WO2021049858A1 - Method for building reduced order model combining field measurement data and cae analysis through coupled-pod - Google Patents

Method for building reduced order model combining field measurement data and cae analysis through coupled-pod Download PDF

Info

Publication number
WO2021049858A1
WO2021049858A1 PCT/KR2020/012136 KR2020012136W WO2021049858A1 WO 2021049858 A1 WO2021049858 A1 WO 2021049858A1 KR 2020012136 W KR2020012136 W KR 2020012136W WO 2021049858 A1 WO2021049858 A1 WO 2021049858A1
Authority
WO
WIPO (PCT)
Prior art keywords
principal component
measurement data
field measurement
pod
data
Prior art date
Application number
PCT/KR2020/012136
Other languages
French (fr)
Korean (ko)
Inventor
허강열
한우주
Original Assignee
포항공과대학교 산학협력단
주식회사 페이스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단, 주식회사 페이스 filed Critical 포항공과대학교 산학협력단
Publication of WO2021049858A1 publication Critical patent/WO2021049858A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods

Definitions

  • the present invention relates to a method for constructing an order reduction model, and more particularly, to a method for constructing an order reduction model that combines field measurement data and CAE analysis.
  • the order reduction model is a technique for obtaining numerical analysis results in a short time by simplifying the solution of the physical and mathematical models used in CAE without directly obtaining the solution. If the order reduction model is used, real-time monitoring and response in the field becomes possible.
  • Patent Document 1 US 2016-0275234 A1 (2016.09.22)
  • Patent Document 2 US 2018-0210436 A1 (2018.07.26)
  • Patent Document 3 US 2019-0122416 A1 (2019.04.25)
  • Non-Patent Document 1 T. Braconniera, M. Ferriera, J-C. Jouhauda, M. Montagnaca, P. Sagautb, "Towards an adaptive POD/SVD surrogate model for aeronautic design", Computers and Fluids, 2010
  • Non-Patent Document 2 Asal Kaveh, Wagdi G. Habashi, Zhao Zhan, "Combining CFD, EFD and FFD Data via Gappy Proper Orthogonal Decomposition", AIAA, 2018
  • the present invention was conceived to solve the above problems, and an object of the present invention is to construct an order reduction model that combines on-site measurement data and CAE analysis.
  • the goal is to provide a method of building a reduction-order model so that anyone can easily grasp information on all variables of interest in real time.
  • the method of constructing a reduction-order model selects an operating variable or condition that determines the operating condition of a target product or facility as a parameter, and analyzes CAE for cases sampled in a given parameter space.
  • CAE analysis step of performing A principal component analysis step of extracting a principal component of the CAE analysis result performed in the CAE analysis step; And combining field measurement data to obtain a principal component constant value by introducing field measurement data to the principal component extracted in the principal component analysis step; wherein the principal component analysis step and the field measurement data combination step include: It is characterized in that the principal component extraction and principal component constant values are obtained by simultaneously relating all variables.
  • the number of variables of the field measurement data is less than or equal to the number of variables of interest.
  • a procedure of normalizing the absolute size of data values between different variables may be performed in advance.
  • the order reduction model According to the method of constructing the order reduction model according to the present invention, it is possible to construct an order reduction model in which CAE results for all types of related variables can be obtained quickly and easily without deteriorating accuracy and reliability with only field measurement data for limited types of variables. You will be able to.
  • FIG. 1 is a flowchart sequentially showing steps of performing a method for constructing an order reduction model according to the present invention.
  • FIG. 2 is a diagram showing an example of reconstructing a temperature distribution by a gappy-POD method using only cell data corresponding to 0.1% of an original temperature distribution in a pulverized coal burner.
  • FIG. 3 is a diagram showing a combination of principal components to which temperature and oxygen mass fraction data are connected for a related-POD.
  • FIG. 4 is a diagram showing a result of predicting a temperature and oxygen mass fraction distribution in a pulverized coal burner using the order reduction model constructed according to the present invention.
  • FIG. 1 is a flowchart sequentially showing steps of performing a method for constructing an order reduction model according to the present invention.
  • a method for constructing a reduced-order model includes a CAE analysis step (S100), a principal component analysis step (S200), and a field measurement data combining step (S300).
  • Each step of the present invention can be performed by a program in which the present invention is implemented on a computer, and field measurement data can be obtained in real time by various sensors provided in the field.
  • CAE analysis step S100 an operation variable or condition that determines the operation condition of a target product or facility is selected as a parameter, and CAE analysis is performed on cases sampled in a given parameter space.
  • the parameter is an operation variable or condition that determines the internal state of the target facility.
  • the parameter in the case of a burner, it may be a fuel injection amount, an air flow rate, an air temperature, a turning ratio, and the like.
  • sampling is a procedure for pre-determining a combination of parameters for an appropriate number of cases required to build a degree reduction model, such as Random Sampling or Latin Hyper Cube Sampling (hereinafter'LHS').
  • LHS is a method of dividing each parameter into a range with the same probability and then sampling variables within each range according to a specific correlation, and is known to reproduce the mean value better than complete randomization.
  • Principal component analysis step (S200) is a step of performing a principal component analysis (Principal Component Analysis) to extract a principal component of the CAE analysis result performed in the CAE analysis step (S100).
  • principal component analysis is an analysis method that finds a common denominator of data obtained by performing CAE analysis on a parameter extracted by sampling in the CAE analysis step (S100), and is a concept similar to obtaining a maximum common divisor. That is, just as the original number can be obtained by multiplying the value by an appropriate constant when the greatest common divisor is found, the original data can be reproduced by multiplying and adding all the constants corresponding to each principal component.
  • the principal component analysis is preferably performed based on a Proper Orthogonal Decomposition (hereinafter referred to as'POD') method.
  • 'POD' Proper Orthogonal Decomposition
  • POD is the CAE analysis data ( ) As the main component ( ) In combination.
  • Is Orthogonal matrix obtained by decomposing Eigenvalue Is Orthogonal matrix obtained by decomposing the eigenvalues
  • Is Wow Each represents a diagonal matrix using the square root of the eigenvalues resulting from decomposing the eigenvalues as the diagonal element, where the POD main component Can be selected as follows.
  • the field measurement data is introduced into the principal component extracted in the principal component analysis step (S200), and the principal component constant value ( ).
  • the principal component constant value can be obtained by performing a gappy-POD.
  • Gappy-POD is a concept first introduced in the field of facial recognition (Emerson and Sirovich, "Karhunen-Loeve procedure for gappy data” 1996), and is a technique for inferring original data using only some lost data or measured values. For example, if temperature measurement data is given near a wall through an actual experiment, the principal component constant value can be calculated so that the measured data at the temperature measurement location and the predicted value coincide. In other words, the temperature measurement data at a specific location And the main component constructed using the temperature distribution result by CAE analysis If you say,
  • the distribution reflecting the original data or measured data can be inferred.
  • FIG. 2 shows an example of reconstructing the temperature distribution by the gappy-POD method using only cell data corresponding to 0.1% of the original temperature distribution in the pulverized coal burner.
  • the present invention introduces a method of extending the principal component analysis called a coupled-POD.
  • association-POD results of variables of interest are combined into one data during principal component analysis, and then principal component analysis is performed on the combined data. For example, if temperature data, carbon monoxide data, and oxygen concentration data are combined into one to perform a principal component analysis, and then go through the gappy-POD procedure using only the temperature measurement data, not only the temperature distribution, but also the distribution of carbon monoxide and oxygen concentration is obtained. You will be able to.
  • the measurement data includes not only temperature but also carbon monoxide data, a more accurate result value can be inferred by performing the gappy-POD procedure using both data for these two variables.
  • This normalization procedure can be performed by dividing different variables by the reference value of the variable. For example, when performing a correlation-POD by combining the temperature and oxygen data values as they are, the value of the temperature data is larger than the value of the oxygen data. Therefore, since information on the oxygen data may be lost, a procedure such as dividing the temperature data and the oxygen data by the maximum value of each value to have a similar size and adding them can be performed in advance.
  • Subject is a laboratory-scale pulverized coal burner with two parameters: oxygen (or air) flow rate and turn ratio, and 10 sample cases were determined via LHS for a given parameter operating range.
  • OpenFOAM was used as a CAE analysis tool, and a specialized simpleCoalCombustionFoam solver was used for the steady-state pulverized coal combustion analysis provided by OpenFOAM.
  • the main component was extracted by relating the distribution of the mass fraction of oxygen to the temperature so that both the temperature and the distribution of the mass fraction of oxygen can be obtained using only real-time temperature measurement data.
  • FIG. 3 shows a combination of principal components to which temperature and oxygen mass fraction data are linked for association-POD.
  • the order reduction model was constructed to obtain the temperature and oxygen mass fraction distribution reflecting the real-time field temperature data.
  • 4 shows the results of predicting the temperature and oxygen mass fraction distribution in the pulverized coal burner using the order reduction model constructed according to this application example.
  • the main component When constructing a vector that connects the oxygen mass fraction as well as the temperature By using, it is possible to obtain a distribution reflecting the real-time field measurement data at the same time as the oxygen mass fraction using only the temperature measurement data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention provides, in building a reduced order model combining field measurement data and CAE analysis, a method for building a reduced order model, the reduced order model, through coupled-POD, being highly accurate and enabling anyone to easily identify information on all variables of interest in real time, even by means of only field measurement data for limited types of variables.

Description

연관-POD를 통하여 현장 측정 데이터와 CAE 해석을 결합한 차수 감축 모델 구축 방법A method of constructing a reduced-order model that combines field measurement data and CAE analysis through association-POD
본 발명은 차수 감축 모델 구축 방법에 관한 것으로, 특히 현장 측정 데이터와 CAE 해석을 결합한 차수 감축 모델 구축 방법에 관한 것이다.The present invention relates to a method for constructing an order reduction model, and more particularly, to a method for constructing an order reduction model that combines field measurement data and CAE analysis.
컴퓨터 이용 공학(Computer Aided Engineering, 이하 'CAE'라 함)을 이용한 3차원 모사는 비행기, 차량, 선박, 반도체, 철강, 발전소 등 다양한 산업 분야에서 설계 및 문제 해결을 위해서 널리 활용되어 왔다.3D simulation using computer aided engineering (hereinafter referred to as'CAE') has been widely used for design and problem solving in various industrial fields such as airplanes, vehicles, ships, semiconductors, steel and power plants.
그러나, CAE를 산업 현장 문제에 활용하는 데에는 다음과 같은 한계가 존재한다.However, the following limitations exist in applying CAE to industrial field problems.
① 숙련된 엔지니어 필요: CAE를 활용하기 위해서는 주어진 문제에 대한 공학적, 물리학적, 수학적 이해와 컴퓨터 지식이 필요하다.① Requires skilled engineer: To use CAE, engineering, physics, and mathematical understanding of a given problem and computer knowledge are required.
② 과도한 해석 시간: 적용 대상의 형상 및 해석 조건에 따라 케이스 당 수 시간에서 수 주까지의 과도한 계산시간이 소요될 수 있어, 대형 연소로와 같이 변화하는 운전조건에 따른 내부상황을 실시간으로 파악하는 것은 불가능하다.② Excessive analysis time: Depending on the shape and analysis conditions of the application, it may take an excessive calculation time from several hours to several weeks per case. impossible.
③ 비용 문제: 대형 계산을 수행해야 할 경우, 대규모의 전산자원을 필요로 하며 그에 따른 소프트웨어 라이센스 비용이 발생한다.③ Cost problem: When large-scale calculations have to be performed, large-scale computational resources are required, and software license fees are incurred.
④ 정확도 문제: CAE 해석에는 기본 보존식들에 필연적으로 여러가지 단순화 가정이 수반되기 때문에 실제 현상과 오차가 발생할 수 있다.④ Accuracy problem: Because the basic conservation equations inevitably involve various simplification assumptions in CAE analysis, actual phenomena and errors may occur.
최근에는, 위와 같은 CAE의 문제점을 극복하기 위해 CAE 해석을 기반으로 한 차수 감축 모델(Reduced Order Model)을 구축하고, 이를 이용하여 실시간 결과를 도출하는 디지털 트윈(Digital Twin, 현실세계의 기계나 장비, 사물 등을 컴퓨터 속 가상세계에 구현한 것) 기술이 대두되고 있다.Recently, in order to overcome the above problems of CAE, a Reduced Order Model based on CAE analysis is built, and a digital twin that derives real-time results by using it is a real-world machine or equipment. , Objects, etc. implemented in a virtual world in a computer) technology is emerging.
차수 감축 모델은 CAE에서 사용되는 물리적 수학적 모델들의 해를 직접 구하지 않고 단순화시켜 빠른 시간 내에 수치해석 결과를 얻기 위한 기법으로서, 차수 감축 모델을 이용하게 되면 현장에서 실시간 모니터링 및 대응이 가능하게 된다.The order reduction model is a technique for obtaining numerical analysis results in a short time by simplifying the solution of the physical and mathematical models used in CAE without directly obtaining the solution. If the order reduction model is used, real-time monitoring and response in the field becomes possible.
하지만, CAE 해석에 수반되는 다양한 단순화 가정 때문에 CAE만을 사용하여 차수 감축 모델을 구축할 경우 그 정확도에 한계가 있을 수 밖에 없으며, 이에 따라 현장 측정 데이터와 CAE 해석을 결합한 차수 감축 모델을 구축하는 방법이 새롭게 시도되고 있다.However, due to the various simplification assumptions that accompany CAE analysis, when constructing the order reduction model using only CAE, the accuracy is bound to be limited, and accordingly, the method of constructing the order reduction model combining field measurement data and CAE analysis A new attempt is being made.
(특허문헌 1) US 2016-0275234 A1(2016.09.22)(Patent Document 1) US 2016-0275234 A1 (2016.09.22)
(특허문헌 2) US 2018-0210436 A1(2018.07.26)(Patent Document 2) US 2018-0210436 A1 (2018.07.26)
(특허문헌 3) US 2019-0122416 A1(2019.04.25)(Patent Document 3) US 2019-0122416 A1 (2019.04.25)
(비특허문헌 1) T. Braconniera, M. Ferriera, J-C. Jouhauda, M. Montagnaca, P.Sagautb, "Towards an adaptive POD/SVD surrogate model for aeronautic design", Computers and Fluids, 2010(Non-Patent Document 1) T. Braconniera, M. Ferriera, J-C. Jouhauda, M. Montagnaca, P. Sagautb, "Towards an adaptive POD/SVD surrogate model for aeronautic design", Computers and Fluids, 2010
(비특허문헌 2) Asal Kaveh, Wagdi G. Habashi, Zhao Zhan, "Combining CFD, EFD and FFD Data via Gappy Proper Orthogonal Decomposition", AIAA, 2018(Non-Patent Document 2) Asal Kaveh, Wagdi G. Habashi, Zhao Zhan, "Combining CFD, EFD and FFD Data via Gappy Proper Orthogonal Decomposition", AIAA, 2018
본 발명은 위와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 현장 측정 데이터와 CAE 해석을 결합한 차수 감축 모델을 구축함에 있어 연관-POD를 통하여 제한된 종류의 변수에 대한 현장 측정 데이터만으로도 정확도가 높고 누구나 쉽게 실시간으로 관심 대상이 되는 모든 변수들에 대한 정보를 파악할 수 있도록 한 차수 감축 모델 구축 방법을 제공하는데 있다.The present invention was conceived to solve the above problems, and an object of the present invention is to construct an order reduction model that combines on-site measurement data and CAE analysis. The goal is to provide a method of building a reduction-order model so that anyone can easily grasp information on all variables of interest in real time.
위와 같은 과제를 해결하기 위한 본 발명에 따른 차수 감축 모델 구축 방법은, 대상 제품 혹은 설비의 운전 조건을 결정짓는 운전 변수 또는 조건을 파라미터로 선정하고, 주어진 파라미터 공간에서 샘플링된 케이스들에 대한 CAE 해석을 수행하는 CAE 해석 단계; 상기 CAE 해석 단계에서 수행된 CAE 해석 결과에 대한 주성분을 추출하는 주성분 분석 단계; 및 상기 주성분 분석 단계에서 추출된 주성분에 현장 측정 데이터를 도입하여 주성분 상수값을 얻는 현장 측정 데이터 결합 단계;를 포함하되, 상기 주성분 분석 단계 및 현장 측정 데이터 결합 단계는 연관-POD를 통하여 관심 대상이 되는 모든 변수들을 동시에 관련지어 주성분 추출 및 주성분 상수값을 얻는 것을 특징으로 한다.In order to solve the above problems, the method of constructing a reduction-order model according to the present invention selects an operating variable or condition that determines the operating condition of a target product or facility as a parameter, and analyzes CAE for cases sampled in a given parameter space. CAE analysis step of performing; A principal component analysis step of extracting a principal component of the CAE analysis result performed in the CAE analysis step; And combining field measurement data to obtain a principal component constant value by introducing field measurement data to the principal component extracted in the principal component analysis step; wherein the principal component analysis step and the field measurement data combination step include: It is characterized in that the principal component extraction and principal component constant values are obtained by simultaneously relating all variables.
본 발명에서 상기 현장 측정 데이터의 변수 개수는 상기 관심 대상 변수들의 개수보다 작거나 같다.In the present invention, the number of variables of the field measurement data is less than or equal to the number of variables of interest.
또한, 상기 주성분 분석 단계는 서로 다른 변수 간에 데이터값의 절대 크기를 정규화하는 절차를 사전에 수행할 수 있다.In addition, in the principal component analysis step, a procedure of normalizing the absolute size of data values between different variables may be performed in advance.
본 발명에 따른 차수 감축 모델 구축 방법에 의하면, 제한된 종류의 변수에 대한 현장 측정 데이터만으로도 연관된 모든 종류의 변수에 대한 CAE 결과를 정확도와 신뢰도의 저하없이 신속하고 간편하게 얻을 수 있는 차수 감축 모델을 구축할 수 있게 된다.According to the method of constructing the order reduction model according to the present invention, it is possible to construct an order reduction model in which CAE results for all types of related variables can be obtained quickly and easily without deteriorating accuracy and reliability with only field measurement data for limited types of variables. You will be able to.
도 1은 본 발명에 따른 차수 감축 모델 구축 방법의 수행 단계를 순차적으로 도시한 플로우 챠트이다.1 is a flowchart sequentially showing steps of performing a method for constructing an order reduction model according to the present invention.
도 2는 미분탄 버너에서 원본 온도 분포의 0.1%에 해당하는 셀 데이터만을 이용하여 갭피-POD 방법으로 온도 분포를 재구성한 예를 보여주는 도면이다.FIG. 2 is a diagram showing an example of reconstructing a temperature distribution by a gappy-POD method using only cell data corresponding to 0.1% of an original temperature distribution in a pulverized coal burner.
도 3은 연관-POD를 위해 온도와 산소 질량분률 데이터가 연결된 주성분들의 조합을 보여주는 도면이다.3 is a diagram showing a combination of principal components to which temperature and oxygen mass fraction data are connected for a related-POD.
도 4는 본 발명에 의해 구축된 차수 감축 모델을 이용하여 미분탄 버너에서의 온도 및 산소 질량분률 분포를 예측한 결과를 보여주는 도면이다.4 is a diagram showing a result of predicting a temperature and oxygen mass fraction distribution in a pulverized coal burner using the order reduction model constructed according to the present invention.
*도면 중 주요 부호에 대한 설명**Explanation of the main symbols in the drawings*
S100: CAE 해석 단계S100: CAE analysis stage
S200: 주성분 분석 단계S200: principal component analysis step
S300: 현장 측정 데이터 결합 단계S300: Steps to combine field measurement data
아래에서는 본 발명에 따른 차수 감축 모델 구축 방법을 첨부된 도면을 참조하여 상세히 설명한다. 다만, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Hereinafter, a method of constructing an order reduction model according to the present invention will be described in detail with reference to the accompanying drawings. However, detailed descriptions of known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
도 1은 본 발명에 따른 차수 감축 모델 구축 방법의 수행 단계를 순차적으로 도시한 플로우 챠트이다.1 is a flowchart sequentially showing steps of performing a method for constructing an order reduction model according to the present invention.
도 1을 참조하면, 본 발명에 따른 차수 감축 모델 구축 방법은 CAE 해석 단계(S100), 주성분 분석 단계(S200) 및 현장 측정 데이터 결합 단계(S300)를 포함한다.Referring to FIG. 1, a method for constructing a reduced-order model according to the present invention includes a CAE analysis step (S100), a principal component analysis step (S200), and a field measurement data combining step (S300).
본 발명의 각 단계는 컴퓨터 상에서 본 발명이 구현되어 있는 프로그램에 의해 수행될 수 있으며, 현장 측정 데이터는 현장에 구비되는 각종 센서에 의해 실시간으로 얻을 수 있다.Each step of the present invention can be performed by a program in which the present invention is implemented on a computer, and field measurement data can be obtained in real time by various sensors provided in the field.
CAE 해석 단계(S100)는 대상 제품 혹은 설비의 운전 조건을 결정짓는 운전 변수 또는 조건을 파라미터로 선정하고, 주어진 파라미터 공간에서 샘플링된 케이스들에 대한 CAE 해석을 수행하는 단계이다.In the CAE analysis step S100, an operation variable or condition that determines the operation condition of a target product or facility is selected as a parameter, and CAE analysis is performed on cases sampled in a given parameter space.
여기서, 파라미터는 대상 설비의 내부 상태를 결정짓는 운전 변수 또는 조건으로서, 예를 들어 버너의 경우 연료 분사량, 공기 유량, 공기 온도, 선회비 등이 될 수 있다.Here, the parameter is an operation variable or condition that determines the internal state of the target facility. For example, in the case of a burner, it may be a fuel injection amount, an air flow rate, an air temperature, a turning ratio, and the like.
또한, 샘플링은 차수 감축 모델을 구축하기 위하여 필요한 적절한 수의 케이스들에 대한 파라미터의 조합을 미리 결정하는 절차로서, 랜덤 샘플링(Random Sampling)이나 라틴 하이퍼 큐브 샘플링(Latin Hyper Cube Sampling, 이하 'LHS'라 함) 등의 방법이 사용될 수 있다. LHS는 각 파라미터를 같은 확률을 가진 범위로 나눈 후 특정 상관관계에 따라 각 범위 내에서 변수를 표본화 하는 방법으로서, 완전 무작위 추출보다 평균값을 잘 재현하는 것으로 알려져 있다.In addition, sampling is a procedure for pre-determining a combination of parameters for an appropriate number of cases required to build a degree reduction model, such as Random Sampling or Latin Hyper Cube Sampling (hereinafter'LHS'). (Referred to as "referred to as" LHS is a method of dividing each parameter into a range with the same probability and then sampling variables within each range according to a specific correlation, and is known to reproduce the mean value better than complete randomization.
주성분 분석 단계(S200)는 상기 CAE 해석 단계(S100)에서 수행된 CAE 해석 결과에 대한 주성분을 추출하기 위해 주성분 분석(Principal Component Analysis)을 수행하는 단계이다.Principal component analysis step (S200) is a step of performing a principal component analysis (Principal Component Analysis) to extract a principal component of the CAE analysis result performed in the CAE analysis step (S100).
여기서, 주성분 분석은 상기 CAE 해석 단계(S100)에서 샘플링으로 추출한 파라미터에 대한 CAE 해석을 수행함으로써 얻어진 데이터의 공통 분모를 찾아내는 분석법으로, 최대 공약수를 구하는 것과 비슷한 개념이다. 즉, 최대공약수를 찾으면 그 값에 적절한 상수를 곱하여 원래의 숫자를 얻을 수 있듯이, 각 주성분에 대응하는 상수를 곱하여 모두 더하면 원본 데이터를 재현할 수 있게 된다.Here, principal component analysis is an analysis method that finds a common denominator of data obtained by performing CAE analysis on a parameter extracted by sampling in the CAE analysis step (S100), and is a concept similar to obtaining a maximum common divisor. That is, just as the original number can be obtained by multiplying the value by an appropriate constant when the greatest common divisor is found, the original data can be reproduced by multiplying and adding all the constants corresponding to each principal component.
본 발명에서 주성분 분석은, 바람직하게 적합 직교 분해(Proper Orthogonal Decomposition, 이하 'POD'라 함) 방법에 기초하여 수행된다.In the present invention, the principal component analysis is preferably performed based on a Proper Orthogonal Decomposition (hereinafter referred to as'POD') method.
POD는 임의의 샘플 케이스에 대한 CAE 해석 데이터(
Figure PCTKR2020012136-appb-img-000001
)를 아래와 같이 주성분(
Figure PCTKR2020012136-appb-img-000002
)들의 조합으로 나타낸다.
POD is the CAE analysis data (
Figure PCTKR2020012136-appb-img-000001
) As the main component (
Figure PCTKR2020012136-appb-img-000002
) In combination.
Figure PCTKR2020012136-appb-img-000003
Figure PCTKR2020012136-appb-img-000003
여기서,
Figure PCTKR2020012136-appb-img-000004
는 샘플의 수이며, 주성분 벡터
Figure PCTKR2020012136-appb-img-000005
는 모든 샘플들의 CAE 해석 결과를 합쳐놓은 스냅샷 행렬(Snapshot Matrix)
Figure PCTKR2020012136-appb-img-000006
의 특이값 분해(Singular Value Decomposition)를 통해 얻을 수 있다.
here,
Figure PCTKR2020012136-appb-img-000004
Is the number of samples, the principal component vector
Figure PCTKR2020012136-appb-img-000005
Is a snapshot matrix that combines the CAE analysis results of all samples.
Figure PCTKR2020012136-appb-img-000006
It can be obtained through Singular Value Decomposition.
스냅샷 행렬
Figure PCTKR2020012136-appb-img-000007
에 대한 특이값 분해는 아래 식과 같이 정의될 수 있다.
Snapshot matrix
Figure PCTKR2020012136-appb-img-000007
The singular value decomposition for can be defined as the following equation.
Figure PCTKR2020012136-appb-img-000008
Figure PCTKR2020012136-appb-img-000008
여기서,
Figure PCTKR2020012136-appb-img-000009
Figure PCTKR2020012136-appb-img-000010
를 고유값(Eigenvalue) 분해해서 얻어진 직교행렬,
Figure PCTKR2020012136-appb-img-000011
Figure PCTKR2020012136-appb-img-000012
를 고유값 분해해서 얻어진 직교행렬,
Figure PCTKR2020012136-appb-img-000013
Figure PCTKR2020012136-appb-img-000014
Figure PCTKR2020012136-appb-img-000015
를 고유값 분해해서 나오는 고유값들의 제곱근을 대각원소로 하는 대각행렬을 각각 나타내며, 이때 POD 주성분
Figure PCTKR2020012136-appb-img-000016
은 아래와 같이 선택될 수 있다.
here,
Figure PCTKR2020012136-appb-img-000009
Is
Figure PCTKR2020012136-appb-img-000010
Orthogonal matrix obtained by decomposing Eigenvalue,
Figure PCTKR2020012136-appb-img-000011
Is
Figure PCTKR2020012136-appb-img-000012
Orthogonal matrix obtained by decomposing the eigenvalues,
Figure PCTKR2020012136-appb-img-000013
Is
Figure PCTKR2020012136-appb-img-000014
Wow
Figure PCTKR2020012136-appb-img-000015
Each represents a diagonal matrix using the square root of the eigenvalues resulting from decomposing the eigenvalues as the diagonal element, where the POD main component
Figure PCTKR2020012136-appb-img-000016
Can be selected as follows.
Figure PCTKR2020012136-appb-img-000017
Figure PCTKR2020012136-appb-img-000017
여기서,
Figure PCTKR2020012136-appb-img-000018
는 행렬
Figure PCTKR2020012136-appb-img-000019
Figure PCTKR2020012136-appb-img-000020
번째 열이다.
here,
Figure PCTKR2020012136-appb-img-000018
Is a matrix
Figure PCTKR2020012136-appb-img-000019
of
Figure PCTKR2020012136-appb-img-000020
It is the second row.
이를 이용하여 임의의 CAE 해석 데이터
Figure PCTKR2020012136-appb-img-000021
는 다음과 같이 나타낼 수 있다.
Using this, arbitrary CAE analysis data
Figure PCTKR2020012136-appb-img-000021
Can be expressed as
Figure PCTKR2020012136-appb-img-000022
Figure PCTKR2020012136-appb-img-000022
여기서, 적절히 작은 에러(
Figure PCTKR2020012136-appb-img-000023
)를 갖도록 샘플수(
Figure PCTKR2020012136-appb-img-000024
)보다 작은
Figure PCTKR2020012136-appb-img-000025
개의 주성분을 추출하여 저장하게 된다.
Here, an appropriately small error (
Figure PCTKR2020012136-appb-img-000023
The number of samples (
Figure PCTKR2020012136-appb-img-000024
)lesser
Figure PCTKR2020012136-appb-img-000025
The main components of the dog are extracted and stored.
다음으로, 현장 측정 데이터 결합 단계(S300)는 상기 주성분 분석 단계(S200)에서 추출된 주성분에 현장 측정 데이터를 도입하여 주성분 상수값(
Figure PCTKR2020012136-appb-img-000026
)을 얻는 단계이다.
Next, in the field measurement data combining step (S300), the field measurement data is introduced into the principal component extracted in the principal component analysis step (S200), and the principal component constant value (
Figure PCTKR2020012136-appb-img-000026
).
이때, 현장 측정 데이터는 CAE 해석 데이터에 비해 극히 일부에 해당하므로, 갭피-POD(Gappy-POD)를 수행하여 주성분 상수값을 얻을 수 있다. 갭피-POD는 얼굴 인식 분야에서 처음 도입된 개념으로(Emerson and Sirovich, "Karhunen-Loeve procedure for gappy data" 1996), 일부 유실된 데이터 또는 측정값만을 이용하여 원본 데이터를 유추하는 기법이다. 예를 들어, 실제 실험을 통하여 벽 근처에서 온도 측정 데이터가 주어진 경우, 온도 측정 위치에서의 측정 데이터와 예측값이 일치하도록 주성분 상수값을 구할 수 있다. 즉, 특정 위치에서의 온도 측정 데이터를
Figure PCTKR2020012136-appb-img-000027
라고 하고, CAE 해석에 의한 온도 분포 결과를 이용하여 구축한 주성분을
Figure PCTKR2020012136-appb-img-000028
라고 하면,
At this time, since the field measurement data corresponds to only a small part of the CAE analysis data, the principal component constant value can be obtained by performing a gappy-POD. Gappy-POD is a concept first introduced in the field of facial recognition (Emerson and Sirovich, "Karhunen-Loeve procedure for gappy data" 1996), and is a technique for inferring original data using only some lost data or measured values. For example, if temperature measurement data is given near a wall through an actual experiment, the principal component constant value can be calculated so that the measured data at the temperature measurement location and the predicted value coincide. In other words, the temperature measurement data at a specific location
Figure PCTKR2020012136-appb-img-000027
And the main component constructed using the temperature distribution result by CAE analysis
Figure PCTKR2020012136-appb-img-000028
If you say,
Figure PCTKR2020012136-appb-img-000029
Figure PCTKR2020012136-appb-img-000029
를 최소로 하는
Figure PCTKR2020012136-appb-img-000030
을 구하게 되면 원본 데이터 혹은 측정 데이터를 반영한 분포를 유추할 수 있게 된다.
To minimize
Figure PCTKR2020012136-appb-img-000030
When is obtained, the distribution reflecting the original data or measured data can be inferred.
도 2는 미분탄 버너에서 원본 온도 분포의 0.1%에 해당하는 셀 데이터만을 이용하여 갭피-POD 방법으로 온도 분포를 재구성한 예를 보여준다.FIG. 2 shows an example of reconstructing the temperature distribution by the gappy-POD method using only cell data corresponding to 0.1% of the original temperature distribution in the pulverized coal burner.
한편, 본 발명에서는 상기 주성분 분석 단계(S200) 및 현장 측정 데이터 결합 단계(S300)를 수행함에 있어, 관심 대상이 되는 모든 변수들을 동시에 관련지어 주성분 분석 및 갭피-POD 절차를 수행하는 것을 주요 특징으로 한다.Meanwhile, in the present invention, in performing the principal component analysis step (S200) and the field measurement data combining step (S300), all variables of interest are simultaneously associated to perform principal component analysis and gappy-POD procedures. do.
종래의 갭피-POD방법에서 주성분 분석은 온도 분포, 산소 농도 분포 등 각각의 결과 값에 대한 주성분 분석을 따로 수행하게 되므로, 예를 들어 온도 측정 데이터를 이용하면 온도 데이터만을 유추할 수 있어 다양한 종류의 배출가스 농도 분포, 압력 등에 대한 정보를 얻을 수 없다.In the conventional gappy-POD method, principal component analysis is performed separately for each result value such as temperature distribution and oxygen concentration distribution. For example, by using temperature measurement data, only temperature data can be inferred. Information on the distribution of exhaust gas concentration, pressure, etc. cannot be obtained
본 발명은 이러한 한계를 극복하기 위해 연관-POD(Coupled-POD)라는 주성분 분석을 확장시키는 방법을 도입하였다. 연관-POD에서는 주성분 분석시 관심이 되는 변수들에 대한 결과값을 하나의 데이터로 합친 후, 이 합쳐진 데이터에 대한 주성분 분석을 수행하게 된다. 예를 들어, 온도 데이터와 일산화탄소 데이터, 산소 농도 데이터를 하나로 합쳐 주성분 분석을 수행한 후, 온도 측정 데이터만을 이용하여 갭피-POD 절차를 거치게 되면, 온도 분포 뿐만이 아니라 일산화탄소, 산소 농도 등의 분포 또한 얻을 수 있게 된다. 나아가, 측정 데이터가 온도 뿐만이 아니라 일산화탄소 데이터도 포함할 경우, 이 두개의 변수에 대한 데이터를 모두 이용하여 갭피-POD 절차를 진행하게 되면 좀더 정확한 결과값을 유추할 수 있게 된다.In order to overcome this limitation, the present invention introduces a method of extending the principal component analysis called a coupled-POD. In association-POD, results of variables of interest are combined into one data during principal component analysis, and then principal component analysis is performed on the combined data. For example, if temperature data, carbon monoxide data, and oxygen concentration data are combined into one to perform a principal component analysis, and then go through the gappy-POD procedure using only the temperature measurement data, not only the temperature distribution, but also the distribution of carbon monoxide and oxygen concentration is obtained. You will be able to. Furthermore, when the measurement data includes not only temperature but also carbon monoxide data, a more accurate result value can be inferred by performing the gappy-POD procedure using both data for these two variables.
이때, 서로 다른 변수의 데이터 간에 데이터값의 절대 크기가 상이한 경우에는 상대적으로 작은 크기를 갖는 변수의 데이터 정보가 유실될 수 있으므로, 정확도를 유지하기 위하여 서로 다른 종류의 변수 간에 데이터값의 절대 크기를 정규화(Normalization)하는 절차를 사전에 수행하는 것이 바람직하다.In this case, if the absolute size of the data value is different between the data of different variables, the data information of the variable having a relatively small size may be lost. It is desirable to perform the normalization procedure in advance.
이러한 정규화 절차는 서로 다른 변수들을 해당 변수의 기준값으로 나누어 줌으로써 수행될 수 있으며, 예를 들어 온도와 산소 데이터 값을 그대로 합쳐 연관-POD를 수행할 경우, 온도 데이터의 값이 산소 데이터의 값보다 크기 때문에 산소 데이터에 대한 정보가 유실될 수도 있으므로, 온도 데이터와 산소 데이터가 비슷한 크기를 갖도록 각 값의 최대값으로 나누어 합치는 등의 절차를 사전에 수행할 수 있다.This normalization procedure can be performed by dividing different variables by the reference value of the variable. For example, when performing a correlation-POD by combining the temperature and oxygen data values as they are, the value of the temperature data is larger than the value of the oxygen data. Therefore, since information on the oxygen data may be lost, a procedure such as dividing the temperature data and the oxygen data by the maximum value of each value to have a similar size and adding them can be performed in advance.
(적용예)(Application example)
본 발명의 적용 예시로서 정상상태의 미분탄 연소 해석에 대한 차수 감축 모델을 구축하였다.As an application example of the present invention, an order reduction model for analysis of pulverized coal combustion in a steady state was constructed.
대상은 실험실 규모의 미분탄 버너로서 두 개의 파라미터, 즉 산소(또는 공기) 유량과 선회비를 가지며, 주어진 파라미터 운전 범위에 대해 LHS를 통해 10개의 샘플 케이스를 정하였다.Subject is a laboratory-scale pulverized coal burner with two parameters: oxygen (or air) flow rate and turn ratio, and 10 sample cases were determined via LHS for a given parameter operating range.
CAE 해석 툴로서 OpenFOAM을 사용하였으며, OpenFOAM에서 기본적으로 제공되는 정상상태의 미분탄연소 해석을 위해 특화된 simpleCoalCombustionFoam 솔버를 이용하였다.OpenFOAM was used as a CAE analysis tool, and a specialized simpleCoalCombustionFoam solver was used for the steady-state pulverized coal combustion analysis provided by OpenFOAM.
CAE 해석을 통해 각 샘플 케이스에 있어 버너 내부의 온도, 유속, 각종 화학종 농도 등 모든 분포에 대한 정보를 얻은 후, 이들 온도, 유속, 화학종 등 3차원 분포에 대하여 주성분 분석을 수행하였다.After obtaining information on all distributions such as temperature, flow rate, and concentration of various species in each sample case through CAE analysis, principal component analysis was performed on three-dimensional distributions such as temperature, flow rate, and chemical species.
본 적용예에서는 실시간 온도 측정 데이터만으로 온도와 산소 질량분률에 대한 분포를 모두 얻을 수 있도록, 산소의 질량분률 분포를 온도와 관련지어 주성분을 추출하였다.In this application example, the main component was extracted by relating the distribution of the mass fraction of oxygen to the temperature so that both the temperature and the distribution of the mass fraction of oxygen can be obtained using only real-time temperature measurement data.
이를 위해, 온도 데이터
Figure PCTKR2020012136-appb-img-000031
에 산소 질량분률
Figure PCTKR2020012136-appb-img-000032
값을 연결해서 구성한 새로운 벡터
Figure PCTKR2020012136-appb-img-000033
를 이용하였으며, 이 벡터에 대하여 주성분 분석을 수행하여 온도와 산소 질량분률 데이터가 연결된 주성분
Figure PCTKR2020012136-appb-img-000034
을 구하였다. 도 3은 연관-POD를 위해 온도와 산소 질량분률 데이터가 연결된 주성분들의 조합을 보여준다.
For this, temperature data
Figure PCTKR2020012136-appb-img-000031
Oxygen mass fraction in
Figure PCTKR2020012136-appb-img-000032
A new vector constructed by concatenating values
Figure PCTKR2020012136-appb-img-000033
Was used, and principal component analysis was performed on this vector, and the temperature and oxygen mass fraction data were connected.
Figure PCTKR2020012136-appb-img-000034
Was obtained. FIG. 3 shows a combination of principal components to which temperature and oxygen mass fraction data are linked for association-POD.
다음으로, 이와 같이 구해진 주성분
Figure PCTKR2020012136-appb-img-000035
을 이용하여 실시간 온도 측정 데이터가 결합된 연관-POD 절차를 수행하였고, 최종적으로 실시간 현장 온도 데이터를 반영한 온도 및 산소 질량분률 분포를 얻을 수 있는 차수 감축 모델을 구축하였다. 도 4는 본 적용예에 따라 구축된 차수 감축 모델을 이용하여 미분탄 버너에서의 온도 및 산소 질량분률 분포를 예측한 결과를 보여준다.
Next, the main component obtained in this way
Figure PCTKR2020012136-appb-img-000035
By using the associated-POD procedure in which real-time temperature measurement data is combined, the order reduction model was constructed to obtain the temperature and oxygen mass fraction distribution reflecting the real-time field temperature data. 4 shows the results of predicting the temperature and oxygen mass fraction distribution in the pulverized coal burner using the order reduction model constructed according to this application example.
본 적용예에서와 같이, 연관-POD을 통하게 되면 주성분
Figure PCTKR2020012136-appb-img-000036
를 구축할 때 온도뿐만이 아니라 산소 질량분률을 연결한 벡터
Figure PCTKR2020012136-appb-img-000037
를 이용함으로써, 온도 측정 데이터만을 이용하여 산소 질량분률도 동시에 실시간 현장 측정 데이터를 반영한 분포를 얻을 수 있게 된다.
As in this application example, through the association-POD, the main component
Figure PCTKR2020012136-appb-img-000036
When constructing a vector that connects the oxygen mass fraction as well as the temperature
Figure PCTKR2020012136-appb-img-000037
By using, it is possible to obtain a distribution reflecting the real-time field measurement data at the same time as the oxygen mass fraction using only the temperature measurement data.
본 명세서와 첨부된 도면에 개시된 실시예들은 본 발명의 기술적 사상을 쉽게 설명하기 위한 목적으로 사용된 것일 뿐, 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.The embodiments disclosed in the present specification and the accompanying drawings are only used for the purpose of easily describing the technical idea of the present invention, and are not used to limit the scope of the present invention described in the claims. Therefore, those of ordinary skill in the art will understand that various modifications and equivalent other embodiments are possible therefrom.

Claims (3)

  1. 대상 제품 혹은 설비의 운전 조건을 결정짓는 운전 변수 또는 조건을 파라미터로 선정하고, 주어진 파라미터 공간에서 샘플링된 케이스들에 대한 CAE 해석을 수행하는 CAE 해석 단계;A CAE analysis step of selecting an operation variable or condition that determines an operation condition of a target product or facility as a parameter, and performing CAE analysis on cases sampled in a given parameter space;
    상기 CAE 해석 단계에서 수행된 CAE 해석 결과에 대한 주성분을 추출하는 주성분 분석 단계; 및A principal component analysis step of extracting a principal component of the CAE analysis result performed in the CAE analysis step; And
    상기 주성분 분석 단계에서 추출된 주성분에 현장 측정 데이터를 도입하여 주성분 상수값을 얻는 현장 측정 데이터 결합 단계;를 포함하되,Including; field measurement data combining step of obtaining a principal component constant value by introducing field measurement data to the principal component extracted in the principal component analysis step;
    상기 주성분 분석 단계 및 현장 측정 데이터 결합 단계는 연관-POD를 통하여 관심 대상이 되는 모든 변수들을 동시에 관련지어 주성분 추출 및 주성분 상수값을 얻는 것을 특징으로 하는 차수 감축 모델 구축 방법.The principal component analysis step and the in-situ measurement data combining step include extracting principal components and obtaining principal component constant values by simultaneously relating all variables of interest through association-POD.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 현장 측정 데이터의 변수 개수는 상기 관심 대상 변수들의 개수보다 작거나 같은 것을 특징으로 하는 차수 감축 모델 구축 방법.The number of variables of the field measurement data is less than or equal to the number of variables of interest.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 주성분 분석 단계는 서로 다른 변수 간에 데이터값의 절대 크기를 정규화하는 절차를 사전에 수행하는 것을 특징으로 하는 차수 감축 모델 구축 방법.In the principal component analysis step, a procedure for normalizing the absolute size of data values between different variables is performed in advance.
PCT/KR2020/012136 2019-09-09 2020-09-09 Method for building reduced order model combining field measurement data and cae analysis through coupled-pod WO2021049858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0111203 2019-09-09
KR1020190111203A KR102048243B1 (en) 2019-09-09 2019-09-09 Method for Building Reduced Order Model by Combining CAE Simulation and Measurement Data through Coupled-POD

Publications (1)

Publication Number Publication Date
WO2021049858A1 true WO2021049858A1 (en) 2021-03-18

Family

ID=68730524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012136 WO2021049858A1 (en) 2019-09-09 2020-09-09 Method for building reduced order model combining field measurement data and cae analysis through coupled-pod

Country Status (2)

Country Link
KR (1) KR102048243B1 (en)
WO (1) WO2021049858A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117332200A (en) * 2023-10-09 2024-01-02 北京航空航天大学 Physical field reconstruction and prediction method based on maximum POD coefficient

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102048243B1 (en) * 2019-09-09 2019-11-25 주식회사 페이스 Method for Building Reduced Order Model by Combining CAE Simulation and Measurement Data through Coupled-POD
KR102266279B1 (en) * 2019-12-18 2021-06-17 포항공과대학교 산학협력단 Method for Building Reduced Order Model for Implementing Transient State
KR102261942B1 (en) 2020-12-24 2021-06-07 주식회사 페이스 Method to construct a Digital Twin by combining Reduced Order Models, Measurement Data and Machine Learning Techniques for a Multiphysical Engineering System
CN113642105B (en) * 2021-08-03 2023-10-27 中国船舶重工集团公司第七一九研究所 Multi-scale model construction method and device for ship power system and electronic equipment
KR20230095383A (en) 2021-12-22 2023-06-29 포항공과대학교 산학협력단 Method for building reduced order model that combines linear and non-linear projection methods
WO2024025382A1 (en) * 2022-07-29 2024-02-01 주식회사 페이스 Digital twin system and method capable of real-time monitoring, virtual operation prediction and optimization operation service of on-site equipment
KR102601707B1 (en) 2022-07-29 2023-11-13 주식회사 페이스 Digital Twin System and Method for Real Time Monitoring, Virtual Operation and Optimization of On-Site Equipment
KR102484587B1 (en) 2022-07-29 2023-01-04 주식회사 페이스 Method to Build a Reduced Order Model based on Eigenmodes from Simulation and Eigenvalues based on Machine Learning by Measurement Data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104699901A (en) * 2015-03-11 2015-06-10 西北工业大学 GappyPOD airfoil profile inverse design method based on dispersion sampling solution
US20160171134A1 (en) * 2014-12-11 2016-06-16 Siemens Aktiengesellschaft Automatic ranking of design parameter significance for fast and accurate cae-based design space exploration using parameter sensitivity feedback
US20170037604A1 (en) * 2014-03-21 2017-02-09 Siemens Aktiengesellschaft Method for pressure control in a supply network, device and supply network
KR20190003593A (en) * 2016-05-02 2019-01-09 카톨리에케 유니버시테이트 루벤 Estimation of electromechanical quantity by digital image and model-based filtering technique
KR102048243B1 (en) * 2019-09-09 2019-11-25 주식회사 페이스 Method for Building Reduced Order Model by Combining CAE Simulation and Measurement Data through Coupled-POD

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3033909A1 (en) 2015-03-18 2016-09-23 Airbus Operations Sas METHOD AND SYSTEM FOR PREDICTING PHENOMENES DEPENDING ON TIME BY COMBINING EXPERIMENTAL AND DIGITAL DATA.
US10877470B2 (en) 2017-01-26 2020-12-29 Honeywell International Inc. Integrated digital twin for an industrial facility
US10679401B2 (en) 2017-10-24 2020-06-09 GE Sensing & Inspection Technologies, LP Monitoring multiple industrial machines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170037604A1 (en) * 2014-03-21 2017-02-09 Siemens Aktiengesellschaft Method for pressure control in a supply network, device and supply network
US20160171134A1 (en) * 2014-12-11 2016-06-16 Siemens Aktiengesellschaft Automatic ranking of design parameter significance for fast and accurate cae-based design space exploration using parameter sensitivity feedback
CN104699901A (en) * 2015-03-11 2015-06-10 西北工业大学 GappyPOD airfoil profile inverse design method based on dispersion sampling solution
KR20190003593A (en) * 2016-05-02 2019-01-09 카톨리에케 유니버시테이트 루벤 Estimation of electromechanical quantity by digital image and model-based filtering technique
KR102048243B1 (en) * 2019-09-09 2019-11-25 주식회사 페이스 Method for Building Reduced Order Model by Combining CAE Simulation and Measurement Data through Coupled-POD

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUH, GANGYEO: "Open Source-Based CAE Platform Construction and Simulation-Based Digital Twin Model Development. POSTECH", 2019 WORKSHOP ON OPEN SOURCE CAE PLATFORM AND CONSTRUCTION OF DIGITAL TWIN IN ENERGY INDUSTRY., 20 February 2019 (2019-02-20) *
HUH, KANG Y: "Combustion Modeling and Simulation in the Era of the Fourth Industrial Revolution.", 12TH ASIA-PACIFIC CONFERENCE ON COMBUSTION (ASPACC 2019); 1-5 JULY 2019, FUKUOKA, JAPAN, 1 July 2019 (2019-07-01) - 5 July 2019 (2019-07-05), Fukuoka, Japan, pages 1 - 2, XP009526760 *
HYESU YU, WOOJOO HAN, KWONWOO JANG, KANG Y. HUH: "Construction of a Cyber-physical system for a pilot-scale pulverized coal furnace", 2018 KOREA COMBUSTION ASSOCIATION CONFERENCE; 57TH AUTUMN KOSCO SYMPOSIUM; NOVEMBER 22-24, 2018, 23 November 2018 (2018-11-23) - 24 November 2018 (2018-11-24), pages 145 - 148, XP009526771 *
JUNG SUNG-KI, DUC NGOCONG , YANG YOUNG-ROK, CHO TAE-HWAN,,; MYONG RHO-SHIN: "Efficient Analysis of the Aerodynamic Characteristics of Rotor Blade Using a Reduced Order Model Based on Proper Orthogonal Decomposition Method", JOURNAL OF THE KOREAN SOCIETY FOR AERONAUTICAL & SPACE SCIENCES, vol. 37, no. 11, 1 November 2009 (2009-11-01), pages 1073 - 1079, XP055791873, ISSN: 1225-1348 *
WOOJOO HAN, HYESU YU, KWONWOO JANG, DOHYUN KIM, KANG Y. HUH: "S8-04 Application of Digital Twin for Various Combustion Devices", 2019 KOREA COMBUSTION ASSOCIATION SPRING CONFERENCE; THE 58TH KOSCO SYMPOSIUM; MAY 16-18; 2019, 16 May 2019 (2019-05-16), pages 111 - 113, XP009526758 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117332200A (en) * 2023-10-09 2024-01-02 北京航空航天大学 Physical field reconstruction and prediction method based on maximum POD coefficient
CN117332200B (en) * 2023-10-09 2024-05-14 北京航空航天大学 Physical field reconstruction and prediction method based on maximum POD coefficient

Also Published As

Publication number Publication date
KR102048243B1 (en) 2019-11-25

Similar Documents

Publication Publication Date Title
WO2021049858A1 (en) Method for building reduced order model combining field measurement data and cae analysis through coupled-pod
WO2024025385A1 (en) Method for building reduced order model by using principal component vector based on simulation and principal component constant through machine learning based on measurement data
JP2008521138A (en) Method for analysis of control systems
CN107655692A (en) Engine pedestal automatic calibration method, device and system
CN110631792B (en) Seismic hybrid test model updating method based on convolutional neural network
Xie et al. VTET: A virtual industrial control system testbed for cyber security research
CN113722860B (en) Transient thermodynamic state online evaluation method, device and medium based on reduced order model
KR102266279B1 (en) Method for Building Reduced Order Model for Implementing Transient State
CN112287484B (en) Complex engineering system reliability design method based on vector agent model
KR20240016924A (en) Digital Twin System and Method for Real Time Monitoring, Virtual Operation and Optimization of On-Site Equipment
CN116343936A (en) Combustion chemical reaction calculation acceleration method based on deep neural network
CN115310311B (en) Method for calculating fatigue life of metal material under spectral load
Yu et al. GPU-based JFNG method for power system transient dynamic simulation
WO2017188474A1 (en) Method and apparatus for fan simulation through flow analysis
WO2024025382A1 (en) Digital twin system and method capable of real-time monitoring, virtual operation prediction and optimization operation service of on-site equipment
Wakeley et al. The conditional ancestral selection graph with strong balancing selection
CN108304659A (en) A kind of Switching Power Supply testability analysis system and method based on LabVIEW platform
CN111463455B (en) SOFC semi-physical simulation system and controller development method thereof
Liu et al. Multi-sensor data mining of long-grouped train braking system based on an LSTM network
Mailund et al. Using colored petri nets to construct coalescent hidden markov models: automatic translation from demographic specifications to efficient inference methods
Gang et al. Research on three-axis six-DOF shaking table based on rapid prototyping of DSP algorithms using SIMULINK
CN107292015A (en) The balanced snorkeling model emulation appraisal procedure of submarine navigation device based on neural network algorithm
Dai et al. Research on Safety Level DCS Automated Test Method Based on Symbolic Execution
BELARDINI et al. Parallel simulation of combustion in common rail diesel engines by advanced numerical solution of detailed chemistry
CN117521256A (en) Comprehensive solving method for modal substructure and pulse substructure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863213

Country of ref document: EP

Kind code of ref document: A1