WO2024024942A1 - Electronic device sealing composition, electronic device sealing film, and method for forming electronic device sealing film - Google Patents

Electronic device sealing composition, electronic device sealing film, and method for forming electronic device sealing film Download PDF

Info

Publication number
WO2024024942A1
WO2024024942A1 PCT/JP2023/027749 JP2023027749W WO2024024942A1 WO 2024024942 A1 WO2024024942 A1 WO 2024024942A1 JP 2023027749 W JP2023027749 W JP 2023027749W WO 2024024942 A1 WO2024024942 A1 WO 2024024942A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
meth
composition
sealing
acrylate
Prior art date
Application number
PCT/JP2023/027749
Other languages
French (fr)
Japanese (ja)
Inventor
昇太 広沢
慎一郎 森川
理英子 れん
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2024024942A1 publication Critical patent/WO2024024942A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values

Definitions

  • the present invention relates to an electronic device encapsulation composition, an electronic device encapsulation film, and a method for forming an electronic device encapsulation film, and in particular, an electronic device encapsulation film with good relative permittivity stability and adhesion can be obtained.
  • the present invention relates to compositions for encapsulating electronic devices, etc.
  • organic electroluminescent devices (hereinafter also referred to as “organic EL devices” or “organic EL elements”), are designed to prevent the organic materials and electrodes used from deteriorating due to moisture. It has been proposed to cover the surface of the device with a sealing layer.
  • the dielectric constant of a cured product containing an acrylic compound (A) and a photopolymerization initiator (B) at a frequency of 100 kHz is 3.0 or less
  • an ultraviolet curable resin composition for sealing an organic EL element that is molded by an inkjet method is disclosed. It is said that this technology can provide an ultraviolet curable resin composition for encapsulating organic EL, which can be molded by an inkjet method and whose cured product can easily be made to have a low dielectric constant.
  • At least one inorganic filler having an average particle size of 1 to 30 nm as a first component, and at least one monomer selected from (meth)acrylate monomers as a second component
  • An ink composition which contains at least one polymerization initiator as a third component, and the total weight concentration of the first to third components is 98 to 100% by weight based on the total weight of the ink composition.
  • JP2020-057580A International Publication No. 2018/051732
  • the present invention has been made in view of the above problems and circumstances, and an object to be solved is to provide an electronic device encapsulation composition that provides an electronic device encapsulation film with good relative permittivity stability and adhesion. It is to provide. Another object of the present invention is to provide an electronic device sealing film using the electronic device sealing composition and a method for forming the electronic device sealing film.
  • the present inventors discovered a sealing film containing (meth)acrylate as a photopolymerizable monomer and cured by irradiation under specific environmental conditions.
  • An electronic device sealing film (cured film) with good dielectric constant stability and adhesion can be obtained by setting the curing rate and the residue rate when measured with a differential thermal/thermogravimetric simultaneous measurement device within a specific range. It is possible to provide a composition for encapsulating an electronic device.
  • Another object of the present invention is to provide an electronic device sealing film and a method for forming an electronic device sealing film using the electronic device sealing composition. That is, the above-mentioned problems related to the present invention are solved by the following means.
  • An electronic device encapsulation composition containing a photopolymerizable monomer and a photopolymerization initiator,
  • the photopolymerizable monomer contains (meth)acrylate,
  • the curing rate of the electronic device sealing film to be formed is 80% or more, and the residue rate of the electronic device sealing film as measured by a differential thermal/thermogravimetric simultaneous measurement apparatus (TG-DTA) is 3% or more.
  • composition for encapsulating an electronic device according to item 1 wherein the curing rate is 90% or more.
  • composition for encapsulating an electronic device according to item 1 wherein the residue rate is 5% or more.
  • composition for encapsulating an electronic device according to item 1 wherein the residue rate is 10% or more.
  • composition for encapsulating an electronic device according to item 1, wherein the photopolymerizable monomer contained in the composition for encapsulating an electronic device has an average (meth)acrylic group number within the range of 1.3 to 1.5. thing.
  • composition for encapsulating an electronic device according to claim 1, wherein the methacrylate ratio of the photopolymerizable monomer contained in the composition for encapsulating an electronic device is within the range of 50 to 80%.
  • An electronic device sealing film that seals an electronic device by curing an electronic device sealing composition containing a photopolymerizable monomer and a photopolymerization initiator,
  • the photopolymerizable monomer contains (meth)acrylate
  • the curing rate of the electronic device sealing film is 80% or more
  • the electronic device sealing film has a residue rate of 3% or more as measured by a differential thermal/thermogravimetric simultaneous measurement apparatus (TG-DTA).
  • TG-DTA differential thermal/thermogravimetric simultaneous measurement apparatus
  • An electronic device sealing film that seals an electronic device, a first sealing layer containing silicon nitride, silicon oxide or silicon oxynitride;
  • An electronic device sealing film comprising: a second sealing layer using the electronic device sealing composition according to any one of Items 1 to 7;
  • the relative dielectric constant indicates the ease with which polarization occurs when an electric field is applied, and whether or not polarization occurs depends on the directionality and ease of movement of the molecules of the components of the sealing film after the sealing composition is cured. It is thought that then. Therefore, it is preferable that the molecules of the components of the sealing film are less likely to move, and it is better that the sealing film has less uncured components. Therefore, in the present invention, it is presumed that by setting the curing rate of the sealing film to 80% or more, the uncured components of the sealing film are reduced, molecules become difficult to move, and the dielectric constant is stabilized.
  • the molecular structure after curing is polymerized and crosslinked. Therefore, in the present invention, by setting the above-mentioned residue rate to 3% or more and creating a film with a high residue rate, the film has a high molecular structure. It is presumed that the stability of the relative permittivity against heat increases as a result of crosslinking.
  • Adhesion For example, when a CVD film is used as a base for a sealing film, when the sealing film is peeled off from the CVD film, the peeling may occur due to interfacial peeling and cohesive peeling. Interfacial peeling is related to the mechanical properties of the film and the stress of the film. It is thought that by appropriately polymerizing and crosslinking the membrane, these mechanical properties are high and the membrane stress is within an appropriate range, thereby improving adhesion. Furthermore, by forming a sufficiently cured film, the strength of the film itself increases, and cohesion and peeling can be suppressed.
  • the mechanical properties of the film are increased and the stress of the film is set in an appropriate range. Since the film has good adhesion and is sufficiently cured, it is presumed that cohesion and peeling are suppressed.
  • the composition for encapsulating an electronic device of the present invention is a composition for encapsulating an electronic device containing a photopolymerizable monomer and a photopolymerization initiator, and contains (meth)acrylate as the photopolymerizable monomer,
  • the curing rate of the electronic device sealing film formed is 80% or more, and the difference of the electronic device sealing film is
  • the residue rate measured by a thermogravimetric simultaneous measurement device (TG-DTA) is 3% or more.
  • the curing rate is 90% or more because the relative dielectric constant is stabilized and the non-adhesion property is better.
  • the residue ratio is 5% or more, particularly 10% or more, in terms of stabilization of the dielectric constant and better adhesion.
  • the dielectric constant of the electronic device sealing film formed is 3.1 or less, which means that the dielectric is low. This is preferable in that interference between a display element of an electronic device and a touch sensor disposed on the display element can be suppressed. This is particularly preferred when using a large electronic device such as a notebook or a touch sensor using an active touch pen.
  • the average number of (meth)acrylic groups of the photopolymerizable monomer contained in the electronic device encapsulating composition is within the range of 1.3 to 1.5, which improves stability of dielectric constant and adhesion. It is preferable in this respect. Further, the methacrylate ratio of the photopolymerizable monomer contained in the electronic device encapsulating composition is within the range of 50 to 80%, which increases the stability of the dielectric constant, adhesion, and curing rate. This is preferable in this respect.
  • An electronic device sealing film is an electronic device sealing film that seals an electronic device by curing an electronic device sealing composition containing a photopolymerizable monomer and a photopolymerization initiator.
  • the photopolymerizable monomer contains (meth)acrylate
  • the curing rate of the electronic device sealing film is 80% or more
  • a differential thermal/thermogravimetric simultaneous measuring device for the electronic device sealing film is 3% or more.
  • An electronic device sealing film is an electronic device sealing film that seals an electronic device, and includes a first sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride, and a first sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride; and a second sealing layer using a device sealing composition.
  • a third sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride on the second sealing layer from the viewpoint of excellent sealing performance.
  • the electronic device sealing film forming method of the present invention is a method of forming an electronic device sealing film using the electronic device sealing composition, wherein a first sealing layer is formed on the electronic device by a vapor phase method. and a step of forming a second sealing layer by applying the electronic device sealing composition on the first sealing layer.
  • is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
  • the inkjet electronic device encapsulation composition (hereinafter also simply referred to as “encapsulation composition”) of the present invention is an electronic device encapsulation composition containing a photopolymerizable monomer and a photopolymerization initiator.
  • An electronic device sealing film (hereinafter referred to as The curing rate of the electronic device sealing film (also simply referred to as “sealing film”) is 80% or more, and the residue rate of the electronic device sealing film as measured by a differential thermal/thermogravimetric simultaneous measurement apparatus (TG-DTA) is 3%. That's all.
  • the cure rate of the sealing film formed is 80% or more. More preferably, it is 90% or more, and the upper limit is preferably 100%.
  • Means for increasing the curing rate to 80% or more include, for example, the use of (meth)acrylates that are susceptible to radical reactions, the use of photopolymerization initiators that effectively absorb 395 nm, and the use of sensitizers to improve reaction efficiency.
  • Examples of (meth)acrylates that are susceptible to radical reactions include amine-containing (meth)acrylates, (meth)acrylates having an ethylene oxide group, (meth)acrylates having a hydroxyl group, and (meth)acrylates having two or more functional groups. Acrylate can be used. Also, since acrylates are more reactive than methacrylates, compositions with lower methacrylate ratios can be used.
  • the sealing composition of the present invention is cured by irradiating 1.5 Jcm -2 of ultraviolet light with a wavelength of 395 nm in a nitrogen environment.
  • the residue rate is 3% or more. More preferably, it is 5% or more, particularly preferably 10% or more.
  • Thermo Plus EVO2 (manufactured by Rigaku Corporation) was used as a differential thermal/thermogravimetric simultaneous measuring device (TG-DTA), and the temperature was raised to 500 °C at a heating rate of 10 °C/min in a nitrogen atmosphere, and the initial mass w was measured.
  • Examples of means for increasing the residue rate to 3% or more include the use of (meth)acrylates that are susceptible to radical reactions, the use of photopolymerization initiators that effectively absorb 395 nm, and the use of sensitizers to improve reaction efficiency. can be mentioned. Further, it is possible to use a (meth)acrylate structure having high heat resistance, such as a (meth)acrylate structure of an alicyclic hydrocarbon or a (meth)acrylate structure having a polybutadiene skeleton.
  • Examples of the acrylate compound having a polybutadiene skeleton include TEAI-1000 and TE-2000 manufactured by Nippon Soda Co., Ltd., and BAC-15 and BAC-45 manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • the dielectric constant of the sealing film formed is 3.1 or less. It is preferably within the range of 2.4 to 2.9.
  • the relative dielectric constant can be calculated by the following method using, for example, the capacitance C obtained with an impedance measuring device.
  • a (meth)acrylate structure with low polarizability and dipole moment may be used.
  • (Meth)acrylate may be mentioned.
  • (meth)acrylates with large molecular volumes may be used, such as alicyclic (meth)acrylates, (meth)acrylates with large molecular weights, and (meth)acrylates with alkylene groups having 8 or more carbon chains.
  • One example is having the following.
  • composition of electronic device encapsulation composition contains a photopolymerizable monomer and a photopolymerization initiator.
  • the photopolymerizable monomer contains (meth)acrylate.
  • (meth)acrylate means at least one of acrylate and methacrylate.
  • the term “electronic device” in the present invention refers to an element that generates, amplifies, converts, or controls electrical signals by utilizing the kinetic energy, potential energy, etc. of electrons. Examples include active devices such as light emitting diode devices, organic electroluminescent devices, photoelectric conversion devices, and transistors.
  • electronic devices include passive elements such as resistors and capacitors that perform passive work such as “resistance” and "storage” in response to actions from others. Therefore, the sealing composition of the present invention is used to form a sealing film for sealing the electronic device described above.
  • Photopolymerizable monomer refers to a photopolymerizable monomer (“photocurable monomer”) that can perform a polymerization (curing) reaction by itself or a photopolymerization initiator absorbing light and producing active ions or radicals. Also referred to as ).
  • photopolymerizable monomer a non-silicon monomer that does not contain silicon (Si) may be used, for example, a monomer consisting only of elements selected from C, H, O, N, or S. Good, but not limited to this.
  • the photopolymerizable monomer may be synthesized and used by a conventional synthesis method, or a commercially available product may be purchased and used.
  • photopolymerizable monomer examples include the following photopolymerizable monomers (A) that do not have an aromatic hydrocarbon group, and photopolymerizable monomers (B) that have an aromatic hydrocarbon group, as described above.
  • the photopolymerizable monomer is appropriately selected from these photopolymerizable monomers so that, when used as a sealing film, the curing rate and residue rate satisfy the above ranges.
  • the photopolymerizable monomer contained in the encapsulating composition of the present invention preferably has an average (meth)acrylic group number in the range of 1.3 to 1.5 for stability of dielectric constant and adhesion. It is preferable in this respect.
  • the average number of (meth)acrylic groups can be calculated as follows using the number n of (meth)acrylic groups contained in the monomer and the mass ratio w when the total mass of the monomers is set to 1.
  • Average (meth)acrylic base number n1 x w1 + n2 x w2 +... (The n and w subscripts indicate the monomer numbers.)
  • the methacrylate ratio of the photopolymerizable monomer contained in the sealing composition of the present invention is preferably in the range of 50 to 80% from the viewpoint of increasing the stability of the dielectric constant, adhesion, and curing rate. .
  • photopolymerizable monomer (A) having no aromatic hydrocarbon group The photopolymerizable monomer (A) that does not have an aromatic hydrocarbon group (hereinafter also simply referred to as "photopolymerizable monomer (A)") does not contain an aromatic hydrocarbon group and has no photocurable functionality.
  • the group (photopolymerizable functional group) may include a monomer having 1 to 20, specifically 1 to 6, one or more of vinyl groups, acrylic groups, and methacrylic groups, for example, 1 to 3 It may contain 1 to 2, 1, or 2.
  • the weight average molecular weight of the photopolymerizable monomer (A) may be within the range of 100 to 500 g/mol, may be within the range of 130 to 400 g/mol, or may be within the range of 200 to 300 g/mol. It may be within the range of mol. By keeping the weight average molecular weight of the monomer within the range, more advantageous effects can be exhibited in terms of the process.
  • the photopolymerizable monomer (A) may include a monofunctional monomer having a photocurable functional group, a polyfunctional monomer, or a mixture thereof.
  • the photopolymerizable monomer (A) may be a (meth)acrylate monomer, and may include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a hydroxy group, and a hydroxyl group having 1 to 20 carbon atoms.
  • Unsaturated carboxylic acid esters having ⁇ 20 alkyl groups Unsaturated carboxylic acid esters having aminoalkyl groups having 1 to 20 carbon atoms; Vinyl esters of saturated or unsaturated carboxylic acids having 1 to 20 carbon atoms; Vinyl cyanide compounds ; unsaturated amide compound; monofunctional or polyfunctional (meth)acrylate of monoalcohol or polyhydric alcohol.
  • polyhydric alcohol means an alcohol having two or more hydroxy groups, preferably 2 to 20, preferably 2 to 10, more preferably 2 to 6 hydroxy groups. obtain.
  • the (meth)acrylate monomer that does not have an aromatic hydrocarbon group is a substituted or unsubstituted C1 to C20 (1 to 20 carbon atoms) alkyl group, a substituted or Mono(meth)acrylates having an unsubstituted C1 to C20 alkylsilyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C1 to C20 alkylene group, an amine group, an ethylene oxide group, etc.
  • Di(meth)acrylate, tri(meth)acrylate, tetra(meth)acrylate, etc. may be used.
  • (meth)acrylate monomers having no aromatic hydrocarbon group include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxy Butyl (meth)acrylate, hexyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, decanyl (meth)acrylate, undecanyl (meth)acrylate, dodecyl (meth)acrylate, cyclohexyl (meth)acrylate, etc.
  • Unsaturated carboxylic acid esters including meth)acrylic acid esters; unsaturated carboxylic acid aminoalkyl esters such as 2-aminoethyl (meth)acrylate and 2-dimethylaminoethyl (meth)acrylate; saturated or unsaturated carboxylic acid esters such as vinyl acetate Acid vinyl ester; vinyl cyanide compounds such as (meth)acrylonitrile; unsaturated amide compounds such as (meth)acrylamide; ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, trimethylolpropane tri(meth) Acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, octanediol di(meth)acrylate, nonanediol di(meth)acrylate, decanediol di(meth)acrylate, Undecanediol
  • the photopolymerizable monomer (A) is a non-aromatic type that does not contain an aromatic group, and is a mono(meth)acrylate having an alkyl group having 1 to 20 carbon atoms, or an amine group.
  • mono(meth)acrylates having a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms include decyl(meth)acrylate, undecyl(meth)acrylate, lauryl(meth)acrylate, tridecyl(meth)acrylate, It may be tetradecyl (meth)acrylate, pentadecyl (meth)acrylate, hexadecyl (meth)acrylate, heptadecyl (meth)acrylate, octadecyl (meth)acrylate, nonadecyl (meth)acrylate, arachidyl (meth)acrylate or a mixture thereof. However, it is not limited to this.
  • the mono(meth)acrylate having an amine group may be, but is not limited to, 2-aminoethyl (meth)acrylate, 2-dimethylaminoethyl (meth)acrylate, or a mixture thereof.
  • the di(meth)acrylate having a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms may be, for example, a di(meth)acrylate having an alkylene group having 1 to 20 carbon atoms; It may also be a non-silicon di(meth)acrylate containing a long-chain alkylene group.
  • Di(meth)acrylates having a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms include, for example, octanediol di(meth)acrylate, nonanediol di(meth)acrylate, decanediol di(meth)acrylate, undecanediol It may be, but is not limited to, di(meth)acrylate, dodecanediol di(meth)acrylate, or a mixture thereof.
  • the sealing composition of the present invention can further improve the photocuring rate and lower the viscosity.
  • the di(meth)acrylate or tri(meth)acrylate having an ethylene oxide group is ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, or a mixture thereof. may be used, but is not limited to this.
  • mono(meth)acrylates and di(meth)acrylates having a cyclic carbonized alkyl group include isobonyl(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, and dicyclopentanyl(meth)acrylate. , dicyclopentenyloxyethyl (meth)acrylate, and dicyclopentenyl (meth)acrylate, but are not limited thereto.
  • the photopolymerizable monomer (A) monomer is contained within the range of 55 to 95% by mass based on the total mass of the photopolymerizable monomers (photopolymerizable monomer (A) and photopolymerizable monomer (B)).
  • the content is preferably in the range of 60 to 90% by mass.
  • Photopolymerizable monomer (B) having an aromatic hydrocarbon group Two or more photopolymerizable monomers (B) having an aromatic hydrocarbon group (hereinafter also simply referred to as "photopolymerizable monomers (B)") have a structure represented by the following general formula (1). phenyl group and hetero atom, and the photopolymerizable monomer (B) contains at least mono(meth)acrylate or di(meth)acrylate.
  • P represents a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups.
  • Z 1 and Z 2 each independently have a structure represented by the following general formula (2). a and b are each an integer of 0 to 2, and a+b is an integer of 1 to 4. ]
  • * is a linking portion of P to carbon.
  • X represents a single bond, O or S.
  • Y represents a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • c is an integer of 0 or 1.
  • P represents a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups.
  • the hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or the heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups is a substituted or unsubstituted hydrocarbon group containing two or more phenyl groups.
  • the hydrocarbon group containing two or more phenyl groups or the heteroatom-containing hydrocarbon group containing two or more phenyl groups may include a substituted or unsubstituted biphenyl group, a substituted or unsubstituted triphenylmethyl group, or a substituted or unsubstituted triphenylmethyl group.
  • substituted or unsubstituted terphenyl group substituted or unsubstituted biphenylene group, substituted or unsubstituted terphenylene group, substituted or unsubstituted quaterphenylene group, substituted or unsubstituted 2-phenyl-2-(phenylthio)ethyl group , substituted or unsubstituted 2,2-diphenylpropane group, substituted or unsubstituted diphenylmethane group, substituted or unsubstituted cumylphenyl group, substituted or unsubstituted bisphenol F group, substituted or unsubstituted bisphenol A group, substituted or It may include an unsubstituted biphenyloxy group, a substituted or unsubstituted terphenyloxy group, a substituted or unsubstituted quarterphenyloxy group, a substituted or unsubstituted quinchyphenyloxy group, and structural
  • the substituted or unsubstituted monomer having two or more phenyl groups may be mono(meth)acrylate, di(meth)acrylate, or a mixture thereof; examples thereof include 4-(meth)acryloxy -2-hydroxybenzophenone, ethyl-3,3-diphenyl (meth)acrylate, benzoyloxyphenyl (meth)acrylate, bisphenol A di(meth)acrylate, ethoxylated bisphenol A di(meth)acrylate, bisphenol F di(meth)acrylate Acrylate, ethoxylated bisphenol F di(meth)acrylate, 4-cumylphenoxyethyl acrylate, ethoxylated bisphenylfluorenediacrylate, 2-phenylphenoxyethyl (meth)acrylate, 2,2'-phenylphenoxyethyl di(meth) Acrylate, 2-phenylphenoxypropyl (meth)acrylate, 2,2'-phenylphenoxyprop
  • the (meth)acrylate mentioned in the present invention is only an example, and is not limited thereto.
  • the present invention includes all acrylates that are in structural isomer relationship.
  • 2,2'-phenylphenoxyethyl di(meth)acrylate is mentioned as an example of the present invention
  • the present invention also covers 3,2'-phenylphenoxyethyl di(meth)acrylate, which corresponds to this structural isomer. Includes di(meth)acrylate, 3,3'-phenylphenoxyethyl di(meth)acrylate, etc.
  • the monomer having two or more phenyl groups may be a mono(meth)acrylate represented by the following general formula (4).
  • R 2 is hydrogen or a methyl group
  • R 3 is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted linear alkylene group having 1 to 20 carbon atoms.
  • R 4 is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups.
  • the hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or the heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups includes two or more substituted or unsubstituted phenyl groups.
  • a phenyl group is not fused, a single bond, an oxygen atom, a sulfur atom, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, an alkylene group having 3 to 6 carbon atoms substituted or unsubstituted with a hetero atom, It means a group connected by an ethenylene group, an ethynylene group, or a carbonyl group.
  • the hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or the heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups is a substituted or unsubstituted biphenyl group, Substituted or unsubstituted triphenylmethyl group, substituted or unsubstituted terphenyl group, substituted or unsubstituted biphenylene group, substituted or unsubstituted terphenylene group, substituted or unsubstituted quarterphenylene group, substituted or unsubstituted 2-phenyl-2-(phenylthio)ethyl group, substituted or unsubstituted 2,2-diphenylpropane group, substituted or unsubstituted diphenylmethane group, substituted or unsubstituted cumylphenyl group, substituted or unsubstituted bisphenol F group, Substituted bi
  • the monomer having two or more phenyl groups may be a di(meth)acrylate represented by the following general formula (5).
  • R 5 and R 9 are each independently hydrogen or a methyl group
  • R 6 and R 8 are each independently a substituted or unsubstituted linear chain having 1 to 10 carbon atoms.
  • R 7 is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a substituted or unsubstituted two or more phenyl group. It is a heteroatom-containing hydrocarbon group including a phenyl group.
  • the hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or the heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups includes two or more substituted or unsubstituted phenyl groups.
  • a phenyl group is not fused, a single bond, an oxygen atom, a sulfur atom, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, an alkylene group having 3 to 6 carbon atoms substituted or unsubstituted with a hetero atom, It means a group connected by an ethenylene group, an ethynylene group, or a carbonyl group.
  • the hydrocarbon group is a substituted or unsubstituted biphenylene group, a substituted or unsubstituted triphenylmethylene group, a substituted or unsubstituted terphenylene group, a substituted or unsubstituted quarterphenylene group, a 2-phenyl-2- It may include, but is not limited to, a (phenylthio)ethylene group, a 2,2-diphenylpropylene group, a diphenylmethylene group, and the like.
  • a and b are each an integer of 0 to 2
  • a+b is an integer of 1 to 4
  • a+b is an integer of 1 or 2.
  • the weight average molecular weight of the monomer having two or more substituted or unsubstituted phenyl groups is preferably within the range of 100 to 1000 g/mol, more preferably within the range of 130 to 700 g/mol, and 150 to 600 g It is particularly preferable that the amount is within the range of /mol. By setting it within the above range, a sealing film with more excellent transmittance can be provided.
  • the photopolymerizable monomer (B) having an aromatic hydrocarbon group is 5 to 45% by mass based on the total mass of the photopolymerizable monomers (photopolymerizable monomer (A) and photopolymerizable monomer (B)).
  • the content is preferably within the range of 10 to 40% by mass, and more preferably 10 to 40% by mass. By setting it within the above range, the viscosity becomes suitable for forming a sealing film.
  • photopolymerizable monomers (A) and (B) include monomers listed in Examples described later. Further, preferred combinations of photopolymerizable monomers in the present invention are as described in the Examples below.
  • the photopolymerization initiator is not particularly limited as long as it is a normal photopolymerization initiator that can perform a photocuring reaction.
  • the photopolymerization initiator may include, for example, a triazine type, an acetophenone type, a benzophenone type, a thioxanthone type, a benzoin type, a phosphorus type, an oxime type, or a mixture thereof.
  • Triazine-based initiators include 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis(trichloromethyl)-s-triazine, 2-(3',4'-dimethoxystyryl)-4 , 6-bis(trichloromethyl)-s-triazine, 2-(4'-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(p-methoxyphenyl)-4,6- Bis(trichloromethyl)-s-triazine, 2-(p-tolyl)-4,6-bis(trichloromethyl)-s-triazine, 2-biphenyl-4,6-bis(trichloromethyl)-s-triazine, Bis(trichloromethyl)-6-styryl-s-triazine, 2-(naphth-1-yl)-4,6-bis(trichloromethyl)-
  • Acetophenone initiators include 2,2'-diethoxyacetophenone, 2,2'-dibutoxyacetophenone, 2-hydroxy-2-methylpropiophenone, pt-butyltrichloroacetophenone, pt-butyldichloroacetophenone , 4-chloroacetophenone, 2,2'-dichloro-4-phenoxyacetophenone, 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino -1-(4-morpholinophenyl)-butan-1-one, and mixtures thereof.
  • Benzophenone initiators include benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4'-dichlorobenzophenone, 3 , 3'-dimethyl-2-methoxybenzophenone or a mixture thereof.
  • the thioxanthone initiator may be thioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2-chlorothioxanthone, or a mixture thereof.
  • the benzoin-based initiator may be benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl dimethyl ketal, or a mixture thereof.
  • the phosphorus initiator may be bisbenzoylphenylphosphine oxide, benzoyldiphenylphosphine oxide, or a mixture thereof.
  • Oxime systems include 2-(o-benzoyloxime)-1-[4-(phenylthio)phenyl]-1,2-octanedione and 1-(o-acetyloxime)-1-[9-ethyl-6-( 2-methylbenzoyl)-9H-carbazol-3-yl]ethanone, or a mixture thereof.
  • the photopolymerization initiator is contained in the sealing composition of the present invention in an amount of about 0.1 to 20 parts by mass based on 100 parts by mass of the photopolymerizable monomer and photoinitiator. Preferably. By setting it within the above range, photopolymerization can sufficiently occur during exposure, and it is possible to prevent transmittance from decreasing due to unreacted initiator remaining after photopolymerization.
  • the photopolymerization initiator is preferably contained in an amount of 0.5 to 10 parts by weight, more specifically 1 to 5 parts by weight.
  • the photopolymerization initiator is preferably contained in the sealing composition of the present invention in an amount of 0.1 to 10% by mass based on solid content, more preferably 0.1% by mass. It is within the range of ⁇ 5% by mass. By setting it within the above range, photopolymerization can sufficiently occur, and it is possible to prevent the transmittance from decreasing due to the remaining unreacted initiator.
  • a photoacid generator or photopolymerization initiator such as a carbazole type, diketone type, sulfonium type, iodonium type, diazo type, or biimidazole type may be used.
  • the encapsulating composition of the present invention may contain other components including an antioxidant, a heat stabilizer, a photosensitizer, a dispersant, a thermal crosslinking agent, and a surfactant within the range where the effects of the present invention can be obtained. It may further contain. Only one kind of these components may be contained in the sealing composition of the present invention, or two or more kinds thereof may be contained in the sealing composition of the present invention.
  • the antioxidant can improve the thermal stability of the sealing layer.
  • the antioxidant may include one or more selected from the group consisting of phenol, quinone, amine, and phosphite, but is not limited thereto.
  • examples of antioxidants include tetrakis[methylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)]methane, tris(2,4-di-tert-butylphenyl)phosphite, etc. be able to.
  • the antioxidant may be contained in the sealing composition in an amount of 0.01 to 3 parts by mass based on a total of 100 parts by mass of the photopolymerizable monomer and the photopolymerization initiator. It is preferably contained in a range of 0.01 to 1 part by mass. By setting it within the above range, excellent thermal stability can be exhibited.
  • the heat stabilizer is contained in the sealing composition and suppresses the change in viscosity of the sealing composition at room temperature, and any ordinary heat stabilizer can be used without any restriction.
  • a heat stabilizer a sterically hindered phenolic heat stabilizer may be used, specifically poly(di-cyclopentadiene-co-p-cresol), octadecyl-3 -(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, 2,6-di-tert-butyl-4-methylphenol, 2,2'-methano-bi(4-methyl-6-tert) -butyl-phenol), 6,6'-di-tert-butyl-2,2'-thiodi-p-cresol, tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, Triethylene glycol-bis(3-tert-butyl-4-hydroxy-5-methylphenyl), 4,
  • the heat stabilizer is present in the sealing composition in an amount of 2000 ppm or less, preferably in the range of 0.01 to 2000 ppm, based on the solid content of the total of the photopolymerizable monomer and the photopolymerization initiator. More preferably, the content is in the range of 100 to 1000 ppm. By setting it within the above range, the heat stabilizer can further improve the storage stability and processability of the sealing composition in a liquid state.
  • the photosensitizer has the function of transferring the absorbed light energy to the photopolymerization initiator, so even if the photopolymerization initiator used does not have absorption corresponding to the light from the light source, it will not have the original photopolymerizability. It is a compound that can have an initiator function.
  • photosensitizers include anthracene derivatives such as 9,10-dibutoxyanthracene; benzoin derivatives such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; Benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3',4,4'-tetra(t-butylperoxycarbonyl)benzophenone, 2,4 , 6-trimethylbenzophenone, 4-benzoyl-N,N-dimethyl-N-[2-(1-oxo-2-propenyloxy)ethyl]benzenemethanaminium bromide, (4-benzoylbenzyl)trimethylammonium chloride, etc.
  • anthracene derivatives such as 9,10-d
  • Benzophenone derivative 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-(3-dimethylamino-2-hydroxy)-3,4- Examples include compounds such as thioxanthone derivatives such as dimethyl-9Hthioxanthon-9-one mesochloride; Among these, it is preferable to use anthracene derivatives, benzoin derivatives, benzophenone derivatives, anthraquinone derivatives, and thioxanthone derivatives.
  • the ultraviolet rays irradiated to cure the sealing composition of the present invention can be any known means, and are not particularly limited as long as they are cured by irradiating ultraviolet rays within the range of 200 to 400 nm.
  • a 395 nm LED is preferably used from the viewpoint of preventing deterioration of the electronic device.
  • the environment for irradiating ultraviolet rays is not particularly limited as long as the sealing composition is cured by any known means, and is not particularly limited as long as it is cured by irradiating ultraviolet rays.
  • the irradiation is performed in an inert gas environment from the viewpoint of preventing deterioration of the electronic device and preventing the influence of oxygen from inhibiting curing.
  • the viscosity of the sealing composition of the present invention is preferably within the range of 3 to 30 mPa ⁇ s from the viewpoint of further improving ejection properties from an inkjet head.
  • the surface tension is preferably 15 mN/m or more and less than 45 mN/m from the viewpoint of further improving the ejection performance from the inkjet head.
  • the viscosity of the sealing composition of the present invention can be determined by measuring the temperature change in the dynamic viscoelasticity of the sealing composition using, for example, various rheometers. In the present invention, these viscosities are values obtained by the following method.
  • the sealing composition of the present invention is set in a stress-controlled rheometer Physica MCR300 (cone plate diameter: 75 mm, cone angle: 1.0°) manufactured by Anton Paar. Next, the sealing composition was heated to 100° C., and the sealing composition was cooled to 20° C. under the following conditions: a temperature decrease rate of 0.1° C./s, a strain of 5%, and an angular frequency of 10 radian/s. to obtain a temperature change curve of dynamic viscoelasticity.
  • the sealing composition of the present invention may contain pigment particles. From the viewpoint of further improving ejection properties from an inkjet head, when the sealing composition of the present invention contains a pigment, the average particle diameter of the pigment particles is within the range of 0.08 to 0.5 ⁇ m. The maximum particle size is preferably within the range of 0.3 to 10 ⁇ m.
  • the average particle diameter of pigment particles in the present invention means a value determined by a dynamic light scattering method using Datasizer Nano ZSP, manufactured by Malvern. Note that the sealing composition containing a coloring material has a high concentration and does not allow light to pass through this measuring device, so the sealing composition is diluted 200 times before measurement.
  • the measurement temperature is room temperature (25°C).
  • the sealing composition of the present invention is an Ohnesolge expressed by the following formula 1, which is expressed by the density ⁇ , the surface tension ⁇ of the sealing composition, the viscosity ⁇ of the sealing composition, and the nozzle diameter D0 . It is preferable that the number (Oh) is within the range of 0.1 to 1 from the viewpoint of inkjet ejection performance and stabilization of droplets during ink flight.
  • the encapsulating composition of the present invention is prepared to provide a cured polymer having a Tg (glass transition temperature) of 80° C. or higher in the polymerized film.
  • Tg glass transition temperature
  • the Tg of the film after polymerization is preferably 80° C. or higher from the viewpoint of ensuring stability in the electronic device formation process, driving temperature, and reliability test.
  • the electronic device sealing film forming method of the present invention is a method of forming a sealing film using the above-described composition for electronic device sealing of the present invention, wherein a first sealing film is formed on the electronic device by a vapor phase method.
  • the method includes a step of forming a sealing layer, and a step of forming a second sealing layer by applying the electronic device sealing composition on the first sealing layer. Further, it is preferable to include a step of forming a third sealing layer on the second sealing layer by a vapor phase method, since the sealing performance of the electronic device can be further improved.
  • the first sealing layer is formed on the electronic device by a vapor phase method.
  • Gas phase methods include sputtering methods (for example, reactive sputtering methods such as magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotating magnetron sputtering, etc.), vapor deposition methods (for example, resistance heating evaporation, electron beam evaporation, ion beam evaporation, plasma-assisted deposition, etc.), thermal CVD, catalytic chemical vapor deposition (Cat-CVD), capacitively coupled plasma CVD (CCP-CVD), optical CVD, plasma CVD (PECVD), epitaxial growth method, and chemical vapor deposition method such as atomic layer deposition (ALD).
  • sputtering methods for example, reactive sputtering methods such as magnetron cathode sputtering, flat plate magnetron sputtering, bipolar
  • the first sealing layer contains silicon nitride (SiNx), silicon oxynitride (SiNOx), or silicon oxide (SiOx).
  • SiNx silicon nitride
  • SiNOx silicon oxynitride
  • SiOx silicon oxide
  • the pressure inside the chamber is reduced, and raw material gases such as silane (SiH 4 ), ammonia (NH 3 ), and hydrogen (H 2 ) are heated and supplied into the chamber.
  • a method of forming The thickness of the first sealing layer is, for example, preferably within the range of 10 to 1000 nm, more preferably within the range of 100 to 500 nm.
  • a second sealing layer is formed by applying the above-described sealing composition of the present invention on the first sealing layer. Specifically, the sealing composition is coated on the first sealing layer (coating step), and the resulting coating film is modified by irradiation with vacuum ultraviolet rays in a nitrogen atmosphere. May have.
  • any suitable method can be used to apply the sealing composition, such as spin coating, roll coating, flow coating, inkjet coating, spray coating, printing, and dip coating. , a casting film forming method, a bar coating method, a gravure printing method, and the like.
  • it is preferable to use the inkjet method because it allows on-demand fine patterning, which is required when sealing electronic devices such as organic EL elements.
  • Drop-on-demand methods include electro-mechanical conversion methods (e.g., single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.), electro-thermal conversion methods (e.g., thermal Ink jet type, bubble jet (registered trademark) type, etc.), electrostatic suction type (eg, electric field control type, slit jet type, etc.), and discharge type (eg, spark jet type, etc.).
  • electro-mechanical conversion methods e.g., single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.
  • electro-thermal conversion methods e.g., thermal Ink jet type, bubble jet (registered trademark) type, etc.
  • electrostatic suction type eg, electric field control type, slit jet type, etc.
  • discharge type eg, spark jet type, etc.
  • an electro-mechanical conversion type or an electro-thermal conversion type head From the viewpoint of cost and productivity of the inkjet head, it is preferable to use an electro-mechanical conversion type or an electro-thermal conversion type head.
  • a method of dropping liquid droplets (for example, a coating liquid) using an inkjet method is sometimes referred to as an "inkjet method.”
  • the sealing composition When applying the sealing composition, it is preferable to apply it under a nitrogen atmosphere.
  • the modification treatment step may include, after the coating step, a step of irradiating the obtained coating film with vacuum ultraviolet rays in a nitrogen atmosphere to perform modification treatment.
  • the modification treatment refers to a conversion reaction of polysilazane to silicon oxide or silicon oxynitride.
  • the reforming treatment is similarly performed in a nitrogen atmosphere such as in a glove box or under reduced pressure.
  • a known method based on a conversion reaction of polysilazane can be selected.
  • a conversion reaction using plasma, ozone, or ultraviolet light which allows the conversion reaction to occur at a low temperature, is preferred. Conventionally known methods can be used for plasma and ozone.
  • it is preferable to form the second sealing layer according to the present invention by providing the coating film and performing a modification treatment by irradiating vacuum ultraviolet light (also referred to as VUV) with a wavelength of 200 nm or less. .
  • VUV vacuum ultraviolet light
  • the thickness of the second sealing layer is preferably within the range of 0.5 to 20 ⁇ m, more preferably within the range of 3 to 10 ⁇ m.
  • the entire layer may be a modified layer, but the thickness of the modified layer treated with modification is preferably within the range of 1 to 50 nm, and preferably 1 to 30 nm. More preferably within this range.
  • the illuminance of the vacuum ultraviolet rays on the coating film surface that the coating film receives is preferably within the range of 30 to 200 mW/cm 2 , and 50 to 160 mW/cm 2 It is more preferable that it be within the range of .
  • the modification efficiency can be sufficiently improved, and if it is 200 mW/cm 2 or less, the incidence of damage to the coating film can be extremely suppressed, and it can also cause damage to the base material. This is preferable because it can also reduce damage to.
  • the amount of energy irradiated with vacuum ultraviolet rays on the coated film surface is preferably within the range of 1 to 10 J/cm 2 , and from the viewpoint of barrier properties and moist heat resistance to maintain desiccant function, More preferably, it is within the range of 7 J/cm 2 .
  • a rare gas excimer lamp is preferably used as the vacuum ultraviolet light source. Since vacuum ultraviolet light is absorbed by oxygen, the efficiency in the vacuum ultraviolet irradiation step tends to decrease, so it is preferable to perform vacuum ultraviolet light irradiation in a state where the oxygen concentration is as low as possible. That is, the oxygen concentration during vacuum ultraviolet light irradiation is preferably within the range of 10 to 10,000 ppm, more preferably within the range of 50 to 5,000 ppm, still more preferably within the range of 80 to 4,500 ppm, and most preferably 100 to 1,000 ppm. is within the range of
  • Modification treatment can also be performed in combination with heat treatment.
  • the heating conditions are preferably in the range of 50 to 300°C, more preferably in the range of 60 to 150°C, preferably for 1 second to 60 minutes, more preferably for 10 seconds to 10 minutes, in combination with heat treatment. By doing so, the dehydration condensation reaction during modification can be promoted and a modified product can be formed more efficiently.
  • Examples of heat treatment include: heating the coating film by heat conduction by bringing the substrate into contact with a heating element such as a heat block; heating the atmosphere with an external heater such as a resistance wire; and heating in an infrared region such as an IR heater. Examples include, but are not particularly limited to, methods using light. Further, any method that can maintain the smoothness of the coating film containing the silicon compound may be selected as appropriate.
  • a third sealing layer is formed on the second sealing layer by a vapor phase method.
  • gas phase method similar to the gas phase method used in the first sealing layer forming step, sputtering methods (for example, magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotating magnetron sputtering, etc.) are used.
  • the third sealing layer contains silicon nitride (SiNx), silicon oxynitride (SiNOx), or silicon oxide (SiOx).
  • the third sealing layer As a specific example of forming the third sealing layer, the pressure inside the chamber is reduced, and raw material gases such as silane (SiH 4 ), ammonia (NH 3 ), and hydrogen (H 2 ) are heated and supplied into the chamber.
  • raw material gases such as silane (SiH 4 ), ammonia (NH 3 ), and hydrogen (H 2 ) are heated and supplied into the chamber.
  • a method of forming The thickness of the third sealing layer is, for example, preferably within the range of 10 to 1000 nm, more preferably within the range of 100 to 500 nm.
  • a conductive film for a touch sensor may be further formed.
  • the conductive film may be, for example, a metal compound film such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), as well as a graphene film or a metal nanowire film (such as silver nanowire or copper nanowire film) that has excellent flexibility.
  • a film containing wires a metal nanoparticle film (for example, a film containing silver nanoparticles or copper nanoparticles).
  • it can be constructed of a laminated film of multiple metals such as Al film/Ti film/Al film, for example.
  • An electronic device sealing film is an electronic device sealing film that seals an electronic device by curing an electronic device sealing composition containing a photopolymerizable monomer and a photopolymerization initiator.
  • the photopolymerizable monomer contains (meth)acrylate
  • the curing rate of the electronic device sealing film is 80% or more
  • a differential thermal/thermogravimetric simultaneous measuring device for the electronic device sealing film. (TG-DTA) residue rate is 3% or more.
  • an electronic device sealing film is an electronic device sealing film that seals an electronic device, and includes a first sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride; and a second sealing layer using the electronic device sealing composition of the present invention described above.
  • Such an electronic device sealing film of the present invention is formed by the electronic device sealing film forming method described above. That is, the second sealing layer is formed using the electronic device sealing composition of the present invention described above.
  • the curing rate of the second sealing layer is 80% or more, and the residue rate of the second sealing layer measured by a differential thermal/thermogravimetric simultaneous measurement device (TG-DTA) is 3% or more.
  • the electronic device sealing film of the present invention further includes a third sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride on the second sealing layer.
  • the first sealing layer is a layer formed on the electronic device by the above-mentioned vapor phase method. Specifically, it contains silicon nitride, silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride.
  • the second sealing layer is provided adjacent to the first sealing layer, and is formed by applying the sealing composition on the first sealing layer. Therefore, the second sealing layer contains a polymer made of the specific photopolymerizable monomer contained in the sealing composition.
  • Methods for detecting that the second sealing layer contains the polymer include various conventionally known analytical methods, such as chromatography, infrared spectroscopy, ultraviolet/visible spectroscopy, nuclear magnetic resonance analysis, Line diffraction, mass spectrometry, X-ray photoelectron spectroscopy, etc. can be used.
  • the content of the polymer in the second sealing layer is preferably in the range of 85 to 100% by mass, more preferably in the range of 90 to 95% by mass.
  • the third sealing layer is a layer that is provided adjacent to the second sealing layer and is formed by the above-mentioned vapor phase method. Specifically, like the first sealing layer, it contains silicon nitride, silicon oxide (silicon monoxide, silicon dioxide, etc.), or silicon oxynitride.
  • Examples of electronic devices to be sealed include organic EL elements, LED elements, liquid crystal display elements (LCD), thin film transistors, touch panels, and electronic paper. , solar cells (PV), and the like. From the viewpoint that the effects of the present invention can be obtained more efficiently, organic EL elements, solar cells, or LED elements are preferable, and organic EL elements are particularly preferable.
  • the organic EL element employed as the electronic device according to the present invention may be of a bottom emission type, that is, one that extracts light from the transparent substrate side.
  • the bottom emission type is constructed by laminating, in this order, a transparent electrode serving as a cathode, a light emitting functional layer, and a counter electrode serving as an anode on a transparent base material.
  • the organic EL element according to the present invention may be of a top emission type, that is, the organic EL element may be of a top emission type, in which light is extracted from the side of the transparent electrode serving as the cathode, which is opposite to the base material.
  • the top emission type has a configuration in which a counter electrode that serves as an anode is provided on the base material side, and a light emitting functional layer and a transparent electrode that serves as a cathode are laminated in this order on the surface of this counter electrode.
  • the intermediate layer may be a charge generation layer or may have a multi-photon unit configuration.
  • organic EL elements applicable to the present invention, see, for example, JP-A No. 2013-157634, JP-A No. 2013-168552, JP-A No. 2013-177361, JP-A No. 2013-187211, and JP-A No. 2013-187211.
  • Examples include configurations described in publications such as Japanese Patent Application Publication No. 2014-017494.
  • a base material (hereinafter also referred to as a support substrate, substrate, substrate, support, etc.) that can be used in the organic EL element, glass or a resin film is preferably used, and flexibility is required.
  • the film is a resin film, it is preferable to use a resin film.
  • it may be transparent or opaque.
  • the base material is preferably transparent.
  • Preferred resins include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, and cellulose acylate resin.
  • base materials containing thermoplastic resins such as polyester resins and acryloyl compounds. These resins can be used alone or in combination of two or more.
  • the base material is preferably made of a heat-resistant material. Specifically, a base material having a linear expansion coefficient of 15 ppm/K or more and 100 ppm/K or less and a glass transition temperature (Tg) of 100° C. or more and 300° C. or less is used.
  • Tg glass transition temperature
  • the base material satisfies the requirements for use in electronic components and as a laminated film for displays. That is, when using the sealing film of the present invention for these uses, the base material may be exposed to a process at 150° C. or higher.
  • the linear expansion coefficient of the base material exceeds 100 ppm/K, the dimensions of the base material will not be stable when it is passed through the process at the above-mentioned temperature, and the barrier performance will deteriorate due to thermal expansion and contraction. , or the problem of not being able to withstand a thermal process is likely to occur. If it is less than 15 ppm/K, the film may break like glass and its flexibility may deteriorate.
  • thermoplastic resins that can be used as the base material include polyethylene terephthalate (PET: 70°C), polyethylene naphthalate (PEN: 120°C), polycarbonate (PC: 140°C), alicyclic resins, etc.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • alicyclic resins etc.
  • Polyolefin for example, Zeonor (registered trademark) 1600 manufactured by Nippon Zeon Co., Ltd.: 160°C
  • PAr polyarylate
  • PES polyethersulfone
  • PSF polysulfone
  • 190°C cycloolefin copolymer
  • COC Compound described in JP-A No.
  • the base material is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105:1981, that is, using an integrating sphere type light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
  • the above-mentioned base material may be an unstretched film or a stretched film.
  • the base material can be manufactured by a conventionally known general method. Regarding the manufacturing method of these base materials, the matters described in paragraphs "0051" to "0055" of International Publication No. 2013/002026 can be adopted as appropriate.
  • the surface of the base material may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatments may be combined as necessary. You can leave it there. Further, the base material may be subjected to adhesion-facilitating treatment.
  • the base material may be a single layer or may have a laminated structure of two or more layers.
  • each base material may be of the same type or of different types.
  • the thickness of the base material according to the present invention is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m.
  • a film base material it is preferably a film base material with a gas barrier layer.
  • the gas barrier layer for the film base material may have an inorganic film, an organic film, or a hybrid film of both formed on the surface of the film base material, and is measured by a method based on JIS K 7129-1992.
  • it is preferably a barrier film with a water vapor permeability (25 ⁇ 0.5°C, relative humidity (90 ⁇ 2)% RH) of 0.01 g/m 2 ⁇ 24 h or less, and furthermore, JIS K 7126- High gas barrier with an oxygen permeability of 1 ⁇ 10 -3 mL/m 2.24 h ⁇ atm or less and a water vapor permeability of 1 ⁇ 10 ⁇ 3 g/m 2.24 h or less, measured using a method based on the 1987 Act. It is preferable that the film is a transparent film.
  • the material forming the gas barrier layer may be any material that has the function of suppressing the infiltration of substances that cause deterioration of elements, such as moisture and oxygen, such as silicon monoxide, silicon dioxide, silicon nitride, silicon oxynitride, Silicon carbide, silicon oxycarbide, etc. can be used.
  • the gas barrier layer is not particularly limited, but for example, in the case of an inorganic gas barrier layer such as silicon monoxide, silicon dioxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, etc., the inorganic material is sputtered (e.g.
  • magnetron cathode sputtering flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotating magnetron sputtering, etc.
  • vapor deposition methods e.g., resistance heating evaporation, electron beam evaporation, ion beam evaporation, plasma assisted deposition, etc.
  • thermal CVD method catalytic chemical vapor deposition (Cat-CVD), capacitively coupled plasma CVD (CCP-CVD), optical CVD, plasma CVD (PE-CVD), epitaxial growth, atomic layer deposition (ALD), reaction
  • Cat-CVD catalytic chemical vapor deposition
  • CCP-CVD capacitively coupled plasma CVD
  • PE-CVD plasma CVD
  • epitaxial growth atomic layer deposition (ALD)
  • reaction is preferable to form the layer by a chemical vapor deposition method such as a chemical sputtering method.
  • a coating solution containing an inorganic precursor such as polysilazane or tetraethyl orthosilicate (TEOS) is applied onto a support, and then a modification treatment is performed by irradiation with vacuum ultraviolet light to form an inorganic gas barrier layer.
  • the inorganic gas barrier layer can also be formed by film metallization techniques such as metal plating on a resin base material, bonding of a metal foil and a resin base material, and the like.
  • the inorganic gas barrier layer may include an organic layer containing an organic polymer. That is, the inorganic gas barrier layer may be a laminate of an inorganic layer containing an inorganic material and an organic layer.
  • the organic layer can be formed by, for example, applying an organic monomer or an organic oligomer to a resin substrate to form a layer, followed by polymerization using, for example, an electron beam device, a UV light source, an electrical discharge device, or other suitable device. It can also be formed by crosslinking, if necessary. It can also be formed, for example, by flash evaporation and vapor deposition of radiation crosslinkable organic monomers or organic oligomers followed by formation of polymers from organic monomers or organic oligomers. Coating efficiency can be improved by cooling the resin substrate.
  • Examples of methods for applying the organic monomer or organic oligomer include roll coating (eg, gravure roll coating), spray coating (eg, electrostatic spray coating), and the like.
  • Examples of the laminate of an inorganic layer and an organic layer include the laminates described in International Publication No. 2012/003198 and International Publication No. 2011/013341.
  • the thickness of each layer may be the same or different.
  • the thickness of the inorganic layer is preferably within the range of 3 to 1000 nm, more preferably within the range of 10 to 300 nm.
  • the thickness of the organic layer is preferably within the range of 100 nm to 100 ⁇ m, more preferably within the range of 1 to 50 ⁇ m.
  • the monomers used to prepare the encapsulating composition are as follows. Further, the number of (meth)acrylic groups for each monomer is as shown in Table I below. In addition, in Table I below, when it has an "acrylic group”, it is written as "0", and when it has a "methacrylic group”, it is written as "1".
  • photopolymerization initiator The photopolymerization initiators used for preparing the sealing composition are shown in Table II below.
  • sealing compositions 1 to 38 Each monomer was weighed in a nitrogen environment to have the types and parts by mass shown in Table III below to obtain monomer preparation solutions 1 to 7. Furthermore, a photopolymerization initiator was added to each of these monomer preparations 1 to 7 in the type and mass parts shown in Table IV below in a brown bottle, and the mixture was stirred for 3 hours on a hot plate at 65°C. Sealing compositions 1 to 38 were obtained.
  • a coating film of a sealing composition having a thickness of 10 ⁇ m was produced on a glass substrate having dimensions of 50 mm ⁇ 50 mm in a nitrogen environment.
  • This coating film was irradiated with ultraviolet rays with a wavelength of 395 nm (MZ 240 mm 395 nm UVLED manufactured by IST) under a nitrogen environment at 300 mW/cm 2 conditions so that the cumulative light amount was 1.5 J/cm 2 . hardened. 10 mg of the obtained cured film was collected with a spatula, and the temperature was raised to 500° C.
  • a coating film of a sealing composition having a thickness of 10 ⁇ m was produced on a glass substrate having dimensions of 50 mm ⁇ 50 mm in a nitrogen environment.
  • This coating film was irradiated with ultraviolet rays with a wavelength of 395 nm (MZ 240 mm 395 nm UVLED manufactured by IST) under a nitrogen environment at 300 mW/cm 2 conditions so that the cumulative light amount was 1.5 J/cm 2 . hardened.
  • FTIR infrared spectrometer Nexus 870
  • An Ag film was formed on the evaluation sample by sputtering, and the impedance was measured using an impedance measuring device (126096 manufactured by Solartron) at a frequency of 100 kHz and AC 0.1 (V). The obtained dielectric constant was taken as the initial dielectric constant.
  • the evaluation sample was stored at 85° C. and 85% RH for 72 hours, and then an Ag film was formed by sputtering, and an impedance measurement device (Solartron 126096) was used to measure the temperature at a frequency of 100 kHz and an AC of 0.1 (V). ), and the relative dielectric constant was measured. The obtained dielectric constant was taken as the dielectric constant after storage.
  • Rate of change in relative permittivity (Initial relative permittivity - relative permittivity after storage) ⁇ initial relative permittivity x 100
  • Ranks 2 to 4 were considered passing. (standard) Rank 1: 15% or more Rank 2: 10% or more, less than 15% Rank 3: 5% or more, less than 10% Rank 4: Less than 5%
  • Silicon nitride (SiNx) with a thickness of 500 nm was formed on a glass substrate having dimensions of 50 mm x 50 mm by plasma CVD. Thereafter, a coating film of the sealing composition with a thickness of 10 ⁇ m was produced in a nitrogen environment.
  • This coating film was irradiated with ultraviolet light with a wavelength of 395 nm (MZ 240 mm 395 nm UVLED manufactured by IST) under a nitrogen environment at 300 mW/cm 2 conditions so that the cumulative light amount was 1.5 J/cm 2 . was cured and used as a measurement sample.
  • a tape (#600 manufactured by 3M Company) was attached to the measurement sample and left for 24 hours.
  • the sealing composition of the present invention has better stability of dielectric constant and adhesion than the sealing composition of the comparative example.
  • the present invention can be used for an electronic device encapsulation composition, an electronic device encapsulation film, and a method for forming an electronic device encapsulation film, which can provide an electronic device encapsulation film with good relative permittivity stability and adhesion.

Abstract

This electronic device sealing composition contains a photopolymerizable monomer and a photopolymerization initiator. The electronic device sealing composition contains a (meth)acrylate as the photopolymerizable monomer. When the electronic device sealing composition is cured by irradiating with UV rays having a wavelength of 395 nm at 1.5 Jcm-2 in a nitrogen environment, the curing rate of the formed electronic device sealing film is 80% or above, and the residue rate of the electronic device sealing film as obtained by a differential thermal/thermogravimetric simultaneous measuring device (TG-DTA) is 3% or above.

Description

電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法Electronic device encapsulation composition, electronic device encapsulation film, and method for forming an electronic device encapsulation film
 本発明は、電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法に関し、特に、比誘電率の安定性及び密着性が良好な電子デバイス封止膜が得られる電子デバイス封止用組成物等に関する。 The present invention relates to an electronic device encapsulation composition, an electronic device encapsulation film, and a method for forming an electronic device encapsulation film, and in particular, an electronic device encapsulation film with good relative permittivity stability and adhesion can be obtained. The present invention relates to compositions for encapsulating electronic devices, etc.
 電子デバイス、特に有機エレクトロルミネッセンスデバイス(以下、「有機ELデバイス」又は「有機EL素子」ともいう。)は、用いられている有機材料や電極が水分により劣化することを防止するため、有機EL素子の表面を封止層により覆うことが提案されている。 Electronic devices, especially organic electroluminescent devices (hereinafter also referred to as "organic EL devices" or "organic EL elements"), are designed to prevent the organic materials and electrodes used from deteriorating due to moisture. It has been proposed to cover the surface of the device with a sealing layer.
 有機EL素子を封止する技術として、例えば、特許文献1に記載の技術では、アクリル化合物(A)及び光重合開始剤(B)を含み、周波数が100kHzである場合の硬化物の比誘電率が3.0以下であり、インクジェット法で成形される有機EL素子封止用紫外線硬化性樹脂組成物が開示されている。当該技術によって、インクジェット法で成形可能で、かつ、硬化物を低誘電率化しやすい有機EL封止用紫外線硬化性樹脂組成物を提供できるとされている。 As a technique for sealing an organic EL element, for example, in the technique described in Patent Document 1, the dielectric constant of a cured product containing an acrylic compound (A) and a photopolymerization initiator (B) at a frequency of 100 kHz is is 3.0 or less, and an ultraviolet curable resin composition for sealing an organic EL element that is molded by an inkjet method is disclosed. It is said that this technology can provide an ultraviolet curable resin composition for encapsulating organic EL, which can be molded by an inkjet method and whose cured product can easily be made to have a low dielectric constant.
 また、特許文献2に記載の技術では、第1成分として少なくとも1種の平均粒径1~30nmの無機フィラーと、第2成分として(メタ)アクリレート系モノマーから選ばれる少なくとも1種のモノマーと、第3成分として少なくとも1種の重合開始剤とを含有し、第1~3成分の合計の重量濃度がインク組成物全重量に対して98~100重量%である、インク組成物が開示されている。当該技術によって、高い屈折率、透過率、柔軟性及び比誘電率の低い硬化膜を提供できるとされている。 Further, in the technology described in Patent Document 2, at least one inorganic filler having an average particle size of 1 to 30 nm as a first component, and at least one monomer selected from (meth)acrylate monomers as a second component, An ink composition is disclosed, which contains at least one polymerization initiator as a third component, and the total weight concentration of the first to third components is 98 to 100% by weight based on the total weight of the ink composition. There is. It is said that this technique can provide a cured film with high refractive index, transmittance, flexibility, and low dielectric constant.
 しかしながら、上記特許文献1及び2に記載の技術によって、比誘電率の低い硬化膜(硬化物)が得られるものの、紫外線としては395nmといった長波長の紫外線で、前記したような組成物を硬化した場合、硬化膜を85℃環境で保存した後の誘電率が上昇してしまい、比誘電率の安定性に問題があった。また、硬化膜の密着性が不十分で、より密着性に優れた硬化膜が求められている。 However, although a cured film (cured product) with a low dielectric constant can be obtained by the techniques described in Patent Documents 1 and 2 above, the above-mentioned compositions cannot be cured with ultraviolet rays having a long wavelength such as 395 nm. In this case, the dielectric constant of the cured film after being stored in an 85° C. environment increases, causing a problem in the stability of the relative dielectric constant. Further, the adhesion of the cured film is insufficient, and a cured film with even better adhesion is required.
特開2020-057580号公報JP2020-057580A 国際公開第2018/051732号International Publication No. 2018/051732
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、比誘電率の安定性及び密着性が良好な電子デバイス封止膜が得られる電子デバイス封止用組成物を提供することである。また、当該電子デバイス封止用組成物を用いた電子デバイス封止膜、及び電子デバイス封止膜の形成方法を提供することである。 The present invention has been made in view of the above problems and circumstances, and an object to be solved is to provide an electronic device encapsulation composition that provides an electronic device encapsulation film with good relative permittivity stability and adhesion. It is to provide. Another object of the present invention is to provide an electronic device sealing film using the electronic device sealing composition and a method for forming the electronic device sealing film.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、光重合性モノマーとして(メタ)アクリレートを含有し、特定の環境条件下で照射して硬化した封止膜の硬化率及び示差熱・熱重量同時測定装置で測定した際の残渣率を特定範囲とすることにより、比誘電率の安定性及び密着性が良好な電子デバイス封止膜(硬化膜)が得られる電子デバイス封止用組成物を提供することができる。また、当該電子デバイス封止用組成物を用いた電子デバイス封止膜及び電子デバイス封止膜の形成方法を提供することである。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above problems, in the process of investigating the causes of the above problems, the present inventors discovered a sealing film containing (meth)acrylate as a photopolymerizable monomer and cured by irradiation under specific environmental conditions. An electronic device sealing film (cured film) with good dielectric constant stability and adhesion can be obtained by setting the curing rate and the residue rate when measured with a differential thermal/thermogravimetric simultaneous measurement device within a specific range. It is possible to provide a composition for encapsulating an electronic device. Another object of the present invention is to provide an electronic device sealing film and a method for forming an electronic device sealing film using the electronic device sealing composition.
That is, the above-mentioned problems related to the present invention are solved by the following means.
 1.光重合性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物であって、
 前記光重合性モノマーとして、(メタ)アクリレートを含有し、
 窒素環境下で波長395nmの紫外線を1.5Jcm-2照射して硬化したとき、
 形成される電子デバイス封止膜の硬化率が、80%以上であり、かつ、当該電子デバイス封止膜の示差熱・熱重量同時測定装置(TG-DTA)による残渣率が、3%以上である電子デバイス封止用組成物。
1. An electronic device encapsulation composition containing a photopolymerizable monomer and a photopolymerization initiator,
The photopolymerizable monomer contains (meth)acrylate,
When cured by irradiating 1.5 Jcm -2 of ultraviolet light with a wavelength of 395 nm in a nitrogen environment,
The curing rate of the electronic device sealing film to be formed is 80% or more, and the residue rate of the electronic device sealing film as measured by a differential thermal/thermogravimetric simultaneous measurement apparatus (TG-DTA) is 3% or more. A composition for encapsulating an electronic device.
 2.前記硬化率が、90%以上である第1項に記載の電子デバイス封止用組成物。 2. 2. The composition for encapsulating an electronic device according to item 1, wherein the curing rate is 90% or more.
 3.前記残渣率が、5%以上である第1項に記載の電子デバイス封止用組成物。 3. 2. The composition for encapsulating an electronic device according to item 1, wherein the residue rate is 5% or more.
 4.前記残渣率が、10%以上である第1項に記載の電子デバイス封止用組成物。 4. 2. The composition for encapsulating an electronic device according to item 1, wherein the residue rate is 10% or more.
 5.窒素環境下で波長395nmの紫外線を1.5Jcm-2照射して硬化したとき、形成される電子デバイス封止膜の比誘電率が、3.1以下である第1項に記載の電子デバイス封止用組成物。 5. 2. The electronic device sealing film according to item 1, wherein the electronic device sealing film formed has a dielectric constant of 3.1 or less when cured by irradiating 1.5 Jcm −2 of ultraviolet light with a wavelength of 395 nm in a nitrogen environment. composition for stopping use.
 6.前記電子デバイス封止用組成物に含有される前記光重合性モノマーの平均(メタ)アクリル基数が、1.3~1.5の範囲内である第1項に記載の電子デバイス封止用組成物。 6. The composition for encapsulating an electronic device according to item 1, wherein the photopolymerizable monomer contained in the composition for encapsulating an electronic device has an average (meth)acrylic group number within the range of 1.3 to 1.5. thing.
 7.前記電子デバイス封止用組成物に含有される前記光重合性モノマーのメタクリレート比率が、50~80%の範囲内である第1項に記載の電子デバイス封止用組成物。 7. 2. The composition for encapsulating an electronic device according to claim 1, wherein the methacrylate ratio of the photopolymerizable monomer contained in the composition for encapsulating an electronic device is within the range of 50 to 80%.
 8.光重合性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物を硬化して電子デバイスを封止する電子デバイス封止膜であって、
 前記光重合性モノマーとして、(メタ)アクリレートを含有し、
 前記電子デバイス封止膜の硬化率が、80%以上で、かつ、
 前記電子デバイス封止膜の示差熱・熱重量同時測定装置(TG-DTA)による残渣率が、3%以上である電子デバイス封止膜。
8. An electronic device sealing film that seals an electronic device by curing an electronic device sealing composition containing a photopolymerizable monomer and a photopolymerization initiator,
The photopolymerizable monomer contains (meth)acrylate,
The curing rate of the electronic device sealing film is 80% or more, and
The electronic device sealing film has a residue rate of 3% or more as measured by a differential thermal/thermogravimetric simultaneous measurement apparatus (TG-DTA).
 9.電子デバイスを封止する電子デバイス封止膜であって、
 窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、
 第1項から第7項までのいずれか一項に記載の電子デバイス封止用組成物を用いた第2封止層と、を有する電子デバイス封止膜。
9. An electronic device sealing film that seals an electronic device,
a first sealing layer containing silicon nitride, silicon oxide or silicon oxynitride;
An electronic device sealing film comprising: a second sealing layer using the electronic device sealing composition according to any one of Items 1 to 7;
 10.前記第2封止層上に、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第3封止層を有する第9項に記載の電子デバイス封止膜。 10. 10. The electronic device sealing film according to item 9, further comprising a third sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride on the second sealing layer.
 11.第1項から第7項までのいずれか一項に記載の電子デバイス封止用組成物を用いて、電子デバイス封止膜を形成する方法であって、
 電子デバイス上に気相法により第1封止層を形成する工程と、
 前記第1封止層上に前記電子デバイス封止用組成物を塗布することにより第2封止層を形成する工程と、を備える電子デバイス封止膜形成方法。
11. A method of forming an electronic device sealing film using the electronic device sealing composition according to any one of Items 1 to 7, comprising:
forming a first sealing layer on the electronic device by a vapor phase method;
A method for forming an electronic device sealing film, comprising: forming a second sealing layer by applying the electronic device sealing composition on the first sealing layer.
 12.前記第2封止層上に、気相法により第3封止層を形成する工程を備える第11項に記載の電子デバイス封止膜形成方法。 12. 12. The electronic device sealing film forming method according to item 11, comprising the step of forming a third sealing layer on the second sealing layer by a vapor phase method.
 13.インクジェット法により前記第2封止層を形成する第11項に記載の電子デバイス封止膜形成方法。 13. 12. The electronic device sealing film forming method according to item 11, wherein the second sealing layer is formed by an inkjet method.
 本発明の上記手段により、比誘電率の安定性及び密着性が良好な封止膜が得られる電子デバイス封止用組成物を提供することができる。また、当該封止用組成物を用いた電子デバイス封止膜及び電子デバイス封止膜の形成方法を提供することができる。 By means of the above means of the present invention, it is possible to provide a composition for encapsulating an electronic device that provides a encapsulating film with good stability in dielectric constant and good adhesion. Furthermore, it is possible to provide an electronic device sealing film and a method for forming an electronic device sealing film using the sealing composition.
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 (比誘電率の安定性)
 比誘電率は電界を印加したときに分極のしやすさを表し、分極するかどうかは、封止用組成物が硬化した後の封止膜の成分の分子の方向性と動きやすさに依存すると考えられる。したがって、封止膜の成分の分子がより動きにくいことが好ましく、封止膜の未硬化成分が少ない方が良い。
 そこで、本発明では、封止膜の硬化率が80%以上であることにより、封止膜の未硬化成分が少なくなり、分子が動きにくくなることから比誘電率が安定化すると推察される。
 また、硬化後の分子構造が高分子化、架橋化していることが良く、このことから本発明では、前記残渣率を3%以上とし、残渣率が高い膜にすることにより、膜が高分子化及び架橋化し、熱に対する比誘電率の安定性が高くなると推察される。
Although the mechanism of expression or action of the effects of the present invention is not clear, it is speculated as follows.
(Stability of relative permittivity)
The relative dielectric constant indicates the ease with which polarization occurs when an electric field is applied, and whether or not polarization occurs depends on the directionality and ease of movement of the molecules of the components of the sealing film after the sealing composition is cured. It is thought that then. Therefore, it is preferable that the molecules of the components of the sealing film are less likely to move, and it is better that the sealing film has less uncured components.
Therefore, in the present invention, it is presumed that by setting the curing rate of the sealing film to 80% or more, the uncured components of the sealing film are reduced, molecules become difficult to move, and the dielectric constant is stabilized.
In addition, it is good that the molecular structure after curing is polymerized and crosslinked. Therefore, in the present invention, by setting the above-mentioned residue rate to 3% or more and creating a film with a high residue rate, the film has a high molecular structure. It is presumed that the stability of the relative permittivity against heat increases as a result of crosslinking.
 (密着性)
 例えば、封止膜の下地としてCVD膜がある場合、CVD膜から封止膜が剥離するときに、界面剥離と凝集剥離によって剥離することが考えられる。界面剥離については、膜の機械特性と膜の応力が関係する。膜が適度に高分子化、架橋化することにより、これら機械特性が高く膜応力が適切な範囲になることで密着が良くなると考えられる。また、十分に硬化した膜になることで、膜自体の強度も上がり、凝集剥離が抑制できる。
 そこで、本発明では、封止膜の硬化率を80%以上とし、かつ、前記残渣率を3%以上とすることで、膜の機械特性が高くなり、膜の応力が適切な範囲とされ、密着性が良好で、また、十分に硬化した膜になることから凝集剥離が抑制されると推察される。
(Adhesion)
For example, when a CVD film is used as a base for a sealing film, when the sealing film is peeled off from the CVD film, the peeling may occur due to interfacial peeling and cohesive peeling. Interfacial peeling is related to the mechanical properties of the film and the stress of the film. It is thought that by appropriately polymerizing and crosslinking the membrane, these mechanical properties are high and the membrane stress is within an appropriate range, thereby improving adhesion. Furthermore, by forming a sufficiently cured film, the strength of the film itself increases, and cohesion and peeling can be suppressed.
Therefore, in the present invention, by setting the curing rate of the sealing film to 80% or more and setting the residue rate to 3% or more, the mechanical properties of the film are increased and the stress of the film is set in an appropriate range. Since the film has good adhesion and is sufficiently cured, it is presumed that cohesion and peeling are suppressed.
 本発明の電子デバイス封止用組成物は、光重合性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物であって、前記光重合性モノマーとして、(メタ)アクリレートを含有し、窒素環境下で波長395nmの紫外線を1.5Jcm-2照射して硬化したとき、形成される電子デバイス封止膜の硬化率が、80%以上であり、かつ、当該電子デバイス封止膜の示差熱・熱重量同時測定装置(TG-DTA)による残渣率が、3%以上である。
 この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
The composition for encapsulating an electronic device of the present invention is a composition for encapsulating an electronic device containing a photopolymerizable monomer and a photopolymerization initiator, and contains (meth)acrylate as the photopolymerizable monomer, When cured by irradiating 1.5 Jcm -2 of ultraviolet light with a wavelength of 395 nm in a nitrogen environment, the curing rate of the electronic device sealing film formed is 80% or more, and the difference of the electronic device sealing film is The residue rate measured by a thermogravimetric simultaneous measurement device (TG-DTA) is 3% or more.
This feature is a technical feature common to or corresponding to each of the embodiments described below.
 本発明の実施態様としては、前記硬化率が、90%以上であることが、比誘電率の安定化及び未着性がより良好となる点で好ましい。 In an embodiment of the present invention, it is preferable that the curing rate is 90% or more because the relative dielectric constant is stabilized and the non-adhesion property is better.
 また、前記残渣率が、5%以上であること、特に10%以上であることが、比誘電率の安定化及び密着性がより良好となる点で好ましい。 Further, it is preferable that the residue ratio is 5% or more, particularly 10% or more, in terms of stabilization of the dielectric constant and better adhesion.
 さらに、窒素環境下で波長395nmの紫外線を1.5Jcm-2照射して硬化したとき、形成される電子デバイス封止膜の比誘電率が、3.1以下であることが、低誘電となり、電子デバイスの表示素子と表示素子上に配置されたタッチセンサーとの干渉を抑制できる点で好ましい。特に、ノートブック等の大型の電子デバイスや、アクティブ型のタッチペンを用いるタッチセンサーを使用する際に、特に好ましい。 Furthermore, when cured by irradiating 1.5 Jcm -2 of ultraviolet light with a wavelength of 395 nm in a nitrogen environment, the dielectric constant of the electronic device sealing film formed is 3.1 or less, which means that the dielectric is low. This is preferable in that interference between a display element of an electronic device and a touch sensor disposed on the display element can be suppressed. This is particularly preferred when using a large electronic device such as a notebook or a touch sensor using an active touch pen.
 前記電子デバイス封止用組成物に含有される前記光重合性モノマーの平均(メタ)アクリル基数が、1.3~1.5の範囲内であることが、比誘電率の安定性及び密着性の点で好ましい。
 また、前記電子デバイス封止用組成物に含有される前記光重合性モノマーのメタクリレート比率が、50~80%の範囲内であることが、比誘電率の安定性、密着性及び硬化率を高める点で好ましい。
The average number of (meth)acrylic groups of the photopolymerizable monomer contained in the electronic device encapsulating composition is within the range of 1.3 to 1.5, which improves stability of dielectric constant and adhesion. It is preferable in this respect.
Further, the methacrylate ratio of the photopolymerizable monomer contained in the electronic device encapsulating composition is within the range of 50 to 80%, which increases the stability of the dielectric constant, adhesion, and curing rate. This is preferable in this respect.
 本発明の一の態様の電子デバイス封止膜は、光重合性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物を硬化して電子デバイスを封止する電子デバイス封止膜であって、前記光重合性モノマーとして、(メタ)アクリレートを含有し、前記電子デバイス封止膜の硬化率が、80%以上で、かつ、前記電子デバイス封止膜の示差熱・熱重量同時測定装置(TG-DTA)による残渣率が、3%以上である。
 これにより、比誘電率の安定性及び密着性が良好な電子デバイス封止膜とすることができる。
An electronic device sealing film according to one aspect of the present invention is an electronic device sealing film that seals an electronic device by curing an electronic device sealing composition containing a photopolymerizable monomer and a photopolymerization initiator. The photopolymerizable monomer contains (meth)acrylate, the curing rate of the electronic device sealing film is 80% or more, and a differential thermal/thermogravimetric simultaneous measuring device for the electronic device sealing film. The residue rate due to (TG-DTA) is 3% or more.
Thereby, an electronic device sealing film with good stability of dielectric constant and good adhesion can be obtained.
 本発明の他の態様の電子デバイス封止膜は、電子デバイスを封止する電子デバイス封止膜であって、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、前記電子デバイス封止用組成物を用いた第2封止層と、を有する。
 これにより、比誘電率の安定性及び密着性が良好な電子デバイス封止膜とすることができる。
An electronic device sealing film according to another aspect of the present invention is an electronic device sealing film that seals an electronic device, and includes a first sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride, and a first sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride; and a second sealing layer using a device sealing composition.
Thereby, an electronic device sealing film with good stability of dielectric constant and good adhesion can be obtained.
 また、前記第2封止層上に、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第3封止層を有することが、封止性能に優れる点で好ましい。 Furthermore, it is preferable to have a third sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride on the second sealing layer from the viewpoint of excellent sealing performance.
 本発明の電子デバイス封止膜形成方法は、前記電子デバイス封止用組成物を用いて、電子デバイス封止膜を形成する方法であって、電子デバイス上に気相法により第1封止層を形成する工程と、前記第1封止層上に前記電子デバイス封止用組成物を塗布することにより第2封止層を形成する工程と、を備える。
 これにより、比誘電率の安定性及び密着性が良好な電子デバイス封止膜を形成することができる。
The electronic device sealing film forming method of the present invention is a method of forming an electronic device sealing film using the electronic device sealing composition, wherein a first sealing layer is formed on the electronic device by a vapor phase method. and a step of forming a second sealing layer by applying the electronic device sealing composition on the first sealing layer.
Thereby, it is possible to form an electronic device sealing film with good stability in dielectric constant and good adhesion.
 前記第2封止層上に、気相法により第3封止層を形成する工程を備えることが、封止性能に優れる点で好ましい。
 また、インクジェット法により前記第2封止層を形成することが、高精度に層形成できる点で好ましい。
It is preferable to include a step of forming a third sealing layer on the second sealing layer by a vapor phase method in terms of excellent sealing performance.
Further, it is preferable to form the second sealing layer by an inkjet method because the layer can be formed with high precision.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and forms and aspects for carrying out the present invention will be explained. In this application, "~" is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
[本発明のインクジェット用の電子デバイス封止用組成物の概要]
 本発明のインクジェット用の電子デバイス封止用組成物(以下、単に「封止用組成物」ともいう。)は、光重合性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物であって、前記光重合性モノマーとして、(メタ)アクリレートを含有し、窒素環境下で波長395nmの紫外線を1.5Jcm-2照射して硬化したとき、形成される電子デバイス封止膜(以下、単に「封止膜」ともいう。)の硬化率が、80%以上であり、かつ、当該電子デバイス封止膜の示差熱・熱重量同時測定装置(TG-DTA)による残渣率が、3%以上である。
[Overview of the inkjet electronic device sealing composition of the present invention]
The inkjet electronic device encapsulation composition (hereinafter also simply referred to as "encapsulation composition") of the present invention is an electronic device encapsulation composition containing a photopolymerizable monomer and a photopolymerization initiator. An electronic device sealing film (hereinafter referred to as The curing rate of the electronic device sealing film (also simply referred to as "sealing film") is 80% or more, and the residue rate of the electronic device sealing film as measured by a differential thermal/thermogravimetric simultaneous measurement apparatus (TG-DTA) is 3%. That's all.
<硬化率>
 本発明の封止用組成物は、窒素環境下で波長395nmの紫外線を1.5Jcm-2照射して硬化したとき形成される封止膜の硬化率が、80%以上である。より好ましくは90%以上であり、上限は100%であることが好ましい。
<Curing rate>
When the sealing composition of the present invention is cured by irradiating 1.5 Jcm -2 of ultraviolet light with a wavelength of 395 nm in a nitrogen environment, the cure rate of the sealing film formed is 80% or more. More preferably, it is 90% or more, and the upper limit is preferably 100%.
 前記硬化率は、硬化前の封止用組成物と、光照射した後の封止膜(硬化膜)について、FT-IRを測定し、得られたスペクトルの(メタ)アクリロイル基由来のC=C結合のピーク(810cm-1)の強度から、下記式により計算することができる。
 硬化率(%)=(1-a/b)×100
 a:硬化前の封止用組成物のC=C結合由来のピーク値
 b:硬化後の封止膜のC=C結合由来のピーク値
The curing rate is determined by measuring FT-IR of the sealing composition before curing and the sealing film (cured film) after light irradiation, and determining the C= derived from (meth)acryloyl group in the spectrum obtained. It can be calculated from the intensity of the C bond peak (810 cm −1 ) using the following formula.
Curing rate (%) = (1-a/b) x 100
a: Peak value derived from C=C bond of the sealing composition before curing b: Peak value derived from C=C bond of the sealing film after curing
 前記硬化率を80%以上とするための手段としては、例えば、ラジカル反応しやすい(メタ)アクリレートの使用、395nmを効果的に吸収する光重合開始剤、増感剤の利用による反応効率向上等が挙げられる。ラジカル反応しやすい(メタ)アクリレートとしては、アミン含有の(メタ)アクリレート、エチレンオキシド基を有する(メタ)アクリレート、ヒドロキシ基を有する(メタ)アクリレート、(メタ)アクリレート官能基数が2以上の(メタ)アクリレートを利用することができる。また、アクリレートはメタクリレートより反応性が高いので、メタクリレート比率の低い組成物を利用することができる。 Means for increasing the curing rate to 80% or more include, for example, the use of (meth)acrylates that are susceptible to radical reactions, the use of photopolymerization initiators that effectively absorb 395 nm, and the use of sensitizers to improve reaction efficiency. can be mentioned. Examples of (meth)acrylates that are susceptible to radical reactions include amine-containing (meth)acrylates, (meth)acrylates having an ethylene oxide group, (meth)acrylates having a hydroxyl group, and (meth)acrylates having two or more functional groups. Acrylate can be used. Also, since acrylates are more reactive than methacrylates, compositions with lower methacrylate ratios can be used.
<残渣率>
 本発明の封止用組成物は、窒素環境下で波長395nmの紫外線を1.5Jcm-2照射して硬化したとき形成される封止膜の示差熱・熱重量同時測定装置(TG-DTA)の残渣率が3%以上である。より好ましくは、5%以上であり、特に10%以上が好ましい。
<Residue rate>
The sealing composition of the present invention is cured by irradiating 1.5 Jcm -2 of ultraviolet light with a wavelength of 395 nm in a nitrogen environment. The residue rate is 3% or more. More preferably, it is 5% or more, particularly preferably 10% or more.
 示差熱・熱重量同時測定装置(TG-DTA)としては、Thermo Plus EVO2(リガク社製)を使用し、窒素雰囲気下、昇温速度10℃/minで500℃まで昇温し、初期質量wに対する500℃時点での質量wから計算される以下の式で残渣率を計算した。
 残渣率(%)=w/w×100(%)
(残渣率=(1-質量減少率)×100、質量減少率=1-w/w
Thermo Plus EVO2 (manufactured by Rigaku Corporation) was used as a differential thermal/thermogravimetric simultaneous measuring device (TG-DTA), and the temperature was raised to 500 °C at a heating rate of 10 °C/min in a nitrogen atmosphere, and the initial mass w was measured. The residue rate was calculated using the following formula calculated from the mass w at 500°C relative to 0 °C.
Residue rate (%) = w/w 0 × 100 (%)
(Residue rate = (1-mass reduction rate) x 100, mass reduction rate = 1-w/w 0 )
 前記残渣率を3%以上とするための手段としては、例えば、ラジカル反応しやすい(メタ)アクリレートの使用、395nmを効果的に吸収する光重合開始剤、増感剤の利用による反応効率向上等が挙げられる。また、耐熱性の高い(メタ)アクリレート構造を用いることが挙げられ、例えば脂環式炭化水素の(メタ)アクリレート、ポリブタジエン骨格を有する(メタ)アクリレート構造が挙げられる。ポリブタジエン骨格を有するアクリレート化合物としては、例えば日本曹達株式会社製 TEAI-1000、TE-2000、大阪有機化学工業株式会社製BAC-15、BAC-45などが挙げられる。 Examples of means for increasing the residue rate to 3% or more include the use of (meth)acrylates that are susceptible to radical reactions, the use of photopolymerization initiators that effectively absorb 395 nm, and the use of sensitizers to improve reaction efficiency. can be mentioned. Further, it is possible to use a (meth)acrylate structure having high heat resistance, such as a (meth)acrylate structure of an alicyclic hydrocarbon or a (meth)acrylate structure having a polybutadiene skeleton. Examples of the acrylate compound having a polybutadiene skeleton include TEAI-1000 and TE-2000 manufactured by Nippon Soda Co., Ltd., and BAC-15 and BAC-45 manufactured by Osaka Organic Chemical Industry Co., Ltd.
<比誘電率>
 本発明の封止用組成物は、窒素環境下で波長395nmの紫外線を1.5Jcm-2照射して硬化したとき形成される封止膜の比誘電率が、3.1以下であることが好ましく、2.4~2.9の範囲内であることがより好ましい。
<Relative dielectric constant>
When the sealing composition of the present invention is cured by irradiating 1.5 Jcm -2 of ultraviolet light with a wavelength of 395 nm in a nitrogen environment, the dielectric constant of the sealing film formed is 3.1 or less. It is preferably within the range of 2.4 to 2.9.
 前記比誘電率は例えばインピーダンス測定装置で得られる静電容量Cを用いて以下の方法によって算出することができる。
Figure JPOXMLDOC01-appb-M000001
The relative dielectric constant can be calculated by the following method using, for example, the capacitance C obtained with an impedance measuring device.
Figure JPOXMLDOC01-appb-M000001
 また、前記比誘電率を3.1以下とするための手段としては、例えば、分極率及び双極子モーメントが低い(メタ)アクリレート構造を用いることが挙げられる。例えば、ヒドロキシ基が少ない(メタ)アクリレート、ヘテロ原子数が少ない(メタ)アクリレート、エステル基が少ない(メタ)アクリレート、メタクリレート(メタ)アクリレート、脂環式炭化水素の(メタ)アクリレート、フッ素を含む(メタ)アクリレートを有することが挙げられる。また、分子体積が大きい(メタ)アクリレートを用いることが挙げられ、例えば、脂環式の(メタ)アクリレート、分子量の大きい(メタ)アクリレート、炭素鎖が8以上のアルキレン基を有する(メタ)アクリレートを有することが挙げられる。 Further, as a means for setting the relative dielectric constant to 3.1 or less, for example, a (meth)acrylate structure with low polarizability and dipole moment may be used. For example, (meth)acrylates with few hydroxy groups, (meth)acrylates with few heteroatoms, (meth)acrylates with few ester groups, (meth)acrylates, (meth)acrylates of alicyclic hydrocarbons, and fluorine. (Meth)acrylate may be mentioned. In addition, (meth)acrylates with large molecular volumes may be used, such as alicyclic (meth)acrylates, (meth)acrylates with large molecular weights, and (meth)acrylates with alkylene groups having 8 or more carbon chains. One example is having the following.
[電子デバイス封止用組成物の組成]
 本発明の電子デバイス封止用組成物は、光重合性モノマー及び光重合開始剤を含有する。
 光重合性モノマーとしては、(メタ)アクリレートを含有する。
[Composition of electronic device encapsulation composition]
The composition for encapsulating an electronic device of the present invention contains a photopolymerizable monomer and a photopolymerization initiator.
The photopolymerizable monomer contains (meth)acrylate.
 本明細書において、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの少なくとも一方を意味する。
 また、本発明における「電子デバイス」とは、電子のもつ運動エネルギー、位置エネルギーなどを利用して電気信号の発生、増幅、変換、又は制御などを行う素子をいう。例えば、発光ダイオード素子、有機エレクトロルミネッセンス素子、光電変換素子及びトランジスターなどの能動素子が挙げられる。また、本発明においては、他からの働きかけに対し、「抵抗する」「蓄える」などの受け身的な仕事をする受動素子、例えば、抵抗器・コンデンサーなども電子デバイスに含める。
 したがって、本発明の封止用組成物は、前記した電子デバイスを封止するための封止膜を形成するために用いられる。
As used herein, "(meth)acrylate" means at least one of acrylate and methacrylate.
Furthermore, the term "electronic device" in the present invention refers to an element that generates, amplifies, converts, or controls electrical signals by utilizing the kinetic energy, potential energy, etc. of electrons. Examples include active devices such as light emitting diode devices, organic electroluminescent devices, photoelectric conversion devices, and transistors. Furthermore, in the present invention, electronic devices include passive elements such as resistors and capacitors that perform passive work such as "resistance" and "storage" in response to actions from others.
Therefore, the sealing composition of the present invention is used to form a sealing film for sealing the electronic device described above.
<光重合性モノマー>
 「光重合性モノマー」とは、それ自体又は光重合開始剤が光を吸収し、活性なイオン又はラジカルを生成することによって重合(硬化)反応を行える光重合性モノマー(「光硬化性モノマー」ともいう。)を意味する。前記光重合性モノマーとしては、シリコン(Si)を含まない非-シリコン系モノマーを使用してもよく、例えば、C、H、O、N又はSから選ばれる元素のみからなるモノマーであってもよいが、これに限定されない。光重合性モノマーは、通常の合成方法で合成して使用してもよく、商業的に販売する製品を購入して使用してもよい。
 前記光重合性モノマーとしては、下記の芳香族炭化水素基を有さない光重合性モノマー(A)や、芳香族炭化水素基を有する光重合性モノマー(B)等が挙げられ、前記したように封止膜としたときに、前記硬化率及び残渣率が前記した範囲を満たすように、これらの光重合性モノマーから適宜選択する。
<Photopolymerizable monomer>
"Photopolymerizable monomer" refers to a photopolymerizable monomer ("photocurable monomer") that can perform a polymerization (curing) reaction by itself or a photopolymerization initiator absorbing light and producing active ions or radicals. Also referred to as ). As the photopolymerizable monomer, a non-silicon monomer that does not contain silicon (Si) may be used, for example, a monomer consisting only of elements selected from C, H, O, N, or S. Good, but not limited to this. The photopolymerizable monomer may be synthesized and used by a conventional synthesis method, or a commercially available product may be purchased and used.
Examples of the photopolymerizable monomer include the following photopolymerizable monomers (A) that do not have an aromatic hydrocarbon group, and photopolymerizable monomers (B) that have an aromatic hydrocarbon group, as described above. The photopolymerizable monomer is appropriately selected from these photopolymerizable monomers so that, when used as a sealing film, the curing rate and residue rate satisfy the above ranges.
 (平均(メタ)アクリル基数)
 本発明の封止用組成物に含有される前記光重合性モノマーは、平均(メタ)アクリル基数が1.3~1.5の範囲内であることが、比誘電率の安定性及び密着性の点で好ましい。
 前記平均(メタ)アクリル基数は、モノマーに含まれる(メタ)アクリル基の数n、モノマーの合計質量を1にしたときの質量比率wを用いて以下のように計算することができる。
 平均(メタ)アクリル基数=n1×w1+n2×w2+・・・
 (n及びwの添字はモノマーの番号を示す。)
(Average (meth)acrylic base number)
The photopolymerizable monomer contained in the encapsulating composition of the present invention preferably has an average (meth)acrylic group number in the range of 1.3 to 1.5 for stability of dielectric constant and adhesion. It is preferable in this respect.
The average number of (meth)acrylic groups can be calculated as follows using the number n of (meth)acrylic groups contained in the monomer and the mass ratio w when the total mass of the monomers is set to 1.
Average (meth)acrylic base number = n1 x w1 + n2 x w2 +...
(The n and w subscripts indicate the monomer numbers.)
 (メタクリレート比率)
 本発明の封止用組成物に含有される光重合性モノマーのメタクリレート比率は、50~80%の範囲内であることが、比誘電率の安定性、密着性及び硬化率を高める点で好ましい。
 前記メタクリレート比率は、メタクリル基を有するモノマーの質量合計wm、アクリル基を有するモノマーの質量合計waを用いて以下のように計算することができる。
 メタクリレート比率(%)=wm/(wa+wm)×100
(methacrylate ratio)
The methacrylate ratio of the photopolymerizable monomer contained in the sealing composition of the present invention is preferably in the range of 50 to 80% from the viewpoint of increasing the stability of the dielectric constant, adhesion, and curing rate. .
The methacrylate ratio can be calculated as follows using the total mass wm of monomers having methacrylic groups and the total mass wa of monomers having acrylic groups.
Methacrylate ratio (%)=wm/(wa+wm)×100
<芳香族炭化水素基を有さない光重合性モノマー(A)>
 前記芳香族炭化水素基を有さない光重合性モノマー(A)(以下、単に「光重合性モノマー(A)」ともいう。)は、芳香族炭化水素基を含んでおらず、光硬化官能基(光重合性官能基)として、ビニル基、アクリル基、及びメタクリル基のうちの一つ以上を1~20個、具体的に1~6個有するモノマーを含んでもよく、例えば、1~3個、1~2個、1個、又は2個含んでもよい。
<Photopolymerizable monomer (A) having no aromatic hydrocarbon group>
The photopolymerizable monomer (A) that does not have an aromatic hydrocarbon group (hereinafter also simply referred to as "photopolymerizable monomer (A)") does not contain an aromatic hydrocarbon group and has no photocurable functionality. The group (photopolymerizable functional group) may include a monomer having 1 to 20, specifically 1 to 6, one or more of vinyl groups, acrylic groups, and methacrylic groups, for example, 1 to 3 It may contain 1 to 2, 1, or 2.
 本発明において、前記光重合性モノマー(A)の重量平均分子量は、100~500g/molの範囲内であってもよく、130~400g/molの範囲内であってもよく、200~300g/molの範囲内であってもよい。前記モノマーの重量平均分子量の範囲内とすることにより、工程的により有利な効果を示すことができる。 In the present invention, the weight average molecular weight of the photopolymerizable monomer (A) may be within the range of 100 to 500 g/mol, may be within the range of 130 to 400 g/mol, or may be within the range of 200 to 300 g/mol. It may be within the range of mol. By keeping the weight average molecular weight of the monomer within the range, more advantageous effects can be exhibited in terms of the process.
 前記光重合性モノマー(A)は、光硬化官能基を有する単官能モノマー、多官能モノマー、又はこれらの混合物を含んでもよい。 The photopolymerizable monomer (A) may include a monofunctional monomer having a photocurable functional group, a polyfunctional monomer, or a mixture thereof.
 具体的に、前記光重合性モノマー(A)は、(メタ)アクリレートモノマーであってもよく、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、ヒドロキシ基及び炭素数1~20のアルキル基を有する不飽和カルボン酸エステル;炭素数1~20のアミノアルキル基を有する不飽和カルボン酸エステル;炭素数1~20の飽和又は不飽和カルボン酸のビニルエステル;シアン化ビニル化合物;不飽和アミド化合物;モノアルコール又は多価アルコールの単官能又は多官能(メタ)アクリレートなどになってもよい。
 前記「多価アルコール」は、ヒドロキシ基を2個以上有するアルコールであって、ヒドロキシ基を2個~20個、好ましくは2個~10個、より好ましくは2個~6個有するアルコールを意味し得る。
Specifically, the photopolymerizable monomer (A) may be a (meth)acrylate monomer, and may include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a hydroxy group, and a hydroxyl group having 1 to 20 carbon atoms. Unsaturated carboxylic acid esters having ~20 alkyl groups; Unsaturated carboxylic acid esters having aminoalkyl groups having 1 to 20 carbon atoms; Vinyl esters of saturated or unsaturated carboxylic acids having 1 to 20 carbon atoms; Vinyl cyanide compounds ; unsaturated amide compound; monofunctional or polyfunctional (meth)acrylate of monoalcohol or polyhydric alcohol.
The above-mentioned "polyhydric alcohol" means an alcohol having two or more hydroxy groups, preferably 2 to 20, preferably 2 to 10, more preferably 2 to 6 hydroxy groups. obtain.
 一例において、光重合性モノマー(A)のうち、芳香族炭化水素基を有さない(メタ)アクリレートモノマーは、置換又は非置換のC1~C20(炭素数1~20)のアルキル基、置換又は非置換のC1~C20のアルキルシリル基、置換又は非置換のC3~C20のシクロアルキル基、置換又は非置換のC1~C20のアルキレン基、アミン基、エチレンオキシド基などを有するモノ(メタ)アクリレート、ジ(メタ)アクリレート、トリ(メタ)アクリレート、テトラ(メタ)アクリレートなどであってもよい。 In one example, among the photopolymerizable monomers (A), the (meth)acrylate monomer that does not have an aromatic hydrocarbon group is a substituted or unsubstituted C1 to C20 (1 to 20 carbon atoms) alkyl group, a substituted or Mono(meth)acrylates having an unsubstituted C1 to C20 alkylsilyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C1 to C20 alkylene group, an amine group, an ethylene oxide group, etc. Di(meth)acrylate, tri(meth)acrylate, tetra(meth)acrylate, etc. may be used.
 具体的に、芳香族炭化水素基を有さない(メタ)アクリレートモノマーは、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デカニル(メタ)アクリレート、ウンデカニル(メタ)アクリレート、ドデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレートなどの(メタ)アクリル酸エステルを含む不飽和カルボン酸エステル;2-アミノエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレートなどの不飽和カルボン酸アミノアルキルエステル;ビニルアセテートなどの飽和又は不飽和カルボン酸ビニルエステル;(メタ)アクリロニトリルなどのシアン化ビニル化合物;(メタ)アクリルアミドなどの不飽和アミド化合物;エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、オクタンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ウンデカンジオールジ(メタ)アクリレート、ドデカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート又はこれらの混合物を含んでもよいが、これに限定されない。 Specifically, (meth)acrylate monomers having no aromatic hydrocarbon group include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxy Butyl (meth)acrylate, hexyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, decanyl (meth)acrylate, undecanyl (meth)acrylate, dodecyl (meth)acrylate, cyclohexyl (meth)acrylate, etc. Unsaturated carboxylic acid esters including meth)acrylic acid esters; unsaturated carboxylic acid aminoalkyl esters such as 2-aminoethyl (meth)acrylate and 2-dimethylaminoethyl (meth)acrylate; saturated or unsaturated carboxylic acid esters such as vinyl acetate Acid vinyl ester; vinyl cyanide compounds such as (meth)acrylonitrile; unsaturated amide compounds such as (meth)acrylamide; ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, trimethylolpropane tri(meth) Acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, octanediol di(meth)acrylate, nonanediol di(meth)acrylate, decanediol di(meth)acrylate, Undecanediol di(meth)acrylate, dodecanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, di Pentaerythritol di(meth)acrylate, dipentaerythritol tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate or mixtures thereof. Good, but not limited to this.
 本発明の一例において、前記光重合性モノマー(A)は、芳香族基を含まない非-芳香族系であって、炭素数1~20のアルキル基を有するモノ(メタ)アクリレート、アミン基を有するモノ(メタ)アクリレート、置換又は非置換の炭素数1~20のアルキレン基を有するジ(メタ)アクリレート、エチレンオキシド基を有するジ(メタ)アクリレート、エチレンオキシド基を有するトリ(メタ)アクリレート、環状炭化アルキル基を有するモノ(メタ)アクリレート及びジ(メタ)アクリレートのうち少なくともいずれかを含んでもよい。 In one example of the present invention, the photopolymerizable monomer (A) is a non-aromatic type that does not contain an aromatic group, and is a mono(meth)acrylate having an alkyl group having 1 to 20 carbon atoms, or an amine group. mono(meth)acrylate with, di(meth)acrylate with substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, di(meth)acrylate with ethylene oxide group, tri(meth)acrylate with ethylene oxide group, cyclic carbonization It may contain at least one of mono(meth)acrylate and di(meth)acrylate having an alkyl group.
 置換又は非置換の炭素数1~20のアルキル基を有するモノ(メタ)アクリレートは、具体的に、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、アラキジル(メタ)アクリレート又はこれらの混合物であってもよいが、これに限定されない。 Specifically, mono(meth)acrylates having a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms include decyl(meth)acrylate, undecyl(meth)acrylate, lauryl(meth)acrylate, tridecyl(meth)acrylate, It may be tetradecyl (meth)acrylate, pentadecyl (meth)acrylate, hexadecyl (meth)acrylate, heptadecyl (meth)acrylate, octadecyl (meth)acrylate, nonadecyl (meth)acrylate, arachidyl (meth)acrylate or a mixture thereof. However, it is not limited to this.
 アミン基を有するモノ(メタ)アクリレートは、2-アミノエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート又はこれらの混合物であってもよいが、これに限定されない。 The mono(meth)acrylate having an amine group may be, but is not limited to, 2-aminoethyl (meth)acrylate, 2-dimethylaminoethyl (meth)acrylate, or a mixture thereof.
 置換又は非置換の炭素数1~20のアルキレン基を有するジ(メタ)アクリレートは、例えば、炭素数1~20のアルキレン基を有するジ(メタ)アクリレートであってもよく、置換又は非置換の長鎖のアルキレン基を含む非-シリコン系ジ(メタ)アクリレートであってもよい。
 置換又は非置換の炭素数1~20のアルキレン基を有するジ(メタ)アクリレートは、例えば、オクタンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ウンデカンジオールジ(メタ)アクリレート、ドデカンジオールジ(メタ)アクリレート又はこれらの混合物であってもよいが、これに限定されない。
 前記置換又は非置換の炭素数1~20のアルキレン基を有する(メタ)アクリレートを含む場合、本発明の封止用組成物は、光硬化率がさらに向上し、粘度が低くなり得る。
The di(meth)acrylate having a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms may be, for example, a di(meth)acrylate having an alkylene group having 1 to 20 carbon atoms; It may also be a non-silicon di(meth)acrylate containing a long-chain alkylene group.
Di(meth)acrylates having a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms include, for example, octanediol di(meth)acrylate, nonanediol di(meth)acrylate, decanediol di(meth)acrylate, undecanediol It may be, but is not limited to, di(meth)acrylate, dodecanediol di(meth)acrylate, or a mixture thereof.
When containing the substituted or unsubstituted (meth)acrylate having an alkylene group having 1 to 20 carbon atoms, the sealing composition of the present invention can further improve the photocuring rate and lower the viscosity.
 エチレンオキシド基を有するジ(メタ)アクリレート又はトリ(メタ)アクリレートは、具体的に、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート又はこれらの混合物であってもよいが、これに限定されない。 Specifically, the di(meth)acrylate or tri(meth)acrylate having an ethylene oxide group is ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, or a mixture thereof. may be used, but is not limited to this.
 環状炭化アルキル基を有するモノ(メタ)アクリレート及びジ(メタ)アクリレートは、具体的に、イソボニル(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンテニル(メタ)アクリレ-トであってもよいが、これに限定されない。 Specifically, mono(meth)acrylates and di(meth)acrylates having a cyclic carbonized alkyl group include isobonyl(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, and dicyclopentanyl(meth)acrylate. , dicyclopentenyloxyethyl (meth)acrylate, and dicyclopentenyl (meth)acrylate, but are not limited thereto.
 前記光重合性モノマー(A)モノマーは、光重合性モノマー(光重合性モノマー(A)及び光重合性モノマー(B))の総質量に対して55~95質量%の範囲内で含有されていることが好ましく、60~90質量%の範囲内で含有されていることがより好ましい。前記範囲内とすることにより、本発明の封止用組成物の粘度が電子デバイスの封止膜形成に適切となる。 The photopolymerizable monomer (A) monomer is contained within the range of 55 to 95% by mass based on the total mass of the photopolymerizable monomers (photopolymerizable monomer (A) and photopolymerizable monomer (B)). The content is preferably in the range of 60 to 90% by mass. By setting the viscosity within the above range, the viscosity of the sealing composition of the present invention becomes suitable for forming a sealing film of an electronic device.
<芳香族炭化水素基を有する光重合性モノマー(B)>
 前記芳香族炭化水素基を有する光重合性モノマー(B)(以下、単に「光重合性モノマー(B)」ともいう。)が、下記一般式(1)で表される構造を有する2個以上のフェニル基及びヘテロ原子を含み、かつ、前記光重合性モノマー(B)が、少なくともモノ(メタ)アクリレート又はジ(メタ)アクリレートを含む。
Figure JPOXMLDOC01-appb-C000002
<Photopolymerizable monomer (B) having an aromatic hydrocarbon group>
Two or more photopolymerizable monomers (B) having an aromatic hydrocarbon group (hereinafter also simply referred to as "photopolymerizable monomers (B)") have a structure represented by the following general formula (1). phenyl group and hetero atom, and the photopolymerizable monomer (B) contains at least mono(meth)acrylate or di(meth)acrylate.
Figure JPOXMLDOC01-appb-C000002
[前記一般式(1)において、Pは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を表す。Z及びZは、それぞれ独立的に下記一般式(2)で表される構造を有する。a及びbは、それぞれ0~2の整数であり、a+bは、1~4の整数である。] [In the general formula (1), P represents a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups. represent. Z 1 and Z 2 each independently have a structure represented by the following general formula (2). a and b are each an integer of 0 to 2, and a+b is an integer of 1 to 4. ]
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[前記一般式(2)において、*は、Pの炭素に対する連結部である。Xは、単一結合、O又はSを表す。Yは、置換又は非置換の炭素数1~10の直鎖状アルキレン基、又は置換又は非置換の炭素数1~20のアルコキシ基を表す。Rは、水素原子又は炭素数1~5のアルキル基を表す。cは、0又は1の整数である。] [In the general formula (2) above, * is a linking portion of P to carbon. X represents a single bond, O or S. Y represents a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms. R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. c is an integer of 0 or 1. ]
 前記一般式(1)において、Pは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基を表す。
 前記置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換の2個以上のフェニル基が縮合されず、単一結合、酸素原子、硫黄原子、置換又は非置換の炭素数1~5のアルキル基、ヘテロ原子に置換又は非置換された炭素数3~6のアルキレン基、エテニレン基、エチニレン基又はカルボニル基によって連結されたものを意味する。
In the general formula (1), P represents a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups. .
The hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or the heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, is a substituted or unsubstituted hydrocarbon group containing two or more phenyl groups. Groups that are not fused, a single bond, an oxygen atom, a sulfur atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, an alkylene group having 3 to 6 carbon atoms substituted or unsubstituted with a hetero atom, an ethenylene group , means linked by an ethynylene group or a carbonyl group.
 例えば、前記2個以上のフェニル基を含む炭化水素基又は2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換のビフェニル基、置換又は非置換のトリフェニルメチル基、置換又は非置換のターフェニル基、置換又は非置換のビフェニレン基、置換又は非置換のターフェニレン基、置換又は非置換のクォーターフェニレン基、置換又は非置換の2-フェニル-2-(フェニルチオ)エチル基、置換又は非置換の2,2-ジフェニルプロパン基、置換又は非置換のジフェニルメタン基、置換又は非置換のクミルフェニル基、置換又は非置換のビスフェノールF基、置換又は非置換のビスフェノールA基、置換又は非置換のビフェニルオキシ基、置換又は非置換のターフェニルオキシ基、置換又は非置換のクォーターフェニルオキシ基、置換又は非置換のキンキフェニルオキシ基及びこれらの構造異性質体などを含んでもよいが、これに限定されない。 For example, the hydrocarbon group containing two or more phenyl groups or the heteroatom-containing hydrocarbon group containing two or more phenyl groups may include a substituted or unsubstituted biphenyl group, a substituted or unsubstituted triphenylmethyl group, or a substituted or unsubstituted triphenylmethyl group. or unsubstituted terphenyl group, substituted or unsubstituted biphenylene group, substituted or unsubstituted terphenylene group, substituted or unsubstituted quaterphenylene group, substituted or unsubstituted 2-phenyl-2-(phenylthio)ethyl group , substituted or unsubstituted 2,2-diphenylpropane group, substituted or unsubstituted diphenylmethane group, substituted or unsubstituted cumylphenyl group, substituted or unsubstituted bisphenol F group, substituted or unsubstituted bisphenol A group, substituted or It may include an unsubstituted biphenyloxy group, a substituted or unsubstituted terphenyloxy group, a substituted or unsubstituted quarterphenyloxy group, a substituted or unsubstituted quinchyphenyloxy group, and structural isomers thereof, It is not limited to this.
 前記置換又は非置換の2個以上のフェニル基を有するモノマーは、モノ(メタ)アクリレート、ジ(メタ)アクリレート又はこれらの混合物であってもよく、その例としては、4-(メタ)アクリルオキシ-2-ヒドロキシベンゾフェノン、エチル-3,3-ジフェニル(メタ)アクリレート、ベンゾイルオキシフェニル(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、4-クミルフェノキシエチルアクリレート、エトキシ化ビスフェニルフルオレンジアクリレート、2-フェニルフェノキシエチル(メタ)アクリレート、2,2’-フェニルフェノキシエチルジ(メタ)アクリレート、2-フェニルフェノキシプロピル(メタ)アクリレート、2,2’-フェニルフェノキシプロピルジ(メタ)アクリレート、2-フェニルフェノキシブチル(メタ)アクリレート、2,2’-フェニルフェノキシブチルジ(メタ)アクリレート、2-(3-フェニルフェニル)エチル(メタ)アクリレート、2-(4-ベンジルフェニル)エチル(メタ)アクリレート、2-フェニル-2-(フェニルチオ)エチル(メタ)アクリレート、2-(トリフェニルメチルオキシ)エチル(メタ)アクリレート、4-(トリフェニルメチルオキシ)ブチル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)ブチル(メタ)アクリレート、2-(ビフェニル-2-イルオキシ)ブチル(メタ)アクリレート、4-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、2-(ビフェニル-2-イルオキシ)プロピル(メタ)アクリレート、4-(ビフェニル-2-イルオキシ)エチル(メタ)アクリレート、3-(ビフェニル-2-イルオキシ)エチル(メタ)アクリレート、2-(4-ベンジルフェニル)エチル(メタ)アクリレート、4,4’-ジ(アクリロイルオキシメチル)ビフェニル、2,2’-ジ(2-アクリロイルオキシエトキシ)ビフェニル、これらの構造異性質体又はこれらの混合物を含んでもよいが、これに制限されるものではない。
 また、本発明で言及した(メタ)アクリレートは一例に過ぎなく、これに限定されるものではない。
 さらに、本発明は、構造異性質体関係にあるアクリレートを全て含む。例えば、本発明の一例として、2,2’-フェニルフェノキシエチルジ(メタ)アクリレートのみが言及されているとしても、本発明は、この構造異性質体に該当する3,2’-フェニルフェノキシエチルジ(メタ)アクリレート、3,3’-フェニルフェノキシエチルジ(メタ)アクリレートなどを全て含む。
The substituted or unsubstituted monomer having two or more phenyl groups may be mono(meth)acrylate, di(meth)acrylate, or a mixture thereof; examples thereof include 4-(meth)acryloxy -2-hydroxybenzophenone, ethyl-3,3-diphenyl (meth)acrylate, benzoyloxyphenyl (meth)acrylate, bisphenol A di(meth)acrylate, ethoxylated bisphenol A di(meth)acrylate, bisphenol F di(meth)acrylate Acrylate, ethoxylated bisphenol F di(meth)acrylate, 4-cumylphenoxyethyl acrylate, ethoxylated bisphenylfluorenediacrylate, 2-phenylphenoxyethyl (meth)acrylate, 2,2'-phenylphenoxyethyl di(meth) Acrylate, 2-phenylphenoxypropyl (meth)acrylate, 2,2'-phenylphenoxypropyl di(meth)acrylate, 2-phenylphenoxybutyl (meth)acrylate, 2,2'-phenylphenoxybutyl di(meth)acrylate, 2-(3-phenylphenyl)ethyl (meth)acrylate, 2-(4-benzylphenyl)ethyl (meth)acrylate, 2-phenyl-2-(phenylthio)ethyl (meth)acrylate, 2-(triphenylmethyloxy) ) Ethyl (meth)acrylate, 4-(triphenylmethyloxy)butyl (meth)acrylate, 3-(biphenyl-2-yloxy)butyl (meth)acrylate, 2-(biphenyl-2-yloxy)butyl (meth)acrylate , 4-(biphenyl-2-yloxy)propyl (meth)acrylate, 3-(biphenyl-2-yloxy)propyl (meth)acrylate, 2-(biphenyl-2-yloxy)propyl (meth)acrylate, 4-(biphenyl) -2-yloxy)ethyl (meth)acrylate, 3-(biphenyl-2-yloxy)ethyl (meth)acrylate, 2-(4-benzylphenyl)ethyl (meth)acrylate, 4,4'-di(acryloyloxymethyl) ) biphenyl, 2,2'-di(2-acryloyloxyethoxy)biphenyl, structural isomers thereof, or mixtures thereof, but are not limited thereto.
Moreover, the (meth)acrylate mentioned in the present invention is only an example, and is not limited thereto.
Furthermore, the present invention includes all acrylates that are in structural isomer relationship. For example, even if only 2,2'-phenylphenoxyethyl di(meth)acrylate is mentioned as an example of the present invention, the present invention also covers 3,2'-phenylphenoxyethyl di(meth)acrylate, which corresponds to this structural isomer. Includes di(meth)acrylate, 3,3'-phenylphenoxyethyl di(meth)acrylate, etc.
 本発明の一例において、2個以上のフェニル基を有するモノマーは、下記一般式(4)で表されるモノ(メタ)アクリレートであってもよい。 In one example of the present invention, the monomer having two or more phenyl groups may be a mono(meth)acrylate represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記一般式(4)において、Rは、水素又はメチル基で、Rは、置換又は非置換の炭素数1~10の直鎖状アルキレン基、又は置換又は非置換の炭素数1~20のアルコキシ基で、Rは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基である。 In the general formula (4), R 2 is hydrogen or a methyl group, and R 3 is a substituted or unsubstituted linear alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted linear alkylene group having 1 to 20 carbon atoms. In the alkoxy group, R 4 is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups.
 例えば、前記置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換の2個以上のフェニル基が縮合されず、単一結合、酸素原子、硫黄原子、置換又は非置換の炭素数1~3のアルキル基、ヘテロ原子に置換又は非置換された炭素数3~6のアルキレン基、エテニレン基、エチニレン基又はカルボニル基によって連結されたものを意味する。
 例えば、前記置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換のビフェニル基、置換又は非置換のトリフェニルメチル基、置換又は非置換のターフェニル基、置換又は非置換のビフェニレン基、置換又は非置換のターフェニレン基、置換又は非置換のクォーターフェニレン基、置換又は非置換の2-フェニル-2-(フェニルチオ)エチル基、置換又は非置換の2,2-ジフェニルプロパン基、置換又は非置換のジフェニルメタン基、置換又は非置換のクミルフェニル基、置換又は非置換のビスフェノールF基、置換又は非置換のビスフェノールA基、置換又は非置換のビフェニルオキシ基、置換又は非置換のターフェニルオキシ基、置換又は非置換のクォーターフェニルオキシ基、置換又は非置換のキンキフェニルオキシ基などを含んでもよいが、これに限定されない。
For example, the hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or the heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, includes two or more substituted or unsubstituted phenyl groups. A phenyl group is not fused, a single bond, an oxygen atom, a sulfur atom, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, an alkylene group having 3 to 6 carbon atoms substituted or unsubstituted with a hetero atom, It means a group connected by an ethenylene group, an ethynylene group, or a carbonyl group.
For example, the hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or the heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, is a substituted or unsubstituted biphenyl group, Substituted or unsubstituted triphenylmethyl group, substituted or unsubstituted terphenyl group, substituted or unsubstituted biphenylene group, substituted or unsubstituted terphenylene group, substituted or unsubstituted quarterphenylene group, substituted or unsubstituted 2-phenyl-2-(phenylthio)ethyl group, substituted or unsubstituted 2,2-diphenylpropane group, substituted or unsubstituted diphenylmethane group, substituted or unsubstituted cumylphenyl group, substituted or unsubstituted bisphenol F group, Substituted or unsubstituted bisphenol A group, substituted or unsubstituted biphenyloxy group, substituted or unsubstituted terphenyloxy group, substituted or unsubstituted quarterphenyloxy group, substituted or unsubstituted quinkyphenyloxy group, etc. However, it is not limited to this.
 本発明の一例において、2個以上のフェニル基を有するモノマーは、下記の一般式(5)で表されるジ(メタ)アクリレートであってもよい。 In one example of the present invention, the monomer having two or more phenyl groups may be a di(meth)acrylate represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記一般式(5)において、R、Rは、それぞれ独立的に水素又はメチル基で、R、Rは、それぞれ独立的に置換又は非置換の炭素数1~10の直鎖状アルキレン基、又は置換又は非置換の炭素数1~20のアルコキシ基で、Rは、置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基である。 In the general formula (5), R 5 and R 9 are each independently hydrogen or a methyl group, and R 6 and R 8 are each independently a substituted or unsubstituted linear chain having 1 to 10 carbon atoms. An alkylene group or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, and R 7 is a hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or a substituted or unsubstituted two or more phenyl group. It is a heteroatom-containing hydrocarbon group including a phenyl group.
 例えば、前記置換又は非置換の2個以上のフェニル基を含む炭化水素基、又は置換又は非置換の2個以上のフェニル基を含むヘテロ原子含有炭化水素基は、置換又は非置換の2個以上のフェニル基が縮合されず、単一結合、酸素原子、硫黄原子、置換又は非置換の炭素数1~4のアルキル基、ヘテロ原子に置換又は非置換された炭素数3~6のアルキレン基、エテニレン基、エチニレン基又はカルボニル基によって連結されたものを意味する。
 例えば、前記炭化水素基は、置換又は非置換のビフェニレン基、置換又は非置換のトリフェニルメチレン基、置換又は非置換のターフェニレン基、置換又は非置換のクォーターフェニレン基、2-フェニル-2-(フェニルチオ)エチレン基、2,2-ジフェニルプロピレン基、ジフェニルメチレン基などを含んでもよいが、これに限定されない。
For example, the hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, or the heteroatom-containing hydrocarbon group containing two or more substituted or unsubstituted phenyl groups, includes two or more substituted or unsubstituted phenyl groups. A phenyl group is not fused, a single bond, an oxygen atom, a sulfur atom, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, an alkylene group having 3 to 6 carbon atoms substituted or unsubstituted with a hetero atom, It means a group connected by an ethenylene group, an ethynylene group, or a carbonyl group.
For example, the hydrocarbon group is a substituted or unsubstituted biphenylene group, a substituted or unsubstituted triphenylmethylene group, a substituted or unsubstituted terphenylene group, a substituted or unsubstituted quarterphenylene group, a 2-phenyl-2- It may include, but is not limited to, a (phenylthio)ethylene group, a 2,2-diphenylpropylene group, a diphenylmethylene group, and the like.
 前記一般式(1)において、a、bは、それぞれ0~2の整数で、a+bは、1~4の整数であり、一例において、a+bは、1又は2の整数である。 In the general formula (1), a and b are each an integer of 0 to 2, a+b is an integer of 1 to 4, and in one example, a+b is an integer of 1 or 2.
 前記置換又は非置換の2個以上のフェニル基を有するモノマーの重量平均分子量は、100~1000g/molの範囲内が好ましく、130~700g/molの範囲内であることがより好ましく、150~600g/molの範囲内であることが特に好ましい。
 前記範囲内とすることにより、透過率により優れた封止膜を提供することができる。
The weight average molecular weight of the monomer having two or more substituted or unsubstituted phenyl groups is preferably within the range of 100 to 1000 g/mol, more preferably within the range of 130 to 700 g/mol, and 150 to 600 g It is particularly preferable that the amount is within the range of /mol.
By setting it within the above range, a sealing film with more excellent transmittance can be provided.
 前記芳香族炭化水素基を有する光重合性モノマー(B)は、前記光重合性モノマー(光重合性モノマー(A)及び光重合性モノマー(B))の総質量に対して5~45質量%の範囲内で含有されていることが好ましく、10~40質量%の範囲内で含有されていることがより好ましい。前記範囲内とすることにより、粘度が封止膜の形成に適切となる。 The photopolymerizable monomer (B) having an aromatic hydrocarbon group is 5 to 45% by mass based on the total mass of the photopolymerizable monomers (photopolymerizable monomer (A) and photopolymerizable monomer (B)). The content is preferably within the range of 10 to 40% by mass, and more preferably 10 to 40% by mass. By setting it within the above range, the viscosity becomes suitable for forming a sealing film.
 なお、光重合性モノマー(A)及び(B)の具体例としては、前記したモノマー以外にも後述する実施例で挙げるモノマー等が挙げられる。また、本発明における光重合性モノマーとして好ましい組み合わせは後述する実施例に記載のとおりである。 In addition to the above-mentioned monomers, specific examples of the photopolymerizable monomers (A) and (B) include monomers listed in Examples described later. Further, preferred combinations of photopolymerizable monomers in the present invention are as described in the Examples below.
<光重合開始剤>
 前記光重合開始剤は、光硬化性反応を行える通常の光重合開始剤であれば特に限定されない。
 光重合開始剤としては、例えば、トリアジン系、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン系、リン系、オキシム系又はこれらの混合物を含んでもよい。
<Photopolymerization initiator>
The photopolymerization initiator is not particularly limited as long as it is a normal photopolymerization initiator that can perform a photocuring reaction.
The photopolymerization initiator may include, for example, a triazine type, an acetophenone type, a benzophenone type, a thioxanthone type, a benzoin type, a phosphorus type, an oxime type, or a mixture thereof.
 トリアジン系開始剤は、2,4,6-トリクロロ-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ビフェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、ビス(トリクロロメチル)-6-スチリル-s-トリアジン、2-(ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-トリクロロメチル(ピペロニル)-6-トリアジン、2,4-(トリクロロメチル(4’-メトキシスチリル)-6-トリアジン又はこれらの混合物であってもよい。 Triazine-based initiators include 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis(trichloromethyl)-s-triazine, 2-(3',4'-dimethoxystyryl)-4 , 6-bis(trichloromethyl)-s-triazine, 2-(4'-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(p-methoxyphenyl)-4,6- Bis(trichloromethyl)-s-triazine, 2-(p-tolyl)-4,6-bis(trichloromethyl)-s-triazine, 2-biphenyl-4,6-bis(trichloromethyl)-s-triazine, Bis(trichloromethyl)-6-styryl-s-triazine, 2-(naphth-1-yl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-methoxynaphth-1-yl) -4,6-bis(trichloromethyl)-s-triazine, 2,4-trichloromethyl(piperonyl)-6-triazine, 2,4-(trichloromethyl(4'-methoxystyryl)-6-triazine or these) It may be a mixture.
 アセトフェノン系開始剤は、2,2’-ジエトキシアセトフェノン、2,2’-ジブトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルトリクロロアセトフェノン、p-t-ブチルジクロロアセトフェノン、4-クロロアセトフェノン、2,2’-ジクロロ-4-フェノキシアセトフェノン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、及びこれらの混合物であってもよい。 Acetophenone initiators include 2,2'-diethoxyacetophenone, 2,2'-dibutoxyacetophenone, 2-hydroxy-2-methylpropiophenone, pt-butyltrichloroacetophenone, pt-butyldichloroacetophenone , 4-chloroacetophenone, 2,2'-dichloro-4-phenoxyacetophenone, 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino -1-(4-morpholinophenyl)-butan-1-one, and mixtures thereof.
 ベンゾフェノン系開始剤は、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、3,3’-ジメチル-2-メトキシベンゾフェノン又はこれらの混合物であってもよい。 Benzophenone initiators include benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4'-dichlorobenzophenone, 3 , 3'-dimethyl-2-methoxybenzophenone or a mixture thereof.
 チオキサントン系開始剤は、チオキサントン、2-メチルチオキサントン、イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントン又はこれらの混合物であってもよい。 The thioxanthone initiator may be thioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2-chlorothioxanthone, or a mixture thereof.
 ベンゾイン系開始剤は、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール又はこれらの混合物であってもよい。 The benzoin-based initiator may be benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl dimethyl ketal, or a mixture thereof.
 リン系開始剤は、ビスベンゾイルフェニルホスフィンオキシド、ベンゾイルジフェニルホスフィンオキシド又はこれらの混合物であってもよい。 The phosphorus initiator may be bisbenzoylphenylphosphine oxide, benzoyldiphenylphosphine oxide, or a mixture thereof.
 オキシム系は、2-(o-ベンゾイルオキシム)-1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン及び1-(o-アセチルオキシム)-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン、又はこれらの混合物であってもよい。 Oxime systems include 2-(o-benzoyloxime)-1-[4-(phenylthio)phenyl]-1,2-octanedione and 1-(o-acetyloxime)-1-[9-ethyl-6-( 2-methylbenzoyl)-9H-carbazol-3-yl]ethanone, or a mixture thereof.
 前記光重合開始剤は、本発明の封止用組成物中に、前記光重合性モノマーと光重合開始剤の合計100質量部に対して約0.1~20質量部の範囲内含まれていることが好ましい。前記範囲内とすることにより、露光時に光重合が十分に起こり、光重合後、残った未反応開始剤によって透過率が低下することを防止することができる。
 具体的に、前記光重合開始剤は、0.5~10質量部、より具体的に1~5質量部の範囲内で含有されることが好ましい。
 また、前記光重合開始剤は、本発明の封止用用組成物中に、固形分を基準にして0.1~10質量%の範囲内で含有されること好ましく、より好ましくは0.1~5質量%の範囲内である。前記範囲内とすることにより、光重合が十分に起こり、残った未反応開始剤によって透過率が低下することを防止することができる。
The photopolymerization initiator is contained in the sealing composition of the present invention in an amount of about 0.1 to 20 parts by mass based on 100 parts by mass of the photopolymerizable monomer and photoinitiator. Preferably. By setting it within the above range, photopolymerization can sufficiently occur during exposure, and it is possible to prevent transmittance from decreasing due to unreacted initiator remaining after photopolymerization.
Specifically, the photopolymerization initiator is preferably contained in an amount of 0.5 to 10 parts by weight, more specifically 1 to 5 parts by weight.
Further, the photopolymerization initiator is preferably contained in the sealing composition of the present invention in an amount of 0.1 to 10% by mass based on solid content, more preferably 0.1% by mass. It is within the range of ~5% by mass. By setting it within the above range, photopolymerization can sufficiently occur, and it is possible to prevent the transmittance from decreasing due to the remaining unreacted initiator.
 また、前記光重合開始剤の代わりに、カルバゾール系、ジケトン類、スルホニウム系、ヨードニウム系、ジアゾ系、ビイミダゾール系などの光酸発生剤又は光重合開始剤を使用してもよい。 Furthermore, instead of the photopolymerization initiator, a photoacid generator or photopolymerization initiator such as a carbazole type, diketone type, sulfonium type, iodonium type, diazo type, or biimidazole type may be used.
<その他の添加剤>
 本発明の封止用組成物は、本発明の効果が得られる範囲において、酸化防止剤、熱安定化剤、光増感剤、分散剤、熱架橋剤及び界面活性剤を含むその他の成をさらに含んでいてもよい。これらの成分は、本発明の封止用組成物中に、一種のみが含まれていてもよく、二種類以上が含まれていてもよい。
<Other additives>
The encapsulating composition of the present invention may contain other components including an antioxidant, a heat stabilizer, a photosensitizer, a dispersant, a thermal crosslinking agent, and a surfactant within the range where the effects of the present invention can be obtained. It may further contain. Only one kind of these components may be contained in the sealing composition of the present invention, or two or more kinds thereof may be contained in the sealing composition of the present invention.
 前記酸化防止剤は、封止層の熱的安定性を向上させることができる。酸化防止剤は、フェノール系、キノン系、アミン系及びホスファイト系からなる群から選ばれる1種以上を含んでもよいが、これらに制限されるものではない。例えば、酸化防止剤としては、テトラキス[メチレン(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナメート)]メタン、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイトなどを挙げることができる。 The antioxidant can improve the thermal stability of the sealing layer. The antioxidant may include one or more selected from the group consisting of phenol, quinone, amine, and phosphite, but is not limited thereto. For example, examples of antioxidants include tetrakis[methylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)]methane, tris(2,4-di-tert-butylphenyl)phosphite, etc. be able to.
 前記酸化防止剤は、前記封止用組成物中に、前記光重合性モノマーと前記光重合開始剤の合計100質量部に対して0.01~3質量部の範囲内含有されていることが好ましく、0.01~1質量部の範囲内含有されていることがより好ましい。前記範囲内とすることにより、優れた熱安定性を示すことができる。 The antioxidant may be contained in the sealing composition in an amount of 0.01 to 3 parts by mass based on a total of 100 parts by mass of the photopolymerizable monomer and the photopolymerization initiator. It is preferably contained in a range of 0.01 to 1 part by mass. By setting it within the above range, excellent thermal stability can be exhibited.
 前記熱安定化剤は、封止用組成物に含まれ、当該封止用組成物の常温での粘度変化を抑制するものであって、通常の熱安定化剤を制限なく使用可能である。
 例えば、熱安定化剤としては、立体障害のある(sterically hindered)フェノール性熱安定剤を使用してもよく、具体的に、ポリ(ジ-シクロペンタジエン-co-p-クレゾール)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、2,6-ジ-tert-ブチル-4-メチルフェノール、2,2’-メタノ-ビ(4-メチル-6-tert-ブチル-フェノール)、6,6’-ジ-tert-ブチル-2,2’-チオジ-p-クレゾール、トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、トリエチレングリコール-ビス(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、3,3’-ビス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-N,N’-ヘキサメチレン-ジプロピオンアミド、ペンタエリスリトールテトラキス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、ステアリル-3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオネート、ペンタエリスリトールテトラキス1,3,5-トリス(2,6-ジ-メチル-3-ヒドロキシ-4-tert-ブチル-ベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレート-トリス(3,5-ジ-tert-ブチルヒドロキシフェニルプロピオネート)のうちの一つ以上を含んでもよいが、これに制限されない。
The heat stabilizer is contained in the sealing composition and suppresses the change in viscosity of the sealing composition at room temperature, and any ordinary heat stabilizer can be used without any restriction.
For example, as a heat stabilizer, a sterically hindered phenolic heat stabilizer may be used, specifically poly(di-cyclopentadiene-co-p-cresol), octadecyl-3 -(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, 2,6-di-tert-butyl-4-methylphenol, 2,2'-methano-bi(4-methyl-6-tert) -butyl-phenol), 6,6'-di-tert-butyl-2,2'-thiodi-p-cresol, tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, Triethylene glycol-bis(3-tert-butyl-4-hydroxy-5-methylphenyl), 4,4'-thiobis(6-tert-butyl-m-cresol), 3,3'-bis(3,5 -di-tert-butyl-4-hydroxyphenyl)-N,N'-hexamethylene-dipropionamide, pentaerythritol tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate), Stearyl-3,5-di-tert-butyl-4-hydroxyphenylpropionate, pentaerythritol tetrakis 1,3,5-tris(2,6-di-methyl-3-hydroxy-4-tert-butyl-benzyl) Isocyanurate, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris(2-hydroxyethyl)isocyanurate-tris(3,5 -di-tert-butylhydroxyphenylpropionate), but is not limited thereto.
 前記熱安定化剤は、前記封止用組成物中に、固形分を基準にして前記光重合性モノマーと前記光重合開始剤の合計に対して2000ppm以下、好ましくは0.01~2000ppmの範囲内、より好ましくは100~1000ppmの範囲内含有されている。前記範囲内とすることにより、熱安定化剤は、封止用組成物の液状状態の貯蔵安定性と工程性をさらに良好にすることができる。 The heat stabilizer is present in the sealing composition in an amount of 2000 ppm or less, preferably in the range of 0.01 to 2000 ppm, based on the solid content of the total of the photopolymerizable monomer and the photopolymerization initiator. More preferably, the content is in the range of 100 to 1000 ppm. By setting it within the above range, the heat stabilizer can further improve the storage stability and processability of the sealing composition in a liquid state.
 前記光増感剤は、吸収した光エネルギーを光重合開始剤にエネルギー移動させる働きを有するため、使用する光重合開始剤に、光源からの光に対応した吸収がなくとも、本来の光重合性開始剤機能を持たせることができる化合物である。
 光増感剤としては、例えば、9,10-ジブトキシアントラセン等のアントラセン誘導体;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン誘導体;
 ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン誘導体;
 2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9Hチオキサントン-9-オンメソクロリド等のチオキサントン誘導体;などの化合物が挙げられる。なかでも、アントラセン誘導体、ベンゾイン誘導体、ベンゾフェノン誘導体、アントラキノン誘導体、チオキサントン誘導体を用いることが好ましい。
The photosensitizer has the function of transferring the absorbed light energy to the photopolymerization initiator, so even if the photopolymerization initiator used does not have absorption corresponding to the light from the light source, it will not have the original photopolymerizability. It is a compound that can have an initiator function.
Examples of photosensitizers include anthracene derivatives such as 9,10-dibutoxyanthracene; benzoin derivatives such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether;
Benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3',4,4'-tetra(t-butylperoxycarbonyl)benzophenone, 2,4 , 6-trimethylbenzophenone, 4-benzoyl-N,N-dimethyl-N-[2-(1-oxo-2-propenyloxy)ethyl]benzenemethanaminium bromide, (4-benzoylbenzyl)trimethylammonium chloride, etc. Benzophenone derivative;
2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-(3-dimethylamino-2-hydroxy)-3,4- Examples include compounds such as thioxanthone derivatives such as dimethyl-9Hthioxanthon-9-one mesochloride; Among these, it is preferable to use anthracene derivatives, benzoin derivatives, benzophenone derivatives, anthraquinone derivatives, and thioxanthone derivatives.
<紫外線硬化>
 本発明の封止用組成物を硬化するために照射する紫外線としては、公知の手段を使用することができ、200~400nmの範囲内で、紫外線を照射することで硬化すれば特に限定されない。好ましくは、電子デバイスの劣化を防ぐ観点で395nmのLEDを用いることが好ましい。
 紫外線を照射する環境は、封止用組成物が硬化すれば公知の手段を使うことができ、紫外線を照射することで硬化すれば特に限定されない。好ましくは、電子デバイスの劣化を防ぐ観点、酸素による硬化阻害の影響を防ぐ観点で、不活性ガス環境で照射するのが好ましい。特に窒素やアルゴンガス雰囲気下で照射することが好ましい。
<Ultraviolet curing>
The ultraviolet rays irradiated to cure the sealing composition of the present invention can be any known means, and are not particularly limited as long as they are cured by irradiating ultraviolet rays within the range of 200 to 400 nm. Preferably, a 395 nm LED is preferably used from the viewpoint of preventing deterioration of the electronic device.
The environment for irradiating ultraviolet rays is not particularly limited as long as the sealing composition is cured by any known means, and is not particularly limited as long as it is cured by irradiating ultraviolet rays. Preferably, the irradiation is performed in an inert gas environment from the viewpoint of preventing deterioration of the electronic device and preventing the influence of oxygen from inhibiting curing. In particular, it is preferable to irradiate under a nitrogen or argon gas atmosphere.
<物性>
 本発明の封止用組成物の粘度は3~30mPa・sの範囲内であることが、インクジェットヘッドからの吐出性をより高める観点から好ましい。表面張力は、15mN/m以上45mN/m未満であることがインクジェットヘッドからの吐出性をより高める観点から好ましい。
<Physical properties>
The viscosity of the sealing composition of the present invention is preferably within the range of 3 to 30 mPa·s from the viewpoint of further improving ejection properties from an inkjet head. The surface tension is preferably 15 mN/m or more and less than 45 mN/m from the viewpoint of further improving the ejection performance from the inkjet head.
 本発明の封止用組成物の粘度は、例えば各種レオメーターにより、封止用組成物の動的粘弾性の温度変化を測定することにより求めることができる。
 本発明において、これらの粘度は、以下の方法によって得られた値である。本発明の封止用組成物をストレス制御型レオメーターPhysica MCR300(コーンプレートの直径:75mm、コーン角:1.0°)、Anton Paar社製にセットする。次いで、前記封止用組成物を100℃に加熱し、降温速度0.1℃/s、歪み5%、角周波数10radian/sで、の条件で20℃まで前記封止用組成物を冷却して、動的粘弾性の温度変化曲線を得る。
The viscosity of the sealing composition of the present invention can be determined by measuring the temperature change in the dynamic viscoelasticity of the sealing composition using, for example, various rheometers.
In the present invention, these viscosities are values obtained by the following method. The sealing composition of the present invention is set in a stress-controlled rheometer Physica MCR300 (cone plate diameter: 75 mm, cone angle: 1.0°) manufactured by Anton Paar. Next, the sealing composition was heated to 100° C., and the sealing composition was cooled to 20° C. under the following conditions: a temperature decrease rate of 0.1° C./s, a strain of 5%, and an angular frequency of 10 radian/s. to obtain a temperature change curve of dynamic viscoelasticity.
 本発明の封止用組成物は顔料粒子を含んでいても良い。顔料粒子は、インクジェットヘッドからの吐出性をより高める観点からは、本発明の封止用組成物が顔料を含有するときの顔料粒子の平均粒径は0.08~0.5μmの範囲内であり、最大粒径は0.3~10μmの範囲内であることが好ましい。
 本発明における顔料粒子の平均粒径とは、データサイザーナノZSP、Malvern社製を使用して動的光散乱法によって求めた値を意味する。なお、着色材を含む封止用組成物は濃度が高く、この測定機器では光が透過しないので、封止用組成物を200倍で希釈してから測定する。測定温度は常温(25℃)とする。
The sealing composition of the present invention may contain pigment particles. From the viewpoint of further improving ejection properties from an inkjet head, when the sealing composition of the present invention contains a pigment, the average particle diameter of the pigment particles is within the range of 0.08 to 0.5 μm. The maximum particle size is preferably within the range of 0.3 to 10 μm.
The average particle diameter of pigment particles in the present invention means a value determined by a dynamic light scattering method using Datasizer Nano ZSP, manufactured by Malvern. Note that the sealing composition containing a coloring material has a high concentration and does not allow light to pass through this measuring device, so the sealing composition is diluted 200 times before measurement. The measurement temperature is room temperature (25°C).
 また、本発明の封止用組成物は、その密度ρ、前記封止用組成物の表面張力σ、前記封止用組成物の粘度μ、ノズル直径Dでされる下記式1に示すオーネゾルゲ数(Oh)が0.1~1の範囲内であることがインクジェットの吐出性、インクの飛翔時の液滴安定化の観点で好ましい。 Further, the sealing composition of the present invention is an Ohnesolge expressed by the following formula 1, which is expressed by the density ρ, the surface tension σ of the sealing composition, the viscosity μ of the sealing composition, and the nozzle diameter D0 . It is preferable that the number (Oh) is within the range of 0.1 to 1 from the viewpoint of inkjet ejection performance and stabilization of droplets during ink flight.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 本発明の封止用組成物を調製し、重合後の膜において、80℃又はそれよりも高いTg(ガラス転移点)を有する硬化ポリマーを提供することが好ましい。重合後の膜のTgは、電子デバイスの形成プロセス、駆動温度、信頼性試験における安定性確保の観点で、80℃以上であることが好ましい。 Preferably, the encapsulating composition of the present invention is prepared to provide a cured polymer having a Tg (glass transition temperature) of 80° C. or higher in the polymerized film. The Tg of the film after polymerization is preferably 80° C. or higher from the viewpoint of ensuring stability in the electronic device formation process, driving temperature, and reliability test.
[電子デバイス封止膜形成方法]
 本発明の電子デバイス封止膜形成方法は、前記した本発明の電子デバイス封止用組成物を用いて、封止膜を形成する方法であって、電子デバイス上に気相法により第1封止層を形成する工程と、前記第1封止層上に前記電子デバイス封止用組成物を塗布することにより第2封止層を形成する工程と、を備える。
 また、前記第2封止層上に、気相法により第3封止層を形成する工程を備えることが、電子デバイスの封止性能をより高めることができる点で好ましい。
[Electronic device sealing film forming method]
The electronic device sealing film forming method of the present invention is a method of forming a sealing film using the above-described composition for electronic device sealing of the present invention, wherein a first sealing film is formed on the electronic device by a vapor phase method. The method includes a step of forming a sealing layer, and a step of forming a second sealing layer by applying the electronic device sealing composition on the first sealing layer.
Further, it is preferable to include a step of forming a third sealing layer on the second sealing layer by a vapor phase method, since the sealing performance of the electronic device can be further improved.
<第1封止層形成工程>
 第1封止層形成工程は、電子デバイス上に気相法により第1封止層を形成する。
 気相法としては、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、二極AC平板マグネトロンスパッタリング、二極AC回転マグネトロンスパッタリングなど、反応性スパッタ法を含む。)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PECVD)、エピタキシャル成長法、原子層成長法(ALD)等の化学蒸着法等が挙げられる。中でも、ALD法、CVD法により形成することが好ましい。
 第1封止層は、窒化ケイ素(SiNx)、酸窒化ケイ素(SiNOx)又は酸化ケイ素(SiOx)を含有する。
 第1封止層を形成する具体例としては、チャンバー内を減圧しておき、原料ガスとして、シラン(SiH)、アンモニア(NH)、水素(H)を加熱してチャンバー内に供給し形成する方法が挙げられる。
 第1封止層の厚さは、例えば、10~1000nmの範囲内であることが好ましく、100~500nmの範囲内であることがより好ましい。
<First sealing layer forming step>
In the first sealing layer forming step, the first sealing layer is formed on the electronic device by a vapor phase method.
Gas phase methods include sputtering methods (for example, reactive sputtering methods such as magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotating magnetron sputtering, etc.), vapor deposition methods (for example, resistance heating evaporation, electron beam evaporation, ion beam evaporation, plasma-assisted deposition, etc.), thermal CVD, catalytic chemical vapor deposition (Cat-CVD), capacitively coupled plasma CVD (CCP-CVD), optical CVD, plasma CVD (PECVD), epitaxial growth method, and chemical vapor deposition method such as atomic layer deposition (ALD). Among these, it is preferable to form by ALD method or CVD method.
The first sealing layer contains silicon nitride (SiNx), silicon oxynitride (SiNOx), or silicon oxide (SiOx).
As a specific example of forming the first sealing layer, the pressure inside the chamber is reduced, and raw material gases such as silane (SiH 4 ), ammonia (NH 3 ), and hydrogen (H 2 ) are heated and supplied into the chamber. For example, a method of forming
The thickness of the first sealing layer is, for example, preferably within the range of 10 to 1000 nm, more preferably within the range of 100 to 500 nm.
<第2封止層形成工程>
 第2封止層形成工程は、前記第1封止層上に前記した本発明の封止用組成物を塗布することにより第2封止層を形成する。
 具体的には、前記第1封止層上に、前記封止用組成物を塗布し(塗布工程)、得られた塗布膜に窒素雰囲気下にて真空紫外線照射して改質処理する工程を有してもよい。
<Second sealing layer forming step>
In the second sealing layer forming step, a second sealing layer is formed by applying the above-described sealing composition of the present invention on the first sealing layer.
Specifically, the sealing composition is coated on the first sealing layer (coating step), and the resulting coating film is modified by irradiation with vacuum ultraviolet rays in a nitrogen atmosphere. May have.
 (塗布工程)
 封止用組成物の塗布方法としては、任意の適切な方法を採用することができ、例えば、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。中でも、インクジェット法を用いることが有機EL素子などの電子デバイスを封止する際に求められる微細なパターニングをオンデマンドで行える点で好ましい。
(Coating process)
Any suitable method can be used to apply the sealing composition, such as spin coating, roll coating, flow coating, inkjet coating, spray coating, printing, and dip coating. , a casting film forming method, a bar coating method, a gravure printing method, and the like. Among these, it is preferable to use the inkjet method because it allows on-demand fine patterning, which is required when sealing electronic devices such as organic EL elements.
 インクジェット方式としては、公知の方法を用いることができる。
 インクジェット方式は、大別するとドロップオンデマンド方式とコンティニュアス方式二つに分けられ、どちらも使用することができる。ドロップオンデマンド方式としては、電気-機械変換方式(例えば、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型、シェアードウォール型等)、電気-熱変換方式(例えば、サーマルインクジェット型、バブルジェット(登録商標)型等)、静電吸引方式(例えば、電界制御型、スリットジェット型等)及び放電方式(例えば、スパークジェット型等)等がある。インクジェットヘッドのコストや生産性の観点からは、電気-機械変換方式、又は電気-熱変換方式のヘッドを用いることが好ましい。なお、インクジェット方式により、液滴(例えば、塗布液)を滴下させる方法を「インクジェット法」と呼ぶ場合がある。
As the inkjet method, a known method can be used.
The inkjet method can be roughly divided into two types: a drop-on-demand method and a continuous method, both of which can be used. Drop-on-demand methods include electro-mechanical conversion methods (e.g., single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.), electro-thermal conversion methods (e.g., thermal Ink jet type, bubble jet (registered trademark) type, etc.), electrostatic suction type (eg, electric field control type, slit jet type, etc.), and discharge type (eg, spark jet type, etc.). From the viewpoint of cost and productivity of the inkjet head, it is preferable to use an electro-mechanical conversion type or an electro-thermal conversion type head. Note that a method of dropping liquid droplets (for example, a coating liquid) using an inkjet method is sometimes referred to as an "inkjet method."
 前記封止用組成物を塗布する際には、窒素雰囲気下にて行うことが好ましい。 When applying the sealing composition, it is preferable to apply it under a nitrogen atmosphere.
 (改質処理工程)
 前記改質処理工程では、塗布工程後、得られた塗布膜に窒素雰囲気下にて真空紫外線照射して改質処理する工程を有してもよい。
 改質処理とは、ポリシラザンの酸化ケイ素又は酸窒化ケイ素への転化反応をいう。改質処理も、同様に、グローブボックス内といった窒素雰囲気下や減圧下で行う。
 本発明における改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができる。本発明においては、低温で転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。プラズマやオゾンは従来公知の方法を用いることができる。本発明においては、上記塗布膜を設け、波長200nm以下の真空紫外光(VUVともいう。)を照射して改質処理することにより、本発明に係る第2封止層を形成することが好ましい。
(Reforming treatment process)
The modification treatment step may include, after the coating step, a step of irradiating the obtained coating film with vacuum ultraviolet rays in a nitrogen atmosphere to perform modification treatment.
The modification treatment refers to a conversion reaction of polysilazane to silicon oxide or silicon oxynitride. The reforming treatment is similarly performed in a nitrogen atmosphere such as in a glove box or under reduced pressure.
For the modification treatment in the present invention, a known method based on a conversion reaction of polysilazane can be selected. In the present invention, a conversion reaction using plasma, ozone, or ultraviolet light, which allows the conversion reaction to occur at a low temperature, is preferred. Conventionally known methods can be used for plasma and ozone. In the present invention, it is preferable to form the second sealing layer according to the present invention by providing the coating film and performing a modification treatment by irradiating vacuum ultraviolet light (also referred to as VUV) with a wavelength of 200 nm or less. .
 第2封止層の厚さは、0.5~20μmの範囲内が好ましく、より好ましくは3~10μmの範囲内である。
 当該第2封止層のうち、層全体が改質された層であってもよいが、改質処理された改質層の厚さは、1~50nmの範囲内が好ましく、1~30nmの範囲内がさらに好ましい。
The thickness of the second sealing layer is preferably within the range of 0.5 to 20 μm, more preferably within the range of 3 to 10 μm.
Of the second sealing layer, the entire layer may be a modified layer, but the thickness of the modified layer treated with modification is preferably within the range of 1 to 50 nm, and preferably 1 to 30 nm. More preferably within this range.
 前記真空紫外線を照射して改質処理する工程において、塗布膜が受ける塗布膜面での該真空紫外線の照度は30~200mW/cmの範囲内であることが好ましく、50~160mW/cmの範囲内であることがより好ましい。真空紫外線の照度を30mW/cm以上とすることで、改質効率を十分に向上することができ、200mW/cm以下では、塗布膜への損傷発生率を極めて抑え、また、基材への損傷も低減させることができるため、好ましい。 In the step of irradiating with vacuum ultraviolet rays to perform a modification treatment, the illuminance of the vacuum ultraviolet rays on the coating film surface that the coating film receives is preferably within the range of 30 to 200 mW/cm 2 , and 50 to 160 mW/cm 2 It is more preferable that it be within the range of . By setting the illuminance of vacuum ultraviolet rays to 30 mW/cm 2 or more, the modification efficiency can be sufficiently improved, and if it is 200 mW/cm 2 or less, the incidence of damage to the coating film can be extremely suppressed, and it can also cause damage to the base material. This is preferable because it can also reduce damage to.
 真空紫外線の照射は、塗布膜面における真空紫外線の照射エネルギー量は、1~10J/cmの範囲内であることが好ましく、デシカント機能を維持するためのバリア性及び湿熱耐性の観点から、3~7J/cmの範囲内であることがより好ましい。 In the irradiation of vacuum ultraviolet rays, the amount of energy irradiated with vacuum ultraviolet rays on the coated film surface is preferably within the range of 1 to 10 J/cm 2 , and from the viewpoint of barrier properties and moist heat resistance to maintain desiccant function, More preferably, it is within the range of 7 J/cm 2 .
 なお、真空紫外線の光源としては、希ガスエキシマランプが好ましく用いられる。真空紫外光は、酸素による吸収があるため真空紫外線照射工程での効率が低下しやすいことから、真空紫外光の照射は、可能な限り酸素濃度の低い状態で行うことが好ましい。すなわち、真空紫外光照射時の酸素濃度は、10~10000ppmの範囲内とすることが好ましく、より好ましくは50~5000ppmの範囲内、さらに好ましくは80~4500ppmの範囲内、最も好ましくは100~1000ppmの範囲内である。 Note that a rare gas excimer lamp is preferably used as the vacuum ultraviolet light source. Since vacuum ultraviolet light is absorbed by oxygen, the efficiency in the vacuum ultraviolet irradiation step tends to decrease, so it is preferable to perform vacuum ultraviolet light irradiation in a state where the oxygen concentration is as low as possible. That is, the oxygen concentration during vacuum ultraviolet light irradiation is preferably within the range of 10 to 10,000 ppm, more preferably within the range of 50 to 5,000 ppm, still more preferably within the range of 80 to 4,500 ppm, and most preferably 100 to 1,000 ppm. is within the range of
 改質処理は、加熱処理と組み合わせて行うこともできる。加熱条件としては、好ましくは50~300℃の範囲内、より好ましくは60~150℃の範囲内の温度で、好ましくは1秒~60分間、より好ましくは10秒~10分間、加熱処理を併用することで、改質時の脱水縮合反応を促進し、より効率的に改質体を形成することができる。 Modification treatment can also be performed in combination with heat treatment. The heating conditions are preferably in the range of 50 to 300°C, more preferably in the range of 60 to 150°C, preferably for 1 second to 60 minutes, more preferably for 10 seconds to 10 minutes, in combination with heat treatment. By doing so, the dehydration condensation reaction during modification can be promoted and a modified product can be formed more efficiently.
 加熱処理としては、例えば、ヒートブロック等の発熱体に基材を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターのような赤外領域の光を用いた方法等が挙げられるが、特に限定されない。また、ケイ素化合物を含有する塗膜の平滑性を維持できる方法を適宜選択してよい。 Examples of heat treatment include: heating the coating film by heat conduction by bringing the substrate into contact with a heating element such as a heat block; heating the atmosphere with an external heater such as a resistance wire; and heating in an infrared region such as an IR heater. Examples include, but are not particularly limited to, methods using light. Further, any method that can maintain the smoothness of the coating film containing the silicon compound may be selected as appropriate.
<第3封止層形成工程>
 第3封止層形成工程は、前記第2封止層上に気相法により第3封止層を形成する。
 気相法としては、第1封止層形成工程で用いた気相法と同様に、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、二極AC平板マグネトロンスパッタリング、二極AC回転マグネトロンスパッタリングなど、反応性スパッタ法を含む。)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長法(ALD)等の化学蒸着法等が挙げられる。中でも、ALD法、CVD法により形成することが好ましい。
 第3封止層は、窒化ケイ素(SiNx)、酸窒化ケイ素(SiNOx)又は酸化ケイ素(SiOx)を含有する。
 第3封止層を形成する具体例としては、チャンバー内を減圧しておき、原料ガスとして、シラン(SiH)、アンモニア(NH)、水素(H)を加熱してチャンバー内に供給し形成する方法が挙げられる。
 第3封止層の厚さは、例えば、10~1000nmの範囲内であることが好ましく、100~500nmの範囲内であることがより好ましい。
<Third sealing layer forming step>
In the third sealing layer forming step, a third sealing layer is formed on the second sealing layer by a vapor phase method.
As the gas phase method, similar to the gas phase method used in the first sealing layer forming step, sputtering methods (for example, magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotating magnetron sputtering, etc.) are used. , reactive sputtering methods), vapor deposition methods (e.g., resistance heating vapor deposition, electron beam vapor deposition, ion beam vapor deposition, plasma-assisted vapor deposition, etc.), thermal CVD methods, catalytic chemical vapor deposition (Cat-CVD), capacitive Examples include chemical vapor deposition methods such as coupled plasma CVD method (CCP-CVD), optical CVD method, plasma CVD method (PE-CVD), epitaxial growth method, and atomic layer deposition method (ALD). Among these, it is preferable to form by ALD method or CVD method.
The third sealing layer contains silicon nitride (SiNx), silicon oxynitride (SiNOx), or silicon oxide (SiOx).
As a specific example of forming the third sealing layer, the pressure inside the chamber is reduced, and raw material gases such as silane (SiH 4 ), ammonia (NH 3 ), and hydrogen (H 2 ) are heated and supplied into the chamber. For example, a method of forming
The thickness of the third sealing layer is, for example, preferably within the range of 10 to 1000 nm, more preferably within the range of 100 to 500 nm.
 なお、前記したように封止膜形成後に、さらにタッチセンサー用の導電膜を形成してもよい。
 前記導電膜は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の金属化合物膜のほか、フレキシブル性に優れた、グラフェン膜、金属ナノワイヤー膜(例えば、銀ナノワイヤー又は銅ナノワイヤーを含む膜)、金属ナノ粒子膜(例えば、銀ナノ粒子又は銅ナノ粒子を含む膜)で構成することができる。また、例えばAl膜/Ti膜/Al膜のような複数金属の積層膜で構成することができる。
Note that, as described above, after forming the sealing film, a conductive film for a touch sensor may be further formed.
The conductive film may be, for example, a metal compound film such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), as well as a graphene film or a metal nanowire film (such as silver nanowire or copper nanowire film) that has excellent flexibility. (a film containing wires), a metal nanoparticle film (for example, a film containing silver nanoparticles or copper nanoparticles). Further, it can be constructed of a laminated film of multiple metals such as Al film/Ti film/Al film, for example.
[電子デバイス封止膜]
 本発明の一の態様の電子デバイス封止膜は、光重合性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物を硬化して電子デバイスを封止する電子デバイス封止膜であって、前記光重合性モノマーとして、(メタ)アクリレートを含有し、前記電子デバイス封止膜の硬化率が、80%以上で、かつ、前記電子デバイス封止膜の示差熱・熱重量同時測定装置(TG-DTA)による残渣率が、3%以上である。
 また、本発明の他の態様の電子デバイス封止膜は、電子デバイスを封止する電子デバイス封止膜であって、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、前記した本発明の電子デバイス封止用組成物を用いた第2封止層と、を有する。
 このような本発明の電子デバイス封止膜は、前記電子デバイス封止膜形成方法により形成される。すなわち、前記した本発明の電子デバイス封止用組成物を用いて第2封止層が形成される。
 前記第2封止層の硬化率が80%以上で、かつ、前記第2封止層の示差熱・熱重量同時測定装置(TG-DTA)による残渣率が、3%以上である。
 また、本発明の電子デバイス封止膜は、前記第2封止層上に、さらに窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第3封止層を有することが好ましい。
[Electronic device sealing film]
An electronic device sealing film according to one aspect of the present invention is an electronic device sealing film that seals an electronic device by curing an electronic device sealing composition containing a photopolymerizable monomer and a photopolymerization initiator. The photopolymerizable monomer contains (meth)acrylate, the curing rate of the electronic device sealing film is 80% or more, and a differential thermal/thermogravimetric simultaneous measuring device for the electronic device sealing film. (TG-DTA) residue rate is 3% or more.
Further, an electronic device sealing film according to another aspect of the present invention is an electronic device sealing film that seals an electronic device, and includes a first sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride; and a second sealing layer using the electronic device sealing composition of the present invention described above.
Such an electronic device sealing film of the present invention is formed by the electronic device sealing film forming method described above. That is, the second sealing layer is formed using the electronic device sealing composition of the present invention described above.
The curing rate of the second sealing layer is 80% or more, and the residue rate of the second sealing layer measured by a differential thermal/thermogravimetric simultaneous measurement device (TG-DTA) is 3% or more.
Moreover, it is preferable that the electronic device sealing film of the present invention further includes a third sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride on the second sealing layer.
<第1封止層>
 第1封止層は、電子デバイス上に前記した気相法により形成される層である。具体的には、窒化ケイ素、酸化ケイ素(一酸化ケイ素、二酸化ケイ素等)又は酸窒化ケイ素を含有する。
<First sealing layer>
The first sealing layer is a layer formed on the electronic device by the above-mentioned vapor phase method. Specifically, it contains silicon nitride, silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride.
<第2封止層>
 第2封止層は、前記第1封止層に隣接して設けられ、前記第1封止層上に前記封止用組成物を塗布することにより形成される。
 したがって、第2封止層は、前記封止用組成物に含有される特定の光重合性モノマーからなる重合体を含有する。
<Second sealing layer>
The second sealing layer is provided adjacent to the first sealing layer, and is formed by applying the sealing composition on the first sealing layer.
Therefore, the second sealing layer contains a polymer made of the specific photopolymerizable monomer contained in the sealing composition.
 前記第2封止層が、前記重合体を含有することを検出する方法としては、従来公知の種々の分析法、例えばクロマトグラフィー、赤外線分光法、紫外・可視分光法、核磁気共鳴分析、X線回折法、及び質量分析、X線光電子分光法等を用いることができる。 Methods for detecting that the second sealing layer contains the polymer include various conventionally known analytical methods, such as chromatography, infrared spectroscopy, ultraviolet/visible spectroscopy, nuclear magnetic resonance analysis, Line diffraction, mass spectrometry, X-ray photoelectron spectroscopy, etc. can be used.
 前記第2封止層における前記重合体の含有量は、85~100質量%の範囲内であることが好ましく、90~95質量%の範囲内であることがより好ましい。 The content of the polymer in the second sealing layer is preferably in the range of 85 to 100% by mass, more preferably in the range of 90 to 95% by mass.
<第3封止層>
 第3封止層は、前記第2封止層に隣接して設けられ、前記した気相法により形成される層である。具体的には、第1封止層と同様に窒化ケイ素、酸化ケイ素(一酸化ケイ素、二酸化ケイ素等)又は酸窒化ケイ素を含有する。
<Third sealing layer>
The third sealing layer is a layer that is provided adjacent to the second sealing layer and is formed by the above-mentioned vapor phase method. Specifically, like the first sealing layer, it contains silicon nitride, silicon oxide (silicon monoxide, silicon dioxide, etc.), or silicon oxynitride.
[電子デバイス]
 本発明の電子デバイス封止膜形成方法及び電子デバイス封止膜において、封止される電子デバイスとしては、例えば、有機EL素子、LED素子、液晶表示素子(LCD)、薄膜トランジスター、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、有機EL素子、太陽電池又はLED素子が好ましく、有機EL素子が特に好ましい。
[Electronic devices]
In the electronic device sealing film forming method and electronic device sealing film of the present invention, examples of electronic devices to be sealed include organic EL elements, LED elements, liquid crystal display elements (LCD), thin film transistors, touch panels, and electronic paper. , solar cells (PV), and the like. From the viewpoint that the effects of the present invention can be obtained more efficiently, organic EL elements, solar cells, or LED elements are preferable, and organic EL elements are particularly preferable.
<有機EL素子>
 本発明に係る電子デバイスとして採用される有機EL素子は、ボトムエミッション型、すなわち、透明基材側から光を取り出すようにしたものであってもよい。
 ボトムエミッション型は、具体的には、透明基材上に、カソードとなる透明電極、発光機能層、アノードとなる対向電極をこの順で積層することにより構成されている。
 また、本発明に係る有機EL素子は、トップエミッション型、すなわち、基材とは逆のカソードとなる透明電極側から光を取り出すようにしたものであってもよい。
 トップエミッション型は、具体的には、基材側にアノードとなる対向電極を設け、この表面に発光機能層、カソードとなる透明電極を順に積層した構成である。
<Organic EL element>
The organic EL element employed as the electronic device according to the present invention may be of a bottom emission type, that is, one that extracts light from the transparent substrate side.
Specifically, the bottom emission type is constructed by laminating, in this order, a transparent electrode serving as a cathode, a light emitting functional layer, and a counter electrode serving as an anode on a transparent base material.
Further, the organic EL element according to the present invention may be of a top emission type, that is, the organic EL element may be of a top emission type, in which light is extracted from the side of the transparent electrode serving as the cathode, which is opposite to the base material.
Specifically, the top emission type has a configuration in which a counter electrode that serves as an anode is provided on the base material side, and a light emitting functional layer and a transparent electrode that serves as a cathode are laminated in this order on the surface of this counter electrode.
 以下に、有機EL素子の構成の代表例を示す。
 (i)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
 (ii)陽極/正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層/陰極
 (iii)陽極/正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層/陰極
 (iv)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (v)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 (vi)陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 さらに、有機EL素子は、非発光性の中間層を有していても良い。中間層は電荷発生層であっても良く、マルチフォトンユニット構成であっても良い。
 本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。
Typical examples of the configuration of organic EL elements are shown below.
(i) Anode/Hole injection transport layer/Emissive layer/Electron injection transport layer/Cathode (ii) Anode/Hole injection transport layer/Emissive layer/Hole blocking layer/Electron injection transport layer/Cathode (iii) Anode/ Hole injection transport layer/Electron blocking layer/Emissive layer/Hole blocking layer/Electron injection transport layer/Cathode (iv) Anode/Hole injection layer/Hole transport layer/Emissive layer/Electron transport layer/Electron injection layer/ Cathode (v) Anode/Hole injection layer/Hole transport layer/Light emitting layer/Hole blocking layer/Electron transport layer/Electron injection layer/Cathode (vi) Anode/Hole injection layer/Hole transport layer/Electron blocking Layer/Emissive layer/Hole blocking layer/Electron transport layer/Electron injection layer/Cathode Furthermore, the organic EL device may have a non-luminous intermediate layer. The intermediate layer may be a charge generation layer or may have a multi-photon unit configuration.
For an overview of organic EL elements applicable to the present invention, see, for example, JP-A No. 2013-157634, JP-A No. 2013-168552, JP-A No. 2013-177361, JP-A No. 2013-187211, and JP-A No. 2013-187211. 2013-191644, 2013-191804, 2013-225678, 2013-235994, 2013-243234, 2013-243236, 2013- 242366, 2013-243371, 2013-245179, 2014-003249, 2014-003299, 2014-013910, 2014-017493 Examples include configurations described in publications such as Japanese Patent Application Publication No. 2014-017494.
<基材>
 前記有機EL素子に用いることのできる基材(以下、支持基板、基体、基板、支持体等ともいう。)としては、具体的には、ガラス又は樹脂フィルムの適用が好ましく、フレキシブル性を要求される場合は、樹脂フィルムであることが好ましい。
 また、透明であっても不透明であってもよい。基材側から光を取り出す、いわゆるボトムエミッション型の場合には、基材は透明であることが好ましい。
<Base material>
Specifically, as a base material (hereinafter also referred to as a support substrate, substrate, substrate, support, etc.) that can be used in the organic EL element, glass or a resin film is preferably used, and flexibility is required. In the case where the film is a resin film, it is preferable to use a resin film.
Moreover, it may be transparent or opaque. In the case of a so-called bottom emission type in which light is extracted from the base material side, the base material is preferably transparent.
 好ましい樹脂としては、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を含む基材が挙げられる。該樹脂は、単独でも又は2種以上組み合わせても用いることができる。 Preferred resins include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, and cellulose acylate resin. , polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring-modified polycarbonate resin, alicyclic-modified polycarbonate resin, fluorene ring-modified resin Examples include base materials containing thermoplastic resins such as polyester resins and acryloyl compounds. These resins can be used alone or in combination of two or more.
 基材は、耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の基材が使用される。
 該基材は、電子部品用途、ディスプレイ用積層フィルムとしての必要条件を満たしている。すなわち、これらの用途に本発明の封止膜を用いる場合、基材は、150℃以上の工程に曝されることがある。この場合、基材の線膨張係数が100ppm/Kを超えると、前記のような温度の工程に流す際に基板寸法が安定せず、熱膨張及び収縮に伴い、遮断性性能が劣化する不都合や、又は熱工程に耐えられないという不具合が生じやすくなる。15ppm/K未満では、フィルムがガラスのように割れてしまいフレキシビリティが劣化する場合がある。
The base material is preferably made of a heat-resistant material. Specifically, a base material having a linear expansion coefficient of 15 ppm/K or more and 100 ppm/K or less and a glass transition temperature (Tg) of 100° C. or more and 300° C. or less is used.
The base material satisfies the requirements for use in electronic components and as a laminated film for displays. That is, when using the sealing film of the present invention for these uses, the base material may be exposed to a process at 150° C. or higher. In this case, if the linear expansion coefficient of the base material exceeds 100 ppm/K, the dimensions of the base material will not be stable when it is passed through the process at the above-mentioned temperature, and the barrier performance will deteriorate due to thermal expansion and contraction. , or the problem of not being able to withstand a thermal process is likely to occur. If it is less than 15 ppm/K, the film may break like glass and its flexibility may deteriorate.
 基材のTgや線膨張係数は、添加剤などによって調整することができる。
 基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内温度はTgを示す)。
The Tg and linear expansion coefficient of the base material can be adjusted using additives and the like.
More preferable specific examples of thermoplastic resins that can be used as the base material include polyethylene terephthalate (PET: 70°C), polyethylene naphthalate (PEN: 120°C), polycarbonate (PC: 140°C), alicyclic resins, etc. Polyolefin (for example, Zeonor (registered trademark) 1600 manufactured by Nippon Zeon Co., Ltd.: 160°C), polyarylate (PAr: 210°C), polyethersulfone (PES: 220°C), polysulfone (PSF: 190°C), cycloolefin copolymer (COC: Compound described in JP-A No. 2001-150584: 162°C), polyimide (for example, Neoprim (registered trademark) manufactured by Mitsubishi Gas Chemical Co., Ltd.: 260°C), fluorene ring-modified polycarbonate (BCF-PC: JP-A No. Compounds described in JP-A No. 2000-227603: 225°C), alicyclic-modified polycarbonates (IP-PC: compounds described in JP-A No. 2000-227603: 205°C), acryloyl compounds (as described in JP-A No. 2002-80616) (Temperature in parentheses indicates Tg).
 本発明に係る電子デバイスは、有機EL素子等の電子デバイスであることから、基材は透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率及び散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。 Since the electronic device according to the present invention is an electronic device such as an organic EL element, the base material is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more. The light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105:1981, that is, using an integrating sphere type light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
 また、上記に挙げた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。当該基材は、従来公知の一般的な方法により製造することが可能である。これらの基材の製造方法については、国際公開第2013/002026号の段落「0051」~「0055」の記載された事項を適宜採用することができる。 Furthermore, the above-mentioned base material may be an unstretched film or a stretched film. The base material can be manufactured by a conventionally known general method. Regarding the manufacturing method of these base materials, the matters described in paragraphs "0051" to "0055" of International Publication No. 2013/002026 can be adopted as appropriate.
 基材の表面は、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、又はプラズマ処理等を行っていてもよく、必要に応じて上記処理を組み合わせて行っていてもよい。また、基材には易接着処理を行ってもよい。 The surface of the base material may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatments may be combined as necessary. You can leave it there. Further, the base material may be subjected to adhesion-facilitating treatment.
 該基材は、単層でもよいし2層以上の積層構造であってもよい。該基材が2層以上の積層構造である場合、各基材は同じ種類であってもよいし異なる種類であってもよい。 The base material may be a single layer or may have a laminated structure of two or more layers. When the base material has a laminated structure of two or more layers, each base material may be of the same type or of different types.
 本発明に係る基材の厚さ(2層以上の積層構造である場合はその総厚)は、10~200μmであることが好ましく、20~150μmであることがより好ましい。 The thickness of the base material according to the present invention (in the case of a laminated structure of two or more layers, the total thickness) is preferably 10 to 200 μm, more preferably 20 to 150 μm.
 また、フィルム基材の場合は、ガスバリアー層付きフィルム基材であることが好ましい。 In addition, in the case of a film base material, it is preferably a film base material with a gas barrier layer.
 前記フィルム基材用のガスバリアー層は、フィルム基材の表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/m・24h以下のバリアー性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/m・24h・atm以下、水蒸気透過度が、1×10-3g/m・24h以下の高ガスバリアー性フィルムであることが好ましい。 The gas barrier layer for the film base material may have an inorganic film, an organic film, or a hybrid film of both formed on the surface of the film base material, and is measured by a method based on JIS K 7129-1992. In addition, it is preferably a barrier film with a water vapor permeability (25±0.5°C, relative humidity (90±2)% RH) of 0.01 g/m 2 ·24 h or less, and furthermore, JIS K 7126- High gas barrier with an oxygen permeability of 1×10 -3 mL/m 2.24 h・atm or less and a water vapor permeability of 1×10 −3 g/m 2.24 h or less, measured using a method based on the 1987 Act. It is preferable that the film is a transparent film.
 前記ガスバリアー層を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、一酸化ケイ素、二酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素等を用いることができる。 The material forming the gas barrier layer may be any material that has the function of suppressing the infiltration of substances that cause deterioration of elements, such as moisture and oxygen, such as silicon monoxide, silicon dioxide, silicon nitride, silicon oxynitride, Silicon carbide, silicon oxycarbide, etc. can be used.
 当該ガスバリアー層は、特に限定されないが、例えば、一酸化ケイ素、二酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素等の無機ガスバリアー層の場合は、無機材料をスパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、二極AC平板マグネトロンスパッタリング、二極AC回転マグネトロンスパッタリングなど)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長(ALD)法、反応性スパッタ法等の化学蒸着法等によって層形成することが好ましい。 The gas barrier layer is not particularly limited, but for example, in the case of an inorganic gas barrier layer such as silicon monoxide, silicon dioxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, etc., the inorganic material is sputtered (e.g. , magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotating magnetron sputtering, etc.), vapor deposition methods (e.g., resistance heating evaporation, electron beam evaporation, ion beam evaporation, plasma assisted deposition, etc.), thermal CVD method, catalytic chemical vapor deposition (Cat-CVD), capacitively coupled plasma CVD (CCP-CVD), optical CVD, plasma CVD (PE-CVD), epitaxial growth, atomic layer deposition (ALD), reaction It is preferable to form the layer by a chemical vapor deposition method such as a chemical sputtering method.
 さらに、ポリシラザン、オルトケイ酸テトラエチル(TEOS)などの無機前駆体を含む塗布液を支持体上に塗布した後、真空紫外光の照射などにより改質処理を行い、無機ガスバリアー層を形成する方法や、樹脂基材への金属めっき、金属箔と樹脂基材とを接着させる等のフィルム金属化技術などによっても、無機ガスバリアー層は形成される。 Furthermore, there is a method in which a coating solution containing an inorganic precursor such as polysilazane or tetraethyl orthosilicate (TEOS) is applied onto a support, and then a modification treatment is performed by irradiation with vacuum ultraviolet light to form an inorganic gas barrier layer. The inorganic gas barrier layer can also be formed by film metallization techniques such as metal plating on a resin base material, bonding of a metal foil and a resin base material, and the like.
 また、無機ガスバリアー層は、有機ポリマーを含む有機層を含んでいてもよい。すなわち、無機ガスバリアー層は、無機材料を含む無機層と有機層との積層体であってもよい。 Additionally, the inorganic gas barrier layer may include an organic layer containing an organic polymer. That is, the inorganic gas barrier layer may be a laminate of an inorganic layer containing an inorganic material and an organic layer.
 有機層は、例えば、有機モノマー又は有機オリゴマーを樹脂基材に塗布し、層を形成し、続いて、例えば、電子ビーム装置、UV光源、放電装置、又はその他の好適な装置を使用して重合及び必要に応じて架橋することにより形成することができる。また、例えば、フラッシュ蒸発及び放射線架橋可能な有機モノマー又は有機オリゴマーを蒸着した後、有機モノマー又は有機オリゴマーからポリマーを形成することによっても形成することができる。コーティング効率は、樹脂基材を冷却することにより改善され得る。 The organic layer can be formed by, for example, applying an organic monomer or an organic oligomer to a resin substrate to form a layer, followed by polymerization using, for example, an electron beam device, a UV light source, an electrical discharge device, or other suitable device. It can also be formed by crosslinking, if necessary. It can also be formed, for example, by flash evaporation and vapor deposition of radiation crosslinkable organic monomers or organic oligomers followed by formation of polymers from organic monomers or organic oligomers. Coating efficiency can be improved by cooling the resin substrate.
 有機モノマー又は有機オリゴマーの塗布方法としては、例えば、ロールコーティング(例えば、グラビアロールコーティング)、スプレーコーティング(例えば、静電スプレーコーティング)等が挙げられる。また、無機層と有機層との積層体の例としては、例えば、国際公開第2012/003198号、国際公開第2011/013341号に記載の積層体などが挙げられる。 Examples of methods for applying the organic monomer or organic oligomer include roll coating (eg, gravure roll coating), spray coating (eg, electrostatic spray coating), and the like. Examples of the laminate of an inorganic layer and an organic layer include the laminates described in International Publication No. 2012/003198 and International Publication No. 2011/013341.
 無機層と有機層との積層体である場合、各層の厚さは同じでもよいし、異なっていてもよい。無機層の厚さは、好ましくは3~1000nmの範囲内、より好ましくは10~300nmの範囲内である。有機層の厚さは、好ましくは100nm~100μmの範囲内、より好ましくは1~50μmの範囲内である。 In the case of a laminate of an inorganic layer and an organic layer, the thickness of each layer may be the same or different. The thickness of the inorganic layer is preferably within the range of 3 to 1000 nm, more preferably within the range of 10 to 300 nm. The thickness of the organic layer is preferably within the range of 100 nm to 100 μm, more preferably within the range of 1 to 50 μm.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」及び「部」は、それぞれ、「質量%」及び「質量部」を意味する。 The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto. In addition, in the following examples, unless otherwise specified, operations were performed at room temperature (25° C.). Further, unless otherwise specified, "%" and "parts" mean "% by mass" and "parts by mass", respectively.
[モノマー]
 封止用組成物の調製に使用するモノマーは以下のとおりである。
 また、各モノマーについて、(メタ)アクリル基数は下記表Iのとおりである。なお、下記表Iにおいて、「アクリル基」を有する場合には、「0」、「メタクリル基」を有する場合には「1」と表記した。
[monomer]
The monomers used to prepare the encapsulating composition are as follows.
Further, the number of (meth)acrylic groups for each monomer is as shown in Table I below. In addition, in Table I below, when it has an "acrylic group", it is written as "0", and when it has a "methacrylic group", it is written as "1".
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[光重合開始剤]
 封止用組成物の調製に使用する光重合開始剤は下記表IIのとおりである。
[Photopolymerization initiator]
The photopolymerization initiators used for preparing the sealing composition are shown in Table II below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[封止用組成物1~38の調製]
 各モノマーを下記表IIIに示す種類及び質量部となるように窒素環境下で秤量し、モノマー調製液1~7を得た。
 さらに、これら各モノマー調製液1~7に、光重合開始剤として、下記表IVに示す種類及び質量部となるように、褐色瓶へ入れ、65℃のホットプレート上で3時間撹拌し、各封止用組成物1~38を得た。
[Preparation of sealing compositions 1 to 38]
Each monomer was weighed in a nitrogen environment to have the types and parts by mass shown in Table III below to obtain monomer preparation solutions 1 to 7.
Furthermore, a photopolymerization initiator was added to each of these monomer preparations 1 to 7 in the type and mass parts shown in Table IV below in a brown bottle, and the mixture was stirred for 3 hours on a hot plate at 65°C. Sealing compositions 1 to 38 were obtained.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<平均(メタ)アクリル基数及びメタクリレート比率>
 各封止用組成物について、平均(メタ)アクリル基数及びメタクリレート比率を下記式によって算出し、上記表IVに示した。
 前記平均(メタ)アクリル基数は、モノマーに含まれる(メタ)アクリル基の数n、モノマーの合計質量を1にしたときの質量比率wを用いて以下のように計算した。
 平均(メタ)アクリル基数=n1×w1+n2×w2+・・・
 (n及びwの添字はモノマーの番号を示す。)
 また、前記メタクリレート比率は、メタクリル基を有するモノマーの質量合計wm、アクリル基を有するモノマーの質量合計waを用いて以下のように計算した。
 メタクリレート比率(%)=wm/(wa+wm)×100
<Average (meth)acrylic group number and methacrylate ratio>
For each sealing composition, the average number of (meth)acrylic groups and methacrylate ratio were calculated using the following formula and shown in Table IV above.
The average number of (meth)acrylic groups was calculated as follows using the number n of (meth)acrylic groups contained in the monomer and the mass ratio w when the total mass of the monomers is set to 1.
Average (meth)acrylic base number = n1 x w1 + n2 x w2 +...
(The n and w subscripts indicate the monomer numbers.)
Further, the methacrylate ratio was calculated as follows using the total mass wm of monomers having a methacrylic group and the total mass wa of monomers having an acrylic group.
Methacrylate ratio (%)=wm/(wa+wm)×100
<残渣率>
 窒素環境下にて、50mm×50mmの寸法を有するガラス基板上に、厚さ10μmの封止用組成物の塗膜を作製した。この塗膜に、窒素環境下で、300mW/cm条件で積算光量が1.5J/cmになるように395nmの波長の紫外線(IST社製 MZ 240mm 395nm UVLED)を照射して、塗膜を硬化させた。得られた硬化膜をスパチュラで10mg回収し、TG-DTA装置(リガク社製 Thermo Plus EVO2)を使用し、窒素雰囲気下、昇温速度10℃/minで500℃まで昇温した。そして、初期質量wに対する500℃時点での質量wから計算される以下の式で残渣率を計算した。
 残渣率(%)=w/w×100(%)
(残渣率=(1-質量減少率)×100、質量減少率=1-w/w
<Residue rate>
A coating film of a sealing composition having a thickness of 10 μm was produced on a glass substrate having dimensions of 50 mm×50 mm in a nitrogen environment. This coating film was irradiated with ultraviolet rays with a wavelength of 395 nm (MZ 240 mm 395 nm UVLED manufactured by IST) under a nitrogen environment at 300 mW/cm 2 conditions so that the cumulative light amount was 1.5 J/cm 2 . hardened. 10 mg of the obtained cured film was collected with a spatula, and the temperature was raised to 500° C. at a heating rate of 10° C./min in a nitrogen atmosphere using a TG-DTA device (Thermo Plus EVO2 manufactured by Rigaku Corporation). Then, the residue ratio was calculated using the following formula calculated from the mass w at 500° C. with respect to the initial mass w 0 .
Residue rate (%) = w/w 0 × 100 (%)
(Residue rate = (1-mass reduction rate) x 100, mass reduction rate = 1-w/w 0 )
<硬化率>
 窒素環境下にて、50mm×50mmの寸法を有するガラス基板上に、厚さ10μmの封止用組成物の塗膜を作製した。この塗膜に、窒素環境下で、300mW/cm条件で積算光量が1.5J/cmになるように395nmの波長の紫外線(IST社製 MZ 240mm 395nm UVLED)を照射して、塗膜を硬化させた。得られた硬化膜(封止膜)と、硬化前の組成物についてFTIR(赤外分光計Nexus870)測定を行った。得られたスペクトルの(メタ)アクリロイル基由来のC=C結合のピーク(810cm-1)の強度から、以下式により硬化率を求めた。
 硬化率(%)=(1-a/b)×100
a:硬化前の封止用組成物のC=C結合由来のピーク値
b:硬化後の封止膜のC=C結合由来のピーク値
<Curing rate>
A coating film of a sealing composition having a thickness of 10 μm was produced on a glass substrate having dimensions of 50 mm×50 mm in a nitrogen environment. This coating film was irradiated with ultraviolet rays with a wavelength of 395 nm (MZ 240 mm 395 nm UVLED manufactured by IST) under a nitrogen environment at 300 mW/cm 2 conditions so that the cumulative light amount was 1.5 J/cm 2 . hardened. FTIR (infrared spectrometer Nexus 870) measurements were performed on the obtained cured film (sealing film) and the composition before curing. The curing rate was determined from the intensity of the C=C bond peak (810 cm −1 ) derived from the (meth)acryloyl group in the obtained spectrum using the following formula.
Curing rate (%) = (1-a/b) x 100
a: Peak value derived from C=C bonds in the sealing composition before curing b: Peak value derived from C=C bonds in the sealing film after curing
[評価]
<比誘電率の変化率>
 50mm×50mmの寸法を有するガラス基板上に、ITO膜をスパッタリング法により150nm成膜した。その後、窒素環境下にて、厚さ10μmの封止用組成物の塗膜を作製した。この塗膜に、窒素環境下で、300mW/cm条件で積算光量が1.5J/cmになるように395nmの波長の紫外線(IST社製 MZ 240mm 395nm UVLED)を照射して、塗膜を硬化させ、測定サンプルとした。評価サンプルにAg膜をスパッタリング法により成膜して、インピーダンス測定装置(:Solartron製126096)により周波数100kHz、AC 0.1(V)でインピーダンス測定した。得られた比誘電率を初期比誘電率とした。
 次に、評価サンプルを85℃・85%RH保存で72時間保管し、その後Ag膜をスパッタリング法により成膜して、インピーダンス測定装置(:Solartron製126096)により周波数100kHz、AC 0.1(V)でインピーダンス測定し、比誘電率を測定した。得られた比誘電率を保管後比誘電率とした。
 初期比誘電率と保管後比誘電率から、以下式により比誘電率の変化率を計算した。
 比誘電率の変化率(%)=(初期比誘電率-保管後比誘電率)÷初期比誘電率×100
[evaluation]
<Change rate of relative dielectric constant>
An ITO film with a thickness of 150 nm was formed by sputtering on a glass substrate having dimensions of 50 mm x 50 mm. Thereafter, a coating film of the sealing composition with a thickness of 10 μm was produced in a nitrogen environment. This coating film was irradiated with ultraviolet rays with a wavelength of 395 nm (MZ 240 mm 395 nm UVLED manufactured by IST) under a nitrogen environment at 300 mW/cm 2 conditions so that the cumulative light amount was 1.5 J/cm 2 . was cured and used as a measurement sample. An Ag film was formed on the evaluation sample by sputtering, and the impedance was measured using an impedance measuring device (126096 manufactured by Solartron) at a frequency of 100 kHz and AC 0.1 (V). The obtained dielectric constant was taken as the initial dielectric constant.
Next, the evaluation sample was stored at 85° C. and 85% RH for 72 hours, and then an Ag film was formed by sputtering, and an impedance measurement device (Solartron 126096) was used to measure the temperature at a frequency of 100 kHz and an AC of 0.1 (V). ), and the relative dielectric constant was measured. The obtained dielectric constant was taken as the dielectric constant after storage.
The rate of change in relative permittivity was calculated from the initial relative permittivity and the relative permittivity after storage using the following formula.
Rate of change in relative permittivity (%) = (Initial relative permittivity - relative permittivity after storage) ÷ initial relative permittivity x 100
<比誘電率の安定性>
 前記で算出した比誘電率の変化率に基づいて、下記基準により比誘電率の安定性の評価を行った。ランク2~4を合格とした。
 (基準)
 ランク1:15%以上
 ランク2:10%以上、15%未満
 ランク3:5%以上、10%未満
 ランク4:5%未満
<Stability of relative dielectric constant>
Based on the rate of change in the dielectric constant calculated above, the stability of the dielectric constant was evaluated according to the following criteria. Ranks 2 to 4 were considered passing.
(standard)
Rank 1: 15% or more Rank 2: 10% or more, less than 15% Rank 3: 5% or more, less than 10% Rank 4: Less than 5%
<密着性>
 50mm×50mmの寸法を有するガラス基板上に、プラズマCVD法により厚さ500nmの窒化珪素(SiNx)を形成した。その後、窒素環境下にて、厚さ10μmの封止用組成物の塗膜を作製した。この塗膜に、窒素環境下で、300mW/cm条件で積算光量が1.5J/cmになるように395nmの波長の紫外線(IST社製 MZ 240mm 395nm UVLED)を照射して、塗膜を硬化させ、測定サンプルとした。測定サンプルに対し、テープ(3M社製 #600)を貼合し、24時間静置した。その後、テープを180度で剥離し、窒化珪素と封止用組成物の硬化膜(封止膜)との間の密着性(N/inch)について下記基準により判定した。ランク2~4を合格とした。
 (基準)
 ランク1:0.1N/inch未満
 ランク2:0.1N/inch以上、1.0N/inch未満
 ランク3:1.0N/inch以上4.0N/inch未満
 ランク4:4.0N/inch以上
<Adhesion>
Silicon nitride (SiNx) with a thickness of 500 nm was formed on a glass substrate having dimensions of 50 mm x 50 mm by plasma CVD. Thereafter, a coating film of the sealing composition with a thickness of 10 μm was produced in a nitrogen environment. This coating film was irradiated with ultraviolet light with a wavelength of 395 nm (MZ 240 mm 395 nm UVLED manufactured by IST) under a nitrogen environment at 300 mW/cm 2 conditions so that the cumulative light amount was 1.5 J/cm 2 . was cured and used as a measurement sample. A tape (#600 manufactured by 3M Company) was attached to the measurement sample and left for 24 hours. Thereafter, the tape was peeled off at 180 degrees, and the adhesion (N/inch) between the silicon nitride and the cured film (sealing film) of the sealing composition was evaluated according to the following criteria. Ranks 2 to 4 were considered passing.
(standard)
Rank 1: Less than 0.1N/inch Rank 2: 0.1N/inch or more, less than 1.0N/inch Rank 3: 1.0N/inch or more and less than 4.0N/inch Rank 4: 4.0N/inch or more
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 上記結果に示されるように、本発明の封止用組成物は、比較例の封止用組成物に比べて、比誘電率の安定性及び密着性が良好であることが分かる。 As shown in the above results, it can be seen that the sealing composition of the present invention has better stability of dielectric constant and adhesion than the sealing composition of the comparative example.
 本発明は、比誘電率の安定性及び密着性が良好な電子デバイス封止膜が得られる電子デバイス封止用組成物、電子デバイス封止膜及び電子デバイス封止膜の形成方法に利用できる。 The present invention can be used for an electronic device encapsulation composition, an electronic device encapsulation film, and a method for forming an electronic device encapsulation film, which can provide an electronic device encapsulation film with good relative permittivity stability and adhesion.

Claims (13)

  1.  光重合性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物であって、
     前記光重合性モノマーとして、(メタ)アクリレートを含有し、
     窒素環境下で波長395nmの紫外線を1.5Jcm-2照射して硬化したとき、
     形成される電子デバイス封止膜の硬化率が、80%以上であり、かつ、当該電子デバイス封止膜の示差熱・熱重量同時測定装置(TG-DTA)による残渣率が、3%以上である電子デバイス封止用組成物。
    An electronic device encapsulation composition containing a photopolymerizable monomer and a photopolymerization initiator,
    The photopolymerizable monomer contains (meth)acrylate,
    When cured by irradiating 1.5 Jcm -2 of ultraviolet light with a wavelength of 395 nm in a nitrogen environment,
    The curing rate of the electronic device sealing film to be formed is 80% or more, and the residue rate of the electronic device sealing film as measured by a differential thermal/thermogravimetric simultaneous measurement apparatus (TG-DTA) is 3% or more. A composition for encapsulating an electronic device.
  2.  前記硬化率が、90%以上である請求項1に記載の電子デバイス封止用組成物。 The composition for encapsulating an electronic device according to claim 1, wherein the curing rate is 90% or more.
  3.  前記残渣率が、5%以上である請求項1に記載の電子デバイス封止用組成物。 The composition for encapsulating an electronic device according to claim 1, wherein the residue rate is 5% or more.
  4.  前記残渣率が、10%以上である請求項1に記載の電子デバイス封止用組成物。 The composition for encapsulating an electronic device according to claim 1, wherein the residue rate is 10% or more.
  5.  窒素環境下で波長395nmの紫外線を1.5Jcm-2照射して硬化したとき、形成される電子デバイス封止膜の比誘電率が、3.1以下である請求項1に記載の電子デバイス封止用組成物。 The electronic device sealing film according to claim 1, wherein the electronic device sealing film formed has a dielectric constant of 3.1 or less when cured by irradiating 1.5 Jcm −2 of ultraviolet light with a wavelength of 395 nm in a nitrogen environment. composition for stopping use.
  6.  前記電子デバイス封止用組成物に含有される前記光重合性モノマーの平均(メタ)アクリル基数が、1.3~1.5の範囲内である請求項1に記載の電子デバイス封止用組成物。 The composition for encapsulating an electronic device according to claim 1, wherein the average number of (meth)acrylic groups of the photopolymerizable monomer contained in the composition for encapsulating an electronic device is within the range of 1.3 to 1.5. thing.
  7.  前記電子デバイス封止用組成物に含有される前記光重合性モノマーのメタクリレート比率が、50~80%の範囲内である請求項1に記載の電子デバイス封止用組成物。 The composition for encapsulating an electronic device according to claim 1, wherein the methacrylate ratio of the photopolymerizable monomer contained in the composition for encapsulating an electronic device is within the range of 50 to 80%.
  8.  光重合性モノマー及び光重合開始剤を含有する電子デバイス封止用組成物を硬化して電子デバイスを封止する電子デバイス封止膜であって、
     前記光重合性モノマーとして、(メタ)アクリレートを含有し、
     前記電子デバイス封止膜の硬化率が、80%以上で、かつ、
     前記電子デバイス封止膜の示差熱・熱重量同時測定装置(TG-DTA)による残渣率が、3%以上である電子デバイス封止膜。
    An electronic device sealing film that seals an electronic device by curing an electronic device sealing composition containing a photopolymerizable monomer and a photopolymerization initiator,
    The photopolymerizable monomer contains (meth)acrylate,
    The curing rate of the electronic device sealing film is 80% or more, and
    The electronic device sealing film has a residue rate of 3% or more as measured by a differential thermal/thermogravimetric simultaneous measurement apparatus (TG-DTA).
  9.  電子デバイスを封止する電子デバイス封止膜であって、
     窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、
     請求項1から請求項7までのいずれか一項に記載の電子デバイス封止用組成物を用いた第2封止層と、を有する電子デバイス封止膜。
    An electronic device sealing film that seals an electronic device,
    a first sealing layer containing silicon nitride, silicon oxide or silicon oxynitride;
    An electronic device sealing film comprising: a second sealing layer using the electronic device sealing composition according to any one of claims 1 to 7.
  10.  前記第2封止層上に、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第3封止層を有する請求項9に記載の電子デバイス封止膜。 The electronic device sealing film according to claim 9, further comprising a third sealing layer containing silicon nitride, silicon oxide, or silicon oxynitride on the second sealing layer.
  11.  請求項1から請求項7までのいずれか一項に記載の電子デバイス封止用組成物を用いて、電子デバイス封止膜を形成する方法であって、
     電子デバイス上に気相法により第1封止層を形成する工程と、
     前記第1封止層上に前記電子デバイス封止用組成物を塗布することにより第2封止層を形成する工程と、を備える電子デバイス封止膜形成方法。
    A method of forming an electronic device sealing film using the electronic device sealing composition according to any one of claims 1 to 7, comprising:
    forming a first sealing layer on the electronic device by a vapor phase method;
    A method for forming an electronic device sealing film, comprising: forming a second sealing layer by applying the electronic device sealing composition on the first sealing layer.
  12.  前記第2封止層上に、気相法により第3封止層を形成する工程を備える請求項11に記載の電子デバイス封止膜形成方法。 The electronic device sealing film forming method according to claim 11, comprising the step of forming a third sealing layer on the second sealing layer by a vapor phase method.
  13.  インクジェット法により前記第2封止層を形成する請求項11に記載の電子デバイス封止膜形成方法。 The electronic device sealing film forming method according to claim 11, wherein the second sealing layer is formed by an inkjet method.
PCT/JP2023/027749 2022-07-29 2023-07-28 Electronic device sealing composition, electronic device sealing film, and method for forming electronic device sealing film WO2024024942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022121154 2022-07-29
JP2022-121154 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024942A1 true WO2024024942A1 (en) 2024-02-01

Family

ID=89706650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027749 WO2024024942A1 (en) 2022-07-29 2023-07-28 Electronic device sealing composition, electronic device sealing film, and method for forming electronic device sealing film

Country Status (1)

Country Link
WO (1) WO2024024942A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140003A (en) * 2018-02-13 2019-08-22 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, organic EL light emitting device manufacturing method, and organic EL light emitting device
JP2021128938A (en) * 2020-02-13 2021-09-02 三星エスディアイ株式会社Samsung SDI Co., Ltd. Composition for sealing organic light-emitting element, and organic light-emitting element display device including organic layer formed from the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140003A (en) * 2018-02-13 2019-08-22 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, organic EL light emitting device manufacturing method, and organic EL light emitting device
JP2021128938A (en) * 2020-02-13 2021-09-02 三星エスディアイ株式会社Samsung SDI Co., Ltd. Composition for sealing organic light-emitting element, and organic light-emitting element display device including organic layer formed from the same

Similar Documents

Publication Publication Date Title
JP5888329B2 (en) Gas barrier film, method for producing gas barrier film, and electronic device
CN107851730B (en) Organic light emitting display
JPWO2018051732A1 (en) Ink composition and organic electroluminescent device using the same
TWI618238B (en) Organic light emitting diode display apparatus
JP2009095989A (en) Gas barrier film and environmental susceptible device
TW201625729A (en) Composition for encapsulating display and display apparatus comprising the same
JP2008087163A (en) Gas barrier laminated film and image display element using it
JP2013067146A (en) Barrier laminate, gas-barrier film, and device using barrier laminate and gas-barrier film
JP2020076052A (en) Ultraviolet-curable resin composition, organic el light-emitting device production method, organic el light-emitting device, and touch panel
JP5620852B2 (en) Barrier laminate and method for producing barrier laminate
TW201806773A (en) Gas barrier film, organic electronic device, substrate for organic electroluminescent devices, and organic electroluminescent device
WO2022039019A1 (en) Composition for electronic device sealing, method for forming electronic device sealing film, and electronic device sealing film
JP2016503825A (en) Device comprising a photocurable composition and a barrier layer formed from said composition
KR20140004906A (en) Photocurable composition and optical member comprising protective layer prepared from the same
TW201441051A (en) Gasbarrier film and producing method thereof
JP4164885B2 (en) Organic electroluminescent device and manufacturing method thereof
JP5724298B2 (en) Method for producing gas barrier film and method for forming gas barrier layer
WO2024024942A1 (en) Electronic device sealing composition, electronic device sealing film, and method for forming electronic device sealing film
JP5664828B2 (en) Insulating film and organic thin film transistor using the same
WO2024024841A1 (en) Composition for electronic device sealing, electronic device sealing film, and method for forming electronic device sealing film
WO2024024836A1 (en) Composition for encapsulating electronic device, electronic device encapsulation film, and method for forming electronic device encapsulation film
JP2011201097A (en) Gas barrier film, gas barrier layer, device and method of manufacturing gas barrier film
JP5107078B2 (en) Barrier laminate, barrier film substrate, device, and method for producing barrier laminate
WO2023032372A1 (en) Electronic device sealing composition, electronic device sealing film forming method, and electronic device sealing film
JP2018147699A (en) Photocurable composition for barrier property laminate designed for organic el device, and method for manufacturing barrier property laminate designed for organic el device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846672

Country of ref document: EP

Kind code of ref document: A1