WO2024024976A1 - Bus bar, manufacturing method of same, and power storage device - Google Patents

Bus bar, manufacturing method of same, and power storage device Download PDF

Info

Publication number
WO2024024976A1
WO2024024976A1 PCT/JP2023/027871 JP2023027871W WO2024024976A1 WO 2024024976 A1 WO2024024976 A1 WO 2024024976A1 JP 2023027871 W JP2023027871 W JP 2023027871W WO 2024024976 A1 WO2024024976 A1 WO 2024024976A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
layer
manufacturing
insulating material
resin
Prior art date
Application number
PCT/JP2023/027871
Other languages
French (fr)
Japanese (ja)
Inventor
浩徳 川崎
真之助 後藤
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2024024976A1 publication Critical patent/WO2024024976A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/524Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/526Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a bus bar, a method for manufacturing the same, and a power storage device in which a plurality of battery cells or battery modules are connected by a bus bar.
  • lithium ion secondary batteries which are capable of higher capacity and higher output than lead-acid batteries, nickel-metal hydride batteries, etc., are mainly used as battery cells.
  • the busbars used for connection may generate heat, and in some cases may emit flames.
  • the bus bar is also exposed to similar high temperatures and flames, causing damage to the bus bar itself or causing high heat to adjacent battery cells via the bus bar. Therefore, in Patent Document 1, the busbar is covered with a mica sheet.
  • Patent Document 1 is a measure to suppress the heat generation of the bus bar itself, and does not focus on protecting the bus bar from high temperatures and flames from the battery cells when the battery is abnormal. Moreover, since mica contains water of crystallization, when exposed to high temperatures or flames during battery abnormalities, it expands and releases water of crystallization, making it structurally unstable.
  • Patent Document 1 it is necessary to wrap the mica sheet around the bus bar.
  • Busbars may have a complicated shape due to spatial restrictions on the location where battery cells are installed, and when the busbar has a complicated shape, it is difficult to wrap the mica sheet to every corner of the busbar. If the mica sheet has uneven winding or gaps, the desired effects described above cannot be sufficiently obtained. Furthermore, it is also assumed that the adhesive surface of the mica sheet may peel off at high temperatures.
  • an object of the present invention is to provide a bus bar that can protect the bus bar from high temperatures and flames from the battery cells when the battery is abnormal.
  • a method for manufacturing busbars that does not require wrapping work like mica sheets, causes uneven winding, gaps between sheets, and peeling of sheets, and can easily accommodate complex shapes.
  • the purpose is to A further object of the present invention is to provide a power storage device that connects a plurality of battery cells or battery modules using such a bus bar and exhibits high safety even in abnormal situations.
  • a bus bar used in a power storage device including a battery cell The busbar body containing conductive material is a first layer formed on the surface of the bus bar body and containing an insulating material whose expansion start temperature is equal to or higher than a predetermined temperature; and a first layer formed on the surface of the first layer and containing a resin that melts below the predetermined temperature.
  • bus bar Further, preferred embodiments of the present invention regarding the bus bar relate to the following [2] to [10].
  • the foaming agent is at least one of an ammonium salt, an amino compound, and a chlorinated paraffin.
  • the binder is at least one of a synthetic resin emulsion, an alkyd, a vinyl chloride resin, a urethane resin, and an epoxy resin.
  • the insulating material further contains a carbonizing agent.
  • a method for manufacturing a bus bar used in a power storage device including a battery cell comprising: After applying a first coating liquid containing an insulating material whose expansion start temperature is a predetermined temperature or higher on the surface of a bus bar body containing a conductive material, the first coating liquid is dried to form a first layer; A method for manufacturing a bus bar, comprising applying a second coating liquid containing a resin that melts at a temperature lower than the predetermined temperature to the surface of the first layer, and then drying the liquid to form a second layer.
  • bus bar manufacturing method relate to the following [12] to [16].
  • the busbar of the present invention includes a first layer that is formed on the surface of the busbar body and includes an insulating material whose expansion start temperature is a predetermined temperature or higher, and a first layer that is formed on the surface of the first layer and melts below the predetermined temperature. It is coated with an insulating coating composed of a second layer containing resin. Therefore, during normal use of the battery, the stable insulation performance of the second layer functions to prevent short circuits with the battery cells and other components. When an abnormality occurs in the battery, the second layer melts and disappears, exposing the first layer, and the insulating material expands and, more preferably, carbonizes, so it is protected from the high temperatures and flames from battery cells that have experienced thermal runaway. Ru.
  • the busbar manufacturing method of the present invention simplifies the manufacturing process because it is only necessary to apply each of the coating liquids forming the first layer and the second layer to the busbar body. Regardless, the insulation coating can be formed uniformly without any gaps.
  • the power storage device of the present invention connects a plurality of battery cells and battery modules using such a bus bar, it exhibits high safety even in abnormal situations.
  • FIG. 1 is an exploded perspective view showing a state in which an example of the bus bar of the present invention is attached to a battery cell.
  • FIG. 2 is a cross-sectional view of the embodiment of the bus bar taken along the line AA in FIG.
  • FIG. 3 is a graph showing the back surface temperature (° C.) during flame irradiation in Examples and Comparative Examples.
  • FIG. 4 is a graph showing the results of measuring the film thickness (mm) of the insulating coating before and after flame irradiation in Examples and Comparative Examples.
  • FIG. 5 is a drawing-substitute photograph taken after flame irradiation of the insulation coating of each sample of Example 1 and Comparative Example 1, and FIG. 5(A) is that of Example 1, and FIG. 5(B) is that of Example 1. Comparative Example 1 is shown.
  • FIG. 6 is a photograph substituted for a drawing taken of the side surface of the sample of Example 1 after irradiation with flame.
  • FIG. 7 is a sectional view showing an
  • FIG. 1 is an exploded perspective view showing a state in which a bus bar 1 according to the present embodiment is attached to a battery cell 110.
  • the busbar body 5 made of a conductive material is, for example, a Z-shaped metal plate member as a whole, and an electrode 111 of a battery cell 110 is inserted into a connection hole 6a at one end. Then, the terminal cap 112 is covered and fixed. Further, adjacent battery cells (not shown) and external equipment (not shown) are connected to the connection hole 6b at the other end of the busbar body 5. Then, a portion (surface) of the busbar main body 5 excluding the connection holes 6a and 6b is covered with an insulating coating 10, which will be described later, to form the busbar 1.
  • the bus bar body 5 can have various shapes depending on the installation location of the battery cells 110, such as an I-shape as a whole or an irregular shape with a curved part.
  • the busbar main body 5 has a shape having a bent part 5a or a curved part (not shown) like the Z-shape shown in FIG. It is assumed that the winding operation takes time to prevent uneven winding or gaps from occurring in the bent portion 5a or the curved portion, or gaps may occur due to vibration, or the adhesive may peel off. However, as will be described later, in this embodiment, such a problem does not occur because the insulating film 10 is formed by coating using a predetermined coating liquid.
  • FIG. 2 is a cross-sectional view of the bus bar 1 taken along the line AA in FIG. 1.
  • the busbar body 5 is coated with a predetermined insulating coating 10.
  • the insulating coating 10 can be formed on the side surfaces (thick part) and the top and bottom surfaces of the busbar body 5 so as to cover the entire surface thereof, but at least the surface facing the battery cells 110 (here It may be formed only on the lower surface).
  • the insulating coating 10 includes, in order from the surface of the bus bar body 5, a first layer 11 containing an insulating material whose expansion start temperature is a predetermined temperature or higher, and a resin that melts below the predetermined temperature.
  • the second layer 12 is laminated.
  • the expansion start temperature is set at a predetermined temperature at which the first layer 11 does not expand during normal use of the battery, specifically, for example, 300°C or higher (the expansion start temperature of the insulating material included in the first layer 11 is 300°C or higher). ), or 350°C or higher (the expansion start temperature of the insulating material included in the first layer 11 is 350°C or higher), or 400°C or higher (the expansion start temperature of the insulating material included in the first layer 11 is 400°C or higher). It is better to do so.
  • the expansion coefficient of the first layer 11 is as large as possible, and the expansion coefficient is preferably 10% or more, and 13% or more with respect to the volume before expansion. More preferably, it is 15% or more.
  • the bus bar body 5 containing a conductive material is covered with the first layer 11 containing an insulating material whose expansion start temperature is higher than a predetermined temperature, so that during normal use of the battery, the bus bar body 5 includes a conductive material. (approximately 100°C at most), it functions as an insulating material to ensure insulation from other parts and equipment around the bus bar 1, but when the battery is abnormal (at least 300°C or higher), By expanding the first layer 11, the contact distance with the conductive portion becomes larger, and the risk of short circuit can be lowered.
  • the insulating material used for the first layer 11 contains a foaming agent and a binder, and more specifically, the insulating material used for the first layer 11 is Preferably, it is a foamed resin. Note that when the insulating material contains a foaming agent and a binder, air is effectively taken into the foamed foam, so that effective heat insulation properties can be expected.
  • the foaming agent may include ammonium salts, amino compounds, and chlorine. It is preferable to use at least one of the converted paraffins, and a combination of at least some of these may be used.
  • ammonium salts include ammonium phosphate, ammonium polyphosphate, and melamine phosphate.
  • amino compounds include dicyanamide, urea, and melamine.
  • the binder may be a synthetic resin emulsion (water-based), alkyd (solvent-based), vinyl chloride resin (solvent-based), urethane resin (solvent-based), or epoxy resin (solvent-based). It is preferable to use at least one of these, and a combination of at least some of these may be used.
  • examples of the urethane resin as a binder include urethane prepolymers.
  • a urethane prepolymer is obtained by reacting a polyol compound with an excess polyisocyanate compound, and has an isocyanate group at the end of the molecule.
  • polyol compounds constituting the urethane prepolymer examples include polyether polyols, polyester polyols, and the like.
  • the weight average molecular weight of these is usually 300 to 5,000 (preferably 500 to 3,000).
  • examples of the polyisocyanate compound include aliphatic, alicyclic, or aromatic polyisocyanates used in the production of general polyurethanes. Specifically, for example, tetramethylene diisocyanate, hexamethylene diisocyanate, 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, meth Examples include xylylene diisocyanate and 4,4'-diphenylmethane diisocyanate.
  • the reaction ratio between the polyol compound and the polyisocyanate compound may be set so that the isocyanate groups in the polyisocyanate compound are in excess of the hydroxyl groups in the polyol compound, and (NCO/OH) is 1.2 to 2. It is preferable to set it to about .2.
  • the above foaming agent can also function as a carbonized layer forming agent.
  • the carbonized layer forming agent herein refers to a component that promotes carbonization of the above-mentioned foamed resin, which is a carbonization component.
  • the surrounding area is set to an inert gas atmosphere to carbonize the carbon in the resin to form a carbonized layer, which has the effect of stopping further combustion.
  • the compound having such an effect is preferably ammonium polyphosphate, which is one of the above-mentioned ammonium salts and has a large inert gas generating effect. Nitrogen gas is generated from ammonium groups in ammonium polyphosphate, effectively blocking contact with oxygen in the air.
  • the expansion start temperature of the insulating material included in the insulating coating 10 is a predetermined temperature or higher, for example, 300° C. or higher, but the flame retardant effect against high temperatures and flames from battery cells that have experienced thermal runaway is limited.
  • the expansion start temperature is preferably 550°C or lower, 540°C or lower, or 530°C or lower.
  • the expansion start temperature of the insulating material included in the insulating coating 10 is preferably in the range of, for example, 300° C. or more and 550° C. or less.
  • a coating solution is used to form the first layer 11, but ammonium polyphosphate decomposes in the coating solution if left for a long time, generates ammonia gas, and deteriorates over time. There is a risk that the performance of forming a carbonized layer will deteriorate. Therefore, in order to prevent this change over time, it is preferable to thinly coat the material with a water-resistant resin and microcapsule it.
  • the first layer 11 further contains a carbonizing agent.
  • the carbonizing agent is preferably at least one of carbohydrates and polyhydric alcohols, and may be a combination of at least some of these.
  • the first layer 11 further includes a carbonizing agent in addition to the above-described foaming agent and binder, so that, for example, the foaming agent (also carbonization forming agent) is ammonium polyphosphate and the carbonization agent is polyhydric alcohol.
  • the temperature of the first layer 11 reaches 250 to 300°C, ammonium polyphosphate as a reaction catalyst decomposes, and the polyhydric alcohol as a carbonizing agent decomposes with the generated phosphate.
  • a carbonized layer can be formed more effectively by the dehydration action.
  • ammonium polyphosphate which is a foaming agent, further decomposes, generating ammonia gas, water vapor, carbon dioxide gas, etc., and by significantly expanding the carbonized layer formed, the heat insulating layer to form.
  • the first layer 11 also contains various additives (for example, inorganic particles, examples of other additives include flame retardants, dispersants, color pigments (titanium oxide, etc.), and extender pigments.
  • additives for example, inorganic particles, examples of other additives include flame retardants, dispersants, color pigments (titanium oxide, etc.), and extender pigments.
  • the total content of the foaming agent and the binder in the first layer 11 is preferably 0.5 to 1.8 kg/m 2 of the total amount of the coating, and is 0.5 to 0.7 kg/m 2 . It is more preferable. If the total content of the blowing agent and binder, as well as the carbonizing agent, is less than the respective lower limit values listed above, sufficient heat resistance against abnormal high temperatures and flames will not be obtained. Even if it exceeds this, no further improvement in heat resistance can be expected.
  • the thickness of the first layer 11 is preferably 0.3 mm or more, more preferably 0.4 mm or more. As shown in the test examples described below, if the thickness of the first layer 11 is less than 0.3 mm, sufficient heat resistance against high temperatures and flames during battery abnormalities cannot be obtained. Note that there is no upper limit to the thickness of the first layer 11, but even if it becomes thicker than necessary, no further improvement in heat resistance can be expected, and rather problems may occur in the film quality such as cracks in the first layer 11. 2.0 mm is appropriate as the upper limit of the film thickness of the first layer 11.
  • the second layer 12 includes a resin that melts below a predetermined temperature. Therefore, there is no particular restriction as long as the resin has a melting point or glass transition point below a predetermined temperature.
  • the predetermined temperature here needs to be set in accordance with the predetermined temperature at which the insulating material included in the first layer 11 starts to expand. That is, for example, if the expansion start temperature of the insulating material contained in the first layer 11 is 300°C or higher, the melting temperature of the resin contained in the second layer 12 may be less than 300°C; When the expansion start temperature of the insulating material contained in the first layer 11 is 350°C or higher, the melting temperature of the resin contained in the second layer 12 may be less than 350°C. In other words, in order for the bus bar 1 according to the present embodiment to have the effects, the expansion start temperature of the insulating material included in the first layer 11 must be higher than the melting temperature of the resin included in the second layer 12. There needs to be.
  • the bus bar 1 reaches a high temperature of about 100°C, so the resin contained in the second layer 12 should be a resin with a melting point or glass transition point of 100°C or higher.
  • the temperature is preferably 150°C or higher, more preferably 200°C or higher, and even more preferably 200°C or higher.
  • the second layer 12 becomes the outermost layer of the insulating coating 10 which is a laminate, it is preferable that the second layer 12 has a high heat resistance temperature.
  • resins that melt at temperatures below 300°C include polyethylene (PE), polypropylene (PP), vinyl chloride (PVC), AS resin (SAN), and ABS resin.
  • ABS vinylidene chloride resin
  • PVDC polyamide
  • POM polyacetal
  • PBT polybutylene terephthalate
  • PTFE fluororesin
  • PF phenolic resin
  • MF melamine resin
  • UF urea resin
  • EP epoxy resin
  • UP unsaturated polyester resin
  • PA6 nylon 6
  • PA66 nylon 66
  • the second layer 12 may contain other materials, but there are no particular limitations as long as they do not interfere with the effects of the bus bar 1 according to the present embodiment as shown below. Specifically, for example, flame retardants, colorants, inorganic fillers, etc. can be included.
  • the resin contained in the second layer 12 that melts below a predetermined temperature is the main component in the second layer 12, that is, 50% by mass or more, preferably 60% by mass or more, more preferably 60% by mass or more of the total amount of the second layer 12. It is preferably 70% by mass or more.
  • the thickness of the second layer 12 is not particularly limited, but in consideration of ensuring insulation, durability, film quality, etc., it is 0.01 to 2.0 mm, preferably 0.1 to 1.0 mm. 0 mm is appropriate.
  • the busbar 1 of the present embodiment includes the first layer 11 that is formed on the surface of the busbar body and includes an insulating material whose expansion start temperature is a predetermined temperature or higher, and the first layer 11 that is formed on the surface of the first layer 11.
  • a second layer 12 containing a resin that melts below the predetermined temperature is coated with an insulating coating 10 made of a laminate. Therefore, during normal use of the battery, the stable insulation performance of the second layer 12 functions to prevent short circuits with the battery cells 110 and other components.
  • the second layer 12 melts and disappears, the first layer 11 is exposed, and the insulating material 10 expands (if the insulating material 10 is a foamed resin, it foams and expands). ), more preferably carbonized, so that it is protected from high temperatures and flames from the battery cells 110 that have experienced thermal runaway.
  • an insulating material that expands at least the above-mentioned expansion start temperature is higher than a predetermined temperature, for example, 300° C. or higher, preferably a foaming agent and a binder, more preferably a carbonizing agent, and, if necessary, Accordingly, other additives are weighed, added to the thinner as a dispersion medium, and thoroughly mixed to prepare the first coating liquid. Subsequently, the area around the connection holes 6a and 6b (see FIG. 1) in the busbar body 5 is masked, and the first coating liquid is applied, and then the coating film is dried to form the inside of the insulating coating 10 according to the present embodiment. The first layer 11 is formed.
  • a predetermined temperature for example, 300° C. or higher
  • a foaming agent and a binder more preferably a carbonizing agent
  • an undercoat material for anti-corrosion purposes is applied to the surface of the bus bar body 5 using a brush to a predetermined thickness, and then the coating film is dried and an undercoat material is applied.
  • a coating film may be formed, and the first layer 11 may be formed on the undercoat coating film.
  • the first coating amount is adjusted so that the film thickness after drying (that is, the film thickness of the first layer 11) is 0.3 mm or more, preferably 0.4 mm or more.
  • the drying mentioned above includes not only the hardening treatment of the coating film by heat treatment, but also the hardening treatment of the coating film by natural drying at room temperature. Further, during drying, the insulating material may be heated to a temperature at which it does not foam and expand, for example, to about 100° C. in order to accelerate the curing process.
  • a resin that melts at least below the above-mentioned predetermined temperature, for example, below 300°C, and other additives as necessary are weighed, added to thinner as a dispersion medium, and thoroughly mixed to form a second coating liquid.
  • the second coating liquid is applied to the surface of the first layer 11 and the coating film is dried to form the second layer 12 in the insulating coating 10 according to the present embodiment. is formed on the surface of the busbar body 5, and the busbar 1 is completed.
  • the method of winding the mica sheet as in Patent Document 1 requires a winding operation, and the winding operation is particularly time-consuming in order to prevent uneven winding or gaps from occurring at the bent portion 5a or the curved portion. .
  • a gap may be created due to vibration or the like, or that the adhesive may peel off.
  • such a problem does not occur because the first layer 11 and the second layer 12 are formed by coating.
  • the conductivity of the bus bar 1 decreases when it generates heat, which may reduce the performance of battery cells and battery packs (battery modules) to which it is applied.
  • the insulating coating 10 i.e., the first layer 11 and the second layer 12
  • the insulating coating 10 is thinly coated. Due to the effective heat dissipation of the bus bar 1 during normal use of the battery, deterioration in the performance of the battery cells and the battery module as a whole can be reduced.
  • the insulating coating 10 can be made thinner, the volume occupied by the entire busbar 1 does not become too large, and the battery space within the battery pack can be effectively utilized, contributing to an increase in the capacity of the battery pack.
  • power storage device 100 includes a plurality of battery cells 110 housed in a battery case 120. Adjacent battery cells 110 are connected by the bus bar 1.
  • the bus bar 1 is coated with the above-mentioned insulating coating 10, so that even if a certain battery cell 110 causes thermal runaway, the bus bar 1 can be protected, and the chain of thermal runaway to the adjacent battery cell 110 via the bus bar 1 can be prevented. can be prevented. Therefore, since the power storage device of the present embodiment connects a plurality of battery cells 110 and modules (not shown) through such a bus bar 1, it exhibits high safety even in the event of an abnormality.
  • Examples 1 to 4 Apply SK Taica Coat undercoat (for rust prevention) to one side of an aluminum plate with a side of 100 mm and a thickness of 2 mm to a thickness of about 0.05 mm using a brush and let it dry. Ta. Then, on the formed undercoat film, "Taika Coat” manufactured by SK Kaken Co., Ltd. is applied as an insulating film using a scraper to a film thickness shown in Table 1 ("Insulating film thickness (mm)" column). (See “Before Flame Irradiation”) to prepare samples.
  • Comparative Examples 1 to 3 In Comparative Example 1, mica tape with a thickness of 0.11 mm manufactured by Nippon Mica Seisakusho Co., Ltd. was adhered in double layers to one side of the same aluminum plate as in the example as an insulating material, and a total thickness of 0.22 mm was applied. A sample was prepared by forming an insulating film. In Comparative Example 2, a sheet of "D680A" manufactured by Okabe Mica Co., Ltd. with a thickness of 0.3 mm was used as the lower layer and the same mica tape (thickness: 0.11 mm) was layered and adhered as the upper layer, and the total thickness was 0.52 mm. A sample was prepared by forming an insulating film.
  • Comparative Example 3 a 0.5 mm thick sheet of "D680A” manufactured by Okabe Mica Co., Ltd. and the same mica tape (0.11 mm thick) as an upper layer were stacked and adhered to form an insulating coating with a total thickness of 0.72 mm.
  • a sample was prepared by forming a
  • the thickness (mm) of the insulating coating before and after flame irradiation was measured using a dial gauge, and the expansion rate (%) was determined.
  • Table 1 summarizes the structure of the insulating coating of each sample of the example and comparative example, as well as the measurement results of the expansion coefficient and back surface temperature. Further, the back surface temperature (° C.) during flame irradiation is shown in FIG. 3, and the film thickness (mm) of the insulating coating before and after flame irradiation is shown in graph form in FIG. 4, respectively.
  • each sample of Examples 1 to 4 has a change in film thickness before and after flame irradiation, that is, thermal expansion, compared to each sample of Comparative Examples 1 to 3. It can be seen that the ratio is large and the back surface temperature is low, indicating that it has excellent heat insulation properties. Further, the thickness of the insulating film is preferably 0.3 mm or more, and more preferably 0.4 mm or more.
  • FIG. 5 shows photographs of the insulation coatings of the samples of Example 1 ((A) in the same figure) and Comparative Example 1 ((B) in the same figure) taken after flame irradiation.
  • the insulating coating was foamed and further carbonized, so that the entire surface became black.
  • Figure 6 is a photograph taken of the side surface of the sample of Example 1 after irradiation with flame, and it shows that the insulation film remains on the surface of the aluminum plate, and the black part on it foams and carbonizes, forming a layered structure. There is.
  • Busbar 5 Busbar bodies 6a, 6b Connection hole 10 Insulating coating 11 First layer 12 Second layer 100 Power storage device 110 Battery cell 111 Electrode 120 Battery case

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a bus bar that can be protected from high temperatures and flames from a battery cell in a time of abnormality of a battery. A bus bar (1) is obtained by a bus bar main body (5) containing an electroconductive material being covered by an insulating covering film (10) that is formed on the surface thereof and includes a first layer (11) containing an insulating material of which an expansion initiation temperature is a predetermined temperature or higher, and a second layer (12) that is formed on the surface of the first layer (11) and that contains a resin that melts at a temperature lower than the predetermined temperature.

Description

バスバー及びその製造方法、並びに蓄電装置Bus bar and its manufacturing method, and power storage device
 本発明は、バスバー及びその製造方法、並びに複数の電池セル又は電池モジュールをバスバーで接続した蓄電装置に関する。 The present invention relates to a bus bar, a method for manufacturing the same, and a power storage device in which a plurality of battery cells or battery modules are connected by a bus bar.
 各種電子機器や、電動モータで駆動する電気自動車又はハイブリッド車、蓄電池などには、複数の電池セルを、バスバーにて直列又は並列に接続した蓄電装置が搭載されている。また、電池セルには、鉛蓄電池やニッケル水素電池などに比べて、高容量かつ高出力が可能なリチウムイオン二次電池が主に用いられている。 Various electronic devices, electric vehicles or hybrid vehicles driven by electric motors, storage batteries, etc. are equipped with power storage devices in which multiple battery cells are connected in series or in parallel with bus bars. In addition, lithium ion secondary batteries, which are capable of higher capacity and higher output than lead-acid batteries, nickel-metal hydride batteries, etc., are mainly used as battery cells.
 しかし、充放電時に、電池セルに過電流が通電されると、接続に使用されているバスバーが発熱することがあり、場合によっては火炎を発することがある。このような電池の異常時には、バスバーも同様の高温や火炎に晒され、バスバー自体が損傷したり、バスバーを介して隣接する電池セルが高熱になる。そこで、特許文献1では、雲母シートでバスバーを被覆している。 However, if excessive current is applied to the battery cells during charging and discharging, the busbars used for connection may generate heat, and in some cases may emit flames. When such a battery abnormality occurs, the bus bar is also exposed to similar high temperatures and flames, causing damage to the bus bar itself or causing high heat to adjacent battery cells via the bus bar. Therefore, in Patent Document 1, the busbar is covered with a mica sheet.
日本国特開2020-528650号公報Japanese Patent Application Publication No. 2020-528650
 しかしながら、特許文献1は、バスバー自身の発熱を抑えるための対策であり、電池の異常時における電池セルからの高温や火炎に対してバスバーを保護することに着目していない。しかも、雲母は、結晶水を含むため、電池の異常時に高温や火炎に晒された場合に、膨張したり、結晶水を放出したりして、構造的に不安定になる。 However, Patent Document 1 is a measure to suppress the heat generation of the bus bar itself, and does not focus on protecting the bus bar from high temperatures and flames from the battery cells when the battery is abnormal. Moreover, since mica contains water of crystallization, when exposed to high temperatures or flames during battery abnormalities, it expands and releases water of crystallization, making it structurally unstable.
 また、特許文献1では、雲母シートをバスバーに巻き付ける作業が必要になる。電池セルの設置個所の空間的制限などにより、バスバーが複雑な形状を呈することもあるが、バスバーが複雑な形状になると、雲母シートをバスバーの隅々まで巻き付けるのが困難である。雲母シートに、巻きムラや隙間があると、目的とする上記効果が十分に得られない。
更には、高温時に雲母シートの粘着面が剥がれることも想定される。
Further, in Patent Document 1, it is necessary to wrap the mica sheet around the bus bar. Busbars may have a complicated shape due to spatial restrictions on the location where battery cells are installed, and when the busbar has a complicated shape, it is difficult to wrap the mica sheet to every corner of the busbar. If the mica sheet has uneven winding or gaps, the desired effects described above cannot be sufficiently obtained.
Furthermore, it is also assumed that the adhesive surface of the mica sheet may peel off at high temperatures.
 そこで本発明は、電池の異常時における電池セルからの高温や火炎から保護できるバスバーを提供することを目的とする。また、雲母シートのような巻き付け作業が不要で、巻きムラやシートの隙間を生じることや、シートの剥がれの問題もなく、複雑な形状にも容易に対応可能に製造できるバスバーの製造方法を提供することを目的とする。更には、このようなバスバーにより複数の電池セル又は電池モジュール同士を接続し、異常時においても高い安全性を示す蓄電装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a bus bar that can protect the bus bar from high temperatures and flames from the battery cells when the battery is abnormal. In addition, we provide a method for manufacturing busbars that does not require wrapping work like mica sheets, causes uneven winding, gaps between sheets, and peeling of sheets, and can easily accommodate complex shapes. The purpose is to A further object of the present invention is to provide a power storage device that connects a plurality of battery cells or battery modules using such a bus bar and exhibits high safety even in abnormal situations.
 本発明の上記目的は、バスバーに係る下記[1]の構成により達成される。 The above object of the present invention is achieved by the following configuration [1] regarding the bus bar.
[1] 電池セルを含む蓄電装置に用いられるバスバーであって、
 導電性材料を含むバスバー本体が、
 前記バスバー本体の表面に形成され、膨張開始温度が所定の温度以上である絶縁材料を含む第1層と、前記第1層の表面に形成され、前記所定の温度未満で溶融する樹脂を含む第2層と、で構成される絶縁被膜により被覆されてなることを特徴とする、バスバー。
[1] A bus bar used in a power storage device including a battery cell,
The busbar body containing conductive material is
a first layer formed on the surface of the bus bar body and containing an insulating material whose expansion start temperature is equal to or higher than a predetermined temperature; and a first layer formed on the surface of the first layer and containing a resin that melts below the predetermined temperature. A busbar characterized by being coated with an insulating coating consisting of two layers.
 また、バスバーに係る本発明の好ましい実施形態は、以下の[2]~[10]に関する。 Further, preferred embodiments of the present invention regarding the bus bar relate to the following [2] to [10].
[2] 前記絶縁材料は、発泡剤及び結合剤を含むことを特徴とする、[1]に記載のバスバー。
[3] 前記発泡剤は、アンモニウム塩、アミノ化合物及び塩素化パラフィンのうち少なくとも1つであることを特徴とする、[2]に記載のバスバー。
[4] 前記結合剤は、合成樹脂エマルジョン、アルキッド、塩化ビニル樹脂、ウレタン樹脂及びエポキシ樹脂のうち少なくとも1つであることを特徴とする、[2]又は[3]に記載のバスバー。
[5] 前記絶縁材料は、更に炭化剤を含むことを特徴とする、[2]~[4]のいずれか1つに記載のバスバー。
[6] 前記炭化剤は、炭水化物及び多価アルコールのうち少なくとも1つであることを特徴とする、[5]に記載のバスバー。
[7] 前記発泡剤がポリリン酸アンモニウムであり、前記結合剤がウレタン樹脂であり、前記炭化剤が多価アルコールであることを特徴とする、[5]に記載のバスバー。
[8] 前記所定の温度は、300℃であることを特徴とする、[1]~[7]のいずれか1つに記載のバスバー。
[9] 前記絶縁被膜の厚さが、0.3mm以上であることを特徴とする、[1]~[7]のいずれか1つに記載のバスバー。
[10] 前記絶縁被膜の厚さが、0.3mm以上であることを特徴とする、[8]に記載のバスバー。
[2] The bus bar according to [1], wherein the insulating material contains a foaming agent and a binder.
[3] The busbar according to [2], wherein the foaming agent is at least one of an ammonium salt, an amino compound, and a chlorinated paraffin.
[4] The busbar according to [2] or [3], wherein the binder is at least one of a synthetic resin emulsion, an alkyd, a vinyl chloride resin, a urethane resin, and an epoxy resin.
[5] The bus bar according to any one of [2] to [4], wherein the insulating material further contains a carbonizing agent.
[6] The bus bar according to [5], wherein the carbonizing agent is at least one of carbohydrates and polyhydric alcohols.
[7] The busbar according to [5], wherein the foaming agent is ammonium polyphosphate, the binder is a urethane resin, and the carbonizing agent is a polyhydric alcohol.
[8] The busbar according to any one of [1] to [7], wherein the predetermined temperature is 300°C.
[9] The busbar according to any one of [1] to [7], wherein the thickness of the insulating coating is 0.3 mm or more.
[10] The busbar according to [8], wherein the insulating coating has a thickness of 0.3 mm or more.
 また、本発明の上記目的は、バスバーの製造方法に係る下記[11]の構成により達成される。 Further, the above object of the present invention is achieved by the following configuration [11] related to the bus bar manufacturing method.
[11] 電池セルを含む蓄電装置に用いられるバスバーの製造方法であって、
 導電性材料を含むバスバー本体の表面に、膨張開始温度が所定の温度以上である絶縁材料を含む第1の塗布液を塗布した後、乾燥させて、第1層を形成し、
 前記第1層の表面に、前記所定の温度未満で溶融する樹脂を含む第2の塗布液を塗布した後、乾燥させて、第2層を形成することを特徴とする、バスバーの製造方法。
[11] A method for manufacturing a bus bar used in a power storage device including a battery cell, comprising:
After applying a first coating liquid containing an insulating material whose expansion start temperature is a predetermined temperature or higher on the surface of a bus bar body containing a conductive material, the first coating liquid is dried to form a first layer;
A method for manufacturing a bus bar, comprising applying a second coating liquid containing a resin that melts at a temperature lower than the predetermined temperature to the surface of the first layer, and then drying the liquid to form a second layer.
 また、バスバーの製造方法に係る本発明の好ましい実施形態は、以下の[12]~[16]に関する。 Further, preferred embodiments of the present invention relating to the bus bar manufacturing method relate to the following [12] to [16].
[12] 前記絶縁材料は、発泡剤及び結合剤を含むことを特徴とする、[11]に記載のバスバーの製造方法。
[13] 前記絶縁材料は、更に炭化剤を含むことを特徴とする、[12]に記載のバスバーの製造方法。
[14] 前記所定の温度は、300℃であることを特徴とする、[11]~[13]のいずれか1つに記載のバスバーの製造方法。
[15] 前記塗布液を、乾燥後の膜厚が0.3mm以上となるように塗布することを特徴とする、[11]~[13]のいずれか1つに記載のバスバーの製造方法。
[16] 前記塗布液を、乾燥後の膜厚が0.3mm以上となるように塗布することを特徴とする、[14]に記載のバスバーの製造方法。
[12] The method for manufacturing a bus bar according to [11], wherein the insulating material contains a foaming agent and a binder.
[13] The method for manufacturing a bus bar according to [12], wherein the insulating material further contains a carbonizing agent.
[14] The method for manufacturing a busbar according to any one of [11] to [13], wherein the predetermined temperature is 300°C.
[15] The method for manufacturing a busbar according to any one of [11] to [13], characterized in that the coating liquid is applied so that the film thickness after drying is 0.3 mm or more.
[16] The method for manufacturing a bus bar according to [14], characterized in that the coating liquid is applied so that the film thickness after drying is 0.3 mm or more.
 また、本発明の上記目的は、蓄電装置に係る下記[17]~[20]の構成により達成される。 Further, the above object of the present invention is achieved by the following configurations [17] to [20] related to the power storage device.
[17] 複数の電池セル又は電池モジュールを、[1]~[7]のいずれか1つに記載のバスバーで接続した、蓄電装置。
[18] 複数の電池セル又は電池モジュールを、[8]に記載のバスバーで接続した、蓄電装置。
[19] 複数の電池セル又は電池モジュールを、[9]に記載のバスバーで接続した、蓄電装置。
[20] 複数の電池セル又は電池モジュールを、[10]に記載のバスバーで接続した、蓄電装置。
[17] A power storage device in which a plurality of battery cells or battery modules are connected by the bus bar according to any one of [1] to [7].
[18] A power storage device in which a plurality of battery cells or battery modules are connected by the bus bar according to [8].
[19] A power storage device in which a plurality of battery cells or battery modules are connected by the bus bar according to [9].
[20] A power storage device in which a plurality of battery cells or battery modules are connected by the bus bar according to [10].
 本発明のバスバーは、バスバー本体の表面に形成され、膨張開始温度が所定の温度以上である絶縁材料を含む第1層と、第1層の表面に形成され、上記所定の温度未満で溶融する樹脂を含む第2層と、で構成される絶縁被膜により被覆されたものである。そのため、電池の通常使用時には、第2層による安定した絶縁性能が機能して、電池セルや他の部品との短絡を防ぐことができる。そして、電池の異常時には第2層が溶融・消失して第1層が露出し、絶縁材料が膨張し、更に好ましくは炭化するため、熱暴走を起こした電池セルからの高温や火炎から保護される。 The busbar of the present invention includes a first layer that is formed on the surface of the busbar body and includes an insulating material whose expansion start temperature is a predetermined temperature or higher, and a first layer that is formed on the surface of the first layer and melts below the predetermined temperature. It is coated with an insulating coating composed of a second layer containing resin. Therefore, during normal use of the battery, the stable insulation performance of the second layer functions to prevent short circuits with the battery cells and other components. When an abnormality occurs in the battery, the second layer melts and disappears, exposing the first layer, and the insulating material expands and, more preferably, carbonizes, so it is protected from the high temperatures and flames from battery cells that have experienced thermal runaway. Ru.
 また、本発明のバスバーの製造方法は、上記した第1層及び第2層を形成する各塗布液を、バスバー本体に塗布するだけでよいため、製造工程が簡易であり、バスバー本体の形状に関係なく、隙間なく均一に絶縁被膜を形成することができる。 In addition, the busbar manufacturing method of the present invention simplifies the manufacturing process because it is only necessary to apply each of the coating liquids forming the first layer and the second layer to the busbar body. Regardless, the insulation coating can be formed uniformly without any gaps.
 さらに、本発明の蓄電装置は、このようなバスバーにより複数の電池セルや電池モジュールを接続しているため、異常時においても高い安全性を示す。 Furthermore, since the power storage device of the present invention connects a plurality of battery cells and battery modules using such a bus bar, it exhibits high safety even in abnormal situations.
図1は、本発明のバスバーの一例を電池セルに装着した状態を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a state in which an example of the bus bar of the present invention is attached to a battery cell. 図2は、バスバーの実施形態を、図1のA-A矢視に沿って示す断面図である。FIG. 2 is a cross-sectional view of the embodiment of the bus bar taken along the line AA in FIG. 図3は、実施例及び比較例における、火炎照射時の裏面温度(℃)を示すグラフである。FIG. 3 is a graph showing the back surface temperature (° C.) during flame irradiation in Examples and Comparative Examples. 図4は、実施例及び比較例における、絶縁被膜の火炎照射前後の膜厚(mm)を測定した結果を示すグラフである。FIG. 4 is a graph showing the results of measuring the film thickness (mm) of the insulating coating before and after flame irradiation in Examples and Comparative Examples. 図5は、実施例1及び比較例1の各サンプルの絶縁被膜について、火炎照射後に撮影した図面代用写真であって、図5(A)は実施例1のものを、図5(B)は比較例1のものを示す。FIG. 5 is a drawing-substitute photograph taken after flame irradiation of the insulation coating of each sample of Example 1 and Comparative Example 1, and FIG. 5(A) is that of Example 1, and FIG. 5(B) is that of Example 1. Comparative Example 1 is shown. 図6は、実施例1のサンプルの側面について、火炎照射後に撮影した図面代用写真である。FIG. 6 is a photograph substituted for a drawing taken of the side surface of the sample of Example 1 after irradiation with flame. 図7は、本発明の蓄電装置の一例を示す断面図である。FIG. 7 is a sectional view showing an example of the power storage device of the present invention.
 以下、本発明の実施形態に関して図面を参照して詳細に説明する。なお、本発明は、以下で説明する実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and can be implemented with arbitrary changes within the scope of the gist of the present invention.
[バスバー]
 図1は、本実施形態に係るバスバー1を電池セル110に装着した状態を示す分解斜視図である。図1に示されるように、導電性材料からなるバスバー本体5は、例えば、全体がZ字状の金属製の板部材であり、一方の先端の接続孔6aに電池セル110の電極111を挿入し、端子キャップ112を被せて固定される。また、バスバー本体5の他方の先端の接続孔6bには、隣接する電池セル(図示せず)や外部機器(図示せず)が接続される。そして、バスバー本体5の接続孔6a,6bを除く部分(表面)を、後述される絶縁被膜10で覆い、バスバー1が構成される。
[Busbar]
FIG. 1 is an exploded perspective view showing a state in which a bus bar 1 according to the present embodiment is attached to a battery cell 110. As shown in FIG. 1, the busbar body 5 made of a conductive material is, for example, a Z-shaped metal plate member as a whole, and an electrode 111 of a battery cell 110 is inserted into a connection hole 6a at one end. Then, the terminal cap 112 is covered and fixed. Further, adjacent battery cells (not shown) and external equipment (not shown) are connected to the connection hole 6b at the other end of the busbar body 5. Then, a portion (surface) of the busbar main body 5 excluding the connection holes 6a and 6b is covered with an insulating coating 10, which will be described later, to form the busbar 1.
 なお、図示は省略するが、バスバー本体5は、全体をI字状にしたり、湾曲部を有するような不定形など、電池セル110の設置個所に応じて種々の形状とすることができる。 Although not shown in the drawings, the bus bar body 5 can have various shapes depending on the installation location of the battery cells 110, such as an I-shape as a whole or an irregular shape with a curved part.
 バスバー本体5が、図1に示されるZ字状のような屈曲部5aや湾曲部(図示せず)を有する形状であると、上記特許文献1のバスバーのように雲母シートを巻き付ける方式では、屈曲部5aや湾曲部に巻きムラや隙間が生じないようにするために巻き付け作業に手間がかかったり、あるいは振動などにより隙間が生じたり、粘着剤が剥離することなどが想定される。しかし、後述するように、本実施形態では、所定の塗布液を用いた塗布により絶縁被膜10を形成するため、そのような問題は起こらない。 If the busbar main body 5 has a shape having a bent part 5a or a curved part (not shown) like the Z-shape shown in FIG. It is assumed that the winding operation takes time to prevent uneven winding or gaps from occurring in the bent portion 5a or the curved portion, or gaps may occur due to vibration, or the adhesive may peel off. However, as will be described later, in this embodiment, such a problem does not occur because the insulating film 10 is formed by coating using a predetermined coating liquid.
 続いて、図2は、図1のA-A矢視に沿って示すバスバー1の断面図である。なお、図示は省略するが図2中の下側に電池セル110が存在しており、電池の異常時には、電池セル110からの熱の伝達による高温や火炎が発生する。このため、バスバー本体5を所定の絶縁被膜10で被覆している。なお、この絶縁被膜10は、図示のように、バスバー本体5の全面を覆うように、側面(板厚部分)及び上下面に形成することもできるが、少なくとも電池セル110と対向する面(ここでは下面)のみに形成してもよい。 Next, FIG. 2 is a cross-sectional view of the bus bar 1 taken along the line AA in FIG. 1. Although not shown, there is a battery cell 110 on the lower side of FIG. 2, and when the battery is abnormal, high temperature and flame are generated due to heat transfer from the battery cell 110. For this reason, the busbar body 5 is coated with a predetermined insulating coating 10. Note that, as shown in the figure, the insulating coating 10 can be formed on the side surfaces (thick part) and the top and bottom surfaces of the busbar body 5 so as to cover the entire surface thereof, but at least the surface facing the battery cells 110 (here It may be formed only on the lower surface).
 絶縁被膜10は、図示されるように、バスバー本体5の表面から順に、膨張開始温度が所定の温度以上である絶縁材料を含む第1層11と、上記所定の温度未満で溶融する樹脂を含む第2層12と、を積層したものである。 As illustrated, the insulating coating 10 includes, in order from the surface of the bus bar body 5, a first layer 11 containing an insulating material whose expansion start temperature is a predetermined temperature or higher, and a resin that melts below the predetermined temperature. The second layer 12 is laminated.
 バスバー1は、平常時であっても、通電時(電池の通常使用時)には概ね100℃程度になるため、電池の通常使用時に第1層11が膨張しないように、第1層11の膨張開始温度を、電池の通常使用時に第1層11が膨張しない所定の温度以上、具体的には、例えば、300℃以上(第1層11に含まれる絶縁材料の膨張開始温度が300℃以上)、又は350℃以上(第1層11に含まれる絶縁材料の膨張開始温度が350℃以上)、又は400℃以上(第1層11に含まれる絶縁材料の膨張開始温度が400℃以上)とするのがよい。 Even under normal conditions, the temperature of the bus bar 1 is approximately 100° C. when energized (during normal use of the battery). The expansion start temperature is set at a predetermined temperature at which the first layer 11 does not expand during normal use of the battery, specifically, for example, 300°C or higher (the expansion start temperature of the insulating material included in the first layer 11 is 300°C or higher). ), or 350°C or higher (the expansion start temperature of the insulating material included in the first layer 11 is 350°C or higher), or 400°C or higher (the expansion start temperature of the insulating material included in the first layer 11 is 400°C or higher). It is better to do so.
 第1層11は、上記所定の温度以上の高温によって膨張を開始することにより、その内部に空気が取り込まれ、空気層が形成されることにより、発生した高熱がバスバー1へ伝達されるのが抑制され、断熱性能が高まる。ひいてはバスバー1自体の溶解(すなわち、高熱によるバスバー1の損傷)を効果的に抑制することができる。
 なお、断熱性能を効果的に向上させるためには、第1層11の膨張率が大きいほど好ましく、その膨張率は、膨張前の体積に対して10%以上であることが好ましく、13%以上であることがより好ましく、15%以上であることが更に好ましい。
When the first layer 11 starts to expand at a high temperature higher than the predetermined temperature, air is taken into the first layer 11 and an air layer is formed, so that the generated high heat is transmitted to the bus bar 1. suppressed, and the insulation performance is improved. Furthermore, melting of the bus bar 1 itself (that is, damage to the bus bar 1 due to high heat) can be effectively suppressed.
In addition, in order to effectively improve the heat insulation performance, it is preferable that the expansion coefficient of the first layer 11 is as large as possible, and the expansion coefficient is preferably 10% or more, and 13% or more with respect to the volume before expansion. More preferably, it is 15% or more.
 本実施形態のバスバー1は、膨張開始温度が所定の温度以上である絶縁材料を含む第1層11により、導電性材料を含むバスバー本体5を被覆したものであることから、電池の通常使用時(最大でも概ね100℃程度)においては、バスバー1の周囲における他の部品や機器との絶縁性を確保するための絶縁材として機能しつつ、電池の異常時(少なくとも300℃以上)においては、第1層11が膨張することにより、導通部との接触距離が大きくなり、短絡のリスクを下げることができる。 In the bus bar 1 of this embodiment, the bus bar body 5 containing a conductive material is covered with the first layer 11 containing an insulating material whose expansion start temperature is higher than a predetermined temperature, so that during normal use of the battery, the bus bar body 5 includes a conductive material. (approximately 100°C at most), it functions as an insulating material to ensure insulation from other parts and equipment around the bus bar 1, but when the battery is abnormal (at least 300°C or higher), By expanding the first layer 11, the contact distance with the conductive portion becomes larger, and the risk of short circuit can be lowered.
 また、絶縁性の更なる向上を考慮すれば、第1層11に用いる絶縁材料が、発泡剤及び結合剤を含むことが好ましく、より具体的には、第1層11に用いる絶縁材料が、発泡樹脂であることが好ましい。なお、絶縁材料が発泡剤及び結合剤を含むものであると、発泡した泡の中に空気が効果的に取り込まれることから、断熱性が効果的に期待できる。 In addition, in consideration of further improvement in insulation, it is preferable that the insulating material used for the first layer 11 contains a foaming agent and a binder, and more specifically, the insulating material used for the first layer 11 is Preferably, it is a foamed resin. Note that when the insulating material contains a foaming agent and a binder, air is effectively taken into the foamed foam, so that effective heat insulation properties can be expected.
 なお、上記所定の温度として、例えば膨張開始温度が300℃以上である絶縁材料の種類は特に制限はないが、絶縁材料が発泡剤を含む場合において、発泡剤は、アンモニウム塩、アミノ化合物及び塩素化パラフィンのうち少なくとも1つであることが好ましく、これらのうち少なくとも一部の組み合わせであってもよい。なお、アンモニウム塩として、リン酸アンモニウム、ポリリン酸アンモニウム、リン酸メラミンなどが例として挙げられる。また、アミノ化合物として、ジシアンアミド、尿素、メラミンなどが例として挙げられる。 There is no particular restriction on the type of insulating material whose expansion start temperature is 300°C or higher as the predetermined temperature, but in the case where the insulating material contains a foaming agent, the foaming agent may include ammonium salts, amino compounds, and chlorine. It is preferable to use at least one of the converted paraffins, and a combination of at least some of these may be used. Examples of ammonium salts include ammonium phosphate, ammonium polyphosphate, and melamine phosphate. Examples of amino compounds include dicyanamide, urea, and melamine.
 また、絶縁材料が結合剤を含む場合において、結合剤は、合成樹脂エマルジョン(水系)、アルキッド(溶剤系)、塩化ビニル樹脂(溶剤系)、ウレタン樹脂(溶剤系)及びエポキシ樹脂(溶剤系)のうち少なくとも1つであることが好ましく、これらのうち少なくとも一部の組み合わせであってもよい。 In addition, when the insulating material contains a binder, the binder may be a synthetic resin emulsion (water-based), alkyd (solvent-based), vinyl chloride resin (solvent-based), urethane resin (solvent-based), or epoxy resin (solvent-based). It is preferable to use at least one of these, and a combination of at least some of these may be used.
 さらに、結合剤としてのウレタン樹脂としては、ウレタンプレポリマーを挙げることができる。ウレタンプレポリマーは、ポリオール化合物と過剰のポリイソシアネート化合物とを反応させることによって得られ、分子末端にイソシアネート基を有するものである。 Further, examples of the urethane resin as a binder include urethane prepolymers. A urethane prepolymer is obtained by reacting a polyol compound with an excess polyisocyanate compound, and has an isocyanate group at the end of the molecule.
 ウレタンプレポリマーを構成するポリオール化合物としては、例えば、ポリエーテルポリオール、ポリエステルポリオール等が挙げられる。これらの重量平均分子量は通常300~5000(好ましくは500~3000)である。 Examples of the polyol compounds constituting the urethane prepolymer include polyether polyols, polyester polyols, and the like. The weight average molecular weight of these is usually 300 to 5,000 (preferably 500 to 3,000).
 また、ポリイソシアネート化合物としては、一般のポリウレタンの製造に用いられる脂肪族、脂環族又は芳香族ポリイソシアネートが挙げられる。具体的には、例えばテトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、1,4-シクロヘキサンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、メタキシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート等が挙げられる。 Further, examples of the polyisocyanate compound include aliphatic, alicyclic, or aromatic polyisocyanates used in the production of general polyurethanes. Specifically, for example, tetramethylene diisocyanate, hexamethylene diisocyanate, 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, meth Examples include xylylene diisocyanate and 4,4'-diphenylmethane diisocyanate.
 ポリオール化合物とポリイソシアネート化合物との反応比率は、ポリオール化合物中の水酸基に対して、ポリイソシアネート化合物中のイソシアネート基が過剰となる比率に設定すればよく、(NCO/OH)が1.2~2.2程度となるように設定することが好ましい。 The reaction ratio between the polyol compound and the polyisocyanate compound may be set so that the isocyanate groups in the polyisocyanate compound are in excess of the hydroxyl groups in the polyol compound, and (NCO/OH) is 1.2 to 2. It is preferable to set it to about .2.
 なお、上記発泡剤は、炭化層形成剤としても機能し得る。ここでいう炭化層形成剤は、炭化成分である上記した発泡樹脂のカーボン化を促進させる成分のことである。発泡樹脂が発泡した後、周囲を不活性ガス雰囲気として樹脂中の炭素を炭化させて炭化層を形成し、それ以上の燃焼を止める作用を有する。このような作用を有する化合物としては、上記したアンモニウム塩の1つであって、不活性ガスの発生作用が大きい、ポリリン酸アンモニウムであることが好ましい。ポリリン酸アンモニウム中のアンモニウム基から窒素ガスが生成し、空気中の酸素との接触を効果的に遮断する。 Note that the above foaming agent can also function as a carbonized layer forming agent. The carbonized layer forming agent herein refers to a component that promotes carbonization of the above-mentioned foamed resin, which is a carbonization component. After the foamed resin is foamed, the surrounding area is set to an inert gas atmosphere to carbonize the carbon in the resin to form a carbonized layer, which has the effect of stopping further combustion. The compound having such an effect is preferably ammonium polyphosphate, which is one of the above-mentioned ammonium salts and has a large inert gas generating effect. Nitrogen gas is generated from ammonium groups in ammonium polyphosphate, effectively blocking contact with oxygen in the air.
 なお、上記のとおり、絶縁被膜10に含まれる絶縁材料の膨張開始温度として、所定の温度以上、例えば300℃以上であるが、熱暴走を起こした電池セルからの高温や火炎に対する防炎効果をより高めるためには、膨張開始温度が550℃以下、又は540℃以下、又は530℃以下であることが好ましい。特に、絶縁材料が発泡剤を含む場合に、上述したような炭化層が形成されることで、より有効な防炎効果が期待できるものの、膨張開始温度が高すぎると、十分に発泡された表層に炭化層をうまく形成することができず、より有効な防炎効果が得られないおそれがある。したがって、絶縁被膜10に含まれる絶縁材料の膨張開始温度は、例えば300℃以上550℃以下の範囲とすることが好ましい。 As mentioned above, the expansion start temperature of the insulating material included in the insulating coating 10 is a predetermined temperature or higher, for example, 300° C. or higher, but the flame retardant effect against high temperatures and flames from battery cells that have experienced thermal runaway is limited. In order to further increase the temperature, the expansion start temperature is preferably 550°C or lower, 540°C or lower, or 530°C or lower. In particular, when the insulating material contains a foaming agent, a more effective flame retardant effect can be expected due to the formation of a carbonized layer as described above, but if the expansion start temperature is too high, the sufficiently foamed surface layer There is a risk that a carbonized layer may not be formed properly and a more effective flameproofing effect may not be obtained. Therefore, the expansion start temperature of the insulating material included in the insulating coating 10 is preferably in the range of, for example, 300° C. or more and 550° C. or less.
 なお、後述するように第1層11の形成のために塗布液を用いるが、ポリリン酸アンモニウムは、長時間放置しておくと塗布液内で分解が起こり、アンモニアガスを発生し、経時劣化して炭化層の形成性能の低下を起こしてしまうおそれがある。そこで、この経時変化を防ぐために、耐水性を有する樹脂で薄く被覆し、マイクロカプセル化することが好ましい。 As will be described later, a coating solution is used to form the first layer 11, but ammonium polyphosphate decomposes in the coating solution if left for a long time, generates ammonia gas, and deteriorates over time. There is a risk that the performance of forming a carbonized layer will deteriorate. Therefore, in order to prevent this change over time, it is preferable to thinly coat the material with a water-resistant resin and microcapsule it.
 さらに、第1層11は、更に炭化剤を含むことが好ましい。なお、炭化剤は、炭水化物及び多価アルコールのうち少なくとも1つであることが好ましく、これらのうち少なくとも一部の組み合わせであってもよい。第1層11が、上記した発泡剤及び結合剤に加え、更に炭化剤を含むことにより、例えば、発泡剤(兼、炭化形成剤)がポリリン酸アンモニウムであり、炭化剤が多価アルコールである場合に、第1層11の温度が250~300℃になったタイミングで、反応触媒としてのポリリン酸アンモニウムが分解し、生成したリン酸塩により、炭化剤である多価アルコールが分解し、更に脱水作用によって、より効果的に炭化層を形成し得る。 Furthermore, it is preferable that the first layer 11 further contains a carbonizing agent. Note that the carbonizing agent is preferably at least one of carbohydrates and polyhydric alcohols, and may be a combination of at least some of these. The first layer 11 further includes a carbonizing agent in addition to the above-described foaming agent and binder, so that, for example, the foaming agent (also carbonization forming agent) is ammonium polyphosphate and the carbonization agent is polyhydric alcohol. In this case, when the temperature of the first layer 11 reaches 250 to 300°C, ammonium polyphosphate as a reaction catalyst decomposes, and the polyhydric alcohol as a carbonizing agent decomposes with the generated phosphate. A carbonized layer can be formed more effectively by the dehydration action.
 なお、この反応と並行して、発泡剤であるポリリン酸アンモニウムが更に分解することで、アンモニアガス、水蒸気、炭酸ガス等が発生し、形成された炭化層を大幅に膨張させることで、断熱層を形成させる。 In addition, in parallel with this reaction, ammonium polyphosphate, which is a foaming agent, further decomposes, generating ammonia gas, water vapor, carbon dioxide gas, etc., and by significantly expanding the carbonized layer formed, the heat insulating layer to form.
 また、第1層11は、上記した発泡剤、結合剤(樹脂)、炭化剤の他にも、従来より耐熱性や難燃性の塗膜に含まれる各種の添加剤(例えば、無機粒子、有機高分子など)を含有してもよく、他の添加剤としては、難燃剤、分散剤、着色顔料(酸化チタンなど)、体質顔料が例として挙げられる。 In addition to the above-mentioned foaming agent, binder (resin), and carbonizing agent, the first layer 11 also contains various additives (for example, inorganic particles, Examples of other additives include flame retardants, dispersants, color pigments (titanium oxide, etc.), and extender pigments.
 続いて、第1層11における発泡剤及び結合剤の合計含有量は、被膜全量の0.5~1.8kg/mであることが好ましく、0.5~0.7kg/mであることがより好ましい。発泡剤及び結合剤の合計含有量、及び、炭化剤ともに、上記したそれぞれの下限値未満では、異常時の高温や火炎に対して十分な耐熱性が得られず、上記したそれぞれの上限値を超えたとしても、更なる耐熱性の向上を見込めない。 Subsequently, the total content of the foaming agent and the binder in the first layer 11 is preferably 0.5 to 1.8 kg/m 2 of the total amount of the coating, and is 0.5 to 0.7 kg/m 2 . It is more preferable. If the total content of the blowing agent and binder, as well as the carbonizing agent, is less than the respective lower limit values listed above, sufficient heat resistance against abnormal high temperatures and flames will not be obtained. Even if it exceeds this, no further improvement in heat resistance can be expected.
 また、第1層11の膜厚は、0.3mm以上であることが好ましく、0.4mm以上であることがより好ましい。後述する試験例に示すように、第1層11の膜厚が0.3mm未満では、電池の異常時における高温や火炎に対して十分な耐熱性が得られない。なお、第1層11の膜厚の上限には制限はなないが、必要以上に厚くなったとしても耐熱性の更なる向上は見込めなくなり、むしろ第1層11に亀裂が生じるなど膜質に不具合が見られるようになるため、第1層11の膜厚の上限としては2.0mmが適当である。 Furthermore, the thickness of the first layer 11 is preferably 0.3 mm or more, more preferably 0.4 mm or more. As shown in the test examples described below, if the thickness of the first layer 11 is less than 0.3 mm, sufficient heat resistance against high temperatures and flames during battery abnormalities cannot be obtained. Note that there is no upper limit to the thickness of the first layer 11, but even if it becomes thicker than necessary, no further improvement in heat resistance can be expected, and rather problems may occur in the film quality such as cracks in the first layer 11. 2.0 mm is appropriate as the upper limit of the film thickness of the first layer 11.
 続いて、第2層12は、所定の温度未満で溶融する樹脂を含む。したがって、融点又はガラス転移点が、所定の温度未満の樹脂であれば特に制限はない。なお、ここでいう所定の温度としては、上記した第1層11に含まれる絶縁材料が膨張を開始する所定の温度に対応して設定する必要がある。すなわち、例えば、第1層11に含まれる絶縁材料の膨張開始温度が300℃以上である場合には、第2層12に含まれる樹脂の溶融温度は300℃未満であればよく、また、第1層11に含まれる絶縁材料の膨張開始温度が350℃以上である場合には、第2層12に含まれる樹脂の溶融温度は350℃未満であればよい。
 言い換えれば、本実施形態に係るバスバー1の作用効果を奏するためには、第1層11に含まれる絶縁材料の膨張開始温度が、第2層12に含まれる樹脂の溶融温度よりも高いものである必要がある。
Subsequently, the second layer 12 includes a resin that melts below a predetermined temperature. Therefore, there is no particular restriction as long as the resin has a melting point or glass transition point below a predetermined temperature. Note that the predetermined temperature here needs to be set in accordance with the predetermined temperature at which the insulating material included in the first layer 11 starts to expand. That is, for example, if the expansion start temperature of the insulating material contained in the first layer 11 is 300°C or higher, the melting temperature of the resin contained in the second layer 12 may be less than 300°C; When the expansion start temperature of the insulating material contained in the first layer 11 is 350°C or higher, the melting temperature of the resin contained in the second layer 12 may be less than 350°C.
In other words, in order for the bus bar 1 according to the present embodiment to have the effects, the expansion start temperature of the insulating material included in the first layer 11 must be higher than the melting temperature of the resin included in the second layer 12. There needs to be.
 なお、上記したように、電池の通常使用時においても、バスバー1は100℃程度の高温になるため、第2層12に含まれる樹脂としては、融点又はガラス転移点が100℃以上の樹脂であることが好ましく、150℃以上の樹脂であることがより好ましく、200℃以上の樹脂であることが更に好ましい。 As mentioned above, even during normal use of the battery, the bus bar 1 reaches a high temperature of about 100°C, so the resin contained in the second layer 12 should be a resin with a melting point or glass transition point of 100°C or higher. The temperature is preferably 150°C or higher, more preferably 200°C or higher, and even more preferably 200°C or higher.
 また、第2層12は、積層体である絶縁被膜10の最表層になるため、耐熱温度が高い方が好ましい。具体的には、入手性や取扱性などを考慮すると、300℃未満で溶融する樹脂の例として、ポリエチレン(PE)やポリプロピレン(PP)、塩化ビニル(PVC)、AS樹脂(SAN)、ABS樹脂(ABS)、塩化ビニリデン樹脂(PVDC)、ポリアミド(PA)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、フッ素樹脂(PTFE)、フェノール樹脂(PF)、メラミン樹脂(MF)、ユリア樹脂(UF)、ポリウレタン(PUR)、エポキシ樹脂(EP)、不飽和ポリエステル樹脂(UP)、ナイロン6(PA6)、ナイロン66(PA66)などを挙げることができる。 Moreover, since the second layer 12 becomes the outermost layer of the insulating coating 10 which is a laminate, it is preferable that the second layer 12 has a high heat resistance temperature. Specifically, considering availability and handling, examples of resins that melt at temperatures below 300°C include polyethylene (PE), polypropylene (PP), vinyl chloride (PVC), AS resin (SAN), and ABS resin. (ABS), vinylidene chloride resin (PVDC), polyamide (PA), polyacetal (POM), polybutylene terephthalate (PBT), fluororesin (PTFE), phenolic resin (PF), melamine resin (MF), urea resin (UF) ), polyurethane (PUR), epoxy resin (EP), unsaturated polyester resin (UP), nylon 6 (PA6), nylon 66 (PA66), and the like.
 また、第2層12には、その他の材料を含有することができるが、下記で示すような、本実施形態に係るバスバー1の作用効果を妨げるものでなければ、特に制限されない。具体的には、例えば、難燃剤、着色剤、無機フィラー等を含めることができる。
 ただし、第2層12に含まれる所定の温度未満で溶融する樹脂は、第2層12中に主成分、すなわち第2層12全量の50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上であることが好ましい。
Further, the second layer 12 may contain other materials, but there are no particular limitations as long as they do not interfere with the effects of the bus bar 1 according to the present embodiment as shown below. Specifically, for example, flame retardants, colorants, inorganic fillers, etc. can be included.
However, the resin contained in the second layer 12 that melts below a predetermined temperature is the main component in the second layer 12, that is, 50% by mass or more, preferably 60% by mass or more, more preferably 60% by mass or more of the total amount of the second layer 12. It is preferably 70% by mass or more.
 なお、第2層12の膜厚は、特に制限されるものではないが、絶縁性の確保及び耐久性、膜質などを考慮すると、0.01~2.0mm、好ましくは0.1~1.0mmが適当である。 The thickness of the second layer 12 is not particularly limited, but in consideration of ensuring insulation, durability, film quality, etc., it is 0.01 to 2.0 mm, preferably 0.1 to 1.0 mm. 0 mm is appropriate.
 以上のとおり、本実施形態のバスバー1は、バスバー本体の表面に形成され、膨張開始温度が所定の温度以上である絶縁材料を含む第1層11と、第1層11の表面に形成され、上記所定の温度未満で溶融する樹脂を含む第2層12と、で構成された、積層体からなる絶縁被膜10により被覆されたものである。そのため、電池の通常使用時には、第2層12による安定した絶縁性能が機能して、電池セル110や他の部品との短絡を防ぐことができる。そして、電池の異常時には、第2層12が溶融・消失して第1層11が露出し、絶縁材料10が膨張し(絶縁材料10が、発泡樹脂である場合には、発泡して膨張し)、更に好ましくは炭化するため、熱暴走を起こした電池セル110からの高温や火炎から保護される。 As described above, the busbar 1 of the present embodiment includes the first layer 11 that is formed on the surface of the busbar body and includes an insulating material whose expansion start temperature is a predetermined temperature or higher, and the first layer 11 that is formed on the surface of the first layer 11. A second layer 12 containing a resin that melts below the predetermined temperature is coated with an insulating coating 10 made of a laminate. Therefore, during normal use of the battery, the stable insulation performance of the second layer 12 functions to prevent short circuits with the battery cells 110 and other components. When the battery is abnormal, the second layer 12 melts and disappears, the first layer 11 is exposed, and the insulating material 10 expands (if the insulating material 10 is a foamed resin, it foams and expands). ), more preferably carbonized, so that it is protected from high temperatures and flames from the battery cells 110 that have experienced thermal runaway.
[バスバーの製造方法]
 バスバー1を製造するには、まず、少なくとも上記した膨張開始温度が所定の温度以上、例えば300℃以上で膨張する絶縁材料、好ましくは発泡剤及び結合剤、更に好ましくは炭化剤、そして、必要に応じて、その他の添加剤を秤量し、分散媒としてのシンナーに加え、十分に混合して、第1の塗布液を調製する。続いて、バスバー本体5における接続孔6a,6b(図1参照)の周囲をマスキングし、上記第1の塗布液を塗布した後、塗膜を乾燥させて、本実施形態に係る絶縁被膜10中における第1層11を形成する。
 また、第1層11を形成する前において、バスバー本体5の表面に、防錆用途向けの下塗り材を所定の厚みになるように刷毛を用いて塗布した後、塗膜を乾燥させて、下塗り塗膜を形成し、その下塗り塗膜の上に、第1層11を形成するのであってもよい。
[Busbar manufacturing method]
To manufacture the bus bar 1, first, an insulating material that expands at least the above-mentioned expansion start temperature is higher than a predetermined temperature, for example, 300° C. or higher, preferably a foaming agent and a binder, more preferably a carbonizing agent, and, if necessary, Accordingly, other additives are weighed, added to the thinner as a dispersion medium, and thoroughly mixed to prepare the first coating liquid. Subsequently, the area around the connection holes 6a and 6b (see FIG. 1) in the busbar body 5 is masked, and the first coating liquid is applied, and then the coating film is dried to form the inside of the insulating coating 10 according to the present embodiment. The first layer 11 is formed.
Furthermore, before forming the first layer 11, an undercoat material for anti-corrosion purposes is applied to the surface of the bus bar body 5 using a brush to a predetermined thickness, and then the coating film is dried and an undercoat material is applied. A coating film may be formed, and the first layer 11 may be formed on the undercoat coating film.
 第1の塗布量としては、乾燥後の膜厚(すなわち、第1層11の膜厚)が0.3mm以上、好ましくは0.4mm以上となるように調整する。 The first coating amount is adjusted so that the film thickness after drying (that is, the film thickness of the first layer 11) is 0.3 mm or more, preferably 0.4 mm or more.
 ここで、上記でいう乾燥とは、加熱処理による塗膜の硬化処理のみならず、常温での自然乾燥による塗膜の硬化処理も含まれる。また、乾燥に際して、絶縁材料が発泡して膨張しない温度、例えば硬化処理を促進させるために100℃程度に加熱してもよい。 Here, the drying mentioned above includes not only the hardening treatment of the coating film by heat treatment, but also the hardening treatment of the coating film by natural drying at room temperature. Further, during drying, the insulating material may be heated to a temperature at which it does not foam and expand, for example, to about 100° C. in order to accelerate the curing process.
 そして、少なくとも上記した所定の温度未満、例えば300℃未満で溶融する樹脂、必要に応じて他の添加剤を秤量し、分散媒としてのシンナーに加え、十分に混合して、第2の塗布液を調製する。そして、第1層11の表面に第2の塗布液を塗布し、塗膜を乾燥させて、本実施形態に係る絶縁被膜10中における第2層12を形成し、積層体からなる絶縁被膜10が、バスバー本体5の表面に形成され、バスバー1が完成する。 Then, a resin that melts at least below the above-mentioned predetermined temperature, for example, below 300°C, and other additives as necessary are weighed, added to thinner as a dispersion medium, and thoroughly mixed to form a second coating liquid. Prepare. Then, the second coating liquid is applied to the surface of the first layer 11 and the coating film is dried to form the second layer 12 in the insulating coating 10 according to the present embodiment. is formed on the surface of the busbar body 5, and the busbar 1 is completed.
 なお、第1の塗布液及び第2の塗布液ともに、その塗布方法には制限はなく、刷毛やロールコータ、スプレー等を用いて塗布したり、各塗布液にバスバー本体5を浸漬するなど種々の方法が可能である。 There are no restrictions on the method of applying both the first coating liquid and the second coating liquid, and there are various methods such as applying with a brush, roll coater, spray, etc., or dipping the bus bar body 5 in each coating liquid. This method is possible.
 なお、上記特許文献1のように雲母シートを巻き付ける方法では、巻き付け作業が必要であり、特に屈曲部5aや湾曲部に巻きムラや隙間が生じないようにするには、巻き付け作業に手間がかかる。また、振動などにより隙間が生じたり、粘着剤が剥離することなどが想定される。しかし、本発明では塗布により第1層11及び第2層12を形成するため、そのような問題は起こらない。 In addition, the method of winding the mica sheet as in Patent Document 1 requires a winding operation, and the winding operation is particularly time-consuming in order to prevent uneven winding or gaps from occurring at the bent portion 5a or the curved portion. . Furthermore, it is assumed that a gap may be created due to vibration or the like, or that the adhesive may peel off. However, in the present invention, such a problem does not occur because the first layer 11 and the second layer 12 are formed by coating.
 なお、バスバー1は、発熱すると導電率が低下するため、それが適用される電池セルや電池パック(電池モジュール)の性能を低下させるおそれがあるが、本実施形態に係るバスバー1の製造方法のような、上記第1の塗布液及び第2の塗布液を塗布することにより絶縁被膜10(すなわち、第1層11及び第2層12)を形成する方法にあっては、絶縁被膜10を薄く形成することが可能であって、電池の通常使用時におけるバスバー1の効果的な放熱により、電池セルや電池モジュール全体の性能低下を軽減させることができる。 Note that the conductivity of the bus bar 1 decreases when it generates heat, which may reduce the performance of battery cells and battery packs (battery modules) to which it is applied. In the method of forming the insulating coating 10 (i.e., the first layer 11 and the second layer 12) by applying the first coating liquid and the second coating liquid, the insulating coating 10 is thinly coated. Due to the effective heat dissipation of the bus bar 1 during normal use of the battery, deterioration in the performance of the battery cells and the battery module as a whole can be reduced.
 また、絶縁被膜10が薄膜化できることにより、バスバー1全体が占める体積が大きくなりすぎず、電池パック内のバッテリースペースを有効に活用でき、電池パックの容量向上にも貢献し得る。 Furthermore, since the insulating coating 10 can be made thinner, the volume occupied by the entire busbar 1 does not become too large, and the battery space within the battery pack can be effectively utilized, contributing to an increase in the capacity of the battery pack.
[蓄電装置]
 図7に示すように、蓄電装置100は、複数の電池セル110を、電池ケース120に収容したものである。そして、隣接する電池セル110と電池セル110とを上記バスバー1で接続している。
[Power storage device]
As shown in FIG. 7, power storage device 100 includes a plurality of battery cells 110 housed in a battery case 120. Adjacent battery cells 110 are connected by the bus bar 1.
 バスバー1は、上記絶縁被膜10で被覆したものであり、ある電池セル110が熱暴走を起こしても、バスバー1を保護できるとともに、バスバー1を介して隣接する電池セル110への熱暴走の連鎖を防ぐことができる。
 よって、本実施形態の蓄電装置は、このようなバスバー1により複数の電池セル110やモジュール(図示せず)を接続しているため、異常時においても高い安全性を示す。
The bus bar 1 is coated with the above-mentioned insulating coating 10, so that even if a certain battery cell 110 causes thermal runaway, the bus bar 1 can be protected, and the chain of thermal runaway to the adjacent battery cell 110 via the bus bar 1 can be prevented. can be prevented.
Therefore, since the power storage device of the present embodiment connects a plurality of battery cells 110 and modules (not shown) through such a bus bar 1, it exhibits high safety even in the event of an abnormality.
 本実施形態に係るバスバー1の構成要素の1つである第1層11の絶縁材料の効果を検証するために、以下の試験を行った。 In order to verify the effect of the insulating material of the first layer 11, which is one of the components of the bus bar 1 according to the present embodiment, the following test was conducted.
(実施例1~4)
 バスバー本体に見立てた一辺が100mmで、厚さ2mmのアルミニウム板の片面に、SKタイカコート下塗り材(防錆用途向け)を0.05mm程度の厚みになるように刷毛を用いて塗布し、乾燥させた。そして、形成された下塗り塗膜の上に、絶縁被膜としてSK化研(株)製「タイカコート」を、スクレーバーを用いて表1に示す膜厚(「絶縁被膜の厚み(mm)」欄の「火炎照射前」を参照)となるようにそれぞれ形成して、サンプルを作製した。
(Examples 1 to 4)
Apply SK Taica Coat undercoat (for rust prevention) to one side of an aluminum plate with a side of 100 mm and a thickness of 2 mm to a thickness of about 0.05 mm using a brush and let it dry. Ta. Then, on the formed undercoat film, "Taika Coat" manufactured by SK Kaken Co., Ltd. is applied as an insulating film using a scraper to a film thickness shown in Table 1 ("Insulating film thickness (mm)" column). (See "Before Flame Irradiation") to prepare samples.
(比較例1~3)
 実施例と同一のアルミニウム板の片面に、絶縁材料として、比較例1では、(株)日本マイカ製作所製の厚み0.11mmのマイカテープを2重に重ねて粘着し、全厚0.22mmの絶縁被膜を形成してサンプルを作製した。
 比較例2では、下層として岡部マイカ(株)製「D680A」の厚み0.3mmのシート及び上層として同マイカテープ(厚み0.11mm)を2重に重ねて粘着し、全厚0.52mmの絶縁被膜を形成してサンプルを作製した。
 比較例3では、岡部マイカ(株)製「D680A」の厚み0.5mmのシート及び上層として同マイカテープを(厚み0.11mm)2重に重ねて粘着し、全厚0.72mmの絶縁被膜を形成してサンプルを作製した。
(Comparative Examples 1 to 3)
In Comparative Example 1, mica tape with a thickness of 0.11 mm manufactured by Nippon Mica Seisakusho Co., Ltd. was adhered in double layers to one side of the same aluminum plate as in the example as an insulating material, and a total thickness of 0.22 mm was applied. A sample was prepared by forming an insulating film.
In Comparative Example 2, a sheet of "D680A" manufactured by Okabe Mica Co., Ltd. with a thickness of 0.3 mm was used as the lower layer and the same mica tape (thickness: 0.11 mm) was layered and adhered as the upper layer, and the total thickness was 0.52 mm. A sample was prepared by forming an insulating film.
In Comparative Example 3, a 0.5 mm thick sheet of "D680A" manufactured by Okabe Mica Co., Ltd. and the same mica tape (0.11 mm thick) as an upper layer were stacked and adhered to form an insulating coating with a total thickness of 0.72 mm. A sample was prepared by forming a
(耐熱性試験)
 サンプルを立て、絶縁被膜を形成した面(表面)に対して、100mm離れた位置にてバーナーから火炎を照射し、1100℃になるように火炎の大きさを調整した。そして、サンプルの絶縁被膜を形成した面とは反対側の面(裏面)の温度(℃)を測定した。
(Heat resistance test)
The sample was stood up, and a flame was irradiated from a burner at a distance of 100 mm from the surface on which the insulating film was formed, and the size of the flame was adjusted so that the temperature was 1100°C. Then, the temperature (° C.) of the surface of the sample opposite to the surface on which the insulating film was formed (back surface) was measured.
 また、火炎照射の前後における絶縁被膜の厚さ(mm)を、ダイアルゲージを用いて測定し、膨張率(%)を求めた。 Additionally, the thickness (mm) of the insulating coating before and after flame irradiation was measured using a dial gauge, and the expansion rate (%) was determined.
 実施例及び比較例の各サンプルの絶縁被膜の構成とともに、膨張率及び裏面温度の測定結果を、表1にまとめて示す。また、火炎照射時の裏面温度(℃)を図3に、絶縁被膜の火炎照射前後の膜厚(mm)を図4に、それぞれグラフ化して示す。 Table 1 summarizes the structure of the insulating coating of each sample of the example and comparative example, as well as the measurement results of the expansion coefficient and back surface temperature. Further, the back surface temperature (° C.) during flame irradiation is shown in FIG. 3, and the film thickness (mm) of the insulating coating before and after flame irradiation is shown in graph form in FIG. 4, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1、図3及び図4に示すように、実施例1~4の各サンプルは、比較例1~3の各サンプルに比べて、火炎照射前後での膜厚の厚みの変化、すなわち熱膨張率が大きく、裏面温度が低くなっており、断熱性に優れることがわかる。また、絶縁被膜の膜厚として、0.3mm以上が好ましく、0.4mm以上がより好ましいといえる。 As shown in Table 1, FIG. 3, and FIG. 4, each sample of Examples 1 to 4 has a change in film thickness before and after flame irradiation, that is, thermal expansion, compared to each sample of Comparative Examples 1 to 3. It can be seen that the ratio is large and the back surface temperature is low, indicating that it has excellent heat insulation properties. Further, the thickness of the insulating film is preferably 0.3 mm or more, and more preferably 0.4 mm or more.
 また、図5に、実施例1(同図(A))及び比較例1(同図(B))の各サンプルの絶縁被膜を、火炎照射後に撮影した写真を示す。図5(A)に示すように、実施例1のサンプルでは、絶縁被膜が発泡し、更に炭化して全面が黒くなっている。 Further, FIG. 5 shows photographs of the insulation coatings of the samples of Example 1 ((A) in the same figure) and Comparative Example 1 ((B) in the same figure) taken after flame irradiation. As shown in FIG. 5(A), in the sample of Example 1, the insulating coating was foamed and further carbonized, so that the entire surface became black.
 図6は、火炎照射後に実施例1のサンプルの側面を撮影した写真であるが、アルミニウム板の表面に絶縁被膜が残存し、その上の黒い部分が発泡、そして炭化して、層状を呈している。 Figure 6 is a photograph taken of the side surface of the sample of Example 1 after irradiation with flame, and it shows that the insulation film remains on the surface of the aluminum plate, and the black part on it foams and carbonizes, forming a layered structure. There is.
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above, it goes without saying that the present invention is not limited to such examples. It is clear that those skilled in the art can come up with various changes or modifications within the scope of the claims, and these naturally fall within the technical scope of the present invention. Understood. Further, each of the constituent elements in the above embodiments may be arbitrarily combined without departing from the spirit of the invention.
 なお、本出願は、2022年7月29日出願の日本特許出願(特願2022-122199)に基づくものであり、その内容は本出願の中に参照として援用される。 Note that this application is based on a Japanese patent application (Japanese Patent Application No. 2022-122199) filed on July 29, 2022, and the contents thereof are incorporated as a reference in this application.
1 バスバー
5 バスバー本体
6a,6b 接続孔
10 絶縁被膜
11 第1層
12 第2層
100 蓄電装置
110 電池セル
111 電極
120 電池ケース
1 Busbar 5 Busbar bodies 6a, 6b Connection hole 10 Insulating coating 11 First layer 12 Second layer 100 Power storage device 110 Battery cell 111 Electrode 120 Battery case

Claims (20)

  1.  電池セルを含む蓄電装置に用いられるバスバーであって、
     導電性材料を含むバスバー本体が、
     前記バスバー本体の表面に形成され、膨張開始温度が所定の温度以上である絶縁材料を含む第1層と、前記第1層の表面に形成され、前記所定の温度未満で溶融する樹脂を含む第2層と、で構成される絶縁被膜により被覆されてなることを特徴とする、バスバー。
    A bus bar used in a power storage device including a battery cell,
    The busbar body containing conductive material is
    a first layer formed on the surface of the bus bar body and containing an insulating material whose expansion start temperature is equal to or higher than a predetermined temperature; and a first layer formed on the surface of the first layer and containing a resin that melts below the predetermined temperature. A busbar characterized by being coated with an insulating coating consisting of two layers.
  2.  前記絶縁材料は、発泡剤及び結合剤を含むことを特徴とする、請求項1に記載のバスバー。 The busbar according to claim 1, wherein the insulating material includes a foaming agent and a binder.
  3.  前記発泡剤は、アンモニウム塩、アミノ化合物及び塩素化パラフィンのうち少なくとも1つであることを特徴とする、請求項2に記載のバスバー。 The busbar according to claim 2, wherein the blowing agent is at least one of an ammonium salt, an amino compound, and a chlorinated paraffin.
  4.  前記結合剤は、合成樹脂エマルジョン、アルキッド、塩化ビニル樹脂、ウレタン樹脂及びエポキシ樹脂のうち少なくとも1つであることを特徴とする、請求項2に記載のバスバー。 The bus bar according to claim 2, wherein the binder is at least one of a synthetic resin emulsion, an alkyd, a vinyl chloride resin, a urethane resin, and an epoxy resin.
  5.  前記絶縁材料は、更に炭化剤を含むことを特徴とする、請求項2に記載のバスバー。 The bus bar according to claim 2, wherein the insulating material further includes a carbonizing agent.
  6.  前記炭化剤は、炭水化物及び多価アルコールのうち少なくとも1つであることを特徴とする、請求項5に記載のバスバー。 The bus bar according to claim 5, wherein the carbonizing agent is at least one of carbohydrates and polyhydric alcohols.
  7.  前記発泡剤がポリリン酸アンモニウムであり、前記結合剤がウレタン樹脂であり、前記炭化剤が多価アルコールであることを特徴とする、請求項5に記載のバスバー。 The bus bar according to claim 5, wherein the foaming agent is ammonium polyphosphate, the binder is a urethane resin, and the carbonizing agent is a polyhydric alcohol.
  8.  前記所定の温度は、300℃であることを特徴とする、請求項1~7のいずれか1項に記載のバスバー。 The bus bar according to any one of claims 1 to 7, wherein the predetermined temperature is 300°C.
  9.  前記絶縁被膜の厚さが、0.3mm以上であることを特徴とする、請求項1~7のいずれか1項に記載のバスバー。 The bus bar according to any one of claims 1 to 7, wherein the thickness of the insulating coating is 0.3 mm or more.
  10.  前記絶縁被膜の厚さが、0.3mm以上であることを特徴とする、請求項8に記載のバスバー。 The bus bar according to claim 8, wherein the thickness of the insulating coating is 0.3 mm or more.
  11.  電池セルを含む蓄電装置に用いられるバスバーの製造方法であって、
     導電性材料を含むバスバー本体の表面に、膨張開始温度が所定の温度以上である絶縁材料を含む第1の塗布液を塗布した後、乾燥させて、第1層を形成し、
     前記第1層の表面に、前記所定の温度未満で溶融する樹脂を含む第2の塗布液を塗布した後、乾燥させて、第2層を形成することを特徴とする、バスバーの製造方法。
    A method for manufacturing a bus bar used in a power storage device including a battery cell, the method comprising:
    After applying a first coating liquid containing an insulating material whose expansion start temperature is a predetermined temperature or higher on the surface of a bus bar body containing a conductive material, the first coating liquid is dried to form a first layer;
    A method for manufacturing a bus bar, comprising applying a second coating liquid containing a resin that melts at a temperature lower than the predetermined temperature to the surface of the first layer, and then drying the liquid to form a second layer.
  12.  前記絶縁材料は、発泡剤及び結合剤を含むことを特徴とする、請求項11に記載のバスバーの製造方法。 12. The method of manufacturing a bus bar according to claim 11, wherein the insulating material includes a foaming agent and a binder.
  13.  前記絶縁材料は、更に炭化剤を含むことを特徴とする、請求項12に記載のバスバーの製造方法。 13. The bus bar manufacturing method according to claim 12, wherein the insulating material further includes a carbonizing agent.
  14.  前記所定の温度は、300℃であることを特徴とする、請求項11~13のいずれか1項に記載のバスバーの製造方法。 The method for manufacturing a busbar according to any one of claims 11 to 13, wherein the predetermined temperature is 300°C.
  15.  前記塗布液を、乾燥後の膜厚が0.3mm以上となるように塗布することを特徴とする、請求項11~13のいずれか1項に記載のバスバーの製造方法。 The method for manufacturing a bus bar according to any one of claims 11 to 13, characterized in that the coating liquid is applied so that the film thickness after drying is 0.3 mm or more.
  16.  前記塗布液を、乾燥後の膜厚が0.3mm以上となるように塗布することを特徴とする、請求項14に記載のバスバーの製造方法。 15. The bus bar manufacturing method according to claim 14, wherein the coating liquid is applied so that the film thickness after drying is 0.3 mm or more.
  17.  複数の電池セル又は電池モジュールを、請求項1~7のいずれか1項に記載のバスバーで接続した、蓄電装置。 A power storage device in which a plurality of battery cells or battery modules are connected by the bus bar according to any one of claims 1 to 7.
  18.  複数の電池セル又は電池モジュールを、請求項8に記載のバスバーで接続した、蓄電装置。 A power storage device in which a plurality of battery cells or battery modules are connected by the bus bar according to claim 8.
  19.  複数の電池セル又は電池モジュールを、請求項9に記載のバスバーで接続した、蓄電装置。 A power storage device in which a plurality of battery cells or battery modules are connected by the bus bar according to claim 9.
  20.  複数の電池セル又は電池モジュールを、請求項10に記載のバスバーで接続した、蓄電装置。 A power storage device in which a plurality of battery cells or battery modules are connected by the bus bar according to claim 10.
PCT/JP2023/027871 2022-07-29 2023-07-28 Bus bar, manufacturing method of same, and power storage device WO2024024976A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-122199 2022-07-29
JP2022122199A JP7518133B2 (en) 2022-07-29 2022-07-29 Busbar, manufacturing method thereof, and power storage device

Publications (1)

Publication Number Publication Date
WO2024024976A1 true WO2024024976A1 (en) 2024-02-01

Family

ID=89706700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027871 WO2024024976A1 (en) 2022-07-29 2023-07-28 Bus bar, manufacturing method of same, and power storage device

Country Status (2)

Country Link
JP (1) JP7518133B2 (en)
WO (1) WO2024024976A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193296A (en) * 1997-09-24 1999-04-06 Nippon Zeri Kk Foaming inorganic fire resistant covering material, and fire resistant covering construction method of steel frame
JP2015220025A (en) * 2014-05-15 2015-12-07 三菱自動車工業株式会社 Bus bar for battery connection
WO2021218775A1 (en) * 2020-04-27 2021-11-04 比亚迪股份有限公司 Copper bar protection structure, battery pack, and electric vehicle
WO2021230489A1 (en) * 2020-05-15 2021-11-18 주식회사 엘지에너지솔루션 Busbar providing excellent fire safety

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107201A (en) 2012-11-29 2014-06-09 Yazaki Corp Conduction member and manufacturing method of conduction member
JP2018195490A (en) 2017-05-18 2018-12-06 三菱自動車工業株式会社 Production method of conductive connector
JP7006051B2 (en) 2017-09-08 2022-02-10 日産自動車株式会社 Battery pack, conductive and protective members

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193296A (en) * 1997-09-24 1999-04-06 Nippon Zeri Kk Foaming inorganic fire resistant covering material, and fire resistant covering construction method of steel frame
JP2015220025A (en) * 2014-05-15 2015-12-07 三菱自動車工業株式会社 Bus bar for battery connection
WO2021218775A1 (en) * 2020-04-27 2021-11-04 比亚迪股份有限公司 Copper bar protection structure, battery pack, and electric vehicle
WO2021230489A1 (en) * 2020-05-15 2021-11-18 주식회사 엘지에너지솔루션 Busbar providing excellent fire safety

Also Published As

Publication number Publication date
JP2024018703A (en) 2024-02-08
JP7518133B2 (en) 2024-07-17

Similar Documents

Publication Publication Date Title
EP3254331B1 (en) Systems, structures and materials for electrochemical device thermal management
US20190393573A1 (en) Systems, structures and materials for electrochemical device thermal management
US11749849B2 (en) Battery module with filler-containing cured resin layers
EP3680952B1 (en) Method for manufacturing battery module
EP2629348B1 (en) Exterior material for lithium ion battery
CN101855745B (en) Packing material for lithium battery and method for manufacturing the same
JP4440573B2 (en) Adhesive film for sealing lithium battery metal terminals
TW202109940A (en) An intumescent battery pad, a method of making the same, and a battery assembly and battery comprising the same
WO2020203684A1 (en) Lithium ion battery stack
EP3128568A1 (en) Outer casing material for lithium batteries
EP3098875B1 (en) Exterior material for power storage device and power storage device
KR20160130240A (en) Sheathing material for lithium batteries
CN110998895A (en) Outer packaging material for electricity storage device
US20240243389A1 (en) Electrical Energy Storage Device
WO2020184693A1 (en) Outer package material for all-solid-state batteries, method for producing same and all-solid-state battery
WO2024024976A1 (en) Bus bar, manufacturing method of same, and power storage device
US12095059B2 (en) Thermal barrier components including hydrates for mitigating thermal runaway in batteries
US20230087017A1 (en) Thermal barrier component for mitigating thermal runaway in batteries
EP3439067B1 (en) Exterior material for power storage device and method for manufacturing exterior material for power storage device
JP5549181B2 (en) Exterior materials for lithium-ion batteries
WO2024024975A1 (en) Bus bar, method for producing same, and power storage device
EP4287365A1 (en) Aluminum pouch film for secondary battery, and manufacturing method therefor
WO2024071275A1 (en) Bus bar and method for manufacturing same, and electric power storage device
CN117529845A (en) Packaging material for power storage device
EP3670559A1 (en) Resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846706

Country of ref document: EP

Kind code of ref document: A1