WO2024026961A1 - 一种轻便智能化低扰动采样设备 - Google Patents

一种轻便智能化低扰动采样设备 Download PDF

Info

Publication number
WO2024026961A1
WO2024026961A1 PCT/CN2022/116470 CN2022116470W WO2024026961A1 WO 2024026961 A1 WO2024026961 A1 WO 2024026961A1 CN 2022116470 W CN2022116470 W CN 2022116470W WO 2024026961 A1 WO2024026961 A1 WO 2024026961A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
water
disturbance
low
pump
Prior art date
Application number
PCT/CN2022/116470
Other languages
English (en)
French (fr)
Inventor
解伟
王明明
张建伟
李小杰
李长青
王文科
黎涛
单家杨
范振林
陈元
叶成明
何计彬
冯建月
郑宝锋
吴海东
赵玉军
王营超
李梦
Original Assignee
中国地质调查局水文地质环境地质调查中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国地质调查局水文地质环境地质调查中心 filed Critical 中国地质调查局水文地质环境地质调查中心
Priority to GBGB2302377.3A priority Critical patent/GB202302377D0/en
Publication of WO2024026961A1 publication Critical patent/WO2024026961A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the invention relates to the technical field of water body sampling and detection, and in particular to a portable, intelligent, low-disturbance sampling device.
  • Sampling and monitoring equipment are the basic links in the groundwater pollution monitoring network and one of the key links that determine the accuracy of groundwater pollution monitoring.
  • the traditional single mixed layer sampling method is greatly affected by seasonal changes in groundwater flow direction or precipitation fluctuations, and there are large-area falling funnels in the groundwater in the Beijing-Tianjin-Hebei region, which are significantly affected by precipitation and cannot meet the description of groundwater pollution plumes and pollution levels. need.
  • the purpose of the present invention is to provide a lightweight, intelligent, low-disturbance sampling device to solve the problems existing in the above-mentioned existing technologies, cause less disturbance to the underground aquifer, and can meet the requirements for detection of inorganic components, organic components, microorganisms, dissolved oxygen, etc.
  • Sample collection requirements and has a true value determination function, which can analyze water samples for TDS, PH, dissolved oxygen and other parameters.
  • the present invention provides the following solutions:
  • the invention provides a portable and intelligent low-disturbance sampling equipment, which includes a power supply device, a low-disturbance pumping device, a isolation device, an underground monitoring device, a true value determination and sampling device, and an automatic controller.
  • the low-disturbance pumping device includes a sampling pump. , sampling pipe, cable and frequency conversion controller, used to complete the task of low-disturbance groundwater sampling.
  • the sampling pump is connected to the true value determination and sampling device through the sampling pipe; the isolation device is installed in the well to isolate the target water layer.
  • the true value determination and sampling device includes a water sample flow tank, a low disturbance sampling area and a water quality detection probe, which is used for water sample circulation and judging whether the collected water sample is a real water sample of the formation;
  • the underground The monitoring device includes a water level and temperature monitoring probe and a data line, which are used to measure underground water level and water temperature data; the low-disturbance pumping device, underground monitoring device, true value determination and sampling device all need to be connected to the computer through an automatic controller via cables or data lines. Power supply device.
  • the drainage port of the sampling pump is connected to the water inlet of the sampling pipe, the water outlet of the sampling pipe is connected to the true value determination and sampling device through the isolation device, and the sampling pump is connected through a cable.
  • the variable frequency controller is configured to control the sampling pump.
  • the sampling pump is a screw submersible pump with an outer diameter ⁇ 50 mm.
  • the sampling pipe includes a polytetrafluoroethylene water pipe and a steel wire rope and cable wrapped on the polytetrafluoroethylene water pipe with tetrafluoroethylene tape, and the sampling pipe is controlled to be retracted and unwound by a winch.
  • the frequency conversion controller is used to adjust the water pump flow, realize large-flow well cleaning and low-flow sampling, reduce sampling auxiliary time, and reduce disturbance to water samples.
  • the packing device includes an inflatable packer, a high-pressure pipeline and a gas supply source.
  • the inflatable packer includes an upper joint, a lower joint, a rubber barrel and a central pipe.
  • the rubber barrel is sleeved on Outside the central tube, the rubber cartridge is connected to the air supply source through the high-pressure pipeline, the upper joint is threadedly connected to the top of the central tube, and the lower joint is threadedly connected to the center tube.
  • the lower joint and the lower end of the central tube are sealed by an O-ring, and the body of the sampling tube passes through the upper joint, the lower joint and the central tube.
  • the body of the true value determination and sampling device is a rectangular box, and the box is provided with a circular water inlet, a drain port, an overflow port and a monitoring window;
  • the water inlet is provided on In the middle position of one side of the box, the drain port and the overflow port are provided on the other side of the box, and the overflow port is located at the top of the drain port;
  • the water inlet and the outlet of the sampling tube The water outlet is connected, and the water outlet is equipped with a solenoid valve for controlling drainage;
  • the water outlet and the overflow port are connected with polytetrafluoroethylene drainage pipes, and a water quality detection probe is placed in the monitoring window and an O-ring is used Seal the monitoring window.
  • a baffle is provided inside the box, and the baffle is arranged transversely to divide the box into a water sample flow tank and a low-disturbance sampling area.
  • the water sample flow tank is arranged in the low-disturbance sampling area.
  • the water quality detection probe is located in the water sample flow tank. The water quality detection probe is used to determine the true value of the water sample.
  • Several sampling bottles are placed in the low disturbance sampling area for low disturbance Collect water samples.
  • the indicators that the water quality detection probe can detect are pH value, temperature, conductivity, redox potential, dissolved oxygen and turbidity.
  • the automatic controller includes a water pump control switch, a frequency converter frequency modulation unit, a monitoring probe power supply unit, a liquid crystal screen, a solenoid valve control unit, a storage system, an alarm unit and a Bluetooth module, wherein the water pump control switch is used to control all The starting and closing of the sampling pump; the frequency converter frequency modulation unit uses an RS485 serial port to adjust the frequency of the frequency conversion controller to control the flow of the sampling pump; the power supply unit for the monitoring probe includes monitoring the water level and temperature There are two power supply units for supplying power to the probe and for supplying power to the water quality detection probe; the water level and temperature monitoring probe uses 4 wires with a voltage of 9V, and the water quality detection probe uses 4 wires with a voltage of 12V, both of which use an RS485 serial port; The power supply voltage of the solenoid valve control unit is 12V, which is used to control the startup and closing of the solenoid valve; the storage system is used to store the water quality detection data during the sampling process; the alarm
  • the lightweight, intelligent, low-disturbance sampling equipment provided by the present invention has less disturbance to the groundwater aquifer, can meet the requirements for collecting samples for detection of inorganic components, organic components, microorganisms, dissolved oxygen, etc., and can be completely and efficiently obtained from monitoring wells. Groundwater samples representative of each layer.
  • the lightweight, intelligent, low-disturbance sampling equipment provided by the present invention does not come into contact with the air during the sampling process, and can effectively reduce the interference of the external environment on water samples.
  • the lightweight, intelligent, low-disturbance sampling equipment provided by the present invention has the advantages of easy portability, simple installation, and easy transportation, and is applicable to a depth within 120m.
  • the lightweight, intelligent, low-disturbance sampling equipment provided by the present invention has the functions of automatic control and intelligent monitoring. It can automatically control the sampling process based on intelligent analysis of the sampling data, reduce interference from human factors, and save time and effort; at the same time, it also has the function of data transmission. Function, can receive water sample analysis data through mobile APP.
  • the lightweight, intelligent, low-disturbance sampling equipment provided by the present invention can be connected to the packer to conduct stratified groundwater sampling.
  • Figure 1 is a schematic structural diagram of a lightweight, intelligent, low-disturbance sampling device in the present invention
  • Figure 2 is a schematic structural diagram of the true value determination and sampling device in the present invention.
  • 1-power supply device 2-true value determination and sampling device, 3-automatic controller, 4-winch, 5-sampling pump, 6-sampling pipe, 7-cable, 8-frequency controller, 9-water level Water temperature monitoring probe, 10-data line, 11-inflatable packer, 12-high pressure pipeline, 13-air supply source, 14-upper joint, 15-lower joint, 16-rubber barrel, 17-center pipe, 18 -Box, 19-water inlet, 20-drainage outlet, 21-overflow outlet, 22-monitoring window, 23-baffle, 24-water sample flow cell, 25-low disturbance sampling area, 26-cover plate.
  • the purpose of the present invention is to provide a portable, intelligent and low-disturbance sampling device to solve the problems existing in the existing technology.
  • the portable and intelligent low-disturbance sampling equipment in this embodiment includes a power supply device 1, a low-disturbance pumping device, an isolation device, an underground monitoring device, a true value determination and sampling device 2, and an automatic controller 3.
  • the low-disturbance pumping device includes a sampling pump 5, a sampling pipe 6, a cable 7 and a frequency conversion controller 8, which is used to complete the low-disturbance sampling task of groundwater.
  • the sampling pump 5 is connected to the true value determination and sampling device 2 through the sampling pipe 6; the isolation device is set It is used in the well to isolate the target aquifer and other non-target aquifers; the true value determination and sampling device 2 includes a water sample flow cell 24, a low disturbance sampling area 25 and a water quality detection probe, which is used for water sample circulation and judgment of collected water.
  • the sample is a real water sample of the formation;
  • the underground monitoring device includes a water level and temperature monitoring probe 9 and a data line 10, which are used to measure underground water level and water temperature data;
  • the low-disturbance pumping device, the underground monitoring device, the true value determination and the sampling device 2 all need to be Cables or data lines are connected to the power supply device 1 through the automatic controller 3 .
  • the drain port 20 of the sampling pump 5 is connected to the water inlet of the sampling pipe 6.
  • the water outlet of the sampling pipe 6 is connected to the true value determination and sampling device 2 through the isolation device.
  • the sampling pump 5 is connected to the frequency converter through the cable 7. Controller 8.
  • the frequency conversion controller 8 is used to adjust the water pump flow, realize large-flow well cleaning and low-flow sampling, reduce the sampling auxiliary time, and reduce the disturbance to the water sample.
  • Sampling pump 5 is a screw submersible pump with an outer diameter of ⁇ 50mm. It is a positive displacement rotor pump. It relies on the volume change of the sealing cavity formed by the screw and bushing to inhale and discharge liquid. The flow rate is stable, uniform and continuous, the outlet pressure is stable, and the medium is transported. No eddy currents will form.
  • the sampling pipe 6 includes a polytetrafluoroethylene water pipe and a steel wire rope and cable wrapped on the polytetrafluoroethylene water pipe with tetrafluoroethylene tape, thus reducing the impact on the water quality of the water sample.
  • the sampling pipe 6 is drawn by a winch 4. Control the retraction and release.
  • the fixed end of the steel wire rope is connected to the winch 4, and the parts of the cable and the PTFE water pipe that are not tied together are extended from the winch 4 and connected to the frequency conversion controller 8 and the true value determination and sampling device 2 respectively.
  • the isolation device includes an inflatable packer 11, a high-pressure pipeline 12 and an air supply source 13.
  • the inflatable packer 11 includes an upper joint 14, a lower joint 15, a rubber barrel 6 and a central pipe 17.
  • the rubber cartridge 6 is set on the outside of the central tube 17, the rubber cartridge 6 is connected to the air supply source 13 through the high-pressure pipeline 12, the upper joint 14 is threadedly connected to the top of the central tube 17, and the lower joint 15 is threadedly connected to the lower end of the central tube 17 , the lower joint 15 and the lower end of the central tube 17 are sealed by an O-ring, and the body of the sampling tube 6 passes through the upper joint 14, the lower joint 15 and the central tube 17.
  • the inflatable packer 11 is required for isolation, the gas from the air supply source 13 is flushed into the rubber cylinder 6 through the air pump, causing the rubber cylinder 6 to swell and play a sealing role.
  • the body of the true value determination and sampling device 2 is a rectangular box 18.
  • the box 18 is provided with a circular water inlet 19, a drain 20, an overflow 21 and a monitoring window 22;
  • the water inlet 19 is disposed in the middle of one side of the box 18 , the drain 20 and the overflow 21 are disposed on the other side of the box 18 , and the overflow 21 is located at the top of the drain 20 ; the distance between the water inlet 19 and the sampling pipe 6
  • the water outlet is connected, and the drain outlet 20 is provided with a solenoid valve for controlling drainage;
  • the drain outlet 20 and the overflow outlet 21 are connected with polytetrafluoroethylene drainage pipes, and a water quality detection probe (not shown in the figure) is placed in the monitoring window 22, and
  • the monitoring window 22 is sealed using an O-ring.
  • the baffle 23 is set horizontally to divide the box 18 into a water sample flow cell 24 and a low disturbance sampling area 25.
  • the water sample flow tank 24 is set at the bottom of the low disturbance sampling area 25.
  • the water quality The detection probe is located in the water sample flow cell 24.
  • the water quality detection probe is used to determine the true value of the water sample.
  • Multiple placement slots can be provided on the baffle 23 so that several sampling bottles can be placed in the low-disturbance sampling area 25 for Collect water samples with low disturbance. Detect the pH value, temperature, conductivity, redox potential, dissolved oxygen and turbidity of water samples by setting up water quality detection probes.
  • the automatic controller 3 includes a water pump control switch, a frequency converter frequency modulation unit, a monitoring probe power supply unit, a liquid crystal screen, a solenoid valve control unit, a storage system, an alarm unit and a Bluetooth module, in which the water pump control switch is used to control Start and shut down the sampling pump 5; the frequency converter frequency modulation unit uses the RS485 serial port to adjust the frequency of the frequency conversion controller 8 to control the flow of the sampling pump 5; the monitoring probe power supply unit includes the water supply level and water temperature monitoring probe 9 power supply and the water supply quality detection probe There are two power supply units for power supply; the water level and water temperature monitoring probe 9 uses 4 wires with a voltage of 9V, and the water quality detection probe uses 4 wires with a voltage of 12V, both of which use RS485 serial ports; the power supply voltage of the solenoid valve control unit is 12V and is used to control the electromagnetic The starting and closing of the valve; the storage system is used to store the water quality testing data during the sampling process; the alarm unit is
  • the method of using the portable and intelligent low-disturbance sampling equipment in the present invention includes the following steps:
  • the water outlet of the sampling pipe 6 is connected to the water inlet 19 of the true value determination and sampling device 2.
  • the cable 7 of the sampling pump 5 is connected to the frequency converter. Controller 8; fix the water level and water temperature monitoring probe 9 about 20cm above the connection joint between the sampling pipe 6 and the sampling pump 5, and fix the data line 10 of the water level and water temperature monitoring probe 9 on the sampling pipe 6; install the true value determination and sampling device Install a solenoid valve on the water outlet of 2 and connect it to the drainage pipeline.
  • the overflow port 21 is directly connected to the polytetrafluoroethylene drainage pipeline; place the water quality detection probe in the monitoring window 22, and use an O-ring to seal the monitoring window 22; pump water with low disturbance
  • the device, the underground monitoring device, the true value determination and sampling device 2 all need to be connected to the power supply device 1 through the automatic control device through the cable 7 or the data line 10 .
  • the sampling pump 5 After the sampling pump 5 is filled with water normally, close the solenoid valve of the drain port 20 and store water in the water sample flow tank 24 until the water level in the box 18 submerges the water quality detection probe.
  • the water quality detection probe starts to work, and the water quality detection probe starts to work according to the detection time. (You can choose different time intervals from 30min, 15min, 10min, 5min, 3min and 1min) Set to start the true value judgment of the water sample.
  • the sampling data After the true value judgment is completed, the sampling data will be fed back to the automatic control system storage unit and sent to the computer through the Bluetooth module.
  • the mobile APP waits for the automatic control system to store and send the sampling data, and then controls to open the solenoid valve at the drain outlet 20 for drainage. At this point, the first round of sampling work is completed.
  • the automatic control system After the first round of sampling work is completed and the set sampling time interval is reached, the automatic control system starts the second round of sampling work. First, close the solenoid valve of the drain outlet 20 and store water again in the water sample flow tank 24. Repeat the first round. sub-sampling work. After completing three rounds of sampling work in sequence, the automatic control system compares the data of the three sampling results until the three conditions in the detection indicators (PH value, temperature, conductivity, redox potential, dissolved oxygen and turbidity) are met for sampling.
  • the PH stability standard is within ⁇ 0.1
  • the temperature stability index is within ⁇ 0.5°C
  • the conductivity stability index is within ⁇ 10%
  • the redox potential stability index is within ⁇ 10mV or within ⁇ 10%
  • the dissolved oxygen stability index is It is within ⁇ 0.3mg/L or within ⁇ 10%
  • the turbidity stability index is ⁇ 10NTU or within ⁇ 10%. If the sampling criteria are not met, the automatic control system will continue to carry out the next sampling.
  • the automatic control system will open the solenoid valve of the drain port 20 for drainage, and clean the sampling bottle at the drain port 20. After cleaning, open the cover 26 above the low-disturbance sampling area 25, and place the sampling bottle On the baffle 23 of the low disturbance sampling area 25, close the cover 26.
  • the automatic control system controls to close the solenoid valve of the drain port 20, and reduces the flow rate to 0.1-0.5L/min through the frequency conversion controller 8.
  • the liquid level gradually rises and exceeds the mouth of the sampling bottle, the water sample slowly sinks into the sampling bottle. Until it overflows the mouth of the sampling bottle (it can also be judged by the water coming out of the overflow port 21), the sampling is completed.
  • the automatic control device opens the solenoid valve of the drain port 20 for drainage, and controls to close the sampling pump 5 and other monitoring devices. After the sampling is completed, the equipment in the well is lifted out.
  • the mechanism of the lightweight and intelligent low-disturbance sampling equipment and method of the present invention is: through the automatic control system, the sampling equipment, monitoring equipment and data storage and transmission are intelligently managed, which not only enables low-disturbance sampling, but also completely and efficiently obtains representatives from the monitoring wells. It can provide specific groundwater samples that meet the sample collection requirements for inorganic components, organic components, microorganisms, dissolved oxygen, etc., and can intelligently analyze the sampling data and control the sampling process, which is of great significance for groundwater pollution monitoring.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种轻便智能化低扰动采样设备,包括供电装置(1)、低扰动抽水装置、封隔装置、井下监测装置、真值判定及采样装置(2)和自动控制器(3),低扰动抽水装置包括采样泵(5)、采样管(6)、电缆(7)和变频控制器(8),用于完成地下水低扰动采样任务;真值判定及采样装置(2)用于水样流通和判断采集水样是否为地层真实水样;井下监测装置用于测量井下水位、水温数据;低扰动抽水装置、井下监测装置、真值判定及采样装置(2)均需经电缆(7)或数据线通过自动控制器(3)连接至供电装置(1);该采样设备对地下含水层扰动较小,能够满足无机组分、有机组分、微生物、溶解氧等检测样品采集要求,而且具有真值判定功能,能够对水样进行TDS、PH、溶解氧等参数进行分析。

Description

一种轻便智能化低扰动采样设备 技术领域
本发明涉及水体采样检测技术领域,特别是涉及一种轻便智能化低扰动采样设备。
背景技术
采样和监测设备是地下水污染监测网中的基础环节,是决定地下水污染监测准确性的关键环节之一。传统的单一混合层采样方式受地下水流向的季节性变动或降水波动影响较大,且京津冀地区地下水中存在大面积的降落漏斗,受到降水影响波动显著,不能满足地下水污染羽和污染程度描述需求。
在地下水采样过程中,如何完整高效的从监测井中获取具有代表性的地下水样品是采样工作的重点和难点,国内外学者分别投入大量精力致力于该项技术的研究。传统的地下水采样器具(贝勒管、抓取式采样器、气体置换式采样器、气囊泵、蠕动泵电动潜水泵、惯性提升泵等)在地下水采样过程中取样部件反复穿越或强烈搅动含水层,扰动较大,使得水中含有的有机污染物挥发,并导致不同地层或含水层之间地下水水样的交叉污染,从而使得取得的水样不足以代表某一深度的实际污染情况。
因此,亟需开展轻便智能化低扰动采样设备研发,提升我国地下水污染采样和监测技术水平,为正确评价地下水污染状况提供技术支撑。
发明内容
本发明的目的是提供一种轻便智能化低扰动采样设备,以解决上述现有技术存在的问题,对地下含水层扰动较小,能够满足无机组分、有机组分、微生物、溶解氧等检测样品采集要求,而且具有真值判定功能,能够对水样进行TDS、PH、溶解氧等参数进行分析。
为实现上述目的,本发明提供了如下方案:
本发明提供一种轻便智能化低扰动采样设备,包括供电装置、低扰动抽水装置、封隔装置、井下监测装置、真值判定及采样装置和自动控制器,所述低扰动抽水装置包括采样泵、采样管、电缆和变频控制器,用于完成 地下水低扰动采样任务,所述采样泵通过采样管连接真值判定及采样装置;所述封隔装置设置于井内用于封隔目标采水层与其他非目标含水层;所述真值判定及采样装置包括水样流通池、低扰动采样区和水质检测探头,用于水样流通和判断采集水样是否为地层真实水样;所述井下监测装置包括水位水温监测探头和数据线,用于测量井下水位、水温数据;所述低扰动抽水装置、井下监测装置、真值判定及采样装置均需经电缆或数据线通过自动控制器连接至供电装置。
优选地,所述采样泵的排水口连接所述采样管的进水口,所述采样管的出水口经所述封隔装置与所述真值判定及采样装置连通,所述采样泵通过电缆连接所述变频控制器。
优选地,所述采样泵为螺杆潜水泵,外径≤50mm。
优选地,所述采样管包括聚四氟乙烯水管和由四氟乙烯胶带包裹于聚四氟乙烯水管上的钢丝绳和电缆,所述采样管由绞车控制收放。
优选地,所述变频控制器用于调节水泵流量,实现大流量洗井和低流量采样,降低采样辅助时间,减小对水样扰动。
优选地,所述封隔装置包括充气式封隔器、高压管线和供气气源,所述充气式封隔器包括上接头、下接头、胶筒和中心管,所述胶筒套设于所述中心管的外部,所述胶筒通过所述高压管线连接所述供气气源,所述上接头螺纹连接于所述中心管的顶部,所述下接头螺纹连接于所述中心管的下端,所述下接头与中心管下端通过O型圈进行密封,所述采样管的管体穿过所述上接头、下接头和中心管。
优选地,所述真值判定及采样装置的本体为一长方体形状的箱体,所述箱体设有均为圆形的进水口、排水口、溢水口和监测窗口;所述进水口设置于箱体一侧的中间位置,所述排水口和溢水口设置于所述箱体的另一侧,且所述溢水口位于所述排水口的顶部;所述进水口与所述采样管的出水口连接,所述排水口设有电磁阀,用于控制排水;所述排水口和所述溢水口连接有聚四氟乙烯排水管,所述监测窗口内放置水质检测探头,并使用O型圈对监测窗口进行密封。
优选地,所述箱体内部设有挡板,所述挡板横向设置,将所述箱体分 为水样流通池和低扰动采样区,所述水样流通池设置于所述低扰动采样区的底部,所述水质检测探头位于所述水样流通池中,所述水质检测探头用于对水样进行真值判定,所述低扰动采样区中放置若干个采样瓶,用于低扰动采集水样。
优选地,所述水质检测探头能够检测的指标为PH值、温度、电导率、氧化还原电位、溶解氧和浊度。
优选地,所述自动控制器包括水泵控制开关、变频器调频单元、监测探头供电单元、液晶屏、电磁阀控制单元、存储系统、报警单元和蓝牙模块,其中所述水泵控制开关用于控制所述采样泵的启动和关闭;所述变频器调频单元采用RS485串口,用于调节所述变频控制器频率来控制所述采样泵流量的大小;所述监测探头供电单元包括给所述水位水温监测探头供电和给所述水质检测探头供电的两种供电单元;所述水位水温监测探头采用4线,电压为9V,所述水质检测探头采用4线,电压为12V,均采用RS485串口;所述电磁阀控制单元的供电电压为12V,用于控制所述电磁阀的启动和关闭;所述存储系统用于将采样过程中水质检测数据进行存储;所述报警单元用于提示操作人员采样进程,所述蓝牙模块可采用RS485/232串口通讯,用于将采样和水质检测数据传输至手机APP进行远程查看;所述液晶屏用于显示PH值、温度、电导率、氧化还原电位、溶解氧和浊度参数。
本发明相对于现有技术取得了以下有益技术效果:
1、本发明提供的轻便智能化低扰动采样设备,对地下水含水层扰动较小,能够满足无机组分、有机组分、微生物、溶解氧等检测样品采集要求,能完整高效的从监测井中获取具有各层代表性的地下水样品。
2、本发明提供的轻便智能化低扰动采样设备,在采样过程中不接触空气,能够有效降低外部环境对水样干扰。
3、本发明提供的轻便智能化低扰动采样设备,具有携带方便、安装简捷,易于运输等优势,适用深度为120m以内。
4、本发明提供的轻便智能化低扰动采样设备,具有自动控制、智能监测的功能,能够根据采样数据进行智能分析自动控制采样流程,减少人 为因素干扰,省时省力;同时,还具有数据传输功能,能够通过手机APP接受水样分析数据。
5、本发明提供的轻便智能化低扰动采样设备,可与封隔器进行连接,进行地下水分层采样。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中轻便智能化低扰动采样设备的结构示意图;
图2为本发明中真值判定及采样装置的结构示意图;
图中:1-供电装置、2-真值判定及采样装置、3-自动控制器、4-绞车、5-采样泵、6-采样管、7-电缆、8-变频控制器、9-水位水温监测探头、10-数据线、11-充气式封隔器、12-高压管线、13-供气气源、14-上接头、15-下接头、16-胶筒、17-中心管、18-箱体、19-进水口、20-排水口、21-溢水口、22-监测窗口、23-挡板、24-水样流通池、25-低扰动采样区、26-盖板。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种轻便智能化低扰动采样设备,以解决现有技术存在的问题。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本实施例中的轻便智能化低扰动采样设备,如图1所示,包括供电装置1、低扰动抽水装置、封隔装置、井下监测装置、真值判定及采样装置2和自动控制器3,低扰动抽水装置包括采样泵5、采样管6、电缆7和变 频控制器8,用于完成地下水低扰动采样任务,采样泵5通过采样管6连接真值判定及采样装置2;封隔装置设置于井内用于封隔目标采水层与其他非目标含水层;真值判定及采样装置2包括水样流通池24、低扰动采样区25和水质检测探头,用于水样流通和判断采集水样是否为地层真实水样;井下监测装置包括水位水温监测探头9和数据线10,用于测量井下水位、水温数据;低扰动抽水装置、井下监测装置、真值判定及采样装置2均需经电缆或数据线通过自动控制器3连接至供电装置1。
于本具体实施例中,采样泵5的排水口20连接采样管6的进水口,采样管6的出水口经封隔装置与真值判定及采样装置2连通,采样泵5通过电缆7连接变频控制器8。变频控制器8用于调节水泵流量,实现大流量洗井和低流量采样,降低采样辅助时间,减小对水样扰动。采样泵5为螺杆潜水泵,外径≤50mm,,属于容积式转子泵,依靠螺杆和衬套形成的密封腔的容积变化来吸入和排出液体的,流量平稳均匀连续、出口压力稳定、输送介质时不会形成涡流。
于本具体实施例中,采样管6包括聚四氟乙烯水管和由四氟乙烯胶带包裹于聚四氟乙烯水管上的钢丝绳和电缆,这样减小对水样的水质影响,采样管6由绞车4控制收放。钢丝绳的固定端连接在绞车4上,电缆和聚四氟乙烯水管未绑缚在一起的部分由绞车4伸出分别连向变频控制器8和真值判定及采样装置2。
于本具体实施例中,封隔装置包括充气式封隔器11、高压管线12和供气气源13,充气式封隔器11包括上接头14、下接头15、胶筒6和中心管17,胶筒6套设于中心管17的外部,胶筒6通过高压管线12连接供气气源13,上接头14螺纹连接于中心管17的顶部,下接头15螺纹连接于中心管17的下端,下接头15与中心管17下端通过O型圈进行密封,采样管6的管体穿过上接头14、下接头15和中心管17。需要充气式封隔器11封隔时,通过气泵将供气气源13中的气体冲入胶筒6内,使胶筒6胀起,起到封隔作用。
如图2所示,真值判定及采样装置2的本体为一长方体形状的箱体18,箱体18设有均为圆形的进水口19、排水口20、溢水口21和监测窗口22;进水口19设置于箱体18一侧的中间位置,排水口20和溢水口21 设置于箱体18的另一侧,且溢水口21位于排水口20的顶部;进水口19与采样管6的出水口连接,排水口20设有电磁阀,用于控制排水;排水口20和溢水口21连接有聚四氟乙烯排水管,监测窗口22内放置水质检测探头(图中未示出),并使用O型圈对监测窗口22进行密封。箱体18内部设有挡板23,挡板23横向设置,将箱体18分为水样流通池24和低扰动采样区25,水样流通池24设置于低扰动采样区25的底部,水质检测探头位于水样流通池24中,水质检测探头用于对水样进行真值判定,挡板23上可以设置多个放置槽,使低扰动采样区25中能够放置若干个采样瓶,用于低扰动采集水样。通过设置水质检测探头检测水样的PH值、温度、电导率、氧化还原电位、溶解氧和浊度。
于本具体实施例中,自动控制器3包括水泵控制开关、变频器调频单元、监测探头供电单元、液晶屏、电磁阀控制单元、存储系统、报警单元和蓝牙模块,其中水泵控制开关用于控制采样泵5的启动和关闭;变频器调频单元采用RS485串口,用于调节变频控制器8频率来控制采样泵5流量的大小;监测探头供电单元包括给水位水温监测探头9供电和给水质检测探头供电的两种供电单元;水位水温监测探头9采用4线,电压为9V,水质检测探头采用4线,电压为12V,均采用RS485串口;电磁阀控制单元的供电电压为12V,用于控制电磁阀的启动和关闭;存储系统用于将采样过程中水质检测数据进行存储;报警单元用于提示操作人员采样进程,蓝牙模块可采用RS485/232串口通讯,用于将采样和水质检测数据传输至手机APP进行远程查看;液晶屏用于显示PH值、温度、电导率、氧化还原电位、溶解氧和浊度参数。
本发明中的轻便智能化低扰动采样设备的使用方法,包括下列步骤:
A.根据采样要求,依次将采样泵5的出水口连接采样管6的进水口,采样管6的出水口与真值判定及采样装置2进水口19连通,采样泵5的电缆7连接至变频控制器8;将水位水温监测探头9固定于采样管6与采样泵5的连接接头上方20cm左右,水位水温监测探头9的数据线10固定于采样管6线上;将真值判定及采样装置2的出水口安装电磁阀并连接排水管线,溢水口21直接连接聚四氟乙烯排水管线;将水质检测探头放置于监测窗口22内,使用O型圈对监测窗口22进行密封;将低扰动抽 水装置、井下监测装置、真值判定及采样装置2均需经电缆7或数据线10通过自动控制装置连接至供电装置1。
B.设备连接完成后,将采样泵5、水位水温监测探头9下入井中采样位置,到达预订位置后,通过夹持器具将管线固定于井口。
C.打开供电装置1,通过自动控制装置启动采样泵5,并控制变频控制器8调节流量至最大,完成采样前的洗井工作,同时,通过水位水温监测探头9监测水位变化,不仅可防止水位低于采样泵5进水口19,而且可引导操作人员根据水位降深调整采样泵5流量,保证采样泵5正常出水。
D.采样泵5正常上水后,关闭排水口20电磁阀,在水样流通池24中进行蓄水,直至箱体18内水位淹没水质检测探头探头,水质检测探头开始工作,并根据检测时间(可选择30min、15min、10min、5min、3min和1min中不同时间间隔)设置开始对水样进行真值判定,真值判定结束后将采样数据反馈至自动控制系统存储单元并通过蓝牙模块发送至手机APP,等待自动控制系统存储和发送采样数据完毕后,控制打开排水口20处的电磁阀进行排水。至此,完成第一回次采样工作。
E.第一回次采样工作结束后,到达设定采样时间间隔,自动控制系统开始第二次采样工作,首先关闭排水口20电磁阀在水样流通池24中再次蓄水,重复第一回次采样工作。依次完成3个回次采样工作后,自动控制系统对三次采样结果进行数据比对,直至检测指标(PH值、温度、电导率、氧化还原电位、溶解氧和浊度)中三个条件满足采样标准,其中PH稳定标准为±0.1以内,温度稳定指标为±0.5℃以内,电导率稳定指标为±10%以内,氧化还原电位稳定指标为±10mV以内或在±10%以内,溶解氧稳定指标为±0.3mg/L以内或在±10%以内,浊度稳定指标为≤10NTU或在±10%以内。如若未满足采样标准,则自动控制系统会继续开展下一回次采样。
F.满足采样标准后,自动控制系统会打开排水口20电磁阀进行排水,在排水口20对采样瓶进行清洗,清洗结束后,打开低扰动采样区25上方的盖板26,将采样瓶放置于低扰动采样区25的挡板23上,关闭盖板26。
G.自动控制系统控制关闭排水口20电磁阀,并通过变频控制器8降低流量至0.1-0.5L/min,随着液面逐渐升高并超过采样瓶瓶口,水样缓慢没入采样瓶中直至溢出采样瓶瓶口(也可通过溢水口21出水判断),完成采样。接着,自动控制装置打开排水口20电磁阀进行排水,并控制关闭采样泵5和其他监测装置,采样结束,提出井内设备即可。
本发明轻便智能化低扰动采样设备及方法的机理为:通过自动控制系统对采样设备、监测设备及数据存储与传输进行智能化管理,不仅能够进行低扰动采样,完整高效的从监测井中获取代表性的地下水样品,满足无机组分、有机组分、微生物、溶解氧等检测样品采集要求,而且能够对采样数据数据进行智能分析,控制采样进程,对于地下水污染监测具有十分重要的意义。
本发明应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种轻便智能化低扰动采样设备,其特征在于:包括供电装置、低扰动抽水装置、封隔装置、井下监测装置、真值判定及采样装置和自动控制器,所述低扰动抽水装置包括采样泵、采样管、电缆和变频控制器,用于完成地下水低扰动采样任务,所述采样泵通过采样管连接真值判定及采样装置;所述封隔装置设置于井内用于封隔目标采水层与其他非目标含水层;所述真值判定及采样装置包括水样流通池、低扰动采样区和水质检测探头,用于水样流通和判断采集水样是否为地层真实水样;所述井下监测装置包括水位水温监测探头和数据线,用于测量井下水位、水温数据;所述低扰动抽水装置、井下监测装置、真值判定及采样装置均需经电缆或数据线通过自动控制器连接至供电装置。
  2. 根据权利要求1所述的轻便智能化低扰动采样设备,其特征在于:所述采样泵的排水口连接所述采样管的进水口,所述采样管的出水口经所述封隔装置与所述真值判定及采样装置连通,所述采样泵通过电缆连接所述变频控制器。
  3. 根据权利要求1所述的轻便智能化低扰动采样设备,其特征在于:所述采样泵为螺杆潜水泵,外径≤50mm。
  4. 根据权利要求1所述的轻便智能化低扰动采样设备,其特征在于:所述采样管包括聚四氟乙烯水管和由四氟乙烯胶带包裹于聚四氟乙烯水管上的钢丝绳和电缆,所述采样管由绞车控制收放。
  5. 根据权利要求1所述的轻便智能化低扰动采样设备,其特征在于:所述变频控制器用于调节水泵流量,实现大流量洗井和低流量采样,降低采样辅助时间,减小对水样扰动。
  6. 根据权利要求1所述的轻便智能化低扰动采样设备,其特征在于:所述封隔装置包括充气式封隔器、高压管线和供气气源,所述充气式封隔器包括上接头、下接头、胶筒和中心管,所述胶筒套设于所述中心管的外部,所述胶筒通过所述高压管线连接所述供气气源,所述上接头螺纹连接于所述中心管的顶部,所述下接头螺纹连接于所述中心管的下端,所述下接头与中心管下端通过O型圈进行密封,所述采样管的管体穿过所述上 接头、下接头和中心管。
  7. 根据权利要求1所述的轻便智能化低扰动采样设备,其特征在于:所述真值判定及采样装置的本体为一长方体形状的箱体,所述箱体设有均为圆形的进水口、排水口、溢水口和监测窗口;所述进水口设置于箱体一侧的中间位置,所述排水口和溢水口设置于所述箱体的另一侧,且所述溢水口位于所述排水口的顶部;所述进水口与所述采样管的出水口连接,所述排水口设有电磁阀,用于控制排水;所述排水口和所述溢水口连接有聚四氟乙烯排水管,所述监测窗口内放置水质检测探头,并使用O型圈对监测窗口进行密封。
  8. 根据权利要求7所述的轻便智能化低扰动采样设备,其特征在于:所述箱体内部设有挡板,所述挡板横向设置,将所述箱体分为水样流通池和低扰动采样区,所述水样流通池设置于所述低扰动采样区的底部,所述水质检测探头位于所述水样流通池中,所述水质检测探头用于对水样进行真值判定,所述低扰动采样区中放置若干个采样瓶,用于低扰动采集水样。
  9. 根据权利要求7所述的轻便智能化低扰动采样设备,其特征在于:所述水质检测探头能够检测的指标为PH值、温度、电导率、氧化还原电位、溶解氧和浊度。
  10. 根据权利要求7所述的轻便智能化低扰动采样设备,其特征在于:所述自动控制器包括水泵控制开关、变频器调频单元、监测探头供电单元、液晶屏、电磁阀控制单元、存储系统、报警单元和蓝牙模块,其中所述水泵控制开关用于控制所述采样泵的启动和关闭;所述变频器调频单元采用RS485串口,用于调节所述变频控制器频率来控制所述采样泵流量的大小;所述监测探头供电单元包括给所述水位水温监测探头供电和给所述水质检测探头供电的两种供电单元;所述水位水温监测探头采用4线,电压为9V,所述水质检测探头采用4线,电压为12V,均采用RS485串口;所述电磁阀控制单元的供电电压为12V,用于控制所述电磁阀的启动和关闭;所述存储系统用于将采样过程中水质检测数据进行存储;所述报警单元用于提示操作人员采样进程,所述蓝牙模块可采用RS485/232串口通讯,用于将采样和水质检测数据传输至手机APP进行远程查看;所述液 晶屏用于显示PH值、温度、电导率、氧化还原电位、溶解氧和浊度参数。
PCT/CN2022/116470 2022-08-02 2022-09-01 一种轻便智能化低扰动采样设备 WO2024026961A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GBGB2302377.3A GB202302377D0 (en) 2022-09-01 2022-09-01 No details

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210918893.2A CN115266233A (zh) 2022-08-02 2022-08-02 一种轻便智能化低扰动采样设备
CN202210918893.2 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024026961A1 true WO2024026961A1 (zh) 2024-02-08

Family

ID=83746933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116470 WO2024026961A1 (zh) 2022-08-02 2022-09-01 一种轻便智能化低扰动采样设备

Country Status (2)

Country Link
CN (1) CN115266233A (zh)
WO (1) WO2024026961A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117848782A (zh) * 2024-03-05 2024-04-09 河南省新乡水文水资源测报分中心 一种水文水资源地下水有机污染物样本采集装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116256038B (zh) * 2023-05-15 2023-07-11 生态环境部南京环境科学研究所 一种水文地质勘探用地下水水位监测及采样组合平台
CN117903917A (zh) * 2024-01-24 2024-04-19 艾奕康设计与咨询(深圳)有限公司 一种厌氧菌快速采集分析装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189909A (en) * 1989-08-07 1993-03-02 The Tsurumi-Seiki Co., Ltd. Device for measuring properties of underground water and method therefor
CN204612984U (zh) * 2015-04-28 2015-09-02 中国地质大学(武汉) 一种地下水流动采样溢流装置
CN108196021A (zh) * 2017-12-22 2018-06-22 中国地质科学院水文地质环境地质研究所 一种地下水在线监测、代表性水样采集一体化自控装置及其控制方法
CN110031262A (zh) * 2019-03-28 2019-07-19 中国地质调查局水文地质环境地质调查中心 一种低流量低扰动分层采样装置及其采样方法
CN112729953A (zh) * 2020-12-30 2021-04-30 南京万德斯环保科技股份有限公司 一种地下水在线监测和自动采样一体化装置
CN114061649A (zh) * 2020-08-07 2022-02-18 中国环境科学研究院 地下水水质水位同步自动化快速在线监测设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189909A (en) * 1989-08-07 1993-03-02 The Tsurumi-Seiki Co., Ltd. Device for measuring properties of underground water and method therefor
CN204612984U (zh) * 2015-04-28 2015-09-02 中国地质大学(武汉) 一种地下水流动采样溢流装置
CN108196021A (zh) * 2017-12-22 2018-06-22 中国地质科学院水文地质环境地质研究所 一种地下水在线监测、代表性水样采集一体化自控装置及其控制方法
CN110031262A (zh) * 2019-03-28 2019-07-19 中国地质调查局水文地质环境地质调查中心 一种低流量低扰动分层采样装置及其采样方法
CN114061649A (zh) * 2020-08-07 2022-02-18 中国环境科学研究院 地下水水质水位同步自动化快速在线监测设备
CN112729953A (zh) * 2020-12-30 2021-04-30 南京万德斯环保科技股份有限公司 一种地下水在线监测和自动采样一体化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117848782A (zh) * 2024-03-05 2024-04-09 河南省新乡水文水资源测报分中心 一种水文水资源地下水有机污染物样本采集装置
CN117848782B (zh) * 2024-03-05 2024-05-28 河南省新乡水文水资源测报分中心 一种水文水资源地下水有机污染物样本采集装置

Also Published As

Publication number Publication date
CN115266233A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024026961A1 (zh) 一种轻便智能化低扰动采样设备
US10989702B2 (en) Laboratory tracer experiment system for medium characteristic inversion of karst conduit
CN204612984U (zh) 一种地下水流动采样溢流装置
CN106595802A (zh) 深基坑外侧地下水监测、报警及自动回灌施工方法
CN108871873A (zh) 垃圾填埋场地下水自动采样监测装置
WO2023174109A1 (zh) 底泥污染过程与控制智能模拟装置及实验方法
CN106404314B (zh) 液体介质测漏仪
CN102128735A (zh) 深水采样系统
CN104567993A (zh) 走航式水体探测系统
CN206768791U (zh) 深基坑外侧地下水监测、报警及自动回灌系统
CN204269640U (zh) 一种海水检测及采集设备
CN206594155U (zh) 一种便捷式海洋水质检测仪
CN112729953A (zh) 一种地下水在线监测和自动采样一体化装置
CN218067928U (zh) 一种多功能水质监测装置
CN212255161U (zh) 水库、河道的水质监测装置及水质监测系统
CN206096106U (zh) 一种发电机内冷水水质监测装置
CN211527944U (zh) 水质监测预处理装置及水质监测系统
CN113176388A (zh) 一种水库水源检测用便于采样的水源检测装置
CN207751990U (zh) 一种排水检测装置
CN207330407U (zh) 一种反应池内隔墙的气封堵出水装置
CN207164016U (zh) 一种用于二氧化碳驱油埋存的气体泄露在线监测预警装置
CN217075623U (zh) 一种地下式废液储罐
CN211598631U (zh) 一种流量标定橇装置
CN212508184U (zh) 一种闭坑矿井斜井下山封井装置
CN212932611U (zh) 一种水质在线连续自动监测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953757

Country of ref document: EP

Kind code of ref document: A1