDSCH scheduled by the downlink DCI.
  • the terminal may report desired dynamic parameters of semi-persistent transmission through uplink signals.
  • the reported dynamic parameters may include at least one of the following: one or more dynamic parameters of semi-persistent transmission (the one or more dynamic parameters may is configured by the base station through RRC signaling, or can also be determined by the terminal), the time domain and/or frequency domain resource location of semi-persistent transmission, the above one or more dynamic parameters and the time domain and/or of semi-persistent transmission.
  • the one or more dynamic parameters may is configured by the base station through RRC signaling, or can also be determined by the terminal
  • the time domain and/or frequency domain resource location of semi-persistent transmission the above one or more dynamic parameters and the time domain and/or of semi-persistent transmission
  • the correlation between frequency domain resource locations, the dynamic parameters of time domain and/or frequency domain correlation of semi-persistent transmission are examples of the following: one or more dynamic parameters of semi-persistent transmission (the one or more dynamic parameters may is configured by the base station through RRC signaling, or can also
  • the uplink signal may include at least one of the following: SR signal, WUS signal, RACH preamble signal, SRS signal, PUSCH signal, and PUCCH signal.
  • the base station sends the first information to the terminal.
  • the first information includes at least one dynamic parameter under the transmission configuration of semi-persistent transmission.
  • the dynamic parameter may be one or more of the dynamic parameters reported by the terminal in S1302.
  • the base station may select one or more dynamic parameters from the dynamic parameters reported by the terminal according to the channel status, etc., and send the one or more dynamic parameters to the terminal through the first information.
  • the base station may also send an indication of whether to use the dynamic parameter, and/or an indication of whether the dynamic parameter causes a conflict.
  • S1304 The terminal performs data transmission according to the dynamic parameters indicated in S1303 and the dynamic parameters associated with them. For specific implementation methods, please refer to the relevant steps in Examples 1, 2, or 3.
  • Example 5 This example is an example of the process shown in Figure 5 above.
  • Example 5 The process of Example 5 is basically the same as Example 1. The process is the same for example two or three.
  • Figure 14 exemplarily shows the use of A schematic diagram of dynamic parameter configuration in Example 5.
  • the base station configures a first CG configuration, and the first CG configuration includes at least one dynamic parameter, for example, CG-1 dynamic configuration parameter 1, CG-1 dynamic configuration parameter 2, CG-1 dynamic configuration parameter 3 .
  • the dynamic DCI (which includes the first information) sent by the base station to the terminal may be scrambled using CS-RNTI.
  • the base station sends dynamic DCI to instruct the terminal to use CG-1 dynamic configuration parameter 1 for data transmission at this transmission position; at the second transmission position of CG transmission, the base station sends dynamic DCI to indicate The terminal uses CG-1 dynamic configuration parameter 2 for data transmission at this transmission position; at the third transmission position of CG transmission, the base station sends dynamic DCI to instruct the terminal to use CG-1 dynamic configuration parameter 3 for data transmission at this transmission position. data transmission.
  • Example 6 This example is an example of the process shown in Figure 5 above.
  • the base station configures the transmission configuration (CG/SPS configuration) of semi-persistent transmission to the terminal through RRC signaling, as well as the dynamic parameters under the transmission configuration of semi-persistent transmission.
  • CG/SPS configuration transmission configuration of semi-persistent transmission to the terminal through RRC signaling
  • dynamic parameters under the transmission configuration of semi-persistent transmission.
  • the base station sends the first information to the terminal.
  • the first information includes third indication information, which is used to indicate at least one transmission configuration that needs to be skipped among the transmission configurations (including CG transmission configuration and/or SPS transmission configuration) applied to the first data transmission.
  • the base station can indicate whether to skip this semi-persistent transmission at the current semi-persistent transmission position through the sent DCI.
  • the first information may include at least one of the following information:
  • 1-bit indication information used to indicate whether to skip the semi-persistent transmission configuration at the position of this semi-persistent transmission
  • a plurality of bit indication information is used to indicate one or more dynamic parameters (ie, one or more of the above-mentioned first transmission configuration parameters) at the time position of this half-continuous transmission.
  • the base station configures a first CG configuration 1, and the first CG configuration 1 includes at least one transmission location.
  • the base station sends DCI to instruct the first transmission position to skip using the dynamic parameters of CG configuration 1 for data transmission, the second transmission position to skip using the dynamic parameters of CG configuration 1 for data transmission, and the third transmission position to skip using the dynamic parameters of CG configuration 1 for data transmission.
  • the dynamic parameters of CG configuration 1 are used for data transmission.
  • S1503 The terminal performs data transmission according to the instructions in S1502.
  • the terminal receives the third instruction information in S1502, and the third instruction information is used to instruct to skip this If the nearest semi-persistent transmission configuration is located at the current semi-persistent transmission location, the terminal will follow this instruction and perform data transmission based on the dynamic parameters of the RRC configuration at the time domain location corresponding to the semi-persistent transmission configuration closest to the current semi-persistent transmission location. . If the terminal receives the third indication information in S1502, and the third indication information is used to indicate not to skip the latest semi-persistent transmission configuration at the location of this semi-persistent transmission, or the terminal does not receive the third information, then The terminal performs data transmission according to the dynamic parameters indicated in S1502.
  • the terminal receives the third instruction information in S1502, and the third instruction information is used to indicate skipping one or more semi-persistent transmission configurations at the location of this semi-persistent transmission, the terminal follows the instruction. , at this semi-persistent transmission position, data transmission is performed based on the dynamic parameters configured by RRC. If the terminal receives the third indication information in S1502, and the third indication information is used to indicate not to skip one or more semi-persistent transmission configurations at the location of this semi-persistent transmission, or the terminal does not receive the third information, the terminal performs data transmission according to the dynamic parameters indicated in S1502.
  • embodiments of the present disclosure also provide a terminal.
  • the terminal can implement the functions on the terminal side in the above embodiment.
  • Figure 17 illustrates an exemplary terminal provided by an embodiment of the present disclosure.
  • the terminal may include: a processing unit 1701 and a transceiver unit 1702.
  • the transceiver unit 1702 is configured to receive first information sent by a network device, where the first information includes N first transmission configuration parameters, where N is an integer greater than or equal to 1; where, Each first transmission configuration parameter among the N first transmission configuration parameters is associated with at least one second transmission configuration parameter, and the first transmission configuration parameter and the second transmission configuration parameter are CG configuration parameters, or are SPS configurations. parameter.
  • Processing unit 1701 configured to perform first data transmission according to at least one first transmission configuration parameter among the N first transmission configuration parameters and a second transmission configuration parameter associated with the at least one first transmission configuration parameter. .
  • the association between each of the N first transmission configuration parameters and the second transmission configuration parameter is preconfigured or predefined.
  • the first information includes a first transmission configuration parameter
  • the first transmission configuration parameter is one of the M first transmission configuration parameters reported by the transceiver unit 1702 to the network device.
  • the M is an integer greater than or equal to N;
  • the transceiver unit 1702 Before the transceiver unit 1702 receives the first information sent by the network device, the transceiver unit 1702 is also used to:
  • the first transmission configuration parameter is time domain resource information, or frequency domain resource information, or time-frequency resource information; wherein the time-frequency resource information includes time domain resource information and frequency domain resource information.
  • the at least one second transmission configuration parameter includes at least one of the following: modulation coding mechanism MCS, redundancy version, transmit power parameter, time domain resource information, frequency domain resource information, time-frequency resource information ; Wherein, the time-frequency resource information includes time-domain resource information and frequency-domain resource information.
  • the time domain resource information includes at least one of the following:
  • the transmission time length of the first data transmission is the transmission time length of the first data transmission
  • the time domain resource information is time domain resource information based on at least one of the following: symbols, time slots, subframes, and radio frames.
  • the frequency domain resource information includes at least one of the following:
  • the starting frequency domain position of the first data transmission is the starting frequency domain position of the first data transmission
  • the frequency domain resources occupied by the first data transmission are occupied by the first data transmission.
  • the frequency domain resource information is frequency domain resource information based on at least one of the following: resource unit RE, resource block RB, resource block group RBG, partial bandwidth BWP, and component carrier CC.
  • the first transmission configuration parameter is a first CG configuration parameter
  • the second transmission configuration parameter is a second CG configuration parameter
  • the processing unit 1701 is specifically configured to select a target CG configuration parameter from the N first CG configuration parameters
  • the processing unit 1701 is further configured to receive second information sent by the network device, where the second information includes at least one of the following:
  • First indication information used to indicate that the first CG configuration parameter used for the first data transmission and the second CG configuration parameter associated with the first CG configuration parameter are available or unavailable;
  • Second indication information used to indicate each first transmission configuration parameter among the N first CG configuration parameters used for the first data transmission and the relationship between each first transmission configuration parameter among the N first CG configuration parameters.
  • the second CG transmission configuration parameter associated with the transmission configuration parameter is available or unavailable;
  • the third indication information is used to indicate one or more CG configurations that need to be deleted or skipped among the CG configurations used for the first data transmission.
  • the first transmission configuration parameter is a first SPS configuration parameter
  • the second transmission configuration parameter is a second SPS configuration parameter
  • the processing unit 1701 is specifically configured to receive the network information according to the N first SPS configuration parameters and the second SPS configuration parameter associated with each of the N first SPS configuration parameters. Data sent by the device.
  • the first information further includes third information, the third information is used to indicate at least one transmission configuration that needs to be skipped among the transmission configurations for the first data transmission, and the Transmission configuration includes CG configuration or SPS configuration;
  • the processing unit 1701 is configured to perform the first data transmission without using the at least one transmission configuration that needs to be skipped, or not using the at least one transmission configuration that needs to be skipped during the first data transmission process. Transfer configuration parameters.
  • the third information includes:
  • Fourth indication information used to indicate that among the transmission configurations used for the first data transmission, the transmission configuration closest to the first time needs to be skipped;
  • the transceiver unit 1702 is specifically used to:
  • the transceiver unit 1702 is configured to receive first signaling sent by the network device, where the first signaling includes activation indication information and deactivation indication information, and the activation indication information is used to Instructing to activate the transmission configuration of at least one semi-persistent transmission, the deactivation indication information is used to instruct to deactivate the transmission configuration of at least one semi-persistent transmission.
  • the processing unit 1701 is also configured to perform semi-persistent data transmission according to the first signaling.
  • the first signaling includes at least one of the following:
  • At least one flag that deactivates semi-persistent transmission At least one flag that deactivates semi-persistent transmission
  • Transport configuration parameters that activate semi-persistent transmission are
  • the first signaling is DCI scrambled based on the configured scheduling wireless network temporary identity CS-RNTI, or DCI scrambled based on the cell wireless network temporary identity C-RNTI.
  • the first signaling is downlink control information DCI
  • the DCI is activation signaling or deactivation signaling.
  • the transmission configuration of the semi-persistent transmission includes a scheduling-free CG configuration or a semi-persistent scheduling SPS configuration.
  • embodiments of the present disclosure also provide a network device (such as a base station).
  • the network device can implement the functions on the network device side in the above embodiment.
  • FIG. 18 schematically shows a network device provided by an embodiment of the present disclosure.
  • the network device may include: a processing unit 1801 and a transceiver unit 1802.
  • the transceiver unit 1802 is configured to send first information to the terminal, where the first information includes N first transmission configuration parameters, where N is an integer greater than or equal to 1; wherein, N Each first transmission configuration parameter among the first transmission configuration parameters is associated with at least one second transmission configuration parameter, and the first transmission configuration parameter and the second transmission configuration parameter are CG configuration parameters or SPS configuration parameters. Wherein, at least one first transmission configuration parameter among the N first transmission configuration parameters, and a second transmission configuration parameter associated with the at least one first transmission configuration parameter, are used for first data transmission.
  • the association between each first transmission configuration parameter and the second transmission configuration parameter among the N first transmission configuration parameters is preconfigured or predefined.
  • the first information includes a first transmission configuration parameter
  • the first transmission configuration parameter is one of the M first transmission configuration parameters reported by the transceiver unit 1802 to the network device.
  • the M is an integer greater than or equal to N;
  • the transceiver unit 1802 Before the transceiver unit 1802 sends the first information to the terminal, the transceiver unit 1802 is also used to:
  • the first transmission configuration parameter is time domain resource information, or frequency domain resource information, or time-frequency resource information; wherein the time-frequency resource information includes time domain resource information and frequency domain resource information.
  • the at least one second transmission configuration parameter includes at least one of the following: modulation coding mechanism MCS, redundancy version, transmit power parameter, time domain resource information, frequency domain resource information, time-frequency resource information , the time-frequency resource information includes time-domain resource information and frequency-domain resource information.
  • the time domain resource information includes at least one of the following:
  • the transmission time length of the first data transmission is the transmission time length of the first data transmission
  • the time domain resource information is time domain resource information based on at least one of the following: symbols, time slots, subframes, and radio frames.
  • the frequency domain resource information includes at least one of the following:
  • the starting frequency domain position of the first data transmission is the starting frequency domain position of the first data transmission
  • the frequency domain resources occupied by the first data transmission are occupied by the first data transmission.
  • the frequency domain resource information is frequency domain resource information based on at least one of the following: resource unit RE, resource block RB, resource block group RBG, partial bandwidth BWP, and component carrier CC.
  • the first transmission configuration parameter is a first CG configuration parameter
  • the second transmission configuration parameter is a second CG configuration parameter
  • the transceiver unit 1802 is further configured to receive data sent by the terminal according to the N first CG configuration parameters and the second CG configuration parameters associated with each of the first CG configuration parameters.
  • the transceiver unit 1802 after the transceiver unit 1802 receives the data sent by the terminal, the transceiver unit 1802 is also used to:
  • First indication information used to indicate that the first CG configuration parameter used for the first data transmission and the second CG configuration parameter associated with the first CG configuration parameter are available or unavailable;
  • Second indication information used to indicate each first transmission configuration parameter among the N first CG configuration parameters used for the first data transmission and the relationship between each first transmission configuration parameter among the N first CG configuration parameters.
  • the second CG transmission configuration parameter associated with the transmission configuration parameter is available or unavailable;
  • the third indication information is used to indicate one or more CG configurations that need to be deleted or skipped among the CG configurations used for the first data transmission.
  • the first transmission configuration parameter is a first SPS configuration parameter
  • the second transmission configuration parameter is a second SPS configuration parameter
  • the transceiver unit 1802 is also configured to send data to the terminal according to the N first SPS configuration parameters and the second SPS configuration parameters associated with each first SPS configuration parameter.
  • the first information further includes third information used to indicate at least one transmission configuration that needs to be skipped among the transmission configurations used for the first data transmission, and the transmission configuration includes a CG configuration. or SPS configuration.
  • the third information includes:
  • Fourth indication information used to indicate that among the transmission configurations used for the first data transmission, the transmission configuration closest to the first time needs to be skipped;
  • the transceiver unit is specifically used to:
  • the transceiver unit 1802 is configured to send first signaling to the terminal.
  • the first signaling includes activation indication information and deactivation indication information.
  • the activation indication information is used to indicate activation.
  • a transmission configuration of at least one semi-persistent transmission, and the deactivation indication information is used to indicate deactivation of at least one transmission configuration of semi-persistent transmission.
  • the first signaling is downlink control information DCI
  • the DCI is activation signaling or deactivation signaling.
  • the first signaling includes at least one of the following:
  • At least one flag that deactivates semi-persistent transmission At least one flag that deactivates semi-persistent transmission
  • Transport configuration parameters that activate semi-persistent transmission are
  • the first signaling is DCI scrambled based on the configured scheduling wireless network temporary identity CS-RNTI, or DCI scrambled based on the cell wireless network temporary identity C-RNTI.
  • the transmission configuration of semi-persistent transmission includes plane scheduling CG configuration or semi-persistent scheduling. SPS configuration.
  • embodiments of the present disclosure also provide a communication device, which can realize the functions of the corresponding equipment in the foregoing embodiments.
  • Figure 19 exemplarily shows a schematic structural diagram of a communication device in an embodiment of the present disclosure.
  • the communication device may include: a processor 1901, a memory 1902, a transceiver 1903, and a bus interface 1904.
  • the processor 1901 is responsible for managing the bus architecture and general processing, and the memory 1902 can store data used by the processor 1901 when performing operations.
  • Transceiver 1903 is used to receive and transmit data under the control of processor 1901.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked together by various circuits of one or more processors represented by processor 1901 and memory represented by memory 1902 .
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the processor 1901 is responsible for managing the bus architecture and general processing, and the memory 1902 can store data used by the processor 1901 when performing operations.
  • the process disclosed in the embodiment of the present disclosure can be applied to the processor 1901 or implemented by the processor 1901.
  • each step of the signal processing flow can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 1901 .
  • the processor 1901 may be a general processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments of the present disclosure.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the methods disclosed in conjunction with the embodiments of the present disclosure can be directly implemented as executed by a hardware processor, or executed using a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 1902.
  • the processor 1901 reads the information in the memory 1902 and completes the steps of the signal processing process in combination with its hardware.
  • the processor 1901 is configured to read the computer instructions in the memory 1902 and execute the first information sent by the receiving network device.
  • the first information includes N first transmission configuration parameters, and the N is greater than or equal to 1. an integer; wherein, each first transmission configuration parameter among the N first transmission configuration parameters is associated with at least one second transmission configuration parameter, and the first transmission configuration parameter and the second transmission configuration parameter are scheduling-free CG configuration parameters, or semi-persistent scheduling SPS configuration parameters; according to at least one first transmission configuration parameter among the N first transmission configuration parameters, and a second transmission configuration associated with the at least one first transmission configuration parameter parameters to perform the first data transmission.
  • association between each of the N first transmission configuration parameters and the second transmission configuration parameter is preconfigured or predefined.
  • the first information includes a first transmission configuration parameter, and the first transmission configuration parameter is one of M first transmission configuration parameters reported by the terminal to the network device, and the M is an integer greater than or equal to N;
  • the processor 1901 executes receiving the first information sent by the network device, the processor 1901 is further configured to execute:
  • the first transmission configuration parameter is time domain resource information, or frequency domain resource information, or time-frequency resource information; wherein the time-frequency resource information includes time domain resource information and frequency domain resource information.
  • the at least one second transmission configuration parameter includes at least one of the following: modulation coding mechanism MCS, redundancy version, transmit power parameter, time domain resource information, frequency domain resource information, time-frequency resource information; wherein, The time-frequency resource information includes time-domain resource information and frequency-domain resource information.
  • the time domain resource information includes at least one of the following:
  • the transmission time length of the first data transmission is the transmission time length of the first data transmission
  • the time domain resource information is time domain resource information based on at least one of the following: symbols, time slots, subframes, and radio frames.
  • the frequency domain resource information includes at least one of the following:
  • the starting frequency domain position of the first data transmission is the starting frequency domain position of the first data transmission
  • the frequency domain resources occupied by the first data transmission are occupied by the first data transmission.
  • the frequency domain resource information is frequency domain resource information based on at least one of the following: resource unit RE, resource block RB, resource block group RBG, partial bandwidth BWP, and component carrier CC.
  • the first transmission configuration parameter is a first CG configuration parameter
  • the second transmission configuration parameter is a second CG configuration parameter
  • the processor 1901 is specifically configured to select a target CG configuration parameter from the N first CG configuration parameters
  • the processor 1901 is further configured to receive second information sent by the network device, where the second information includes at least one of the following:
  • First indication information used to indicate that the first CG configuration parameter used for the first data transmission and the second CG configuration parameter associated with the first CG configuration parameter are available or unavailable;
  • Second indication information used to indicate each first transmission configuration parameter among the N first CG configuration parameters used for the first data transmission and the relationship between each first transmission configuration parameter among the N first CG configuration parameters.
  • the second CG transmission configuration parameter associated with the transmission configuration parameter is available or unavailable;
  • the third indication information is used to indicate one or more CG configurations that need to be deleted or skipped among the CG configurations used for the first data transmission.
  • the first transmission configuration parameter is a first SPS configuration parameter
  • the second transmission configuration parameter is a second SPS configuration parameter
  • the processor 1901 is specifically configured to execute, according to the N first SPS configuration parameters and the second SPS configuration parameters associated with each of the N first SPS configuration parameters, receive the The data sent by the network device described above.
  • the first information also includes third information, the third information is used to indicate at least one transmission configuration that needs to be skipped among the transmission configurations for the first data transmission, and the transmission configuration includes CG configuration or SPS configuration;
  • the processor 1901 is specifically configured to perform the first data transmission without using the at least one transmission configuration that needs to be skipped, or not using the at least one transmission that needs to be skipped during the first data transmission process.
  • Transport configuration parameters under Configuration are specifically configured to perform the first data transmission without using the at least one transmission configuration that needs to be skipped, or not using the at least one transmission that needs to be skipped during the first data transmission process.
  • the third information includes:
  • Fourth indication information used to indicate that among the transmission configurations used for the first data transmission, the transmission configuration closest to the first time needs to be skipped;
  • the processor 1901 is specifically configured to receive downlink control information DCI sent by the network device on the physical downlink control channel PDCCH, where the DCI includes the first information; or
  • the processor 1901 is configured to receive the first signaling sent by the network device, and the first signaling
  • the command includes activation indication information and deactivation indication information.
  • the activation indication information is used to indicate activating the transmission configuration of at least one semi-persistent transmission.
  • the deactivation indication information is used to indicate deactivating the transmission configuration of at least one semi-persistent transmission.
  • the processor 1901 is further configured to perform semi-persistent data transmission according to the first signaling.
  • the first signaling includes at least one of the following:
  • At least one flag that deactivates semi-persistent transmission At least one flag that deactivates semi-persistent transmission
  • Transport configuration parameters that activate semi-persistent transmission are
  • the first signaling is DCI scrambled based on the configured scheduling radio network temporary identity CS-RNTI, or DCI scrambled based on the cell radio network temporary identity C-RNTI.
  • the first signaling is downlink control information DCI
  • the DCI is activation signaling or deactivation signaling.
  • the transmission configuration of the semi-persistent transmission includes a scheduling-free CG configuration or a semi-persistent scheduling SPS configuration.
  • the processor 1901 is also configured to send first information to the terminal, where the first information includes N first transmission configuration parameters, where N is an integer greater than or equal to 1; wherein, Each first transmission configuration parameter among the N first transmission configuration parameters is associated with at least one second transmission configuration parameter, and the first transmission configuration parameter and the second transmission configuration parameter are scheduling-free CG configuration parameters, or are Semi-persistent scheduling SPS configuration parameters;
  • At least one first transmission configuration parameter among the N first transmission configuration parameters, and a second transmission configuration parameter associated with the at least one first transmission configuration parameter, are used for first data transmission.
  • association between each first transmission configuration parameter and the second transmission configuration parameter among the N first transmission configuration parameters is preconfigured or predefined.
  • the first information includes a first transmission configuration parameter, and the first transmission configuration parameter is one of M first transmission configuration parameters reported by the terminal to the network device, and the M is an integer greater than or equal to N;
  • the processor 1901 is further configured to execute:
  • the first transmission configuration parameter is time domain resource information, or frequency domain resource information, or time-frequency resource information; wherein the time-frequency resource information includes time domain resource information and frequency domain resource information.
  • the at least one second transmission configuration parameter includes at least one of the following: modulation coding mechanism MCS, redundancy version, transmit power parameter, time domain resource information, frequency domain resource information, time-frequency resource information, the Time and frequency resources
  • modulation coding mechanism MCS redundancy version
  • transmit power parameter time domain resource information
  • frequency domain resource information frequency domain resource information
  • time-frequency resource information time-frequency resource information
  • the information includes time domain resource information and frequency domain resource information.
  • the time domain resource information includes at least one of the following:
  • the transmission time length of the first data transmission is the transmission time length of the first data transmission
  • the time domain resource information is time domain resource information based on at least one of the following: symbols, time slots, subframes, and radio frames.
  • the frequency domain resource information includes at least one of the following:
  • the starting frequency domain position of the first data transmission is the starting frequency domain position of the first data transmission
  • the frequency domain resources occupied by the first data transmission are occupied by the first data transmission.
  • the frequency domain resource information is frequency domain resource information based on at least one of the following: resource unit RE, resource block RB, resource block group RBG, partial bandwidth BWP, and component carrier CC.
  • the first transmission configuration parameter is a first CG configuration parameter
  • the second transmission configuration parameter is a second CG configuration parameter
  • the processor 1901 is further configured to receive data sent by the terminal according to the N first CG configuration parameters and the second CG configuration parameters associated with each of the first CG configuration parameters.
  • the processor 1901 is further configured to execute:
  • First indication information used to indicate that the first CG configuration parameter used for the first data transmission and the second CG configuration parameter associated with the first CG configuration parameter are available or unavailable;
  • Second indication information used to indicate each first transmission configuration parameter among the N first CG configuration parameters used for the first data transmission and the relationship between each first transmission configuration parameter among the N first CG configuration parameters.
  • the second CG transmission configuration parameter associated with the transmission configuration parameter is available or unavailable;
  • the third indication information is used to indicate one or more CG configurations that need to be deleted or skipped among the CG configurations used for the first data transmission.
  • the first transmission configuration parameter is a first SPS configuration parameter
  • the second transmission configuration parameter is a second SPS configuration parameter
  • the processor 1901 is further configured to execute the configuration according to the N first SPS configuration parameters and each first SPS. Configure the second SPS configuration parameter associated with the parameter and send data to the terminal.
  • the first information also includes third information, used to indicate at least one of the transmission configurations used for the first data transmission that needs to be skipped, and the transmission configuration includes a CG configuration or an SPS configuration. .
  • the third information includes:
  • Fourth indication information used to indicate that among the transmission configurations used for the first data transmission, the transmission configuration closest to the first time needs to be skipped;
  • the processor 1901 is specifically configured to send downlink control information DCI to the terminal on the physical downlink control channel PDCCH, where the DCI includes the first information;
  • the processor 1901 is configured to send first signaling to the terminal, where the first signaling includes activation indication information and deactivation indication information, and the activation indication information is used to indicate activation of at least one The transmission configuration of semi-persistent transmission, the deactivation indication information is used to indicate deactivation of at least one transmission configuration of semi-persistent transmission.
  • the first signaling is downlink control information DCI
  • the DCI is activation signaling or deactivation signaling.
  • the first signaling includes at least one of the following:
  • At least one flag that deactivates semi-persistent transmission At least one flag that deactivates semi-persistent transmission
  • Transport configuration parameters that activate semi-persistent transmission are
  • the first signaling is DCI scrambled based on the configured scheduling radio network temporary identity CS-RNTI, or DCI scrambled based on the cell radio network temporary identity C-RNTI.
  • the transmission configuration of semi-persistent transmission includes plane scheduling CG configuration or semi-persistent scheduling SPS configuration.
  • Embodiments of the present disclosure also provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions are used to cause the computer to execute the method executed by the corresponding device in the above embodiments.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may be embodied in one or more computers having computer usable program code embodied therein. It may be in the form of a computer program product implemented on a storage medium (including but not limited to disk storage, CD-ROM, optical storage, etc.).
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、装置及存储介质,涉及无线通信技术领域。该方法包括:终端接收网络设备发送的第一信息,根据所述N个第一传输配置参数中的至少一个第一传输配置参数以及与所述至少一个第一传输配置参数关联的第二传输配置参数,进行第一数据传输。其中,所述第一信息包括更新的N个第一传输配置参数,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为CG配置参数或者为SPS配置参数。

Description

一种通信方法、装置及存储介质
相关申请的交叉引用
本公开要求在2022年08月05日提交、申请号为202210940004.2、申请名称为“一种通信方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种通信方法、装置及存储介质。
背景技术
XR业务,包括增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)、混合现实(Mixed Reality,MR)、免调度(Configured Grant,CG,也称为配置调度或配置授权)等,对于时延、可靠性、数据传输速率均有较高的要求,可应用在医疗、教育学习行业、办公场景会议、旅游、军事、舞台效果、电影、购物等诸多领域。
基于目前的研究,XR业务的特性包括:对于下行传输和上行传输,XR业务的数据包的大小是动态变化的,从而在较短的时间内带来数据包的较大的调整。XR业务传输性能的要求包括:需要同时满足低时延、高速率传输和高的可靠性。
如何调度具有上述特征的业务(比如XR业务)的数据传输,是目前需要解决的技术问题。
发明内容
本公开提供了一种通信方法、装置及存储介质,用以动态调整CG/SPS配置参数。
第一方面,提供一种通信方法,所述方法包括:
终端接收网络设备发送的第一信息,所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数;其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为免调度(CG)配置参数,或者为半持续调度(SPS)配置参数;
所述终端根据所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,进行第一数据传输。
可选的,所述N个第一传输配置参数中的每个第一传输配置参数与第二传输配置参数之间的关联关系,是预先配置的或预先定义的。
可选的,所述第一信息包括一个第一传输配置参数,所述一个第一传输配置参数是所述终端上报给所述网络设备的M个第一传输配置参数中的一个,所述M为大于或等于N的整数;所述终端接收网络设备发送的第一信息之前,所述方法还包括:所述终端向所述网络设备发送M个第一传输配置参数,以及所述M个第一传输配置参数中每个第一传输配置参数关联的至少一个第二传输配置参数。
可选的,所述第一传输配置参数为时域资源信息,或频域资源信息,或时频资源信息;其中,所述时频资源信息包括时域资源信息和频域资源信息。
可选的,所述至少一个第二传输配置参数,包括以下至少一项:调制编码机制(MCS),冗余版本,发送功率参数,时域资源信息,频域资源信息,时频资源信息,所述时频资源信息包括时域资源信息和频域资源信息。
可选的,所述时域资源信息,包括以下至少一项:
所述第一数据传输的起始时域位置;
相对于起始时域位置的时间偏移;
所述第一数据传输的传输时间长度;
传输周期。
可选的,所述时域资源信息为基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。
可选的,所述频域资源信息,包括以下至少一项:
所述第一数据传输的起始频域位置;
相对于起始频域位置的频率偏移;
所述第一数据传输占用的频域资源。
可选的,所述频域资源信息为基于以下至少一项的频域资源信息:资源单元(RE),资源块(RB),资源块组(RBG),部分带宽(BWP),成员载波(CC)。
可选的,所述第一传输配置参数为第一CG配置参数,所述第二传输配置参数为第二CG配置参数;所述终端根据所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,进行第一数据传输,包括:所述终端从所述N个第一CG配置参数中选择目标CG配置参数;所述终端根据所述目标CG配置参数获取与所述目标CG配置参数关联的第二CG配置参数;所述终端根据所述目标CG配置参数以及与所述目标CG配置参数关联的第二CG配置参数,向所述网 络设备发送数据。
可选的,所述第一数据传输之后,所述方法还包括:所述终端接收所述网络设备发送的第二信息,所述第二信息包括以下至少一项:
第一指示信息,用于指示用于所述第一数据传输的所述第一CG配置参数以及与所述第一CG配置参数关联的第二CG配置参数可用或不可用;
第二指示信息,用于指示用于所述第一数据传输的N个第一CG配置参数中的每个第一传输配置参数以及与所述N个第一CG配置参数中的每个第一传输配置参数关联的第二CG传输配置参数可用或不可用;
第三指示信息,用于指示用于所述第一数据传输的CG配置中需要删除或跳过的一个或多个CG配置。
可选的,所述第一传输配置参数为第一SPS配置参数,所述第二传输配置参数为第二SPS配置参数;所述终端根据所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,进行第一数据传输,包括:所述终端根据所述N个第一SPS配置参数以及每个第一SPS配置参数关联的第二SPS配置参数,接收所述网络设备发送的数据。
可选的,所述第一信息还包括第三信息,用于指示用于所述第一数据传输的传输配置中的至少一个需要跳过的传输配置,所述传输配置包括CG配置或SPS配置;所述方法还包括:所述终端不使用所述至少一个需要跳过的传输配置进行所述第一数据传输,或者在第一数据传输过程中不使用所述至少一个需要跳过的传输配置下的传输配置参数。
可选的,所述第三信息包括:第四指示信息,用于指示用于所述第一数据传输的传输配置中与第一时间最近的传输配置需要被跳过;或者,需要跳过的传输配置的索引。
可选的,所述终端接收网络设备发送的第一信息,包括:所述终端接收所述网络设备在物理下行控制信道PDCCH发送的下行控制信息DCI,所述DCI中包括所述第一信息;或者,所述终端接收所述网络设备在物理下行共享信道PDSCH发送的所述第一信息;或者,所述终端接收所述网络设备发送的下行参考信号,所述下行参考信号携带所述第一信息。
第二方面,提供一种通信方法,所述方法包括:
网络设备向终端发送第一信息,所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数;其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为CG配置参数,或者为SPS配置参数;
其中,所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,用于第一数据传输。
可选的,所述N个第一传输配置参数中的每个第一传输配置参数与第二传输配置参数之间的关联关系,是预先配置的或预先定义的。
可选的,所述第一信息包括一个第一传输配置参数,所述一个第一传输配置参数是所述终端上报给所述网络设备的M个第一传输配置参数中的一个,所述M为大于或等于N的整数;所述网络设备向所述终端发送所述第一信息之前,所述方法还包括:所述网络设备接收所述终端发送M个第一传输配置参数,以及所述M个第一传输配置参数中每个第一传输配置参数关联的至少一个第二传输配置参数。
可选的,所述第一传输配置参数为时域资源信息,或频域资源信息,或时频资源信息;其中,所述时频资源信息包括时域资源信息和频域资源信息。
可选的,所述至少一个第二传输配置参数,包括以下至少一项:调制编码机制MCS,冗余版本,发送功率参数,时域资源信息,频域资源信息,时频资源信息,所述时频资源信息包括时域资源信息和频域资源信息。
可选的,所述时域资源信息,包括以下至少一项:
所述第一数据传输的起始时域位置;
相对于起始时域位置的时间偏移;
所述第一数据传输的传输时间长度;
传输周期。
可选的,所述时域资源信息为基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。
可选的,所述频域资源信息,包括以下至少一项:
所述第一数据传输的起始频域位置;
相对于起始频域位置的频率偏移;
所述第一数据传输占用的频域资源。
可选的,所述频域资源信息为基于以下至少一项的频域资源信息:RE,RB,RBG,BWP,CC。
可选的,所述第一传输配置参数为第一CG配置参数,所述第二传输配置参数为第二CG配置参数;所述方法还包括:所述网络设备分别根据N个所述第一CG配置参数以及与每个所述第一CG配置参数关联的第二CG配置参数,接收所述终端发送的数据。
可选的,所述网络设备接收所述终端发送的数据之后,所述方法还包括:所述网络设 备向所述终端发送第二信息,所述第二信息包括以下至少一项:
第一指示信息,用于指示用于所述第一数据传输的所述第一CG配置参数以及与所述第一CG配置参数关联的第二CG配置参数可用或不可用;
第二指示信息,用于指示用于所述第一数据传输的N个第一CG配置参数中的每个第一传输配置参数以及与所述N个第一CG配置参数中的每个第一传输配置参数关联的第二CG传输配置参数可用或不可用;
第三指示信息,用于指示用于所述第一数据传输的CG配置中需要删除或跳过的一个或多个CG配置。
可选的,所述第一传输配置参数为第一SPS配置参数,所述第二传输配置参数为第二SPS配置参数;所述方法还包括:所述网络设备根据所述N个第一SPS配置参数以及每个第一SPS配置参数关联的第二SPS配置参数,向所述终端发送数据。
可选的,所述第一信息还包括第三信息,用于指示用于所述第一数据传输的传输配置中的至少一个需要跳过的传输配置,所述传输配置包括CG配置或SPS配置。
可选的,所述第三信息包括:第四指示信息,用于指示用于所述第一数据传输的传输配置中与第一时间最近的传输配置需要被跳过;或者,需要跳过的传输配置的索引。
可选的,所述网络设备向所述终端发送所述第一信息,包括:所述网络设备在物理下行控制信道PDCCH向所述终端发送下行控制信息DCI,所述DCI中包括所述第一信息;或者,所述网络设备在物理下行共享信道PDSCH向所述终端发送所述第一信息;或者,所述网络设备向所述终端发送下行参考信号,所述下行参考信号携带所述第一信息。
第三方面,提供一种终端,包括处理单元和收发单元;所述收发单元,用于接收网络设备发送的第一信息,所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数;其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为免调度CG配置参数,或者为半持续调度SPS配置参数;所述处理单元,用于根据所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,进行第一数据传输。
第四方面,提供一种网络设备,包括处理单元和收发单元;所述收发单元,用于向终端发送第一信息,所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数;其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为免调度CG配置参数,或者为半持续调度SPS配置参数;其中,所述N个第一传输配置参数中的至少一个第一传输配 置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,用于第一数据传输。
第五方面,提供一种通信装置,包括:处理器、存储器、收发机;所述收发机,在处理器的控制下进行数据的接收和发送;所述存储器,存储计算机指令;所述处理器,用于读取所述计算机指令,执行如上述第一方面中任一项所述的方法。
第六方面,提供一种通信装置,包括:处理器、存储器、收发机;所述收发机,在处理器的控制下进行数据的接收和发送;所述存储器,存储计算机指令;所述处理器,用于读取所述计算机指令,执行如上述第二方面中任一项所述的方法。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如上述第一方面或第二方面中任一项所述的方法。
第八方面,提供一种计算机程序产品,所述计算机程序产品在被计算机调用时,使得所述计算机执行如上述第一方面或第二方面中任一项所述的方法。
本公开的上述实施例中,网络设备可以通过第一信息将传输配置(比如CG配置或SPS配置)中第一传输配置参数发送给终端,使得终端可以根据该第一传输配置参数获得与其关联的至少一个第二传输配置参数,从而根据第一传输配置参数以及与其关联的第二传输配置参数进行第一数据传输,进而可以通过第一信息动态调整传输配置参数,同时还可以节省信令开销。
本公开实施例还提供了一种通信方法、装置及存储介质,用以通过一个DCI同时激活和去激活CG/SPS配置。
第九方面,提供一种通信方法,包括:终端接收网络设备发送的第一信令,所述第一信令中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
可选的,所述方法还包括:所述终端根据所述第一信令进行半持续数据传输。
可选的,所述第一信令,包括以下至少一项:
至少一个去激活半持续传输的标识;
至少一个激活半持续传输的标识;
至少一个激活半持续传输的标识和去激活半持续传输的标识;
激活半持续传输的传输配置参数。
可选的,所述第一信令是基于配置的CS-RNTI加扰的DCI,或者是基于C-RNTI加 扰的DCI。
可选的,所述第一信令为DCI,所述DCI为激活信令或去激活信令。
可选的,所述半持续传输的传输配置包括CG配置或SPS配置。
第十方面,提供一种通信方法,包括:网络设备向终端发送第一信令,所述第一信令中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
可选的,所述第一信令,包括以下至少一项:
至少一个去激活半持续传输的标识;
至少一个激活半持续传输的标识;
至少一个激活半持续传输的标识和去激活半持续传输的标识;
激活半持续传输的传输配置参数。
可选的,所述第一信令是基于配置的CS-RNTI加扰的DCI,或者是基于C-RNTI加扰的DCI。
可选的,所述第一信令为DCI,所述DCI为激活信令或去激活信令。
可选的,所述半持续传输的传输配置包括CG配置或SPS配置。
第十一方面,提供一种终端,包括处理单元和收发单元;所述收发单元,用于接收网络设备发送的第一信令,所述第一信令中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
第十二方面,提供一种网络设备,包括处理单元和收发单元;所述收发单元,用于向终端发送第一信令,所述第一信令中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
第十三方面,提供一种通信装置,包括:处理器、存储器、收发机;所述收发机,在处理器的控制下进行数据的接收和发送;所述存储器,存储计算机指令;所述处理器,用于读取所述计算机指令,执行如上述第九方面中任一项所述的方法。
第十四方面,提供一种通信装置,包括:处理器、存储器、收发机;所述收发机,在处理器的控制下进行数据的接收和发送;所述存储器,存储计算机指令;所述处理器,用于读取所述计算机指令,执行如上述第十方面中任一项所述的方法。
第十五方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如上述第九方面或第十方面中 任一项所述的方法。
第十六方面,提供一种计算机程序产品,所述计算机程序产品在被计算机调用时,使得所述计算机执行如上述第九方面或第十方面中任一项所述的方法。
本公开的上述实施例中,采用激活信令或去激活信令,同时激活和去激活传输配置,可以降低基于多个传输配置或者传输配置下的多个动态参数进行数据传输时发生的碰撞(尤其是大数据传输),从而可以更快的激活和去激活多个半持续传输的传输配置,或半持续传输配置下的多个动态参数,从而减少冲突的半持续的传输。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a、图1b为XR业务特性的分布示意图;
图2为配置多个SPS传输配置以适配XR业务的包抖动和包大小可变的示意图;
图3为通过DCI激活CG/SPS配置的示意图;
图4为本公开实施例中的一种通信系统架构示意图;
图5为本公开实施例提供的一种通信方法的流程示意图;
图6为本公开另外的实施例提供的一种通信方法的流程示意图;
图7为本公开实施例中示例一的流程示意图;
图8为本公开实施例中CG配置下的不同起始位置的偏移关联不同的动态参数的示意图;
图9为本公开实施例中CG配置下不同周期关联不同的动态参数的示意图;
图10为本公开实施例中示例二的流程示意图;
图11为本公开实施例中CG配置下不同的起始频域位置的偏移关联不同的动态参数的示意图;
图12为本公开实施例中示例三的流程示意图;
图13为本公开实施例中示例四的流程示意图;
图14为本公开实施例中采用CS-RNTI加扰的半持续传输的动态参数配置示意图;
图15为本公开实施例中示例五的流程示意图;
图16为本公开实施例中采用C-RNTI加扰的半持续传输跳过指示示意图;
图17为本公开实施例提供的一种终端的结构示意图;
图18为本公开实施例提供的一种网络设备的结构示意图;
图19为本公开实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
以下对本公开实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)本公开实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。
(2)本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
(3)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
(4)本公开的一些实施例中,使用“CG/SPS配置”表示CG配置或半持续调度(Semi-Persist Scheduling,SPS)配置。本公开实施例中,一个免调度的半持续传输配置可以是CG配置或SPS配置。CG配置用于上行传输,SPS配置用于下行传输。对于一个CG配置,可以使用一个索引(index)唯一标识。对于一个SPS配置,可以使用一个索引(index)唯一标识。
一个CG配置内可以包括一个或多个参数(或称为CG配置参数,或动态参数),举例来说,可以包括CG传输周期,时频资源,调制编码机制(Modulation Code Scheme,MCS),时域偏移,频域偏移等。
一个SPS配置内可以包括一个或多个参数(或称为SPS配置参数,或动态参数),举例来说,可以包括SPS传输周期,时频资源,MCS,时域偏移,频域偏移等。
目前对于低时延和高可靠性的传输要求,CG技术可以有效减低传输时延,但仍存在较大可提升空间。
对于XR业务的下行数据流,可以采用截断高斯分布表示数据包的大小和抖动(jitter),对于AR的上行单视频流的建模方式与下行单视频流数据包大小和抖动的建模方式一致。以图1a和图1b为例,其中图1a为XR数据包业务分布示意图,图1b为XR数据包抖动 分布示意图。其中,横坐标为数据包的大小和抖动大小,纵坐标为概率统计。可以看出,相比于超高可靠和超低时延通信(ultra-Reliable Low-Latency Communications,uRLLC)的典型的小数据包传输,XR业务的数据包大小和到达时间间隔都表现为不同的特性,因而需要更加动态的调整数据传输相关参数用来匹配XR的数据包大小的变化和抖动所带来的影响。
目前上行免调度传输方案分为Type 1和Type 2两种:
在Type 1中,物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的传输参数是通过无线资源控制(Radio Resource Configuration,RRC)配置的,根据配置信息可以确定周期性的PUSCH传输机会。当终端上行有新数据到达时,可以在最近的传输机会直接进行PUSCH传输。
在Type 2中,PUSCH的传输参数是通过RRC和物理下行控制信道(Physical Downlink Control Channel,PDCCH)共同配置的,RRC配置周期和偏移、数据速率相关参数(比如MCS)、时频资源等参数,PDCCH激活信令通知配置的Type2激活并同时指示调度信息。只有在收到激活信令之后,终端才能使用对应的PUSCH资源进行上行免调度传输。如果想释放Type2PUSCH资源,可以通过发送PDCCH去激活信令来实现。
对于XR业务,数据包大小、网络拥塞情况不同而导致业务源数据包到达会有不同程度的时延抖动(Jitter),且该时延抖动具有一定的随机性。目前CG技术和SPS技术中,诸如MCS等参数在低时延、高可靠性、高数据传输速率等动态参数的更新,是通过RRC信令配置的,使得XR业务不能适应其数据包大小的变化。
为了克服抖动导致的包达到随机的问题,一种可能的解决方案是配置多个免调度的半持续传输配置(以下简称为CG/SPS配置)。
配置多个CG/SPS配置,对于XR业务并不适用,主要在于:
(1)多个CG/SPS配置支持XR业务的包抖动和包大小可变问题,可能会存在传输配置不够用的情况,比如:
为匹配XR业务包抖动变化范围[-4ms,+4ms],结合对于时延的需求,考虑配置多个CG/SPS配置来匹配可能的包抖动变化,如图2所示,图中不同填充的方格表示不同的数据包。例如,可以考虑每个时隙(slot)配置一个CG/SPS配置;为进一步匹配业务的变化,在每个包抖动的配置下,调整CG/SPS配置的MCS或是时频资源,例如,再配置3个CG/SPS配置,此时,总共需要的最大CG/SPS配置的个数为8*3=24。而CG/SPS最大支持的配置个数为12个,包括Type1的CG配置在内;进一步的,CG/SPS配置的索引(index)由混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的4比特指示,此时不能支持 足够多的CG/SPS配置。
(2)多个CG/SPS配置的激活/去激活的时延和信令开销问题。
现有协议中,对于CG/SPS的激活,一个下行控制信息(Downlink Control Indication,DCI)只能激活一个CG/SPS配置,如果需要激活多个CG/SPS配置,则需要多个DCI指示,导致需要更多的时延和信令开销。
如图3所示,当DCI携带激活信令时,一个DCI只能同时激活一个CG/SPS配置,当需要激活多个CG/SPS传播配置时,需要发送多个DCI;如果每个时隙发送一个激活DCI,则多个CG/SPS配置的激活时间较长;如果每个时隙发送多个激活DCI,则多个CG/SPS配置的激活时间可以减少一部分,但是在一个时隙内对用于激活CG/SPS配置的多个DCI进行盲检,会在一定程度上增加终端的开销。
(3)重激活CG/SPS配置的灵活性问题。
重激活CG/SPS配置,仅仅包括DCI指示的参数部分的重激活,对于周期、MCS、时频资源等参数无法通过DCI重激活,而动态调整诸如周期、MCS、时频资源等参数,对于匹配XR业务的包大小和包抖动,又是非常必要的。
对于一个半持续传输的CG/SPS配置,由于每个XR业务的数据传输周期内数据包大小都是变化的,并且大小差异较大,在一个CG/SPS配置的时间传输范围内,很难匹配这种动态变化,从而使得在一个CG/SPS配置下,CG/SPS的参数动态可调以匹配XR业务的数据包大小动态变化,就变得更加迫切。
基于以上一个或多个问题,本公开实施例提供了一种通信方法及其装置。
本公开的一些实施例中,通过显示指示方式和隐式指示方式相结合的方法,改变CG/SPS配置下的动态参数,从而动态调整数据传输,可以使得数据传输更加匹配XR业务的可变的数据包大小,降低终端/业务的冲突和碰撞。
其中,所述改变CG/SPS配置下的动态参数,是指CG/SPS索引(index)不变的情况下,调整CG/SPS配置的内部参数,例如,数据传输速率相关的参数,更具体的,可以包括MCS、时频资源、CG/SPS传输周期等。
本公开的另一些实施例中,通过一个信令(比如DCI)实现对一个或多个CG/SPS配置的激活以及对另外一个或多个CG/SPS配置的去激活,以节省信令开销。
下面结合附图对本公开实施例进行详细描述。
图4示例性示出了本公开实施例适用的一种网络系统架构。在图4所示出的通信系统中包括网络设备101和终端102,网络设备101可以发送传输调度的相关信息给终端102,终端102可以根据接收到的传输调度的相关信息进行数据传输。
网络设备101是一种为终端提供无线通信功能的设备,用于从终端102接收上行信号,或向终端102发送下行信号。网络设备101包括但不限于:5G中的gNB、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)、传输点(Transmitting and Receiving Point,TRP)、发射点(Transmitting Point,TP)、移动交换中心等。本公开中的基站还可以是未来可能出现的其他通信系统中为终端提供无线通信功能的设备。
终端102是用户侧的一种用于接收或发射信号的实体,用于向网络设备发送上行信号,或从网络设备接收下行信号。终端也可称为UE(User Equipment)。终端102可以向用户提供语音和/或数据连通性的设备。例如,终端可包括具有无线连接功能的手持式设备、车载设备等。目前,终端可以是:手机(Mobile Phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(Mobile Internet Device,MID)、可穿戴设备,虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(Industrial Control)中的无线终端、无人驾驶(Self-Driving)中的无线终端、智能电网(Smart Grid)中的无线终端、运输安全(Transportation Safety)中的无线终端、智慧城市(Smart City)中的无线终端,或智慧家庭(Smart Home)中的无线终端等。
图4仅是一种示例,并不对通信系统的类型以及通信系统内包括的设备的数量、类型等构成限定。本公开实施例描述的网络架构以及业务场景是为了说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
参见图5,为本公开实施例提供的一种通信方法的流程示意图,如图所示,该流程可以包括以下步骤:
S501:网络设备向终端发送第一信息。
所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数。其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数。本公开下文中,“N个第一传输配置参数”表示某个传输配置下的N个第一传输配置参数。以第一CG配置为例,初始的第一CG配置中的时域偏移的取值为2个子帧,第一信息中包括的时域偏移的取值为3个子帧,即,该取值为3个子帧的时域偏移是该第一CG配置下更新后的时域偏移参数。
在一些场景下,所述N个第一传输配置参数,为更新的第一传输配置参数。也就是说,网络设备可以通过第一信息,更新一些传输配置参数的值。
在一种可能的实现方式中,所述第一传输配置参数和所述第二传输配置参数为CG配置参数。例如,第一传输配置参数和第二传输配置参数是同一个CG配置内的不同参数。在另一种可能的实现方式中,所述第一传输配置参数和所述第二传输配置参数为SPS配置参数。例如,第一传输配置参数和第二传输配置参数是同一个SPS配置内的不同参数。
可选的,所述第一传输配置参数可以包括一个参数或多个参数。
在一种可能的实现方式中,所述第一传输配置参数可以包括一个参数或多个参数。所述第一传输配置参数为时域资源信息,或频域资源信息,或时频资源信息。其中,所述时频资源信息包括时域资源信息和频域资源信息。
可选的,所述第一传输配置参数为频域资源信息时,所述时域资源信息可以包括以下至少一项:
第一数据传输的起始时域位置。
所述第一数据传输可以是指终端和网络设备之间的上行传输也可能是下行传输。若第一传输配置参数和第二传输配置参数为CG配置参数,则第一数据传输为上行传输。可选的,该上行传输可以包括一个或多个CG机会(CG occation),在该一个或多个CG occation的时域窗口中,终端向网络设备发送数据。若第一传输配置参数和第二传输配置参数为SPS配置参数,则第一数据传输为下行传输。可选的,该下行传输可以包括一个或多个SPS机会(SPS occation),在该一个或多个SPS occation的时域窗口中,网络设备向终端发送数据。
对于第一数据传输,其起始时域位置表示在该时域起始位置上开始进行第一数据传输。比如对于上行传输,该时域起始位置可以是一个或多个CG occation对应的时域窗口开始的位置,对于下行数据传输,该起始时域位置可以是一个或多个SPS occation对应的时域窗口开始的位置。
可选的,上述时域资源信息(即起始时域位置)可以是基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。例如,上述起始时域位置可以是起始无线帧的帧号,或者是起始子帧的帧号,或者是起始时隙的索引,或者是起始符号的索引。上述起始时域位置也可以是上述信息的组合,例如,上述起始时域位置可以是无线帧的帧号以及该无线帧内的子帧号(表示起始时域位置为该无线帧中的该子帧),或者是无线帧的帧号以及该无线帧内的符号的索引等。以此类推,还可能包括其他组合情况,在此不再一一列举。
相对于第一数据传输的起始时域位置的时间偏移。根据该时间偏移,终端与网络设备 之间可以在第一数据传输的起始时域位置为起点的基础上,在延迟该时间偏移后,开始进行第一数据传输。
可选的,上述时域资源信息(即时间偏移)可以是基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。例如,上述时间偏移可以是符号偏移(比如偏移的符号个数),或者是时隙偏移(比如偏移的时隙个数),或者是子帧偏移(比如偏移的子帧个数),或者是无线帧偏移(比如偏移的无线帧个数)。上述时间偏移位置也可以是上述信息的组合,例如,上述时间偏移可以是子帧偏移以及符号偏移,表示总的时间偏移为该子帧偏移加上该符号偏移。以此类推,还可能包括其他组合情况,在此不再一一列举。
第一数据传输的传输时间长度。
可选的,上述时域资源信息(即传输时间长度)可以是基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。例如,上述传输时间长度可以用符号个数表示,或者用时隙个数表示,或者用子帧个数表示,或者用无线帧表示。
传输周期。
可选的,上述时域资源信息(即传输周期)可以是基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。例如,上述传输周期可以用符号个数表示,或者用时隙个数表示,或者用子帧个数表示,或者用无线帧个数表示。
当然,上述时域资源信息也可以是基于其他时间单元的时域资源信息,本公开实施例对此不作限制。
可选的,所述第一传输配置参数为频域资源信息时,所述频域资源信息可以包括以下至少一项:
第一数据传输的起始频域位置。
可选的,上述时域资源信息(即起始频域位置)可以是基于以下至少一项的频域资源信息:资源单元(Resource Element,RE),资源块(Resource Block,RB),资源块组(Resource Block Group,RBG),部分带宽(Bandwidth Part,BWP),成员载波(Component Carrier,CC)等。例如,上述起始频域位置可以是起始RE的索引,或者是起始RB的索引,或者是起始RBG的索引,或者是起始BWP的索引,或者是起始载波(例如子载波或成员载波)的索引。上述起始频域位置也可以是上述信息的组合,例如,上述起始频域位置可以是RB的索引以及RE的索引,表示起始频域位置为该RB中的该RE。以此类推,还可能包括其他组合情况,在此不再一一列举。
相对于起始频域位置的频率偏移。根据该频率偏移,终端与网络设备之间可以在第一数据传输的起始频率位置为起点的基础上,根据该频率偏移进行偏移后的位置上,开始进 行第一数据传输。
可选的,上述频域资源信息(即频率偏移)可以是基于以下至少一项的频率资源信息:RE,RB,RBG,BWP,CC等。例如,上述频率偏移可以是RE偏移(比如RE个数),或者是RB偏移(比如RB个数),或者是RGB偏移(比如RGB个数),或者是BWP偏移(比如BWP个数),或者是CC偏移(比如CC个数)。上述频率偏移位置也可以是上述信息的组合,例如,上述频率偏移可以是RB个数以及RE个数,表示总的频率偏移为该RB个数加上该RE个数。以此类推,还可能包括其他组合情况,在此不再一一列举。
第一数据传输占用的频域资源。
所述第一数据传输占用的频域资源,可以是第一数据传输占用的总的(所有的)频域资源。
可选的,上述频域资源信息(即占用的频域资源)可以是基于以下至少一项的频率资源信息:RE,RB,RBG,BWP,CC等。例如,上述总的频域资源可以是RE个数,或者是RB个数,或者是RGB个数,或者是BWP个数,或者是CC个数。上述中的频率资源也可以是上述信息的组合,例如,上述频率偏移可以是RB个数以及RE个数,表示总的频域资源为该RB个数加上该RE个数。以此类推,还可能包括其他组合情况,在此不再一一列举。
当然,上述频域资源信息也可以是基于其他频率单元的频域资源信息,本公开实施例对此不作限制。
在一种可能的实现方式中,所述至少一个第二传输配置参数,包括以下至少一项:MCS,冗余版本(Redundancy Version,RV)、发送功率参数,时域资源信息,频域资源信息,时频资源信息。其中,所述时频资源信息包括时域资源信息和频域资源信息。
可选的,MCS可以进一步包括:MCS索引(MCS index)、MCS的调整量(delta MCS)中的至少一项。
可选的,所述时域资源信息,包括以下至少一项:
第一数据传输的起始时域位置;
相对于起始时域位置的时间偏移;
第一数据传输的传输时间长度;
传输周期。
可选的,所述时域资源信息为基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。
可选的,所述频域资源信息,包括以下至少一项:
第一数据传输的起始频域位置;
相对于起始频域位置的频率偏移;
第一数据传输占用的频域资源。
可选的,所述频域资源信息为基于以下至少一项的频域资源信息:RE,RB,RBG,BWP,CC。
下面示例性示出了几种第一传输配置参数以及与其关联的第二传输配置参数的示例。
示例1
第一传输配置参数包括:时间偏移offset1,时间偏移offset2.时间偏移offset3;
第二传输配置参数包括:与时间偏移offset1关联的传输周期、MCS等参数,与时间偏移offset2关联的传输周期、MCS、RV版本、发送功率、时频资源等参数,与时间偏移offset3关联的传输周期、MCS、RV版本、发送功率、时频资源等参数。
示例2
第一传输配置参数包括:传输周期1,传输周期2,传输周期3;
第二传输配置参数包括:与传输周期1关联的时间偏移offset1、MCS等参数,与传输周期2关联的时间偏移offset2、MCS、RV版本、发送功率、时频资源等参数,与传输周期3关联的时间偏移offset3、MCS、RV版本、发送功率、时频资源等参数。
在一种可能的实现方式中,在上述S501中,终端接收网络设备在物理下行控制信道(Physical Downlink Control Channel,PDCCH)发送的DCI,该DCI中包括所述第一信息,可选的,该DCI可以是激活传输配置(比如CG配置或SPS配置)的DCI,也就是说,第一信息(比如第一传输配置参数)可以通过激活传输配置的DCI发送给终端。在另一种可能的实现方式中,在上述S501中,终端接收网络设备在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)发送的所述第一信息,也就是说,第一信息(比如第一传输配置参数)可以通过PDSCH发送给终端。在另一种可能的实现方式中,在上述S501中,终端接收网络设备发送的下行参考信号,所述下行参考信号携带所述第一信息,也就是说,第一信息(比如第一传输配置参数)可以通过下行参考信号发送给终端。可选的,所述参考信号可以包括信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)、定时参考信号(Timing Reference Signal,TRS)、同步信号块(Synchronization Signal Block,SSB)、定位参考信号等,本公开实施例对此不做限制。
以通过DCI发送上述第一CG配置参数为例,通过DCI,网络设备可以向终端指示CG传输位置上的CG配置参数(即动态参数)。比如,网络设备可以在配置的CG的传输位置之前,发送DCI,来指示本次CG传输位置上的CG的动态参数(比如上述的第一CG 配置参数)。可选的,如果终端在CG传输的位置上没有检测到该DCI,则采用初始的CG传输位置上的CG动态参数进行上行数据传输。可选的,该DCI可以携带CG配置的索引。
以通过DCI发送上述第一SPS配置参数为例,通过DCI,网络设备可以向终端指示SPS传输位置上的SPS配置参数(即动态参数)。比如,网络设备可以在配置的SPS的传输位置之前,发送DCI,来指示本次SPS传输位置上的SPS的动态参数(比如上述的第一SPS配置参数)。可选的,如果终端在SPS传输的位置上没有检测到该DCI,则采用初始的SPS传输位置上的SPS动态参数进行上行数据传输。可选的,该DCI可以携带SPS配置的索引。
在一种可能的实现方式中,上述N个第一传输配置参数中的每个第一传输配置参数与第二传输配置参数之间的关联关系,可以是预先配置的或预先定义的。比如说,可以预先在终端和网络设备中配置N个第一传输配置参数中的每个第一传输配置参数与第二传输配置参数之间的关联关系;也可以在协议中定义N个第一传输配置参数中的每个第一传输配置参数与第二传输配置参数之间的关联关系。
可选的,上述第一传输配置参数与第二传输配置参数之间的关联关系,可以是通过RRC信令置的。
通过上述实现方式,可以使得网络设备根据预先配置或预先定义的关联关系,并进一步根据业务特性需求,选择与当前业务需求匹配的第一传输配置参数,并通过第一信息发送给终端,以使得网络设备与终端之间的数据传输与当前业务需求相适配。
在另一种可能的实现方式中,上述N个第一传输配置参数中的每个第一传输配置参数与第二传输配置参数之间的关联关系,是终端上报给网络设备的。示例性的,所述第一信息包括一个第一传输配置参数,所述一个第一传输配置参数是所述终端上报给所述网络设备的M个第一传输配置参数中的一个,所述M为大于或等于N的整数。示例性的,终端接收网络设备发送的第一信息之前,向所述网络设备发送M个第一传输配置参数,以及所述M个第一传输配置参数中每个第一传输配置参数关联的至少一个第二传输配置参数。可选的,该M个第一传输配置参数是终端期望的第一传输配置参数。相应的,网络设备可以从上述M个第一传输配置参数中选择N个(比如根据信道状态等),并发送给该终端,也就是所,网络设备可以确认该N组传输配置参数中的一组或多组,其中一组传输配置参数可以包括一个第一传输配置参数以及与其关联的至少一个第二传输配置参数。
可选的,终端可以根据信道状态确定该终端期望的M个第一传输配置参数,以及所述M个第一传输配置参数中每个第一传输配置参数关联的至少一个第二传输配置参数。可选的,终端可以通过上行信道和下行信道的互易性确定信道状态,比如可以采用以下方式 确定终端期望的传输配置参数(包括第一传输配置参数和第二传输配置参数):
方式1:可以通过下行参考信号获取上行信道的状态,从而估计得到MCS等参数;
方式2:通过DCI调度的PDSCH的MCS参数,获取上行的MCS等参数。
可选的,终端可以通过上行信号向网络设备上报上述参数。可选的,所述上行信号可以包括以下中的至少一项:上行调度请求(Scheduling Request,SR)信号、可以是唤醒信号(Wake-Up Signal,WUS)、随机接入信道(Radom Access Channel,RACH)的前导(preamble)信号、探测参考信号(Sounding Reference Signal,SRS)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)信号、物理上行控制信道(Physical Uplink Control Channel,PUCCH)信号。可选的,在将上述传输配置参数携带在PUSCH中发送的情况下,可以通过媒体接入控制控制单元(Media Access Control-Control Element,MAC-CE)上报。本公开实施例对此不作限制。
通过上述实现方式,终端可以通过上行信号,实现对传输配置参数的动态上报,从而可以使得网络及时根据终端侧期望的传输配置参数及时通过第一信息更新该终端的传输配置参数,以适应终端对数据传输的需要,或者适应业务特性。
S502:终端根据上述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,进行第一数据传输。也就是说,终端可以将上述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,应用于(或用于)第一数据传输。
若所述第一传输配置参数和所述第二传输配置参数为SPS配置参数(具体的,所述第一传输配置参数为第一SPS配置参数,所述第二传输配置参数为第二SPS配置参数),则所述第一数据传输为下行数据传输。在S502中,在网络设备侧,网络设备可以从N个第一SPS配置参数中选择一个目标SPS配置参数(比如根据终端上报的BSR选择,或者根据信道状态等因素选择),并根据选择的目标SPS配置参数以及该目标SPS配置参数关联的第二SPS配置参数关联,基于相应的资源向终端发送数据;在终端侧,终端根据上述N个第一SPS配置参数以及每个第一SPS配置参数关联的第二SPS配置参数,基于相应的资源接收所述网络设备发送的数据。
在一种可能的实现方式中,若第一传输配置参数和第二传输配置参数为CG配置参数(具体的,第一传输配置参数为第一CG配置参数,第二传输参数为第二CG配置参数),则所述第一数据传输为上行数据传输。在S502中,在终端侧,终端从N个第一CG配置参数中选择目标CG配置参数,根据目标CG配置参数获取与所述目标CG配置参数关联的第二CG配置参数,再根据目标CG配置参数以及与目标CG配置参数关联的第二CG 配置参数,向网络设备发送数据。可选的,终端可以根据当前的信道状态、传输块(Transport Block,TB)大小、缓存状态、传输需求等因素,从N个第一CG配置参数中选择目标CG配置参数。可选的,终端可以通过PUSCH向网络设备发送数据。
相应的,在网络设备侧,网络设备可以根据上述N个第一CG配置参数,以及与每个第一CG配置参数关联的第二CG配置参数,基于相应的资源接收终端发送的数据。也就是说,网络设备可以根据N个第一CG配置参数及其关联的第二CG配置参数对应的多个资源,对该多个资源进行预留,在预留的该多个资源上对终端发送的数据进行盲检接收。
可选的,终端可以向网络设备发送缓存状态报告(Buffer Stage Report,BSR)。这样,在网络设备在向终端发送第一信息之前,可以根据终端上报的BSR确定终端的TB大小,从而可以在S502中,根据终端的TB大小,从N个第一CG配置参数中选择一个第一CG配置参数,并根据该第一CG配置参数以及与其关联的第二CG配置参数,接收终端发送的数据,这样,就没有必要对据N个第一CG配置参数及其关联的第二CG配置参数对应的多个资源均进行资源预留,从而可以提高资源利用率。
通过以上流程可以看出,网络设备可以通过第一信息将传输配置(比如CG配置或SPS配置)中的第一传输配置参数发送给终端,使得终端可以根据该第一传输配置参数获得与其关联的至少一个第二传输配置参数,从而将第一传输配置参数以及与其关联的第二传输配置参数应用于第一数据传输,进而可以通过第一信息动态调整传输配置参数,同时还可以节省信令开销。
本公开上述的一些实施例,通过显示指示(即指示第一传输配置参数)结合隐式指示(即根据第一传输配置参数确定与其关联的第二传输配置参数)的方式,以改变CG配置或SPS配置下的动态参数或CG/SPS配置(比如跳过或删除CG/SPS配置),从而调整数据传输速率,使得数据传输更加匹配XR业务的可变的数据包大小的业务特性,降低终端/业务的冲突和碰撞。
在一种可能的实现方式中,在S502之后,所述方法还包括以下步骤:
S503:网络设备向终端发送第二信息。
可选的,所述第一传输为上行传输时,所述第二信息为网络设备对于所述第一数据传输的反馈信息。所述反馈信息可以用于冲突解决。
可选的,所述第二信息可以包括以下至少一项:
第一指示信息,用于指示网络设备发送的第一CG配置参数及其对应的第二CG传输配置参数可用或不可用,所述第一CG配置参数属于第一CG配置。可选的,该第一指示信息为1比特信息。
示例性的,示例性的,网络设备向终端发送的第一信息包括第一CG配置内的第一CG传输配置参数(比如时域偏移)。此种情况下,网络设备可以根据对该终端的数据接收请情况,生成第一指示信息并向终端发送该第一指示信息,以用于指示该第一CG配置下的第一CG传输配置参数(比如时域偏移)及其对应的第二CG配置参数是否可用,比如,如果网络设备根据该第一CG传输配置参数以及与其对应的第二CG传输配置参数所对应的资源,接收到该终端发送的数据,则生成的指示信息的取值为0,表示可用,否则,生成的指示信息的取值为1,表示不可用。反之亦然。
第二指示信息,用于指示所述N个第一CG配置参数中的每个第一CG传输配置参数及其对应的第二CG配置参数是否可用,该N个第一CG配置参数属于同一CG配置。可选的,该第二指示信息为N比特信息,其中每个比特对应上述N个第一传输配置参数中的一个。
示例性的,网络设备向终端发送的第一信息包括第一CG配置内的N个第一CG传输配置参数。此种情况下,网络设备可以根据对该终端的数据接收情况,生成第二指示信息并向终端发送该第二指示信息,以用于指示该第一CG配置下的N个第一CG传输配置参数及其对应的第二CG配置参数是否可用,比如,如果网络设备根据某个第一CG传输配置参数以及与其对应的第二CG传输配置参数所对应的资源,接收到该终端发送的数据,则生成N个比特信息,并将其中与该第一CG传输配置参数对应的比特设置为0,表示对应的第一CG传输配置参数和第二CG传输配置参数可用,其他比特设置为1。反之亦然。
第三指示信息,用于指示一个或多个需要删除或跳过的CG配置,比如该第三指示信息可以是该一个或多个需要删除或跳过的CG配置的索引。可选的,该第三指示信息可以是多个比特指示信息。
示例性的,网络设备可以基于第一数据传输的情况(即对该终端发送的数据的接收情况),确定应用于第一数据传输的一个或多个CG配置所对应的时频资源发生较多的数据传输碰撞情况,因此可以确定跳过或删除其中的一个或多个CG配置,以降低或避免碰撞的发生。例如,网络设备确定第一CG配置和第二CG配置对应的时频资源上发生的碰撞较多,则可以确定删除或跳过其中的一个CG配置(比如删除或跳过第二CG配置)。
其中,跳过一个CG配置,是指在本次第一数据传输过程中,不使用第一CG配置,或不使用第一CG配置下的传输配置参数(可以使用第一CG配置下的初始的传输配置参数,所述初始的传输配置参数可以是指通过RRC信令配置的CG配置参数)。
在一种可能的实现方式中,网络设备发送的第一信息还包括第三信息,所述第三信息用于指示用于所述第一数据传输的传输配置中需要被跳过的一个或多个传输配置。其中, 所述传输配置包括CG配置或SPS配置。相应的,在终端侧,终端可以根据该第三信息,在第一数据传输过程中不使用相应的一个或多个传输配置下的传输配置参数,或者在第一数据传输过程中不使用相应的一个或多个传输配置下的传输配置参数(可以使用该一个或多个传输配置下的初始的传输配置参数,所述初始的传输配置参数可以是指通过RRC信令配置的传输配置参数)。
可选的,在网络侧,网络设备可以根据对该终端发送的数据的接收情况,若确定一个或多个传输配置对应的时频资源上发生较多碰撞,则可以确定在第一数据传输过程中跳过该一个或多个传输配置。
可选的,所述第三信息包括以下中的一项:
第四指示信息,用于指示用于所述第一数据传输的传输配置中与第一时间最近的传输配置需要被跳过。可选的,该第四指示信息可以是1比特信息。可选的,所述第一时间为当前时间。
被跳过的传输配置的索引。
参见图6,为本公开实施例提供的另一种通信方法的流程示意图,如图所示,该流程可以包括以下步骤:
S601:网络设备向终端发送第一信令。
可选的,所述第一信令为DCI。可选的,所述DCI中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
可选的,所述传输配置包括CG配置或SPS配置。
可选的,网络设备可以根据数据接收情况,确定需要激活和/或去激活的传输配置,从而可以降低多个传输配置下的数据传输的碰撞(尤其是大数据传输)。同时,在一个DCI中携带激活指示和去激活指示,可以更快的激活或去激活多个传输配置,或激活或去激活传输配置下的多个动态参数,从而减少的发生。
可选的,所述DCI为半持续传输的激活信令或半持续传输的去激活信令。
可选的,所述第一信令(比如激活信令)中,可以包括以下至少一项:
至少一个去激活半持续传输的标识;
至少一个激活半持续传输的标识;
至少一个激活半持续传输的标识和去激活半持续传输的标识(此时去激活和激活的半持续传输的标识相同);
激活半持续传输的配置(所述配置同前所述,比如包括时频资源、MCS、RV版本、 传输周期等)。
可选的,所述激活信令,可以包括动态信令。所述动态信令,可以是基于配置的调度无线网络临时标识(Configured Scheduling Radio Network Temporary Identifier,CS-RNTI)加扰的DCI,或者可以是基于小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI)加扰的DCI。
可选的,所述DCI的比特域指示上述激活信令中的至少一项。
进一步的,上述流程还可以包括以下步骤:
S602:终端根据该第一信令进行半持续数据传输。
该步骤中,终端可以根据激活指示信息激活相应的至少一个传输配置,并根据所述去激活指示信息去激活相应的至少一个传输配置。
S602中,激活一个传输配置,包括终端将所述激活指示信息激活的至少一个传输配置用于第一数据传输;去激活一个传输配置,包括放弃使用去激活指示信息指示的至少一个传输配置进行数据传输。
示例性的,终端根据接收的激活指示信息,在相同的时域位置上,按照指示的至少一个激活的半持续调度的半持续传输的时域位置,在该时域位置上进行数据传输,并根据接收的去激活指示信息,在相应的时域位置上,不再发送数据或监测数据传输。
通过上述流程可以看出,采用激活信令或去激活信令,同时激活和去激活传输配置,可以降低基于多个传输配置或者传输配置下的多个动态参数进行数据传输时发生的碰撞(尤其是大数据传输),从而可以更快的激活和去激活多个半持续传输的传输配置,或半持续传输配置下的多个动态参数,从而减少冲突的半持续的传输。对于XR业务,采用本公开的上述流程可以适配XR的数据包大小和包到达时间动态可变的特性,并可以节省信令开销。
下面结合几个示例对本公开的上述实施例进行详细描述。
示例一:该示例是上述图5所示流程的一个示例。
参见图7,为本公开实施例中示例一的流程示意图,该流程可以包括以下步骤:
S701:基站通过RRC信令向终端配置半持续传输的传输配置(CG/SPS配置),以及半持续传输的传输配置下的动态参数。
基站配置多个半持续传输的传输配置,所述半持续传输包括下行的SPS传输和/或上行的CG传输。所述半持续传输的传输配置包括CG配置和/或SPS配置。所述半持续传输的传输配置包括传输所需的全部配置参数。
对于一个传输配置(比如GP配置或SPS配置),其所包括的半持续传输的动态参数, 可以包括以下至少一项:调制编码机制表格标识,MCS,传输次数,RV版本号,周期,功控参数(PO)和alpha参数集合索引,时频资源配置,跳频标识,新数据指示符(New Data Indication)指示,时域起始位置的时间偏移,传输的持续时间等。
其中,所述调制编码机制表格,包括MCS表格索引号,MCS索引号,调制阶数,数据传输速率,编码率中的至少一项参数;MCS是指调制编码方式,可以包括MCS指示(index),MCS相对于参考值的偏置值,所述参考值,包括以下至少一项:参考的MCS值,参考点的MCS值,所述参考点,可以包括时域位置,频域位置,半持续传输配置。不同的调制编码机制表格包括不同的至少一项参数的组合;所述传输次数,表示在所述周期内的数据传输的总的次数;所述RV版本号,表示数据传输的传输块的冗余版本的编号,包括,0,1,2,3;所述周期,表示在该时间范围内,所述终端可以进行免调度;所述功控参数PO和alpha参数集合索引,为一组路损补偿参数PO和调整因子alpha的组合的唯一索引。
对于一个半持续传输的传输配置下的动态参数,其与待传输的数据包属性相关联。不同的动态参数关联了不同的数据包属性。所述不同的数据包属性,包括以下至少一项:数据包的大小,数据包的服务质量(Quality of Service,QoS)需求,其中,所述数据包的QoS需求包括传输速率、可靠性、时延中的至少一项。示例的,若数据包满足第一门限,则可以配置为半持续的第一动态参数组;若数据包满足第二门限,可以配置为半持续的第二动态参数组;若数据包满足第三门限,可以配置为半持续的第三动态参数组。
S702:基站向终端发送第一信息。所述第一信息包括半持续传输的传输配置下的至少一个时域位置。第一信息的相关说明,可参见前述实施例。
可选的,基站可以通过第一信息为终端配置半持续传输的时域位置,比如包括以下至少一项:半持续传输的起始时域位置,相对于起始时域位置的时间偏移,传输的持续时间,半持续传输的周期等。其中,所述半持续传输的时域位置,可以包括至少一个时域位置,比如包括以下至少一项:至少一个半持续传输的起始时域位置,至少一个相对于起始时域位置的间偏移,至少一个传输持续时间,至少一个半持续传输的周期。可选的,基站配置的半持续传输的时域位置,可以是基于以下时间单元的参数:符号,时隙,子帧,无线帧。
基站配置的半持续传输的动态参数,可以包括至少一组动态参数。不同的动态参数组至少包含一项不同的动态参数。不同的半持续传输的动态参数关联不同的半持续传输的时域资源位置,即不同的半持续传输的资源的位置,从而实现了隐式指示不同的半持续传输的动态参数。
以CG配置为例,如图8所示,一个CG配置下可以配置多个时隙起始位置的偏移, 从而在每个CG occasion的时域位置上,配置了多个传输的起始位置。不同的起始位置关联了该CG配置的不同的动态参数,例如:offse1关联动态参数1,offset2关联动态参数2,offset3关联动态参数3。
以CG配置为例,如图9所示,一个CG配置下可以配置多个时域周期,从而在每个CG occasion的传输持续时间内,配置了多个传输的起始位置。不同的传输周期关联了该CG配置的不同的动态参数,例如:周期1关联动态参数1,周期2关联动态参数2,周期3关联动态参数3。
可选的,基站可以通过以下方式配置半持续传输的时域位置,比如包括动态配置,所述动态配置包括发送DCI。
可选的,对于终端而言,可能同时存在多个激活的半持续传输配置。
S703:终端根据S702中指示的时域位置以及与其关联的动态参数,进行数据传输。
可选的,终端根据S702中指示的不同的时域位置确定一个时域位置,并确定与该时域位置关联的半持续传输的动态参数,形成一组动态参数,根据该组动态参数进行数据传输。
可选的,所述数据传输可以包括:
在下行方向上,终端在S702中基站配置的时域位置上,接收PDSCH。示例性的,终端可以在不同的时域位置上监测解调参考信号(Demodulation Reference Signal,DMRS),或是监测PDSCH,从而接收PDSCH。终端根据接收到的PDSCH以及与该时域位置关联的动态参数,对数据进行解调解码。
在上行方向上,终端在确定出的一组CG动态参数中的时域位置上发送PUSCH。具体的,终端根据获取的数据包的门限配置以及CG动态参数的关联关系,在动态参数关联的时域位置上,发送PUSCH。
示例二:该示例是上述图5所示流程的一个示例。
参见图10,为本公开实施例中示例二的流程示意图,该流程可以包括以下步骤:
S1001:基站通过RRC信令向终端配置半持续传输的传输配置(CG/SPS配置),以及半持续传输的传输配置下的动态参数。具体实现方式可以参见示例一中的相关描述。
S1002:基站向终端发送第一信息。所述第一信息包括半持续传输的传输配置下的至少一个频域位置。
可选的,基站可以通过第一信息为终端配置半持续传输的频域位置,比如包括以下至少一项:半持续传输的起始频域位置,相对于起始频域位置的频率偏移,传输占用的频域资源。其中,所述半持续传输的起始频域位置,包括至少一个频域位置,比如包括以下至 少一项:至少一个半持续传输的起始频域位置,至少一个相对于起始频域位置的频率偏移,至少一个传输占用的频域资源。可选的,基站配置半持续传输的频域位置,可以是基于以下频率单元的参数:RE,RB,RBG,BWP,CC。
基站配置的半持续传输的动态参数,可以包括至少一组动态参数。不同的动态参数组至少包含一项不同的动态参数。不同的半持续传输的动态参数关联不同的半持续传输的频域资源位置,即不同的半持续传输的资源的位置,从而实现了隐式指示不同的半持续传输的动态参数。
以CP配置为例,如图11所示,一个CG配置下可以配置多个频域起始位置的偏移,从而在每个CG occasion的频域位置上,配置了多个传输的起始频域位置。不同的频域起始位置关联了该CG配置的不同的动态参数,例如:起始RB index1关联动态参数1,起始RB index2关联动态参数2,起始RB index3关联动态参数3。
可选的,基站可以通过以下方式配置半持续传输的频域位置,比如包括动态配置,所述动态配置包括发送DCI。
可选的,对于终端而言,可能同时存在多个激活的半持续传输配置。
S1003:终端根据S1002中指示的频域位置以及与其关联的动态参数,进行数据传输。
可选的,终端根据S1002中指示的不同的频域位置确定一个频域位置,并确定与该频域位置关联的半持续传输的动态参数,形成一组动态参数,根据该组动态参数进行数据传输。
可选的,所述数据传输可以包括:
在下行方向上,终端在S1002中基站配置的频域位置上接收PDSCH。示例性的,终端可以在不同的频域位置上监测DMRS,或是监测PDSCH,从而接收PDSCH。终端根据接收的PDSCH以及与该频域位置关联的动态参数,对数据进行解调解码。
在上行方向上,终端在确定出的一组CG动态参数中的频域位置上发送PUSCH。具体的,终端根据获取的数据包的门限配置和CG动态参数的关联关系,在动态参数关联的频域位置上,在CG配置的传输时间位置上,发送PUSCH。
示例三:该示例是上述图5所示流程的一个示例。
参见图12,为本公开实施例中示例三的流程示意图,该流程可以包括以下步骤:
S1201:基站通过RRC信令向终端配置半持续传输的传输配置(CG/SPS配置),以及半持续传输的传输配置下的动态参数。具体实现方式可以参见示例一中的相关描述。
S1202:基站向终端发送第一信息。所述第一信息包括半持续传输的传输配置下的至少一个时频位置。
可选的,基站可以通过第一信息为终端配置半持续传输的时频位置,比如包括以下至少一项:半持续传输的起始频域位置,相对于起始的频域位置的时间偏移,传输占用的频域资源,半持续传输的起始时域位置,相对于起始时域位置的时间偏移,传输的持续时间,半持续传输的周期。
其中,半持续传输的时频位置,可以包括至少一个时域位置和频域位置,比如包括一下至少一项:至少一个半持续传输的起始时域位置,至少一个相对于起始时域位置的时间偏移,至少一个传输的持续时间,至少一个半持续传输的周期,至少一个半持续传输的起始频域位置,至少一个相对于起始频域位置的频率偏移,至少一个传输占用的频域资源。
可选的,基站配置半持续传输的频域位置,可以是基于以下频率单元的参数:RE,RB,RBG,BWP,CC。
可选的,基站配置的半持续传输的时域位置,可以是基于以下时间单元的参数:符号,时隙,子帧,无线帧。
基站配置的半持续传输的动态参数,可以包括至少一组动态参数。不同的动态参数组至少包含一项不同的动态参数。不同的半持续传输的动态参数关联不同的半持续传输的时频资源位置,即不同的半持续传输的资源的位置,从而实现了隐式指示不同的半持续传输的动态参数。
可选的,基站可以通过以下方式配置半持续传输的时频位置,比如包括动态配置,所述动态配置包括发送DCI。
可选的,对于终端而言,可能同时存在多个激活的半持续传输配置。
S1203:终端根据S1202中指示的时频位置以及与其关联的动态参数,进行数据传输。
可选的,终端根据S1202中指示的不同的时频位置确定一个时频位置,并确定与该频域位置关联的半持续传输的动态参数,形成一组动态参数,根据该组动态参数进行数据传输。
可选的,所述数据传输可以包括:
在下行方向上,终端在S1002中基站配置的时频位置上接收PDSCH。示例性的,终端可以在不同的频域位置和时域位置上监测DMRS,或是监测PDSCH,从而接收PDSCH。终端根据接收的PDSCH以及与该频域位置和时域位置关联的动态参数,对数据进行解调解码。
在上行方向上,终端在确定出的一组CG动态参数中的时频位置上发送PUSCH。具体的,终端根据获取的数据包的门限配置和CG动态参数的关联关系,在动态参数关联的时频位置上,发送PUSCH。
示例四:该示例是上述图5所示流程的一个示例。
参见图13,为本公开实施例中示例四的流程示意图,该流程可以包括以下步骤:
S1301:基站通过RRC信令向终端配置半持续传输的传输配置(CG/SPS配置),以及半持续传输的传输配置下的动态参数。具体实现方式可以参见示例一、二或三中的相关描述。
S1302:终端上报半持续传输的动态参数。
可选的,终端上报的半持续传输的动态参数为该终端期望的动态参数。
以时频资源位置为例,可选的,终端可以根据待传输的数据包的大小、信道传输条件等,确定其期望的半持续传输的动态参数。示例性的,可以采用以下方式获取半持续传输的时频资源的位置:
方式1:根据上行信道和下行信道的互易性,通过下行参考信号获取上行信道的状态,从而估计MCS;
方式2:通过下行DCI调度的PDSCH的MCS参数,获取上行的MCS参数。
可选的,终端可以通过上行信号上报期望的半持续传输的动态参数,比如上报的动态参数可以包括以下至少一项:半持续传输的一个或多个动态参数(该一个或多个动态参数可以是由基站通过RRC信令配置的,也可以是由终端确定的),半持续传输的时域和/或频域资源位置,上述一个或多个动态参数与半持续传输的时域和/或频域资源位置之间的关联关系,半持续传输的时域和/或频域关联的动态参数。
可选的,所述上行信号,可以包括以下至少一项:SR信号,WUS信号,RACH的preamble信号,SRS信号,PUSCH信号,PUCCH信号。
S1303:基站向终端发送第一信息。所述第一信息包括半持续传输的传输配置下的至少一个动态参数。该动态参数可以是S1302中终端上报的动态参数中的一个或多个。
可选的,基站可以根据信道状态等,从终端上报的动态参数中选择一个或多个动态参数,并通过第一信息将该一个或多个动态参数发送给终端。可选的,对于该一个或多个动态参数中的某个动态参数,基站还可以发送是否采用该动态参数的指示,和/或,该动态参数是否引起冲突的指示。
其他相关描述可以参见图7中的相关步骤。
S1304:终端根据S1303中指示的动态参数以及与其关联的动态参数,进行数据传输。具体实现方式可以参见示例一、二或三中的相关步骤。
示例五:该示例是上述图5所示流程的一个示例。
示例五的流程基本与示例一。示例二或示例三的流程相同。图14示例性示出了采用 示例五的一种动态参数配置示意图。如图所示,基站配置第一CG配置,所述第一CG配置包含至少一项动态参数,例如,CG-1动态配置参数1,CG-1动态配置参数2,CG-1动态配置参数3。
可选的,基站向终端发送的动态DCI(其中包括第一信息)可以采用CS-RNTI加扰。
在CG传输的第一个传输位置,基站发送动态DCI以指示终端在该传输位置上采用CG-1动态配置参数1进行数据传输;在CG传输的第二个传输位置,基站发送动态DCI以指示终端在该传输位置上采用CG-1动态配置参数2进行数据传输;在CG传输的第三个传输位置上,基站发送动态DCI以指示终端在该传输位置上采用CG-1动态配置参数3进行数据传输。
示例六:该示例是上述图5所示流程的一个示例。
参见图15,为本公开实施例中示例六的流程示意图,该流程可以包括以下步骤:
S1501:基站通过RRC信令向终端配置半持续传输的传输配置(CG/SPS配置),以及半持续传输的传输配置下的动态参数。具体实现方式可以参见示例一、二或三中的相关描述。
S1502:基站向终端发送第一信息。所述第一信息包括第三指示信息,用于指示应用于第一数据传输的传输配置(包括CG传输配置和/或SPS传输配置)中的至少一个需要被跳过的传输配置。
可选的,基站可以通过发送的DCI来指示本次半持续传输位置上是否跳过本次半持续传输。
可选的,第一信息中可以通过以下信息中的至少一项:
1比特指示信息,用于指示是否跳过本次半持续传输的位置上的半持续传输配置;
多个比特指示信息,用于指示需要跳过的本次半持续传输的位置上的半持续传输配置的索引(index);
多个比特指示信息,用于指示本半持续传输的时间位置上的一个或多个动态参数(即一个或多个上述第一传输配置参数)。
以CG配置为例,如图16所示,基站配置第一CG配置1,所述第一CG配置1包含至少一个传输位置。基站发送DCI用以指示第一个传输位置上跳过采用CG配置1的动态参数进行数据传输,在第二个传输位置上跳过采用CG配置1的动态参数进行数据传输,在第三个传输位置上,采用CG配置1的动态参数进行数据传输。
S1503:终端根据S1502中的指示进行数据传输。
可选的,如果终端收到S1502中的第三指示信息,且该第三指示信息用于指示跳过本 次半持续传输的位置上最近的半持续传输配置,则终端按照该指示,在距离当前半持续传输的位置最近的半持续传输配置对应的时域位置上,基于RRC配置的动态参数进行数据传输。如果终端收到S1502中的第三指示信息,且该第三指示信息用于指示不跳过本次半持续传输的位置上最近的半持续传输配置,或者终端没有收到该第三信息,则终端按照S1502中指示的动态参数进行数据传输。
可选的,如果终端收到S1502中的第三指示信息,且该第三指示信息用于指示跳过本次半持续传输的位置上的一个或多个半持续传输配置,则终端按照该指示,在该半持续传输的位置上,基于RRC配置的动态参数进行数据传输。如果终端收到S1502中的第三指示信息,且该第三指示信息用于指示不跳过本次半持续传输的位置上的一个或多个半持续传输配置,或者终端没有收到该第三信息,则终端按照S1502中指示的动态参数进行数据传输。
根据以上一个或多个实施例或不同实施例的组合,可以解决在XR业务特性下,通过隐式或显式动态指示动态参数(即半持续传输的传输配置参数),使得动态参数可以与XR的数据包大小和包到达时间相匹配,进而可以满足XR业务对于时延、可靠性、数据传输速率之间的灵活的需求。
基于相同的技术构思,本公开实施例还提供了一种终端。该终端可以实现上述实施例中终端侧的功能。
图17示例性示出了本公开实施例提供的一种终端,该终端可包括:处理单元1701、收发单元1702。
在一种实现方式中,收发单元1702,用于接收网络设备发送的第一信息,所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数;其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为CG配置参数,或者为SPS配置参数。处理单元1701,用于根据所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,进行第一数据传输。
在一种实现方式中,所述N个第一传输配置参数中的每个第一传输配置参数与第二传输配置参数之间的关联关系,是预先配置的或预定义的。
在一种实现方式中,所述第一信息包括一个第一传输配置参数,所述一个第一传输配置参数是所述收发单元1702上报给所述网络设备的M个第一传输配置参数中的一个,所述M为大于或等于N的整数;
所述收发单元1702接收网络设备发送的第一信息之前,所述收发单元1702还用于:
向所述网络设备发送M个第一传输配置参数,以及所述M个第一传输配置参数中每个第一传输配置参数关联的至少一个第二传输配置参数。
在一种实现方式中,所述第一传输配置参数为时域资源信息,或频域资源信息,或时频资源信息;其中,所述时频资源信息包括时域资源信息和频域资源信息。
在一种实现方式中,所述至少一个第二传输配置参数,包括以下至少一项:调制编码机制MCS,冗余版本,发送功率参数,时域资源信息,频域资源信息,时频资源信息;其中,所述时频资源信息包括时域资源信息和频域资源信息。
在一种实现方式中,所述时域资源信息,包括以下至少一项:
所述第一数据传输的起始时域位置;
相对于起始时域位置的时间偏移;
所述第一数据传输的传输时间长度;
传输周期。
在一种实现方式中,所述时域资源信息为基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。
在一种实现方式中,所述频域资源信息,包括以下至少一项:
所述第一数据传输的起始频域位置;
相对于起始频域位置的频率偏移;
所述第一数据传输占用的频域资源。
在一种实现方式中,所述频域资源信息为基于以下至少一项的频域资源信息:资源单元RE,资源块RB,资源块组RBG,部分带宽BWP,成员载波CC。
在一种实现方式中,所述第一传输配置参数为第一CG配置参数,所述第二传输配置参数为第二CG配置参数;
所述处理单元1701,具体用于从所述N个第一CG配置参数中选择目标CG配置参数;
根据所述目标CG配置参数获取与所述目标CG配置参数关联的第二CG配置参数;
根据所述目标CG配置参数以及与所述目标CG配置参数关联的第二CG配置参数,向所述网络设备发送数据。
在一种实现方式中,所述第一数据传输之后,所述处理单元1701,还用于接收所述网络设备发送的第二信息,所述第二信息包括以下至少一项:
第一指示信息,用于指示用于所述第一数据传输的所述第一CG配置参数以及与所述第一CG配置参数关联的第二CG配置参数可用或不可用;
第二指示信息,用于指示用于所述第一数据传输的N个第一CG配置参数中的每个第一传输配置参数以及与所述N个第一CG配置参数中的每个第一传输配置参数关联的第二CG传输配置参数可用或不可用;
第三指示信息,用于指示用于所述第一数据传输的CG配置中需要删除或跳过的一个或多个CG配置。
在一种实现方式中,所述第一传输配置参数为第一SPS配置参数,所述第二传输配置参数为第二SPS配置参数;
所述处理单元1701,具体用于根据所述N个第一SPS配置参数以及与所述N个第一SPS配置参数中每个第一SPS配置参数关联的第二SPS配置参数,接收所述网络设备发送的数据。
在一种实现方式中,所述第一信息还包括第三信息,所述第三信息用于指示用于所述第一数据传输的传输配置中的至少一个需要跳过的传输配置,所述传输配置包括CG配置或SPS配置;
所述处理单元1701,用于不使用所述至少一个需要跳过的传输配置进行所述第一数据传输,或者在第一数据传输过程中不使用所述至少一个需要跳过的传输配置下的传输配置参数。
在一种实现方式中,所述第三信息包括:
第四指示信息,用于指示用于所述第一数据传输的传输配置中与第一时间最近的传输配置需要跳过;或者
需要跳过的传输配置的索引。
在一种实现方式中,所述收发单元1702,具体用于:
接收所述网络设备在物理下行控制信道PDCCH发送的下行控制信息DCI,所述DCI中包括所述第一信息;或者
接收所述网络设备在物理下行共享信道PDSCH发送的所述第一信息;或者
接收所述网络设备发送的下行参考信号,所述下行参考信号携带所述第一信息。
在另一种可能的实现方式中,收发单元1702,用于接收网络设备发送的第一信令,所述第一信令中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
在一种实现方式中,所述处理单元1701,还用于根据所述第一信令进行半持续数据传输。
在一种实现方式中,所述第一信令,包括以下至少一项:
至少一个去激活半持续传输的标识;
至少一个激活半持续传输的标识;
至少一个激活半持续传输的标识和去激活半持续传输的标识;
激活半持续传输的传输配置参数。
在一种实现方式中,所述第一信令是基于配置的调度无线网络临时标识CS-RNTI加扰的DCI,或者是基于小区无线网络临时标识C-RNTI加扰的DCI。
在一种实现方式中,所述第一信令为下行控制信息DCI,所述DCI为激活信令或去激活信令。
在一种实现方式中,所述半持续传输的传输配置包括免调度CG配置或半持续调度SPS配置。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例中终端所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的技术构思,本公开实施例还提供了一种网络设备(如基站)。该网络设备可以实现上述实施例中网络设备侧的功能。
图18示例性示出了本公开实施例提供的一种网络设备,该网络设备可包括:处理单元1801、收发单元1802。
在一种实现方式中,收发单元1802,用于向终端发送第一信息,所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数;其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为CG配置参数,或者为SPS配置参数。其中,所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,用于第一数据传输。
在一种实现方式中,所述N个第一传输配置参数中的每个第一传输配置参数与第二传输配置参数之间的关联关系,是预先配置的或预先定义的。
在一种实现方式中,所述第一信息包括一个第一传输配置参数,所述一个第一传输配置参数是所述收发单元1802上报给所述网络设备的M个第一传输配置参数中的一个,所述M为大于或等于N的整数;
所述收发单元1802向所述终端发送所述第一信息之前,所述收发单元1802还用于:
接收所述终端发送M个第一传输配置参数,以及所述M个第一传输配置参数中每个 第一传输配置参数关联的至少一个第二传输配置参数。
在一种实现方式中,所述第一传输配置参数为时域资源信息,或频域资源信息,或时频资源信息;其中,所述时频资源信息包括时域资源信息和频域资源信息。
在一种实现方式中,所述至少一个第二传输配置参数,包括以下至少一项:调制编码机制MCS,冗余版本,发送功率参数,时域资源信息,频域资源信息,时频资源信息,所述时频资源信息包括时域资源信息和频域资源信息。
在一种实现方式中,所述时域资源信息,包括以下至少一项:
所述第一数据传输的起始时域位置;
相对于起始时域位置的时间偏移;
所述第一数据传输的传输时间长度;
传输周期。
在一种实现方式中,所述时域资源信息为基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。
在一种实现方式中,所述频域资源信息,包括以下至少一项:
所述第一数据传输的起始频域位置;
相对于起始频域位置的频率偏移;
所述第一数据传输占用的频域资源。
在一种实现方式中,所述频域资源信息为基于以下至少一项的频域资源信息:资源单元RE,资源块RB,资源块组RBG,部分带宽BWP,成员载波CC。
在一种实现方式中,所述第一传输配置参数为第一CG配置参数,所述第二传输配置参数为第二CG配置参数;
所述收发单元1802还用于,分别根据N个所述第一CG配置参数以及与每个所述第一CG配置参数关联的第二CG配置参数,接收所述终端发送的数据。
在一种实现方式中,所述收发单元1802接收所述终端发送的数据之后,所述收发单元1802还用于:
向所述终端发送第二信息,所述第二信息包括以下至少一项:
第一指示信息,用于指示用于所述第一数据传输的所述第一CG配置参数以及与所述第一CG配置参数关联的第二CG配置参数可用或不可用;
第二指示信息,用于指示用于所述第一数据传输的N个第一CG配置参数中的每个第一传输配置参数以及与所述N个第一CG配置参数中的每个第一传输配置参数关联的第二CG传输配置参数可用或不可用;
第三指示信息,用于指示用于所述第一数据传输的CG配置中需要删除或跳过的一个或多个CG配置。
在一种实现方式中,所述第一传输配置参数为第一SPS配置参数,所述第二传输配置参数为第二SPS配置参数;
所述收发单元1802还用于根据所述N个第一SPS配置参数以及每个第一SPS配置参数关联的第二SPS配置参数,向所述终端发送数据。
在一种实现方式中,所述第一信息还包括第三信息,用于指示用于所述第一数据传输的传输配置中的至少一个需要跳过的传输配置,所述传输配置包括CG配置或SPS配置。
在一种实现方式中,所述第三信息包括:
第四指示信息,用于指示用于所述第一数据传输的传输配置中与第一时间最近的传输配置需要被跳过;或者
需要跳过的传输配置的索引。
在一种实现方式中,所述收发单元,具体用于:
在物理下行控制信道PDCCH向所述终端发送下行控制信息DCI,所述DCI中包括所述第一信息;或者
在物理下行共享信道PDSCH向所述终端发送所述第一信息;或者
向所述终端发送下行参考信号,所述下行参考信号携带所述第一信息。
在另一种可能的实现方式中,收发单元1802,用于向终端发送第一信令,所述第一信令中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
在一种实现方式中,所述第一信令为下行控制信息DCI,所述DCI为激活信令或去激活信令。
在一种实现方式中,所述第一信令,包括以下至少一项:
至少一个去激活半持续传输的标识;
至少一个激活半持续传输的标识;
至少一个激活半持续传输的标识和去激活半持续传输的标识;
激活半持续传输的传输配置参数。
在一种实现方式中,所述第一信令是基于配置的调度无线网络临时标识CS-RNTI加扰的DCI,或者是基于小区无线网络临时标识C-RNTI加扰的DCI。
在一种实现方式中,所述半持续传输的传输配置包括面调度CG配置或半持续调度 SPS配置。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述方法实施例中网络设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的技术构思,本公开实施例还提供了一种通信装置,可实现前述实施例中相应设备的功能。
图19示例性示出了本公开实施例中的通信装置的结构示意图。如图所示,该通信装置可包括:处理器1901、存储器1902、收发机1903以及总线接口1904。
处理器1901负责管理总线架构和通常的处理,存储器1902可以存储处理器1901在执行操作时所使用的数据。收发机1903用于在处理器1901的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1901代表的一个或多个处理器和存储器1902代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1901负责管理总线架构和通常的处理,存储器1902可以存储处理器1901在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器1901中,或者由处理器1901实现。在实现过程中,信号处理流程的各步骤可以通过处理器1901中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1901可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1902,处理器1901读取存储器1902中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1901,用于读取存储器1902中的计算机指令并执行接收网络设备发送的第一信息,所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数;其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为免调度CG配置参数,或者为半持续调度SPS配置参数;根据所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,进行第一数据传输。
可选的,所述N个第一传输配置参数中的每个第一传输配置参数与第二传输配置参数之间的关联关系,是预先配置的或预定义的。
可选的,所述第一信息包括一个第一传输配置参数,所述一个第一传输配置参数是所述终端上报给所述网络设备的M个第一传输配置参数中的一个,所述M为大于或等于N的整数;
所述处理器1901执行接收网络设备发送的第一信息之前,所述处理器1901还被配置为执行:
向所述网络设备发送M个第一传输配置参数,以及所述M个第一传输配置参数中每个第一传输配置参数关联的至少一个第二传输配置参数。
可选的,所述第一传输配置参数为时域资源信息,或频域资源信息,或时频资源信息;其中,所述时频资源信息包括时域资源信息和频域资源信息。
可选的,所述至少一个第二传输配置参数,包括以下至少一项:调制编码机制MCS,冗余版本,发送功率参数,时域资源信息,频域资源信息,时频资源信息;其中,所述时频资源信息包括时域资源信息和频域资源信息。
可选的,所述时域资源信息,包括以下至少一项:
所述第一数据传输的起始时域位置;
相对于起始时域位置的时间偏移;
所述第一数据传输的传输时间长度;
传输周期。
可选的,所述时域资源信息为基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。
可选的,所述频域资源信息,包括以下至少一项:
所述第一数据传输的起始频域位置;
相对于起始频域位置的频率偏移;
所述第一数据传输占用的频域资源。
可选的,所述频域资源信息为基于以下至少一项的频域资源信息:资源单元RE,资源块RB,资源块组RBG,部分带宽BWP,成员载波CC。
可选的,所述第一传输配置参数为第一CG配置参数,所述第二传输配置参数为第二CG配置参数;
所述处理器1901,具体被配置为执行从所述N个第一CG配置参数中选择目标CG配置参数;
根据所述目标CG配置参数获取与所述目标CG配置参数关联的第二CG配置参数;
根据所述目标CG配置参数以及与所述目标CG配置参数关联的第二CG配置参数,向所述网络设备发送数据。
可选的,所述第一数据传输之后,所述处理器1901,还被配置为执行接收所述网络设备发送的第二信息,所述第二信息包括以下至少一项:
第一指示信息,用于指示用于所述第一数据传输的所述第一CG配置参数以及与所述第一CG配置参数关联的第二CG配置参数可用或不可用;
第二指示信息,用于指示用于所述第一数据传输的N个第一CG配置参数中的每个第一传输配置参数以及与所述N个第一CG配置参数中的每个第一传输配置参数关联的第二CG传输配置参数可用或不可用;
第三指示信息,用于指示用于所述第一数据传输的CG配置中需要删除或跳过的一个或多个CG配置。
可选的,所述第一传输配置参数为第一SPS配置参数,所述第二传输配置参数为第二SPS配置参数;
所述处理器1901,具体被配置为执行根据所述N个第一SPS配置参数以及与所述N个第一SPS配置参数中每个第一SPS配置参数关联的第二SPS配置参数,接收所述网络设备发送的数据。
可选的,所述第一信息还包括第三信息,所述第三信息用于指示用于所述第一数据传输的传输配置中的至少一个需要跳过的传输配置,所述传输配置包括CG配置或SPS配置;
所述处理器1901,具体被配置为执行不使用所述至少一个需要跳过的传输配置进行所述第一数据传输,或者在第一数据传输过程中不使用所述至少一个需要跳过的传输配置下的传输配置参数。
可选的,所述第三信息包括:
第四指示信息,用于指示用于所述第一数据传输的传输配置中与第一时间最近的传输配置需要跳过;或者
需要跳过的传输配置的索引。
可选的,所述处理器1901,具体被配置为执行接收所述网络设备在物理下行控制信道PDCCH发送的下行控制信息DCI,所述DCI中包括所述第一信息;或者
接收所述网络设备在物理下行共享信道PDSCH发送的所述第一信息;或者
接收所述网络设备发送的下行参考信号,所述下行参考信号携带所述第一信息。
可选的,所述处理器1901,被配置为执行接收网络设备发送的第一信令,所述第一信 令中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
可选的,所述处理器1901,还被配置为执行根据所述第一信令进行半持续数据传输。
可选的,所述第一信令,包括以下至少一项:
至少一个去激活半持续传输的标识;
至少一个激活半持续传输的标识;
至少一个激活半持续传输的标识和去激活半持续传输的标识;
激活半持续传输的传输配置参数。
可选的,所述第一信令是基于配置的调度无线网络临时标识CS-RNTI加扰的DCI,或者是基于小区无线网络临时标识C-RNTI加扰的DCI。
可选的,所述第一信令为下行控制信息DCI,所述DCI为激活信令或去激活信令。
可选的,所述半持续传输的传输配置包括免调度CG配置或半持续调度SPS配置。
可选的,所述处理器1901,还被配置为执行向终端发送第一信息,所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数;其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为免调度CG配置参数,或者为半持续调度SPS配置参数;
其中,所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,用于第一数据传输。
可选的,所述N个第一传输配置参数中的每个第一传输配置参数与第二传输配置参数之间的关联关系,是预先配置的或预先定义的。
可选的,所述第一信息包括一个第一传输配置参数,所述一个第一传输配置参数是所述终端上报给所述网络设备的M个第一传输配置参数中的一个,所述M为大于或等于N的整数;
所述处理器1901向所述终端发送所述第一信息之前,所述处理器1901还被配置为执行:
接收所述终端发送M个第一传输配置参数,以及所述M个第一传输配置参数中每个第一传输配置参数关联的至少一个第二传输配置参数。
可选的,所述第一传输配置参数为时域资源信息,或频域资源信息,或时频资源信息;其中,所述时频资源信息包括时域资源信息和频域资源信息。
可选的,所述至少一个第二传输配置参数,包括以下至少一项:调制编码机制MCS,冗余版本,发送功率参数,时域资源信息,频域资源信息,时频资源信息,所述时频资源 信息包括时域资源信息和频域资源信息。
可选的,所述时域资源信息,包括以下至少一项:
所述第一数据传输的起始时域位置;
相对于起始时域位置的时间偏移;
所述第一数据传输的传输时间长度;
传输周期。
可选的,所述时域资源信息为基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。
可选的,所述频域资源信息,包括以下至少一项:
所述第一数据传输的起始频域位置;
相对于起始频域位置的频率偏移;
所述第一数据传输占用的频域资源。
可选的,所述频域资源信息为基于以下至少一项的频域资源信息:资源单元RE,资源块RB,资源块组RBG,部分带宽BWP,成员载波CC。
可选的,所述第一传输配置参数为第一CG配置参数,所述第二传输配置参数为第二CG配置参数;
所述处理器1901还被配置为执行,分别根据N个所述第一CG配置参数以及与每个所述第一CG配置参数关联的第二CG配置参数,接收所述终端发送的数据。
可选的,所述处理器1901接收所述终端发送的数据之后,所述处理器1901还被配置为执行:
向所述终端发送第二信息,所述第二信息包括以下至少一项:
第一指示信息,用于指示用于所述第一数据传输的所述第一CG配置参数以及与所述第一CG配置参数关联的第二CG配置参数可用或不可用;
第二指示信息,用于指示用于所述第一数据传输的N个第一CG配置参数中的每个第一传输配置参数以及与所述N个第一CG配置参数中的每个第一传输配置参数关联的第二CG传输配置参数可用或不可用;
第三指示信息,用于指示用于所述第一数据传输的CG配置中需要删除或跳过的一个或多个CG配置。
可选的,所述第一传输配置参数为第一SPS配置参数,所述第二传输配置参数为第二SPS配置参数;
所述处理器1901还被配置为执行根据所述N个第一SPS配置参数以及每个第一SPS 配置参数关联的第二SPS配置参数,向所述终端发送数据。
可选的,所述第一信息还包括第三信息,用于指示用于所述第一数据传输的传输配置中的至少一个需要跳过的传输配置,所述传输配置包括CG配置或SPS配置。
可选的,所述第三信息包括:
第四指示信息,用于指示用于所述第一数据传输的传输配置中与第一时间最近的传输配置需要被跳过;或者
需要跳过的传输配置的索引。
可选的,所述处理器1901具体被配置为执行在物理下行控制信道PDCCH向所述终端发送下行控制信息DCI,所述DCI中包括所述第一信息;或者
在物理下行共享信道PDSCH向所述终端发送所述第一信息;或者
向所述终端发送下行参考信号,所述下行参考信号携带所述第一信息。
可选的,所述处理器1901,被配置为执行向终端发送第一信令,所述第一信令中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
可选的,所述第一信令为下行控制信息DCI,所述DCI为激活信令或去激活信令。
可选的,所述第一信令,包括以下至少一项:
至少一个去激活半持续传输的标识;
至少一个激活半持续传输的标识;
至少一个激活半持续传输的标识和去激活半持续传输的标识;
激活半持续传输的传输配置参数。
可选的,所述第一信令是基于配置的调度无线网络临时标识CS-RNTI加扰的DCI,或者是基于小区无线网络临时标识C-RNTI加扰的DCI。
可选的,所述半持续传输的传输配置包括面调度CG配置或半持续调度SPS配置。
在此需要说明的是,本公开实施例提供的上述通信装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于使计算机执行上述实施例中相应设备所执行的方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本公开为了方便解释,已经结合具体的实施方式进行了上述说明。但是,上述示例性的讨论不是意图穷尽或者将实施方式限定到上述公开的具体形式。根据上述的教导,可以得到多种修改和变形。上述实施方式的选择和描述是为了更好的解释本公开的内容,从而使得本领域技术人员更好的使用所述实施方式。

Claims (49)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端接收网络设备发送的第一信息,所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数;其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为免调度CG配置参数,或者为半持续调度SPS配置参数;
    所述终端根据所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,进行第一数据传输。
  2. 如权利要求1所述的方法,其特征在于,所述N个第一传输配置参数中的每个第一传输配置参数与第二传输配置参数之间的关联关系,是预先配置的或预定义的。
  3. 如权利要求1所述的方法,其特征在于,所述第一信息包括一个第一传输配置参数,所述一个第一传输配置参数是所述终端上报给所述网络设备的M个第一传输配置参数中的一个,所述M为大于或等于N的整数;
    所述终端接收网络设备发送的第一信息之前,所述方法还包括:
    所述终端向所述网络设备发送M个第一传输配置参数,以及所述M个第一传输配置参数中每个第一传输配置参数关联的至少一个第二传输配置参数。
  4. 如权利要求1所述的方法,其特征在于,所述第一传输配置参数为时域资源信息,或频域资源信息,或时频资源信息;其中,所述时频资源信息包括时域资源信息和频域资源信息。
  5. 如权利要求1所述的方法,其特征在于,所述至少一个第二传输配置参数,包括以下至少一项:调制编码机制MCS,冗余版本,发送功率参数,时域资源信息,频域资源信息,时频资源信息;其中,所述时频资源信息包括时域资源信息和频域资源信息。
  6. 如权利要求4或5所述的方法,其特征在于,所述时域资源信息,包括以下至少一项:
    所述第一数据传输的起始时域位置;
    相对于起始时域位置的时间偏移;
    所述第一数据传输的传输时间长度;
    传输周期。
  7. 如权利要求6所述的方法,其特征在于,所述时域资源信息为基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。
  8. 如权利要求4或5所述的方法,其特征在于,所述频域资源信息,包括以下至少一项:
    所述第一数据传输的起始频域位置;
    相对于起始频域位置的频率偏移;
    所述第一数据传输占用的频域资源。
  9. 如权利要求8所述的方法,其特征在于,所述频域资源信息为基于以下至少一项的频域资源信息:资源单元RE,资源块RB,资源块组RBG,部分带宽BWP,成员载波CC。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述第一传输配置参数为第一CG配置参数,所述第二传输配置参数为第二CG配置参数;
    所述终端根据所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,进行第一数据传输,包括:
    所述终端从所述N个第一CG配置参数中选择目标CG配置参数;
    所述终端根据所述目标CG配置参数获取与所述目标CG配置参数关联的第二CG配置参数;
    所述终端根据所述目标CG配置参数以及与所述目标CG配置参数关联的第二CG配置参数,向所述网络设备发送数据。
  11. 如权利要求10所述的方法,其特征在于,所述第一数据传输之后,所述方法还包括:
    所述终端接收所述网络设备发送的第二信息,所述第二信息包括以下至少一项:
    第一指示信息,用于指示用于所述第一数据传输的所述第一CG配置参数以及与所述第一CG配置参数关联的第二CG配置参数可用或不可用;
    第二指示信息,用于指示用于所述第一数据传输的N个第一CG配置参数中的每个第一传输配置参数以及与所述N个第一CG配置参数中的每个第一传输配置参数关联的第二CG传输配置参数可用或不可用;
    第三指示信息,用于指示用于所述第一数据传输的CG配置中需要删除或跳过的一个或多个CG配置。
  12. 如权利要求1所述的方法,其特征在于,所述第一传输配置参数为第一SPS配置参数,所述第二传输配置参数为第二SPS配置参数;
    所述终端根据所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,进行第一数据传输,包括:
    所述终端根据所述N个第一SPS配置参数以及与所述N个第一SPS配置参数中每个第一SPS配置参数关联的第二SPS配置参数,接收所述网络设备发送的数据。
  13. 如权利要求1-12任一项所述的方法,其特征在于,所述第一信息还包括第三信息,所述第三信息用于指示用于所述第一数据传输的传输配置中的至少一个需要跳过的传输配置,所述传输配置包括CG配置或SPS配置;
    所述方法还包括:
    所述终端不使用所述至少一个需要跳过的传输配置进行所述第一数据传输,或者在第一数据传输过程中不使用所述至少一个需要跳过的传输配置下的传输配置参数。
  14. 如权利要求13所述的方法,其特征在于,所述第三信息包括:
    第四指示信息,用于指示用于所述第一数据传输的传输配置中与第一时间最近的传输配置需要跳过;或者
    需要跳过的传输配置的索引。
  15. 如权利要求1-14任一项所述的方法,其特征在于,所述终端接收网络设备发送的第一信息,包括:
    所述终端接收所述网络设备在物理下行控制信道PDCCH发送的下行控制信息DCI,所述DCI中包括所述第一信息;或者
    所述终端接收所述网络设备在物理下行共享信道PDSCH发送的所述第一信息;或者
    所述终端接收所述网络设备发送的下行参考信号,所述下行参考信号携带所述第一信息。
  16. 一种通信方法,其特征在于,所述方法包括:
    终端接收网络设备发送的第一信令,所述第一信令中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
  17. 如权利要求16所述的方法,其特征在于,所述方法还包括:
    所述终端根据所述第一信令进行半持续数据传输。
  18. 如权利要求16或17所述的方法,其特征在于,所述第一信令,包括以下至少一项:
    至少一个去激活半持续传输的标识;
    至少一个激活半持续传输的标识;
    至少一个激活半持续传输的标识和去激活半持续传输的标识;
    激活半持续传输的传输配置参数。
  19. 如权利要求16-18任一项所述的方法,其特征在于,所述第一信令是基于配置的调度无线网络临时标识CS-RNTI加扰的DCI,或者是基于小区无线网络临时标识C-RNTI加扰的DCI。
  20. 如权利要求16-19任一项所述的方法,其特征在于,所述第一信令为下行控制信息DCI,所述DCI为激活信令或去激活信令。
  21. 如权利要求16-20任一项所述的方法,其特征在于,所述半持续传输的传输配置包括免调度CG配置或半持续调度SPS配置。
  22. 一种通信方法,其特征在于,所述方法包括:
    网络设备向终端发送第一信息,所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数;其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为免调度CG配置参数,或者为半持续调度SPS配置参数;
    其中,所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,用于第一数据传输。
  23. 如权利要求22所述的方法,其特征在于,所述N个第一传输配置参数中的每个第一传输配置参数与第二传输配置参数之间的关联关系,是预先配置的或预先定义的。
  24. 如权利要求22所述的方法,其特征在于,所述第一信息包括一个第一传输配置参数,所述一个第一传输配置参数是所述终端上报给所述网络设备的M个第一传输配置参数中的一个,所述M为大于或等于N的整数;
    所述网络设备向所述终端发送所述第一信息之前,所述方法还包括:
    所述网络设备接收所述终端发送M个第一传输配置参数,以及所述M个第一传输配置参数中每个第一传输配置参数关联的至少一个第二传输配置参数。
  25. 如权利要求22所述的方法,其特征在于,所述第一传输配置参数为时域资源信息,或频域资源信息,或时频资源信息;其中,所述时频资源信息包括时域资源信息和频域资源信息。
  26. 如权利要求22所述的方法,其特征在于,所述至少一个第二传输配置参数,包括以下至少一项:调制编码机制MCS,冗余版本,发送功率参数,时域资源信息,频域资源信息,时频资源信息,所述时频资源信息包括时域资源信息和频域资源信息。
  27. 如权利要求25或26所述的方法,其特征在于,所述时域资源信息,包括以下至少一项:
    所述第一数据传输的起始时域位置;
    相对于起始时域位置的时间偏移;
    所述第一数据传输的传输时间长度;
    传输周期。
  28. 如权利要求27所述的方法,其特征在于,所述时域资源信息为基于以下至少一项的时域资源信息:符号,时隙,子帧,无线帧。
  29. 如权利要求25或26所述的方法,其特征在于,所述频域资源信息,包括以下至少一项:
    所述第一数据传输的起始频域位置;
    相对于起始频域位置的频率偏移;
    所述第一数据传输占用的频域资源。
  30. 如权利要求29所述的方法,其特征在于,所述频域资源信息为基于以下至少一项的频域资源信息:资源单元RE,资源块RB,资源块组RBG,部分带宽BWP,成员载波CC。
  31. 如权利要求22-30任一项所述的方法,其特征在于,所述第一传输配置参数为第一CG配置参数,所述第二传输配置参数为第二CG配置参数;
    所述方法还包括:
    所述网络设备分别根据N个所述第一CG配置参数以及与每个所述第一CG配置参数关联的第二CG配置参数,接收所述终端发送的数据。
  32. 如权利要求31所述的方法,其特征在于,所述网络设备接收所述终端发送的数据之后,所述方法还包括:
    所述网络设备向所述终端发送第二信息,所述第二信息包括以下至少一项:
    第一指示信息,用于指示用于所述第一数据传输的所述第一CG配置参数以及与所述第一CG配置参数关联的第二CG配置参数可用或不可用;
    第二指示信息,用于指示用于所述第一数据传输的N个第一CG配置参数中的每个第一传输配置参数以及与所述N个第一CG配置参数中的每个第一传输配置参数关联的第二CG传输配置参数可用或不可用;
    第三指示信息,用于指示用于所述第一数据传输的CG配置中需要删除或跳过的一个或多个CG配置。
  33. 如权利要求22所述的方法,其特征在于,所述第一传输配置参数为第一SPS配置参数,所述第二传输配置参数为第二SPS配置参数;
    所述方法还包括:
    所述网络设备根据所述N个第一SPS配置参数以及每个第一SPS配置参数关联的第二SPS配置参数,向所述终端发送数据。
  34. 如权利要求22-33任一项所述的方法,其特征在于,所述第一信息还包括第三信息,用于指示用于所述第一数据传输的传输配置中的至少一个需要跳过的传输配置,所述传输配置包括CG配置或SPS配置。
  35. 如权利要求34所述的方法,其特征在于,所述第三信息包括:
    第四指示信息,用于指示用于所述第一数据传输的传输配置中与第一时间最近的传输配置需要被跳过;或者
    需要跳过的传输配置的索引。
  36. 如权利要求22-35任一项所述的方法,其特征在于,所述网络设备向所述终端发送所述第一信息,包括:
    所述网络设备在物理下行控制信道PDCCH向所述终端发送下行控制信息DCI,所述DCI中包括所述第一信息;或者
    所述网络设备在物理下行共享信道PDSCH向所述终端发送所述第一信息;或者
    所述网络设备向所述终端发送下行参考信号,所述下行参考信号携带所述第一信息。
  37. 一种通信方法,其特征在于,所述方法包括:
    网络设备向终端发送第一信令,所述第一信令中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
  38. 如权利要求37所述的方法,其特征在于,所述第一信令为下行控制信息DCI,所述DCI为激活信令或去激活信令。
  39. 如权利要求37或38所述的方法,其特征在于,所述第一信令,包括以下至少一项:
    至少一个去激活半持续传输的标识;
    至少一个激活半持续传输的标识;
    至少一个激活半持续传输的标识和去激活半持续传输的标识;
    激活半持续传输的传输配置参数。
  40. 如权利要求37-39任一项所述的方法,其特征在于,所述第一信令是基于配置的调度无线网络临时标识CS-RNTI加扰的DCI,或者是基于小区无线网络临时标识C-RNTI加扰的DCI。
  41. 如权利要求37-40任一项所述的方法,其特征在于,所述半持续传输的传输配置 包括面调度CG配置或半持续调度SPS配置。
  42. 一种终端,其特征在于,包括处理单元和收发单元;
    所述收发单元,用于接收网络设备发送的第一信息,所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数;其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为免调度CG配置参数,或者为半持续调度SPS配置参数;
    所述处理单元,用于根据所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,进行第一数据传输。
  43. 一种终端,其特征在于,包括处理单元和收发单元;
    所述收发单元,用于接收网络设备发送的第一信令,所述第一信令中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
  44. 一种网络设备,其特征在于,包括处理单元和收发单元;
    所述收发单元,用于向终端发送第一信息,所述第一信息包括N个第一传输配置参数,所述N为大于或等于1的整数;其中,所述N个第一传输配置参数中的每个第一传输配置参数关联至少一个第二传输配置参数,所述第一传输配置参数和所述第二传输配置参数为免调度CG配置参数,或者为半持续调度SPS配置参数;
    其中,所述N个第一传输配置参数中的至少一个第一传输配置参数,以及与所述至少一个第一传输配置参数关联的第二传输配置参数,用于第一数据传输。
  45. 一种网络设备,其特征在于,包括处理单元和收发单元;
    所述收发单元,用于向终端发送第一信令,所述第一信令中包括激活指示信息和去激活指示信息,所述激活指示信息用于指示激活至少一个半持续传输的传输配置,所述去激活指示信息用于指示去激活至少一个半持续传输的传输配置。
  46. 一种通信装置,其特征在于,包括:处理器、存储器、收发机;
    所述收发机,在处理器的控制下进行数据的接收和发送;
    所述存储器,存储计算机指令;
    所述处理器,用于读取所述计算机指令,执行如权利要求1-15中任一项所述的方法,或者执行如权利要求16-21中任一项所述的方法。
  47. 一种通信装置,其特征在于,包括:处理器、存储器、收发机;
    所述收发机,在处理器的控制下进行数据的接收和发送;
    所述存储器,存储计算机指令;
    所述处理器,用于读取所述计算机指令,执行如权利要求22-36中任一项所述的方法,或者执行如权利要求37-41中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要求1-15中任一项所述的方法,或者执行如权利要求16-21中任一项所述的方法,或者执行如权利要求22-36中任一项所述的方法,或者执行如权利要求37-41中任一项所述的方法。
  49. 一种计算机程序产品,其特征在于,所述计算机程序产品在被计算机调用时,使得所述计算机执行如权利要求1-15中任一项所述的方法,或者执行如权利要求16-21中任一项所述的方法,或者执行如权利要求22-36中任一项所述的方法,或者执行如权利要求37-41中任一项所述的方法。
PCT/CN2023/090112 2022-08-05 2023-04-23 一种通信方法、装置及存储介质 WO2024027216A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210940004.2 2022-08-05
CN202210940004.2A CN117579984A (zh) 2022-08-05 2022-08-05 一种通信方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2024027216A1 true WO2024027216A1 (zh) 2024-02-08

Family

ID=89848472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090112 WO2024027216A1 (zh) 2022-08-05 2023-04-23 一种通信方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN117579984A (zh)
WO (1) WO2024027216A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164077A1 (zh) * 2019-02-14 2020-08-20 Oppo广东移动通信有限公司 一种资源配置方法、终端设备及网络设备
CN112291850A (zh) * 2019-07-25 2021-01-29 中国移动通信有限公司研究院 一种终端配置方法、终端及基站
WO2021018299A1 (en) * 2019-07-31 2021-02-04 Huawei Technologies Co., Ltd. Method and apparatus for semi-persistent scheduling and configured grant configurations
CN112583534A (zh) * 2019-09-29 2021-03-30 大唐移动通信设备有限公司 信令的发送、接收方法、网络设备和终端
CN114424647A (zh) * 2019-12-17 2022-04-29 Oppo广东移动通信有限公司 激活传输资源配置的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164077A1 (zh) * 2019-02-14 2020-08-20 Oppo广东移动通信有限公司 一种资源配置方法、终端设备及网络设备
CN112291850A (zh) * 2019-07-25 2021-01-29 中国移动通信有限公司研究院 一种终端配置方法、终端及基站
WO2021018299A1 (en) * 2019-07-31 2021-02-04 Huawei Technologies Co., Ltd. Method and apparatus for semi-persistent scheduling and configured grant configurations
CN112583534A (zh) * 2019-09-29 2021-03-30 大唐移动通信设备有限公司 信令的发送、接收方法、网络设备和终端
CN114424647A (zh) * 2019-12-17 2022-04-29 Oppo广东移动通信有限公司 激活传输资源配置的方法和装置

Also Published As

Publication number Publication date
CN117579984A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2019237979A1 (zh) 一种信号传输方法及装置
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
WO2017045496A1 (zh) 一种下行控制方法及装置
US20220304059A1 (en) Method and Apparatus for Sharing Channel Occupancy Time on Unlicensed Spectrum
WO2020113996A1 (zh) 配置授权的确认方法、终端和网络侧设备
WO2018228511A1 (zh) 通信方法、网络设备和终端
US20210314981A1 (en) Communication system
US11818707B2 (en) Methods and devices for performing uplink communication in industrial communication
WO2018210254A1 (zh) 频域资源的处理方法、装置及系统
US20200322937A1 (en) Information indication method, terminal device, and network device
WO2020024218A1 (en) Standalone sss for rrm and channel estimation enhancement
EP3840500A1 (en) Method and device for determining and configuring scheduling request resource, and storage medium
CN112292900B (zh) 用于有限业务混合的优化bsr
CN114342535B (zh) 上行信号的发送和接收方法以及装置
US20210014855A1 (en) Uplink control information transmission method and device
CN110971349B (zh) 一种重复传输方法、终端和网络侧设备
WO2021032022A1 (zh) 一种调度方法及装置
WO2019137221A1 (zh) 一种上行数据传输方法及装置
TW202013919A (zh) 一種資料傳輸方法、終端設備及網路設備
JP2023524891A (ja) リソース決定方法及び装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
WO2023208564A1 (en) User equipment, scheduling node, method for user equipment, and method for scheduling node
WO2024027216A1 (zh) 一种通信方法、装置及存储介质
TW202008817A (zh) 一種訊號傳輸方法及適用該方法的裝置、終端設備及網路設備
US12101783B2 (en) Communications device, infrastructure equipment and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848927

Country of ref document: EP

Kind code of ref document: A1