WO2024025385A1 - Method for building reduced order model by using principal component vector based on simulation and principal component constant through machine learning based on measurement data - Google Patents

Method for building reduced order model by using principal component vector based on simulation and principal component constant through machine learning based on measurement data Download PDF

Info

Publication number
WO2024025385A1
WO2024025385A1 PCT/KR2023/011039 KR2023011039W WO2024025385A1 WO 2024025385 A1 WO2024025385 A1 WO 2024025385A1 KR 2023011039 W KR2023011039 W KR 2023011039W WO 2024025385 A1 WO2024025385 A1 WO 2024025385A1
Authority
WO
WIPO (PCT)
Prior art keywords
principal component
measurement data
cae analysis
machine learning
field measurement
Prior art date
Application number
PCT/KR2023/011039
Other languages
French (fr)
Korean (ko)
Inventor
허강열
한우주
Original Assignee
주식회사 페이스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 페이스 filed Critical 주식회사 페이스
Publication of WO2024025385A1 publication Critical patent/WO2024025385A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a method of building a reduced-order model, and in particular, to a method of building a reduced-order model through machine learning using measurement data.
  • 'CAE' Computer Aided Engineering
  • Reduced-order models are a technique for obtaining numerical analysis results in a short time by simplifying the solutions of physical and mathematical models used in CAE without directly obtaining solutions. Using reduced-order models enables real-time monitoring and response in the field.
  • Patent Document 1 KR 10-2048243 B1 (2019.11.25)
  • Non-patent Document 1 Woojin Lee, Kwonwoo Jang, Woojoo Han, Kang Y. Huh, “Model order reduction by proper orthogonal decomposition for a 500 MWe tangentially fired pulverized coal boiler”, case Studies in Thermal Engineering, 2021
  • the present invention was created to solve the above problems, and the purpose of the present invention is to construct a reduced-order model combining field measurement data and CAE analysis, based on POD-machine learning, to reduce the number of variables for a limited type.
  • the goal is to provide a method of building a reduced-order model that has high accuracy with only field measurement data and allows anyone to easily obtain information on all variables of interest in real time.
  • the method of constructing a reduced-order model according to the present invention to solve the above problems is performed by a program on a computer, and the operating variables or conditions that determine the operating conditions of the target product or facility are selected as parameters, and the given parameter space is
  • the CAE analysis results corresponding to the field measurement data are extracted from the CAE analysis results obtained in the CAE analysis step, and the field measurement data and the CAE analysis results corresponding to the field measurement data are extracted using the principal component constant values obtained in the principal component analysis step and the CAE analysis results corresponding to the field measurement data.
  • the principal component analysis step is performed by an appropriate orthogonal decomposition method.
  • the reduced-order model construction method by improving the reduced-order model that combines the measurement data of the conventional gappy-POD and associated-POD techniques, it is possible to build a reduced-order model with high accuracy with only a small number of measurement sensors. It becomes possible.
  • Figure 1 is a flow chart sequentially showing the steps of performing the reduced-order model construction method according to the present invention.
  • Figure 2 is a diagram showing the process of extracting CAE analysis results corresponding to field measurement data.
  • Figure 3 is a diagram showing the process of building a model for the correlation between measurement data and principal component constants by performing machine learning by matching CAE analysis results and principal component constants corresponding to field measurement data.
  • Figure 4 is a diagram showing the location of measurement data in a natural gas boiler as an example of applying the present invention.
  • Figures 5a to 5c are diagrams showing the results of comparing the prediction results for a natural gas boiler with the existing gappy-POD technique as an example of applying the present invention.
  • Figure 1 is a flow chart sequentially showing the steps of performing the reduced-order model construction method according to the present invention.
  • the reduced-order model building method includes a CAE analysis step (S100), a principal component analysis step (S200), a machine learning model building step (S300), and a simulation result acquisition step (S400).
  • Each step of the present invention can be performed by a program implementing the present invention on a computer, and field measurement data can be obtained in real time by various sensors installed in the field.
  • the CAE analysis step (S100) is a step in which operating variables or conditions that determine the operating conditions of the target product or facility are selected as parameters and CAE analysis is performed on cases sampled in a given parameter space.
  • the parameters are operating variables or conditions that determine the internal state of the target equipment.
  • they may be fuel injection amount, air flow rate, air temperature, and rotation ratio.
  • sampling is a procedure for pre-determining the combination of parameters for an appropriate number of cases needed to build a reduced-order model, and is referred to as random sampling or Latin Hyper Cube Sampling (hereinafter referred to as 'LHS'). Methods such as ) may be used.
  • LHS is a method of dividing each parameter into ranges with equal probability and then sampling variables within each range according to a specific correlation. It is known to reproduce the average value better than complete random sampling.
  • the principal component analysis step (S200) is a step of performing principal component analysis to extract principal components for the CAE analysis results performed in the CAE analysis step (S100).
  • principal component analysis is an analysis method that finds a common denominator in data obtained by performing CAE analysis on the parameters extracted by sampling in the CAE analysis step (S100), and is a similar concept to finding the greatest common divisor.
  • S100 CAE analysis step
  • principal component analysis is, for example, performed based on the Proper Orthogonal Decomposition (POD) method.
  • POD Proper Orthogonal Decomposition
  • POD provides CAE analysis data for a random sample case ( ) as the main component ( ) is expressed as a combination of
  • Is An orthogonal matrix obtained by decomposing into eigenvalues
  • Is An orthogonal matrix obtained by eigenvalue decomposition
  • Is and Each represents a diagonal matrix whose diagonal elements are the square roots of the eigenvalues resulting from eigenvalue decomposition.
  • the POD main component is can be selected as follows.
  • principal component constant is a snapshot main ingredient can be obtained by taking the dot product as follows.
  • various analysis methods such as Bayesian PCA, Dynamic Mode Decomposition (DMD), AutoEncoder, and kernel POD can be used for principal component analysis.
  • the machine learning model building step (S300) is a step of building a model through machine learning using the principal component constants obtained in the principal component analysis step (S200) and the CAE analysis results corresponding to the field measurement data. That is, in the machine learning model building step (S300), the result value corresponding to the field measurement data is extracted from the CAE analysis result obtained in the CAE analysis step (S100) (see Figure 2), and the principal component constant obtained in the principal component analysis step (S200) value( ), a model for the correlation between measurement data and principal component constants is built through machine learning (see Figure 3).
  • Machine learning can be applied to various methods, such as kriging and artificial neural networks.
  • the simulation result acquisition step (S400) is a step of obtaining simulation results that match the current measurement data by inputting field measurement data into the machine learning model built in the machine learning model building step (S300).
  • the simulation results ( ) is the main component obtained in the previous main component analysis step (S200) ( ) and the main component constant value ( ) can be obtained in the form below.
  • the method of building a reduced-order model using field measurement data using the conventional gappy-POD or associated-POD technique may greatly reduce the accuracy if the number of measurement sensors is small and requires at least the number of sensors of the main component, but the method of the present invention In cases where the number of sensors is small, accuracy can be maintained at a high level, making it useful in situations where it is difficult to obtain measurement data in the field.
  • the target was a boiler with 6 burners of the scale used in actual fields, and 20 samples were extracted using excess air ratio and swirl angle as operating conditions to determine the sample case.
  • OpenFOAM was used as a CAE analysis tool, and analysis was conducted using a self-developed solver using the SLFM (Steady Laminar Flamelet Model) model for turbulent diffusion combustion analysis.
  • SLFM Steady Laminar Flamelet Model
  • CAE analysis results corresponding to temperature results at 16 locations (see Figure 4) that can actually be measured near the boiler wall are extracted, and the extracted CAE analysis results and principal component constants ( ) was used to perform machine learning.
  • RBFN Radial Basis Function Network
  • Figure 5a is a CAE analysis result that was not used to build a machine learning model
  • Figure 5b is a simulation result obtained using the gappy-POD technique
  • Figure 5c is a simulation result obtained using a technique according to the present invention.
  • Temperature predicted by gappy-POD and the technique of the present invention ( ) In the distribution, major errors occurred in the area where fuel and oxidizer are mixed and combustion reaction occurs.
  • (b) is a picture showing the distribution of the error rate.
  • the error rate of the present invention shows an overall lower numerical distribution compared to the conventional gappy-POD, visually demonstrating superior prediction performance.
  • the average error rate for the entire area was 4.72% for gappy-POD, and 2.67% for the present invention, confirming quantitatively that the error rate is improved compared to the existing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention relates to a method for building a reduced order model through machine learning by using measurement data, the method comprising: a CAE analysis step of obtaining a CAE analysis result by selecting, as parameters, operating variables or conditions that determine operating conditions of a target product or facility, and performing CAE analysis on cases sampled in a given parameter space; a principal component analysis step of extracting a principal component for the CAE analysis result obtained in the CAE analysis step and obtaining a principal component constant value; a machine learning model building step of building a machine learning model for the correlation between field measurement data and the principal component constant value by using the principal component constant value obtained in the principal component analysis step and the CAE analysis result corresponding to the field measurement data; and a simulation result acquisition step of acquiring a simulation result matching the field measurement data by using the principal component constant value obtained by inputting the field measurement data into the machine learning model.

Description

시뮬레이션 기반의 주성분 벡터와 측정 데이터 기반의 기계학습에 의한 주성분 상수를 활용한 차수 감축 모델 구축 방법Method of building a reduced-order model using simulation-based principal component vectors and principal component constants through machine learning based on measurement data.
본 발명은 차수 감축 모델 구축 방법에 관한 것으로, 특히 측정 데이터를 활용하여 기계학습을 통해 차수 감축 모델을 구축하는 방법에 관한 것이다.The present invention relates to a method of building a reduced-order model, and in particular, to a method of building a reduced-order model through machine learning using measurement data.
컴퓨터 이용 공학(Computer Aided Engineering, 이하 'CAE'라 함)을 이용한 3차원 모사는 비행기, 차량, 선박, 반도체, 철강, 발전소 등 다양한 산업 분야에서 설계 및 문제 해결을 위해서 널리 활용되어 왔다.3D simulation using Computer Aided Engineering (hereinafter referred to as 'CAE') has been widely used for design and problem solving in various industrial fields such as airplanes, vehicles, ships, semiconductors, steel, and power plants.
그러나, CAE를 산업 현장 문제에 활용하는 데에는 다음과 같은 한계가 존재한다.However, the following limitations exist in using CAE for industrial field problems.
① 숙련된 엔지니어 필요: CAE를 활용하기 위해서는 주어진 문제에 대한 공학적, 물리학적, 수학적 이해와 컴퓨터 지식이 필요하다.① Skilled engineers required: In order to utilize CAE, engineering, physics, and mathematical understanding of the given problem and computer knowledge are required.
② 과도한 해석 시간: 적용 대상의 형상 및 해석 조건에 따라 케이스 당 수 시간에서 수 주까지의 과도한 계산시간이 소요될 수 있어, 대형 연소로와 같이 변화하는 운전조건에 따른 내부상황을 실시간으로 파악하는 것은 불가능하다.② Excessive analysis time: Depending on the shape and analysis conditions of the application object, excessive calculation time can take from several hours to several weeks per case, so it is difficult to understand the internal situation in real time according to changing operating conditions, such as in a large combustion furnace. impossible.
③ 비용 문제: 대형 계산을 수행해야 할 경우, 대규모의 전산자원을 필요로 하며 그에 따른 소프트웨어 라이센스 비용이 발생한다.③ Cost issue: When large-scale calculations need to be performed, large-scale computing resources are required and corresponding software license costs are incurred.
④ 정확도 문제: CAE 해석에는 기본 보존식들에 필연적으로 여러가지 단순화 가정이 수반되기 때문에 실제 현상과 오차가 발생할 수 있다.④ Accuracy problem: Because CAE analysis inevitably involves various simplifying assumptions in the basic conservation equations, errors from actual phenomena may occur.
최근에는, 위와 같은 CAE의 문제점을 극복하기 위해 CAE 해석을 기반으로 한 차수 감축 모델(Reduced Order Model, ROM)을 구축하고, 이를 이용하여 실시간 결과를 도출하는 디지털 트윈(Digital Twin, 현실세계의 기계나 장비, 사물 등을 컴퓨터 속 가상세계에 구현한 것) 기술이 대두되고 있다.Recently, in order to overcome the above problems of CAE, a reduced order model (ROM) based on CAE analysis has been established, and a digital twin (real-world machine) is used to derive real-time results. Technology that implements equipment, objects, etc. into a virtual world within a computer is on the rise.
차수 감축 모델은 CAE에서 사용되는 물리적 수학적 모델들의 해를 직접 구하지 않고 단순화시켜 빠른 시간 내에 수치해석 결과를 얻기 위한 기법으로서, 차수 감축 모델을 이용하게 되면 현장에서 실시간 모니터링 및 대응이 가능하게 된다.Reduced-order models are a technique for obtaining numerical analysis results in a short time by simplifying the solutions of physical and mathematical models used in CAE without directly obtaining solutions. Using reduced-order models enables real-time monitoring and response in the field.
하지만, CAE 해석에 수반되는 다양한 단순화 가정 때문에 CAE만을 사용하여 차수 감축 모델을 구축할 경우 그 정확도에 한계가 있을 수밖에 없으며, 이에 따라 현장 측정 데이터와 CAE 해석을 결합한 차수 감축 모델을 구축하는 방법이 새롭게 시도되고 있다. However, due to the various simplifying assumptions involved in CAE analysis, there is bound to be a limit to its accuracy when building a reduced-order model using only CAE. Accordingly, a new method of building a reduced-order model that combines field measurement data and CAE analysis is needed. It is being attempted.
이러한 시도의 일환으로 갭피-POD 또는 연관-POD 기법을 활용한 차수 감축 모델 구축 방법(하기 '특허문헌 1', '비특허문헌 1' 참조)이 제안되었지만, 이러한 차수 감축 모델 구축 방법은 현장 데이터를 측정하는 센서 개수가 적을 경우 그 정확도가 크게 떨어질 수 있으며, 적어도 주성분 수 이상의 센서가 필요한 단점이 있었다.As part of this attempt, a reduced-order model construction method using gappy-POD or associated-POD techniques (see 'Patent Document 1' and 'Non-Patent Document 1' below) has been proposed, but this reduced-order model construction method is based on field data. If the number of sensors measuring is small, the accuracy can be greatly reduced, and there is a disadvantage that at least more sensors are required for the number of main components.
따라서, 현장에서 측정 데이터를 얻기 어려운 상황에서도 유용하게 사용할 수 있도록, 센서 개수가 적어도 정확도를 높게 유지할 수 있는 새로운 차수 감축 모델 구축 방법의 개발이 요구되고 있다.Therefore, there is a need to develop a new reduced-order model construction method that can maintain high accuracy with a small number of sensors so that it can be useful even in situations where it is difficult to obtain measurement data in the field.
(특허문헌 1) KR 10-2048243 B1(2019.11.25)(Patent Document 1) KR 10-2048243 B1 (2019.11.25)
(비특허문헌 1) Woojin Lee, Kwonwoo Jang, Woojoo Han, Kang Y. Huh, “Model order reduction by proper orthogonal decomposition for a 500 MWe tangentially fired pulverized coal boiler”, case Studies in Thermal Engineering, 2021(Non-patent Document 1) Woojin Lee, Kwonwoo Jang, Woojoo Han, Kang Y. Huh, “Model order reduction by proper orthogonal decomposition for a 500 MWe tangentially fired pulverized coal boiler”, case Studies in Thermal Engineering, 2021
본 발명은 위와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 현장 측정 데이터와 CAE 해석을 결합한 차수 감축 모델을 구축함에 있어 POD-기계학습을 기반으로 제한된 종류의 변수에 대한 적은 수의 현장 측정 데이터만으로도 정확도가 높고 누구나 쉽게 실시간으로 관심 대상이 되는 모든 변수들에 대한 정보를 파악할 수 있도록 한 차수 감축 모델 구축 방법을 제공하는데 있다.The present invention was created to solve the above problems, and the purpose of the present invention is to construct a reduced-order model combining field measurement data and CAE analysis, based on POD-machine learning, to reduce the number of variables for a limited type. The goal is to provide a method of building a reduced-order model that has high accuracy with only field measurement data and allows anyone to easily obtain information on all variables of interest in real time.
위와 같은 과제를 해결하기 위한 본 발명에 따른 차수 감축 모델 구축 방법은, 컴퓨터 상에서 프로그램에 의해 수행되는 것으로, 대상 제품 혹은 설비의 운전 조건을 결정짓는 운전 변수 또는 조건을 파라미터로 선정하고, 주어진 파라미터 공간에서 샘플링된 케이스들에 대한 CAE 해석을 수행하여 CAE 해석 결과를 얻는 CAE 해석 단계; 상기 CAE 해석 단계에서 얻은 CAE 해석 결과에 대한 주성분을 추출하고 주성분 상수값을 구하는 주성분 분석 단계; 상기 CAE 해석 단계에서 얻은 CAE 해석 결과에서 현장 측정 데이터에 대응되는 CAE 해석 결과를 추출하고, 상기 주성분 분석 단계에서 구한 주성분 상수값과 상기 현장 측정 데이터에 대응되는 CAE 해석 결과를 이용하여 현장 측정 데이터와 주성분 상수값 사이의 상관관계에 대한 기계학습 모델을 구축하는 기계학습 모델 구축 단계; 및 현장 측정 데이터를 기계학습 모델에 입력하여 얻어진 주성분 상수값을 사용해 현장 측정 데이터에 부합하는 시뮬레이션 결과를 얻는 시뮬레이션 결과 획득 단계;를 포함하는 것을 특징으로 한다.The method of constructing a reduced-order model according to the present invention to solve the above problems is performed by a program on a computer, and the operating variables or conditions that determine the operating conditions of the target product or facility are selected as parameters, and the given parameter space is A CAE analysis step of obtaining CAE analysis results by performing CAE analysis on the cases sampled in; A principal component analysis step of extracting principal components for the CAE analysis results obtained in the CAE analysis step and obtaining principal component constant values; The CAE analysis results corresponding to the field measurement data are extracted from the CAE analysis results obtained in the CAE analysis step, and the field measurement data and the CAE analysis results corresponding to the field measurement data are extracted using the principal component constant values obtained in the principal component analysis step and the CAE analysis results corresponding to the field measurement data. A machine learning model construction step of constructing a machine learning model for the correlation between principal component constant values; And a simulation result acquisition step of obtaining simulation results that match the field measurement data using the main component constant values obtained by inputting the field measurement data into a machine learning model.
본 발명에서 상기 주성분 분석 단계는 적합 직교 분해 방법에 의해 수행된다.In the present invention, the principal component analysis step is performed by an appropriate orthogonal decomposition method.
본 발명에 따른 차수 감축 모델 구축 방법에 의하면, 종래의 갭피-POD 및 연관-POD 기법의 측정 데이터를 결합한 차수 감축 모델을 개선하여, 적은 수의 측정 센서만으로도 높은 정확도를 갖는 차수 감축 모델을 구축할 수 있게 된다.According to the reduced-order model construction method according to the present invention, by improving the reduced-order model that combines the measurement data of the conventional gappy-POD and associated-POD techniques, it is possible to build a reduced-order model with high accuracy with only a small number of measurement sensors. It becomes possible.
도 1은 본 발명에 따른 차수 감축 모델 구축 방법의 수행 단계를 순차적으로 도시한 플로우 챠트이다.Figure 1 is a flow chart sequentially showing the steps of performing the reduced-order model construction method according to the present invention.
도 2는 현장 측정 데이터와 대응되는 CAE 해석 결과를 추출하는 과정을 보여주는 도면이다.Figure 2 is a diagram showing the process of extracting CAE analysis results corresponding to field measurement data.
도 3은 현장 측정데이터와 대응되는 CAE 해석 결과와 주성분 상수를 대응시켜 기계학습을 수행함으로써 측정 데이터와 주성분 상수 사이의 상관관계에 대한 모델을 구축하는 과정을 보여주는 도면이다.Figure 3 is a diagram showing the process of building a model for the correlation between measurement data and principal component constants by performing machine learning by matching CAE analysis results and principal component constants corresponding to field measurement data.
도 4는 본 발명을 적용한 예로서 천연가스 보일러에서 측정 데이터의 위치를 보여주는 도면이다. Figure 4 is a diagram showing the location of measurement data in a natural gas boiler as an example of applying the present invention.
도 5a 내지 5c는 본 발명을 적용한 예로서 천연가스 보일러에 대한 예측 결과를 기존의 갭피-POD 기법과 비교한 결과를 나타낸 도면이다.Figures 5a to 5c are diagrams showing the results of comparing the prediction results for a natural gas boiler with the existing gappy-POD technique as an example of applying the present invention.
*도면 중 주요 부호에 대한 설명**Explanation of major symbols in the drawing*
S100: CAE 해석단계S100: CAE analysis stage
S200: 주성분 분석 단계S200: Principal component analysis step
S300: 기계학습 모델 구축 단계S300: Machine learning model building stage
S400: 시뮬레이션 결과 획득 단계S400: Simulation result acquisition step
아래에서는 본 발명에 따른 차수 감축 모델 구축 방법을 첨부된 도면을 참조하여 상세히 설명한다. 다만, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Below, the method of constructing a reduced order model according to the present invention will be described in detail with reference to the attached drawings. However, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention are omitted.
도 1은 본 발명에 따른 차수 감축 모델 구축 방법의 수행 단계를 순차적으로 도시한 플로우 챠트이다.Figure 1 is a flow chart sequentially showing the steps of performing the reduced-order model construction method according to the present invention.
도 1을 참조하면, 본 발명에 따른 차수 감축 모델 구축 방법은 CAE 해석 단계(S100), 주성분 분석 단계(S200), 기계학습 모델 구축 단계(S300) 및 시뮬레이션 결과 획득 단계(S400)를 포함한다.Referring to Figure 1, the reduced-order model building method according to the present invention includes a CAE analysis step (S100), a principal component analysis step (S200), a machine learning model building step (S300), and a simulation result acquisition step (S400).
본 발명의 각 단계는 컴퓨터 상에서 본 발명이 구현되어 있는 프로그램에 의해 수행될 수 있으며, 현장 측정 데이터는 현장에 구비되는 각종 센서에 의해 실시간으로 얻을 수 있다.Each step of the present invention can be performed by a program implementing the present invention on a computer, and field measurement data can be obtained in real time by various sensors installed in the field.
CAE 해석 단계(S100)는 대상 제품 혹은 설비의 운전 조건을 결정짓는 운전 변수 또는 조건을 파라미터로 선정하고, 주어진 파라미터 공간에서 샘플링된 케이스들에 대한 CAE 해석을 수행하는 단계이다.The CAE analysis step (S100) is a step in which operating variables or conditions that determine the operating conditions of the target product or facility are selected as parameters and CAE analysis is performed on cases sampled in a given parameter space.
여기서, 파라미터는 대상 설비의 내부 상태를 결정짓는 운전 변수 또는 조건으로서, 예를 들어 버너의 경우 연료 분사량, 공기 유량, 공기 온도, 선회비 등이 될 수 있다.Here, the parameters are operating variables or conditions that determine the internal state of the target equipment. For example, in the case of a burner, they may be fuel injection amount, air flow rate, air temperature, and rotation ratio.
또한, 샘플링은 차수 감축 모델을 구축하기 위하여 필요한 적절한 수의 케이스들에 대한 파라미터의 조합을 미리 결정하는 절차로서, 랜덤 샘플링(Random Sampling)이나 라틴 하이퍼 큐브 샘플링(Latin Hyper Cube Sampling, 이하 'LHS'라 함) 등의 방법이 사용될 수 있다. LHS는 각 파라미터를 같은 확률을 가진 범위로 나눈 후 특정 상관관계에 따라 각 범위 내에서 변수를 표본화 하는 방법으로서, 완전 무작위 추출보다 평균값을 잘 재현하는 것으로 알려져 있다.In addition, sampling is a procedure for pre-determining the combination of parameters for an appropriate number of cases needed to build a reduced-order model, and is referred to as random sampling or Latin Hyper Cube Sampling (hereinafter referred to as 'LHS'). Methods such as ) may be used. LHS is a method of dividing each parameter into ranges with equal probability and then sampling variables within each range according to a specific correlation. It is known to reproduce the average value better than complete random sampling.
주성분 분석 단계(S200)는 상기 CAE 해석 단계(S100)에서 수행된 CAE 해석 결과에 대한 주성분을 추출하기 위해 주성분 분석(Principal Component Analysis)을 수행하는 단계이다.The principal component analysis step (S200) is a step of performing principal component analysis to extract principal components for the CAE analysis results performed in the CAE analysis step (S100).
여기서, 주성분 분석은 상기 CAE 해석 단계(S100)에서 샘플링으로 추출한 파라미터에 대한 CAE 해석을 수행함으로써 얻어진 데이터의 공통 분모를 찾아내는 분석법으로, 최대 공약수를 구하는 것과 비슷한 개념이다. 즉, 최대 공약수를 찾으면 그 값에 적절한 상수를 곱하여 원래의 숫자를 얻을 수 있듯이, 각 주성분에 대응하는 상수를 곱하여 모두 더하면 원본 데이터를 재현할 수 있게 된다.Here, principal component analysis is an analysis method that finds a common denominator in data obtained by performing CAE analysis on the parameters extracted by sampling in the CAE analysis step (S100), and is a similar concept to finding the greatest common divisor. In other words, just as you can obtain the original number by finding the greatest common divisor and multiplying the value by an appropriate constant, you can reproduce the original data by multiplying each principal component by the corresponding constant and adding them all together.
본 발명에서 주성분 분석은, 일 예시로 적합 직교 분해(Proper Orthogonal Decomposition, 이하 'POD'라 함) 방법에 기초하여 수행된다.In the present invention, principal component analysis is, for example, performed based on the Proper Orthogonal Decomposition (POD) method.
POD는 임의의 샘플 케이스에 대한 CAE 해석 데이터(
Figure PCTKR2023011039-appb-img-000001
)를 아래와 같이 주성분(
Figure PCTKR2023011039-appb-img-000002
)들의 조합으로 나타낸다.
POD provides CAE analysis data for a random sample case (
Figure PCTKR2023011039-appb-img-000001
) as the main component (
Figure PCTKR2023011039-appb-img-000002
) is expressed as a combination of
Figure PCTKR2023011039-appb-img-000003
Figure PCTKR2023011039-appb-img-000003
여기서,
Figure PCTKR2023011039-appb-img-000004
는 샘플의 수이며, 주성분 벡터
Figure PCTKR2023011039-appb-img-000005
는 모든 샘플들의 CAE 해석 결과를 합쳐놓은 스냅샷 행렬(Snapshot Matrix)
Figure PCTKR2023011039-appb-img-000006
의 특이값 분해(Singular Value Decomposition)를 통해 얻을 수 있다.
here,
Figure PCTKR2023011039-appb-img-000004
is the number of samples, and is the principal component vector
Figure PCTKR2023011039-appb-img-000005
is a snapshot matrix that combines the CAE analysis results of all samples.
Figure PCTKR2023011039-appb-img-000006
It can be obtained through Singular Value Decomposition.
스냅샷 행렬
Figure PCTKR2023011039-appb-img-000007
에 대한 특이값 분해는 아래 식과 같이 정의될 수 있다.
snapshot matrix
Figure PCTKR2023011039-appb-img-000007
The singular value decomposition for can be defined as the equation below.
Figure PCTKR2023011039-appb-img-000008
Figure PCTKR2023011039-appb-img-000008
여기서,
Figure PCTKR2023011039-appb-img-000009
Figure PCTKR2023011039-appb-img-000010
를 고유값(Eigenvalue) 분해해서 얻어진 직교행렬,
Figure PCTKR2023011039-appb-img-000011
Figure PCTKR2023011039-appb-img-000012
를 고유값 분해해서 얻어진 직교행렬,
Figure PCTKR2023011039-appb-img-000013
Figure PCTKR2023011039-appb-img-000014
Figure PCTKR2023011039-appb-img-000015
를 고유값 분해해서 나오는 고유값들의 제곱근을 대각원소로 하는 대각행렬을 각각 나타내며, 이때 POD 주성분
Figure PCTKR2023011039-appb-img-000016
은 아래와 같이 선택될 수 있다.
here,
Figure PCTKR2023011039-appb-img-000009
Is
Figure PCTKR2023011039-appb-img-000010
An orthogonal matrix obtained by decomposing into eigenvalues,
Figure PCTKR2023011039-appb-img-000011
Is
Figure PCTKR2023011039-appb-img-000012
An orthogonal matrix obtained by eigenvalue decomposition,
Figure PCTKR2023011039-appb-img-000013
Is
Figure PCTKR2023011039-appb-img-000014
and
Figure PCTKR2023011039-appb-img-000015
Each represents a diagonal matrix whose diagonal elements are the square roots of the eigenvalues resulting from eigenvalue decomposition. In this case, the POD main component is
Figure PCTKR2023011039-appb-img-000016
can be selected as follows.
Figure PCTKR2023011039-appb-img-000017
Figure PCTKR2023011039-appb-img-000017
여기서,
Figure PCTKR2023011039-appb-img-000018
는 행렬
Figure PCTKR2023011039-appb-img-000019
Figure PCTKR2023011039-appb-img-000020
번째 열이다.
here,
Figure PCTKR2023011039-appb-img-000018
is a matrix
Figure PCTKR2023011039-appb-img-000019
of
Figure PCTKR2023011039-appb-img-000020
It is the second column.
주성분 상수
Figure PCTKR2023011039-appb-img-000021
는 스냅샷
Figure PCTKR2023011039-appb-img-000022
에 주성분
Figure PCTKR2023011039-appb-img-000023
를 다음과 같이 내적하여 구할 수 있다.
principal component constant
Figure PCTKR2023011039-appb-img-000021
is a snapshot
Figure PCTKR2023011039-appb-img-000022
main ingredient
Figure PCTKR2023011039-appb-img-000023
can be obtained by taking the dot product as follows.
Figure PCTKR2023011039-appb-img-000024
Figure PCTKR2023011039-appb-img-000024
이를 이용하여 임의의 CAE 해석 데이터
Figure PCTKR2023011039-appb-img-000025
는 다음과 같이 나타낼 수 있다.
Using this, arbitrary CAE analysis data
Figure PCTKR2023011039-appb-img-000025
can be expressed as follows.
Figure PCTKR2023011039-appb-img-000026
Figure PCTKR2023011039-appb-img-000026
여기서, 적절히 작은 에러(
Figure PCTKR2023011039-appb-img-000027
)를 갖도록 샘플수(
Figure PCTKR2023011039-appb-img-000028
)보다 작은
Figure PCTKR2023011039-appb-img-000029
개의 주성분을 추출하여 저장하게 된다.
Here, an appropriately small error (
Figure PCTKR2023011039-appb-img-000027
) to have the number of samples (
Figure PCTKR2023011039-appb-img-000028
)lesser
Figure PCTKR2023011039-appb-img-000029
The main components are extracted and stored.
한편, 본 발명에서 주성분 분석은 위에서 설명한 POD 외에도 베이지안 주성분 분석(Bayesian PCA), DMD(Dynamic Mode Decomposition), 오토인코더(AutoEncoder), 커널(kernel) POD 등 다양한 분석 방법이 사용될 수 있다.Meanwhile, in the present invention, in addition to the POD described above, various analysis methods such as Bayesian PCA, Dynamic Mode Decomposition (DMD), AutoEncoder, and kernel POD can be used for principal component analysis.
기계학습 모델 구축 단계(S300)는 상기 주성분 분석 단계(S200)에서 얻은 주성분 상수와 현장 측정 데이터에 대응되는 CAE 해석 결과를 이용하여 기계학습을 통해 모델을 구축하는 단계이다. 즉, 기계학습 모델 구축 단계(S300)에서는 CAE 해석 단계(S100)에서 얻은 CAE 해석 결과에서 현장 측정 데이터에 대응되는 결과값을 추출하여(도 2 참조), 주성분 분석 단계(S200)에서 얻은 주성분 상수값(
Figure PCTKR2023011039-appb-img-000030
)과 대응시켜 기계학습을 통해 측정 데이터와 주성분 상수 사이의 상관관계에 대한 모델을 구축하게 된다(도 3 참조).
The machine learning model building step (S300) is a step of building a model through machine learning using the principal component constants obtained in the principal component analysis step (S200) and the CAE analysis results corresponding to the field measurement data. That is, in the machine learning model building step (S300), the result value corresponding to the field measurement data is extracted from the CAE analysis result obtained in the CAE analysis step (S100) (see Figure 2), and the principal component constant obtained in the principal component analysis step (S200) value(
Figure PCTKR2023011039-appb-img-000030
), a model for the correlation between measurement data and principal component constants is built through machine learning (see Figure 3).
기계학습은 크리깅(kriging), 인공신경망 등 다양한 방법이 적용될 수 있다.Machine learning can be applied to various methods, such as kriging and artificial neural networks.
다음으로, 시뮬레이션 결과 획득 단계(S400)는 상기 기계학습 모델 구축단계(S300)에서 구축된 기계학습 모델에 현장 측정 데이터를 입력하여 현재 측정 데이터에 부합하는 시뮬레이션 결과를 얻는 단계이다. 이때, 시뮬레이션 결과(
Figure PCTKR2023011039-appb-img-000031
)는 앞서 주성분 분석 단계(S200)에서 얻은 주성분(
Figure PCTKR2023011039-appb-img-000032
)과 앞서 기계학습 모델 구축단계(S300)에서 구축한 기계학습 모델에 측정 데이터를 입력하여 얻은 주성분 상수값(
Figure PCTKR2023011039-appb-img-000033
)으로부터 아래와 같은 형태로 얻을 수 있다.
Next, the simulation result acquisition step (S400) is a step of obtaining simulation results that match the current measurement data by inputting field measurement data into the machine learning model built in the machine learning model building step (S300). At this time, the simulation results (
Figure PCTKR2023011039-appb-img-000031
) is the main component obtained in the previous main component analysis step (S200) (
Figure PCTKR2023011039-appb-img-000032
) and the main component constant value (
Figure PCTKR2023011039-appb-img-000033
) can be obtained in the form below.
Figure PCTKR2023011039-appb-img-000034
Figure PCTKR2023011039-appb-img-000034
종래의 갭피-POD 또는 연관-POD 기법을 활용한 현장 측정 데이터를 이용한 차수 감축 모델 구축 방법은 측정 센서의 개수가 적을 경우 그 정확도가 크게 떨어질 수 있으며 적어도 주성분 수 이상의 센서가 필요하지만, 본 발명의 경우 센서 개수가 적어도 정확도를 높게 유지할 수 있게 되어 현장에서 측정 데이터를 얻기 어려운 상황에서 유용하게 사용할 수 있다.The method of building a reduced-order model using field measurement data using the conventional gappy-POD or associated-POD technique may greatly reduce the accuracy if the number of measurement sensors is small and requires at least the number of sensors of the main component, but the method of the present invention In cases where the number of sensors is small, accuracy can be maintained at a high level, making it useful in situations where it is difficult to obtain measurement data in the field.
(적용예)(Application example)
본 발명의 적용 예시로 천연가스 보일러에 대한 차수 감소 모델을 구축하였다.As an example of application of the present invention, a reduced-order model for a natural gas boiler was constructed.
대상은 실제 현장에서 이용되는 규모의 6개 버너를 갖는 보일러로, 과잉 공기비와 스월 각도를 운전 조건으로 하여 20개의 샘플을 추출하여 샘플 케이스를 정하였다.The target was a boiler with 6 burners of the scale used in actual fields, and 20 samples were extracted using excess air ratio and swirl angle as operating conditions to determine the sample case.
CAE 해석 툴로서 오픈폼(OpenFOAM)을 사용하였으며, 난류 확산 연소 해석을 위한 SLFM(Steady Laminar Flamelet Model) 모델이 적용된 자체 개발 솔버(Solver)를 활용하여 해석을 진행하였다.OpenFOAM was used as a CAE analysis tool, and analysis was conducted using a self-developed solver using the SLFM (Steady Laminar Flamelet Model) model for turbulent diffusion combustion analysis.
CAE 해석을 통해 각 샘플 케이스에 있어 버너 내부의 온도, 유속, 각종 화학종 농도 등 모든 분포에 대한 정보를 얻은 후, 온도(
Figure PCTKR2023011039-appb-img-000035
)에 대하여 주성분 분석을 수행하였다.
After obtaining information on all distributions such as temperature, flow rate, and concentration of various chemical species inside the burner for each sample case through CAE analysis, temperature (
Figure PCTKR2023011039-appb-img-000035
), principal component analysis was performed.
이후, 보일러 벽 근처의 실제 측정될 수 있는 16개 위치(도 4 참조)의 온도 결과값에 대응되는 CAE 해석 결과를 추출하고, 추출된 CAE 해석 결과와 주성분 상수(
Figure PCTKR2023011039-appb-img-000036
)를 대응시켜 기계학습을 수행하였다.
Afterwards, CAE analysis results corresponding to temperature results at 16 locations (see Figure 4) that can actually be measured near the boiler wall are extracted, and the extracted CAE analysis results and principal component constants (
Figure PCTKR2023011039-appb-img-000036
) was used to perform machine learning.
기계학습 방법으로는 인공신경망의 한 종류인 Radial Basis Function Network(RBFN)을 사용하였다.As a machine learning method, Radial Basis Function Network (RBFN), a type of artificial neural network, was used.
기계학습 모델 구축에 사용되지 않았던 CAE 해석 결과를 기준으로 하여 본 발명의 방식에 따라 획득된 시뮬레이션 결과와 기존의 갭피-POD 방식에 따른 시뮬레이션 결과를 비교하면 도 5a 내지 5c와 같다.Comparison of the simulation results obtained according to the method of the present invention and the simulation results according to the existing gappy-POD method based on the CAE analysis results that were not used to build the machine learning model is shown in Figures 5a to 5c.
도 5a는 기계학습 모델 구축에 사용되지 않았던 CAE 해석 결과이고, 도 5b는 갭피-POD 기법을 사용하여 얻은 시뮬레이션 결과, 도 5c는 본 발명에 따른 기법을 사용하여 얻은 시뮬레이션 결과이다. 갭피-POD와 본 발명의 기법으로 예측된 온도(
Figure PCTKR2023011039-appb-img-000037
) 분포는 공통적으로 연료와 산화제가 섞이며 연소반응이 발생하는 영역에서 주요 오차가 발생하였다. 도 5b 및 5c에서 (b)의 그림은 에러율의 분포를 나타내는 그림으로, 본 발명의 에러율은 종래의 갭피-POD에 비해 전반적으로 낮은 수치 분포를 보이며, 월등한 예측 성능을 시각적으로 보여주고 있다. 전체 영역에 대한 평균 에러율은 갭피-POD의 경우 4.72%로 나타났고, 본 발명은 2.67%로 나타나서 기존 방법에 비해 에러율이 개선됨을 정량적으로도 확인할 수 있다.
Figure 5a is a CAE analysis result that was not used to build a machine learning model, Figure 5b is a simulation result obtained using the gappy-POD technique, and Figure 5c is a simulation result obtained using a technique according to the present invention. Temperature predicted by gappy-POD and the technique of the present invention (
Figure PCTKR2023011039-appb-img-000037
) In the distribution, major errors occurred in the area where fuel and oxidizer are mixed and combustion reaction occurs. In Figures 5b and 5c, (b) is a picture showing the distribution of the error rate. The error rate of the present invention shows an overall lower numerical distribution compared to the conventional gappy-POD, visually demonstrating superior prediction performance. The average error rate for the entire area was 4.72% for gappy-POD, and 2.67% for the present invention, confirming quantitatively that the error rate is improved compared to the existing method.
본 명세서와 첨부된 도면에 개시된 실시 예들은 본 발명의 기술적 사상을 쉽게 설명하기 위한 목적으로 사용된 것일 뿐, 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.The embodiments disclosed in this specification and the accompanying drawings are used only for the purpose of easily explaining the technical idea of the present invention, and are not used to limit the scope of the present invention as set forth in the patent claims. Accordingly, those skilled in the art will understand that various modifications and other equivalent embodiments are possible therefrom.

Claims (2)

  1. 컴퓨터 상에서 프로그램에 의해 수행되는 것으로,Executed by a program on a computer,
    대상 제품 혹은 설비의 운전 조건을 결정짓는 운전 변수 또는 조건을 파라미터로 선정하고, 주어진 파라미터 공간에서 샘플링된 케이스들에 대한 CAE 해석을 수행하여 CAE 해석 결과를 얻는 CAE 해석 단계;A CAE analysis step in which operating variables or conditions that determine the operating conditions of the target product or facility are selected as parameters, and CAE analysis is performed on cases sampled in a given parameter space to obtain CAE analysis results;
    상기 CAE 해석 단계에서 얻은 CAE 해석 결과에 대한 주성분을 추출하고 주성분 상수값을 구하는 주성분 분석 단계;A principal component analysis step of extracting principal components for the CAE analysis results obtained in the CAE analysis step and obtaining principal component constant values;
    상기 CAE 해석 단계에서 얻은 CAE 해석 결과에서 현장 측정 데이터에 대응되는 CAE 해석 결과를 추출하고, 상기 주성분 분석 단계에서 구한 주성분 상수값과 상기 현장 측정 데이터에 대응되는 CAE 해석 결과를 이용하여 현장 측정 데이터와 주성분 상수값 사이의 상관관계에 대한 기계학습 모델을 구축하는 기계학습 모델 구축 단계; 및The CAE analysis results corresponding to the field measurement data are extracted from the CAE analysis results obtained in the CAE analysis step, and the field measurement data and the CAE analysis results corresponding to the field measurement data are extracted using the principal component constant values obtained in the principal component analysis step and the CAE analysis results corresponding to the field measurement data. A machine learning model construction step of constructing a machine learning model for the correlation between principal component constant values; and
    현장 측정 데이터를 기계학습 모델에 입력하여 얻어진 주성분 상수값을 사용해 현장 측정 데이터에 부합하는 시뮬레이션 결과를 얻는 시뮬레이션 결과 획득 단계;를 포함하는 차수 감축 모델 구축 방법.A method of building a reduced-order model that includes a simulation result acquisition step of obtaining simulation results that match the field measurement data using the principal component constant values obtained by inputting field measurement data into a machine learning model.
  2. 청구항 1에 있어서,In claim 1,
    상기 주성분 분석 단계는 적합 직교 분해 방법에 의해 수행되는 것을 특징으로 하는 차수 감축 모델 구축 방법.A reduced-order model construction method, characterized in that the principal component analysis step is performed by a suitable orthogonal decomposition method.
PCT/KR2023/011039 2022-07-29 2023-07-28 Method for building reduced order model by using principal component vector based on simulation and principal component constant through machine learning based on measurement data WO2024025385A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220094742A KR102484587B1 (en) 2022-07-29 2022-07-29 Method to Build a Reduced Order Model based on Eigenmodes from Simulation and Eigenvalues based on Machine Learning by Measurement Data
KR10-2022-0094742 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024025385A1 true WO2024025385A1 (en) 2024-02-01

Family

ID=84924896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011039 WO2024025385A1 (en) 2022-07-29 2023-07-28 Method for building reduced order model by using principal component vector based on simulation and principal component constant through machine learning based on measurement data

Country Status (2)

Country Link
KR (1) KR102484587B1 (en)
WO (1) WO2024025385A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102484587B1 (en) * 2022-07-29 2023-01-04 주식회사 페이스 Method to Build a Reduced Order Model based on Eigenmodes from Simulation and Eigenvalues based on Machine Learning by Measurement Data

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100116502A (en) * 2009-04-22 2010-11-01 한국전력공사 Pridiction method for monitoring performance of plant instruments
KR102048243B1 (en) * 2019-09-09 2019-11-25 주식회사 페이스 Method for Building Reduced Order Model by Combining CAE Simulation and Measurement Data through Coupled-POD
KR20210007735A (en) * 2019-07-12 2021-01-20 한국전자통신연구원 Method and apparatus for performing machine learning based on correlation between features
KR102261942B1 (en) * 2020-12-24 2021-06-07 주식회사 페이스 Method to construct a Digital Twin by combining Reduced Order Models, Measurement Data and Machine Learning Techniques for a Multiphysical Engineering System
KR102266279B1 (en) * 2019-12-18 2021-06-17 포항공과대학교 산학협력단 Method for Building Reduced Order Model for Implementing Transient State
KR102484587B1 (en) * 2022-07-29 2023-01-04 주식회사 페이스 Method to Build a Reduced Order Model based on Eigenmodes from Simulation and Eigenvalues based on Machine Learning by Measurement Data

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100116502A (en) * 2009-04-22 2010-11-01 한국전력공사 Pridiction method for monitoring performance of plant instruments
KR20210007735A (en) * 2019-07-12 2021-01-20 한국전자통신연구원 Method and apparatus for performing machine learning based on correlation between features
KR102048243B1 (en) * 2019-09-09 2019-11-25 주식회사 페이스 Method for Building Reduced Order Model by Combining CAE Simulation and Measurement Data through Coupled-POD
KR102266279B1 (en) * 2019-12-18 2021-06-17 포항공과대학교 산학협력단 Method for Building Reduced Order Model for Implementing Transient State
KR102261942B1 (en) * 2020-12-24 2021-06-07 주식회사 페이스 Method to construct a Digital Twin by combining Reduced Order Models, Measurement Data and Machine Learning Techniques for a Multiphysical Engineering System
KR102484587B1 (en) * 2022-07-29 2023-01-04 주식회사 페이스 Method to Build a Reduced Order Model based on Eigenmodes from Simulation and Eigenvalues based on Machine Learning by Measurement Data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK JINWOO, LEE WOOJIN, HUH KANG Y.: "Model order reduction by radial basis function network for sparse reconstruction of an industrial natural gas boiler", CASE STUDIES IN THERMAL ENGINEERING, ELSEVIER, vol. 37, 1 September 2022 (2022-09-01), pages 102288, XP093132590, ISSN: 2214-157X, DOI: 10.1016/j.csite.2022.102288 *

Also Published As

Publication number Publication date
KR102484587B1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
WO2021049858A1 (en) Method for building reduced order model combining field measurement data and cae analysis through coupled-pod
Christo et al. Artificial neural network implementation of chemistry with pdf simulation of H2/CO2 flames
WO2024025385A1 (en) Method for building reduced order model by using principal component vector based on simulation and principal component constant through machine learning based on measurement data
CN111027010A (en) Steel member cylinder fitting algorithm
CN116151084B (en) Simulation method and device based on structural grid, terminal equipment and storage medium
Trisjono et al. Systematic analysis strategies for the development of combustion models from DNS: A review
Ranade et al. Generalized joint probability density function formulation inturbulent combustion using deeponet
CN115828797A (en) Submarine hydrodynamic load rapid forecasting method based on reduced order model
Xie et al. VTET: A virtual industrial control system testbed for cyber security research
KR102266279B1 (en) Method for Building Reduced Order Model for Implementing Transient State
KR20240016924A (en) Digital Twin System and Method for Real Time Monitoring, Virtual Operation and Optimization of On-Site Equipment
CN109299494B (en) Data reconstruction method for reactor core thermal hydraulic multi-scale coupling calculation
WO2024025382A1 (en) Digital twin system and method capable of real-time monitoring, virtual operation prediction and optimization operation service of on-site equipment
Brown et al. Running air pollution models on massively parallel machines
Ries et al. Utilizing distributional measurements of material characteristics from SEM images for inverse prediction
Skillen et al. Profiling and application of the multi-scale universal interface (MUI)
Zhang A deep learning model for solving the eigenvalue of the diffusion problem of 2-D reactor core
KR20200127483A (en) Apparatus and method for auto-processing modeling using matlab
CN115292882B (en) Combustion chamber pollutant emission prediction method and system based on chemical reactor network method
CN106527179A (en) Multi-scale semi-physical simulation method applied to SOFC-MGT coupling system
Durga et al. Approximation and convergence analysis of optimal control for non-instantaneous impulsive fractional evolution hemivariational inequalities
KR102364390B1 (en) Apparatus and method for auto-processing modeling using matlab
CN117952000A (en) Boiler combustion prediction method, system, computer equipment and storage medium
Pediroda et al. Efficient stochastic optimization using chaos collocation method with modefrontier
Chudej Index analysis for singular PDE models of fuel cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23847041

Country of ref document: EP

Kind code of ref document: A1