WO2024027163A1 - 基于可调电抗的全补偿消弧系统及方法 - Google Patents

基于可调电抗的全补偿消弧系统及方法 Download PDF

Info

Publication number
WO2024027163A1
WO2024027163A1 PCT/CN2023/081619 CN2023081619W WO2024027163A1 WO 2024027163 A1 WO2024027163 A1 WO 2024027163A1 CN 2023081619 W CN2023081619 W CN 2023081619W WO 2024027163 A1 WO2024027163 A1 WO 2024027163A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
contactor
voltage
terminal
fault
Prior art date
Application number
PCT/CN2023/081619
Other languages
English (en)
French (fr)
Inventor
石勇
侯炜
董凯达
姜磊
王栎涛
李宇琦
曾先锋
赵健龙
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2024027163A1 publication Critical patent/WO2024027163A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/08Limitation or suppression of earth fault currents, e.g. Petersen coil

Definitions

  • This application relates to the field of power system relay protection, specifically, to a fully compensated arc suppression system and method based on adjustable reactance.
  • single-phase grounding is a common fault type.
  • the faulty phase-to-ground voltage decreases, the non-faulty phase-to-ground voltage increases, and the line voltage remains symmetrical; in this state, because the grounding current is very small, in order to ensure the reliability of the power supply, operation 1 can be allowed -2h.
  • the arc overvoltage of the non-faulty phase it is easy to cause breakdown of the weak part of the insulation, saturation of the voltage transformer core, system overvoltage, and problems such as cable burning by the arc of the faulty phase and personal injury and death due to electric shock. Therefore, it is necessary to ground the single phase after it is grounded. Isolate the single-phase ground fault of the faulty phase in a timely manner to ensure the safe and stable operation of the system and the reliability of the power supply.
  • the arc suppression system cannot know the distance to the fault point and the load current. value, so the voltage of the faulty phase at the busbar can only be reduced to around 0.
  • the voltage difference between the end of the line and the busbar may reach 600V, and a grounding fault occurs at the end through a 100 ⁇ transition resistor. , if only the voltage at the busbar is compensated to 0, the residual current at the fault point will reach 6A.
  • the existing full compensation technology routes mainly include the following.
  • One is to use power equipment as the injection source.
  • the phase and amplitude of the injected current and voltage are smoothly adjustable, which can achieve accurate compensation of the ground point current.
  • the cost is too high and is not conducive to promotion.
  • the other is based on the step-by-step voltage regulation intervention of the grounding transformer winding.
  • Several fixed gears are set to achieve non-linear adjustment of the ground point current.
  • the adjustment accuracy depends on the density of the gear settings.
  • the cost increases when there are too many gears.
  • the adjustment speed is too slow; when there are few gears, the adjustment precision is low.
  • This application aims to provide a fully compensated arc suppression system and method based on adjustable reactance, which can solve the problem of high cost of the fully compensated method or the inability to accurately compensate for single-phase grounding at the end of heavy-loaded long lines.
  • the arc suppression system includes a first contactor, a second contactor, a third contactor, a first adjustable reactor, and a second adjustable reactor. and line selection arc suppression device, including:
  • the input end of the line selection and arc suppression device inputs the bus three-phase voltage, zero sequence voltage and zero sequence current;
  • the output end of the line selection arc extinguishing device is connected to the first contactor, the second contactor, and the third contactor, and is used to control the first contactor, the second contactor, The opening and closing of the third contactor; the output end is connected to the first adjustable reactor and the second adjustable reactor, and is used to control the first adjustable reactor and the second adjustable reactor.
  • the voltage division coefficient of the second adjustable reactor enables the arc suppression system to output a specified voltage amplitude and phase.
  • the input terminals of the first contactor, the second contactor, and the third contactor are connected in parallel, they are connected to the station power supply or to the system bus.
  • the arc suppression system further includes a first single-phase transformer and a second single-phase transformer, wherein:
  • the other end of the first adjustable reactor is set as terminal a
  • the other end of the second adjustable reactor is set as terminal c
  • the inputs of the first single-phase transformer and the second single-phase transformer are common
  • the end is set to end b, which is connected to the output end of the first contactor, the second contactor and the third contactor respectively.
  • the first contactor, the second contactor, the third contactor The input terminals of the first contactor include phase A, phase B, and phase C, and the output terminals of phase A, phase B, and phase C of the first contactor are respectively connected to the terminal b, the terminal a, and the terminal c; so The output terminals of the A-phase, B-phase and C-phase of the second contactor are respectively connected to the a-terminal, the b-terminal and the c-terminal; the output terminals of the A-phase, B-phase and C-phase of the third contactor Connect the c end, the a end, and the b end respectively.
  • a fully compensated arc extinguishing method is proposed for the fully compensated arc extinguishing system as described in any one of the first aspects, including:
  • the corresponding phase contactor is closed respectively, the second voltage is injected, and the residual current at the second fault point is calculated;
  • the second voltage is adjusted according to the residual current at the second fault point.
  • the first voltage is injected into the neutral point of the fully compensated arc suppression system
  • the measured system parameters include:
  • the system parameters include branch circuit capacitance to ground.
  • calculating and obtaining the residual flow and fault phase at the first fault point according to the system parameters includes:
  • the calculation method of the residual flow at the first fault point is:
  • adjusting the second voltage according to the second fault point residual current includes:
  • adjusting the second voltage according to the second fault point residual current further includes:
  • the second voltage is changed and the residual current at the second fault point becomes larger, the second voltage is adjusted in the reverse direction.
  • adjusting the second voltage according to the second fault point residual current further includes:
  • This application provides a fully compensated arc-extinguishing system and method based on an adjustable reactance, which can control the residual current and fault point-to-ground voltage near 0 while using an adjustable reactor with a cost far lower than that of previous flexible sources.
  • Precise arc extinguishing technology prevents accidents such as arc overvoltage, cable burning, and personal casualties during continued operation after grounding. It also solves the problem that when the fault line load is large and the grounding resistance is small, the fault transfer device may increase the fault current. , problems that bring adverse effects to the power grid.
  • Figure 1 shows a schematic diagram of a fully compensated arc suppression system based on adjustable reactance according to an exemplary embodiment
  • Figure 2 shows a flow chart of a fully compensated arc suppression method based on adjustable reactance according to an exemplary embodiment
  • Figure 3 shows a schematic diagram of the injected voltage vector during a ground fault according to an exemplary embodiment
  • Figure 4 shows a schematic diagram of the gradual approach of the injected voltage during a ground fault according to an exemplary embodiment
  • Figure 5 shows a schematic diagram of a single-phase ground fault according to an exemplary embodiment.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concepts of the example embodiments. To those skilled in the art.
  • the same reference numerals in the drawings represent the same or similar parts, and thus their repeated description will be omitted.
  • This application provides an accurate arc extinguishing method for a single-phase ground fault in a small current grounding system, which solves the problem that the grounding point current cannot be accurately compensated when the current small current grounding system is single-phase grounded. It is targeted at 3kV-66kV small current grounding systems.
  • Figure 1 shows a schematic diagram of a fully compensated arc suppression system based on adjustable reactance according to an exemplary embodiment.
  • the fully compensated arc suppression system based on adjustable reactance includes a line selection arc suppression device 101; 3 contactors 1071, 1072, 1073; 2 adjustable reactors 1031, 1302; 2 single-phase transformers 1051 , 1052;
  • the input terminal of the line selection arc suppression device 101 inputs the bus three-phase voltage, zero sequence voltage and each branch zero sequence current, and the output terminal of the line selection arc suppression device 101 controls three contactors 1071, 1072, 1073 and 2
  • Adjustable reactors 1031 and 1302 enable the system to output specified voltage amplitude and phase.
  • the input terminals A, B, and C of three contactors 1071, 1072, and 1073 are connected in parallel, and optionally connected to the 400V station power supply or directly connected to the system bus; single-phase transformer 1051 and single-phase transformer After the primary side of 1052 is connected in series, one end is connected to one end of the adjustable reactor 1031, and the other end is connected to one end of the adjustable reactor 1032.
  • the other end of the adjustable reactor 1031 is designated as end a, and the other end of the adjustable reactor 1032 is designated as is terminal c, the input common terminal of single-phase transformer 1051 and single-phase transformer 1052 is designated as terminal b, the input terminals of contactors 1071, 1072, and 1073 all include phase A, phase B, and phase C, and phase A and phase B of contactor 1071
  • the output terminals of phase C are respectively connected to terminals b, a and c in the figure.
  • the output terminals of phase A, phase B and phase C of the contactor 1072 are respectively connected to terminals a, b and c in the figure.
  • phase A, phase B and phase C of transformer 1073 are respectively connected to terminal c, terminal a and terminal b in the figure.
  • terminal c, terminal a and terminal b After the non-polar terminals of the secondary sides of single-phase transformer 1051 and single-phase transformer 1052 are connected in series, one end is connected to the ground. The other end is connected to the neutral point of the arc suppression system.
  • Figure 2 shows a flow chart of a fully compensated arc suppression method based on adjustable reactance according to an exemplary embodiment.
  • any of the three contactors are closed in sequence. Meaning two, inject voltage into the neutral point of the system Measure system parameters.
  • system parameters include ground capacitance of each branch.
  • the fault phase and the residual current at the fault point are calculated according to the system parameters.
  • the residual current calculation method at the fault point after a ground fault occurs is:
  • the fault phase is determined based on the residual flow at the fault point.
  • corresponding contactors are closed according to different fault phases, and the voltage that needs to be injected when a busbar fault occurs is injected into the small current grounding system.
  • phase A is grounded, contactor A is closed, and when phase B is grounded, contactor A is closed.
  • contactor B and phase C are grounded, close contactor C and calculate the residual current at the fault point after injection in real time.
  • the fault point residual flow changes, adjust the two adjustable reactors to adjust the injection value of the voltage. If after injection becomes smaller, continue to adjust the injection value in the original direction; if becomes larger, adjust the injection value in the opposite direction.
  • a threshold value is set. If the residual flow at the fault point The amplitude is greater than the threshold value, Then continue to adjust the injection value; if the residual flow at the fault point If the amplitude is less than the threshold, the adjustment ends and the current injection value is maintained.
  • the transformation ratio of the two single-phase transformers 1051 and 1052 is n
  • the voltage dividing coefficients of the primary side through the two adjustable reactors 1031 and 1032 are n 1 ' and n 2 ' respectively, n 1 ', n 2 ' All are less than or equal to 1.
  • the primary sides of two single-phase transformers 1051 and 1052 are connected in series with two adjustable reactors 1031 and 1032.
  • the output of the single-phase transformer is linearly controlled.
  • the amplitude of the voltage is adjusted to the injection system
  • the amplitude and phase of the system realize complete compensation of single-phase ground fault.
  • the output can be adjusted by adjusting the adjustable reactor 1031 in Figure 1.
  • Amplitude when adjusting the adjustable reactor 1032 in Figure 1, the output can be adjusted Amplitude size.
  • you can adjust The output is in Figure 3 and Any position of the shadow of the quadrilateral formed by the sides.
  • the transformation ratio n of the single-phase transformers 1051 and 1052 is set to 2,
  • the maximum output is 1.5 times the phase voltage. When there is a fault at the busbar, it fully compensates for the required output. or or At 2/3 of the maximum value.
  • the residual current of the system after compensation by the arc suppression coil is set to 2A.
  • the fault line with single-phase grounding uses YJV22-120 model cable, the unit length resistance is 0.196 ⁇ /km, the reactance is 0.102 ⁇ /km, and the line length is 10km.
  • the load current is 200A, and the voltage difference ⁇ U from the bus to the end of the line caused by the load current is 441.9V.
  • phase A is grounded through a 100 ⁇ transition resistor at the end of the line, and the current and voltage of the phase A fault point to ground are 1.9988A and 199.88V respectively. If the voltage at the A-phase busbar is directly compensated to 0, the voltage at the fault point to ground is 441.9V and the current is 4.419A, which is higher than without compensation.
  • the primary value is 100V.
  • the current becomes smaller, press the track for the second time to continue adjusting until it reaches The direction changes to the opposite direction.
  • the amplitude is adjusted according to the opposite direction of the trajectory. down to 50V, such as The direction has not changed, continue to adjust, if Direction changes, according to The amplitude is halved to 25V and adjusted in the opposite direction until Stop adjusting when it is less than 0.1A.
  • this application takes the combination of an adjustable reactor plus a single-phase transformer as an example, which can be replaced by an adjustable capacitor plus a single-phase transformer, or other methods such as a single-phase autotransformer that can linearly adjust the secondary voltage output.
  • a single-phase autotransformer that can linearly adjust the secondary voltage output.
  • the same voltage amplitude output linear adjustment is achieved, and the effect of arbitrary adjustment of the injection voltage amplitude and phase is achieved. This application is not limited to this.
  • this application provides a fully compensated arc extinguishing method based on an adjustable reactance, which can control the residual current and fault point-to-ground voltage to 0 while using an adjustable reactor that costs much less than previous flexible sources.
  • precise arc extinguishing technology is implemented to prevent accidents such as arc overvoltage, cable burning, and personal casualties during continued operation after grounding. It solves the problem that when the fault line load is large and the grounding resistance is small, the investment in the failover device may increase the risk. Large fault current has adverse effects on the power grid.

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请提供一种基于可调电抗的全补偿消弧系统及方法。所述消弧系统包括第一接触器、第二接触器、第三接触器、第一可调电抗器、第二可调电抗器和选线消弧装置,其中:所述选线消弧装置的输入端输入母线三相电压、零序电压和零序电流;所述选线消弧装置的输出端与所述第一接触器、所述第二接触器、所述第三接触器连接,用于控制所述第一接触器、所述第二接触器、所述第三接触器的开断与闭合;所述输出端与所述第一可调电抗器、所述第二可调电抗器连接,用于控制所述第一可调电抗器、所述第二可调电抗器的分压系数,使得所述消弧系统输出指定的电压幅值与相位。

Description

基于可调电抗的全补偿消弧系统及方法 技术领域
本申请涉及电力系统继电保护领域,具体而言,涉及一种基于可调电抗的全补偿消弧系统及方法。
背景技术
在3kV-66kV小电流接地系统,又称中性点非有效接地系统中,单相接地是较为常见的故障类型。小电流接地系统发生单相接地时,故障相对地电压降低,非故障相对地电压升高,线电压依旧对称;在此状态下,因接地电流很小,为了保证供电可靠性,可允许运行1-2h。但是由于非故障相弧光过电压,易引起绝缘薄弱部分击穿、电压互感器铁芯饱和、系统过电压,以及故障相弧光烧毁电缆、引发人身触电伤亡事故等问题,因此在单相接地后需要及时隔离故障相的单相接地故障,保障系统安全稳定运行及供电可靠性。
负荷电流及线路阻抗导致母线与故障点之间存在消弧系统在不知道故障点距离及负荷电流的情况下无法知道的值,因此只能将故障相在母线处电压降到0附近,对于重载长线路末端单相接地,如线路末端与母线处电压差可能会达到600V,在末端发生经100Ω过渡电阻接地故障时,如仅将母线处电压补偿至0,故障点残流会达到6A。
现有全补偿技术路线主要有以下几种,一种是利用电力设备作为注入源,注入的电流及电压相位及幅值平滑可调,可实现接地点电流精确补偿,但是成本太高不利于推广。另外一种是基于接地变压器绕组分档调压干预,设置数个固定档位,实现接地点电流的非线性的调节,调节精度取决于档位设置的密度,但是,档位过多时成本上升,调节速度过慢;档位少时调节精细度低。
在所述背景技术部分公开的上述信息仅用于加强对本申请的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的 信息。
发明内容
本申请旨在提供一种基于可调电抗的全补偿消弧系统及方法,可以解决全补偿方法成本高或者重载长线路末端单相接地不能精确补偿的问题。
根据本申请的一方面,提出一种全补偿消弧系统,所述消弧系统包括第一接触器、第二接触器、第三接触器、第一可调电抗器、第二可调电抗器和选线消弧装置,其中:
所述选线消弧装置的输入端输入母线三相电压、零序电压和零序电流;
所述选线消弧装置的输出端与所述第一接触器、所述第二接触器、所述第三接触器连接,用于控制所述第一接触器、所述第二接触器、所述第三接触器的开断与闭合;所述输出端与所述第一可调电抗器、所述第二可调电抗器连接,用于控制所述第一可调电抗器、所述第二可调电抗器的分压系数,使得所述消弧系统输出指定的电压幅值与相位。
根据一些实施例,所述第一接触器、所述第二接触器、所述第三接触器的输入端并联连接后,接入站用变电源或入系统母线。
根据一些实施例,所述消弧系统还包括第一单相变压器、第二单相变压器,其中:
所述第一单相变压器和所述第二单相变压器的一次侧串联后,一端连接所述第一可调电抗器的一端,另一端连接所述第二可调电抗器的一端;
所述第一单相变压器和所述第二单相变压器的二次侧的非极性端串联后,一端接地,另一端接入所述消弧系统的中性点;
所述第一可调电抗器的另一端设为a端,所述第二可调电抗器的另一端设为c端,所述第一单相变压器和所述第二单相变压器的输入公共端设为b端,分别连接所述第一接触器、所述第二接触器和所述第三接触器的输出端。
根据一些实施例,所述第一接触器、所述第二接触器、所述第三接触 器的输入端均包括A相、B相、C相,所述第一接触器A相、B相、C相的输出端分别连接所述b端、所述a端、所述c端;所述第二接触器A相、B相、C相的输出端分别连接所述a端、所述b端、所述c端;所述第三接触器A相、B相、C相的输出端分别连接所述c端、所述a端、所述b端。
根据本申请的第二方面,提出一种全补偿消弧方法,用于如第一方面中任一项所述的全补偿消弧系统,包括:
向所述全补偿消弧系统的中性点注入第一电压,测量系统参数;
在所述全补偿系统发生接地故障的情况下,根据所述系统参数计算获得第一故障点残流和故障相别;
根据所述故障相别合闸对应相接触器,注入第二电压,计算第二故障点残流;
根据所述第二故障点残流,调整所述第二电压。
根据一些实施例,所述向所述全补偿消弧系统的中性点注入第一电压,测量系统参数包括:
分别合闸所述接触器中的任意两个,计算系统参数。
根据一些实施例,所述系统参数包括支路对地容抗。
根据一些实施例,所述根据所述系统参数计算获得第一故障点残流和故障相别包括:
所述第一故障点残流的计算方法为:
其中,为故障点残流,为零序电压,为故障线路零序电流,为所述对地容抗。
根据一些实施例,所述根据所述第二故障点残流,调整所述第二电压包括:
调整所述第一可调电抗器和第二可调电抗器的分压系数,以调整所述第二电压。
根据一些实施例,所述根据所述第二故障点残流,调整所述第二电压还包括:
在改变所述第二电压,所述第二故障点残流变小的情况下,原向调整所述第二电压;
在改变所述第二电压,所述第二故障点残流变大的情况下,反向调整所述第二电压。
根据一些实施例,所述根据所述第二故障点残流,调整所述第二电压还包括:
在所述第二故障点残流小于第一阈值的情况下,调整结束。
本申请提供一种基于可调电抗的全补偿消弧系统及方法,在使用成本远低于以往柔性源的可调电抗器情况下,将残流及故障点对地电压控制在0附近,实现精确消弧技术,防止接地后继续运行过程中弧光过电压、电缆烧毁及人身伤亡等事故,解决了在故障线路负荷较大,接地电阻较小的情况下,投入故障转移装置可能增大故障电流,给电网带来不利影响的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
通过参照附图详细描述其示例实施例,本申请的上述和其它目标、特征及优点将变得更加显而易见。下面描述的附图仅仅是本申请的一些实施例,而不是对本申请的限制。
图1示出一示例性实施例的一种基于可调电抗的全补偿消弧系统示意图;
图2示出一示例性实施例的一种基于可调电抗的全补偿消弧方法流程图;
图3示出一示例性实施例的接地故障时注入电压向量示意图;
图4示出一示例性实施例的接地故障时注入电压逐步逼近示意图;
图5示出一示例性实施例的单相接地故障示意图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本申请将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有这些特定细节中的一个或更多,或者可以采用其它的方式、组元、材料、装置等。在这些情况下,将不详细示出或描述公知结构、方法、装置、实现、材料或者操作。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
本领域技术人员可以理解,附图只是示例实施例的示意图,附图中的模块或流程并不一定是实施本申请所必须的,因此不能用于限制本申 请的保护范围。
本申请提供一种小电流接地系统单相接地故障精确消弧方法,解决目前小电流接地系统单相接地时接地点电流无法精确补偿的问题,其针对的对象为3kV-66kV小电流接地系统。
图1示出一示例性实施例的一种基于可调电抗的全补偿消弧系统示意图。
如图1所示,基于可调电抗的全补偿消弧系统包括选线消弧装置101;3个接触器1071、1072、1073;2个可调电抗器1031、1302;2个单相变压器1051、1052;选线消弧装置101的输入端输入母线三相电压、零序电压以及各支路零序电流,选线消弧装置101的输出端控制3个接触器1071、1072、1073及2个可调电抗器1031、1302;使得系统可输出指定的电压幅值及相位。
如图1所示,3个接触器1071、1072、1073输入端A、B、C并联,可选地,接入400V站用变电源或直接接入系统母线;单相变压器1051和单相变压器1052的一次侧串联后,一端连接可调电抗器1031的一端,另一端连接可调电抗器1032的一端,可调电抗器1031的另一端定为a端,可调电抗器1032的另一端定为c端,单相变压器1051和单相变压器1052的输入公共端定为b端,接触器1071、1072、1073的输入端均包括A相、B相、C相,接触器1071A相、B相、C相的输出端分别连接分别连接至图中b端、a端、c端,接触器1072A相、B相、C相的输出端分别连接至图中a端、b端、c端,接触器1073A相、B相、C相的输出端分别连接至图中c端、a端、b端,单相变压器1051和单相变压器1052的二次侧的非极性端串联后,一端接地,另一端接入消弧系统的中性点。
图2示出一示例性实施例的一种基于可调电抗的全补偿消弧方法流程图。
S201,合上接触器,注入电压,测量系统参数。
根据示例实施例,在系统正常运行时,依次合上三个接触器中的任 意两个,向系统中性点注入电压测量系统参数。
根据示例实施例,系统参数包括各支路对地容抗。
根据示例实施例,在未发生接地故障时,调节可调电抗器电抗后,在电抗对称的情况下,只需要合上其中一个接触器,向小电流接地系统中性点注入一个不影响系统正常运行的零序电压各支路因为零序电压而出现零序电流n为支路号,各支路对地容抗的计算公式是:
S202,计算获得故障相别和故障点残流。
根据示例实施例,当判断发生接地故障时,根据系统参数计算得到故障相别及故障点残流
根据示例实施例,发生接地故障后故障点残流计算方法为
其中,为故障点残流,为零序电压,为故障线路零序电流,为述对地容抗。
根据示例实施例,根据故障点残流判断故障相别。
如图5所示,C相发生接地故障,故障点残流为
S203,合上接触器,注入电压。
根据示例实施例,根据不同的故障相合上对应的接触器,向小电流接地系统注入母线处故障时需注入的电压,A相接地时合上接触器A,B相接地时合上接触器B,C相接地时合上接触器C,并实时计算注入后故障点残流
S204,调整电压注入值。
根据示例实施例,根据故障点残流的变化,调整2个可调电抗器以调整电压的注入值,如果注入后变小,则在原方向上继续调整注入值;如果变大,则反方向调整注入值。
根据示例实施例,设置门槛值,若故障点残流幅值大于门槛值, 则继续调整注入值;若故障点残流幅值小于门槛值,则结束调整,维持当前注入值。
根据示例实施例,2个单相变压器1051、1052变比为n,一次侧经两个可调电抗器1031、1032分压系数分别为n1’和n2’,n1’、n2’均小于等于1。
根据示例实施例,可调电抗器1031、1032感抗调节在0附近时,n1’=n2’=1。
在A相接地时,合接触器1071,电压接入单相变一次侧,两个单相变压器1051、1052二次侧串联后输出至注入中性点的电压为n1’=n2’=1时,
在B相接地时,合接触器1072,电压接入单相变一次侧,两个单相变压器1051、1052二次侧串联后输出至注入中性点的电压为n1’=n2’=1时,
在C相接地时,合接触器1073,电压接入单相变一次侧,两个单相变压器1051、1052二次侧串联后输出至注入中性点的电压为n1’=n2’=1时,
其中,为A、B、C相至中性点电势,不随单相接地而改变。
根据示例实施例,2个单相变压器1051、1052的一次侧与2个可调电抗器1031、1032串联,通过调节两个可调电抗器1031、1032的电抗值,线性控制单相变压器输出的电压的幅值,达到调节注入系统的的幅值及相位,实现单相接地故障完全补偿。
如图3所示,当发生A相接地故障时,调节图1中可调电抗器1031时,可以调节输出的幅值大小,调节图1中可调电抗器1032时, 可以调节输出的幅值大小。同时调节可调电抗器1与可调电抗器2幅值时,可以调节输出在图3中为边构成的四边形阴影的任意位置。通过设置2个单相变压器1051、1052变比n,使得母线处故障时,完全补偿需要输出的在阴影内部,保证变压器接近中性点接地或线路末端接地时均能实现完全补偿。
如图3所示,当发生B相接地故障时,调节图1中可调电抗器1031时,可以调节输出的幅值大小,调节图1中可调电抗器1032时,可以调节输出的幅值大小。同时调节可调电抗器1与可调电抗器2幅值时,可以调节输出在图3中为边构成的四边形阴影的任意位置。通过设置2个单相变压器1051、1052变比n,使得母线处故障时,完全补偿需要输出的在阴影内部,保证变压器接近中性点接地或线路末端接地时均能实现完全补偿。
如图3所示,当发生C相接地故障时,调节图1中可调电抗器1031时,可以调节输出的幅值大小,调节图1中可调电抗器1032时,可以调节输出的幅值大小。同时调节可调电抗器1与可调电抗器2幅值时,可以调节输出在图3中为边构成的四边形阴影的任意位置。通过设置2个单相变压器1051、1052变比n,使得母线处故障时,完全补偿需要输出的在阴影内部,保证变压器接近中性点接地或线路末端接地时均能实现完全补偿。
根据一些实施例,设置单相变压器1051、1052的变比n=2,输出最大为1.5倍相电压,母线处故障时,完全补偿需要输出的 在最大值的2/3处。
根据一些实施例,设定系统经消弧线圈补偿后残流为2A,发生单相接地的故障线路采用YJV22-120型号电缆,单位长度电阻0.196Ω/km,电抗0.102Ω/km,线路长度10km,负荷电流200A,由负荷电流引起的母线到线路末端压差ΔU为441.9V。
根据示例实施例,线路末端发生A相经100Ω过渡电阻接地,A相故障点对地电流及电压分别为1.9988A及199.88V。如直接将A相母线处电压补偿到0,故障点对地的电压为441.9V,电流为4.419A,比不补偿时还增大。
注入系统后改变大小及方向,一般选取按方向的调整轨迹来调整调整的幅值一般取一次值100V,第一次调整后,电流变小,第二次按轨迹继续调整,直至调整至方向变为反方向,此时按轨迹反方向调整的幅值降为50V,如方向未变,继续调整,若方向变化,按照幅值减半25V反方向调整,直至小于0.1A时停止调整。
如图4所示,在系统单相接地故障后,bO为注入前cb为调整cO为补偿后
根据一些实施例,本申请以可调电抗器加单相变压器的组合为例,可以更换为可调电容器加单相变压器,或可线性调节二次电压输出的单相自耦变等其他方式,实现同样的电压幅值输出线性调节,实现注入电压幅值及相位任意调节的效果,本申请不以此为限。
根据示例实施例,本申请提供一种基于可调电抗的全补偿消弧方法,在使用成本远低于以往柔性源的可调电抗器情况下,将残流及故障点对地电压控制在0附近,实现精确消弧技术,防止接地后继续运行过程中弧光过电压、电缆烧毁及人身伤亡等事故,解决了在故障线路负荷较大,接地电阻较小的情况下,投入故障转移装置可能增大故障电流,给电网带来不利影响的问题。
应清楚地理解,本申请描述了如何形成和使用特定示例,但本申请不限于这些示例的任何细节。相反,基于本申请公开的内容的教导,这些原理能够应用于许多其它实施例。
此外,需要注意的是,上述附图仅是根据本申请示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
以上具体地示出和描述了本申请的示例性实施例。应可理解的是,本申请不限于这里描述的详细结构、设置方式或实现方法;相反,本申请意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

Claims (11)

  1. 一种全补偿消弧系统,其特征在于,所述消弧系统包括第一接触器、第二接触器、第三接触器、第一可调电抗器、第二可调电抗器和选线消弧装置,其中:
    所述选线消弧装置的输入端输入母线三相电压、零序电压和零序电流;
    所述选线消弧装置的输出端与所述第一接触器、所述第二接触器、所述第三接触器连接,用于控制所述第一接触器、所述第二接触器、所述第三接触器的开断与闭合;所述输出端与所述第一可调电抗器、所述第二可调电抗器连接,用于控制所述第一可调电抗器、所述第二可调电抗器的分压系数,使得所述消弧系统输出指定的电压幅值与相位。
  2. 如权利要求1所述的消弧系统,其特征在于,所述第一接触器、所述第二接触器、所述第三接触器的输入端并联连接后,接入站用变电源或入系统母线。
  3. 如权利要求1所述的消弧系统,其特征在于,所述消弧系统还包括第一单相变压器、第二单相变压器,其中:
    所述第一单相变压器和所述第二单相变压器的一次侧串联后,一端连接所述第一可调电抗器的一端,另一端连接所述第二可调电抗器的一端;
    所述第一单相变压器和所述第二单相变压器的二次侧的非极性端串联后,一端接地,另一端接入所述消弧系统的中性点;
    所述第一可调电抗器的另一端设为a端,所述第二可调电抗器的另一端设为c端,所述第一单相变压器和所述第二单相变压器的输入公共端设为b端,分别连接所述第一接触器、所述第二接触器和所述第三接触器的输出端。
  4. 如权利要求3所述的消弧系统,其特征在于,所述第一接触器、所述第二接触器、所述第三接触器的输入端均包括A相、B相、C相,所述第一接触器A相、B相、C相的输出端分别连接所述b端、所述a端、所述c端;所述第二接触器A相、B相、C相的输出端分别连接所述a端、所述b端、所述c端;所述第三接触器A相、B相、C相的输出端分别连接所述c端、所述a端、所述b端。
  5. 一种全补偿消弧方法,用于如权利要求1-4中任一项所述的全补偿消弧系统,其特征在于,包括:
    向所述全补偿消弧系统的中性点注入第一电压,测量系统参数;
    在所述全补偿系统发生接地故障的情况下,根据所述系统参数计算获得第一故障点残流和故障相别;
    根据所述故障相别合闸对应相接触器,注入第二电压,计算第二故障点残流;
    根据所述第二故障点残流,调整所述第二电压。
  6. 如权利要求5所述的消弧方法,其特征在于,所述向所述全补偿消弧系统的中性点注入第一电压,测量系统参数包括:
    分别合闸所述接触器中的任意两个,计算系统参数。
  7. 如权利要求5所述的消弧方法,其特征在于,所述系统参数包括支路对地容抗。
  8. 如权利要求7所述的消弧方法,其特征在于,所述根据所述系统参数计算获得第一故障点残流和故障相别包括:
    所述第一故障点残流的计算方法为:
    其中,为故障点残流,为零序电压,为故障线路零序电流,为所述对地容抗。
  9. 如权利要求5所述的消弧方法,其特征在于,所述根据所述第二故障点残流,调整所述第二电压包括:
    调整所述第一可调电抗器和第二可调电抗器的分压系数,以调整所述第二电压。
  10. 如权利要求9所述的消弧方法,其特征在于,所述根据所述第二故障点残流,调整所述第二电压还包括:
    在改变所述第二电压,所述第二故障点残流变小的情况下,原向调整所述第二电压;
    在改变所述第二电压,所述第二故障点残流变大的情况下,反向调整所述第二电压。
  11. 如权利要求5所述的消弧方法,其特征在于,所述根据所述第二故障点残流,调整所述第二电压还包括:
    在所述第二故障点残流小于第一阈值的情况下,调整结束。
PCT/CN2023/081619 2022-08-04 2023-03-15 基于可调电抗的全补偿消弧系统及方法 WO2024027163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210933290.X 2022-08-04
CN202210933290.XA CN117559377A (zh) 2022-08-04 2022-08-04 基于可调电抗的全补偿消弧系统及方法

Publications (1)

Publication Number Publication Date
WO2024027163A1 true WO2024027163A1 (zh) 2024-02-08

Family

ID=89819153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081619 WO2024027163A1 (zh) 2022-08-04 2023-03-15 基于可调电抗的全补偿消弧系统及方法

Country Status (2)

Country Link
CN (1) CN117559377A (zh)
WO (1) WO2024027163A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545171A (zh) * 2011-12-22 2012-07-04 江苏宏安变压器有限公司 一种多绕组可调电抗器及其单相接地故障切除方法
CN108258674A (zh) * 2018-04-10 2018-07-06 南京南瑞继保电气有限公司 一种小电流接地系统的单相接地故障消弧系统及方法
US20200083702A1 (en) * 2017-07-06 2020-03-12 Changsha University Of Science And Technology Safe processing method for active voltage reduction of ground fault phase of non-effective ground system
CN111756030A (zh) * 2019-03-29 2020-10-09 南京南瑞继保电气有限公司 小电流接地系统无功补偿及单相接地故障消弧系统及方法
CN112152194A (zh) * 2020-09-24 2020-12-29 湖南大学 一种配电网单相接地故障消弧系统及其控制方法
CN214707158U (zh) * 2021-01-08 2021-11-12 南京南瑞继保工程技术有限公司 一种小电流接地系统单相接地故障精确消弧系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545171A (zh) * 2011-12-22 2012-07-04 江苏宏安变压器有限公司 一种多绕组可调电抗器及其单相接地故障切除方法
US20200083702A1 (en) * 2017-07-06 2020-03-12 Changsha University Of Science And Technology Safe processing method for active voltage reduction of ground fault phase of non-effective ground system
CN108258674A (zh) * 2018-04-10 2018-07-06 南京南瑞继保电气有限公司 一种小电流接地系统的单相接地故障消弧系统及方法
CN111756030A (zh) * 2019-03-29 2020-10-09 南京南瑞继保电气有限公司 小电流接地系统无功补偿及单相接地故障消弧系统及方法
CN112152194A (zh) * 2020-09-24 2020-12-29 湖南大学 一种配电网单相接地故障消弧系统及其控制方法
CN214707158U (zh) * 2021-01-08 2021-11-12 南京南瑞继保工程技术有限公司 一种小电流接地系统单相接地故障精确消弧系统

Also Published As

Publication number Publication date
CN117559377A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US11368017B2 (en) Safe operation method for voltage reduction arc suppression of ground fault phase of non-effective ground system
WO2021073323A1 (zh) 一种自产供电相电源的接地故障电流补偿系统、方法及装置
WO2019007348A1 (zh) 非有效接地系统接地故障相主动降压安全处理方法
CN103439558B (zh) 相控式消弧线圈的电容电流测量方法
CN106602540A (zh) 一种适用于中压配电网单相接地故障的有源电压消弧法
CN107276082B (zh) 非有效接地系统接地故障相主动降压安全运行方法
Brenna et al. Petersen coil regulators analysis using a real-time digital simulator
Wang et al. Control method of an arc suppression device based on single-phase inverter
CN112909910A (zh) 一种配电网接地故障消弧方法及其装置
WO2024027163A1 (zh) 基于可调电抗的全补偿消弧系统及方法
Lifang et al. Distribution network voltage arc suppression method based on flexible regulation of neutral point potential of the new grounding transformer
CN111537844A (zh) 10kV磁偏置超导限流器并网故障限流试验系统及方法
Li et al. Harmonic distortion feature of AC transformers caused by DC bias
CN203398782U (zh) 相控式消弧线圈
CN109599854B (zh) 一种无电感补偿的可控电压源接地故障全补偿电路和方法
Jianna et al. Measurement technology of grounding capacitance of distribution network based on the graded adjustment of grounding transformer winding
Nan et al. A new method of measuring capacitance current in non-effective grounding power system
CN109921403B (zh) 一种无电感补偿的可控电流源接地故障全补偿方法
CN112909912A (zh) 一种配电网单相接地故障电流全补偿方法及其装置
Zhen et al. The ferroresonance of 10kV distribution PT during live working operation
CN114094564B (zh) 计及线路压降的配电网单相接地故障有源消弧方法及系统
Yang et al. A novel zero-residual-current arc suppression method using single-phase voltage source inverter
Chunbao et al. A study on factors influencing ferroresonance in distribution system
Wu et al. Technical analysis of 500kV oil-immersed series transformer for unified power flow controller
CN109802368B (zh) 一种带电感补偿的可控电压源接地故障全补偿电路及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848878

Country of ref document: EP

Kind code of ref document: A1