WO2024025067A1 - Decontamination system and decontamination method using gas hydrate - Google Patents

Decontamination system and decontamination method using gas hydrate Download PDF

Info

Publication number
WO2024025067A1
WO2024025067A1 PCT/KR2023/004273 KR2023004273W WO2024025067A1 WO 2024025067 A1 WO2024025067 A1 WO 2024025067A1 KR 2023004273 W KR2023004273 W KR 2023004273W WO 2024025067 A1 WO2024025067 A1 WO 2024025067A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
gas hydrate
gas
cargo tank
contaminated water
Prior art date
Application number
PCT/KR2023/004273
Other languages
French (fr)
Korean (ko)
Inventor
남대근
이주동
전창수
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2024025067A1 publication Critical patent/WO2024025067A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/20Disposal of liquid waste
    • G21F9/26Disposal of liquid waste by dilution in water, e.g. in ocean, in stream
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds

Definitions

  • the present invention relates to a decontamination system and decontamination method using gas hydrate, which is portable and capable of storing and decontaminating large quantities of radioactive contaminated water.
  • the gas hydrate is converted into water and gas at a constant temperature and pressure. It relates to a decontamination system and decontamination method using gas hydrate that can store and decontaminate large quantities of radioactive contaminated water by artificially constructing the physical phenomenon in which contaminants in water are naturally discharged when created and applying it to very large ships.
  • clathrate hydrate is a crystalline compound that physically captures and traps guest molecules without chemical bonding in a three-dimensional lattice structure formed by host molecules through hydrogen bonding. says If the host molecule is a water molecule and the guest molecule is a low-molecular gas molecule such as methane, ethane, propane, or carbon dioxide, it is called a gas hydrate.
  • the method of treating radioactive contaminated water using a multi-nuclide removal facility involves complex treatment processes such as precipitation/adsorption/membrane separation, requires removal of each nuclide through multiple processes, and generates secondary waste during the treatment of radioactive contaminated water.
  • complex treatment processes such as precipitation/adsorption/membrane separation
  • requires removal of each nuclide through multiple processes and generates secondary waste during the treatment of radioactive contaminated water.
  • problems such as rapidly increasing time and costs, so it is necessary to come up with fundamental and technological alternatives to solve these problems.
  • Patent Documents 1 to 3 An example of a technology to solve this problem is disclosed in Patent Documents 1 to 3 below.
  • Patent Document 1 Japanese Patent Application Publication No. 2013-92415, published on May 16, 2013 discloses that water contaminated with radioactive substances and one or two or more types of gas that can form gas hydrates are mixed at a temperature higher than the freezing point of the water. A process of obtaining a gas hydrate suspended in the water by contacting the gas hydrate under temperature and conditions to form a gas hydrate, and a process of washing radioactive substances and other impurities adhering to the outer wall of the gas hydrate with washing water while substantially maintaining the gas hydrate state.
  • Patent Document 2 Korean Patent Publication No. 10-2237252, registered on April 1, 2021 discloses that liquefied gas stored in a liquefied gas storage tank is regasified to generate regasified gas, and evaporation gas generated from the liquefied gas storage tank is disclosed.
  • a regasification device including a re-condenser for re-condensing the liquefied gas, and a desalination device for desalinating sea water, wherein the desalination device generates gas hydrate from the sea water through guest gas and cold heat supplied from the sea water.
  • It includes a hydrate device and a dissociation device that receives and dissociates the gas hydrate from the hydrate device, and supplies the guest gas remaining in the hydrate device or the gas dissociated from the dissociation device to the re-condenser or the liquefied gas storage tank.
  • a gas regasification system is disclosed.
  • Patent Document 3 Korean Patent Publication No. 10-1978880, registered on May 9, 2019 discloses a ship body, a liquefaction system for receiving a feed gas containing an acidic gas from the outside of the ship body and liquefying or hydrating the acidic gas; A hydration unit, a storage tank for receiving and storing the liquefied or hydrated product from the liquefaction and hydration unit, and a pretreatment process provided upstream of the liquefaction and hydration unit to remove impurities other than acid gas from the feed gas.
  • an acid gas treatment vessel containing a part.
  • Patent Document 1 as described above discloses a technology for removing or reducing radioactive materials from water contaminated with radioactive materials and simultaneously reducing the amount of concentrated radioactive material content, but the radiation is continuously applied to the contaminated water. There was a problem that radioactive materials could not be removed or reduced.
  • Patent Document 2 discloses a hydrate device that generates seawater into gas hydrate through cold heat supplied from seawater in an LNG carrier, and a dissociation device that receives the gas hydrate from the hydrate device and dissociates it
  • the patent document 3 discloses the configuration of a liquefaction and hydration unit that liquefies or hydrates an acidic gas provided in the hull, but Patent Documents 2 and 3 do not disclose a technology for decontamination of contaminated water containing radionuclides. .
  • the purpose of the present invention is to solve the problems described above, and to decontaminate radioactive contaminated water using ultra-large ships such as Very Large Crude Oil Carriers (VLCCs), which are scheduled to be decommissioned due to international oversupply.
  • VLCCs Very Large Crude Oil Carriers
  • Another object of the present invention is to provide a decontamination system and method using gas hydrate that can be installed on a very large ship to enable sea movement and to effectively respond to international crisis situations such as responding to future nuclear power plant accidents.
  • Another object of the present invention is to provide a decontamination system and method using gas hydrate that can simultaneously remove polynuclear radioactive contaminated water and can be applied even under high-concentration salt seawater conditions.
  • Another object of the present invention is to provide a decontamination system and method using gas hydrate that can dramatically reduce the amount of secondary waste generated by utilizing a crystallization method.
  • Another object of the present invention is to provide a decontamination system and method using gas hydrate that are easy to operate and maintain by developing each process for decontamination in a modular form and installing it on a very large ship.
  • the decontamination system using gas hydrate according to the present invention can be operated at sea and is installed in a very large ship equipped with a plurality of compartmentalized cargo tanks and a pump that can fill each cargo tank with contaminated water.
  • a gas hydrate formation module that injects gas into supplied contaminated water to form gas hydrate, a solid-liquid separation module that separates the gas hydrate formed by the gas hydrate formation module into pellets from radioactive materials, and a washing unit that cleans the pellets. It is characterized in that it includes a module, a dissociation module that separates water molecules and gases from the pellet washed by the washing module, and a radioactive material storage module that stores the radioactive material separated in the solid-liquid separation module.
  • a gas injection and recovery module for injecting gas into the gas hydrate formation module and recovering the gas from the dissociation module, and measuring the concentration of water molecules dissociated from the dissociation module It is characterized in that it further includes a discharge module for discharging water to the sea.
  • the gas hydrate formation module and the dissociation module are respectively provided in the second cargo tank and the third cargo tank adjacent to each other, and the gas hydrate formation module, solid-liquid separation module, and washing module and the operation of the dissociation module is characterized in that it is executed continuously.
  • the gas hydrate formation module, solid-liquid separation module, washing module, and dissociation module are each provided in plural numbers in the second cargo tank and the third cargo tank.
  • the gas is HFC134a.
  • the gas hydrate formation module and dissociation module remove cesium (Cs + ), strontium (Sr 2+ ), and cobalt (Co 2+ ) from contaminated water containing the radioactive material. , It is characterized by simultaneously removing foreign substances in addition to pure water containing iodine (I - ).
  • the second cargo tank provided with the gas hydrate formation module is maintained at a constant temperature and pressure
  • the third cargo tank provided with the dissociation module is maintained at room temperature and pressure. It is characterized by
  • the pellets formed in the solid-liquid separation module are transported to the dissociation module by a screw conveyor.
  • the washing module is provided with three or more fine spray nozzles, and the washing water used in the washing module is pure water formed by the dissociation module or discharge module. do.
  • the decontamination system using gas hydrate according to the present invention further includes a heat exchanger module that exchanges temperature between gas hydrate formation in the gas hydrate formation module and dissociation in the dissociation module.
  • the first cargo tank is provided with a larger capacity than the second cargo tank and the third cargo tank, and tritium contained in the contaminated water is stored in the first cargo tank. It is characterized by being removed.
  • the decontamination method using gas hydrate is a method of storing and decontaminating large quantities of contaminated water from radioactive leaks, including (a) a plurality of cargo tanks that can be operated at sea and are partitioned, and each Step (b) storing contaminated water containing high salt and high concentration radioactive materials in a first cargo tank, which is a buffer tank, by a pump provided in the pump room in a very large ship that can fill the cargo tank with contaminated water, (b) the above step ( (a) supplying the contaminated water stored in step (b) to the gas hydrate formation module of the second cargo tank, (c) supplying HFC134a gas to the gas hydrate formation module, (d) to the contaminated water supplied in step (b).
  • Step (e) forming a gas hydrate in the gas hydrate formation module using the HFC134a gas supplied in step (c), (e) pelletizing the gas hydrate formed in step (d) to separate radioactive materials and foreign substances.
  • Step (f) comprising the step of dissociating the pellets formed in step (e) in a third cargo tank adjacent to the second cargo tank.
  • step (g) measuring the radioactivity concentration of the pure water dissociated in step (f), and if the radioactivity concentration is within the allowable range, discharging it into the sea is further added. It is characterized by including.
  • steps (a) to (f) are performed continuously.
  • each component for recycling very large ships scheduled to be decommissioned and decontamination of contaminated water from radioactive leaks is installed in a module form in a plurality of cargo tanks. Since it is prepared and installed on a very large ship, the cost and time for manufacturing a radioactive contaminated water decontamination plant are reduced, and operation and maintenance are easy.
  • a radioactive contaminated water decontamination plant is installed on a very large ship scheduled to be decommissioned, so the advantage of the ship is that it is portable and can respond quickly to radioactive leakage accidents. obtained.
  • the decontamination system and method using gas hydrate according to the present invention can be applied even in high-concentration salt seawater conditions, and the effect of dramatically reducing the amount of secondary waste generated for treating radioactive contaminated water is obtained.
  • Figure 2 is a schematic structural diagram of a very large ship applied to the present invention
  • Figure 3 is a schematic configuration diagram of a decontamination system using gas hydrate according to the present invention.
  • Figure 4 is a diagram showing an example of the configuration of a decontamination system using the gas hydrate shown in Figure 3;
  • Figure 5 is a photograph of HFC134a hydrate formation for treatment of seawater and radioactive contaminated water according to the present invention
  • Figure 6 is a graph showing the results of a removal rate experiment (simultaneous removal rate) of seawater and radioactive contaminated water according to the present invention
  • Figure 7 is a flowchart illustrating the process of decontamination of contaminated water from a radioactive leak accident according to the present invention.
  • module performs at least one function or operation and may be implemented as hardware or software consisting of a mechanical or electrical or electronic configuration, or as a combination of hardware and software.
  • a plurality of “modules” or a plurality of “units” may be integrated into at least one module and implemented with at least one processor, except for “modules” or “units” that need to be implemented with specific hardware.
  • very large ship refers to a ship such as a Very Large Crude Oil Carrier (VLCC) or Ultra Large Crude Oil Carrier (ULCC), which is a very large crude oil carrier, and is used at sea.
  • VLCC Very Large Crude Oil Carrier
  • ULCC Ultra Large Crude Oil Carrier
  • “Decontamination” means removing contamination by radioactive elements such as cesium (Cs + ), strontium (Sr 2+ ), cobalt (Co 2+ ), iodine (I - ), etc.
  • the present invention solves the disadvantages of existing radioactive contaminated water treatment technologies such as evaporation, membrane separation, and ion exchange, which require large and complex equipment and low decontamination performance, and treats secondary radioactive waste generated from filters and ion exchange resins.
  • Gas hydrate technology is applied to prevent adverse effects caused by .
  • the “Gas Hydrate” produced by the present invention is a state in which gas molecules (HFC134a) and water molecules (pure water) are physically combined, as shown in Figure 1, and gas molecules are present in the water lattice. This is the structure where is stored. 1 is an explanatory diagram of the gas hydrate structure produced by the present invention.
  • the present invention provides a technology that can be applied even under conditions of simultaneous removal of radioactive polynuclear contaminated water and high-concentration salt seawater, and can dramatically reduce the amount of secondary waste generated by utilizing a determination method without pretreatment.
  • Figure 2 is a schematic structural diagram of a very large ship applied to the present invention.
  • the ultra-large ship applied to the present invention is capable of operating at sea and has a separation tower (10), an engine room (20), a pump room (30), a cargo deck line (40), and a plurality of partitioned Very Large Crude Oil Carrier (VLCC) equipped with cargo tanks (51 ⁇ 59), screw conveyor (60), contaminated water supply pipe line (70), gas recovery pipe line (80), and discharge pipe line (90). ) or ULCC (Ultra Large Crude Oil Carrier) may be applied.
  • VLCC Very Large Crude Oil Carrier
  • ULCC Ultra Large Crude Oil Carrier
  • a gas hydrate decontamination plant can be built for a very large crude oil carrier that is scheduled to be decommissioned and converted into a mobile VLCC gas hydrate decontamination plant.
  • VLCC is the name for an oil tanker weighing more than 150,000 tons
  • ULCC is used as a name for an oil tanker weighing more than 400,000 tons.
  • the separation tower 10 is provided with the function of removing all moisture that may contaminate the ship's oil storage facility, the engine room 20 is provided to control the engine and each module related to the ship's operation, and the pump room 30 ) is used to fill or empty each carco tank (51 to 59) through the pump and cargo deck line (40), contaminated water supply pipe line (70), gas recovery pipe line (80), and discharge pipe line (90). It is prepared.
  • the cargo tanks 51 to 59 are divided into multiple compartments to prevent fluctuations in the liquid level during the operation of the ship.
  • LNG liquefied natural gas
  • LNG carrier liquefied natural gas
  • LNG has a vapor pressure higher than atmospheric pressure and a boiling temperature of approximately -163°C, it must be formed of a material that can withstand ultra-low temperatures in order to safely store and store such LNG.
  • the cargo tank is made of, for example, aluminum steel, stainless steel, 35% nickel steel, etc., is resistant to other thermal stresses and heat shrinkage, and is formed with an insulating structure that can prevent heat intrusion.
  • the cargo tanks 51 to 59 in the decontamination system using gas hydrate according to the present invention are used to store contaminated water containing high salt and high concentration of radioactive materials due to a radioactive leak accident.
  • the structure of six cargo tanks is shown for convenience, but this is limited.
  • the cargo tank may be provided in a structure of seven or more.
  • the first cargo tank 51 may be partitioned into a larger capacity than other cargo tanks in order to have the function of storing a large amount of radioactive contaminated water for a long time.
  • substances with a relatively short radioactivity half-life such as tritium, are not removed not only in the gas hydrate process but also in various processes such as evaporation, membrane separation, and ion exchange, so the radiation dose of the corresponding nuclide must be reduced over a long period of storage time. This is to reduce it naturally during the period.
  • the above-described first to sixth cargo tanks are shown separately for convenience of explanation, and each of the first to sixth cargo tanks may be provided as two or more cargo tanks.
  • Figure 3 is a schematic configuration diagram of a decontamination system using a gas hydrate according to the present invention
  • Figure 4 is a diagram showing an example of the configuration of a decontamination system using a gas hydrate shown in Figure 3, as shown in Figure 4.
  • Contaminated water treatment can be maximized by performing parallel and sequential treatment of contaminated water by repeating the module configuration n times in the remaining space of each cargo tank.
  • the decontamination system using gas hydrate uses gas hydrate in a very large ship capable of operating at sea and equipped with a plurality of compartmentalized cargo tanks 51 to 59.
  • a system for storing and decontaminating large quantities of contaminated water from radioactive leaks including a contaminated water supply module (100) that supplies contaminated water containing highly salty and highly concentrated radioactive materials caused by radioactive leaks, and supplied from the contaminated water supply module (100).
  • a gas hydrate formation module 200 that injects gas into contaminated water to form gas hydrate, and a solid-liquid separation module 300 that forms the gas hydrate formed by the gas hydrate formation module 200 into a pellet shape and separates it from radioactive materials.
  • a radioactive material storage module 600 that stores the material, a discharge module 700 that measures the concentration of the water molecules dissociated in the dissociation module 500 and discharges them to the sea, injects gas into the gas hydrate formation module and dissociates the water molecules. It may include a gas injection and recovery module 800 that recovers the gas from the module, and a heat exchanger module 900 that exchanges temperature between the gas hydrate formation and dissociation. Additionally, each of the modules 100 to 900 described above may include a control module that controls each operation and condition.
  • the contaminated water supply module 100 supplies radioactive contaminated water (1.25 million tons) stored following the accident at the Fukushima nuclear power plant in Japan, which occurred in March 2011, to a very large ship, as shown in Figures 2 and 3. It is a module that is stored in the first cargo tank 51 and supplies radioactive leakage contaminated water stored in the first cargo tank 51 to the second cargo tank 52 and the fifth cargo tank 55.
  • the supply of radioactive contaminated water by the contaminated water supply module 100 as described above is executed by a control module provided in the engine room 20, and the supply of contaminated water is performed in the pump room 30, as indicated by the arrow in FIG. 2. , It can be executed through the cargo deck line 40, the contaminated water supply pipe line 70 provided at the bottom of the ship, etc. Additionally, ball valves or check valves can be applied before and after each pipeline or on the flow path.
  • the contaminated water supply module 100 does not build a new pipeline to supply contaminated water, but is equipped with an engine room 20, a pressurized pump, a vacuum pump, etc. provided on a very large crude oil carrier scheduled to be dismantled.
  • the pressure and water level of each cargo tank (51 to 59) can be individually adjusted by utilizing the pump room (30) and the contaminated water supply pipe line (70). Therefore, the manufacturing cost and time of the decontamination system using gas hydrate according to the present invention can be dramatically reduced.
  • the gas hydrate formation module 200 may be provided in the second cargo tank 52 and the fifth cargo tank 55 as shown in FIG. 2, and the second cargo tank 52 and the fifth cargo tank ( 55) can maintain 4°C and 3bar for hydrate formation by contact with low-temperature seawater. As shown in FIGS. 3 and 4, the gas hydrate formation module 200 injects and recovers gas that can form hydrates in radioactive contaminated water supplied from the contaminated water supply module 100. It is injected from the module 800 to separate contaminants and hydrates and extract only the hydrates (pure water).
  • the gas hydrate forming module 200 includes a contaminated water supply unit connected to the contaminated water supply module 100, a gas supply unit connected to the gas recovery pipeline 80 of the gas injection and recovery module 800, and a reaction unit for forming gas hydrate. , a venturi valve that allows the contaminated water and gas to be mixed smoothly and supplied to the reaction unit, a discharge unit that can discharge the fluid existing in the reaction unit to the outside, a discharge unit that discharges the final product, gas hydrate, when it is generated, It may include a cooling unit capable of supplying cooling water to a portion of the conduit connected to the reaction unit that requires temperature maintenance.
  • the reaction unit may be provided with a cylinder to transport the gas hydrate, which is the final product, a stirring device to stir the reaction water in the reaction unit, and a heater to prevent components such as sensors in the reaction unit from freezing. .
  • this gas hydrate formation module 200 approximately 85% of cesium (Cs + ), strontium (Sr 2+ ), cobalt (Co), and iodine (I - ), and about 60 radionuclides are extracted without a pretreatment process using the gas hydrate determination method. Species and foreign substances can be removed at the same time. That is, the gas hydrate formation module 200, which treats radioactive contaminated water contained in seawater, injects a gas (HFC134a) capable of forming hydrate into radioactive waste liquid to form hydrate from which contaminants are excluded without any pretreatment.
  • a gas HFC134a
  • Figure 5 shows a photograph of HFC134a hydrate formation for treating seawater and radioactively contaminated water according to the present invention.
  • the experimental conditions in Figure 5 were 1.8 bar and 4°C.
  • Figure 6 shows the results of a removal rate experiment (simultaneous removal rate) of seawater and radioactive contaminated water according to the present invention. As can be seen in Figure 6, it was considered that all foreign substances, including radionuclides, were removed simultaneously (simultaneously) by the gas hydrate formation/dissociation method according to the present invention, and no secondary waste was generated.
  • the solid-liquid separation module 300 is a pelletizer in the form of a screw conveyor that can dehydrate the gas hydrate slurry discharged from the discharge port of the gas hydrate forming module 200 and transfer it to the dissociation module 500, and has a rotational movement. This allows slurry compression, dehydration, and transportation to proceed simultaneously.
  • the solid-liquid separation module 300 is installed on the partition wall between the second cargo tank 52 and the third cargo tank 53 and between the fourth cargo tank 54 and the fifth cargo tank 55 as shown in FIG. By installing it, only clean gas hydrate that excludes contaminants can be passed on to the next cargo tank.
  • a cleaning module 400 may be provided within the solid-liquid separation module 300 to clean radioactive contaminants attached to the surface of the pellets during gas hydrate dehydration and transport.
  • gas hydrate is transferred from the gas hydrate formation module 200 and the solid-liquid separation module 300 to the third cargo tank 53 and the fourth cargo tank 54, and radioactive materials and foreign substances not included in the gas hydrate are It continues to concentrate or precipitate in the second cargo tank 52 and the fifth cargo tank 55. At this time, the viscosity is very high, making it impossible to form gas hydrate, and if the radioactive content is also higher than the standard value, pipes and valves at the bottom of the ship By operation, the radioactive material is transferred to the storage module 600 in the sixth cargo tank 56 for storing the radioactive material as shown in FIG. 2.
  • the above-described gas hydrate formation module 200 and solid-liquid separation module 300 may be prepared according to the gas hydrate continuous manufacturing device disclosed in Korean Patent Publication No. 10-1044770 (2011.06.21) invented and registered by the present inventor. .
  • the cleaning module 400 may be provided in the screw conveyor 60 to wash radioactive contaminants attached to the surface of the pellets in the process of transferring the pellets formed by the solid-liquid separation module 400 to the dissociation module 500.
  • pure water formed by the dissociation module 500 or the discharge module 700 can be used as the washing water.
  • the cleaning module 400 is equipped with three or more stages of fine mist spray nozzles and circulates the clean water stored in the dissociation module 700 to individually adjust the spray amount of each nozzle to improve the cleaning effect. can be maximized.
  • the dissociation module 500 may be provided with a device such as a heater to maintain room temperature and pressure, and as shown in FIG. 2, it is provided between the second cargo tank 52 and the fifth cargo tank 55. It may be provided in the third cargo tank 53 and the fourth cargo tank 54, respectively, and may be connected to the solid-liquid separation module 300 by a screw conveyor 60, respectively.
  • the third cargo tank 53 and the fourth cargo tank 54 are maintained at room temperature and pressure, unlike the second cargo tank 52 and the fifth cargo tank 54, and are supplied through the screw conveyor 60.
  • the gas hydrate in the pellet is dissociated and separated into dissociation water (pure water) and dissociation gas.
  • the dissociated water separated by the dissociation module 500 is filled in the third cargo tank 53 and the fourth cargo tank 54, and the separated gas is recovered by the gas injection and recovery module 800, as shown in FIG. 2 As indicated by the arrow, the gas is supplied to the hydrate formation module 200.
  • the radioactive material storage module 600 is separately manufactured and provided to prevent leakage of radioactive materials, and is provided by the gas hydrate formation module 200 and the solid-liquid separation module 300. Separated and concentrated radioactive materials such as cesium (Cs + ), strontium (Sr 2+ ), cobalt (Co 2+ ), and iodine (I - ) can be stored.
  • the discharge module 700 is provided in the third cargo tank 53 and the fourth cargo tank 54, and is equipped with a measuring instrument capable of measuring the radioactivity concentration of the dissociated water separated by the dissociation module 500. And, if the measured radioactivity concentration is within the allowable range, the dissociated water filled in the third cargo tank 53 and the fourth cargo tank 54 is discharged into the sea. Meanwhile, if the measured radioactivity concentration exceeds the allowable range, dissociated water may be supplied to the contaminated water supply module 100 to form secondary gas hydrate.
  • the gas injection and recovery module 800 supplies HFC134a to the reaction unit of the gas hydrate formation module 200 and is provided to recover the gas generated in the third cargo tank 53 and the fourth cargo tank 54.
  • HFC134a was used as the gas, but it is not limited to this, and any gas that can separate radioactive materials from contaminated water using gas hydrate can be used.
  • a heat exchanger module 900 as shown in FIGS. 3 and 4 is provided to exchange the temperature between gas hydrate formation and dissociation to achieve economic efficiency. can be improved.
  • Figure 7 is a flow chart to explain the process of decontamination of contaminated water from a radioactive leak accident according to the present invention.
  • the decontamination method using gas hydrate according to the present invention is a method of decontamination of radioactive leakage contaminated water using gas hydrate in a very large ship capable of operating at sea and equipped with a plurality of compartmentalized cargo tanks, Figures 2 and 7 As shown, contaminated water containing high salt and high concentration of radioactive materials due to a radioactive leak is stored in the first cargo tank 51, which is a buffer tank, by a pump provided in the pump room 30 (S10).
  • the contaminated water stored in the first cargo tank 51 is provided in the second cargo tank 52 and the fifth cargo tank 55, which can maintain 4°C and 3 bar along the pipeline under the control of the control module. It is supplied to the venturi valve of the gas hydrate formation module 200 through the supply module 100 (S20). Meanwhile, the gas injection and recovery module 800 supplies HFC134a gas to the venturi valve of the gas hydrate formation module 200 (S30).
  • gas hydrate is formed in the reaction unit of the gas hydrate forming module 200 (S40), and the generated gas hydrate is supplied to the solid-liquid separation module 300 through the discharge unit.
  • the pelletizer of the solid-liquid separation module 300 pelletizes the gas hydrate discharged from the discharge unit, and the gas hydrate forming module 200 and the solid-liquid separation module 300 pelletize radioactive substances and foreign substances not contained in the gas hydrate.
  • the gas hydrate which is concentrated in the second cargo tank 52 and the fifth cargo tank 55 and excludes contaminants, is transferred to the third cargo tank 53 and the fourth cargo tank 54 (S50).
  • Foreign substances including cesium (Cs + ), strontium (Sr 2+ ), cobalt (Co 2+ ), iodine (I - ), etc., which are radioactive materials precipitated in step S50, are transferred to the radioactive material storage module 600 and stored. It can be.
  • the gas hydrate pellets formed in the solid-liquid separation module 300 are transferred from the second cargo tank 52 and the fifth cargo tank 55 to the third cargo tank 53, respectively, by the screw conveyor 60 as shown in FIG. 2. ) and is transferred to the fourth cargo tank 54, and can be washed with pure water formed in the dissociation module 500 by the washing module 400 to wash radioactive contaminants attached to the surface of the pellet during the transfer process ( S60).
  • the gas hydrate of the pellets transferred to the third cargo tank 53 and the fourth cargo tank 54 by the screw conveyor 60 is separated into dissociated water and dissociated gas by the dissociation module 500 (S70) , the dissociated water is charged in the second cargo tank 52 and the fifth cargo tank 55, and the dissociated gas is passed through the gas recovery pipeline 80 by the gas injection and recovery module 800 into the second cargo tank ( 52) and is circulated and recovered to the fifth cargo tank 55 (S70).
  • the radioactivity concentration of the dissociated water in the third cargo tank 53 and the fourth cargo tank 54 is measured by a radioactivity measurement device provided in the discharge module 700 (S80), and as a result of the measurement, the radioactivity concentration is within the allowable range. In this case (S90), it is released into the sea (S100). Meanwhile, if the radioactivity concentration exceeds the allowable range in step S90, the process proceeds to step S20 and secondary processing is performed through the above-described processes S30 to S90. When performing secondary treatment, 99% of all nuclides can be removed.
  • radioactive contaminated water is decontaminated using very large ships such as very large crude oil carriers (VLCCs), which are scheduled to be decommissioned due to international oversupply, thereby dramatically reducing the cost and time of manufacturing plants for decontamination.
  • VLCCs very large crude oil carriers
  • nuclides from radioactive leakage contaminated water can be removed.
  • the manufacturing cost and time of a decontamination plant can be dramatically reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oceanography (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • Food Science & Technology (AREA)
  • Gas Separation By Absorption (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention relates to a decontamination system and a decontamination method using gas hydrate that can be applied to an ultra-mega ship to store and decontaminate large quantities of radioactive water, the system comprising: a contaminated water supply module supplying contaminated water filled in a first cargo tank and containing hypersaline and high-concentration radioactive materials; a gas hydrate forming module that forms gas hydrate by injecting gas into the contaminated water supplied from the contaminated water supply module; a solid-liquid separation module that forms the gas hydrate formed by means of the gas hydrate forming module into a pellet shape and separates same from radioactive materials; a washing module that washes the pellets; a dissociation module that separates water molecules and gas from the pellets washed by the washing module; and a radioactive material storage module that stores the radioactive materials separated in the solid-liquid separation module. This configuration can dramatically reduce the cost and time of manufacturing a decontamination plant.

Description

가스 하이드레이트를 이용한 제염 시스템 및 제염 방법Decontamination system and method using gas hydrate
본 발명은 이동 가능하고 방사능 오염수를 대량 저장 및 제염할 수 있는 가스 하이드레이트(Gas Hydrate)를 이용한 제염(decontamination) 시스템 및 제염 방법에 관한 것으로, 특히 가스 하이드레이트가 일정한 온도와 압력에서 물과 가스로 만들어질 때 물속에 있는 오염물질이 자연적으로 배출되는 물리적 현상을 인위적으로 구성하고 초거대 선박에 적용하여 방사능 오염수를 대량 저장 및 제염할 수 있는 가스 하이드레이트를 이용한 제염 시스템 및 제염 방법에 관한 것이다.The present invention relates to a decontamination system and decontamination method using gas hydrate, which is portable and capable of storing and decontaminating large quantities of radioactive contaminated water. In particular, the gas hydrate is converted into water and gas at a constant temperature and pressure. It relates to a decontamination system and decontamination method using gas hydrate that can store and decontaminate large quantities of radioactive contaminated water by artificially constructing the physical phenomenon in which contaminants in water are naturally discharged when created and applying it to very large ships.
일반적으로, 크러스레이트 하이드레이트(clathrate hydrate)란 호스트(host) 분자들이 수소 결합을 통해 형성하는 3차원 격자 구조에 게스트(guest) 분자들을 화학적인 결합을 하지 않고 물리적으로 포획하여 가둔 결정성 화합물을 말한다. 호스트 분자가 물 분자이고, 게스트 분자가 메탄이나 에탄, 프로판 또는 이산화탄소와 같이 저분자 가스 분자들인 경우 가스 하이드레이트(Gas Hydrate)라고 한다.In general, clathrate hydrate is a crystalline compound that physically captures and traps guest molecules without chemical bonding in a three-dimensional lattice structure formed by host molecules through hydrogen bonding. says If the host molecule is a water molecule and the guest molecule is a low-molecular gas molecule such as methane, ethane, propane, or carbon dioxide, it is called a gas hydrate.
현재 100여 종 이상의 기체 분자가 하이드레이트를 형성하는 것으로 알려졌으며, 메탄(CH4)은 4℃ 약 30기압에서 물 분자(H2O)와 결합하여 가스 하이드레이트를 형성하며, HFC계열의 가스를 사용하면 이보다 훨씬 낮은 압력(4℃ 약 2~3기압)에서도 가스 하이드레이트 형성이 가능하다Currently, more than 100 types of gas molecules are known to form hydrates, and methane (CH 4 ) combines with water molecules (H 2 O) at 4°C and about 30 atmospheres to form gas hydrates, and HFC-based gases are used. It is possible to form gas hydrate even at a much lower pressure (approximately 2 to 3 atmospheres at 4°C).
이러한 가스 하이드레이트를 인공적으로 제조하기 위한 다양한 방법과 장치가 개발되어 왔으며, 여러 산업분야에 응용될 수 있는 특성을 가지고 있어 최근 들어 많은 연구가 수행되고 있다. 크게 유체 유동성 확보, 에너지 자원으로서의 회수, 기후 변화 대처기술, 가스 수송 및 저장, 그리고 이들 분야에 각각 연계된 안전에 대한 연구 등이 수행되고 있다. 예를 들어 대형 선박 등에서 가스 수송 및 저장에 대한 기술도 개발되고 있다. Various methods and devices have been developed to artificially produce these gas hydrates, and since they have properties that can be applied to various industrial fields, much research has been conducted recently. Research is largely being conducted on securing fluid fluidity, recovery as an energy resource, climate change response technology, gas transportation and storage, and safety related to each of these fields. For example, technologies for gas transportation and storage on large ships are also being developed.
한편, 원전 밀집지역의 원전 중대사고 발생과 해양오염수 방류에 대한 국민 안정성 증진이 요구되며, 동북아시아는 세계적으로 핵 산업의 밀집지역으로, 일본 후쿠시마 원전사고와 같은 원전 중대사고로 인한 재난대응에 대한 불안감이 증대하고 있다. 2011년 3월 발생한 일본 후쿠시마 원자력발전소 사고는 현재까지 해결되고 있지 않으며, 사고 원전에서 생성된 방사능 오염수는 일본 정부의 방사능 오염수 처리 방식인 다핵종제거설비(ALPS)의 복잡성과 성능한계 등의 문제로 인하여 방사능 오염수의 해상 방류를 앞두고 있다. Meanwhile, there is a need to increase public safety in response to the occurrence of serious nuclear accidents in nuclear power plant areas and the discharge of marine polluted water. Northeast Asia is a globally concentrated area of the nuclear industry, and is required to respond to disasters caused by serious nuclear accidents such as the Fukushima nuclear accident in Japan. Anxiety about this is increasing. The accident at Japan's Fukushima nuclear power plant that occurred in March 2011 has not been resolved to this day, and the radioactive contaminated water generated from the accident nuclear power plant is due to the complexity and performance limitations of the Japanese government's radioactive contaminated water treatment method, the Multinuclide Removal System (ALPS). Due to this problem, radioactive contaminated water is about to be discharged into the sea.
다핵종제거설비를 이용한 방사능 오염수 처리 방식은 침전/흡착/막 분리 등의 처리공정이 복잡하고, 다수의 공정으로 각각의 핵종을 제거해야 하며, 방사능 오염수 처리 과정에서 2차 폐기물이 발생하는 등 시간과 비용이 급증하는 문제가 있으므로 이를 해결하기 위한 근본적이고 획기적인 기술적 대안 마련이 필요한다.The method of treating radioactive contaminated water using a multi-nuclide removal facility involves complex treatment processes such as precipitation/adsorption/membrane separation, requires removal of each nuclide through multiple processes, and generates secondary waste during the treatment of radioactive contaminated water. There are problems such as rapidly increasing time and costs, so it is necessary to come up with fundamental and groundbreaking technological alternatives to solve these problems.
이러한 문제를 해결하기 위한 기술의 일 예가 하기 특허 문헌 1 내지 3 등에 개시되어 있다.An example of a technology to solve this problem is disclosed in Patent Documents 1 to 3 below.
예를 들어, 특허문헌 1(일본 공개특허공보 제2013-92415호, 2013.05.16 공개)에는 방사성 물질로 오염된 물과 가스 하이드레이트를 형성할 수 있는 일종 또는 2종 이상의 가스를 상기 물의 빙점보다 높은 온도이며 가스 하이드레이트를 형성하는 조건하에서 접촉시키고, 상기 물에 현탁되는 가스 하이드레이트를 얻는 공정, 가스 하이드레이트 상태를 실질적으로 유지하면서, 가스 하이드레이트 외벽에 부착하는 방사성 물질 그 외의 불순물을 세정수로 세정하는 공정, 가스 하이드레이트 상태를 유지하면서, 세정수와 가스 하이드레이트를 분리하는 공정, 가스 하이드레이트 상태보다 높은 온도 또는 저압으로 하여 가스 하이드레이트를 방사성 물질이 제거 또는 감소된 물과 가스로 하는 공정을 이 순서로 포함하는 방사성 물질로 오염된 물에서 방사성 물질을 제거 또는 감소하는 방법에 대해 개시되어 있다.For example, Patent Document 1 (Japanese Patent Application Publication No. 2013-92415, published on May 16, 2013) discloses that water contaminated with radioactive substances and one or two or more types of gas that can form gas hydrates are mixed at a temperature higher than the freezing point of the water. A process of obtaining a gas hydrate suspended in the water by contacting the gas hydrate under temperature and conditions to form a gas hydrate, and a process of washing radioactive substances and other impurities adhering to the outer wall of the gas hydrate with washing water while substantially maintaining the gas hydrate state. , In this order, it includes the process of separating the washing water and gas hydrate while maintaining the gas hydrate state, and the process of turning the gas hydrate into water and gas with radioactive substances removed or reduced by applying a higher temperature or lower pressure than the gas hydrate state. A method for removing or reducing radioactive materials from water contaminated with radioactive materials is disclosed.
또 특허문헌 2(대한민국 등록특허공보 제10-2237252호, 2021.04.01 등록)에는 액화가스 저장탱크에 저장된 액화가스를 재기화시켜 재기화 가스를 발생시키며, 상기 액화가스 저장탱크에서 발생된 증발가스와 상기 액화가스를 재응축시키는 재응축기를 포함하는 재기화 장치 및 해수를 담수화시키는 담수화 장치를 포함하고, 상기 담수화 장치는 게스트 가스와 상기 해수로부터 공급받은 냉열을 통해 상기 해수를 가스 하이드레이트로 생성시키는 하이드레이트 장치 및 상기 하이드레이트 장치로부터 상기 가스 하이드레이트를 공급받아 해리시키는 해리 장치를 포함하되, 상기 하이드레이트 장치에서 잔존하는 상기 게스트 가스 또는 상기 해리 장치에서 해리된 가스를 상기 재응축기 또는 상기 액화가스 저장탱크로 공급하는 가스 재기화 시스템에 대해 개시되어 있다.In addition, Patent Document 2 (Korean Patent Publication No. 10-2237252, registered on April 1, 2021) discloses that liquefied gas stored in a liquefied gas storage tank is regasified to generate regasified gas, and evaporation gas generated from the liquefied gas storage tank is disclosed. And a regasification device including a re-condenser for re-condensing the liquefied gas, and a desalination device for desalinating sea water, wherein the desalination device generates gas hydrate from the sea water through guest gas and cold heat supplied from the sea water. It includes a hydrate device and a dissociation device that receives and dissociates the gas hydrate from the hydrate device, and supplies the guest gas remaining in the hydrate device or the gas dissociated from the dissociation device to the re-condenser or the liquefied gas storage tank. A gas regasification system is disclosed.
한편, 특허문헌 3(대한민국 등록특허공보 제10-1978880호, 2019.05.09 등록)에는 선체, 상기 선체의 외부로부터 산성가스를 포함하는 피드가스를 공급받아 상기 산성가스를 액화 또는 하이드레이트화하는 액화 및 하이드레이트화 유닛, 상기 액화 및 하이드레이트화 유닛에서 액화 또는 하이드레이트화된 생성물을 공급받아 저장하는 저장탱크 및 상기 액화 및 하이드레이트화 유닛의 상류에 마련되어 상기 피드가스 중 산성가스가 아닌 불순물을 제거하도록 전처리하는 전처리부를 포함하는 산성가스 처리 선박에 대해 개시되어 있다.On the other hand, Patent Document 3 (Korean Patent Publication No. 10-1978880, registered on May 9, 2019) discloses a ship body, a liquefaction system for receiving a feed gas containing an acidic gas from the outside of the ship body and liquefying or hydrating the acidic gas; A hydration unit, a storage tank for receiving and storing the liquefied or hydrated product from the liquefaction and hydration unit, and a pretreatment process provided upstream of the liquefaction and hydration unit to remove impurities other than acid gas from the feed gas. Disclosed is an acid gas treatment vessel containing a part.
상술한 바와 같은 특허문헌 1에는 방사성 물질로 오염된 물에서 방사성 물질을 제거 또는 감소함과 동시에, 집약된 방사성 물질 함유물의 양을 감소시키는 기술에 대해 개시되어 있지만, 방사는 오염수에 대해 연속적으로 방사성 물질을 제거 또는 감소시킬 수 없다는 문제가 있었다.Patent Document 1 as described above discloses a technology for removing or reducing radioactive materials from water contaminated with radioactive materials and simultaneously reducing the amount of concentrated radioactive material content, but the radiation is continuously applied to the contaminated water. There was a problem that radioactive materials could not be removed or reduced.
또 상기 특허문헌 2에는 LNG 운반선에서 해수로부터 공급받은 냉열을 통해 상기 해수를 가스 하이드레이트로 생성시키는 하이드레이트 장치 및 상기 하이드레이트 장치로부터 상기 가스 하이드레이트를 공급받아 해리시키는 해리 장치에 대해 개시되어 있고, 상기 특허문헌 3에는 선체에 마련된 산성가스를 액화 또는 하이드레이트화하는 액화 및 하이드레이트화 유닛의 구성에 대해 개시되어 있지만, 상기 특허문헌 2 및 3에는 방사성 핵종이 포함된 오염수를 제염하는 기술에 대해서는 개시되어 있지 않았다.In addition, Patent Document 2 discloses a hydrate device that generates seawater into gas hydrate through cold heat supplied from seawater in an LNG carrier, and a dissociation device that receives the gas hydrate from the hydrate device and dissociates it, and the patent document 3 discloses the configuration of a liquefaction and hydration unit that liquefies or hydrates an acidic gas provided in the hull, but Patent Documents 2 and 3 do not disclose a technology for decontamination of contaminated water containing radionuclides. .
본 발명의 목적은 상술한 바와 같은 문제점을 해결하기 위해 이루어진 것으로서, 국제적인 공급 과잉으로 폐선 계획이 있는 초대형 원유 운반선(VLCC, Very Large Crude Oil Carrier) 등의 초거대 선박을 이용하여 방사능 오염수 제염 플랜트의 제작 비용 및 시간을 획기적으로 절감할 수 있는 가스 하이드레이트를 이용한 제염 시스템 및 제염 방법을 제공하는 것이다.The purpose of the present invention is to solve the problems described above, and to decontaminate radioactive contaminated water using ultra-large ships such as Very Large Crude Oil Carriers (VLCCs), which are scheduled to be decommissioned due to international oversupply. To provide a decontamination system and method using gas hydrate that can dramatically reduce production costs and time.
본 발명의 다른 목적은 제염 플랜트를 초거대 선박에 마련하여 해상 이동이 가능하고, 미래의 원전 사고 대응 등 국제적인 위기 상황에 유용하게 대처할 수 있는 가스 하이드레이트를 이용한 제염 시스템 및 제염 방법을 제공하는 것이다.Another object of the present invention is to provide a decontamination system and method using gas hydrate that can be installed on a very large ship to enable sea movement and to effectively respond to international crisis situations such as responding to future nuclear power plant accidents.
본 발명의 또 다른 목적은 다핵종 방사능 오염수를 동시에 제거할 수 있고, 고농도 염해수 조건에서도 적용 가능한 가스 하이드레이트를 이용한 제염 시스템 및 제염 방법을 제공하는 것이다.Another object of the present invention is to provide a decontamination system and method using gas hydrate that can simultaneously remove polynuclear radioactive contaminated water and can be applied even under high-concentration salt seawater conditions.
본 발명의 또 다른 목적은 결정법을 활용하여 2차 폐기물 발생량을 획기적으로 저감할 수 있는 가스 하이드레이트를 이용한 제염 시스템 및 제염 방법을 제공하는 것이다. Another object of the present invention is to provide a decontamination system and method using gas hydrate that can dramatically reduce the amount of secondary waste generated by utilizing a crystallization method.
본 발명의 또 다른 목적 제염을 위한 각각의 공정을 모듈형으로 개발하여 초거대 선박에 장착함으로써 운영 및 유지보수가 용이한 가스 하이드레이트를 이용한 제염 시스템 및 제염 방법을 제공하는 것이다. Another object of the present invention is to provide a decontamination system and method using gas hydrate that are easy to operate and maintain by developing each process for decontamination in a modular form and installing it on a very large ship.
상기 목적을 달성하기 위해 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템은 해상에서 운항 가능하고 구획된 다수의 카고 탱크 및 각각의 카고 탱크에 오염수를 충전할 수 있는 펌프가 구비된 초거대 선박 내에서 가스 하이드레이트를 이용하여 방사능 유출사고 오염수를 대량 저장 및 제염하는 시스템으로서, 제1 카고 탱크 내에 저장되고 고염 및 고농도 방사능 물질이 포함된 오염수를 공급하는 오염수 공급 모듈, 상기 오염수 공급 모듈에서 공급된 오염수에 가스를 주입하여 가스 하이드레이트를 형성하는 가스 하이드레이트 형성 모듈, 상기 가스 하이드레이트 형성 모듈에 의해 형성된 가스 하이드레이트를 펠릿 형상으로 형성하여 방사능 물질과 분리하는 고액 분리 모듈, 상기 펠릿을 세척하는 세척 모듈, 상기 세척 모듈에 의해 세척된 펠릿에 대해 물 분자와 가스를 분리하는 해리 모듈, 상기 고액 분리 모듈에서 분리된 방사성 물질을 보관하는 방사성 물질 보관 모듈을 포함하는 것을 특징으로 한다.In order to achieve the above object, the decontamination system using gas hydrate according to the present invention can be operated at sea and is installed in a very large ship equipped with a plurality of compartmentalized cargo tanks and a pump that can fill each cargo tank with contaminated water. A system for mass storage and decontamination of contaminated water from a radioactive leak using a gas hydrate, a contaminated water supply module that is stored in a first cargo tank and supplies contaminated water containing high salt and high concentration of radioactive materials, and the contaminated water supply module A gas hydrate formation module that injects gas into supplied contaminated water to form gas hydrate, a solid-liquid separation module that separates the gas hydrate formed by the gas hydrate formation module into pellets from radioactive materials, and a washing unit that cleans the pellets. It is characterized in that it includes a module, a dissociation module that separates water molecules and gases from the pellet washed by the washing module, and a radioactive material storage module that stores the radioactive material separated in the solid-liquid separation module.
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템에서, 상기 가스 하이드레이트 형성 모듈에 가스를 주입하고 상기 해리 모듈에서 상기 가스를 회수하는 가스 주입 및 회수 모듈, 상기 해리 모듈에서 해리된 물 분자에 대해 농도 측정 후 해상으로 방류하는 방류 모듈을 더 포함하는 것을 특징으로 한다.In addition, in the decontamination system using gas hydrate according to the present invention, a gas injection and recovery module for injecting gas into the gas hydrate formation module and recovering the gas from the dissociation module, and measuring the concentration of water molecules dissociated from the dissociation module It is characterized in that it further includes a discharge module for discharging water to the sea.
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템에서, 상기 가스 하이드레이트 형성 모듈 및 해리 모듈은 서로 인접한 제2 카고 탱크 및 제3 카고 탱크에 각각 마련되고, 상기 가스 하이드레이트 형성 모듈, 고액 분리 모듈, 세척 모듈 및 해리 모듈의 동작은 연속적으로 실행되는 것을 특징으로 한다.In addition, in the decontamination system using gas hydrate according to the present invention, the gas hydrate formation module and the dissociation module are respectively provided in the second cargo tank and the third cargo tank adjacent to each other, and the gas hydrate formation module, solid-liquid separation module, and washing module and the operation of the dissociation module is characterized in that it is executed continuously.
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템에서, 상기 가스 하이드레이트 형성 모듈, 고액 분리 모듈, 세척 모듈 및 해리 모듈의 각각은 제2 카고 탱크 및 제3 카고 탱크에 복수 개로 마련된 것을 특징으로 한다.In addition, in the decontamination system using gas hydrate according to the present invention, the gas hydrate formation module, solid-liquid separation module, washing module, and dissociation module are each provided in plural numbers in the second cargo tank and the third cargo tank.
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템에서, 상기 가스는 HFC134a인 것을 특징으로 한다.Additionally, in the decontamination system using gas hydrate according to the present invention, the gas is HFC134a.
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템에서, 상기 가스 하이드레이트 형성 모듈 및 해리 모듈에서는 상기 방사능 물질이 포함된 오염수에서 세슘(Cs+), 스트론튬(Sr2+), 코발트(Co2+), 요오드(I-)를 포함한 순수물 이외에 이물질을 동시에 제거하는 것을 특징으로 한다.In addition, in the decontamination system using gas hydrate according to the present invention, the gas hydrate formation module and dissociation module remove cesium (Cs + ), strontium (Sr 2+ ), and cobalt (Co 2+ ) from contaminated water containing the radioactive material. , It is characterized by simultaneously removing foreign substances in addition to pure water containing iodine (I - ).
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템에서, 상기 가스 하이드레이트 형성 모듈이 마련된 제2 카고 탱크는 일정한 온도와 압력으로 유지되고, 상기 해리 모듈이 마련된 제3 카고 탱크는 상온, 상압으로 유지되는 것을 특징으로 한다.In addition, in the decontamination system using gas hydrate according to the present invention, the second cargo tank provided with the gas hydrate formation module is maintained at a constant temperature and pressure, and the third cargo tank provided with the dissociation module is maintained at room temperature and pressure. It is characterized by
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템에서, 상기 고액 분리 모듈에서 형성된 펠릿은 스크루 컨베이어에 의해 상기 해리 모듈로 이송되는 것을 특징으로 한다.In addition, in the decontamination system using gas hydrate according to the present invention, the pellets formed in the solid-liquid separation module are transported to the dissociation module by a screw conveyor.
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템에서, 상기 세척 모듈에는 미세 분무 스프레이 노즐이 3단 이상 마련되고, 상기 세척 모듈에서 사용되는 세척수는 상기 해리 모듈 또는 방류 모듈에 의해 형성된 순수물인 것을 특징으로 한다.In addition, in the decontamination system using gas hydrate according to the present invention, the washing module is provided with three or more fine spray nozzles, and the washing water used in the washing module is pure water formed by the dissociation module or discharge module. do.
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템에서, 상기 가스 하이드레이트 형성 모듈에서의 가스하이드레이트 형성과 상기 해리 모듈에서의 해리 간의 온도를 교환하는 열교환기 모듈을 더 포함하는 것을 특징으로 한다.In addition, the decontamination system using gas hydrate according to the present invention further includes a heat exchanger module that exchanges temperature between gas hydrate formation in the gas hydrate formation module and dissociation in the dissociation module.
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템에서, 상기 제1 카고 탱크는 상기 제2 카고 탱크 및 제3 카고 탱크보다 큰 용량으로 마련되고, 오염수에 포함된 삼중수소는 상기 제1 카고 탱크에서 제거되는 것을 특징으로 한다.In addition, in the decontamination system using gas hydrate according to the present invention, the first cargo tank is provided with a larger capacity than the second cargo tank and the third cargo tank, and tritium contained in the contaminated water is stored in the first cargo tank. It is characterized by being removed.
또한, 상기 목적을 달성하기 위해 본 발명에 따른 가스 하이드레이트를 이용한 제염 방법은 방사능 유출사고 오염수를 대량 저장 및 제염하는 방법으로서, (a) 해상에서 운항 가능하고 구획된 다수의 카고 탱크 및 각각의 카고 탱크에 오염수를 충전할 수 있는 초거대 선박 내에서 고염 및 고농도 방사능 물질이 포함된 오염수를 펌프실에 마련된 펌프에 의해 버퍼 탱크인 제1 카고 탱크에 저장하는 단계, (b) 상기 단계 (a)에 저장된 오염수를 제2 카고 탱크의 가스 하이드레이트 형성 모듈에 공급하는 단계, (c) HFC134a 가스를 상기 가스 하이드레이트 형성 모듈에 공급하는 단계, (d) 단계 (b)에서 공급된 오염수에 대해 상기 단계 (c)에서 공급된 HFC134a 가스를 이용하여 상기 가스 하이드레이트 형성 모듈에서 가스 하이드레이트를 형성하는 단계, (e) 상기 단계 (d)에서 형성된 가스 하이드레이트를 펠릿화하여 방사능 물질 및 이물질을 분리하는 단계, (f) 상기 단계 (e)에서 형성된 펠릿을 상기 제2 카고 탱크에 인접한 제3 카고 탱크에서 해리하는 단계를 포함하는 것을 특징으로 한다.In addition, in order to achieve the above object, the decontamination method using gas hydrate according to the present invention is a method of storing and decontaminating large quantities of contaminated water from radioactive leaks, including (a) a plurality of cargo tanks that can be operated at sea and are partitioned, and each Step (b) storing contaminated water containing high salt and high concentration radioactive materials in a first cargo tank, which is a buffer tank, by a pump provided in the pump room in a very large ship that can fill the cargo tank with contaminated water, (b) the above step ( (a) supplying the contaminated water stored in step (b) to the gas hydrate formation module of the second cargo tank, (c) supplying HFC134a gas to the gas hydrate formation module, (d) to the contaminated water supplied in step (b). For example, forming a gas hydrate in the gas hydrate formation module using the HFC134a gas supplied in step (c), (e) pelletizing the gas hydrate formed in step (d) to separate radioactive materials and foreign substances. Step (f) comprising the step of dissociating the pellets formed in step (e) in a third cargo tank adjacent to the second cargo tank.
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 방법에서, (g) 상기 단계 (f)에서 해리된 순수 물에 대해 방사능 농도를 측정하고, 방사능 농도가 허용 범위 이내인 경우, 해상에 방류하는 단계를 더 포함하는 것을 특징으로 한다.In addition, in the decontamination method using gas hydrate according to the present invention, (g) measuring the radioactivity concentration of the pure water dissociated in step (f), and if the radioactivity concentration is within the allowable range, discharging it into the sea is further added. It is characterized by including.
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 방법에서, 상기 단계 (a) 내지 단계 (f)는 연속적으로 실행되는 것을 특징으로 한다.In addition, in the decontamination method using gas hydrate according to the present invention, steps (a) to (f) are performed continuously.
상술한 바와 같이, 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템 및 제염 방법에 의하면, 폐선 예정인 초거대 선박을 재활용하고 방사능 유출사고 오염수를 제염을 위한 각각의 구성을 다수의 카고 탱크에 모듈 형태로 마련하여 초거대 선박에 장착하므로 방사능 오염수 제염 플랜트의 제작을 위한 비용과 시간을 단축하며, 운영 및 유지 보수가 용이하다는 효과가 얻어진다.As described above, according to the decontamination system and decontamination method using gas hydrate according to the present invention, each component for recycling very large ships scheduled to be decommissioned and decontamination of contaminated water from radioactive leaks is installed in a module form in a plurality of cargo tanks. Since it is prepared and installed on a very large ship, the cost and time for manufacturing a radioactive contaminated water decontamination plant are reduced, and operation and maintenance are easy.
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템 및 제염 방법에 의하면, 방사능 오염수 제염 플랜트를 폐선 예정인 초거대 선박에 마련하므로, 선박의 장점인 이동형으로서 방사능 유출사고에 대해 신속하게 대응할 수 있다는 효과가 얻어진다.In addition, according to the decontamination system and decontamination method using gas hydrate according to the present invention, a radioactive contaminated water decontamination plant is installed on a very large ship scheduled to be decommissioned, so the advantage of the ship is that it is portable and can respond quickly to radioactive leakage accidents. obtained.
또 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템 및 제염 방법에 의하면, 고농도 염해수 조건에서도 적용 가능하며, 방사능 오염수 처리를 위한 2차 폐기물 발생량을 획기적으로 저감할 수 있다는 효과도 얻어진다.In addition, according to the decontamination system and method using gas hydrate according to the present invention, it can be applied even in high-concentration salt seawater conditions, and the effect of dramatically reducing the amount of secondary waste generated for treating radioactive contaminated water is obtained.
도 1은 본 발명에 의해 생성되는 가스 하이드레이트 구조의 설명도,1 is an explanatory diagram of the gas hydrate structure produced by the present invention;
도 2는 본 발명에 적용되는 초거대 선박의 개략적인 구조도,Figure 2 is a schematic structural diagram of a very large ship applied to the present invention;
도 3은 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템의 개략 구성도, Figure 3 is a schematic configuration diagram of a decontamination system using gas hydrate according to the present invention;
도 4는 도 3에 도시된 가스 하이드레이트를 이용한 제염 시스템의 구성의 일 예를 나타내는 도면,Figure 4 is a diagram showing an example of the configuration of a decontamination system using the gas hydrate shown in Figure 3;
도 5는 본 발명에 따라 해수 및 방사능 오염수 처리를 위한 HFC134a 하이드레이트 형성 사진,Figure 5 is a photograph of HFC134a hydrate formation for treatment of seawater and radioactive contaminated water according to the present invention;
도 6은 본 발명에 따른 해수 및 방사능 오염수의 제거율 실험결과(동시 제거율)를 나타낸 그래프,Figure 6 is a graph showing the results of a removal rate experiment (simultaneous removal rate) of seawater and radioactive contaminated water according to the present invention;
도 7은 본 발명에 따라 방사능 유출사고 오염수를 제염하는 과정을 설명하기 위한 흐름도.Figure 7 is a flowchart illustrating the process of decontamination of contaminated water from a radioactive leak accident according to the present invention.
본 발명의 상기 및 그 밖의 목적과 새로운 특징은 본 명세서의 기술 및 첨부 도면에 의해 더욱 명확하게 될 것이다.The above and other objects and new features of the present invention will become more clear by the description of this specification and the accompanying drawings.
본원에서 사용하는 용어 "모듈", "유닛" 또는 "부"는 적어도 하나의 기능이나 동작을 수행하며, 기계적 구성 또는 전기전자적 구성으로 이루어진 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있으며, 복수의 "모듈" 또는 복수의 "부"는 특정한 하드웨어로 구현될 필요가 있는 "모듈" 또는 "부"를 제외하고는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서로 구현될 수 있다. As used herein, the term “module,” “unit,” or “unit” performs at least one function or operation and may be implemented as hardware or software consisting of a mechanical or electrical or electronic configuration, or as a combination of hardware and software. In addition, a plurality of “modules” or a plurality of “units” may be integrated into at least one module and implemented with at least one processor, except for “modules” or “units” that need to be implemented with specific hardware.
한편, 본원에서 사용하는 용어 "초거대 선박"은 예를 들어, 초대형 원유 운반선인 VLCC(Very Large Crude Oil Carrier) 또는 ULCC(Ultra Large Crude Oil Carrier) 등의 선박을 지칭하는 것을 의미하며, 해상에서 운항 가능하고 구획된 다수의 카고 탱크와 이를 채울 수 있는 펌프 등이 구비된 중규모 이상의 선박도 해당 범주에 속한다. "제염(decontamination)"은 세슘(Cs+), 스트론튬(Sr2+), 코발트(Co2+), 요오드(I-) 등과 같은 방사성 원소에 의해 오염된 것을 제거하는 것을 의미한다. Meanwhile, the term "very large ship" used herein refers to a ship such as a Very Large Crude Oil Carrier (VLCC) or Ultra Large Crude Oil Carrier (ULCC), which is a very large crude oil carrier, and is used at sea. Medium-sized or larger ships equipped with multiple navigable, compartmentalized cargo tanks and pumps to fill them also fall into this category. “Decontamination” means removing contamination by radioactive elements such as cesium (Cs + ), strontium (Sr 2+ ), cobalt (Co 2+ ), iodine (I - ), etc.
본 발명은 기존의 방사능 오염수 처리기술인 증발법, 막분리법, 이온교환법 등은 설비가 크고 매우 복잡하며, 제염 성능이 높지 않은 단점을 해결하고, 필터 및 이온 교환수지 등에서 발생하는 2차 방사능 폐기물 처리로 인한 악영향을 방지하기 위해 가스 하이드레이트 기술을 적용한다. 즉, 본 발명에 의해 생성된 "가스 하이드레이트(Gas Hydrate)"는 도 1에 도시된 바와 같이, 가스 분자(HFC134a)와 물 분자(순수 물)가 물리적으로 결합하고 있는 상태로서 물의 격자 내에 가스 분자가 저장되는 구조이다. 도 1은 본 발명에 의해 생성되는 가스 하이드레이트 구조의 설명도 이다. The present invention solves the disadvantages of existing radioactive contaminated water treatment technologies such as evaporation, membrane separation, and ion exchange, which require large and complex equipment and low decontamination performance, and treats secondary radioactive waste generated from filters and ion exchange resins. Gas hydrate technology is applied to prevent adverse effects caused by . In other words, the “Gas Hydrate” produced by the present invention is a state in which gas molecules (HFC134a) and water molecules (pure water) are physically combined, as shown in Figure 1, and gas molecules are present in the water lattice. This is the structure where is stored. 1 is an explanatory diagram of the gas hydrate structure produced by the present invention.
따라서 본 발명에서는 다핵종 방사능 오염수의 동시 제거 및 고농도 염해수 조건에서도 적용 가능하며, 전처리 없이 결정법을 활용하여 2차 폐기물발생량이 획기적 저감할 수 있는 기술을 마련하는 것이다.Therefore, the present invention provides a technology that can be applied even under conditions of simultaneous removal of radioactive polynuclear contaminated water and high-concentration salt seawater, and can dramatically reduce the amount of secondary waste generated by utilizing a determination method without pretreatment.
이하, 본 발명에 따른 실시 예를 도면에 따라서 설명한다.Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
본 발명에 적용되는 초거대 선박의 구조에 대해 도 2를 참조하여 설명한다.The structure of a very large ship applied to the present invention will be described with reference to FIG. 2.
도 2는 본 발명에 적용되는 초거대 선박의 개략적인 구조도 이다.Figure 2 is a schematic structural diagram of a very large ship applied to the present invention.
본 발명에 적용되는 초거대 선박은 도 2에 도시된 바와 같이, 해상에서 운항 가능하고, 분리탑(10), 기관실(20), 펌프실(30), 카고 데크라인(40), 구획된 다수의 카고 탱크(Cargo Tank, 51~59), 스크루 컨베이어(60), 오염수 공급 파이프 라인(70), 가스 회수 파이프 라인(80), 방류 파이프 라인(90) 등이 마련된 VLCC(Very Large Crude Oil Carrier) 또는 ULCC(Ultra Large Crude Oil Carrier)가 적용될 수 있다. As shown in FIG. 2, the ultra-large ship applied to the present invention is capable of operating at sea and has a separation tower (10), an engine room (20), a pump room (30), a cargo deck line (40), and a plurality of partitioned Very Large Crude Oil Carrier (VLCC) equipped with cargo tanks (51~59), screw conveyor (60), contaminated water supply pipe line (70), gas recovery pipe line (80), and discharge pipe line (90). ) or ULCC (Ultra Large Crude Oil Carrier) may be applied.
즉, 예를 들어 폐선 계획인 초대형 원유 운반선에 대하여 가스 하이드레이트 제염 플랜트를 구축하여 이동형 VLCC 가스 하이드레이트 제염 플랜트로 개조하여 적용할 수 있다. 초거대 선박으로서 상기 VLCC는 15만 중량톤 이상이 되는 유조선의 호칭이고, ULCC는 40만 중량톤 이상의 유조선에 대한 호칭으로 사용되고 있다.That is, for example, a gas hydrate decontamination plant can be built for a very large crude oil carrier that is scheduled to be decommissioned and converted into a mobile VLCC gas hydrate decontamination plant. As a very large ship, VLCC is the name for an oil tanker weighing more than 150,000 tons, and ULCC is used as a name for an oil tanker weighing more than 400,000 tons.
상기 분리탑(10)은 선박의 저유 시설을 오염시킬 수 있는 모든 수분을 제거하는 기능으로 마련되고, 기관실(20)은 선박의 운항 관련 엔진 및 각각의 모듈을 제어하기 위해 마련되며, 펌프실(30)은 펌프와 카고 데크라인(40), 오염수 공급 파이프 라인(70), 가스 회수 파이프 라인(80), 방류 파이프 라인(90)을 통해 각각의 카코 탱크(51~59)를 채우거나 비우기 위해 마련된다. The separation tower 10 is provided with the function of removing all moisture that may contaminate the ship's oil storage facility, the engine room 20 is provided to control the engine and each module related to the ship's operation, and the pump room 30 ) is used to fill or empty each carco tank (51 to 59) through the pump and cargo deck line (40), contaminated water supply pipe line (70), gas recovery pipe line (80), and discharge pipe line (90). It is prepared.
상기 카고 탱크(51~59)는 선박의 운항 중 액면의 요동을 방지하기 위해 다수의 칸으로 구획되게 마련되며, 예를 들어, LNG 운반선에서 초저온상태로 액화시킨 액화천연가스(LNG : Liquefied Natural Gas)를 보관 및 저장하기 위한 구조로서, LNG가 대기압보다 높은 증기압을 가지며, 대략 -163℃ 정도의 비등 온도를 갖기 때문에, 이러한 LNG를 안전하게 보관하고 저장하기 위해서는 초저온에 견딜 수 있는 재료로 형성될 수 있다. 즉, 카고 탱크는 예를 들면, 알루미늄 강, 스테인리스강, 35% 니켈 강 등으로 제작되며, 기타 열 응력 및 열 수축에 강하고, 열 침입을 막을 수 있는 단열 구조로 형성된다.The cargo tanks 51 to 59 are divided into multiple compartments to prevent fluctuations in the liquid level during the operation of the ship. For example, liquefied natural gas (LNG) liquefied at ultra-low temperature in an LNG carrier ) as a structure for storing and storing LNG. Since LNG has a vapor pressure higher than atmospheric pressure and a boiling temperature of approximately -163°C, it must be formed of a material that can withstand ultra-low temperatures in order to safely store and store such LNG. there is. That is, the cargo tank is made of, for example, aluminum steel, stainless steel, 35% nickel steel, etc., is resistant to other thermal stresses and heat shrinkage, and is formed with an insulating structure that can prevent heat intrusion.
본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템에서의 카고 탱크(51~59)는 예를 들어, 도 2에 도시된 바와 같이, 방사능 유출사고에 의해 고염 및 고농도 방사능 물질이 포함된 오염수를 저장하기 위한 버퍼 탱크로 사용되는 제1 카고 탱크(51), 가스 하이드레이트를 형성하기 위한 제2 카고 탱크(52) 및 제5 카고 탱크(55), 물 분자와 가스를 분리하고 물 분자를 저장하는 제3 카고 탱크(53) 및 제4 카고 탱크(54), 방사성 물질을 보관하는 제6 카고 탱크(56)로 마련될 수 있다. 한편, 상기 설명에서는 편의상 6개의 카고 탱크의 구조를 나타내었지만, 이에 한정되는 것은 도 2에 도시된 바와 같이, 카고 탱크가 7개 이상의 구조로 마련될 수도 있다. 즉, 추가 카고 탱크(57~59)를 운영하여 오염수 저장 및 제염 시스템 운영기능을 줄 수도 있다. 또한, 제1 카고 탱크(51)는 타 카고 탱크보다 큰 용량으로 구획할 수도 있는데, 이는 많은 양의 방사능 오염수를 오랫동안 보관할 수 있게 하는 기능을 구비하기 위함이다. 예를 들어, 삼중수소와 같은 상대적으로 짧은 방사능 반감기를 가진 물질은 가스 하이드레이트 공정뿐만 아니라 증발법, 막분리법, 이온교환법 등의 여러 가지 공정에서도 제거되지 않기 때문에 해당 핵종의 방사선량을 장시간의 보관시간 동안 자연적으로 줄이기 위함이다. 한편, 상술한 제1 내지 제6 카고 탱크는 설명의 편의상 구분하여 나타낸 것이며, 제1 내지 제6 카고 탱크의 각각은 2개 이상의 카고 탱크로 마련될 수도 있다. For example, as shown in FIG. 2, the cargo tanks 51 to 59 in the decontamination system using gas hydrate according to the present invention are used to store contaminated water containing high salt and high concentration of radioactive materials due to a radioactive leak accident. A first cargo tank 51 used as a buffer tank for the gas hydrate, a second cargo tank 52 and a fifth cargo tank 55 for forming gas hydrate, and a third cargo tank 55 for separating water molecules and gas and storing water molecules. It may be provided with a cargo tank 53, a fourth cargo tank 54, and a sixth cargo tank 56 for storing radioactive materials. Meanwhile, in the above description, the structure of six cargo tanks is shown for convenience, but this is limited. As shown in FIG. 2, the cargo tank may be provided in a structure of seven or more. In other words, it is possible to provide the function of storing contaminated water and operating a decontamination system by operating additional cargo tanks (57 to 59). In addition, the first cargo tank 51 may be partitioned into a larger capacity than other cargo tanks in order to have the function of storing a large amount of radioactive contaminated water for a long time. For example, substances with a relatively short radioactivity half-life, such as tritium, are not removed not only in the gas hydrate process but also in various processes such as evaporation, membrane separation, and ion exchange, so the radiation dose of the corresponding nuclide must be reduced over a long period of storage time. This is to reduce it naturally during the period. Meanwhile, the above-described first to sixth cargo tanks are shown separately for convenience of explanation, and each of the first to sixth cargo tanks may be provided as two or more cargo tanks.
다음에 도 2에 도시된 바와 같은 초거대 선박 내에서 본 발명에 따른 방사능 유출사고 오염수를 제염하는 시스템에 대해 도 3 및 도 4를 참조하여 설명한다.Next, a system for decontamination of contaminated water from a radioactive leak accident according to the present invention in a very large ship as shown in FIG. 2 will be described with reference to FIGS. 3 and 4.
도 3은 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템의 개략 구성도이고, 도 4는 도 3에 도시된 가스 하이드레이트를 이용한 제염 시스템의 구성의 일 예를 나타내는 도면으로서, 도 4에 도시된 바와 같이 각각의 카고 탱크의 남아 있는 공간에 모듈 구성을 n배 반복하여 오염수의 병행 및 순차 처리를 하여 오염수 처리를 극대화할 수도 있다.Figure 3 is a schematic configuration diagram of a decontamination system using a gas hydrate according to the present invention, and Figure 4 is a diagram showing an example of the configuration of a decontamination system using a gas hydrate shown in Figure 3, as shown in Figure 4. Contaminated water treatment can be maximized by performing parallel and sequential treatment of contaminated water by repeating the module configuration n times in the remaining space of each cargo tank.
본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템은 도 2 내지 도 4에 도시된 바와 같이, 해상에서 운항 가능하고 구획된 다수의 카고 탱크(51~59)가 마련된 초거대 선박 내에서 가스 하이드레이트를 이용하여 방사능 유출사고 오염수를 대량 저장 및 제염하는 시스템으로서, 방사능 유출사고에 의해 고염 및 고농도 방사능 물질이 포함된 오염수를 공급하는 오염수 공급 모듈(100), 상기 오염수 공급 모듈(100)에서 공급된 오염수에 가스를 주입하여 가스 하이드레이트를 형성하는 가스 하이드레이트 형성 모듈(200), 상기 가스 하이드레이트 형성 모듈(200)에 의해 형성된 가스 하이드레이트를 펠릿 형상으로 형성하여 방사능 물질과 분리하는 고액 분리 모듈(300), 상기 펠릿을 세척하는 세척 모듈(400), 상기 세척 모듈(400)에 의해 세척된 펠릿에 대해 물 분자와 가스를 분리하는 해리 모듈(500), 상기 고액 분리 모듈(300)에서 분리된 방사성 물질을 보관하는 방사성 물질 보관 모듈(600), 상기 해리 모듈(500)에서 해리된 물 분자에 대해 농도 측정 후 해상으로 방류하는 방류 모듈(700), 상기 가스 하이드레이트 형성 모듈에 가스를 주입하고 상기 해리 모듈에서 상기 가스를 회수하는 가스 주입 및 회수 모듈(800), 상기 가스하이드레이트 형성과 해리 간의 온도를 교환하는 열교환기 모듈(900)을 포함할 수 있다. 또한, 상술한 각각의 모듈(100~900)에는 각각의 동작과 조건을 제어하는 제어 모듈이 포함될 수 있다.As shown in FIGS. 2 to 4, the decontamination system using gas hydrate according to the present invention uses gas hydrate in a very large ship capable of operating at sea and equipped with a plurality of compartmentalized cargo tanks 51 to 59. A system for storing and decontaminating large quantities of contaminated water from radioactive leaks, including a contaminated water supply module (100) that supplies contaminated water containing highly salty and highly concentrated radioactive materials caused by radioactive leaks, and supplied from the contaminated water supply module (100). A gas hydrate formation module 200 that injects gas into contaminated water to form gas hydrate, and a solid-liquid separation module 300 that forms the gas hydrate formed by the gas hydrate formation module 200 into a pellet shape and separates it from radioactive materials. ), a washing module 400 for washing the pellets, a dissociation module 500 for separating water molecules and gases for the pellets washed by the washing module 400, and radioactive substances separated in the solid-liquid separation module 300. A radioactive material storage module 600 that stores the material, a discharge module 700 that measures the concentration of the water molecules dissociated in the dissociation module 500 and discharges them to the sea, injects gas into the gas hydrate formation module and dissociates the water molecules. It may include a gas injection and recovery module 800 that recovers the gas from the module, and a heat exchanger module 900 that exchanges temperature between the gas hydrate formation and dissociation. Additionally, each of the modules 100 to 900 described above may include a control module that controls each operation and condition.
상기 오염수 공급 모듈(100)은 예를 들어, 2011년 3월 발생한 일본 후쿠시마 원자력발전소 사고에 따라 보관 중인 방사능 오염수(125만 톤)를 도 2 및 도 3에 도시된 바와 같이, 초거대 선박의 제1 카고 탱크(51)에 저장하고, 제1 카고 탱크(51)에 저장된 방사능 유출사고 오염수를 제2 카고 탱크(52) 및 제5 카고 탱크(55)에 공급하는 모듈이다. 상술한 바와 같은 오염수 공급 모듈(100)에 의한 방사능 오염수의 공급은 기관실(20)에 마련된 제어 모듈에 의해 실행되며, 오염수의 공급은 도 2에 화살표로 나타낸 바와 같이, 펌프실(30), 카고 데크라인(40), 선박의 하부 등에 마련된 오염수 공급 파이프 라인(70)을 통해 실행될 수 있다. 또 각각의 파이프라인의 전후에 또는 유로 상에는 볼 밸브 또는 체크 밸브를 적용할 수도 있다.For example, the contaminated water supply module 100 supplies radioactive contaminated water (1.25 million tons) stored following the accident at the Fukushima nuclear power plant in Japan, which occurred in March 2011, to a very large ship, as shown in Figures 2 and 3. It is a module that is stored in the first cargo tank 51 and supplies radioactive leakage contaminated water stored in the first cargo tank 51 to the second cargo tank 52 and the fifth cargo tank 55. The supply of radioactive contaminated water by the contaminated water supply module 100 as described above is executed by a control module provided in the engine room 20, and the supply of contaminated water is performed in the pump room 30, as indicated by the arrow in FIG. 2. , It can be executed through the cargo deck line 40, the contaminated water supply pipe line 70 provided at the bottom of the ship, etc. Additionally, ball valves or check valves can be applied before and after each pipeline or on the flow path.
즉, 본 발명에 따른 오염수 공급 모듈(100)은 오염수 공급을 위해 신설 파이프라인을 구축하는 것이 아니고, 폐선 계획인 초대형 원유 운반선에 마련된 기관실(20), 가압 펌프, 진공 펌프 등을 구비한 펌프실(30) 및 오염수 공급 파이프 라인(70)을 활용하여 각각의 카고 탱크(51~59)의 압력 및 수위를 개별적으로 조절할 수 있다. 따라서, 본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템의 제작 비용 및 시간을 획기적으로 절감할 수 있다.In other words, the contaminated water supply module 100 according to the present invention does not build a new pipeline to supply contaminated water, but is equipped with an engine room 20, a pressurized pump, a vacuum pump, etc. provided on a very large crude oil carrier scheduled to be dismantled. The pressure and water level of each cargo tank (51 to 59) can be individually adjusted by utilizing the pump room (30) and the contaminated water supply pipe line (70). Therefore, the manufacturing cost and time of the decontamination system using gas hydrate according to the present invention can be dramatically reduced.
상기 가스 하이드레이트 형성 모듈(200)은 도 2에 도시된 바와 같이 제2 카고 탱크(52) 및 제5 카고 탱크(55) 내에 마련될 수 있고, 제2 카고 탱크(52) 및 제5 카고 탱크(55)는 저온 해수 접촉에 의해 하이드레이트 형성을 위한 4℃, 3bar를 유지할 수 있다. 상기 가스 하이드레이트 형성 모듈(200)은 도 3 및 도 4에 도시된 바와 같이, 오염수 공급 모듈(100)에서 공급되는 방사성 오염수에 수(水)화물을 형성시킬 수 있는 가스를 가스 주입 및 회수 모듈(800)에서 주입받아 오염물질과 수화물을 분리하고, 이중 수화물(순수)만을 뽑아내기 위해 마련된다. The gas hydrate formation module 200 may be provided in the second cargo tank 52 and the fifth cargo tank 55 as shown in FIG. 2, and the second cargo tank 52 and the fifth cargo tank ( 55) can maintain 4℃ and 3bar for hydrate formation by contact with low-temperature seawater. As shown in FIGS. 3 and 4, the gas hydrate formation module 200 injects and recovers gas that can form hydrates in radioactive contaminated water supplied from the contaminated water supply module 100. It is injected from the module 800 to separate contaminants and hydrates and extract only the hydrates (pure water).
상기 가스 하이드레이트 형성 모듈(200)은 오염수 공급 모듈(100)에 연결된 오염수 공급부, 가스 주입 및 회수 모듈(800)의 가스 회수 파이프 라인(80)에 연결된 가스 공급부, 가스 하이드레이트를 형성하는 반응부, 오염수와 가스가 원활하게 혼합되도록 하여 반응부에 공급할 수 있는 벤츄리 밸브, 반응부의 내에 존재하는 유체를 외부로 배출할 수 있는 배출부, 최종 생성물인 가스 하이드레이트가 생성되면 이를 토출하는 토출부, 반응부와 연결되는 도관 중 온도 유지가 필요한 부분에 냉각수를 공급할 수 있는 냉각부를 포함할 수 있다. 또 반응부 내에는 최종 생성물인 가스 하이드레이트를 이송하기 위한 실린더, 반응부 내의 반응수를 교반하기 위한 교반 장치, 반응부 내의 센서 등의 구성 요소가 동결되는 것을 방지하기 위한 히터 등이 마련될 수도 있다.The gas hydrate forming module 200 includes a contaminated water supply unit connected to the contaminated water supply module 100, a gas supply unit connected to the gas recovery pipeline 80 of the gas injection and recovery module 800, and a reaction unit for forming gas hydrate. , a venturi valve that allows the contaminated water and gas to be mixed smoothly and supplied to the reaction unit, a discharge unit that can discharge the fluid existing in the reaction unit to the outside, a discharge unit that discharges the final product, gas hydrate, when it is generated, It may include a cooling unit capable of supplying cooling water to a portion of the conduit connected to the reaction unit that requires temperature maintenance. In addition, the reaction unit may be provided with a cylinder to transport the gas hydrate, which is the final product, a stirring device to stir the reaction water in the reaction unit, and a heater to prevent components such as sensors in the reaction unit from freezing. .
이 가스 하이드레이트 형성 모듈(200)에서는 가스 하이드레이트 결정법을 이용하여 전처리 공정 없이 약 85%의 세슘(Cs+), 스트론튬(Sr2+), 코발트(Co), 요오드(I-) 등 방사성 핵종 60여 종과 이물질을 동시에 제거할 수 있다. 즉, 해수에 포함된 방사능 오염수를 처리하는 가스 하이드레이트 형성 모듈(200)에서는 방사성 폐액에 수(水)화물을 형성시킬 수 있는 가스(HFC134a)를 주입하여 아무런 전처리 없이 오염물질이 배제된 수화물을 형성하고, 고액 분리 모듈(300)과 세척 모듈(400) 의 동시 운영에 의해 이중 수화물(순수)만을 뽑아낼 수 있으므로, 세슘(Cs+), 스트론튬(Sr2+), 코발트(Co2+), 요오드(I-) 등 방사능 4 핵종(1000ppm)이 일반해수(35,000ppm)에 포함되어 있는데도 불구하고, 도 5 및 도 6에 도시된 바와 같이, 30분 만에 85% 이상이 동시에 제거됨을 확인할 수 있었다. 한편, 2차 처리를 실행하는 경우, 모든 핵종이 99% 제거됨을 확인할 수 있었다.In this gas hydrate formation module 200, approximately 85% of cesium (Cs + ), strontium (Sr 2+ ), cobalt (Co), and iodine (I - ), and about 60 radionuclides are extracted without a pretreatment process using the gas hydrate determination method. Species and foreign substances can be removed at the same time. That is, the gas hydrate formation module 200, which treats radioactive contaminated water contained in seawater, injects a gas (HFC134a) capable of forming hydrate into radioactive waste liquid to form hydrate from which contaminants are excluded without any pretreatment. Since only double hydrate (pure water) can be extracted by simultaneous operation of the solid-liquid separation module 300 and the washing module 400, cesium (Cs + ), strontium (Sr 2+ ), and cobalt (Co 2+ ) , Even though iodine (I-) and other radioactive 4 nuclides (1000ppm) are included in general seawater (35,000ppm), as shown in Figures 5 and 6, it can be confirmed that more than 85% are simultaneously removed in 30 minutes. I was able to. Meanwhile, when performing secondary treatment, it was confirmed that 99% of all nuclides were removed.
도 5는 본 발명에 따라 해수 및 방사능 오염수 처리를 위한 HFC134a 하이드레이트 형성 사진을 나타낸다. 도 5에서의 실험조건은 1.8bar, 4℃로 하였다. 도 6은 본 발명에 따른 해수 및 방사능 오염수의 제거율 실험결과(동시 제거율)를 나타낸다. 도 6에서 알 수 있는 바와 같이, 본 발명에 따른 가스 하이드레이트 형성/해리 방법으로 방사능 핵종을 포함한 모든 이물질들이 일괄(동시) 제거됨을 고찰하였으며, 2차폐기물을 전혀 발생 시키지 않았다.Figure 5 shows a photograph of HFC134a hydrate formation for treating seawater and radioactively contaminated water according to the present invention. The experimental conditions in Figure 5 were 1.8 bar and 4°C. Figure 6 shows the results of a removal rate experiment (simultaneous removal rate) of seawater and radioactive contaminated water according to the present invention. As can be seen in Figure 6, it was considered that all foreign substances, including radionuclides, were removed simultaneously (simultaneously) by the gas hydrate formation/dissociation method according to the present invention, and no secondary waste was generated.
상기 고액 분리 모듈(300)은 가스 하이드레이트 형성 모듈(200)의 토출부에서 토출되는 가스 하이드레이트 슬러리를 탈수하여 해리 모듈(500)로 이송시킬 수 있는 스크루 컨베이어 형태의 펠릿타이저(pelletizer)이며 회전 운동에 의해 슬러리 압착과 탈수, 그리고 이송이 동시에 진행될 수 있다. 상기 고액 분리 모듈(300)은 도 2에 도시된 바와 같은 제2 카고 탱크(52)와 제3 카고 탱크(53) 사이 및 제4 카고 탱크(54)와 제5 카고 탱크(55) 사이 격벽에 설치하여 오염물질이 배제된 깨끗한 가스 하이드레이트만 다음 카고 탱크로 넘어가게 할 수 있다. 상기 고액 분리 모듈(300) 내에는 가스 하이드레이트 탈수 및 이송 중에 펠릿의 표면에 부착된 방사능 오염 물질을 세척하기 위한 세척 모듈(400)이 마련될 수 있다. 한편, 가스 하이드레이트 형성 모듈(200) 및 고액 분리 모듈(300)에서 가스 하이드레이트는 제3 카고 탱크(53) 및 제4 카고 탱크(54)로 이송되며, 가스 하이드레이트에 포함되지 않은 방사능 물질 및 이물질은 제2 카고 탱크(52) 및 제5 카고 탱크(55)에 계속 농축 또는 침전되게 되며, 이때 점도가 매우 높아 가스하이드레이트 형성이 불가능하고 또한, 방사성 함량도 기준치보다 높은 경우에는 선박 하부의 파이프 및 밸브 작동에 의해 도 2에 도시된 바와 같은 방사선 물질을 보관하기 위한 제6 카고 탱크(56) 내의 방사성 물질 보관 모듈(600)로 이송된다. The solid-liquid separation module 300 is a pelletizer in the form of a screw conveyor that can dehydrate the gas hydrate slurry discharged from the discharge port of the gas hydrate forming module 200 and transfer it to the dissociation module 500, and has a rotational movement. This allows slurry compression, dehydration, and transportation to proceed simultaneously. The solid-liquid separation module 300 is installed on the partition wall between the second cargo tank 52 and the third cargo tank 53 and between the fourth cargo tank 54 and the fifth cargo tank 55 as shown in FIG. By installing it, only clean gas hydrate that excludes contaminants can be passed on to the next cargo tank. A cleaning module 400 may be provided within the solid-liquid separation module 300 to clean radioactive contaminants attached to the surface of the pellets during gas hydrate dehydration and transport. Meanwhile, gas hydrate is transferred from the gas hydrate formation module 200 and the solid-liquid separation module 300 to the third cargo tank 53 and the fourth cargo tank 54, and radioactive materials and foreign substances not included in the gas hydrate are It continues to concentrate or precipitate in the second cargo tank 52 and the fifth cargo tank 55. At this time, the viscosity is very high, making it impossible to form gas hydrate, and if the radioactive content is also higher than the standard value, pipes and valves at the bottom of the ship By operation, the radioactive material is transferred to the storage module 600 in the sixth cargo tank 56 for storing the radioactive material as shown in FIG. 2.
상술한 가스 하이드레이트 형성 모듈(200) 및 고액 분리 모듈(300)은 본 발명자가 발명하여 등록된 대한민국 등록특허공보 10-1044770(2011.06.21)에 개시된 가스 하이드레이트 연속식 제조장치에 따라 마련될 수도 있다.The above-described gas hydrate formation module 200 and solid-liquid separation module 300 may be prepared according to the gas hydrate continuous manufacturing device disclosed in Korean Patent Publication No. 10-1044770 (2011.06.21) invented and registered by the present inventor. .
상기 세척 모듈(400)은 고액 분리 모듈(400)에 의해 형성된 펠릿을 해리 모듈(500)로 전송하는 과정에서 펠릿의 표면에 부착된 방사능 오염 물질을 세척하기 스크루 컨베이어(60) 내에 마련될 수 있고, 세척수로서는 해리 모듈(500) 또는 방류 모듈(700)에 의해 형성된 순수물을 사용할 수 있다. 또한, 상기 세척 모듈(400)에는 도 4에 도시된 바와 같이, 미세 분무 스프레이 노즐을 3단 이상 설치하고 해리 모듈(700)에 저장된 깨끗한 물을 순환시켜 각 노즐의 분사량을 개별 조절하여 세척 효과를 극대화할 수 있다.The cleaning module 400 may be provided in the screw conveyor 60 to wash radioactive contaminants attached to the surface of the pellets in the process of transferring the pellets formed by the solid-liquid separation module 400 to the dissociation module 500. , pure water formed by the dissociation module 500 or the discharge module 700 can be used as the washing water. In addition, as shown in FIG. 4, the cleaning module 400 is equipped with three or more stages of fine mist spray nozzles and circulates the clean water stored in the dissociation module 700 to individually adjust the spray amount of each nozzle to improve the cleaning effect. can be maximized.
상기 해리 모듈(500)은 상온 및 상압 상태로 유지하기 위한 히터 등의 기구로 마련될 수 있으며 도 2에 도시된 바와 같이, 제2 카고 탱크(52)와 제5 카고 탱크(55) 사이에 마련된 제3 카고 탱크(53) 및 제4 카고 탱크(54)에 각각 마련될 수 있고, 각각 고액 분리 모듈(300)과는 스크루 컨베이어(60)에 의해 연결되게 마련될 수 있다. 상기 제3 카고 탱크(53) 및 제4 카고 탱크(54)는 제2 카고 탱크(52) 및 제5 카고 탱크(54)와는 달리 상온 및 상압 상태로 유지되며, 스크루 컨베이어(60)를 통해 공급된 펠릿의 가스 하이드레이트를 해리시켜 해리수(순수 물)와 해리 가스로 각각 분리한다.The dissociation module 500 may be provided with a device such as a heater to maintain room temperature and pressure, and as shown in FIG. 2, it is provided between the second cargo tank 52 and the fifth cargo tank 55. It may be provided in the third cargo tank 53 and the fourth cargo tank 54, respectively, and may be connected to the solid-liquid separation module 300 by a screw conveyor 60, respectively. The third cargo tank 53 and the fourth cargo tank 54 are maintained at room temperature and pressure, unlike the second cargo tank 52 and the fifth cargo tank 54, and are supplied through the screw conveyor 60. The gas hydrate in the pellet is dissociated and separated into dissociation water (pure water) and dissociation gas.
상기 해리 모듈(500)에 의해 분리된 해리수는 제3 카고 탱크(53)와 제4 카고 탱크(54) 내에 충전되고, 분리된 가스는 가스 주입 및 회수 모듈(800)에 의해 회수되어 도 2에 화살표로 나타낸 바와 같이, 가스 하이드레이트 형성 모듈(200)에 공급된다. The dissociated water separated by the dissociation module 500 is filled in the third cargo tank 53 and the fourth cargo tank 54, and the separated gas is recovered by the gas injection and recovery module 800, as shown in FIG. 2 As indicated by the arrow, the gas is supplied to the hydrate formation module 200.
상기 방사성 물질 보관 모듈(600)은 상술한 제1 내지 제5 카고 탱크와는 다르게 방사성 물질의 누출을 방지하도록 별도로 제작되어 마련되며, 가스 하이드레이트 형성 모듈(200) 및 고액 분리 모듈(300)에 의해 분리되어 농축된 세슘(Cs+), 스트론튬(Sr2+), 코발트(Co2+), 요오드(I-) 등의 방사능 물질이 보관될 수 있다. Unlike the first to fifth cargo tanks described above, the radioactive material storage module 600 is separately manufactured and provided to prevent leakage of radioactive materials, and is provided by the gas hydrate formation module 200 and the solid-liquid separation module 300. Separated and concentrated radioactive materials such as cesium (Cs + ), strontium (Sr 2+ ), cobalt (Co 2+ ), and iodine (I - ) can be stored.
상기 방류 모듈(700)은 제3 카고 탱크(53) 및 제4 카고 탱크(54) 내에 마련되고, 해리 모듈(500)에 의해 분리된 해리수의 방사능 농도 등을 측정할 수 있는 측정 기구를 구비하고, 측정된 방사능 농도가 허용 범위 이내인 경우, 제3 카고 탱크(53) 및 제4 카고 탱크(54) 내에 충전된 해리수를 해상에 방류하게 한다. 한편, 측정된 방사능 농도가 허용 범위를 초과하는 경우, 해리수를 오염수 공급 모듈(100)에 공급하여 2차 가스 하이드레이트를 형성하게 할 수 있다.The discharge module 700 is provided in the third cargo tank 53 and the fourth cargo tank 54, and is equipped with a measuring instrument capable of measuring the radioactivity concentration of the dissociated water separated by the dissociation module 500. And, if the measured radioactivity concentration is within the allowable range, the dissociated water filled in the third cargo tank 53 and the fourth cargo tank 54 is discharged into the sea. Meanwhile, if the measured radioactivity concentration exceeds the allowable range, dissociated water may be supplied to the contaminated water supply module 100 to form secondary gas hydrate.
상기 가스 주입 및 회수 모듈(800)은 HFC134a를 가스 하이드레이트 형성 모듈(200)의 반응부에 공급하며, 제3 카고 탱크(53) 및 제4 카고 탱크(54)에서 발생하는 가스를 회수하기 마련된다. 또, 상기 설명에서는 가스로서 HFC134a를 적용하였지만, 이에 한정되는 것은 아니고, 가스 하이드레이트를 이용하여 오염수에서 방사능 물질을 분리할 수 있는 기체이면 충족할 수 있다.The gas injection and recovery module 800 supplies HFC134a to the reaction unit of the gas hydrate formation module 200 and is provided to recover the gas generated in the third cargo tank 53 and the fourth cargo tank 54. . In addition, in the above description, HFC134a was used as the gas, but it is not limited to this, and any gas that can separate radioactive materials from contaminated water using gas hydrate can be used.
상술한 바와 같이, HFC134a 가스를 이용한 가스 하이드레이트 형성에서는 발열, 그리고 해리시에는 흡열과정이 수반된다. 이러한 상변이 과정의 엔탈피는 477 kj/kg-water로서 상당히 큰 값을 가지고 있기 때문에 가스 하이드레이트 형성과 해리 간의 온도를 교환하도록 도 3 및 4에 도시된 바와 같은 열교환기 모듈(900)을 마련하여 경제성을 향상시킬수 있다. As described above, the formation of gas hydrate using HFC134a gas involves an exothermic process, and the dissociation involves an endothermic process. Since the enthalpy of this phase transition process is 477 kj/kg-water, which is a fairly large value, a heat exchanger module 900 as shown in FIGS. 3 and 4 is provided to exchange the temperature between gas hydrate formation and dissociation to achieve economic efficiency. can be improved.
다음에 상술한 바와 같은 제염 시스템을 이용하여 방사능 오염수를 제염하는 과정에 대해 도 7을 참조하여 설명한다.Next, the process of decontaminating radioactive contaminated water using the decontamination system described above will be described with reference to FIG. 7.
도 7은 본 발명에 따라 방사능 유출사고 오염수를 제염하는 과정을 설명하기 위한 흐름도 이다.Figure 7 is a flow chart to explain the process of decontamination of contaminated water from a radioactive leak accident according to the present invention.
본 발명에 따른 가스 하이드레이트를 이용한 제염 방법은 해상에서 운항 가능하고 구획된 다수의 카고 탱크가 마련된 초거대 선박 내에서 가스 하이드레이트를 이용하여 방사능 유출사고 오염수를 제염하는 방법으로서, 도 2 및 도 7에 도시된 바와 같이, 방사능 유출사고에 의해 고염 및 고농도 방사능 물질이 포함된 오염수를 펌프실(30)에 마련된 펌프에 의해 버퍼 탱크인 제1 카고 탱크(51)에 저장한다(S10).The decontamination method using gas hydrate according to the present invention is a method of decontamination of radioactive leakage contaminated water using gas hydrate in a very large ship capable of operating at sea and equipped with a plurality of compartmentalized cargo tanks, Figures 2 and 7 As shown, contaminated water containing high salt and high concentration of radioactive materials due to a radioactive leak is stored in the first cargo tank 51, which is a buffer tank, by a pump provided in the pump room 30 (S10).
상기 제1 카고 탱크(51)에 저장된 오염수는 제어 모듈의 제어에 의해 파이프라인을 따라 4℃, 3bar를 유지할 수 있는 제2 카고 탱크(52) 및 제5 카고 탱크(55) 내에 마련된 오염수 공급 모듈(100)을 거쳐 가스 하이드레이트 형성 모듈(200)의 벤츄리 밸브로 공급된다(S20). 한편, 가스 주입 및 회수 모듈(800)에서는 HFC134a 가스를 가스 하이드레이트 형성 모듈(200)의 벤츄리 밸브로 공급한다(S30).The contaminated water stored in the first cargo tank 51 is provided in the second cargo tank 52 and the fifth cargo tank 55, which can maintain 4°C and 3 bar along the pipeline under the control of the control module. It is supplied to the venturi valve of the gas hydrate formation module 200 through the supply module 100 (S20). Meanwhile, the gas injection and recovery module 800 supplies HFC134a gas to the venturi valve of the gas hydrate formation module 200 (S30).
이에 따라 가스 하이드레이트 형성 모듈(200)의 반응부에서는 가스 하이드레이트를 형성하고(S40), 생성된 가스 하이드레이트는 토출부를 통해 고액 분리 모듈(300)로 공급된다.Accordingly, gas hydrate is formed in the reaction unit of the gas hydrate forming module 200 (S40), and the generated gas hydrate is supplied to the solid-liquid separation module 300 through the discharge unit.
상기 고액 분리 모듈(300)의 펠릿타이저에서는 토출부에서 토출되는 가스 하이드레이트를 펠릿화하고, 가스 하이드레이트 형성 모듈(200) 및 고액 분리 모듈(300)에서 가스 하이드레이트에 함유되지 않은 방사능 물질 및 이물질은 제2 카고 탱크(52) 및 제5 카고 탱크(55)에 농축되며, 오염물이 배제된 가스 하이드레이트는 제3 카고 탱크(53) 및 제4 카고 탱크(54)로 이송된다(S50). 상기 단계 S50에서 침전된 방사능 물질인 세슘(Cs+), 스트론튬(Sr2+), 코발트(Co2+), 요오드(I-) 등을 포함한 이물질은 방사성 물질 보관 모듈(600)로 이송되어 보관될 수 있다.The pelletizer of the solid-liquid separation module 300 pelletizes the gas hydrate discharged from the discharge unit, and the gas hydrate forming module 200 and the solid-liquid separation module 300 pelletize radioactive substances and foreign substances not contained in the gas hydrate. The gas hydrate, which is concentrated in the second cargo tank 52 and the fifth cargo tank 55 and excludes contaminants, is transferred to the third cargo tank 53 and the fourth cargo tank 54 (S50). Foreign substances including cesium (Cs + ), strontium (Sr 2+ ), cobalt (Co 2+ ), iodine (I - ), etc., which are radioactive materials precipitated in step S50, are transferred to the radioactive material storage module 600 and stored. It can be.
상기 고액 분리 모듈(300)에서 형성된 가스 하이드레이트 펠릿은 도 2에 도시된 바와 같은 스크루 컨베이어(60)에 의해 각각 제2 카고 탱크(52)와 제5 카고 탱크(55)에서 제3 카고 탱크(53) 및 제4 카고 탱크(54)로 이송되며, 이송 과정에서 펠릿의 표면에 부착된 방사능 오염 물질을 세척하도록 세척 모듈(400)에 의해 해리 모듈(500)에서 형성된 순수물로 세척될 수 있다(S60).The gas hydrate pellets formed in the solid-liquid separation module 300 are transferred from the second cargo tank 52 and the fifth cargo tank 55 to the third cargo tank 53, respectively, by the screw conveyor 60 as shown in FIG. 2. ) and is transferred to the fourth cargo tank 54, and can be washed with pure water formed in the dissociation module 500 by the washing module 400 to wash radioactive contaminants attached to the surface of the pellet during the transfer process ( S60).
상기 스크루 컨베이어(60)에 의해 제3 카고 탱크(53)와 제4 카고 탱크(54)로 이송된 펠릿은 해리 모듈(500)에 의해 가스 하이드레이트가 해리수와 해리 가스로 각각 분리되며(S70), 해리수는 제2 카고 탱크(52)와 제5 카고 탱크(55) 내에 충전되고, 해리 가스는 가스 주입 및 회수 모듈(800)에 의해 가스 회수 파이프 라인(80)을 통해 제2 카고 탱크(52) 및 제5 카고 탱크(55)로 순환 회수된다(S70).The gas hydrate of the pellets transferred to the third cargo tank 53 and the fourth cargo tank 54 by the screw conveyor 60 is separated into dissociated water and dissociated gas by the dissociation module 500 (S70) , the dissociated water is charged in the second cargo tank 52 and the fifth cargo tank 55, and the dissociated gas is passed through the gas recovery pipeline 80 by the gas injection and recovery module 800 into the second cargo tank ( 52) and is circulated and recovered to the fifth cargo tank 55 (S70).
상기 제3 카고 탱크(53)와 제4 카고 탱크(54) 내의 해리수는 방류 모듈(700)에 마련된 방사능 측정 기구에 의해 방사능 농도가 측정되고(S80), 측정 결과 방사능 농도가 허용 범위 이내인 경우(S90), 해상에 방류된다(S100). 한편, 상기 단계 S90에서 방사능 농도가 허용 범위를 초과하는 경우, 상기 단계 S20으로 진행하여 상술한 과정 S30 내지 S90을 거쳐 2차 처리를 실행한다. 2차 처리를 실행하는 경우, 모든 핵종이 99% 제거될 수 있다.The radioactivity concentration of the dissociated water in the third cargo tank 53 and the fourth cargo tank 54 is measured by a radioactivity measurement device provided in the discharge module 700 (S80), and as a result of the measurement, the radioactivity concentration is within the allowable range. In this case (S90), it is released into the sea (S100). Meanwhile, if the radioactivity concentration exceeds the allowable range in step S90, the process proceeds to step S20 and secondary processing is performed through the above-described processes S30 to S90. When performing secondary treatment, 99% of all nuclides can be removed.
상술한 바와 같이, 국제적인 공급 과잉으로 폐선 계획이 있는 초대형 원유 운반선(VLCC) 등의 초거대 선박을 이용하여 방사능 오염수를 제염하므로, 제염을 위한 플랜트의 제작 비용 및 시간을 획기적으로 절감할 수 있고, 방사능 유출사고 오염수의 핵종을 제거할 수 있다.As mentioned above, radioactive contaminated water is decontaminated using very large ships such as very large crude oil carriers (VLCCs), which are scheduled to be decommissioned due to international oversupply, thereby dramatically reducing the cost and time of manufacturing plants for decontamination. , nuclides from radioactive leakage contaminated water can be removed.
이상 본 발명자에 의해서 이루어진 발명을 상기 실시 예에 따라 구체적으로 설명하였지만, 본 발명은 상기 실시 예에 한정되는 것은 아니고 그 요지를 이탈하지 않는 범위에서 여러 가지로 변경 가능한 것은 물론이다.Although the invention made by the present inventor has been described in detail according to the above-mentioned embodiments, the present invention is not limited to the above-described embodiments and can of course be changed in various ways without departing from the gist of the invention.
본 발명에 따른 가스 하이드레이트를 이용한 제염 시스템 및 제염 방법을 사용하는 것에 의해 제염을 위한 플랜트의 제작 비용 및 시간을 획기적으로 절감할 수 있다.By using the decontamination system and decontamination method using gas hydrate according to the present invention, the manufacturing cost and time of a decontamination plant can be dramatically reduced.

Claims (14)

  1. 해상에서 운항 가능하고 구획된 다수의 카고 탱크 및 각각의 카고 탱크에 오염수를 충전할 수 있는 펌프가 구비된 초거대 선박 내에서 가스 하이드레이트를 이용하여 방사능 유출사고 오염수를 대량 저장 및 제염하는 시스템으로서,A system that stores and decontaminates large quantities of contaminated water from radioactive leaks using gas hydrates within a very large ship that can operate at sea and is equipped with multiple compartmented cargo tanks and a pump that can fill each cargo tank with contaminated water. As,
    제1 카고 탱크 내에 저장되고 고염 및 고농도 방사능 물질이 포함된 오염수를 공급하는 오염수 공급 모듈,A contaminated water supply module that is stored in the first cargo tank and supplies contaminated water containing high salt and high concentration radioactive materials;
    상기 오염수 공급 모듈에서 공급된 오염수에 가스를 주입하여 가스 하이드레이트를 형성하는 가스 하이드레이트 형성 모듈,A gas hydrate forming module that forms gas hydrate by injecting gas into the contaminated water supplied from the contaminated water supply module;
    상기 가스 하이드레이트 형성 모듈에 의해 형성된 가스 하이드레이트를 펠릿 형상으로 형성하여 방사능 물질과 분리하는 고액 분리 모듈,A solid-liquid separation module that forms the gas hydrate formed by the gas hydrate forming module into a pellet shape and separates it from radioactive materials,
    상기 펠릿을 세척하는 세척 모듈,A washing module for washing the pellets,
    상기 세척 모듈에 의해 세척된 펠릿에 대해 물 분자와 가스를 분리하는 해리 모듈,a dissociation module that separates water molecules and gas from the pellets washed by the washing module;
    상기 고액 분리 모듈에서 분리된 방사성 물질을 보관하는 방사성 물질 보관 모듈을 포함하는 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 시스템.A decontamination system using gas hydrate, comprising a radioactive material storage module for storing radioactive material separated in the solid-liquid separation module.
  2. 제1항에서,In paragraph 1:
    상기 가스 하이드레이트 형성 모듈에 가스를 주입하고 상기 해리 모듈에서 상기 가스를 회수하는 가스 주입 및 회수 모듈,a gas injection and recovery module for injecting gas into the gas hydrate formation module and recovering the gas from the dissociation module;
    상기 해리 모듈에서 해리된 물 분자에 대해 농도 측정 후 해상으로 방류하는 방류 모듈을 더 포함하는 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 시스템.A decontamination system using gas hydrate, characterized in that it further comprises a discharge module that measures the concentration of water molecules dissociated in the dissociation module and then discharges them to the sea.
  3. 제2항에서,In paragraph 2,
    상기 가스 하이드레이트 형성 모듈 및 해리 모듈은 서로 인접한 제2 카고 탱크 및 제3 카고 탱크에 각각 마련되고,The gas hydrate formation module and the dissociation module are respectively provided in a second cargo tank and a third cargo tank adjacent to each other,
    상기 가스 하이드레이트 형성 모듈, 고액 분리 모듈, 세척 모듈 및 해리 모듈의 동작은 연속적으로 실행되는 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 시스템.A decontamination system using gas hydrate, characterized in that the operations of the gas hydrate formation module, solid-liquid separation module, washing module, and dissociation module are performed continuously.
  4. 제3항에서,In paragraph 3,
    상기 가스 하이드레이트 형성 모듈, 고액 분리 모듈, 세척 모듈 및 해리 모듈의 각각은 제2 카고 탱크 및 제3 카고 탱크에 복수 개로 마련된 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 시스템.A decontamination system using gas hydrate, characterized in that a plurality of the gas hydrate forming module, solid-liquid separation module, washing module, and dissociation module are provided in a plurality of each of the second cargo tank and the third cargo tank.
  5. 제3항에서,In paragraph 3,
    상기 가스는 HFC134a인 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 시스템.A decontamination system using gas hydrate, characterized in that the gas is HFC134a.
  6. 제3항에서,In paragraph 3,
    상기 가스 하이드레이트 형성 모듈 및 해리 모듈에서는 상기 방사능 물질이 포함된 오염수에서 세슘(Cs+), 스트론튬(Sr2+), 코발트(Co2+), 요오드(I-)를 포함한 순수물 이외에 이물질을 동시에 제거하는 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 시스템.In the gas hydrate formation module and dissociation module, foreign substances in addition to pure water including cesium (Cs + ), strontium (Sr 2+ ), cobalt (Co 2+ ), and iodine (I - ) are removed from the contaminated water containing the radioactive material. A decontamination system using gas hydrate, characterized in that it is simultaneously removed.
  7. 제3항에서,In paragraph 3,
    상기 가스 하이드레이트 형성 모듈이 마련된 제2 카고 탱크는 일정한 온도와 압력으로 유지되고,The second cargo tank equipped with the gas hydrate formation module is maintained at a constant temperature and pressure,
    상기 해리 모듈이 마련된 제3 카고 탱크는 상온, 상압으로 유지되는 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 시스템.A decontamination system using gas hydrate, characterized in that the third cargo tank equipped with the dissociation module is maintained at room temperature and pressure.
  8. 제3항에서,In paragraph 3,
    상기 고액 분리 모듈에서 형성된 펠릿은 스크루 컨베이어에 의해 상기 해리 모듈로 이송되는 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 시스템.A decontamination system using gas hydrate, characterized in that the pellets formed in the solid-liquid separation module are transferred to the dissociation module by a screw conveyor.
  9. 제8항에서,In paragraph 8:
    상기 세척 모듈에는 미세 분무 스프레이 노즐이 3단 이상 마련되고,The cleaning module is provided with three or more fine spray nozzles,
    상기 세척 모듈에서 사용되는 세척수는 상기 해리 모듈 또는 방류 모듈에 의해 형성된 순수물인 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 시스템.A decontamination system using gas hydrate, characterized in that the washing water used in the washing module is pure water formed by the dissociation module or discharge module.
  10. 제3항에서,In paragraph 3,
    상기 가스 하이드레이트 형성 모듈에서의 가스하이드레이트 형성과 상기 해리 모듈에서의 해리 간의 온도를 교환하는 열교환기 모듈을 더 포함하는 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 시스템.A decontamination system using gas hydrates, further comprising a heat exchanger module that exchanges temperature between gas hydrate formation in the gas hydrate formation module and dissociation in the dissociation module.
  11. 제3항에서,In paragraph 3,
    상기 제1 카고 탱크는 상기 제2 카고 탱크 및 제3 카고 탱크보다 큰 용량으로 마련되고, 오염수에 포함된 삼중수소는 상기 제1 카고 탱크에서 제거되는 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 시스템.The first cargo tank is provided with a larger capacity than the second cargo tank and the third cargo tank, and tritium contained in the contaminated water is removed from the first cargo tank. A decontamination system using gas hydrate.
  12. 해상에서 운항 가능하고 구획된 다수의 카고 탱크 및 각각의 카고 탱크에 오염수를 충전할 수 있는 펌프가 구비된 초거대 선박 내에서 가스 하이드레이트를 이용하여 방사능 유출사고 오염수를 대량 저장 및 제염하는 방법으로서,A method of storing and decontaminating large quantities of contaminated water from a radioactive leak using gas hydrate in a very large ship that can operate at sea and is equipped with a number of compartmentalized cargo tanks and a pump that can fill each cargo tank with contaminated water. As,
    (a) 해상에서 운항 가능하고 구획된 다수의 카고 탱크 및 각각의 카고 탱크에 오염수를 충전할 수 있는 초거대 선박 내에서 고염 및 고농도 방사능 물질이 포함된 오염수를 펌프실에 마련된 펌프에 의해 버퍼 탱크인 제1 카고 탱크에 저장하는 단계,(a) Contaminated water containing high salt and high concentration of radioactive substances is buffered by a pump provided in the pump room in a very large ship that can operate at sea and can fill multiple compartmented cargo tanks and each cargo tank with contaminated water. Storing in a first cargo tank, which is a tank,
    (b) 상기 단계 (a)에 저장된 오염수를 제2 카고 탱크의 가스 하이드레이트 형성 모듈에 공급하는 단계,(b) supplying the contaminated water stored in step (a) to the gas hydrate formation module of the second cargo tank,
    (c) HFC134a 가스를 상기 가스 하이드레이트 형성 모듈에 공급하는 단계,(c) supplying HFC134a gas to the gas hydrate formation module,
    (d) 단계 (b)에서 공급된 오염수에 대해 상기 단계 (c)에서 공급된 HFC134a 가스를 이용하여 상기 가스 하이드레이트 형성 모듈에서 가스 하이드레이트를 형성하는 단계,(d) forming a gas hydrate in the gas hydrate forming module using the HFC134a gas supplied in step (c) for the contaminated water supplied in step (b),
    (e) 상기 단계 (d)에서 형성된 가스 하이드레이트를 펠릿화하여 방사능 물질 및 이물질을 분리하는 단계, (e) pelletizing the gas hydrate formed in step (d) to separate radioactive materials and foreign substances,
    (f) 상기 단계 (e)에서 형성된 펠릿을 상기 제2 카고 탱크에 인접한 제3 카고 탱크에서 해리하는 단계를 포함하는 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 방법.(f) A decontamination method using gas hydrate, comprising the step of dissociating the pellets formed in step (e) in a third cargo tank adjacent to the second cargo tank.
  13. 제12항에서,In paragraph 12:
    (g) 상기 단계 (f)에서 해리된 순수 물에 대해 방사능 농도를 측정하고, 방사능 농도가 허용 범위 이내인 경우, 해상에 방류하는 단계를 더 포함하는 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 방법.(g) A decontamination method using gas hydrate, further comprising measuring the radioactivity concentration of the pure water dissociated in step (f), and discharging it into the sea if the radioactivity concentration is within the allowable range.
  14. 제12항에서,In paragraph 12:
    상기 단계 (a) 내지 단계 (f)는 연속적으로 실행되는 것을 특징으로 하는 가스 하이드레이트를 이용한 제염 방법.A decontamination method using gas hydrate, characterized in that steps (a) to (f) are performed continuously.
PCT/KR2023/004273 2022-07-28 2023-03-30 Decontamination system and decontamination method using gas hydrate WO2024025067A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0093642 2022-07-28
KR1020220093642A KR20240015863A (en) 2022-07-28 2022-07-28 Decontamination system and decontamination method using gas hydrate

Publications (1)

Publication Number Publication Date
WO2024025067A1 true WO2024025067A1 (en) 2024-02-01

Family

ID=89706912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004273 WO2024025067A1 (en) 2022-07-28 2023-03-30 Decontamination system and decontamination method using gas hydrate

Country Status (2)

Country Link
KR (1) KR20240015863A (en)
WO (1) WO2024025067A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247212A (en) * 2011-05-25 2012-12-13 Sanden Shoji Kk Radioactive contaminated water processing device
JP2013092415A (en) * 2011-10-25 2013-05-16 So Innovation Co Ltd Method for removing or reducing radioactive material from water contaminated with radioactive material
KR20140142313A (en) * 2010-12-07 2014-12-11 미츠비시 쥬고교 가부시키가이샤 Ship
KR20160049089A (en) * 2014-10-24 2016-05-09 한국생산기술연구원 Apparatus for Forming Hydrate and Water treatment apparatus using it
KR20180010868A (en) * 2016-07-22 2018-01-31 한국생산기술연구원 Hydrate reator and water treatment system having the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102237204B1 (en) 2017-04-05 2021-04-07 한국조선해양 주식회사 A Regasification System of gas and Vessel having the same
KR101978880B1 (en) 2018-08-16 2019-05-15 (주)프라미스 Vibrator using magnetic force and shoes comprising the vibrator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140142313A (en) * 2010-12-07 2014-12-11 미츠비시 쥬고교 가부시키가이샤 Ship
JP2012247212A (en) * 2011-05-25 2012-12-13 Sanden Shoji Kk Radioactive contaminated water processing device
JP2013092415A (en) * 2011-10-25 2013-05-16 So Innovation Co Ltd Method for removing or reducing radioactive material from water contaminated with radioactive material
KR20160049089A (en) * 2014-10-24 2016-05-09 한국생산기술연구원 Apparatus for Forming Hydrate and Water treatment apparatus using it
KR20180010868A (en) * 2016-07-22 2018-01-31 한국생산기술연구원 Hydrate reator and water treatment system having the same

Also Published As

Publication number Publication date
KR20240015863A (en) 2024-02-06

Similar Documents

Publication Publication Date Title
US4080429A (en) Method of and apparatus for separating krypton from radioactive waste gases
Ford et al. A scintillator purification plant and fluid handling system for SNO+
Ford et al. SNO+ scintillator purification and assay
WO2024025067A1 (en) Decontamination system and decontamination method using gas hydrate
EP3253476B1 (en) Apparatus for degassing a nuclear reactor coolant system
WO2004085037A1 (en) System for drying gas and use of the system
US4085061A (en) Tritiated water treatment process
US5055237A (en) Method of compacting low-level radioactive waste utilizing freezing and electrodialyzing concentration processes
CN103949159A (en) Separation method of radioisotope 14C
JPS6228696A (en) Method and device for separating radioactive component from gas or vapor of nuclear reactor
RU137704U1 (en) SHIPPING REMOVABLE SMALL SIZE FOR THE PROCESSING OF LIQUID RADIOACTIVE WASTE OF COMPLEX COMPOSITION
JP2000140839A (en) Desalting device of condensate
Ohashi et al. Numerical Study on Tritium Behavior by Using Isotope Exchange Reactions in Thermochemical Water-Splitting Iodine—Sulfur Process
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
Hill et al. Scale-up problems in the plutonium separations program
CN113042495B (en) Treatment method and system of barium fluoride waste containing metal ions
JP2015187552A (en) Radioactive matter treatment system
CN115044787B (en) Uranium extraction element in uranium-bearing sediment
Dobson et al. High Level Waste Processing in the UK–Hard Won Experience that can Benefit US Nuclear Cleanup Work
Makarov et al. Experience in building and operating reactor systems for civilian ships
Choi et al. Resin Withdrawal From Storage Tanks Using SRHS (Spent Resin Handling System) and High Purity CO2 Capture in PHWR
Goodlett Evaporation and Storage of Liquid Radioactive Waste
RU2793943C2 (en) Apparatus for degassing the cooling system of a nuclear reactor
Radhakrishna et al. Process systems for the 100 MW thermal research reactor
Butov et al. Industrial Exploitation of Testing Ground for Treatment of Radioactive Waste of Alkaline Coolants under Decommissioning of Fast Research Reactors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846728

Country of ref document: EP

Kind code of ref document: A1