JPH1193296A - Foaming inorganic fire resistant covering material, and fire resistant covering construction method of steel frame - Google Patents

Foaming inorganic fire resistant covering material, and fire resistant covering construction method of steel frame

Info

Publication number
JPH1193296A
JPH1193296A JP27806197A JP27806197A JPH1193296A JP H1193296 A JPH1193296 A JP H1193296A JP 27806197 A JP27806197 A JP 27806197A JP 27806197 A JP27806197 A JP 27806197A JP H1193296 A JPH1193296 A JP H1193296A
Authority
JP
Japan
Prior art keywords
fire resistant
fire
foaming
silicate
resistant covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27806197A
Other languages
Japanese (ja)
Inventor
Yasusuke Isaka
保右 井坂
Yoshitaka Niwa
嘉孝 丹羽
Toru Kihara
亨 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ZERI KK
Original Assignee
NIPPON ZERI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ZERI KK filed Critical NIPPON ZERI KK
Priority to JP27806197A priority Critical patent/JPH1193296A/en
Publication of JPH1193296A publication Critical patent/JPH1193296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure an excellent work environment, and improve the working efficiency by including silicate and fine powdery silica, and constituting it by adding a hardening agent, a thicker and a stabilizer thereto. SOLUTION: Silicate of 25 to 75 wt.% in solid content conversion and fine powdery silica of 1 to 40 wt.% are used as a main component, and a foaming inorganic fire resistant covering material is constituted by adding 0.5 to 40 wt.% of a hardening agent, 0.2 to 30 wt.% of a thickner and 0.2 to 15 wt.% of a stabilizer to this. Next, when a using quantity of slicate is smaller than 25%, a foaming height at a fire reduces, and fire resistant performance reduces, and when it exceeds 75%, a softening point of a foaming film reduces, and the fire resistant performance reduces since the foaming film tears and sags when a fire is caused. Next, the foaming inorganic fire resistant covering material is directly applied to a steel frame by trowel application. Therefore, the foaming inorganic fire resistant covering material is a high viscosity paste shape, and does not generate dust at all at an execution work site, and an excellent work environment is secured, and execution work can be performed only by applying it, and the working efficiency can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建築物の鉄骨を火災時
の高温から保護する新規な発泡性無機耐火被覆材及び鉄
骨の耐火被覆工法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel foamable inorganic refractory coating material for protecting a steel frame of a building from high temperatures in a fire, and a method for refractory coating a steel frame.

【0002】[0002]

【従来の技術】建築物の構造用部材である鉄骨は不燃材
料ではあるが、火災などで高温にさらされて450℃以
上に加熱されると、弾性係数と降伏点が急激に低下して
荷重に耐えられなくなり変形する。そのために、建築基
準法では鉄骨建築物の鉄骨柱や梁は耐火構造にすべきこ
とを定めており、現在では種々な耐火被覆工法が行われ
ている。尚、建築基準法では、耐火被覆に1時間耐火
(炉内温度をJIS A1304の標準加熱温度で加熱
し、1時間後鉄骨温度は350℃以下を保つ)、15階
以上の高層建物の場合は3時間耐火の性能を要求してお
り、しかも、耐火被覆は試験後外観を残しており、且つ
5Kgの球を落下させる衝撃試験をクリアすることが要
求されている。
2. Description of the Related Art Steel frames, which are structural members of buildings, are nonflammable materials. However, when they are exposed to high temperatures due to fire or the like and heated to 450 ° C. or more, the elastic modulus and yield point sharply decrease, and the load increases. It becomes intolerable and deforms. For this purpose, the Building Standards Law stipulates that steel columns and beams in steel buildings should be fire-resistant, and various fire-resistant coating methods are currently being used. In addition, according to the Building Standards Law, the fireproof coating is fire resistant for 1 hour (the furnace temperature is heated to the standard heating temperature of JIS A1304, and after 1 hour, the steel frame temperature is maintained at 350 ° C or less). It is required to have a fire resistance performance of 3 hours, and furthermore, it is required that the refractory coating has an appearance after the test and clears an impact test in which a ball of 5 kg is dropped.

【0003】ところで、従来多く使われている耐火被覆
材には、吹き付けロックウール、吹き付けモルタル、吹
き付け石膏、吹き付けシリカ、アルミナ系などがある。
これらの耐火被覆材の1時間耐火の吹き付け厚さは、2
0〜40mmである。また、ケイ酸カルシウム板、AL
C板、PC板、石膏板などを貼り付ける成形板貼り工法
も広く行われているが、1時間耐火の板の厚みも同様に
20〜40mmである。
[0003] By the way, fireproof coating materials that have been widely used in the past include sprayed rock wool, sprayed mortar, sprayed gypsum, sprayed silica, and alumina-based.
The one-hour refractory spray thickness of these refractory coatings is 2
0 to 40 mm. In addition, calcium silicate plate, AL
A molded board sticking method of sticking a C board, a PC board, a gypsum board or the like is also widely performed, but the thickness of the one-hour fireproof board is also 20 to 40 mm.

【0004】[0004]

【発明が解決しようとする課題】このように、吹き付け
材による耐火被覆は低コストで作業能率の良い耐火被覆
工法ではあるが、十分な耐火性能を得るためには吹き付
け皮膜を厚くしなければならない。また、吹き付けられ
た耐火材の表面は凹凸が大きく、品質面でも均一な耐火
被覆が得られないうえ美観に欠け、鉄骨表面に安定して
固着した耐火被覆が得られにくい。これに加えて、ロッ
クウールの粉塵やスプレーミストの飛散などの作業環境
上の問題や、粉塵やスプレーミストの皮膚への付着や刺
激、口腔からの吸入などによる作業者の健康管理上の問
題があり、加えて廃棄物の発生などの問題が多発してお
り、早急な解決が強く要望されている。しかし、粉塵の
防止対策は無いのが現状である。
As described above, the refractory coating using a spraying material is a low-cost, high-efficiency refractory coating method, but in order to obtain sufficient refractory performance, the spray coating must be thickened. . In addition, the surface of the sprayed refractory material has large irregularities, so that a uniform refractory coating cannot be obtained in terms of quality and lacks aesthetics, and it is difficult to obtain a refractory coating stably fixed to the steel frame surface. In addition, problems in the working environment, such as the scattering of rock wool dust and spray mist, and problems in worker health management due to dust and spray mist adhering and irritating to the skin and inhalation from the oral cavity. In addition, problems such as generation of waste frequently occur, and an urgent solution is strongly demanded. However, there are no measures to prevent dust.

【0005】一方、成形板による耐火被覆は、ケイ酸カ
ルシウム板、ALC板、PC板、石膏板などの成形板を
鉄骨の形状に合わせて寸法切りし、釘打ちなどで鉄骨の
周囲に貼り付け固定するものである。従って、均一な厚
みの耐火性能に優れた耐火被覆が得られ、H形鋼のエッ
ジ部の膜厚も確実に確保される。但し、耐火被覆層の厚
みは吹き付け工法の場合とかわりはない。しかし、ケイ
酸カルシウム板などの成形板は、硬質のためその切断作
業には多くの労力を必要とするし、その組立てや釘打ち
作業、成形板の隙間の充填作業も手間がかかり作業性が
非常に悪い欠点がある。また、重量のある成型板の運搬
は作業者に大きな負担をかける。しかも、成形板から出
る粉塵、成形板の切削加工から出る粉塵などが作業者を
悩ましていることには、前記吹き付け工法と変わりは無
く、同様に作業環境上や健康管理上の問題がある。更
に、セメント板、セッコウボード等は耐火試験でひび割
れ崩壊を起こすなどの問題がある。
[0005] On the other hand, fireproof coating with a molded plate is performed by cutting a molded plate such as a calcium silicate plate, an ALC plate, a PC plate, or a gypsum plate according to the shape of a steel frame, and pasting it around the steel frame by nailing or the like. It is fixed. Accordingly, a fire-resistant coating having a uniform thickness and excellent fire-resistance performance can be obtained, and the thickness of the edge portion of the H-section steel can be reliably ensured. However, the thickness of the refractory coating layer is not different from the case of the spraying method. However, since a molded plate such as a calcium silicate plate is hard, a large amount of labor is required for the cutting work, and the assembling, nailing, and filling work of the gap of the formed plate are troublesome and workability is increased. There are very bad drawbacks. In addition, transporting a heavy molded plate puts a heavy burden on an operator. Moreover, the fact that dust from the molded plate, dust from the cutting of the molded plate, etc. bothers the operator is no different from the above-mentioned spraying method, and similarly has problems in the working environment and health management. Further, cement boards, gypsum boards, and the like have problems such as cracking and collapse in fire resistance tests.

【0006】また、近年は上記した問題を解決するもの
として、発泡性耐火塗料を建築物の鉄骨に塗布し、耐火
材としての使用が試みられている。発泡性耐火塗料は、
火災発生時に発泡層を形成し、鉄骨の温度上昇を遅延さ
せるものである。発泡性耐火塗料は、ベースコートとト
ップシールから成り立っている。鉄骨に錆止め塗装を施
した上にベースコートを1.0〜1.5mmの厚さに塗布す
る。この塗膜は、加熱されると十数倍に発泡膨潤して炭
化層を形成する。これが断熱性を発揮して鉄骨を火災か
ら保護する。ベースコートの上には更にトップシールを
塗り、ベースコートの塗膜の耐水性、耐候性の強化を図
るとともに、塗膜に美観を与える。
In recent years, in order to solve the above-mentioned problems, an attempt has been made to apply a foamable fire-resistant paint to a steel frame of a building and use it as a fire-resistant material. Foamable refractory paint
When a fire occurs, a foam layer is formed to delay the temperature rise of the steel frame. Foamable refractory paints consist of a base coat and a top seal. Rust prevention coating is applied to the steel frame, and a base coat is applied to a thickness of 1.0 to 1.5 mm. When heated, the coating film expands and swells by a factor of ten to form a carbonized layer. This provides thermal insulation and protects the steel frame from fire. A top seal is further applied on the base coat to enhance the water resistance and weather resistance of the base coat coating and to give the coating a beautiful appearance.

【0007】これらの発泡性耐火塗料は、通常、発泡
剤、炭化剤、反応触媒、バインダー、顔料から構成され
ている。発泡剤としては、リン酸系アンモニウム塩、ジ
シアンジアミド、尿素、メラミン等が用いられる。ま
た、炭化剤には多価アルコールや炭水化物等、反応触媒
にはリン酸系アンモニウム塩等、バインダーにはアルキ
ッド樹脂、エポキシ樹脂ウレタン樹脂等の合成樹脂エマ
ルションが主に用いられている。
[0007] These foamable refractory paints are usually composed of a foaming agent, a carbonizing agent, a reaction catalyst, a binder, and a pigment. Phosphoric acid ammonium salts, dicyandiamide, urea, melamine and the like are used as the foaming agent. In addition, polyhydric alcohols and carbohydrates are used as carbonizing agents, phosphoric acid ammonium salts and the like are used as reaction catalysts, and synthetic resin emulsions such as alkyd resins and epoxy resin urethane resins are mainly used as binders.

【0008】更に、ケイ酸塩を主成分とする発泡性耐火
塗料も、従来から知られている。このタイプの発泡性耐
火塗料は、ケイ酸塩が有する水和水が加熱されて水蒸気
ガスになり発泡することを利用する。このタイプの発泡
性耐火塗料としては、例えば、含水率41〜42%のケ
イ酸ソーダ粉末を合成樹脂ラテックスに分散させた発泡
性耐火塗料(昭和48ー16700号公開特許公報)、
油性塗料にケイ酸ソーダ粉末を分散させた発泡性耐火塗
料(昭和48ー16701号公開特許公報)、ケイ酸ソ
ーダ1号を主成分とした発泡性耐火塗料(昭和48ー1
02134号公開特許公報)、粉末ケイ酸ソーダと微粉
の金属酸化物、骨材、空気連行剤の混合物に水を加えた
発泡性防火塗料(昭和48ー64125号公開特許公
報)などが開示されている。
[0008] Further, foamable fire-resistant paints containing silicate as a main component have been conventionally known. This type of foaming refractory paint utilizes the fact that the hydration water of the silicate is heated to form steam gas and foam. Examples of this type of intumescent refractory paint include, for example, an intumescent refractory paint in which sodium silicate powder having a water content of 41 to 42% is dispersed in a synthetic resin latex (Japanese Patent Publication No. 48-16700).
Foamable refractory paint in which sodium silicate powder is dispersed in an oil paint (Japanese Patent Publication No. 48-16701), and foamable refractory paint containing sodium silicate 1 as a main component (Showa 48-1)
No. 02134), a foamable fire-resistant paint in which water is added to a mixture of powdered sodium silicate and fine metal oxide, aggregate, and air entraining agent (Japanese Patent Publication No. 48-64125). I have.

【0009】しかし、現在の発泡性耐火塗料や発泡性防
火塗料は加熱によって発泡断熱層を形成はするが、建築
構造部分に要求される耐火性能を満足していない。即
ち、耐火性能は、JIS A 1304−1975「建
築構造部分の耐火試験方法」で許容鋼材温度が平均35
0℃、最高450℃と規定されており、また「建築基準
法施行令第107条」により要求耐火時間が最低でも1
時間を必要とするが、これらの性能を満足できていな
い。更に、発泡性耐火塗料の発泡断熱層の強度が脆弱で
あり、上記試験法に定める衝撃試験に合格することがで
きない。
[0009] However, although the present foamable fire-resistant paints and foamable fire-retardant paints form a foamed heat-insulating layer by heating, they do not satisfy the fire-resistant performance required for building structural parts. That is, the fire resistance performance is such that the allowable steel material temperature is an average of 35 according to JIS A 1304-1975 “Fire Resistance Test Method for Building Structure”.
0 ° C and maximum 450 ° C, and the required fire resistance time is at least 1 according to the Building Standards Law Enforcement Order Article 107.
Although time is required, these performances cannot be satisfied. Further, the strength of the foamed heat insulating layer of the foamable refractory paint is weak, so that it cannot pass the impact test defined in the above test method.

【0010】[0010]

【課題を解決するための手段】そこで本発明者らは、鋭
意研究の結果、ケイ酸塩に微粉状シリカを併用すると、
耐火性能が相乗的に向上することを見いだして本発明を
完成したものである。しかし、ケイ酸塩と微粉状シリカ
を混合すると数時間で固化する。そこで、固化防止とし
て、安定剤を添加する。安定剤の添加濃度により固化を
数日以上〜数ケ月間防止する。尚、固化とはゴテゴテ状
に増粘して塗布できなくなることを言う。更に、硬化剤
を添加して、硬化速度を調節し、硬化膜の物性向上を図
る。また、必要な塗布厚を確保するために、増粘剤を添
加する。即ち本発明は、ケイ酸塩と微粉状シリカを主た
る成分とし、これに、硬化剤、増粘剤、及び安定剤を添
加したことを最大の特徴とする。
Means for Solving the Problems The present inventors have conducted intensive studies and as a result, when using finely divided silica in combination with silicate,
The present invention has been completed by finding that the fire resistance is synergistically improved. However, when the silicate and the finely divided silica are mixed, they are solidified within several hours. Therefore, a stabilizer is added to prevent solidification. Depending on the concentration of the stabilizer, solidification is prevented for several days to several months. In addition, solidification means that it becomes impossible to apply because of the thickening of the shape. Further, a curing agent is added to adjust the curing speed to improve the physical properties of the cured film. Further, a thickener is added to secure a required coating thickness. That is, the greatest feature of the present invention is that a silicate and finely divided silica are the main components, and a curing agent, a thickener, and a stabilizer are added thereto.

【0011】本発明に使用するケイ酸塩は、ケイ酸ソー
ダ、メタケイ酸ソーダ、ケイ酸カリ、ケイ酸リチウムな
どが単独或いは組み合わせて使用される。これらのケイ
酸塩は水和水を有しており、加熱すると水和水が徐々に
離れて水蒸気ガスとなり発泡することは知られている。
本発明に使用されるケイ酸塩は、発泡性無機耐火被覆材
の25〜75重量%(固形分換算、以下同じ)である。
その使用量が25%より少ないと、火災時の発泡高さが
低くなり、耐火性能が低下する。75%を越えると、発
泡膜の軟化点が低くなり、火災発生時に発泡膜が破れた
りダレを生じて耐火性能が低下する。より好ましくは、
30〜70重量%である。
As the silicate used in the present invention, sodium silicate, sodium metasilicate, potassium silicate, lithium silicate and the like are used alone or in combination. It is known that these silicates have water of hydration, and when heated, the water of hydration gradually separates to form steam gas and foam.
The silicate used in the present invention accounts for 25 to 75% by weight (solid basis, hereinafter the same) of the expandable inorganic refractory coating material.
If the amount used is less than 25%, the foaming height at the time of fire will be low, and the fire resistance will be reduced. If it exceeds 75%, the softening point of the foamed film becomes low, and the foamed film is broken or sagged at the time of fire, resulting in reduced fire resistance. More preferably,
30 to 70% by weight.

【0012】本発明で使用される微粉状シリカは、その
粒子径が10μm以下のものであればよく、好ましくは
1μm以下である。微粉状シリカは、多孔質で、粒子径
が小さいほど熱の伝導性は悪く、断熱性はよくなる。ま
た、微粉状シリカは粒子表面が疎水性、親水性、撥水性
などの変成処理、表面処理を施したものであっても使用
できる。市販の微粉状シリカには、湿式法で製造される
ホワイトカーボンや乾式法で製造されるエアロゾル状の
ヒュウムドシリカなどがあり、何れも数%の水分を含有
している。これらの微粉状シリカは、単独のみならず、
2種以上混合して使用しても何ら差し支えない。
The finely divided silica used in the present invention may have a particle diameter of 10 μm or less, preferably 1 μm or less. The finely divided silica is porous, and the smaller the particle diameter, the lower the heat conductivity and the better the heat insulating property. The finely divided silica can be used even if the particle surface has been subjected to a modification treatment such as hydrophobicity, hydrophilicity or water repellency, or a surface treatment. Commercially available finely divided silica includes white carbon produced by a wet method, aerosol fumed silica produced by a dry method, and the like, each of which contains several percent of water. These finely divided silicas are not only used alone,
Two or more kinds may be used in combination.

【0013】微粉状シリカは、ケイ酸塩と併用すること
により、耐火性能が大幅に向上する。微粉状シリカの使
用割合は、発泡性無機耐火被覆材の1〜40重量%であ
る。使用量が1%未満だと耐火性能において殆ど相乗効
果を発揮しない。40%を越えると、耐火性能は変らな
いが耐火被覆の曲げ強度が次第に弱くなる。より好まし
くは、3〜30重量%である。
[0013] When the finely divided silica is used in combination with a silicate, the fire resistance is greatly improved. The proportion of the finely divided silica used is 1 to 40% by weight of the expandable inorganic refractory coating material. If the amount used is less than 1%, almost no synergistic effect is exhibited in fire resistance performance. If it exceeds 40%, the refractory performance does not change but the flexural strength of the refractory coating gradually decreases. More preferably, it is 3 to 30% by weight.

【0014】本発明で使用される硬化剤は、ナトリウ
ム、カリウム、リチウム、アンモニウム、カルシウム、
バリウム、マグネシウム等の炭酸塩、重炭酸塩、リン酸
塩、これらの金属酸化物、及びこれらの塩や酸化物を含
有する鉱物、鉱滓などである。硬化剤の使用量は、発泡
性無機耐火被覆材の0.5〜40重量%であり、少なすぎ
るとケイ酸塩が十分に硬化せず、多すぎると可使用時間
が短くなる。より好ましくは、1〜35重量%である。
但し、硬化剤を別剤にして現場で攪拌混合するような場
合には、15〜70重量%用いても差し支えない。
The curing agent used in the present invention includes sodium, potassium, lithium, ammonium, calcium,
Examples include carbonates such as barium and magnesium, bicarbonates, phosphates, metal oxides thereof, and minerals and slag containing these salts and oxides. The amount of the curing agent used is 0.5 to 40% by weight of the foamable inorganic refractory coating material. When the amount is too small, the silicate is not sufficiently cured, and when the amount is too large, the usable time is shortened. More preferably, it is 1 to 35% by weight.
However, in the case where the curing agent is separately mixed and stirred and mixed on site, 15 to 70% by weight may be used.

【0015】本発明で使用される増粘剤は、ベントナイ
ト、セピオライト、合成ヘクトナイト等である。増粘剤
の使用割合は、発泡性無機耐火被覆材の0.2〜20重量
%であり、少なすぎると粘度や揺変性が不足する。発泡
性無機耐火被覆材の粘度は、2,000〜200,000p
s(25℃)であることが望ましい。これより粘度が低
いと鉄骨の垂直部や上腕部で垂れを生じるしこれより高
いと塗装機による塗布性能が悪くなる。また、本発明で
使用される安定剤としては、水酸化リチウム、水酸化バ
リウム、ケイ酸リチウムなどがある。安定剤は、発泡性
無機耐火被覆材の0.2〜15重量%を使用するが、この
使用量を増減することにより、発泡性無機耐火被覆材の
可使用時間を調整することができる。尚、安定剤を全く
使用しないと、発泡性無機耐火被覆材(ケイ酸塩と微粉
状シリカの混合物)は、数時間で固化してしまう。より
好ましくは、0.5〜13重量%である。その他、分散
剤、着色剤、耐アルカリ性ガラス繊維などを必要に応じ
て添加しても、何ら差支えない。
The thickener used in the present invention is, for example, bentonite, sepiolite, synthetic hectonite and the like. The ratio of the thickener used is 0.2 to 20% by weight of the foamable inorganic refractory coating material. If the amount is too small, the viscosity and thixotropic properties become insufficient. The viscosity of the foaming inorganic refractory coating material is 2,000 to 20,000p
s (25 ° C.). If the viscosity is lower than this, sagging occurs in the vertical part and upper arm of the steel frame, and if it is higher than this, the coating performance by the coating machine deteriorates. In addition, examples of the stabilizer used in the present invention include lithium hydroxide, barium hydroxide, and lithium silicate. As the stabilizer, 0.2 to 15% by weight of the expandable inorganic refractory coating material is used. By increasing or decreasing this amount, the usable time of the expandable inorganic refractory coating material can be adjusted. If no stabilizer is used, the expandable inorganic refractory coating material (a mixture of silicate and finely divided silica) solidifies in several hours. More preferably, it is 0.5 to 13% by weight. In addition, a dispersing agent, a coloring agent, an alkali-resistant glass fiber, or the like may be added as necessary, without any problem.

【0016】次に、本発明の発泡性無機耐火被覆材の製
造方法について説明する。この製造には特別な装置は必
要なく、モルタルミキサーやニーダーなどの一般的な混
合装置があればよい。まず、混合装置に常温下で所定量
のケイ酸塩を投入し、低速で攪拌しながら所定量の安定
剤と微粉状シリカを投入し、十分に混練できた時点で硬
化剤、増粘剤を投入しさらに均一に分散するまで攪拌を
続ける。添加順位は特に限定されるものではないが、作
業性の観点から、上記順番が望ましい。
Next, a method for producing the expandable inorganic refractory coating material of the present invention will be described. No special equipment is required for this production, and a general mixing apparatus such as a mortar mixer or a kneader may be used. First, a predetermined amount of silicate is charged into a mixing device at room temperature, a predetermined amount of a stabilizer and finely divided silica are charged while stirring at a low speed, and when sufficient kneading is completed, a curing agent and a thickener are added. Add and continue stirring until evenly dispersed. The order of addition is not particularly limited, but the above order is desirable from the viewpoint of workability.

【0017】上記した製法は1液性の発泡性無機耐火被
覆材についてであるが、この場合可使用時間は常温保存
で2カ月程度である。通常は、この程度の保存性で十分
であるが、より長期の保存に耐えるのには、硬化剤を別
にした2剤性のものにしておけばよい。この場合、増粘
剤の一部又は全部を硬化剤に加えておいてもよい。そし
て、施工現場において2剤を混合する。ただ、現場に混
合装置を持ち込んで攪拌混合すると言う手間や品質上の
問題はある。更に、本発明の発泡性無機耐火被覆材を構
成する各剤を現場に搬送して現場で攪拌混合してもよい
が、手間や品質上の問題は上記した2剤混合の場合より
もさらに難点が多い。
The above-mentioned production method is for a one-part foamable inorganic refractory coating material. In this case, the usable time is about two months when stored at room temperature. Usually, this degree of storage is sufficient, but in order to withstand long-term storage, it is sufficient to use a two-part storage agent other than a curing agent. In this case, some or all of the thickener may be added to the curing agent. Then, the two agents are mixed at the construction site. However, there is a trouble and quality problem of bringing a mixing device to the site and stirring and mixing. Further, each agent constituting the foamable inorganic refractory coating material of the present invention may be transported to the site and stirred and mixed at the site, but the labor and quality problems are more difficult than in the case of the two-agent mixture described above. There are many.

【0018】次に、本発明の発泡性無機耐火被覆材の施
工方法を説明する。鉄骨に耐火被覆材を施工するに際し
ては、鉄骨に発泡性無機耐火被覆材を直接塗布する。塗
布は、鏝塗り、機械吹きつけ、機械塗り付けなどの方法
で行なう。塗布前に、鉄骨の下地(表面)は、油分、浮
き錆、錆止め塗料などのないことが必要である。また、
塗膜の厚さは要求耐火性能にもよるが、1時間耐火であ
れば、乾燥厚さで8mm以上(塗布時で約9mm以上)
が好ましい。塗布後の塗膜は、数時間でタックフリーと
なり、数日で硬化する。ただし、乾燥(気乾状態)に
は、約30日を要する。このように、鉄骨の周囲に継ぎ
目無く発泡性無機耐火被覆材を塗布することにより、堅
固な耐火被覆一体成型物が得られる。
Next, a method of applying the foamable inorganic refractory coating material of the present invention will be described. When applying a fire-resistant coating material to a steel frame, an expandable inorganic fire-resistant coating material is directly applied to the steel frame. Application is performed by a method such as trowel coating, mechanical spraying, and mechanical coating. Prior to application, the base (surface) of the steel frame must be free of oil, floating rust, rust preventive paint and the like. Also,
The thickness of the coating depends on the required fire resistance, but if it is fire resistant for one hour, the dry thickness is 8 mm or more (approximately 9 mm or more when applied).
Is preferred. The coated film becomes tack-free in a few hours and cures in a few days. However, it takes about 30 days to dry (air dry). As described above, by applying the foamable inorganic refractory coating material around the steel frame without a seam, a solid refractory coating integrated molding can be obtained.

【0019】このような堅固な耐火被覆一体成形物が得
られるのは、無機質性被膜の主要成分であるケイ酸塩
が、硬化剤並びに空気中の炭酸ガスと反応してケイ酸が
重合し、ケイ酸ポリマーを形成して非常に硬い被膜が生
じることによる。また、使用する無機質性耐火被覆剤
は、耐火試験(JIS A 1304の標準加熱温度に
よる)により発泡、セラミック化し、耐火試験後にもこ
の一体成形物は十分な形状と強度を保ち、衝撃試験にも
確実に耐えるものである。
Such a solid refractory-coated integral product is obtained because silicate, which is a main component of the inorganic coating, reacts with a curing agent and carbon dioxide gas in the air to polymerize silicic acid, Due to the formation of the silicate polymer and a very hard coating. In addition, the inorganic refractory coating used is foamed and ceramicized by a fire test (based on the standard heating temperature of JIS A 1304). After the fire test, the integrally molded product maintains a sufficient shape and strength, and is used for impact tests. It surely withstands.

【0020】[0020]

【実施例】【Example】

(実施例 1)撹拌機を装着したSUSー304材のニ
ーダ中に、Jケイ酸ソーダ1号(日本化学工業製)10
重量部(以下、部とする)、2号ケイ酸ソーダN3(東
曹産業製)50部を入れ、20r.p.m.程度でゆっくり撹
拌する。その中に、安定剤として3部の水酸化リチウム
(本庄ケミカル製)、12部のホワイトカーボン(粒子
径12〜20mμのゼシオール1100V:多木化学
製)、硬化剤として22部の炭酸カルシウム(エスカロ
ン1500:三共精粉製)、及び増粘剤として3部のセ
ピオライト(ミラクレイLFC−2Z:近江鉱業製)を
順次徐々に投入し、揺変性のある粘稠な発泡性無機耐火
被覆材を得た。その溶液粘度は25℃において3,000
ps、ポットライフは、約60日であった。
(Example 1) In a kneader of SUS-304 material equipped with a stirrer, J sodium silicate No. 1 (manufactured by Nippon Kagaku Kogyo)
50 parts by weight (hereinafter referred to as "parts") of No. 2 sodium silicate N3 (manufactured by Tosoh Sangyo Co., Ltd.) are added, and the mixture is slowly stirred at about 20 rpm. Among them, 3 parts of lithium hydroxide (manufactured by Honjo Chemical) as a stabilizer, 12 parts of white carbon (Zechiol 1100V having a particle diameter of 12 to 20 μm: manufactured by Taki Kagaku), and 22 parts of calcium carbonate (escalon) as a curing agent 1500: Sankyo Seimitsu) and 3 parts of sepiolite (Miraclay LFC-2Z: Omi Mining) as a thickener were gradually added to obtain a thixotropic viscous foamable inorganic refractory coating material. . Its solution viscosity is 3,000 at 25 ° C.
The ps and pot life were about 60 days.

【0021】この発泡性無機耐火被覆材を、材質:SS
−41、大きさ100×100×6mmの鋼材の片面側
に8mmの厚さ(塗布時10mm)に鏝塗りで塗布し
た。塗布後、4週間自然乾燥し気乾状態を確認したもの
を試験体とした。この試験体を、10kwの電気炉の天
井部にセットし、鋼材裏面は断熱材で十分に保温した。
測温体は、塗布した発泡性無機耐火被覆材の裏面(鋼材
表面)中央にセットした。試験体の加熱は、JIS A
1304に規定する加熱標準曲線に準じ、鋼材表面温
度が350℃に達するまでの時間を求めたところ、62.
1分であった(60分以上が合格)。尚、ケイ酸カルシ
ウム耐火被覆板(1号:20mm)を、上記鋼板に張り
つけた試験体の耐火性能は61分であることを確認し
た。また、耐火試験後の試験体の発泡膜の厚みを測定し
たところ50mmであった。更に、耐火試験後の発泡し
た試験体表面に5kgの鉄塊を1mの高さから落下させ
て耐衝撃試験を行なったところ、試験体表面に窪みはで
きたが鋼材地肌は露出せず、合格であった。
The foamable inorganic refractory coating material is made of a material: SS
-41, a thickness of 8 mm (10 mm at the time of application) was applied to one side of a steel material having a size of 100 × 100 × 6 mm by ironing. After application, the sample was air-dried for 4 weeks and the air-dried state was confirmed. The test specimen was set on the ceiling of a 10 kW electric furnace, and the back surface of the steel material was sufficiently kept warm with a heat insulating material.
The temperature measuring element was set at the center of the back surface (steel material surface) of the applied foamable inorganic refractory coating material. JIS A
The time required for the steel material surface temperature to reach 350 ° C. was determined according to the heating standard curve specified in 1304.
It was 1 minute (60 minutes or more passed). In addition, it confirmed that the fire resistance performance of the test body which stuck the calcium silicate refractory coating board (No. 1: 20 mm) to the said steel plate was 61 minutes. The thickness of the foamed film of the test piece after the fire resistance test was 50 mm. Furthermore, when a 5 kg iron lump was dropped from a height of 1 m onto the foamed specimen surface after the fire resistance test and an impact resistance test was performed, a dent was formed on the specimen surface, but the steel ground was not exposed, and the test passed. Met.

【0022】(実施例 2) 実施例1と同じ割合で2
剤性のものを作成し、前記例同様に測定したところ、ほ
ぼ同様の結果が得られた。尚、この2剤の内の主剤は、
炭酸カルシウム(硬化剤)を除いた他の成分を実施例1
と同様に攪拌混合したものである。そして、これに硬化
剤として22部の炭酸カルシウムを加えて攪拌混合した
ものを用いた。
(Embodiment 2) 2
When an agent having a drug property was prepared and measured in the same manner as in the above example, almost the same results were obtained. The main agent of the two agents is
Example 1 except for calcium carbonate (hardening agent)
The mixture was stirred and mixed in the same manner as described above. Then, a mixture obtained by adding 22 parts of calcium carbonate as a curing agent and mixing with stirring was used.

【0023】(実施例3〜20) 実施例1と同様の方
法で、表1に示す割合の各剤を混合して、発泡性無機耐
火被覆材を得た。その場合の性能を、表1に示す。尚、
これらの各実施例では2例を除いて塗膜厚さ(乾燥)を
8mmとしているが、耐火性能で60分を上回る組合せ
によっては、これ以下の厚みでも構わない。例えば、実
施例10は、実施例9と成分比が同じ発泡性無機耐火被
覆材を用いて塗膜厚さ(乾燥)を6mmにした場合、実
施例12は実施例11と同じ成分比の発泡性無機耐火被
覆材で塗布厚さを7mmにした場合であるが、何れも耐
火性能は合格である。
Examples 3 to 20 In the same manner as in Example 1, each of the agents shown in Table 1 was mixed to obtain a foamable inorganic refractory coating material. Table 1 shows the performance in that case. still,
In each of these examples, the thickness (dryness) of the coating film is 8 mm except for two cases. However, depending on the combination of the fire resistance over 60 minutes, the thickness may be smaller than this. For example, in Example 10, when the coating thickness (dry) was 6 mm using the foamable inorganic refractory coating material having the same component ratio as that of Example 9, Example 12 had the same composition ratio as that of Example 11. In this case, the coating thickness was 7 mm with a non-reactive inorganic refractory coating material, and the refractory performance was acceptable.

【表1】 [Table 1]

【0024】上記したように、各実施例に示す本発明の
発泡性無機耐火被覆材は、その塗膜厚6mm以上ことに
8mmの時耐火性能が350℃到達時間が何れも60分
を上回っており、優れた耐火性能であることがわかる。
また、耐火試験後においても、発泡膜と鋼材との密着が
強く、発泡膜もセラミック化して全体が固く、耐衝撃試
験は何れも合格であった。
As described above, the foamable inorganic refractory coating material of the present invention shown in each of the examples has a refractory performance of 350 ° C. when the coating film thickness is 6 mm or more, especially when the coating thickness is 8 mm. This indicates that the fire resistance was excellent.
Further, even after the fire resistance test, the adhesion between the foamed film and the steel material was strong, the foamed film was also ceramicized and the whole was hard, and all of the impact resistance tests passed.

【0025】(比較例 1〜8) 各比較例は、微粉状
シリカの代わりに、耐火性能を強化する目的で水酸化ア
ルミニウム(住友化学製)を用いた以外は各実施例と殆
ど同じ素材を用い、同様の方法で製造した。その結果、
表2に示すように、発泡性無機耐火被覆材の塗膜厚8m
mにおいて、350℃到達時間で何れも60分に達しな
いものであった。これは、発泡膜の厚みが実施例のもの
よりも小さいことによる。一方、耐火試験後の発泡膜と
鋼材との密着性は多くのもので強く、また発泡膜もセラ
ミック化しており全体は固い。ただ、耐衝撃試験は一部
不合格のものがある。
(Comparative Examples 1 to 8) In each comparative example, almost the same material as in each example was used except that aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd.) was used in place of finely divided silica for the purpose of enhancing fire resistance. And produced in a similar manner. as a result,
As shown in Table 2, the coating thickness of the foamable inorganic refractory coating material was 8 m.
At m, none of them reached 60 minutes at 350 ° C. This is because the thickness of the foamed film is smaller than that of the example. On the other hand, the adhesion between the foamed film and the steel material after the fire resistance test is many and strong, and the foamed film is also ceramicized and the whole is hard. However, some of the impact resistance tests failed.

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上説明したように、本発明の発泡性無
機耐火被覆材は、鋼板に塗布して優れた耐火性能を示
し、耐火試験後の鋼板への密着性も優れ、その発泡膜は
固くて耐衝撃試験にも耐えうるものである。本発明の発
泡性無機耐火被覆材は、塗布乾燥厚みが8mm以上あれ
ば、鉄骨に1時間耐火の耐火被覆を作ることができる。
As described above, the foamable inorganic refractory coating material of the present invention exhibits excellent fire resistance when applied to a steel sheet, has excellent adhesion to a steel sheet after a fire resistance test, and has a foamed film. It is hard and can withstand an impact test. The foamable inorganic refractory coating material of the present invention can form a refractory coating for 1 hour on a steel frame if the applied dry thickness is 8 mm or more.

【0027】また、本発明の発泡性無機耐火被覆材は、
その形状が高粘土のペースト状であり、施工現場におい
て何等粉塵、ミスト、臭気等を発生せず、良好な作業環
境を提供する。また、施工は塗布するだけでよく、手間
や特別な技術も必要とせず、作業効率の向上やコストの
低減が可能となる。しかも、鉄骨に塗布するだけでシー
ムレスの一体型の耐火被覆を形成できるので、優れた強
度を示す。更に、耐火被覆の厚さは薄くてよいため、居
住空間を広くすることができるなど、種々優れた効果を
奏するものである。
The foamable inorganic refractory coating material of the present invention comprises:
The shape is a paste of high clay, and does not generate any dust, mist, odor, etc. at the construction site, and provides a good working environment. Further, the application is only required to be applied, and no labor or special technique is required, so that it is possible to improve the working efficiency and reduce the cost. Moreover, a seamless integral fire-resistant coating can be formed simply by applying it to a steel frame, so that it exhibits excellent strength. Further, since the thickness of the refractory coating may be small, various excellent effects are exhibited, for example, a living space can be widened.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ケイ酸塩と微粉状シリカを主たる成分と
し、これに、硬化剤、増粘剤、及び安定剤を添加してな
ることを特徴とする発泡性無機耐火被覆材。
1. An expandable inorganic refractory coating material comprising a silicate and a finely divided silica as main components, and a curing agent, a thickener and a stabilizer added thereto.
【請求項2】 固形分換算で25〜75重量%のケイ酸
塩と、1〜40重量%の微粉状シリカを含有したもので
ある、請求項1記載の発泡性無機耐火被覆材。
2. The foamable inorganic refractory coating material according to claim 1, which contains 25 to 75% by weight of silicate in terms of solid content and 1 to 40% by weight of finely divided silica.
【請求項3】 0.5〜40重量%の硬化剤と、0.2〜3
0重量%の増粘剤、0.2〜15重量%の安定剤を含有し
たものである、請求項1記載の発泡性無機耐火被覆材。
3. A hardener of 0.5 to 40% by weight, and 0.2 to 3% by weight.
The foamable inorganic refractory coating material according to claim 1, comprising 0% by weight of a thickener and 0.2 to 15% by weight of a stabilizer.
【請求項4】 ケイ酸塩に、微粉状シリカ、硬化剤、増
粘剤、及び安定剤を加えて攪拌混合した発泡性無機耐火
被覆材を、鉄骨等の表面に塗布して乾燥させることを特
徴とする鉄骨の耐火被覆工法。
4. A method for applying a foamable inorganic refractory coating material obtained by adding a finely divided silica, a hardening agent, a thickener, and a stabilizer to a silicate and stirring the mixture to a surface of a steel frame or the like, followed by drying. Characteristic fire-resistant coating method for steel frames.
JP27806197A 1997-09-24 1997-09-24 Foaming inorganic fire resistant covering material, and fire resistant covering construction method of steel frame Pending JPH1193296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27806197A JPH1193296A (en) 1997-09-24 1997-09-24 Foaming inorganic fire resistant covering material, and fire resistant covering construction method of steel frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27806197A JPH1193296A (en) 1997-09-24 1997-09-24 Foaming inorganic fire resistant covering material, and fire resistant covering construction method of steel frame

Publications (1)

Publication Number Publication Date
JPH1193296A true JPH1193296A (en) 1999-04-06

Family

ID=17592119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27806197A Pending JPH1193296A (en) 1997-09-24 1997-09-24 Foaming inorganic fire resistant covering material, and fire resistant covering construction method of steel frame

Country Status (1)

Country Link
JP (1) JPH1193296A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180122A (en) * 2009-01-07 2010-08-19 Sunrise Sangyo Co Ltd Method for producing hardened body including air bubble
JP2019119785A (en) * 2017-12-28 2019-07-22 勝規 瀬川 Heat-resistant paint
WO2024024976A1 (en) * 2022-07-29 2024-02-01 イビデン株式会社 Bus bar, manufacturing method of same, and power storage device
WO2024024975A1 (en) * 2022-07-29 2024-02-01 イビデン株式会社 Bus bar, method for producing same, and power storage device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180122A (en) * 2009-01-07 2010-08-19 Sunrise Sangyo Co Ltd Method for producing hardened body including air bubble
JP4572261B2 (en) * 2009-01-07 2010-11-04 サンライズ産業株式会社 Method for producing cured body containing bubbles
JP2019119785A (en) * 2017-12-28 2019-07-22 勝規 瀬川 Heat-resistant paint
WO2024024976A1 (en) * 2022-07-29 2024-02-01 イビデン株式会社 Bus bar, manufacturing method of same, and power storage device
WO2024024975A1 (en) * 2022-07-29 2024-02-01 イビデン株式会社 Bus bar, method for producing same, and power storage device

Similar Documents

Publication Publication Date Title
US20190375685A1 (en) Fire retardant construction materials
US4347285A (en) Curable aqueous silicate composition, uses thereof, and coatings or layers made therefrom
US5194087A (en) Fireproof, waterproof and acidproof binder
WO1985002430A1 (en) Method of applying fire-resistant coverings to steel frame
CA1275423C (en) Composition for use in fireproofing and insulation
CN109982987A (en) The cement base sprayed fire proofing of fireproof coating and the cold fusion concrete high-intensitive, density is controllable
JP2008502572A (en) Composition and use of a new sprayable phosphate cement combined with styrofoam.
JPH08120192A (en) Coating material and method for coating using the same
JP2003517084A (en) Flame retardant composition
JPH1193296A (en) Foaming inorganic fire resistant covering material, and fire resistant covering construction method of steel frame
CA1153397A (en) Composition for preparing inorganic foamed bodies
JP2686833B2 (en) Refractory coating composition with excellent adhesion to iron
JP3431486B2 (en) Powdered one-pack alkali silicate composition, paste-like alkali silicate-based solidifying material using the same, method for treating industrial waste, and polymer product
JPH04280850A (en) Cementing composition and its use
JPH02172847A (en) Expansion type fire proof protective composition
KR102603728B1 (en) Powdery elastic coated waterproofing composition containing regenerated fibers
JPH0217510B2 (en)
JPH1088694A (en) Method of fire-resistive covering construction for steel frame
JPS6363516B2 (en)
JP2001019733A (en) Binder composition, non-combustible formed material, non-combustible sheet and non-combustible honeycomb structure material
JPH07138079A (en) Refractory coating material
JPS62189B2 (en)
JPH0114188B2 (en)
JPS6251223B2 (en)
JPS6317039A (en) Fireproof board