WO2024026792A1 - 通信方法、装置、设备、存储介质、芯片及程序产品 - Google Patents

通信方法、装置、设备、存储介质、芯片及程序产品 Download PDF

Info

Publication number
WO2024026792A1
WO2024026792A1 PCT/CN2022/110374 CN2022110374W WO2024026792A1 WO 2024026792 A1 WO2024026792 A1 WO 2024026792A1 CN 2022110374 W CN2022110374 W CN 2022110374W WO 2024026792 A1 WO2024026792 A1 WO 2024026792A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
information
frequency domain
bits
input information
Prior art date
Application number
PCT/CN2022/110374
Other languages
English (en)
French (fr)
Inventor
刘敏
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280003013.7A priority Critical patent/CN117859366A/zh
Priority to PCT/CN2022/110374 priority patent/WO2024026792A1/zh
Publication of WO2024026792A1 publication Critical patent/WO2024026792A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method, device, equipment, storage medium, chip and program product.
  • CSI (Channel State Information, channel state information) reporting means that the terminal device obtains CSI based on the measurement of the downlink reference signal (such as CSI-RS (Channel State Information Reference Signal, channel state information reference signal)) sent to the network device, and performs the CSI in accordance with the downlink reference signal (such as CSI-RS (Channel State Information Reference Signal, channel state information reference signal)) sent to the network device, and performs the CSI in accordance with the The reporting method and uplink resources configured by the network device are used to report the above CSI to the network device.
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • AI Artificial Intelligence
  • ML Machine Learning
  • the terminal device measures the CSI based on the downlink reference signal, compresses and codes the CSI through the CSI compression coding model to obtain the compressed and coded CSI, and then quantizes the compressed and coded CSI into a binary bit stream and sends it to the network device; the network device The above-mentioned received binary bit stream is dequantized, and then the information obtained by the inverse quantization is input to the CSI decoding model for decoding to obtain the restored CSI.
  • the above-mentioned CSI compression encoding and CSI decoding models may be AI/ML models.
  • Embodiments of the present application provide a communication method, device, equipment, storage medium, chip and program product.
  • the technical solutions are as follows:
  • a communication method is provided, the method is executed by a terminal device, and the method includes:
  • Receive first configuration information sent by the network device where the first configuration information is used to indicate a correspondence between input information of the CSI compression coding model and CSI reporting information.
  • a communication method is provided, the method is executed by a network device, and the method includes:
  • the first configuration information is used to indicate the correspondence between the input information of the CSI compression coding model and the CSI reporting information.
  • a communication device includes:
  • the receiving module is configured to receive first configuration information sent by the network device, where the first configuration information is used to indicate the correspondence between the input information of the CSI compression coding model and the CSI reporting information.
  • a communication device includes:
  • a sending module configured to send the first configuration information to the terminal device, where the first configuration information is used to indicate the correspondence between the input information of the CSI compression coding model and the CSI reporting information.
  • a terminal device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program to implement the above-mentioned terminal device side. communication method.
  • a network device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program to implement the above-mentioned network device side. communication method.
  • a computer-readable storage medium is provided, and a computer program is stored in the storage medium, and the computer program is used to be executed by a processor to implement the above communication method on the terminal device side, Or implement the above communication method on the network device side.
  • a communication system includes a terminal device and a network device.
  • the terminal device is used to implement the communication method on the terminal device side.
  • the network device is used to implement the above communication method. Communication method on the network device side.
  • a chip is provided.
  • the chip includes programmable logic circuits and/or program instructions. When the chip is running, it is used to implement the above communication method on the terminal device side, or to implement the above Communication method on the network device side.
  • a computer program product includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • a processor reads the computer-readable storage medium from the computer-readable storage medium.
  • the terminal device can generate CSI reporting information that meets the configuration requirements when using the CSI compression coding model to compress and code the CSI, which helps Improve the success rate and accuracy of decoding and recovering CSI by network equipment.
  • Figure 1 is a schematic diagram of a network architecture provided by an exemplary embodiment of the present application.
  • Figure 2 is a flow chart of a communication method provided by an exemplary embodiment of the present application.
  • Figure 3 is a flow chart of a communication method provided by another exemplary embodiment of the present application.
  • Figure 4 is a flow chart of a communication method provided by another exemplary embodiment of the present application.
  • Figure 5 is a block diagram of a communication device provided by an exemplary embodiment of the present application.
  • Figure 6 is a block diagram of a communication device provided by another exemplary embodiment of the present application.
  • Figure 7 is a block diagram of a communication device provided by an exemplary embodiment of the present application.
  • FIG. 1 is a schematic diagram of a network architecture 100 provided by an exemplary embodiment of the present application.
  • the network architecture 100 may include: terminal equipment 10, access network equipment 20 and core network equipment 30.
  • the terminal equipment 10 may refer to a UE (User Equipment), an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a user agent or a user device.
  • the terminal device 10 may also be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, or a PDA (Personal Digital Assistant).
  • terminal devices the devices mentioned above are collectively referred to as terminal devices.
  • the number of terminal devices 10 is usually multiple, and one or more terminal devices 10 may be distributed in the cell managed by each access network device 20 .
  • terminal equipment and “UE” are often used interchangeably, but those skilled in the art can understand that the two usually express the same meaning.
  • the access network device 20 is a device deployed in the access network to provide wireless communication functions for the terminal device 10 .
  • the access network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, etc.
  • the names of devices with access network device functions may be different. For example, in 5G NR systems, they are called gNodeB or gNB. As communication technology evolves, the name "access network equipment" may change.
  • access network devices For convenience of description, in the embodiment of the present application, the above-mentioned devices that provide wireless communication functions for the terminal device 10 are collectively referred to as access network devices.
  • a communication relationship can be established between the terminal device 10 and the core network device 30.
  • the access network device 20 may be EUTRAN (Evolved Universal Terrestrial Radio Access Network, Evolved Universal Terrestrial Wireless Network) or one or more eNodeBs in EUTRAN;
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • the access network device 20 may be a RAN (Radio Access Network) or one or more gNBs in the RAN.
  • the "network device" refers to the access network device 20, such as a base station, unless otherwise specified.
  • the core network device 30 is a device deployed in the core network.
  • the core network device 30 mainly functions to provide user connections, manage users, and carry services, and serves as an interface for the bearer network to provide to external networks.
  • the core network equipment in the 5G NR system can include AMF (Access and Mobility Management Function, access and mobility management function) entities, UPF (User Plane Function, user plane function) entities and SMF (Session Management Function, session management Function) entity and other equipment.
  • AMF Access and Mobility Management Function, access and mobility management function
  • UPF User Plane Function, user plane function
  • SMF Session Management Function, session management Function
  • the access network device 20 and the core network device 30 communicate with each other through some air interface technology, such as the NG interface in the 5G NR system.
  • the access network device 20 and the terminal device 10 communicate with each other through some air interface technology, such as the Uu interface.
  • the "5G NR system" in the embodiments of this application may also be called a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solution described in the embodiment of this application can be applied to the LTE system, the 5G NR system, the subsequent evolution system of the 5G NR system, and can also be applied to applications such as NB-IoT (Narrow Band Internet of Things, narrowband Internet of Things) systems and other communication systems, this application does not limit this.
  • NB-IoT Near Band Internet of Things, narrowband Internet of Things
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) on carriers used by the cell.
  • the cell can be The cell corresponding to the network equipment (such as the base station).
  • the cell can belong to the macro base station or the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), Pico cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • FIG. 2 is a flow chart of a communication method provided by an exemplary embodiment of the present application. This embodiment illustrates the application of this method in the network architecture shown in FIG. 1 .
  • the method may include the following steps 210:
  • the terminal device receives the first configuration information sent by the network device.
  • the first configuration information is used to indicate the correspondence between the input information of the CSI compression coding model and the CSI reporting information.
  • the network device sends the first configuration information to the terminal device, and accordingly, the terminal device receives the first configuration information sent by the network device.
  • the CSI compression encoding model is an AI/ML model used to compress and encode CSI.
  • the input information of the CSI compression coding model refers to the information input into the model, such as the CSI obtained by the terminal device measuring the reference signal (or pilot signal, such as CSI-RS) sent by the network device.
  • the CSI reporting information of the CSI compression coding model can be understood as the output information of the CSI compression coding model, that is, the information output by the model after compressing and coding the above input information, or it can be understood as the output information of the CSI compression coding model. Reprocessed information, such as quantified information, etc.
  • the CSI reported information here can be understood as a kind of UCI (UplinkControlInformation, uplink control information).
  • the channel coding, CRC (Cyclic Redundancy Check, cyclic redundancy check), scrambling code, and various coding and modulation processes required for specific transmission are not included in the within the scope of this application.
  • the CSI reported information needs to be sent by the terminal device to the network device so that the network device decodes and restores the CSI based on the CSI reported information. For example, the network device decodes the CSI reported information through a CSI decoding model to obtain the restored CSI.
  • the first configuration information is carried in RRC (Radio Resource Control, Radio Resource Control) signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • the network device sends RRC signaling to the terminal device, and the RRC signaling includes the above first configuration information.
  • the first configuration information is used to indicate the correspondence between at least one set of input information of the CSI compression coding model and the CSI reporting information.
  • the first configuration information is used to indicate the correspondence between multiple sets of different input information of the CSI compression coding model and the CSI reporting information.
  • the first configuration information may be a table, or may be expressed in a table form.
  • the table may include a correspondence between at least one set of input information and CSI reporting information, such as including multiple sets of different input information and Correspondence between CSI reported information.
  • the corresponding relationship between the above input information and CSI reporting information includes at least one of the following examples 1 to 5:
  • Example 1 Correspondence between the rank corresponding to at least one set of input information and the data amount of CSI report information.
  • the first configuration information is used to indicate the correspondence between the rank corresponding to at least one set of input information and the data amount of CSI reporting information. For example, for different groups of corresponding relationships, the corresponding ranks of the input information are different, and the data amounts of the corresponding CSI reporting information are also different.
  • the number of ranks corresponding to the input information is less than or equal to the number of ports of the receiving antenna of the terminal device.
  • the amount of data is represented by any one of the following values: number of parameters, number of bits, and compression rate.
  • the number of parameters can be the number of parameters obtained after the input information is compressed and encoded by the CSI compression coding model.
  • the parameters can be any one or more of floating point number form, integer form, complex number form or other numerical form. Combination, this application does not limit this.
  • the number of bits may be the parameters obtained after the input information is compressed and encoded by the CSI compression coding model, and the number of bits contained in the bit stream obtained after further quantization.
  • the compression rate can be the ratio of the number of parameters obtained after the input information is compressed and encoded by the CSI compression coding model, and the number of parameters contained in the input information.
  • the first configuration information may be a table, or expressed in a table form.
  • the number of floating point numbers or bits can also be calculated by the formula related to the rank value. K is less than or equal to the number of ports of the receiving antenna of the terminal device.
  • Example 2 Correspondence between the number of frequency domain units corresponding to at least one set of input information and the data amount of CSI reporting information.
  • the first configuration information is used to indicate the correspondence between the number of frequency domain units corresponding to at least one set of input information and the data amount of CSI reporting information. . For example, for different groups of corresponding relationships, the number of frequency domain units corresponding to the input information is different, and the data amount of the corresponding CSI reporting information is also different.
  • the number of frequency domain units corresponding to the input information is less than or equal to the number of frequency domain units where the reference signal is located.
  • the reference signal may be CSI-RS
  • the network device sends the CSI-RS to the terminal device
  • the terminal device receives the CSI-RS and estimates the CSI.
  • the number of frequency domain units corresponding to the input information is L, L is a positive integer, and L is less than or equal to the number of frequency domain units where the reference signal is located.
  • the frequency domain unit is RB (Resource Block), or sub-carrier (sub-carrier), or sub-band (sub-band).
  • RB Resource Block
  • sub-carrier sub-carrier
  • sub-band sub-band
  • the first configuration information may be a table, or expressed in a table format.
  • the number of floating point numbers or bits of the corresponding CSI report information can also be calculated through the formula related to the number of frequency domain units. L is less than or equal to the number of frequency domain units where the reference signal is located.
  • Example 3 Correspondence between at least one set of first value ranges and the data amount of CSI report information.
  • the first value range refers to the value range of the rank corresponding to the input information.
  • the first configuration information is used to indicate the correspondence between at least one set of first value ranges and the data amount of the CSI reporting information.
  • the first value The range refers to the value range of the rank corresponding to the input information. For example, for different groups of corresponding relationships, the first value range is different, and the data amount of the corresponding CSI reporting information is also different.
  • the first configuration information may be a table, or expressed in a table format.
  • Example 4 Correspondence between at least one set of second value ranges and the data amount of CSI reporting information.
  • the second value range refers to the value range of the number of frequency domain units corresponding to the input information.
  • the first configuration information is used to indicate the correspondence between at least one set of second value ranges and the data amount of the CSI reporting information.
  • the value range refers to the value range of the number of frequency domain units corresponding to the input information. For example, for different groups of corresponding relationships, the second value range is different, and the data amount of the corresponding CSI report information is also different.
  • the first configuration information may be a table, or expressed in a table form, and the content of the table is a floating list of corresponding CSI reporting information within the range of the number of frequency domain units.
  • Example 5 Correspondence between the data volume of at least one set of input information and the data volume of CSI report information.
  • the first configuration information may be a table, or expressed in a table form, and the content of the table is the number of floating point numbers or bit numbers of the input information, At least one set of correspondences between the number of floating point numbers or the number of bits in the CSI report information. For example, for different groups of corresponding relationships, the data amount of the input information is different, and the data amount of the corresponding CSI reporting information is also different.
  • the full channel information mentioned above refers to the angle domain-time obtained by the terminal equipment after measuring the downlink reference signal to obtain channel information including the spatial domain and frequency domain, and then performing IDFT (Inverse Discrete Fourier Transform). Extended domain channel.
  • the feature vector refers to the feature information extracted from the channel information after the terminal equipment obtains the channel information including the air domain and frequency domain by measuring the downlink reference signal.
  • the feature information is expressed in the form of one or more sets of vectors.
  • the relationship between the number of parameters, the number of bits and the compression rate is: through a certain quantization method, the parameters (such as floating point numbers, real numbers, complex numbers, etc.) can be quantized into a binary bit sequence (or called is a bit stream), the number of bits contained in the bit sequence is the number of bits. For example, if the quantization degree is 4, each parameter can be quantized into 2 bits for representation.
  • the compression rate and the input information such as the number of parameters contained in the input information
  • the number of parameters or the number of bits obtained after the input information is compressed and encoded can be calculated.
  • the technical solution provided by the embodiments of this application configures the correspondence between the input information of the CSI compression coding model and the CSI reported information, so that when the terminal device uses the CSI compression coding model to compress and code the CSI, it can generate data that meets the configuration requirements.
  • CSI reporting information which helps improve the success rate and accuracy of network equipment decoding and recovery of CSI.
  • FIG. 3 is a flow chart of a communication method provided by another exemplary embodiment of the present application. This embodiment illustrates an example in which this method is applied to the network architecture shown in FIG. 1 .
  • the method may include at least one of the following steps 310 to 340:
  • the network device sends first configuration information to the terminal device.
  • the first configuration information is used to indicate the correspondence between the input information of the CSI compression coding model and the CSI reporting information.
  • the terminal device receives the first configuration information sent by the network device.
  • step 320 the terminal device determines the CSI reporting information corresponding to the input information according to the first configuration information as the target CSI reporting information.
  • the input information may be information obtained by the terminal device reprocessing the CSI obtained by measuring the reference signal (such as CSI-RS) sent by the network device.
  • the type of the input information may be full channel information or a feature vector.
  • the terminal device can query the corresponding relationship (or table) indicated by the first configuration information and determine the CSI reporting information corresponding to the input information as the target CSI reporting information.
  • the number of floating point numbers or bits is used as the reporting overhead of the target CSI reporting information.
  • the terminal device can determine the floating point number or bit number of the input information according to the floating point number or bit number of the input information.
  • the number of points or bits is determined from the above correspondence relationship (or table) and the number of floating points or bits corresponding to the CSI reporting information is determined as the reporting overhead of the target CSI reporting information.
  • step 330 the terminal device processes the CSI to be reported through the CSI compression coding model according to the reporting overhead of the target CSI reporting information, and obtains a CSI bit stream that meets the requirements of the target CSI reporting information.
  • the target CSI reporting information specifies or restricts the amount of CSI data reported by the terminal device to the network device, such as the number of parameters, the number of bits, or the compression rate.
  • the terminal device uses the CSI compression coding model to process the CSI to be reported, it generates a CSI bit stream that satisfies the constraints or constraints according to the regulations or constraints of the target CSI report information.
  • step 340 the terminal device sends the CSI bit stream to the network device.
  • the network device After receiving the CSI bit stream sent by the terminal device, the network device can dequantize the CSI bit stream, and then input the information obtained by the inverse quantization into the CSI decoding model for decoding to obtain the restored CSI.
  • the CSI decoding model is an AI/ML model used to decode CSI.
  • the network device can determine the model parameters of the CSI decoding model based on the data volume of the CSI bit stream received from the terminal device (such as the number of parameters or the number of bits), and then use the CSI decoding model to perform the inverse quantization The obtained information is decoded and the recovered CSI is obtained. In this way, the network device can successfully recover the CSI.
  • FIG. 4 is a flow chart of a communication method provided by another exemplary embodiment of the present application. This embodiment illustrates the application of this method in the network architecture shown in FIG. 1 .
  • the method may include at least one of the following steps 410 to 420:
  • step 410 the network device sends second configuration information to the terminal device, where the second configuration information is used to indicate CSI reporting resources and/or CSI reporting methods.
  • the terminal device receives the second configuration information sent by the network device.
  • CSI reporting resources refer to the resources used by terminal devices to report CSI to network devices, such as time-frequency resources. CSI reporting resources may also be called CSI feedback resources or uplink feedback resources, which is not limited in this application.
  • the CSI reporting method refers to the method used by the terminal device to report CSI to the network device, such as filling in 0 or splitting.
  • the terminal device uses the CSI reporting resources and/or the CSI reporting method determined according to the second configuration information to send the bit stream for CSI reporting obtained through the CSI compression coding model to the network device.
  • the above bit stream used for CSI reporting may also be called a CSI bit stream.
  • the network device receives the CSI bit stream sent by the terminal device.
  • the process of the terminal device generating the CSI bit stream please refer to the introduction in the embodiment of Figure 3 above, which will not be described in detail in this embodiment.
  • the CSI reporting method includes at least one of the following methods 1 to 2:
  • Method 1 Filling in 0s means that the network device configures the reporting resources required for the maximum number of bits of the CSI bit stream, and the terminal device fills in 0s for the bits not occupied by the CSI bit stream in the above maximum number of bits.
  • the above maximum number of bits is 8, and the actual number of bits occupied by the CSI bit stream is 4, then there are 4 unoccupied bits, and the 4 unoccupied bits are filled with 0s.
  • Method 2 Split method refers to dividing the CSI into the first part and the second part.
  • the number of bits of the first part is fixed or the required reporting resources are determined, and the number of bits or the required reporting resources of the second part is determined based on the content of the first part.
  • the size of the reported resource is determined based on the content of the first part.
  • the input information of the CSI compression coding model is a feature vector
  • the maximum number of bits is the product of the number of frequency domain units to be reported, the number of antenna ports of the network device, the number of antenna ports of the terminal device, and the number of quantization bits;
  • the first part at least includes information used to determine the rank value
  • the second part includes information related to the feature vector output by the CSI compression coding model corresponding to the rank value
  • the network device when configuring the CSI reporting resources, may adopt one of the following methods A and B.
  • Method A Fill in 0.
  • the network device configures the maximum feedback overhead (i.e., the maximum number of bits mentioned above).
  • the maximum feedback overhead the number of frequency units that need to be reported * the number of antenna ports of the network device * the number of antenna ports of the terminal device * the number of quantization bits, frequency domain Units can be subbands, * means multiplication.
  • the terminal device fills in 0 the difference between the actual feedback and the maximum feedback overhead.
  • the network device can also be configured with broadband feedback or partial sub-band feedback.
  • the maximum feedback overhead is the number of antenna ports of the network device * the number of antenna ports of the terminal device * the number of quantization bits, or the number of partial frequency domain units * the antenna ports of the network device Number * number of antenna ports of the terminal device * number of quantization bits; where, the number of partial frequency domain units is the number of frequency domain units included in the partial subbands configured by the network equipment.
  • Method B Use splitting method.
  • the CSI is split into two parts.
  • the number of bits in the first part is fixed, and the content of the second part can be determined by the content of the first part.
  • the rank value can be determined. Therefore, the first part includes at least: rank value.
  • the first part of CSI does not exclude the reporting of other information that affects the overhead of the second part of CSI.
  • the second part at least includes information related to the feature vector output by the CSI compression coding model corresponding to the rank value.
  • the input information of the CSI compression coding model is full channel information
  • the maximum number of bits is the product of the number of all frequency domain units, the number of antenna ports of the network device, the number of antenna ports of the terminal device, and the number of quantization bits; where the number of all frequency domain units is the number of terminal equipment measurements.
  • the first part includes information used to determine the number of effective frequency domain units
  • the second part includes the full channel related information output by the CSI compression coding model corresponding to the number of effective frequency domain units.
  • the network device When configuring CSI reporting resources, you can use one of the following methods C and D.
  • Method C Fill in 0.
  • the network device configures the maximum feedback overhead (i.e., the maximum number of bits mentioned above).
  • the maximum feedback overhead the number of all frequency domain units * the number of antenna ports of the network device * the number of antenna ports of the terminal device * the number of quantization bits.
  • the terminal device fills in 0 the difference between the actual feedback and the maximum feedback overhead.
  • Method D Use splitting method. Split the CSI into two parts, and the network device configuration report is divided into two parts.
  • the number of bits in the first part is fixed, and the number of bits in the second part can be determined from the content of the first part. For example, through the first part of the content, the number of frequency domain units can be determined. Therefore, the first part includes at least: the number of effective frequency domain units.
  • the first part of CSI does not exclude the reporting of other information that affects the overhead of the second part of CSI.
  • the second part at least includes the full channel related information output by the CSI compression coding model.
  • whether the terminal device reports using the 0-filling method or the splitting method is decided by the network device. For example, the network device indicates the CSI reporting mode in the second configuration information, and the terminal device determines the CSI reporting mode to be adopted based on the second configuration information.
  • the configuration of the first part and the second part satisfies at least one of the following:
  • the time domain reporting characteristics include at least one of the following: periodic reporting, semi-static reporting, and aperiodic reporting.
  • periodic reporting For example, the first part uses periodic or semi-static reporting, and the second part uses semi-static or aperiodic reporting.
  • the frequency domain reporting characteristics include at least one of the following: using wideband reporting and using subband reporting.
  • the first part is reported using broadband
  • the second part is reported using broadband or subband.
  • the physical channel includes at least one of the following: PUCCH (Physical Uplink Control Channel, physical uplink control channel), PUSCH (Physical Uplink Shared Channel, physical uplink shared channel).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • the time domain reporting characteristics of the above first part and the second part may be the same or different; the frequency domain reporting characteristics of the above first part and the second part may be the same or different; the above first part and the second part may be different.
  • the physical channels can be the same or different. That is to say, the time domain reporting characteristics, frequency domain reporting characteristics, and physical channels of the first part and the second part are not forced to be different, but indicate that different characteristics can be configured.
  • the first part is the semi-static broadband report transmitted on the PUCCH
  • the second part is the aperiodic broadband report transmitted on the PUSCH.
  • the splitting method if the content contained in the second part needs to be discarded due to insufficient CSI reporting resources,
  • the priority of discarding from high to low is: wideband CSI, even subband CSI, odd subband CSI;
  • the priority of discarding is: the content that is repeatedly transmitted for the i-th time is higher than the content that is repeatedly transmitted for the i+1th time, i is a positive integer.
  • the priority of discarding from high to low is:
  • rep-x represents the number of repeated transmissions.
  • rep-1 means that the number of repeated transmissions is 1, then the CSI report is only transmitted once, and only the priorities shown above 1 to 3 are considered at this time.
  • rep-2 means that the number of repeated transmissions is 2, then the CSI report is transmitted twice. In this case, the priorities shown in 1 to 6 above are considered.
  • rep-3, rep-4, etc. there can also be rep-3, rep-4, etc., and the priority order of discarding can be deduced in the same way, which will not be described again.
  • the technical solution provided by the embodiment of this application configures CSI reporting resources and/or CSI reporting methods to the terminal device through the network device.
  • the terminal device reports CSI to the network device according to the configuration of the network device, which helps to improve the performance of CSI by the network device. Decoding recovery success rate and accuracy.
  • network equipment can configure different CSI reporting resources and/or CSI reporting methods according to different situations, which can avoid waste of CSI reporting resources and take into account the accuracy of CSI recovery and resource utilization.
  • the above steps related to the execution of the terminal device can be independently implemented as a communication method on the terminal device side; the above steps related to the network device execution can be independently implemented as a communication method on the network device side.
  • Figure 5 is a block diagram of a communication device provided by an exemplary embodiment of the present application.
  • the device has the function of implementing the above method example on the terminal device side, and the function can be implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the device can be the terminal equipment introduced above, or can be set in the terminal equipment.
  • the device 500 may include: a receiving module 510.
  • the receiving module 510 is configured to receive the first configuration information sent by the network device, where the first configuration information is used to indicate the correspondence between the input information of the CSI compression coding model and the CSI reporting information.
  • the correspondence between the input information and the CSI reporting information includes at least one of the following:
  • At least one set of correspondence between the data amount of the input information and the data amount of the CSI reporting information At least one set of correspondence between the data amount of the input information and the data amount of the CSI reporting information.
  • the number of ranks corresponding to the input information is less than or equal to the number of ports of the receiving antenna of the terminal device.
  • the number of frequency domain units corresponding to the input information is less than or equal to the number of frequency domain units where the reference signal is located.
  • the frequency domain unit is RB, or sub-carrier, or sub-band.
  • the amount of data is represented by any one of the following values: number of parameters, number of bits, and compression rate.
  • the device 500 further includes a processing module 520, configured to determine, according to the first configuration information, the CSI reporting information corresponding to the input information as the target CSI reporting information; according to The target CSI reporting information is processed by the CSI compression coding model to obtain a CSI bit stream that meets the requirements of the target CSI reporting information.
  • a processing module 520 configured to determine, according to the first configuration information, the CSI reporting information corresponding to the input information as the target CSI reporting information; according to The target CSI reporting information is processed by the CSI compression coding model to obtain a CSI bit stream that meets the requirements of the target CSI reporting information.
  • the device 500 further includes a sending module 530.
  • the receiving module 510 is also configured to receive second configuration information sent by the network device, where the second configuration information is used to indicate CSI reporting resources and/or CSI reporting methods;
  • the sending module 530 is configured to use the CSI reporting resources and/or CSI reporting methods determined according to the second configuration information to send the bit stream for CSI reporting obtained through the CSI compression coding model to the network device. .
  • the CSI reporting method includes at least one of the following:
  • the 0-filling method refers to the reporting resources required by the network device to configure the maximum number of bits of the CSI bit stream, and the terminal device fills in the bits unoccupied by the CSI bit stream in the maximum number of bits. 0;
  • the splitting method refers to dividing the CSI into a first part and a second part.
  • the number of bits in the first part is fixed or the required reporting resources are determined, and the number of bits in the second part is determined based on the content of the first part. Or the size of the reporting resources required.
  • the input information of the CSI compression coding model is a feature vector
  • the maximum number of bits is the product of the number of frequency domain units that need to be reported, the number of antenna ports of the network device, the number of antenna ports of the terminal device, and the number of quantization bits;
  • the first part at least includes information used to determine the rank value
  • the second part includes information related to the feature vector output by the CSI compression coding model corresponding to the rank value
  • the input information of the CSI compression coding model is full channel information
  • the maximum number of bits is the product of the number of all frequency domain units, the number of antenna ports of the network device, the number of antenna ports of the terminal device, and the number of quantization bits; wherein, the total number of frequency domain units The number of domain units is the frequency domain units within the frequency domain range where the RS measured by the terminal device for CSI reporting is located;
  • the first part includes information used to determine the number of effective frequency domain units
  • the second part includes the entire number of effective frequency domain units output by the CSI compression coding model.
  • Channel related information For the splitting method, the first part includes information used to determine the number of effective frequency domain units, and the second part includes the entire number of effective frequency domain units output by the CSI compression coding model.
  • the configuration for the first part and the second part satisfies at least one of the following:
  • the splitting method if the content contained in the second part needs to be discarded due to insufficient CSI reporting resources,
  • the priority of discarding from high to low is: wideband CSI, even subband CSI, odd subband CSI;
  • the discarding priority is: the content that is repeatedly transmitted for the i-th time is higher than the content that is repeatedly transmitted for the i+1th time, and i is a positive integer.
  • Figure 6 is a block diagram of a communication device provided by another exemplary embodiment of the present application.
  • the device has the function of implementing the above method example on the network device side.
  • the function can be implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the device can be the network device introduced above, or can be set in the network device.
  • the device 600 may include: a sending module 610.
  • the sending module 610 is configured to send the first configuration information to the terminal device, where the first configuration information is used to indicate the correspondence between the input information of the CSI compression coding model and the CSI reporting information.
  • the correspondence between the input information and the output information includes at least one of the following:
  • At least one set of correspondence between the data amount of the input information and the data amount of the CSI reporting information At least one set of correspondence between the data amount of the input information and the data amount of the CSI reporting information.
  • the number of ranks corresponding to the input information is less than or equal to the number of ports of the receiving antenna of the terminal device.
  • the number of frequency domain units corresponding to the input information is less than or equal to the number of frequency domain units where the reference signal is located.
  • the frequency domain unit is RB, or sub-carrier, or sub-band.
  • the amount of data is represented by any one of the following values: number of parameters, number of bits, and compression rate.
  • the sending module 610 is further configured to send second configuration information to the terminal device, where the second configuration information is used to indicate CSI reporting resources and/or CSI reporting methods.
  • the CSI reporting method includes at least one of the following:
  • the 0-filling method refers to the reporting resources required by the network device to configure the maximum number of bits of the CSI bit stream, and the terminal device fills in the bits unoccupied by the CSI bit stream in the maximum number of bits. 0;
  • the splitting method refers to dividing the CSI into a first part and a second part.
  • the number of bits in the first part is fixed or the required reporting resources are determined, and the number of bits in the second part is determined based on the content of the first part. Or the size of the reporting resources required.
  • the input information of the CSI compression coding model is a feature vector
  • the maximum number of bits is the product of the number of frequency domain units that need to be reported, the number of antenna ports of the network device, the number of antenna ports of the terminal device, and the number of quantization bits;
  • the first part at least includes information used to determine the rank value
  • the second part includes information related to the feature vector output by the CSI compression coding model corresponding to the rank value
  • the input information of the CSI compression coding model is full channel information
  • the maximum number of bits is the product of the number of all frequency domain units, the number of antenna ports of the network device, the number of antenna ports of the terminal device, and the number of quantization bits; wherein, the total number of frequency domain units The number of domain units is the frequency domain units within the frequency domain range where the RS measured by the terminal device for CSI reporting is located;
  • the first part includes information used to determine the number of effective frequency domain units
  • the second part includes the entire number of effective frequency domain units output by the CSI compression coding model.
  • Channel related information For the splitting method, the first part includes information used to determine the number of effective frequency domain units, and the second part includes the entire number of effective frequency domain units output by the CSI compression coding model.
  • the configuration for the first part and the second part satisfies at least one of the following:
  • the splitting method if the content contained in the second part needs to be discarded due to insufficient CSI reporting resources,
  • the priority of discarding from high to low is: wideband CSI, even subband CSI, odd subband CSI;
  • the discarding priority is: the content that is repeatedly transmitted for the i-th time is higher than the content that is repeatedly transmitted for the i+1th time, and i is a positive integer.
  • FIG. 7 is a block diagram of a communication device 700 according to an exemplary embodiment.
  • the communication device 700 may be the aforementioned terminal device or network device.
  • the communication device 700 may include: a processor 701, a receiver 702, and a transmitter 703. , memory 704 and bus 705.
  • the processor 701 can be used to implement the function of the processing model in the above device embodiment
  • the receiver 702 can be used to implement the function of the receiving module in the above device embodiment
  • the transmitter 703 can be used to implement the function of the sending module in the above device embodiment.
  • the processor 701 includes one or more processing cores.
  • the processor 701 executes various functional applications and information processing by running software programs and modules.
  • the receiver 702 and the transmitter 703 can be implemented as a communication component, and the communication component can be a communication chip.
  • Memory 704 is connected to processor 701 through bus 705.
  • the memory 704 can be used to store a computer program, and the processor 701 is used to execute the computer program to implement the communication method on the terminal device side or the communication method on the network device side.
  • memory 704 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory (EEPROM, Electrically Erasable Programmable Read Only Memory), Erasable Programmable Read-Only Memory (EPROM, Erasable ProgrammableRead Only Memory), Static Random-Access Memory (SRAM, Static Random-Access Memory), Read-Only Memory ( ROM, Read-Only Memory), magnetic memory, flash memory, programmable read-only memory (PROM, Programmable Read-only Memory).
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Random-Access Memory
  • ROM Read-Only Memory
  • magnetic memory flash memory
  • PROM programmable read-only Memory
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored in the storage medium.
  • the computer program is used to be executed by a processor to implement the above communication method on the terminal device side, or on the network device side. communication method.
  • the computer-readable storage medium may include: ROM (Read-Only Memory), RAM (Random-Access Memory), SSD (Solid State Drives, solid state drive) or optical disk, etc.
  • random access memory can include ReRAM (Resistance Random Access Memory, resistive random access memory) and DRAM (Dynamic Random Access Memory, dynamic random access memory).
  • Embodiments of the present application also provide a communication system.
  • the communication system includes a terminal device and a network device.
  • the terminal device is used to implement the communication method on the terminal device side.
  • the network device is used to implement the communication method on the network device side. Communication methods.
  • Embodiments of the present application also provide a chip.
  • the chip includes programmable logic circuits and/or program instructions. When the chip is running, it is used to implement the communication method on the terminal device side or the communication method on the network device side. .
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • the processor reads and executes the instructions from the computer-readable storage medium.
  • the computer instructions are used to implement the communication method on the terminal device side or the communication method on the network device side.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • predefined can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application is not limited to this.
  • the "plurality” mentioned in this article means two or more than two.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • step numbers described in this article only illustrate a possible execution sequence between the steps.
  • the above steps may not be executed in the numbering sequence, such as two different numbers.
  • the steps are executed simultaneously, or two steps with different numbers are executed in the reverse order as shown in the figure, which is not limited in the embodiments of the present application.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • Storage media can be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、装置、设备、存储介质、芯片及程序产品,属于通信技术领域。所述方法包括:终端设备接收网络设备发送的第一配置信息,第一配置信息用于指示CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系(210)。通过配置CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系,使得终端设备在采用CSI压缩编码模型对CSI进行压缩编码时,可以生成符合该配置要求的CSI上报信息,这有助于提升网络设备对CSI进行解码恢复的成功率和准确性。

Description

通信方法、装置、设备、存储介质、芯片及程序产品 技术领域
本申请涉及通信技术领域,特别涉及一种通信方法、装置、设备、存储介质、芯片及程序产品。
背景技术
CSI(Channel State Information,信道状态信息)上报是指终端设备基于对网络设备发送的下行参考信号(如CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号))的测量得到CSI,并按照网络设备配置的上报方式和上行资源,将上述CSI上报给网络设备。
在相关技术中,将AI(Artificial Intelligence,人工智能)/ML(Machine Learning)模型引入到CSI上报的场景中。比如,终端设备根据下行参考信号测量得到CSI,通过CSI压缩编码模型对CSI进行压缩编码,得到压缩编码后的CSI,然后将上述压缩编码后的CSI量化为二进制比特流发送给网络设备;网络设备对接收到的上述二进制比特流进行反量化,然后将反量化得到的信息输入至CSI解码模型进行解码,得到恢复的CSI。上述CSI压缩编码和CSI解码模型可以是AI/ML模型。
目前,对于引入AI/ML模型的CSI上报场景,还有待进一步研究。
发明内容
本申请实施例提供了一种通信方法、装置、设备、存储介质、芯片及程序产品。所述技术方案如下:
根据本申请实施例的一个方面,提供了一种通信方法,所述方法由终端设备执行,所述方法包括:
接收网络设备发送的第一配置信息,所述第一配置信息用于指示CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系。
根据本申请实施例的一个方面,提供了一种通信方法,所述方法由网络设备执行,所述方法包括:
向终端设备发送的第一配置信息,所述第一配置信息用于指示CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系。
根据本申请实施例的一个方面,提供了一种通信装置,所述装置包括:
接收模块,用于接收网络设备发送的第一配置信息,所述第一配置信息用于指示CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系。
根据本申请实施例的一个方面,提供了一种通信装置,所述装置包括:
发送模块,用于向终端设备发送的第一配置信息,所述第一配置信息用于指示CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系。
根据本申请实施例的一个方面,提供了一种终端设备,所述终端设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现上述终端设备侧的通信方法。
根据本申请实施例的一个方面,提供了一种网络设备,所述网络设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现上述网络设备侧的通信方法。
根据本申请实施例的一个方面,提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述终端设备侧的通信方法,或者实现上述网络设备侧的通信方法。
根据本申请实施例的一个方面,提供了一种通信系统,所述通信系统包括终端设备和网 络设备,所述终端设备用于实现上述终端设备侧的通信方法,所述网络设备用于实现上述网络设备侧的通信方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述终端设备侧的通信方法,或者实现上述网络设备侧的通信方法。
根据本申请实施例的一个方面,提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述终端设备侧的通信方法,或者实现上述网络设备侧的通信方法。
本申请实施例提供的技术方案可以包括以下有益效果:
通过配置CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系,使得终端设备在采用CSI压缩编码模型对CSI进行压缩编码时,可以生成符合该配置要求的CSI上报信息,这有助于提升网络设备对CSI进行解码恢复的成功率和准确性。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是本申请一个示例性实施例提供的网络架构的示意图;
图2是本申请一示例性实施例提供的通信方法的流程图;
图3是本申请另一示例性实施例提供的通信方法的流程图;
图4是本申请另一示例性实施例提供的通信方法的流程图;
图5是本申请一示例性实施例提供的通信装置的框图;
图6是本申请另一示例性实施例提供的通信装置的框图;
图7是本申请一示例性实施例提供的通信设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
图1是本申请一个示例性实施例提供的网络架构100的示意图。该网络架构100可以包括:终端设备10、接入网设备20和核心网设备30。
终端设备10可以指UE(User Equipment,用户设备)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、用户代理或用户装置。可选地,终端设备10还可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digita1 Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5GS(5th Generation System,第五代移动通信系统)中的终端设备或者未来演进的PLMN(Pub1ic Land Mobi1e Network,公用陆地移动通信网络)中的终端设备等,本申请实施例对此并不限定。为方便描述,上面提到的设备统称为终端设备。终端设备10的数量通常为多个,每一个接入网设备20所管理的小区内可以分布一个或多个终端设备10。在本申请实施例中,“终端设备”和“UE”通常混用,但本领域技术人员可以理解两者通常表达同一含义。
接入网设备20是一种部署在接入网中用以为终端设备10提供无线通信功能的设备。接入网设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“接入网设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为接入网设备。 可选地,通过接入网设备20,终端设备10和核心网设备30之间可以建立通信关系。示例性地,在LTE(Long Term Evolution,长期演进)系统中,接入网设备20可以是EUTRAN(Evolved Universal Terrestrial Radio Access Network,演进的通用陆地无线网)或者EUTRAN中的一个或者多个eNodeB;在5G NR系统中,接入网设备20可以是RAN(Radio Access Network,无线接入网)或者RAN中的一个或者多个gNB。在本申请实施例中,所述的“网络设备”除特别说明之外,是指接入网设备20,如基站。
核心网设备30是部署在核心网中的设备,核心网设备30的功能主要是提供用户连接、对用户的管理以及对业务完成承载,作为承载网络提供到外部网络的接口。例如,5G NR系统中的核心网设备可以包括AMF(Access and Mobility Management Function,接入和移动性管理功能)实体、UPF(User Plane Function,用户平面功能)实体和SMF(Session Management Function,会话管理功能)实体等设备。
在一些实施例中,接入网设备20与核心网设备30之间通过某种空口技术互相通信,例如5G NR系统中的NG接口。接入网设备20与终端设备10之间通过某种空口技术互相通信,例如Uu接口。
本申请实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于LTE系统,也可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统,还可以适用于诸如NB-IoT(Narrow Band Internet of Things,窄带物联网)系统等其他通信系统,本申请对此不作限定。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的载波上的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图2是本申请一示例性实施例提供的通信方法的流程图,本实施例以该方法应用于图1所示网络架构中来举例说明。该方法可以包括如下步骤210:
在步骤210中,终端设备接收网络设备发送的第一配置信息,第一配置信息用于指示CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系。
网络设备向终端设备发送第一配置信息,相应地,终端设备接收网络设备发送的第一配置信息。
CSI压缩编码模型是用于对CSI进行压缩编码的AI/ML模型。CSI压缩编码模型的输入信息是指输入至该模型中的信息,例如终端设备对网络设备发送的参考信号(或称为导频信号,如CSI-RS)进行测量得到的CSI。CSI压缩编码模型的CSI上报信息,可以理解为是该CSI压缩编码模型的输出信息,即由模型对上述输入信息进行压缩编码后输出的信息,或者可以理解为是该CSI压缩编码模型的输出信息经过再处理的信息,比如经过量化处理后的信息等。这里CSI上报信息可以理解是一种UCI(UplinkControlInformation,上行控制信息),具体传输所需的信道编码、CRC(Cyclic Redundancy Check,循环冗余校验)、扰码,以及各种编码和调制过程不在本申请范围内。CSI上报信息需要由终端设备发送给网络设备,以便网络设备根据该CSI上报信息解码恢复CSI,例如网络设备通过CSI解码模型对CSI上报信息进行解码得到恢复的CSI。
在一些实施例中,第一配置信息携带于RRC(Radio Resource Control,无线资源控制)信令中。例如,网络设备向终端设备发送RRC信令,该RRC信令中包括上述第一配置信息。
在一些实施例中,第一配置信息用于指示CSI压缩编码模型的至少一组输入信息与CSI上报信息之间的对应关系。可选地,第一配置信息用于指示CSI压缩编码模型的多组不同的输入信息与CSI上报信息之间的对应关系。
在一些实施例中,第一配置信息可以是一个表格,或者以表格形式表示,该表格中可以包括至少一组输入信息与CSI上报信息之间的对应关系,如包括多组不同的输入信息与CSI上报信息之间的对应关系。
在一些实施例中,上述输入信息与CSI上报信息之间的对应关系,包括以下示例1~5中的至少之一:
示例1:至少一组输入信息对应的秩(rank)与CSI上报信息的数据量之间的对应关系。
在一些实施例中,在输入信息的类型是特征向量的情况下,第一配置信息用于指示至少一组输入信息对应的秩(rank)与CSI上报信息的数据量之间的对应关系。示例性地,对于不同组的对应关系,输入信息对应的秩不同,相应的CSI上报信息的数据量也不同。
在一些实施例中,输入信息对应的秩的数量,小于或等于终端设备的接收天线的端口数。例如,输入信息对应的秩的数量为K,即输入信息对应的秩包括rank=1、2、…、K,K为正整数,且K小于或等于终端设备的接收天线的端口数。
在一些实施例中,数据量采用以下任意一种数值表示:参数个数、比特数、压缩率。其中,参数个数可以是输入信息经过CSI压缩编码模型进行压缩编码后得到的参数个数,该参数可以是浮点数形式、整数形式、复数形式或其他数值形式中的任意一种或多种的组合,本申请对此不作限定。比特数可以是输入信息经过CSI压缩编码模型进行压缩编码后得到的参数,进一步经过量化后得到的比特流中包含的比特数。压缩率可以是输入信息经过CSI压缩编码模型进行压缩编码后得到的参数个数,与输入信息包含的参数个数的比值。
示例性地,在输入信息的类型是特征向量的情况下,第一配置信息可以是一个表格,或者以表格形式表示,该表格内容为rank=1、2、…、K分别对应的CSI上报信息的浮点数个数或比特数,浮点数个数或比特数也可以通过与rank值有关的公式计算出来。K小于或等于终端设备的接收天线的端口数。
示例2:至少一组输入信息对应的频域单元个数与CSI上报信息的数据量之间的对应关系。
在一些实施例中,在输入信息的类型是全信道信息的情况下,第一配置信息用于指示至少一组输入信息对应的频域单元个数与CSI上报信息的数据量之间的对应关系。示例性地,对于不同组的对应关系,输入信息对应的频域单元个数不同,相应的CSI上报信息的数据量也不同。
在一些实施例中,输入信息对应的频域单元个数,小于或等于参考信号所在的频域单元数。示例性地,参考信号可以是CSI-RS,网络设备向终端设备发送CSI-RS,终端设备接收该CSI-RS并估计得到CSI。例如,输入信息对应的频域单元个数为L,L为正整数,且L小于或等于参考信号所在的频域单元数。
在一些实施例中,频域单元为RB(Resource Block,资源块),或子载波(sub-carrier),或子带(sub-band)。当然,本申请并不限定还可以是其他形式的频域单元。
示例性地,在输入信息的类型是全信道信息的情况下,第一配置信息可以是一个表格,或者以表格形式表示,该表格内容为频域单元个数=1、2、…、L分别对应的CSI上报信息的浮点数个数或比特数,浮点数个数或比特数也可以通过与频域单元个数有关的公式计算出来。L小于或等于参考信号所在的频域单元数。
示例3:至少一组第一取值范围与CSI上报信息的数据量之间的对应关系,第一取值范围是指输入信息对应的秩的取值范围。
在一些实施例中,在输入信息的类型是特征向量的情况下,第一配置信息用于指示至少一组第一取值范围与CSI上报信息的数据量之间的对应关系,第一取值范围是指输入信息对应的秩的取值范围。示例性地,对于不同组的对应关系,第一取值范围不同,相应的CSI上报信息的数据量也不同。
示例性地,在输入信息的类型是特征向量的情况下,第一配置信息可以是一个表格,或者以表格形式表示,该表格内容为rank在一定范围内对应的CSI上报信息的浮点数个数或比 特数。比如包括:当rank<=2时对应的浮点数个数或比特数,当2<rank<=4时对应的浮点数个数或比特数。
示例4:至少一组第二取值范围与CSI上报信息的数据量之间的对应关系,第二取值范围是指输入信息对应的频域单元个数的取值范围。
在一些实施例中,在输入信息的类型是全信道信息的情况下,第一配置信息用于指示至少一组第二取值范围与CSI上报信息的数据量之间的对应关系,第二取值范围是指输入信息对应的频域单元个数的取值范围。示例性地,对于不同组的对应关系,第二取值范围不同,相应的CSI上报信息的数据量也不同。
示例性地,在输入信息的类型是全信道信息的情况下,第一配置信息可以是一个表格,或者以表格形式表示,该表格内容为频域单元个数范围内对应的CSI上报信息的浮点数个数或比特数。比如包括:当频域单元个数<L/2时对应的浮点数个数或比特数,当L/2<=频域单元个数<=L时对应的浮点数个数或比特数。
示例5:至少一组输入信息的数据量与CSI上报信息的数据量之间的对应关系。
示例性地,在输入信息的类型是特征向量或全信道信息的情况下,第一配置信息可以是一个表格,或者以表格形式表示,该表格内容为输入信息的浮点数个数或比特数,与CSI上报信息的浮点数个数或比特数之间的至少一组对应关系。示例性地,对于不同组的对应关系,输入信息的数据量不同,相应的CSI上报信息的数据量也不同。
上文提及的全信道信息是指终端设备通过测量下行参考信号得到包含空域和频域的信道信息后,再进行IDFT(InverseDiscrete Fourier Transform,离散傅里叶反变换)后得到的角度域-时延域的信道。特征向量是指终端设备通过测量下行参考信号得到包含空域和频域的信道信息后,从信道信息中提取的特征信息,该特征信息以一组或者多组向量的形式表示。另外,参数个数、比特数和压缩率之间的关系是:通过一定的量化方式,可以将参数(如浮点数或实数或复数等任意形式的参数)量化为一个二进制的比特序列(或称为比特流),该比特序列中包含的比特个数即为比特数。比如,量化度为4,则每个参数可以量化为2个比特(bit)进行表示。另外,根据压缩率和输入信息(如输入信息包含的参数个数),可以计算出输入信息经过压缩编码后得到的参数个数或者比特数。
本申请实施例提供的技术方案,通过配置CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系,使得终端设备在采用CSI压缩编码模型对CSI进行压缩编码时,可以生成符合该配置要求的CSI上报信息,这有助于提升网络设备对CSI进行解码恢复的成功率和准确性。
图3是本申请另一示例性实施例提供的通信方法的流程图,本实施例以该方法应用于图1所示网络架构中来举例说明。该方法可以包括如下步骤310~340中的至少一个步骤:
在步骤310中,网络设备向终端设备发送第一配置信息,第一配置信息用于指示CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系。
相应地,终端设备接收网络设备发送的第一配置信息。
对于本步骤中未详细说明的细节,可参见上文图2所示的方法实施例,本实施例对此不再赘述。
在步骤320中,终端设备根据第一配置信息,确定输入信息对应的CSI上报信息,作为目标CSI上报信息。
输入信息可以是终端设备对网络设备发送的参考信号(如CSI-RS)进行测量得到的CSI进行再处理得到的信息,该输入信息的类型,可以是全信道信息,也可以是特征向量。在得到输入信息之后,终端设备可以查询上述第一配置信息所指示的对应关系(或者说表格),从中确定出与该输入信息对应的CSI上报信息,作为目标CSI上报信息。
例如,在第一配置信息包括rank=1、2、…、K分别对应的CSI上报信息的浮点数个数或比特数时,假设输入信息对应的rank=2,则终端设备从上述对应关系(或者说表格)中确定 出与rank=2对应的CSI上报信息的浮点数个数或比特数,作为目标CSI上报信息的上报开销。
例如,在第一配置信息包括频域单元个数=1、2、…、L分别对应的CSI上报信息的浮点数个数或比特数时,假设输入信息对应的频域单元个数=3,则终端设备从上述对应关系(或者说表格)中确定出与频域单元个数=3对应的CSI上报信息的浮点数个数或比特数,作为目标CSI上报信息的上报开销。
例如,在第一配置信息包括rank在一定范围内对应的CSI上报信息的浮点数个数或比特数,如包括当rank<=2时对应的浮点数个数或比特数,以及当2<rank<=4时对应的浮点数个数或比特数时,假设输入信息对应的rank=1,则终端设备从上述对应关系(或者说表格)中确定出与rank<=2对应的CSI上报信息的浮点数个数或比特数,作为目标CSI上报信息的上报开销。
例如,在第一配置信息包括频域单元个数范围内对应的CSI上报信息的浮点数个数或比特数,如包括当频域单元个数<L/2时对应的浮点数个数或比特数,以及当L/2<=频域单元个数<=L时对应的浮点数个数或比特数时,假设输入信息对应的频域单元个数=2且L=8,则终端设备从上述对应关系(或者说表格)中确定出与频域单元个数<L/2对应的CSI上报信息的浮点数个数或比特数,作为目标CSI上报信息的上报开销。
例如,在第一配置信息包括输入信息的浮点数个数或比特数,与CSI上报信息的浮点数个数或比特数之间的至少一组对应关系时,则终端设备可以根据输入信息的浮点数个数或比特数,从上述对应关系(或者说表格)中确定出与之相对应的CSI上报信息的浮点数个数或比特数,作为目标CSI上报信息的上报开销。
在步骤330中,终端设备根据目标CSI上报信息的上报开销,通过CSI压缩编码模型对待上报的CSI进行处理,得到满足目标CSI上报信息要求的CSI比特流。
目标CSI上报信息规定或约束了终端设备向网络设备上报的CSI的数据量,如参数个数、比特数或压缩率。终端设备在采用CSI压缩编码模型对待上报的CSI进行处理时,按照上述目标CSI上报信息的规定或约束,生成满足其约束或约束的CSI比特流。
在步骤340中,终端设备向网络设备发送CSI比特流。
网络设备接收到终端设备发送的CSI比特流之后,可以对该CSI比特流进行反量化,然后将反量化得到的信息输入至CSI解码模型进行解码,得到恢复的CSI。其中,CSI解码模型是用于对CSI进行解码的AI/ML模型。
在一些实施例中,网络设备根据从终端设备接收到的CSI比特流的数据量(如参数个数或比特数),可以确定CSI解码模型的模型参数,然后采用该CSI解码模型对上述反量化得到的信息进行解码,得到恢复的CSI。这样,有助于网络设备成功恢复出CSI。
图4是本申请另一示例性实施例提供的通信方法的流程图,本实施例以该方法应用于图1所示网络架构中来举例说明。该方法可以包括如下步骤410~420中的至少一个步骤:
在步骤410中,网络设备向终端设备发送第二配置信息,第二配置信息用于指示CSI上报资源和/或CSI上报方式。
相应地,终端设备接收网络设备发送的第二配置信息。
CSI上报资源是指终端设备向网络设备上报CSI所使用的资源,如包括时频资源等。CSI上报资源也可称为CSI反馈资源或者上行反馈资源,本申请对此不作限定。CSI上报方式是指终端设备向网络设备上报CSI所采用的方式,如填0方式或拆分方式。
在步骤420中,终端设备采用根据第二配置信息确定的CSI上报资源和/或CSI上报方式,向网络设备发送经CSI压缩编码模型得到的用于CSI上报的比特流。
上述用于CSI上报的比特流也可称为CSI比特流,相应地,网络设备接收终端设备发送的CSI比特流。另外终端设备生成CSI比特流的过程,可以参见上文图3实施例中的介绍说明,本实施例对此不作赘述。
在一些实施例中,CSI上报方式包括以下方式1~2中的至少之一:
方式1:填0方式,是指由网络设备配置CSI比特流的最大比特数所需的上报资源,终端设备对上述最大比特数中CSI比特流未占用的比特位进行填0。
例如,上述最大比特数为8,CSI比特流实际占用的比特数为4,那么未占用的比特位有4个,将该4个未占用的比特位填0。
方式2:拆分方式,是指将CSI分为第一部分和第二部分,第一部分的比特数固定或者所需的上报资源确定,且通过第一部分的内容确定第二部分的比特数或者所需的上报资源的大小。
在一些实施例中,在CSI压缩编码模型的输入信息为特征向量的情况下,
对于填0方式,最大比特数为需要上报的频域单元个数、网络设备的天线端口数、终端设备的天线端口数以及量化比特数的乘积;
对于拆分方式,第一部分至少包括用于确定rank(秩)值的信息,第二部分包括rank值对应的经CSI压缩编码模型输出的特征向量相关信息。
示例性地,在CSI压缩编码模型的输入信息为特征向量的情况下,网络设备在配置CSI上报资源时,可以采用以下方式A和方式B中的一种进行配置。
方式A:采用填0方式。网络设备配置最大反馈开销(即上文所述的最大比特数),最大反馈开销=需要上报的频率单元个数*网络设备的天线端口数*终端设备的天线端口数*量化比特数,频域单元可以是子带,*表示相乘。终端设备对实际反馈和最大反馈开销之间的差进行填0。网络设备也可以配置宽带反馈或者部分子带反馈,此时最大反馈开销为网络设备的天线端口数*终端设备的天线端口数*量化比特数,或者部分频域单元个数*网络设备的天线端口数*终端设备的天线端口数*量化比特数;其中,部分频域单元个数是上述网络设备配置的部分子带所包含的频域单元个数。
方式B:采用拆分方式。将CSI拆成两个部分,第一部分的bit数量固定,且通过第一部分的内容可以确定第二部分的内容。比如通过第一部分内容,可以确定rank值。因此第一部分至少包括:rank值。并且第一部分CSI不排除其他影响第二部分CSI开销的信息上报。第二部分至少包括对应rank值的经CSI压缩编码模型输出的特征向量相关信息。
在一些实施例中,在CSI压缩编码模型的输入信息为全信道信息的情况下,
对于填0方式,最大比特数为全部频域单元个数、网络设备的天线端口数、终端设备的天线端口数以及量化比特数的乘积;其中,全部频域单元个数是终端设备测量的用于CSI上报的RS所在的频域范围内的频域单元;
对于拆分方式,第一部分包括用于确定有效频域单元个数的信息,第二部分包括有效频域单元个数对应的经CSI压缩编码模型输出的全信道相关信息。
示例性地,在CSI压缩编码模型的输入信息为全信道信息或者Angular-delay(角度延迟)域信道信息时(说明:Angular-delay域信道信息是全信道信息中的一种),网络设备在配置CSI上报资源时,可以采用以下方式C和方式D中的一种进行配置。
方式C:采用填0方式。网络设备配置最大反馈开销(即上文所述的最大比特数),最大反馈开销=全部频域单元个数*网络设备的天线端口数*终端设备的天线端口数*量化比特数。终端设备对实际反馈和最大反馈开销之间的差进行填0。
方式D:采用拆分方式。将CSI拆成两个部分,网络设备配置上报分为两部分,其中第一部分的bit数量固定,且通过第一部分的内容可以确定第二部分的bit数。比如通过第一部分内容,可以确定频域单元个数。因此第一部分至少包括:有效频域单元个数。并且第一部分CSI不排除其他影响第二部分CSI开销的信息上报。第二部分至少包括经CSI压缩编码模型输出的全信道相关信息。
在一些实施例中,终端设备使用填0方式还是拆分方式进行上报,由网络设备决定。例如,网络设备在上述第二配置信息中指示CSI上报方式,终端设备根据该第二配置信息确定采用的CSI上报方式。
在一些实施例中,对于上文提及的拆分方式,第一部分和第二部分的配置满足以下至少 之一:
配置不同的时域上报特性;
配置不同的频域上报特性;
配置不同的物理信道。
示例性地,时域上报特性包括以下至少之一:周期性上报、半静态上报、非周期性上报。比如,第一部分使用周期性或者半静态上报,第二部分使用半静态或者非周期性上报。
示例性地,频域上报特性包括以下至少之一:使用宽带上报、使用子带上报。比如,第一部分使用宽带上报,第二部分使用宽带或者子带上报。
示例性地,物理信道包括以下至少之一:PUCCH(Physical Uplink Control Channel,物理上行控制信道)、PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。比如,第一部分使用PUCCH上报,第二部分使用PUCCH或者PUSCH上报。
需要说明的是,上述第一部分和第二部分的时域上报特性可以相同,也可以不同;上述第一部分和第二部分的频域上报特性可以相同,也可以不同;上述第一部分和第二部分的物理信道可以相同,也可以不同。也即,第一部分和第二部分的时域上报特性、频域上报特性、物理信道并不是强制不同,而是说明可以配置不同的特性。比如,第一部分是半静态宽带上报在PUCCH上传输,第二部分是非周期宽带上报在PUSCH上传输。
在一些实施例中,对于拆分方式,若因CSI上报资源不足需丢弃第二部分所包含的内容,
对于第二部分中包含的同一次重复传输的不同内容,丢弃的优先级由高到低依次为:宽带CSI、偶数子带CSI、奇数子带CSI;
对于第二部分中包含的不同次重复传输的内容,丢弃的优先级为:第i次重复传输的内容,高于第i+1次重复传输的内容,i为正整数。
示例性地,丢弃的优先级由高到低依次为:
1.Part 2 widebandCSI for rep-1(第1次重复传输的第二部分的宽带CSI);
2.Part 2 subbandCSIof even subband for rep-1(第1次重复传输的第二部分的偶数子带CSI);
3.Part 2 subbandCSIof odd subband for rep-1(第1次重复传输的第二部分的奇数子带CSI);
4.Part 2 widebandCSI for rep-2(第2次重复传输的第二部分的宽带CSI);
5.Part 2 subbandCSIof even subband for rep-2(第2次重复传输的第二部分的偶数子带CSI);
6.Part 2 subbandCSIof odd subband for rep-2(第2次重复传输的第二部分的奇数子带CSI);
……
其中,rep-x表示重复传输的次数。比如rep-1表示重复传输次数为1,那么CSI上报只传输一次,此时只考虑上述1~3所示的优先级。比如rep-2表示重复传输次数为2,那么CSI上报传输2次,此时考虑上述1~6所示的优先级。当然,还可以存在rep-3、rep-4等,丢弃的优先级顺序可以以此类推,不再赘述。
本申请实施例提供的技术方案,通过网络设备向终端设备配置CSI上报资源和/或CSI上报方式,终端设备按照网络设备的配置,向网络设备进行CSI上报,有助于提升网络设备对CSI进行解码恢复的成功率和准确性。并且,网络设备可以针对不同情况,配置不同的CSI上报资源和/或CSI上报方式,能够避免CSI上报资源的浪费,兼顾CSI恢复的准确性和资源利用率。
需要说明的是,上述有关终端设备执行的步骤,可以单独实现成为终端设备侧的通信方法;上述有关网络设备执行的步骤,可以单独实现成为网络设备侧的通信方法。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
图5是本申请一示例性实施例提供的通信装置的框图。该装置具有实现上述终端设备侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端设备,也可以设置在终端设备中。如图5所示,该装置500可以包括:接收模块510。
所述接收模块510,用于接收网络设备发送的第一配置信息,所述第一配置信息用于指示CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系。
在一些实施例中,所述输入信息与CSI上报信息之间的对应关系,包括以下至少之一:
至少一组所述输入信息对应的秩与所述CSI上报信息的数据量之间的对应关系;
至少一组所述输入信息对应的频域单元个数与所述CSI上报信息的数据量之间的对应关系;
至少一组第一取值范围与所述CSI上报信息的数据量之间的对应关系,所述第一取值范围是指所述输入信息对应的秩的取值范围;
至少一组第二取值范围与所述CSI上报信息的数据量之间的对应关系,所述第二取值范围是指所述输入信息对应的频域单元个数的取值范围;
至少一组所述输入信息的数据量与所述CSI上报信息的数据量之间的对应关系。
在一些实施例中,所述输入信息对应的秩的数量,小于或等于所述终端设备的接收天线的端口数。
在一些实施例中,所述输入信息对应的频域单元个数,小于或等于参考信号所在的频域单元数。
在一些实施例中,所述频域单元为RB,或sub-carrier,或sub-band。
在一些实施例中,所述数据量采用以下任意一种数值表示:参数个数、比特数、压缩率。
在一些实施例中,如图5所示,所述装置500还包括处理模块520,用于根据所述第一配置信息,确定所述输入信息对应的CSI上报信息,作为目标CSI上报信息;根据所述目标CSI上报信息,通过所述CSI压缩编码模型对所述输入信息进行处理,得到满足所述目标CSI上报信息要求的CSI比特流。
在一些实施例中,如图6所示,所述装置500还包括发送模块530。
所述接收模块510,还用于接收所述网络设备发送的第二配置信息,所述第二配置信息用于指示CSI上报资源和/或CSI上报方式;
所述发送模块530,用于采用根据所述第二配置信息确定的CSI上报资源和/或CSI上报方式,向所述网络设备发送经所述CSI压缩编码模型得到的用于CSI上报的比特流。
在一些实施例中,所述CSI上报方式包括以下至少之一:
填0方式,是指由所述网络设备配置所述CSI比特流的最大比特数所需的上报资源,所述终端设备对所述最大比特数中所述CSI比特流未占用的比特位进行填0;
拆分方式,是指将CSI分为第一部分和第二部分,所述第一部分的比特数固定或者所需的上报资源确定,且通过所述第一部分的内容确定所述第二部分的比特数或者所需的上报资源的大小。
在一些实施例中,在所述CSI压缩编码模型的输入信息为特征向量的情况下,
对于所述填0方式,所述最大比特数为需要上报的频域单元个数、所述网络设备的天线端口数、所述终端设备的天线端口数以及量化比特数的乘积;
对于所述拆分方式,所述第一部分至少包括用于确定rank值的信息,所述第二部分包括所述rank值对应的经所述CSI压缩编码模型输出的特征向量相关信息。
在一些实施例中,在所述CSI压缩编码模型的输入信息为全信道信息的情况下,
对于所述填0方式,所述最大比特数为全部频域单元个数、所述网络设备的天线端口数、所述终端设备的天线端口数以及量化比特数的乘积;其中,所述全部频域单元个数是所述终端设备测量的用于CSI上报的RS所在的频域范围内的频域单元;
对于所述拆分方式,所述第一部分包括用于确定有效频域单元个数的信息,所述第二部 分包括所述有效频域单元个数对应的经所述CSI压缩编码模型输出的全信道相关信息。
在一些实施例中,针对所述第一部分和所述第二部分的配置满足以下至少之一:
配置不同的时域上报特性;
配置不同的频域上报特性;
配置不同的物理信道。
在一些实施例中,对于所述拆分方式,若因CSI上报资源不足需丢弃所述第二部分所包含的内容,
对于所述第二部分中包含的同一次重复传输的不同内容,丢弃的优先级由高到低依次为:宽带CSI、偶数子带CSI、奇数子带CSI;
对于所述第二部分中包含的不同次重复传输的内容,丢弃的优先级为:第i次重复传输的内容,高于第i+1次重复传输的内容,i为正整数。
图6是本申请另一示例性实施例提供的通信装置的框图。该装置具有实现上述网络设备侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的网络设备,也可以设置在网络设备中。如图6所示,该装置600可以包括:发送模块610。
所述发送模块610,用于向终端设备发送的第一配置信息,所述第一配置信息用于指示CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系。
在一些实施例中,所述输入信息与输出信息之间的对应关系,包括以下至少之一:
至少一组所述输入信息对应的秩与所述CSI上报信息的数据量之间的对应关系;
至少一组所述输入信息对应的频域单元个数与所述CSI上报信息的数据量之间的对应关系;
至少一组第一取值范围与所述CSI上报信息的数据量之间的对应关系,所述第一取值范围是指所述输入信息对应的秩的取值范围;
至少一组第二取值范围与所述CSI上报信息的数据量之间的对应关系,所述第二取值范围是指所述输入信息对应的频域单元个数的取值范围;
至少一组所述输入信息的数据量与所述CSI上报信息的数据量之间的对应关系。
在一些实施例中,所述输入信息对应的秩的数量,小于或等于所述终端设备的接收天线的端口数。
在一些实施例中,所述输入信息对应的频域单元个数,小于或等于参考信号所在的频域单元数。
在一些实施例中,所述频域单元为RB,或sub-carrier,或sub-band。
在一些实施例中,所述数据量采用以下任意一种数值表示:参数个数、比特数、压缩率。
在一些实施例中,所述发送模块610还用于向所述终端设备发送第二配置信息,所述第二配置信息用于指示CSI上报资源和/或CSI上报方式。
在一些实施例中,所述CSI上报方式包括以下至少之一:
填0方式,是指由所述网络设备配置所述CSI比特流的最大比特数所需的上报资源,所述终端设备对所述最大比特数中所述CSI比特流未占用的比特位进行填0;
拆分方式,是指将CSI分为第一部分和第二部分,所述第一部分的比特数固定或者所需的上报资源确定,且通过所述第一部分的内容确定所述第二部分的比特数或者所需的上报资源的大小。
在一些实施例中,在所述CSI压缩编码模型的输入信息为特征向量的情况下,
对于所述填0方式,所述最大比特数为需要上报的频域单元个数、所述网络设备的天线端口数、所述终端设备的天线端口数以及量化比特数的乘积;
对于所述拆分方式,所述第一部分至少包括用于确定rank值的信息,所述第二部分包括所述rank值对应的经所述CSI压缩编码模型输出的特征向量相关信息。
在一些实施例中,在所述CSI压缩编码模型的输入信息为全信道信息的情况下,
对于所述填0方式,所述最大比特数为全部频域单元个数、所述网络设备的天线端口数、所述终端设备的天线端口数以及量化比特数的乘积;其中,所述全部频域单元个数是所述终端设备测量的用于CSI上报的RS所在的频域范围内的频域单元;
对于所述拆分方式,所述第一部分包括用于确定有效频域单元个数的信息,所述第二部分包括所述有效频域单元个数对应的经所述CSI压缩编码模型输出的全信道相关信息。
在一些实施例中,针对所述第一部分和所述第二部分的配置满足以下至少之一:
配置不同的时域上报特性;
配置不同的频域上报特性;
配置不同的物理信道。
在一些实施例中,对于所述拆分方式,若因CSI上报资源不足需丢弃所述第二部分所包含的内容,
对于所述第二部分中包含的同一次重复传输的不同内容,丢弃的优先级由高到低依次为:宽带CSI、偶数子带CSI、奇数子带CSI;
对于所述第二部分中包含的不同次重复传输的内容,丢弃的优先级为:第i次重复传输的内容,高于第i+1次重复传输的内容,i为正整数。
需要说明的是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。有关装置实施例中未详细说明的细节,可参考上述方法实施例。
图7是根据一示例性实施例示出的一种通信设备700的框图,该通信设备700可以为前述终端设备或者网络设备,该通信设备700可以包括:处理器701、接收器702、发射器703、存储器704和总线705。其中,处理器701可用于实现上述装置实施例中处理模型的功能,接收器702可用于实现上述装置实施例中接收模块的功能,发射器703可用于实现上述装置实施例中发送模块的功能。
处理器701包括一个或者一个以上处理核心,处理器701通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器702和发射器703可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器704通过总线705与处理器701相连。
存储器704可用于存储计算机程序,处理器701用于执行该计算机程序,以实现上述终端设备侧的通信方法,或者网络设备侧的通信方法。
此外,存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read Only Memory),可擦除可编程只读存储器(EPROM,Erasable ProgrammableRead Only Memory),静态随时存取存储器(SRAM,Static Random-Access Memory),只读存储器(ROM,Read-Only Memory),磁存储器,快闪存储器,可编程只读存储器(PROM,Programmable Read-only Memory)。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述终端设备侧的通信方法,或者网络设备侧的通信方法。可选地,该计算机可读存储介质可以包括:ROM(Read-Only Memory,只读存储器)、RAM(Random-Access Memory,随机存储器)、SSD(Solid State Drives,固态硬盘)或光盘等。其中,随机存取记忆体可以包括ReRAM(Resistance Random Access Memory,电阻 式随机存取记忆体)和DRAM(Dynamic Random Access Memory,动态随机存取存储器)。
本申请实施例还提供了一种通信系统,所述通信系统包括终端设备和网络设备,所述终端设备用于实现上述终端设备侧的通信方法,所述网络设备用于实现上述网络设备侧的通信方法。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述终端设备侧的通信方法,或者网络设备侧的通信方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述终端设备侧的通信方法,或者网络设备侧的通信方法。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在本申请一些实施例中,“预定义的”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不作限定。比如预定义的可以是指协议中定义的。
在本申请一些实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不作限定。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
在本文中提及的“大于或等于”可表示大于等于或大于,“小于或等于”可表示小于等于或小于。
另外,本文中描述的步骤编号,仅示例性示出了步骤间的一种可能的执行先后顺序,在一些其它实施例中,上述步骤也可以不按照编号顺序来执行,如两个不同编号的步骤同时执行,或者两个不同编号的步骤按照与图示相反的顺序执行,本申请实施例对此不作限定。
另外,本申请提供的各个实施例之间可以任意组合,以形成新的实施例,这都在本申请的保护范围之内。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (32)

  1. 一种通信方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收网络设备发送的第一配置信息,所述第一配置信息用于指示信道状态信息CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系。
  2. 根据权利要求1所述的方法,其特征在于,所述输入信息与CSI上报信息之间的对应关系,包括以下至少之一:
    至少一组所述输入信息对应的秩与所述CSI上报信息的数据量之间的对应关系;
    至少一组所述输入信息对应的频域单元个数与所述CSI上报信息的数据量之间的对应关系;
    至少一组第一取值范围与所述CSI上报信息的数据量之间的对应关系,所述第一取值范围是指所述输入信息对应的秩的取值范围;
    至少一组第二取值范围与所述CSI上报信息的数据量之间的对应关系,所述第二取值范围是指所述输入信息对应的频域单元个数的取值范围;
    至少一组所述输入信息的数据量与所述CSI上报信息的数据量之间的对应关系。
  3. 根据权利要求2所述的方法,其特征在于,所述输入信息对应的秩的数量,小于或等于所述终端设备的接收天线的端口数。
  4. 根据权利要求2或3所述的方法,其特征在于,所述输入信息对应的频域单元个数,小于或等于参考信号所在的频域单元数。
  5. 根据权利要求2至4任一项所述的方法,其特征在于,所述频域单元为资源块RB,或子载波sub-carrier,或子带sub-band。
  6. 根据权利要求2至5任一项所述的方法,其特征在于,所述数据量采用以下任意一种数值表示:参数个数、比特数、压缩率。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一配置信息,确定所述输入信息对应的CSI上报信息,作为目标CSI上报信息;
    根据所述目标CSI上报信息,通过所述CSI压缩编码模型对所述输入信息进行处理,得到满足所述目标CSI上报信息要求的CSI比特流。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第二配置信息,所述第二配置信息用于指示CSI上报资源和/或CSI上报方式;
    采用根据所述第二配置信息确定的CSI上报资源和/或CSI上报方式,向所述网络设备发送经所述CSI压缩编码模型得到的用于CSI上报的比特流。
  9. 根据权利要求8所述的方法,其特征在于,所述CSI上报方式包括以下至少之一:
    填0方式,是指由所述网络设备配置所述CSI比特流的最大比特数所需的上报资源,所述终端设备对所述最大比特数中所述CSI比特流未占用的比特位进行填0;
    拆分方式,是指将CSI分为第一部分和第二部分,所述第一部分的比特数固定或者所需的上报资源确定,且通过所述第一部分的内容确定所述第二部分的比特数或者所需的上报资源的大小。
  10. 根据权利要求9所述的方法,其特征在于,在所述CSI压缩编码模型的输入信息为特征向量的情况下,
    对于所述填0方式,所述最大比特数为需要上报的频域单元个数、所述网络设备的天线端口数、所述终端设备的天线端口数以及量化比特数的乘积;
    对于所述拆分方式,所述第一部分至少包括用于确定秩rank值的信息,所述第二部分包括所述rank值对应的经所述CSI压缩编码模型输出的特征向量相关信息。
  11. 根据权利要求9或10所述的方法,其特征在于,在所述CSI压缩编码模型的输入信息为全信道信息的情况下,
    对于所述填0方式,所述最大比特数为全部频域单元个数、所述网络设备的天线端口数、所述终端设备的天线端口数以及量化比特数的乘积;其中,所述全部频域单元个数是所述终端设备测量的用于CSI上报的参考信号RS所在的频域范围内的频域单元;
    对于所述拆分方式,所述第一部分包括用于确定有效频域单元个数的信息,所述第二部分包括所述有效频域单元个数对应的经所述CSI压缩编码模型输出的全信道相关信息。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,针对所述第一部分和所述第二部分的配置满足以下至少之一:
    配置不同的时域上报特性;
    配置不同的频域上报特性;
    配置不同的物理信道。
  13. 根据权利要求9至12任一项所述的方法,其特征在于,对于所述拆分方式,若因CSI上报资源不足需丢弃所述第二部分所包含的内容,
    对于所述第二部分中包含的同一次重复传输的不同内容,丢弃的优先级由高到低依次为:宽带CSI、偶数子带CSI、奇数子带CSI;
    对于所述第二部分中包含的不同次重复传输的内容,丢弃的优先级为:第i次重复传输的内容,高于第i+1次重复传输的内容,i为正整数。
  14. 一种通信方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    向终端设备发送的第一配置信息,所述第一配置信息用于指示信道状态信息CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系。
  15. 根据权利要求14所述的方法,其特征在于,所述输入信息与输出信息之间的对应关系,包括以下至少之一:
    至少一组所述输入信息对应的秩与所述CSI上报信息的数据量之间的对应关系;
    至少一组所述输入信息对应的频域单元个数与所述CSI上报信息的数据量之间的对应关系;
    至少一组第一取值范围与所述CSI上报信息的数据量之间的对应关系,所述第一取值范围是指所述输入信息对应的秩的取值范围;
    至少一组第二取值范围与所述CSI上报信息的数据量之间的对应关系,所述第二取值范围是指所述输入信息对应的频域单元个数的取值范围;
    至少一组所述输入信息的数据量与所述CSI上报信息的数据量之间的对应关系。
  16. 根据权利要求15所述的方法,其特征在于,所述输入信息对应的秩的数量,小于或等于所述终端设备的接收天线的端口数。
  17. 根据权利要求15或16所述的方法,其特征在于,所述输入信息对应的频域单元个数,小于或等于参考信号所在的频域单元数。
  18. 根据权利要求15至17任一项所述的方法,其特征在于,所述频域单元为资源块RB,或子载波sub-carrier,或子带sub-band。
  19. 根据权利要求15至18任一项所述的方法,其特征在于,所述数据量采用以下任意一种数值表示:参数个数、比特数、压缩率。
  20. 根据权利要求14至19任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二配置信息,所述第二配置信息用于指示CSI上报资源和/或CSI上报方式。
  21. 根据权利要求20所述的方法,其特征在于,所述CSI上报方式包括以下至少之一:
    填0方式,是指由所述网络设备配置所述CSI比特流的最大比特数所需的上报资源,所述终端设备对所述最大比特数中所述CSI比特流未占用的比特位进行填0;
    拆分方式,是指将CSI分为第一部分和第二部分,所述第一部分的比特数固定或者所需的上报资源确定,且通过所述第一部分的内容确定所述第二部分的比特数或者所需的上报资源的大小。
  22. 根据权利要求21所述的方法,其特征在于,在所述CSI压缩编码模型的输入信息为特征向量的情况下,
    对于所述填0方式,所述最大比特数为需要上报的频域单元个数、所述网络设备的天线端口数、所述终端设备的天线端口数以及量化比特数的乘积;
    对于所述拆分方式,所述第一部分至少包括用于确定秩rank值的信息,所述第二部分包括所述rank值对应的经所述CSI压缩编码模型输出的特征向量相关信息。
  23. 根据权利要求21或22所述的方法,其特征在于,在所述CSI压缩编码模型的输入信息为全信道信息的情况下,
    对于所述填0方式,所述最大比特数为全部频域单元个数、所述网络设备的天线端口数、所述终端设备的天线端口数以及量化比特数的乘积;其中,所述全部频域单元个数是所述终端设备测量的用于CSI上报的参考信号RS所在的频域范围内的频域单元;
    对于所述拆分方式,所述第一部分包括用于确定有效频域单元个数的信息,所述第二部分包括所述有效频域单元个数对应的经所述CSI压缩编码模型输出的全信道相关信息。
  24. 根据权利要求21至23任一项所述的方法,其特征在于,针对所述第一部分和所述第二部分的配置满足以下至少之一:
    配置不同的时域上报特性;
    配置不同的频域上报特性;
    配置不同的物理信道。
  25. 根据权利要求21至24任一项所述的方法,其特征在于,对于所述拆分方式,若因CSI上报资源不足需丢弃所述第二部分所包含的内容,
    对于所述第二部分中包含的同一次重复传输的不同内容,丢弃的优先级由高到低依次为:宽带CSI、偶数子带CSI、奇数子带CSI;
    对于所述第二部分中包含的不同次重复传输的内容,丢弃的优先级为:第i次重复传输的内容,高于第i+1次重复传输的内容,i为正整数。
  26. 一种通信装置,其特征在于,所述装置包括:
    接收模块,用于接收网络设备发送的第一配置信息,所述第一配置信息用于指示信道状态信息CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系。
  27. 一种通信装置,其特征在于,所述装置包括:
    发送模块,用于向终端设备发送的第一配置信息,所述第一配置信息用于指示信道状态信息CSI压缩编码模型的输入信息与CSI上报信息之间的对应关系。
  28. 一种终端设备,其特征在于,所述终端设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现如权利要求1至13任一项所述的方法。
  29. 一种网络设备,其特征在于,所述网络设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现如权利要求14至25任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至13任一项所述的方法,或者如权利要求14至25任一项所述的方法。
  31. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求1至13任一项所述的方法,或者如权利要求14至25任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算 机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如权利要求1至13任一项所述的方法,或者如权利要求14至25任一项所述的方法。
PCT/CN2022/110374 2022-08-04 2022-08-04 通信方法、装置、设备、存储介质、芯片及程序产品 WO2024026792A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280003013.7A CN117859366A (zh) 2022-08-04 2022-08-04 通信方法、装置、设备、存储介质、芯片及程序产品
PCT/CN2022/110374 WO2024026792A1 (zh) 2022-08-04 2022-08-04 通信方法、装置、设备、存储介质、芯片及程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110374 WO2024026792A1 (zh) 2022-08-04 2022-08-04 通信方法、装置、设备、存储介质、芯片及程序产品

Publications (1)

Publication Number Publication Date
WO2024026792A1 true WO2024026792A1 (zh) 2024-02-08

Family

ID=89848216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110374 WO2024026792A1 (zh) 2022-08-04 2022-08-04 通信方法、装置、设备、存储介质、芯片及程序产品

Country Status (2)

Country Link
CN (1) CN117859366A (zh)
WO (1) WO2024026792A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325013A (zh) * 2011-07-19 2012-01-18 电信科学技术研究院 信道状态信息传输方法和设备
CN111277360A (zh) * 2019-01-11 2020-06-12 维沃移动通信有限公司 信道状态信息csi报告的传输方法、终端及网络设备
WO2020220374A1 (en) * 2019-05-02 2020-11-05 Qualcomm Incorporated Coefficient determination for type-ii compressed csi reporting with reduced overhead
CN112312463A (zh) * 2019-07-31 2021-02-02 华为技术有限公司 上报信道状态信息的方法和装置
CN113169785A (zh) * 2018-12-11 2021-07-23 高通股份有限公司 针对非连续的频率资源的经压缩的csi反馈
CN113508545A (zh) * 2019-01-21 2021-10-15 高通股份有限公司 用于具有频域压缩的信道状态信息的频域限制的技术
CN114760654A (zh) * 2021-01-08 2022-07-15 北京紫光展锐通信技术有限公司 Csi的上报方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325013A (zh) * 2011-07-19 2012-01-18 电信科学技术研究院 信道状态信息传输方法和设备
CN113169785A (zh) * 2018-12-11 2021-07-23 高通股份有限公司 针对非连续的频率资源的经压缩的csi反馈
CN111277360A (zh) * 2019-01-11 2020-06-12 维沃移动通信有限公司 信道状态信息csi报告的传输方法、终端及网络设备
CN113508545A (zh) * 2019-01-21 2021-10-15 高通股份有限公司 用于具有频域压缩的信道状态信息的频域限制的技术
WO2020220374A1 (en) * 2019-05-02 2020-11-05 Qualcomm Incorporated Coefficient determination for type-ii compressed csi reporting with reduced overhead
CN112312463A (zh) * 2019-07-31 2021-02-02 华为技术有限公司 上报信道状态信息的方法和装置
CN114760654A (zh) * 2021-01-08 2022-07-15 北京紫光展锐通信技术有限公司 Csi的上报方法及装置

Also Published As

Publication number Publication date
CN117859366A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
CN106899379B (zh) 用于处理极化码的方法和通信设备
CN115022972A (zh) 用户终端的能力信息传输方法和相关装置
CN108809500B (zh) 编码方法、装置和设备
WO2022161201A1 (zh) 编码调制与解调解码方法及装置
CN109936396B (zh) 多天线系统中预编码的方法及装置
WO2024026792A1 (zh) 通信方法、装置、设备、存储介质、芯片及程序产品
WO2023134363A1 (zh) 编码方法、解码方法和通信装置
WO2022089522A1 (zh) 一种数据传输的方法和装置
WO2024031456A1 (zh) 通信方法、装置、设备、存储介质、芯片及程序产品
WO2024031689A1 (zh) Csi上报方法、装置、设备及系统
WO2024026793A1 (zh) 数据传输方法、装置、设备、存储介质及系统
CN114867058A (zh) Csi反馈方法及装置、存储介质、终端、网络设备
CN110167154B (zh) 传输上行信号的方法、通信装置及计算机可读存储介质
WO2023116407A1 (zh) 信息处理方法、装置、终端及网络设备
WO2024078074A1 (zh) 信道状态信息的发送方法、接收方法及装置、存储介质
US20240146582A1 (en) Information encoding control method and related apparatus
WO2023155651A1 (zh) 基于极化码的编码方法和编码装置
US20230351207A1 (en) Model data sending method and apparatus
WO2023082154A1 (zh) Csi反馈方案的更新方法、装置、设备及存储介质
WO2024032775A1 (zh) 量化方法和装置
EP4195568A1 (en) Information transmission method and device, and storage medium
CN114095116B (zh) Dci解析方法、发送方法、终端和网络设备
WO2023011145A1 (zh) 一种通信方法及装置
WO2024026882A1 (zh) 信道状态信息的反馈方法、数据发送方法、装置和系统
US20240154670A1 (en) Method and apparatus for feedback channel status information based on machine learning in wireless communication system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280003013.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953601

Country of ref document: EP

Kind code of ref document: A1