WO2024024745A1 - Measuring device, light receiver, and light emitter - Google Patents

Measuring device, light receiver, and light emitter Download PDF

Info

Publication number
WO2024024745A1
WO2024024745A1 PCT/JP2023/027061 JP2023027061W WO2024024745A1 WO 2024024745 A1 WO2024024745 A1 WO 2024024745A1 JP 2023027061 W JP2023027061 W JP 2023027061W WO 2024024745 A1 WO2024024745 A1 WO 2024024745A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
viewing range
reflected light
entrance surface
diffraction grating
Prior art date
Application number
PCT/JP2023/027061
Other languages
French (fr)
Japanese (ja)
Inventor
和也 本橋
喜 吉村
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022120204A external-priority patent/JP2024017518A/en
Priority claimed from JP2022120205A external-priority patent/JP2024017519A/en
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2024024745A1 publication Critical patent/WO2024024745A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar

Definitions

  • the present disclosure relates to a measuring device, a light receiver, and a light projector, and particularly relates to a technique for expanding the viewing range of a measuring device.
  • LiDAR Development/research on light detection and ranging is progressing.
  • LiDAR includes a light projector that projects (irradiates) a laser beam onto a measurement target, and a light receiver that receives reflected light that is reflected by the laser light and returns to the measurement target.
  • LiDAR provides information about a measurement target by measuring the distance to the measurement target based on the difference between the timing at which a light projector emits a laser beam and the timing at which a light receiver receives reflected light.
  • Patent Document 1 describes a LiDAR system configured for implementation in a vehicle.
  • a LiDAR system includes multiple light emitters (such as Vertical Cavity Surface Emitting Laser (VCSEL) devices) that generate multiple optical beams.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • a LiDAR system has a first lens that focuses a plurality of optical beams into a focused optical beam having a beam waist, and a second lens that projects the focused optical beam onto a target area.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • Flash LiDAR uses a method in which a projector diffuses and irradiates laser light over a viewing range. Flash LiDAR does not include mechanical components such as motors or MEMS (Micro Electro Mechanical Systems), so it is attracting attention as a promising candidate for LiDAR in fields where durability is required, such as when used for automotive purposes. There is.
  • the field of view (FOV: viewing angle, beam profile, light distribution size) of the flash LiDAR receiver and emitter is determined by the size (area) of the light receiver and emitter and the optical system (receiving optical system, light emitter). It is determined by the focal length of the optical system). For this reason, when applying flash LiDAR to an individual system such as a ranging sensor for a vehicle, it is necessary to configure the system so that the field of view satisfies the specifications required by the system to which it is applied.
  • the present disclosure has been made in view of this background, and aims to provide a measuring device, a light projector, and a light receiver that can flexibly respond to specifications required by the system to which the system is applied.
  • One aspect of the present disclosure is a measuring device that includes a light projector and a light receiver that receives reflected light generated by the light projector projecting light toward a viewing range, and the light receiver includes a light receiving section and a light receiving section. , a transmission type diffraction grating, wherein the first reflected light from the first viewing range enters the light receiving section as a first order diffracted light, and the first reflected light from the first viewing range enters the light receiving section, The second reflected light from the second visual field lined up is incident on the light receiving section as second order diffracted light.
  • a measuring device including a light projector and a light receiver that receives reflected light generated by the projector projecting light toward a viewing range
  • the projector includes a light emitting section. and a transmission type diffraction grating, the diffraction grating emits first-order diffracted light generated when light from the light emitting section passes through the diffraction grating toward a first viewing range.
  • the second-order diffracted light generated when the light passes through the diffraction grating is emitted toward a second viewing range that is aligned with the first viewing range.
  • a measurement device including a light projector and a light receiver that receives reflected light generated by the light projector projecting light toward a viewing range, and the light receiver receives light. and a transmissive optical element, the optical element having a first incident surface on which the first reflected light from the first viewing range is incident, and a transmissive optical element that is continuous with the first incident surface.
  • the first incident surface is inclined with respect to the first incident surface with a boundary line with the first incident surface as a fold line.
  • a measuring device including a light projector and a light receiver that receives reflected light generated by the projector projecting light toward a viewing range
  • the projector includes a light emitting section. and a transmissive optical element, wherein the optical element includes an incident surface on which light from the light emitting section is incident, and a first surface that emits the light incident on the incident surface toward a first viewing range. and a second exit surface that outputs the light incident on the entrance surface toward a second viewing range, the entrance surface, the first exit surface, and the second exit surface. All of the output surfaces are flat surfaces, and the second output surface is inclined with respect to the first output surface with a boundary line with the second output surface as a fold.
  • a measuring device a light projector, and a light receiver that can flexibly respond to specifications required by the system to which the system is applied.
  • FIG. 1 is a diagram showing a schematic configuration of a measuring device.
  • FIG. 2A is a diagram illustrating the relationship between the light receiving section, the light receiving optical system, and the viewing range.
  • FIG. 2B is a diagram illustrating the relationship between the light emitting unit, the projection optical system, and the viewing range.
  • FIG. 3 is a diagram illustrating the relationship between the light receiver and the viewing range when a diffraction grating is used in the light receiving optical system according to the first embodiment.
  • FIG. 4A is a diagram illustrating one aspect of the configuration of a measuring device that distinguishes from which viewing range the reflected light comes.
  • FIG. 4B is a diagram showing one aspect of the arrangement of diffraction gratings.
  • FIG. 1 is a diagram showing a schematic configuration of a measuring device.
  • FIG. 2A is a diagram illustrating the relationship between the light receiving section, the light receiving optical system, and the viewing range.
  • FIG. 2B is a diagram illustrating the relationship between the
  • FIG. 5A is a diagram showing the relationship between the visual field range and the received light image in the configuration shown in FIG. 4A.
  • FIG. 5B is a diagram showing the relationship between the viewing range and the received light image when the direction in which the slits of the diffraction grating are arranged is not rotated around the optical axis.
  • FIG. 6 is a diagram illustrating parameters that determine the characteristics of the diffraction grating.
  • FIG. 7 is a diagram illustrating the relationship between the projector and the viewing range when a diffraction grating is used in the projecting optical system according to the second embodiment.
  • FIG. 8 is a diagram illustrating the relationship between the light receiver and the viewing range according to the third embodiment.
  • FIG. 9A is an external perspective view of an optical element applied to the light receiver of FIG. 8.
  • FIG. 9B is a side view of an optical element applied to the light receiver of FIG. 8.
  • FIG. 10A is a diagram illustrating one aspect of the configuration of a measuring device that distinguishes from which viewing range the reflected light comes from.
  • FIG. 10B is an external perspective view of the optical element used in the configuration of FIG. 10A.
  • FIG. 11 is a diagram illustrating the relationship between the projector and the viewing range according to the fourth embodiment.
  • FIG. 12A is an external perspective view of an optical element applied to the projector of FIG. 11.
  • FIG. 12B is a side view of an optical element applied to the projector of FIG. 11.
  • FIG. 1 shows a schematic configuration (block diagram) of a measuring device 100 as an embodiment of the present disclosure.
  • the measuring device 100 includes a light projector that projects (irradiates) light (irradiation light, light beam (laser light)) onto a measurement target, and a reflected light (return light) that reflects the projected light onto the measurement target and returns to the measurement target. ), and functions as a flash LiDAR (Flash Light Detection and Ranging).
  • the measuring device 100 measures the difference between the timing at which the projector emits the projected light and the timing at which the receiver receives the reflected light (the flight time of the laser beam, hereinafter referred to as "TOF" (Time Of Flight)). to obtain information about the measurement target.
  • TOF Time Of Flight
  • the measuring device 100 is installed, for example, in a vehicle in which AD (Autonomous Driving) or ADAS (Advanced Driver Assistance System) is installed.
  • AD Autonomous Driving
  • ADAS Advanced Driver Assistance System
  • the measuring device 100 assists in detecting people, other vehicles, and objects while the vehicle is running, as well as ensuring the safety of the vehicle driver and those around the vehicle.
  • the illustrated measurement device 100 includes a light emitting section 11, a light projection control device 112, a current source 113, a light projection optical system 14, a light receiving optical system 15, a light receiving section 16, a TOF measurement device 117, and a calculation device. 150, and a communication I/F 160 (I/F:Interface).
  • the light emitting section 11, the light projection control device 112, the current source 113, and the light projection optical system 14 constitute a light projector
  • the light receiving optical system 15 and the light receiving section 16 constitute a light receiver.
  • the light emitting unit 11 constituting the floodlight includes one or more light emitting elements or one or more light emitting element arrays (for example, light emitting elements arranged in a linear (one-dimensional) or planar (two-dimensional) manner. ).
  • the light emitting element include a laser diode, a surface emitting type laser emitting element (e.g., VCSEL (Vertical Cavity Surface Emitting Laser), hereinafter referred to as a "surface emitting element”), and a plurality of surface emitting elements that are one-dimensional.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • it is a surface emitting element array (for example, a VCSEL array) arranged two-dimensionally on a substrate (semiconductor substrate, ceramic substrate, etc.).
  • the light projection control device 112 generates a control signal for a current source 113 that supplies a drive current for a light emitting element constituting the light emitting unit 11 and inputs the control signal to the current source 113, so that the control signal is supplied from the current source 113 to the light emitting element. Controls the current (drive current).
  • the light projection control device 112 inputs to the TOF measuring device 117 a signal indicating the timing at which the light emitting element emits light (the timing at which the projected light is emitted from the light emitting element; hereinafter referred to as "light projection timing").
  • the light projection control device 112 controls the light emitting elements to periodically and repeatedly turn on and off a current flowing through each of the light emitting elements, for example, thereby causing the light emitting elements to periodically and repeatedly emit light.
  • the current source 113 supplies a current to the light emitting element according to a control signal input from the light projection control device 112.
  • the current source 113 supplies, for example, a periodic square wave current to the light emitting elements to turn on and off the current flowing through each of the light emitting elements.
  • the light projection optical system 14 adjusts the light distribution of the projected light by, for example, applying an optical effect (refraction, scattering, diffraction, etc.) to the projected light emitted from the light emitting unit 11.
  • the light projection optical system 14 is configured using, for example, various lenses such as a collimating lens, optical components such as a reflecting mirror (mirror), and the like.
  • the light-receiving optical system 15 collects reflected light (return light), which is the light projected by the light projector and reflected by the measurement object 50 or the like, onto the light-receiving section 16 .
  • the light receiving optical system 15 is configured using optical components such as various lenses such as a condenser lens, various filters such as a wavelength filter, and a reflecting mirror.
  • the light receiving section 16 includes one or more light receiving elements (a plurality of light receiving elements), or one or more light receiving element arrays (for example, light receiving elements are arranged in a linear (one-dimensional) or planar (two-dimensional) manner. It is composed of The above light receiving element is, for example, a photodiode, a SPAD (Single Photon Avalanche Diode), a balanced photodetector, or the like.
  • the light receiving unit 16 photoelectrically converts the reflected light incident from the light receiving optical system 15 to generate a current (hereinafter referred to as "light receiving current") according to the intensity of the reflected light.
  • the light receiving section 16 performs TOF measurement of a signal indicating the timing at which each light receiving element constituting the light receiving section 16 receives reflected light (hereinafter referred to as "light receiving timing") and the light receiving current generated by each light receiving element. input to device 117;
  • the TOF measurement device 117 determines the TOF based on the signal indicating the light emission timing inputted from the light emission control device 112 and the signal indicating the light reception timing inputted from the light receiving section 16.
  • the TOF measurement device 117 is configured using, for example, a time measurement IC (Integrated Circuit) equipped with a TDC (Time to Digital Converter) circuit.
  • the TOF measuring device 117 inputs the determined TOF and the light receiving current input from the light receiving section 16 to the arithmetic device 150.
  • the arithmetic unit 150 is configured using a processor (CPU (Central Processing Unit), MPU (Micro Processing Unit), ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), etc.). Ru.
  • the arithmetic unit 150 generates information used for various measurements such as detection of the measurement target 50 and distance measurement based on the light reception current and TOF input from the TOF measurement device 117.
  • the above information includes, for example, a histogram used in the Time Correlated Single Photon Counting method, distances to each point of the measurement target 50, and a point cloud (point cloud information). etc.
  • the arithmetic device 150 controls the light projection control device 112 and the light receiving section 16.
  • the arithmetic unit 150 controls the above-mentioned light projection timing and light reception timing, for example, by controlling the light projection control device 112 and the light receiving unit 16, so that the processing related to histogram generation is sped up or optimized. .
  • the information generated by the arithmetic device 150 is provided (transmitted) via the communication I/F 160 to devices that use the information (hereinafter referred to as "various usage devices 40").
  • the various utilization devices 40 for example, create an environmental map using a point cloud, self-position estimation (SLAM (Simultaneous Localization and Mapping)) using a scan matching algorithm (NDT (Normal Distribution Transform), ICP (Iterative Closest Point), etc.) etc.
  • SLAM Simultaneous Localization and Mapping
  • NDT Normal Distribution Transform
  • ICP Iterative Closest Point
  • FIG. 2A is a schematic diagram illustrating the relationship between the light receiving section 16, the light receiving optical system 15, and the viewing range 51.
  • the viewing range 51 is determined by the size (shape, size, light-receiving area) of the light-receiving region of the light-receiving section 16 and the focal length of the light-receiving optical system 15.
  • FIG. 2B is a schematic diagram illustrating the relationship between the light emitting unit 11, the light projection optical system 14, and the viewing range 51.
  • the viewing range 51 is determined by the size (shape, size, light receiving area) of the light emitting region of the light emitting unit 11 and the focal length of the light projecting optical system 14.
  • the size of the viewing range 51 is restricted by the size of the light receiving section 16 and the size of the light emitting section 11. Therefore, the viewing range when using ready-made products as the light receiving section 16 and the light emitting section 11, for example, does not necessarily match the purpose or application of the system to which the measuring device 100 is applied. Furthermore, depending on the purpose and application of the measuring device 100, there is a need to increase measurement accuracy in a specific visual field range compared to other visual field ranges. For example, when flash LiDAR is applied to AD or ADAS, there is a need to improve measurement accuracy in a specific field of view such as far away from oncoming traffic. It is necessary to respond flexibly to these needs.
  • a diffraction grating (diffractive optical element) is used as an element of the light receiving optical system 15 of the light receiver or the light emitting optical system 14 of the light projector, thereby meeting the above-mentioned needs. I'm trying. The specific configuration will be explained below.
  • FIG. 3 shows a light receiver and a viewing range 51 of the light receiver (a first viewing range aligned in the +x direction in the figure) when a diffraction grating (diffraction optical element) is used in the light receiving optical system 15 of the light receiver. 51a, a second viewing range 51b, and a third viewing range 51c).
  • the elements of the light receiver are depicted as viewed from a direction perpendicular to the optical axis of the light-receiving section 16 (viewed from the +y side).
  • the viewing range 51 is depicted as a view viewed from the direction of the optical axis (a view viewed from the -z side).
  • the arrows shown in the figure indicate the direction in which the projector projects light toward each viewing range 51 (first viewing range 51a, second viewing range 51b, third viewing range 51c), which enters the receiver from each viewing range. Represents reflected light caused by light. In this figure, the size of the light receiver is exaggerated.
  • the light-receiving optical system 15 includes a diffraction grating 151 on whose surface minute irregularities on the order of a wavelength are periodically formed, and other optical systems 152 (various lenses, various filters, etc.).
  • the diffraction grating 151 is a transmission phase grating.
  • the reflected light that enters the diffraction grating 151 from the first viewing range 51a (hereinafter referred to as "first reflected light”) is +1st order diffracted light (first order diffracted light).
  • the light enters another optical system 152 as light).
  • the reflected light that enters the diffraction grating 151 from the second viewing range 51b adjacent to the first viewing range 51a (hereinafter referred to as "second reflected light”) is the 0th order diffracted light (second order is incident on another optical system 152 as diffracted light).
  • the reflected light (hereinafter referred to as "third reflected light”) that enters the diffraction grating 151 from the third viewing range 51c adjacent to the second viewing range 51b is -1st order diffracted light (third The light is incident on another optical system 152 as diffracted light of the second order. Then, each reflected light (first reflected light, second reflected light, and third reflected light) that has entered the other optical system 152 is focused on the light receiving section 16.
  • each viewing range 51 (first viewing range 51a, second viewing range 51b, third viewing range 51c) can be reduced. Both can be focused on the light receiving section 16. Therefore, the field of view (FOV) of the light receiver can be expanded without expanding the light receiving area of the light receiving section 16 (without increasing the number of light receiving elements).
  • the reflected light (diffraction light) from each viewing range 51 is The light will be incident on the same light receiving element of the light receiving section 16. Therefore, when implemented in the measuring device 100, some kind of mechanism is required to distinguish from which viewing range 51 the reflected light is received.
  • the above mechanism projects light from the projector to each viewing range 51 (first viewing range 51a, second viewing range 51b, third viewing range 51c) at different timings for each viewing range 51.
  • the arithmetic unit 150 controls the light projection control device 112 so that light is projected from the light projector at different timings for each viewing range 51, and the light receiving element of the light receiving unit 16 receives reflected light. Based on the timing, it is determined which viewing range 51 the reflected light comes from (hereinafter referred to as the "first method").
  • the projector illuminates a part of each viewing range 51 (a part of the first viewing range 51a, a part of the first viewing range 51a where the light does not enter the same light-receiving element, (a partial area of the second visual field range 51b and a partial area of the third visual field range 51c), and the light may be emitted simultaneously for each selected area (hereinafter referred to as the "second method").
  • the second method since light can be received simultaneously for each of the above viewing ranges 51, all the viewing ranges 51 (the first viewing range 51a, the second viewing range 51b, the third viewing range 51c) can reduce the time required for light projection (scan speed).
  • the projector simultaneously projects light onto a band-shaped region 55 spanning a first viewing range 51a, a second viewing range 51b, and a third viewing range 51c.
  • FIG. 4B the direction in which the slits 1511 of the diffraction grating 151 (one unit of the grating (FIG. 6) consisting of convex portions and concave portions) is aligned with the extension of the above-mentioned band-shaped region 55 is shown in FIG.
  • the diffraction grating 151 may be arranged in a positional relationship rotated by a predetermined angle ⁇ around the optical axis (Z axis in FIG. 4B) with respect to the direction (hereinafter referred to as the "third method"). ).
  • the thickness (distance (width) in the y direction in the figure) of the above-mentioned strip-shaped area 55 is set so that the reflected light from different viewing ranges 51 does not enter the light receiving section 16 at the same time. (in the example shown in the figure, the amount of deviation (step difference) in the y direction of adjacent viewing ranges 51).
  • FIG. 5A is an example of the visual field range 51 and an image of reflected light focused on the light receiving section 16 (light-receiving image) when the third method is adopted. As shown in the figure, reflected light from each viewing range 51 (+1st order diffracted light, 0th order diffracted light, -1st order diffracted light) is focused on different light receiving elements of the light receiving section 16.
  • the optical axis of the diffraction grating 151 is made to coincide with the extending direction of the strip-shaped region 55, as shown in FIG. (reflected light from the strip-shaped area 55 of each viewing range 51) overlaps and is condensed at the same time.
  • light can be emitted and received at the same time for the strip-shaped area 55 extending from the first viewing range 51a to the third viewing range 51c, and the light projection for the entire viewing range 51 can be performed.
  • the time (scanning speed) can be shortened.
  • the field of view (FOV) of the light receiver can be improved without expanding the light-receiving area of the light-receiving section 16 (without increasing the number of light-receiving elements). can be easily extended from the first viewing range 51a to the third viewing range 51c.
  • M ⁇ d ⁇ sin ⁇ ...Formula 1 Therefore, by selecting the grating pitch d and the wavelength ⁇ of the incident light, the field of view (FOV) of the light receiver can be adjusted.
  • the diffraction angle ⁇ of the diffraction grating 151 is set to 40° (the viewing angle of the first viewing range 51a is +20° to +60°, and the viewing angle of the second viewing range 51b is 40°).
  • the grating pitch d may be set to 1.4 ⁇ m.
  • FIG. 6 is a diagram illustrating parameters that determine the characteristics of the diffraction grating 151.
  • the diffraction efficiency (transmittance) of the diffraction grating 151 is determined by the grating density shown in the figure (the proportion occupied by the convex portions 1511a in the slits 1511) and the height of the convex portions 1511a. Therefore, by adjusting these values, each reflected light (+1st order diffracted light, 0 It is possible to adjust the diffraction efficiency (the amount of reflected light incident on the light receiving section 16) of the next diffracted light (-1st order diffracted light).
  • the amount of diffracted light when the height of the convex portion 1511a is 0.905 ⁇ m and the grating density is 0.65 is, assuming that the amount of incident light is 100%.
  • the amount of +1st order diffracted light is 31.1%
  • the amount of 0th order diffracted light is 33.1%
  • the amount of ⁇ 1st order diffracted light is 31.3%.
  • the viewing range 51 (light receiving range) of the light receiver can be adjusted to the viewing range required by the system to which it is applied.
  • the values of parameters such as the refractive index, grating density, and height of the convex portion 1511a of the diffraction grating 151, each diffracted light (+1st order diffracted light, 0th order diffracted light) emitted from the diffraction grating 151 can be adjusted.
  • -1st order diffracted light can be adjusted.
  • the measuring device 100 of this embodiment can flexibly respond to the specifications required by the system to which it is applied.
  • FIG. 7 shows a light projector and a field of view of the light projector when a diffraction grating 141 having the same configuration as the diffraction grating 151 used in the light receiving optical system 15 described above is used in the light projecting optical system 14 of the light projector of the measuring device 100.
  • 51 light projection range
  • 51a first viewing range 51a, second viewing range 51b, third viewing range 51c.
  • the elements of the light projector (light projecting optical system 14 and light emitting section 11) are depicted as viewed from a direction perpendicular to the optical axis of the light emitting section 11 (viewed from the +y side).
  • each viewing range 51 is depicted as a view viewed from the direction of the optical axis (a view viewed from the -z side).
  • the arrows shown in the figure represent the correspondence between each diffracted light beam emitted from the projector and each viewing range 51 (first viewing range 51a, second viewing range 51b, third viewing range 51c).
  • the size of the projector is exaggerated.
  • the light projection optical system 14 includes a diffraction grating 141 and other optical systems 142 (various lenses, various filters, etc.). As shown in the figure, the light emitted from the light emitting unit 11 passes through another optical system 142 and enters the diffraction grating 141, and as a result, the +1st-order light is directed from the diffraction grating 141 toward the first viewing range 51a. Diffracted light, 0th-order diffracted light toward the second viewing range 51b, and -1st-order diffracted light toward the third viewing range 51c are emitted.
  • the field of view (FOV) of the light projector can be increased without expanding the light emitting area of the light emitting unit 11 (without increasing the number of light emitting elements). , can be easily extended to a range from the first visual field range 51a to the third visual field range 51c.
  • the viewing range 51 of the projector can be adjusted by selecting the grating pitch d of the diffraction grating 141 and the wavelength ⁇ of the incident light.
  • the values of parameters such as the refractive index, grating density, and height of the convex portion of the diffraction grating 141, each diffracted light (+1st-order diffracted light, 0th-order diffracted light, -1st-order diffracted light) ) can be adjusted. Therefore, it is possible to flexibly respond to the specifications required by the system to which the measuring device 100 is applied.
  • a diffraction grating (diffraction optical element) is used as an element of the light receiving optical system 15 of the light receiver.
  • a diffraction grating (diffraction optical element) is used as an element of the light projection optical system 14 of the light projector.
  • the above-mentioned needs are met by using an optical element having a prism structure as an element of the light receiving optical system 15B of the light receiver or the light projecting optical system 14B of the light emitter. We are taking measures. The specific configuration will be explained below.
  • FIG. 8 shows a light receiver and a viewing range 51 of the light receiver (a first viewing range lined up in the + 51a, a second viewing range 51b, and a third viewing range 51c).
  • the same components as those shown in FIG. 3 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the light receiving optical system 15B includes an optical element 151B having a prism structure and other optical systems 152 (various lenses, various filters, etc.).
  • FIG. 9A shows an external perspective view of the optical element 151B.
  • the optical element 151B has a first entrance surface 151a, a second entrance surface 151b, and a third entrance surface 151c.
  • the first incident surface 151a is formed on the upper surface side (+z side in the figure) of the optical element 151B, and the first reflected light from the first viewing range 51a is incident on the first incident surface 151a.
  • the second incident surface 151b is formed continuously to the first incident surface 151a, and the second reflected light from the second visual field range 51b continuous to the first visual field range 51a is reflected from the second incident surface 151b. incident on .
  • the third entrance surface 151c is formed continuously to the second entrance surface 151b, and the third reflected light from the third viewing range 51c that is continuous to the second viewing range 51b is reflected from the third entrance surface 151c. incident on .
  • the optical element 151B receives the refracted light of the first reflected light, the transmitted light of the second reflected light, and the refracted light of the third reflected light on the lower surface side (-z side in the figure) of the optical element 151B. It has an output surface 151o that outputs light to the portion 16.
  • the first entrance surface 151a, the second entrance surface 151b, the third entrance surface 151c, and the exit surface 151o are all flat surfaces.
  • FIG. 9B is a side view of the optical element 151B viewed from the +y side of FIG. 9A.
  • the second entrance surface 151b is parallel to the exit surface 151o.
  • the first entrance surface 151a is inclined toward the +z side at an inclination angle ⁇ 1 with respect to the second entrance surface 151b, with the first boundary line 1511B between the second entrance surface 151b and the second entrance surface 151b as a fold.
  • a prism structure is formed on one end side (-x side).
  • the third entrance surface 151c is inclined toward the +z side at an inclination angle ⁇ 2 with the second boundary line 1512 between the second entrance surface 151b and the second entrance surface 151b as a fold line.
  • a prism structure is formed on the other end side (+x side) of 151B.
  • the optical axis of the optical element 151B (a line passing through the center line of the second entrance surface 151b and perpendicular to the exit surface 151o (normal to the exit surface 151o),
  • the optical axis 1515 is arranged to coincide with the optical axes of the other optical system 152 and the light receiving section 16 .
  • the first reflected light from the first viewing range 51a enters the first incident surface 151a of the optical element 151B and is refracted, and then exits from the exit surface 151o and is transmitted to other optical devices.
  • the light passes through the system 152 and is focused on the light receiving section 16 .
  • the second reflected light from the second viewing range 51b enters the second entrance surface 151b of the optical element 151B, then exits from the exit surface 151o, passes through another optical system 152, and enters the light receiving section 16. The light is focused.
  • the third reflected light from the third viewing range 51c enters the third entrance surface 151c of the optical element 151B and is refracted, then exits from the exit surface 151o, passes through another optical system 152, and is received. The light is focused on the portion 16.
  • each viewing range 51 (first viewing range 51a, second viewing range 51b, third viewing range 51c) can be reduced. Both can be focused on the light receiving section 16. Therefore, the field of view (FOV) of the light receiver can be expanded without expanding the light receiving area of the light receiving section 16 (without increasing the number of light receiving elements).
  • each viewing range 51 (the first viewing range 51a, the second viewing range 51b, and the third viewing range 51c) is reflected from the light receiving unit 16.
  • the light will be incident on the same light-receiving element. Therefore, when implemented in the measuring device 100B, some kind of mechanism is required to distinguish from which viewing range 51 the reflected light is received.
  • the above mechanism may use, for example, the first method and the second method described above.
  • the projector simultaneously projects light onto a band-shaped region 55 spanning a first viewing range 51a, a second viewing range 51b, and a third viewing range 51c.
  • the first entrance surface 151a is further inclined with respect to the second entrance surface 151b at an inclination angle ⁇ 1 along the first boundary line 1511B.
  • the third entrance surface 151c is further separated from the first entrance surface 151a along the second boundary line 1512 with respect to the second entrance surface 151b. It is tilted in the opposite direction at an angle of inclination ⁇ 2 (hereinafter referred to as the "fourth method").
  • the first entrance surface 151a may be tilted by rotating around an axis 1516a parallel to the x-axis set within the plane of the first entrance surface 151a, or It may also be tilted by rotating about an axis 1517a extending in the direction.
  • the third entrance surface 151c may be tilted by rotating around an axis 1516b parallel to the x-axis set within the plane of the third entrance surface 151c, or may be tilted in the same direction as the x-axis. It may be tilted by rotating about the extending axis 1517b.
  • an example of the visual field range 51 and the image (received light image) of the reflected light focused on the light receiving section 16 is the same as that in FIG. 5A. As shown in the figure, the reflected light from each viewing range 51 is focused on different light receiving elements of the light receiving section 16.
  • light can be emitted and received simultaneously for the strip-shaped area 55 extending from the first viewing range 51a to the third viewing range 51c, and the light projection for the entire viewing range 51 can be performed.
  • the time (scanning speed) can be shortened.
  • the light-receiving area of the light-receiving section 16 can be expanded (without increasing the number of light-receiving elements).
  • the field of view (FOV) can be easily expanded from the first field of view 51a to the third field of view 51c.
  • the light receiving range first viewing range 51a and third viewing range 51c
  • FIG. 11 shows a light projector and a field of view range 51 (light projection range)
  • FIG. 4 is a diagram illustrating the relationship between a first visual range 51a, a second visual range 51b, and a third visual range 51c).
  • the same components as those shown in FIG. 7 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the arrows shown in the figure represent the correspondence between the light emitted from the optical element 141B and each viewing range 51 (first viewing range 51a, second viewing range 51b, and third viewing range 51c).
  • the light projection optical system 14B includes an optical element 141B having a prism structure and other optical systems 142 (various lenses, various filters, etc.).
  • FIG. 12A shows an external perspective view of the optical element 141B.
  • the optical element 141B has an entrance surface 141i on the lower surface side (-z side in the figure) of the optical element 141B, into which light from the light emitting section 11 enters.
  • the optical element 141B has a first output surface 141a, a second output surface 141b, and a third output surface 141c.
  • the first output surface 141a outputs the light incident on the input surface 141i from the light emitting section 11 toward the first viewing range 51a toward the upper surface side (+z side in the figure) of the optical element 141B.
  • the second output surface 141b is formed continuously from the first output surface 141a, and outputs the light that is incident on the input surface 141i from the light emitting section 11 toward the second viewing range 51b.
  • the third output surface 141c is formed continuously with the second output surface 141b, and outputs the light that is incident on the input surface 141i from the light emitting section 11 toward the third viewing range 51c.
  • the entrance surface 141i, the first exit surface 141a, the second exit surface 141b, and the third exit surface 141c are all flat surfaces.
  • FIG. 12B is a side view of the optical element 141B viewed from the ⁇ y side of FIG. 9A.
  • the entrance surface 141i is parallel to the second exit surface 141b.
  • the first exit surface 141a is inclined toward the +z side at an inclination angle ⁇ 1 with respect to the second exit surface 141b, with the first boundary line 1411 between the second exit surface 141b and the second exit surface 141b as a fold.
  • a prism structure is formed on one end side (-x side).
  • the third exit surface 141c is inclined toward the +z side at an inclination angle ⁇ 2 with the second boundary line 1412 between the second exit surface 141b and the second exit surface 141b as a fold line, thereby increasing the angle of the optical element 141B.
  • a prism structure is formed on the other end side (+x side).
  • the optical element 141B has an optical axis (a line passing through the center line of the second exit surface 141b and perpendicular to the entrance surface 141i (normal to the entrance surface 141i, denoted by the reference numeral in FIG. 12B).
  • the optical axis 1415) is arranged to coincide with the optical axes of the other optical system 142 and the light emitting section 11.
  • the light emitted from the light emitting section 11 passes through another optical system 142 and enters the optical element 141B.
  • the first transmitted light is refracted at the first output surface 141a and goes to the first viewing range 51a
  • the first transmitted light is transmitted through the second output surface 141b and goes to the second viewing range 51b.
  • the second transmitted light and the third transmitted light that is refracted by the third output surface 141c and directed toward the third viewing range 51c are emitted.
  • the field of view (FOV) of the light emitter can be increased without expanding the light emitting area of the light emitting unit 11 (without increasing the number of light emitting elements).
  • the light projection range can be adjusted to meet the specifications required by the system to which the measuring device 100B is applied. Able to respond flexibly.
  • the case where there are three viewing ranges (light emitting range, light receiving range) (the first viewing range 51a, the second viewing range 51b, and the third viewing range 51c) has been described as an example.
  • the disclosure can also be applied to cases where there are two viewing ranges or four or more viewing ranges.
  • the configurations of the emitter and the light receiver described above include both of these. It may be applied to the measuring device 100, or only one of them may be applied.
  • the viewing range was expanded by using diffracted light of three different orders (+1st order, 0th order, -1st order) of the diffraction grating, but it is possible to expand the viewing range by using diffracted light of orders other than these.
  • the viewing range may be expanded.
  • the configurations of the light emitter and the light receiver described above include both of these. It may be applied to the measuring device 100B, or only one of them may be applied.

Abstract

A measuring device (100) comprises a light emitter, and a light receiver for receiving reflected light generated as a result of the emission of light toward a field of view by the light emitter. The light receiver includes a light receiving unit (16) and a transmission-type diffraction grating (151). The diffraction grating (151) is disposed such that first reflected light from a first field of view (51a) is incident on the light receiving unit (16) as diffracted light of a first order, and second reflected light from a separate second field of view (51b) aligned side-by-side with the first field of view (51a) is incident on the receiving unit (16) as diffracted light of a second order.

Description

測定装置、受光器、及び投光器Measuring device, receiver, and emitter
 本開示は、測定装置、受光器、及び投光器に関し、とくに測定装置の視野範囲を拡張する技術に関する。 The present disclosure relates to a measuring device, a light receiver, and a light projector, and particularly relates to a technique for expanding the viewing range of a measuring device.
 AD(Autonomous Driving:自動運転)やADAS(Advanced Driver Assistance System:先進運転支援システム)の進展に伴い、車両の走行時における周囲環境の把握や自己位置推定に用いる測定装置の一つとして、LiDAR(Light Detection and Ranging)の開発/研究が進められている。LiDARは、測定対象にレーザ光を投光(照射)する投光器と、レーザ光が測定対象に反射して戻ってくる反射光を受光する受光器とを備える。LiDARは、投光器がレーザ光を出射したタイミングと受光器が反射光を受光したタイミングとの差に基づき測定対象までの距離を測定することにより測定対象に関する情報を提供する。 With the progress of AD (Autonomous Driving) and ADAS (Advanced Driver Assistance System), LiDAR ( Development/research on light detection and ranging is progressing. LiDAR includes a light projector that projects (irradiates) a laser beam onto a measurement target, and a light receiver that receives reflected light that is reflected by the laser light and returns to the measurement target. LiDAR provides information about a measurement target by measuring the distance to the measurement target based on the difference between the timing at which a light projector emits a laser beam and the timing at which a light receiver receives reflected light.
 特許文献1には、車両への実装を目的として構成されたLiDARシステムが記載されている。LiDARシステムは、複数の光学ビームを生成する、複数の光エミッタ(VCSEL(Vertical Cavity Surface Emitting Laser)デバイス等)を含む。LiDARシステムは、第1のレンズにより、複数の光学ビームを、ビームウェストを有する収束された光学ビームに収束させ、第2のレンズにより、収束された光学ビームを標的範囲に投影する。 Patent Document 1 describes a LiDAR system configured for implementation in a vehicle. A LiDAR system includes multiple light emitters (such as Vertical Cavity Surface Emitting Laser (VCSEL) devices) that generate multiple optical beams. A LiDAR system has a first lens that focuses a plurality of optical beams into a focused optical beam having a beam waist, and a second lens that projects the focused optical beam onto a target area.
日本国特表2020-527724号公報Japan Special Table No. 2020-527724
 LiDARの種別の一つとして、投光器が視野範囲にレーザ光を拡散照射する方式を採用するフラッシュLiDAR(Flash LiDAR)がある。フラッシュLiDARは、モータやMEMS(Micro Electro Mechanical Systems)のような機械的な構成を含まないため、車載目的で利用される場合など、耐久性が要求される分野におけるLiDARの有力候補として注目されている。 One type of LiDAR is Flash LiDAR, which uses a method in which a projector diffuses and irradiates laser light over a viewing range. Flash LiDAR does not include mechanical components such as motors or MEMS (Micro Electro Mechanical Systems), so it is attracting attention as a promising candidate for LiDAR in fields where durability is required, such as when used for automotive purposes. There is.
 フラッシュLiDARの受光器や投光器の視野範囲(FOV(Field Of View):視野角、ビームプロファイル、配光サイズ)は、受光部や発光部のサイズ(面積)と光学系(受光光学系、投光光学系)の焦点距離とによって決まる。このため、フラッシュLiDARを車両用の測距センサ等の個々のシステムに適用する際は、視野範囲が適用先のシステムが要求する仕様を満たすように構成する必要がある。 The field of view (FOV: viewing angle, beam profile, light distribution size) of the flash LiDAR receiver and emitter is determined by the size (area) of the light receiver and emitter and the optical system (receiving optical system, light emitter). It is determined by the focal length of the optical system). For this reason, when applying flash LiDAR to an individual system such as a ranging sensor for a vehicle, it is necessary to configure the system so that the field of view satisfies the specifications required by the system to which it is applied.
 車載時などにおけるLiDARの視野範囲を拡張する方法として、例えば、複数のLiDARを並設することが考えられる。しかしその場合、部品点数やコストの増大が課題となる。また、例えば、特定の視野範囲(投光範囲、視野範囲)の測定精度を高めたい(運転時の走行方向の遠方視認性を高めたい等)といったニーズにも柔軟に対応する必要がある。 As a method of expanding the viewing range of LiDAR when mounted on a vehicle, for example, it is possible to install multiple LiDARs in parallel. However, in that case, the problem is an increase in the number of parts and cost. Furthermore, it is necessary to flexibly respond to needs such as, for example, wanting to improve the measurement accuracy of a specific visual field range (light projection range, visual field range) (such as wanting to improve long-distance visibility in the direction of travel during driving).
 本開示はこのような背景に鑑みてなされたものであり、適用先のシステムが要求する仕様に柔軟に対応することが可能な測定装置、投光器、及び受光器を提供することを目的とする。 The present disclosure has been made in view of this background, and aims to provide a measuring device, a light projector, and a light receiver that can flexibly respond to specifications required by the system to which the system is applied.
 本開示の一つは、測定装置であって、投光器と、前記投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器と、を備え、前記受光器は、受光部と、透過型の回折格子と、を含み、前記回折格子が、第1の視野範囲からの第1の反射光が第1の次数の回折光として前記受光部に入射し、前記第1の視野範囲に並ぶ第2の視野範囲からの第2の反射光が第2の次数の回折光として前記受光部に入射するように配置されている。 One aspect of the present disclosure is a measuring device that includes a light projector and a light receiver that receives reflected light generated by the light projector projecting light toward a viewing range, and the light receiver includes a light receiving section and a light receiving section. , a transmission type diffraction grating, wherein the first reflected light from the first viewing range enters the light receiving section as a first order diffracted light, and the first reflected light from the first viewing range enters the light receiving section, The second reflected light from the second visual field lined up is incident on the light receiving section as second order diffracted light.
 本開示の他の一つは、測定装置であって、投光器と、前記投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器と、を備え、前記投光器は、発光部と、透過型の回折格子と、を含み、前記回折格子が、前記発光部からの光が当該回折格子を透過することにより生じる第1の次数の回折光を第1の視野範囲に向けて出射し、前記光が当該回折格子を透過することにより生じる第2の次数の回折光を前記第1の視野範囲に並ぶ第2の視野範囲に向けて出射するように配置されている。 Another aspect of the present disclosure is a measuring device including a light projector and a light receiver that receives reflected light generated by the projector projecting light toward a viewing range, and the projector includes a light emitting section. and a transmission type diffraction grating, the diffraction grating emits first-order diffracted light generated when light from the light emitting section passes through the diffraction grating toward a first viewing range. The second-order diffracted light generated when the light passes through the diffraction grating is emitted toward a second viewing range that is aligned with the first viewing range.
 本開示の他の一つは、測定装置であって、投光器と、前記投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器と、を備え、前記受光器は、受光部と、透過型の光学素子と、を含み、前記光学素子は、第1の視野範囲からの第1の反射光が入射する第1の入射面と、前記第1の入射面に連続して形成され、前記第1の視野範囲に連続する第2の視野範囲からの第2の反射光が入射する第2の入射面と、前記第1の反射光及び前記第2の反射光を、前記受光部に出射する出射面と、を有し、前記第1の入射面、前記第2の入射面、及び前記出射面は、いずれも平坦面であり、前記第2の入射面は、前記第1の入射面に対して前記第1の入射面との境界線を折り目として傾斜している。 Another aspect of the present disclosure is a measurement device including a light projector and a light receiver that receives reflected light generated by the light projector projecting light toward a viewing range, and the light receiver receives light. and a transmissive optical element, the optical element having a first incident surface on which the first reflected light from the first viewing range is incident, and a transmissive optical element that is continuous with the first incident surface. a second incident surface on which a second reflected light from a second viewing range that is continuous with the first viewing range is incident; an exit surface for outputting light to a light receiving section, the first entrance surface, the second entrance surface, and the exit surface are all flat surfaces, and the second entrance surface is the first entrance surface. The first incident surface is inclined with respect to the first incident surface with a boundary line with the first incident surface as a fold line.
 本開示の他の一つは、測定装置であって、投光器と、前記投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器と、を備え、前記投光器は、発光部と、透過型の光学素子と、を含み、前記光学素子は、前記発光部からの光が入射する入射面と、前記入射面に入射する光を第1の視野範囲に向けて出射する第1の出射面と、前記入射面に入射する光を第2の視野範囲に向けて出射する第2の出射面と、を有し、前記入射面、前記第1の出射面、及び前記第2の出射面は、いずれも平坦面であり、前記第2の出射面は、前記第1の出射面に対して前記第2の出射面との境界線を折り目として傾斜している。 Another aspect of the present disclosure is a measuring device including a light projector and a light receiver that receives reflected light generated by the projector projecting light toward a viewing range, and the projector includes a light emitting section. and a transmissive optical element, wherein the optical element includes an incident surface on which light from the light emitting section is incident, and a first surface that emits the light incident on the incident surface toward a first viewing range. and a second exit surface that outputs the light incident on the entrance surface toward a second viewing range, the entrance surface, the first exit surface, and the second exit surface. All of the output surfaces are flat surfaces, and the second output surface is inclined with respect to the first output surface with a boundary line with the second output surface as a fold.
 その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。 Other problems disclosed in the present application and methods for solving the problems will be made clear by the detailed description section and the drawings.
 本開示によれば、適用先のシステムが要求する仕様に柔軟に対応することが可能な測定装置、投光器、及び受光器を提供することができる。 According to the present disclosure, it is possible to provide a measuring device, a light projector, and a light receiver that can flexibly respond to specifications required by the system to which the system is applied.
図1は、測定装置の概略的な構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a measuring device. 図2Aは、受光部及び受光光学系と視野範囲との関係を説明する図である。FIG. 2A is a diagram illustrating the relationship between the light receiving section, the light receiving optical system, and the viewing range. 図2Bは、発光部及び投光光学系と視野範囲との関係を説明する図である。FIG. 2B is a diagram illustrating the relationship between the light emitting unit, the projection optical system, and the viewing range. 図3は、第1実施形態に係る受光光学系に回折格子を用いた場合における、受光器と視野範囲との関係を説明する図である。FIG. 3 is a diagram illustrating the relationship between the light receiver and the viewing range when a diffraction grating is used in the light receiving optical system according to the first embodiment. 図4Aは、いずれの視野範囲からの反射光であるかを区別する測定装置の構成の一態様を説明する図である。FIG. 4A is a diagram illustrating one aspect of the configuration of a measuring device that distinguishes from which viewing range the reflected light comes. 図4Bは、回折格子の配置の一態様を示す図である。FIG. 4B is a diagram showing one aspect of the arrangement of diffraction gratings. 図5Aは、図4Aに示す構成における視野範囲と受光像との関係を示す図である。FIG. 5A is a diagram showing the relationship between the visual field range and the received light image in the configuration shown in FIG. 4A. 図5Bは、回折格子のスリットの並び方向を光軸周りに回転させない場合における視野範囲と受光像との関係を示す図である。FIG. 5B is a diagram showing the relationship between the viewing range and the received light image when the direction in which the slits of the diffraction grating are arranged is not rotated around the optical axis. 図6は、回折格子の特性を決めるパラメータを説明する図である。FIG. 6 is a diagram illustrating parameters that determine the characteristics of the diffraction grating. 図7は、第2実施形態に係る投光光学系に回折格子を用いた場合における、投光器と視野範囲の関係を説明する図である。FIG. 7 is a diagram illustrating the relationship between the projector and the viewing range when a diffraction grating is used in the projecting optical system according to the second embodiment. 図8は、第3実施形態に係る受光器と視野範囲との関係を説明する図である。FIG. 8 is a diagram illustrating the relationship between the light receiver and the viewing range according to the third embodiment. 図9Aは、図8の受光器に適用する光学素子の外観斜視図である。FIG. 9A is an external perspective view of an optical element applied to the light receiver of FIG. 8. 図9Bは、図8の受光器に適用する光学素子の側面図である。FIG. 9B is a side view of an optical element applied to the light receiver of FIG. 8. 図10Aは、いずれの視野範囲からの反射光であるかを区別する測定装置の構成の一態様を説明する図である。FIG. 10A is a diagram illustrating one aspect of the configuration of a measuring device that distinguishes from which viewing range the reflected light comes from. 図10Bは、図10Aの構成に用いる光学素子の外観斜視図である。FIG. 10B is an external perspective view of the optical element used in the configuration of FIG. 10A. 図11は、第4実施形態に係る投光器と視野範囲との関係を説明する図である。FIG. 11 is a diagram illustrating the relationship between the projector and the viewing range according to the fourth embodiment. 図12Aは、図11の投光器に適用する光学素子の外観斜視図である。FIG. 12A is an external perspective view of an optical element applied to the projector of FIG. 11. 図12Bは、図11の投光器に適用する光学素子の側面図である。FIG. 12B is a side view of an optical element applied to the projector of FIG. 11.
 以下、本開示を実施するための形態について図面を参照しつつ説明する。尚、以下の説明において、同一の又は類似する構成に同一の符号を付して重複した説明を省略することがある。また、以下の説明において、同種の構成を区別する必要がある場合、構成を総称する符号の後に識別子(アルファベット等)を付すことがある。 Hereinafter, embodiments for carrying out the present disclosure will be described with reference to the drawings. In the following description, the same or similar configurations may be given the same reference numerals and redundant descriptions may be omitted. In addition, in the following description, if it is necessary to distinguish between configurations of the same type, an identifier (alphabet, etc.) may be added after the code that generically refers to the configuration.
 図1は、本開示の一実施形態として、測定装置100の概略的な構成(ブロック図)を示している。測定装置100は、投光光(照射光、光ビーム(レーザ光))を測定対象に投光(照射)する投光器と、投光光が測定対象に反射して戻ってくる反射光(戻り光)を受光する受光器とを備え、フラッシュLiDAR(Flash Light Detection and Ranging)として機能する。測定装置100は、投光器が投光光を出射したタイミングと受光器が反射光を受光したタイミングとの差(レーザ光の飛行時間。以下、「TOF」(Time Of Flight)と称する。)を測定して測定対象に関する情報を取得する。 FIG. 1 shows a schematic configuration (block diagram) of a measuring device 100 as an embodiment of the present disclosure. The measuring device 100 includes a light projector that projects (irradiates) light (irradiation light, light beam (laser light)) onto a measurement target, and a reflected light (return light) that reflects the projected light onto the measurement target and returns to the measurement target. ), and functions as a flash LiDAR (Flash Light Detection and Ranging). The measuring device 100 measures the difference between the timing at which the projector emits the projected light and the timing at which the receiver receives the reflected light (the flight time of the laser beam, hereinafter referred to as "TOF" (Time Of Flight)). to obtain information about the measurement target.
 測定装置100は、例えば、AD(Autonomous Driving:自動運転システム)やADAS(Advanced Driver Assistance System:先進運転支援システム)が実装される車両に搭載される。測定装置100は、例えば、車両の走行中における、人、他の車両、物体の検出を補助するとともに、車両の運転者や車両の周囲に存在する者の安全確保、車両の運転中に周囲に存在する物体に与える損傷を低減する有用な各種の情報を他の装置やユーザに提供する。 The measuring device 100 is installed, for example, in a vehicle in which AD (Autonomous Driving) or ADAS (Advanced Driver Assistance System) is installed. For example, the measuring device 100 assists in detecting people, other vehicles, and objects while the vehicle is running, as well as ensuring the safety of the vehicle driver and those around the vehicle. Provides other devices and users with various types of information useful for reducing damage to existing objects.
 同図に示すように、例示する測定装置100は、発光部11、投光制御装置112、電流源113、投光光学系14、受光光学系15、受光部16、TOF測定装置117、演算装置150、及び通信I/F160(I/F:Interface)を含む。このうち、発光部11、投光制御装置112、電流源113、及び投光光学系14は投光器を構成し、受光光学系15及び受光部16は受光器を構成する。 As shown in the figure, the illustrated measurement device 100 includes a light emitting section 11, a light projection control device 112, a current source 113, a light projection optical system 14, a light receiving optical system 15, a light receiving section 16, a TOF measurement device 117, and a calculation device. 150, and a communication I/F 160 (I/F:Interface). Of these, the light emitting section 11, the light projection control device 112, the current source 113, and the light projection optical system 14 constitute a light projector, and the light receiving optical system 15 and the light receiving section 16 constitute a light receiver.
 投光器を構成する発光部11は、一つ以上の発光素子、もしくは一つ以上の発光素子アレイ(例えば、発光素子が線状(一次元的)や面状(二次元的)に配置されたもの)を用いて構成される。発光素子は、例えば、レーザダイオード、面発光タイプのレーザ発光素子(例えば、VCSEL(Vertical Cavity Surface Emitting Laser)。以下、「面発光素子」と称する。))、複数の面発光素子が一次元的又は二次元的に基板(半導体基板、セラミック基板等)に配置された面発光素子アレイ(例えば、VCSELアレイ)等である。 The light emitting unit 11 constituting the floodlight includes one or more light emitting elements or one or more light emitting element arrays (for example, light emitting elements arranged in a linear (one-dimensional) or planar (two-dimensional) manner. ). Examples of the light emitting element include a laser diode, a surface emitting type laser emitting element (e.g., VCSEL (Vertical Cavity Surface Emitting Laser), hereinafter referred to as a "surface emitting element"), and a plurality of surface emitting elements that are one-dimensional. Alternatively, it is a surface emitting element array (for example, a VCSEL array) arranged two-dimensionally on a substrate (semiconductor substrate, ceramic substrate, etc.).
 投光制御装置112は、発光部11を構成する発光素子の駆動電流を供給する電流源113の制御信号を生成して電流源113に入力することにより、電流源113から発光素子に供給される電流(駆動電流)を制御する。投光制御装置112は、発光素子が発光したタイミング(投光光が発光素子から出射したタイミング。以下、「投光タイミング」と称する。)を示す信号をTOF測定装置117に入力する。投光制御装置112は、例えば、発光素子の夫々に流す電流のオンオフを周期的に繰り返す制御を行うことにより、発光素子を周期的に繰り返し発光させる。 The light projection control device 112 generates a control signal for a current source 113 that supplies a drive current for a light emitting element constituting the light emitting unit 11 and inputs the control signal to the current source 113, so that the control signal is supplied from the current source 113 to the light emitting element. Controls the current (drive current). The light projection control device 112 inputs to the TOF measuring device 117 a signal indicating the timing at which the light emitting element emits light (the timing at which the projected light is emitted from the light emitting element; hereinafter referred to as "light projection timing"). The light projection control device 112 controls the light emitting elements to periodically and repeatedly turn on and off a current flowing through each of the light emitting elements, for example, thereby causing the light emitting elements to periodically and repeatedly emit light.
 電流源113は、投光制御装置112から入力される制御信号に応じた電流を発光素子に供給する。電流源113は、例えば、発光素子の夫々に流す電流をオンオフするための周期的な方形波の電流を発光素子に供給する。 The current source 113 supplies a current to the light emitting element according to a control signal input from the light projection control device 112. The current source 113 supplies, for example, a periodic square wave current to the light emitting elements to turn on and off the current flowing through each of the light emitting elements.
 投光光学系14は、例えば、発光部11から出射する投光光に光学的な作用(屈折、散乱、回折等)を与えることにより投光光の配光を調節する。投光光学系14は、例えば、コリメートレンズ等の各種レンズ、反射鏡(ミラー)等の光学部品を用いて構成される。 The light projection optical system 14 adjusts the light distribution of the projected light by, for example, applying an optical effect (refraction, scattering, diffraction, etc.) to the projected light emitted from the light emitting unit 11. The light projection optical system 14 is configured using, for example, various lenses such as a collimating lens, optical components such as a reflecting mirror (mirror), and the like.
 受光光学系15は、投光器により投光した光が測定対象50等で反射して戻ってくる反射光(戻り光)を受光部16に集光する。受光光学系15は、例えば、集光レンズ等の各種レンズ、波長フィルタ等の各種フィルタ、反射鏡(ミラー)等の光学部品を用いて構成される。 The light-receiving optical system 15 collects reflected light (return light), which is the light projected by the light projector and reflected by the measurement object 50 or the like, onto the light-receiving section 16 . The light receiving optical system 15 is configured using optical components such as various lenses such as a condenser lens, various filters such as a wavelength filter, and a reflecting mirror.
 受光部16は、一つ以上の受光素子(複数の受光素子)、もしくは一つ以上の受光素子アレイ(例えば、受光素子が線状(一次元的)や面状(二次元的)に配置されたもの)により構成される。上記の受光素子は、例えば、フォトダイオード、SPAD(Single Photon Avalanche Diode)、バランス型光検出器等である。受光部16は、受光光学系15から入射する反射光を光電変換することにより、反射光の強度に応じた電流(以下、「受光電流」と称する。)を生成する。受光部16は、受光部16を構成する個々の受光素子が反射光を受光したタイミング(以下、「受光タイミング」と称する。)を示す信号や、個々の受光素子が生成した受光電流をTOF測定装置117に入力する。 The light receiving section 16 includes one or more light receiving elements (a plurality of light receiving elements), or one or more light receiving element arrays (for example, light receiving elements are arranged in a linear (one-dimensional) or planar (two-dimensional) manner. It is composed of The above light receiving element is, for example, a photodiode, a SPAD (Single Photon Avalanche Diode), a balanced photodetector, or the like. The light receiving unit 16 photoelectrically converts the reflected light incident from the light receiving optical system 15 to generate a current (hereinafter referred to as "light receiving current") according to the intensity of the reflected light. The light receiving section 16 performs TOF measurement of a signal indicating the timing at which each light receiving element constituting the light receiving section 16 receives reflected light (hereinafter referred to as "light receiving timing") and the light receiving current generated by each light receiving element. input to device 117;
 TOF測定装置117は、投光制御装置112から入力される投光タイミングを示す信号と受光部16から入力される受光タイミングを示す信号とに基づきTOFを求める。TOF測定装置117は、例えば、TDC(Time to Digital Converter)回路を搭載した時間測定IC(集積回路:Integrated Circuit)を用いて構成される。TOF測定装置117は、求めたTOFと受光部16から入力された受光電流を、演算装置150に入力する。 The TOF measurement device 117 determines the TOF based on the signal indicating the light emission timing inputted from the light emission control device 112 and the signal indicating the light reception timing inputted from the light receiving section 16. The TOF measurement device 117 is configured using, for example, a time measurement IC (Integrated Circuit) equipped with a TDC (Time to Digital Converter) circuit. The TOF measuring device 117 inputs the determined TOF and the light receiving current input from the light receiving section 16 to the arithmetic device 150.
 演算装置150は、プロセッサ(CPU(Central Processing Unit)、MPU(Micro Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)等)を用いて構成される。演算装置150は、TOF測定装置117から入力される受光電流やTOFに基づき、測定対象50の検出や測距等の各種測定に用いる情報を生成する。上記情報は、例えば、時間相関単一光子計数法(Time Correlated Single Photon Counting)で用いるヒストグラム(histogram)、測定対象50の各点(ポイント)までの距離、ポイントクラウド(点群情報:point cloud)等である。また、演算装置150は、投光制御装置112や受光部16を制御する。演算装置150は、例えば、投光制御装置112や受光部16を制御することにより、ヒストグラムの生成にかかる処理が高速化もしくは最適化されるように、前述した投光タイミングや受光タイミングを制御する。演算装置150によって生成された情報は、通信I/F160を介して当該情報を利用する装置(以下、「各種利用装置40」と称する。)に提供(送信)される。 The arithmetic unit 150 is configured using a processor (CPU (Central Processing Unit), MPU (Micro Processing Unit), ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), etc.). Ru. The arithmetic unit 150 generates information used for various measurements such as detection of the measurement target 50 and distance measurement based on the light reception current and TOF input from the TOF measurement device 117. The above information includes, for example, a histogram used in the Time Correlated Single Photon Counting method, distances to each point of the measurement target 50, and a point cloud (point cloud information). etc. Further, the arithmetic device 150 controls the light projection control device 112 and the light receiving section 16. The arithmetic unit 150 controls the above-mentioned light projection timing and light reception timing, for example, by controlling the light projection control device 112 and the light receiving unit 16, so that the processing related to histogram generation is sped up or optimized. . The information generated by the arithmetic device 150 is provided (transmitted) via the communication I/F 160 to devices that use the information (hereinafter referred to as "various usage devices 40").
 各種利用装置40は、例えば、ポイントクラウドによる環境地図の作成、スキャンマッチングアルゴリズム(NDT(Normal Distributions Transform)、ICP(Iterative Closest Point)等)を用いた自己位置推定(SLAM(Simultaneous Localization and Mapping))等を行う。 The various utilization devices 40 , for example, create an environmental map using a point cloud, self-position estimation (SLAM (Simultaneous Localization and Mapping)) using a scan matching algorithm (NDT (Normal Distribution Transform), ICP (Iterative Closest Point), etc.) etc.
 図2Aは、受光部16及び受光光学系15と視野範囲51との関係を説明する模式図である。視野範囲51は、受光部16の受光領域のサイズ(形状、大きさ、受光面積)と、受光光学系15の焦点距離とによって決まる。 FIG. 2A is a schematic diagram illustrating the relationship between the light receiving section 16, the light receiving optical system 15, and the viewing range 51. The viewing range 51 is determined by the size (shape, size, light-receiving area) of the light-receiving region of the light-receiving section 16 and the focal length of the light-receiving optical system 15.
 図2Bは、発光部11及び投光光学系14と視野範囲51との関係を説明する模式図である。視野範囲51は、発光部11の発光領域のサイズ(形状、大きさ、受光面積)と、投光光学系14の焦点距離とによって決まる。 FIG. 2B is a schematic diagram illustrating the relationship between the light emitting unit 11, the light projection optical system 14, and the viewing range 51. The viewing range 51 is determined by the size (shape, size, light receiving area) of the light emitting region of the light emitting unit 11 and the focal length of the light projecting optical system 14.
 このように、視野範囲51のサイズは、受光部16のサイズや発光部11のサイズによって制約される。そのため、受光部16や発光部11として、例えば、既製品を利用した場合における視野範囲は、必ずしも測定装置100が適用されるシステムの目的や用途に一致しない。また、測定装置100の目的や用途によっては、特定の視野範囲の測定精度を他の視野範囲よりも高めたいニーズがある。例えば、フラッシュLiDARをADやADASに適用した場合に対向車線の遠方等の特定の視野範囲における測定精度を高めたい場合等といったニーズがある。こうしたニーズに柔軟に対応する必要がある。 In this way, the size of the viewing range 51 is restricted by the size of the light receiving section 16 and the size of the light emitting section 11. Therefore, the viewing range when using ready-made products as the light receiving section 16 and the light emitting section 11, for example, does not necessarily match the purpose or application of the system to which the measuring device 100 is applied. Furthermore, depending on the purpose and application of the measuring device 100, there is a need to increase measurement accuracy in a specific visual field range compared to other visual field ranges. For example, when flash LiDAR is applied to AD or ADAS, there is a need to improve measurement accuracy in a specific field of view such as far away from oncoming traffic. It is necessary to respond flexibly to these needs.
 そこで、本実施形態の測定装置100では、受光器の受光光学系15、もしくは投光器の投光光学系14の要素として、回折格子(回折光学素子)を用いることにより、上述したニーズへの対応を図っている。以下、具体的な構成について説明する。 Therefore, in the measuring device 100 of this embodiment, a diffraction grating (diffractive optical element) is used as an element of the light receiving optical system 15 of the light receiver or the light emitting optical system 14 of the light projector, thereby meeting the above-mentioned needs. I'm trying. The specific configuration will be explained below.
<第1実施形態:受光光学系に回折格子を用いる場合>
 図3は、受光器の受光光学系15に回折格子(回折光学素子)を用いた場合における、受光器と、受光器の視野範囲51(同図において+xの方向に並ぶ、第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)との関係を説明する図である。同図は、受光器の要素(受光光学系15、受光部16)については、これらを受光部16の光軸に垂直な方向から眺めた図(+y側から眺めた図)として描いている。また同図は、視野範囲51については、上記光軸の方向から眺めた図(-z側から眺めた図)として描いている。同図に示す矢線は、各視野範囲から受光器に入射する、投光器が各視野範囲51(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)に向けて投光することにより生じる反射光を表す。同図は、受光器のサイズを誇張して描いている。
<First embodiment: When using a diffraction grating in the light receiving optical system>
FIG. 3 shows a light receiver and a viewing range 51 of the light receiver (a first viewing range aligned in the +x direction in the figure) when a diffraction grating (diffraction optical element) is used in the light receiving optical system 15 of the light receiver. 51a, a second viewing range 51b, and a third viewing range 51c). In this figure, the elements of the light receiver (light-receiving optical system 15, light-receiving section 16) are depicted as viewed from a direction perpendicular to the optical axis of the light-receiving section 16 (viewed from the +y side). Further, in this figure, the viewing range 51 is depicted as a view viewed from the direction of the optical axis (a view viewed from the -z side). The arrows shown in the figure indicate the direction in which the projector projects light toward each viewing range 51 (first viewing range 51a, second viewing range 51b, third viewing range 51c), which enters the receiver from each viewing range. Represents reflected light caused by light. In this figure, the size of the light receiver is exaggerated.
 同図に示すように、受光光学系15は、表面に波長オーダの微小な凹凸が周期的に形成された回折格子151と、他の光学系152(各種レンズ、各種フィルタ等)とを含む。本実施形態では、回折格子151は透過型位相格子である。 As shown in the figure, the light-receiving optical system 15 includes a diffraction grating 151 on whose surface minute irregularities on the order of a wavelength are periodically formed, and other optical systems 152 (various lenses, various filters, etc.). In this embodiment, the diffraction grating 151 is a transmission phase grating.
 同図に示すように、第1の視野範囲51aから回折格子151に入射する反射光(以下、「第1の反射光」と称する。)は、+1次の回折光(第1の次数の回折光)として他の光学系152に入射する。第1の視野範囲51aに隣接する第2の視野範囲51bから回折格子151に入射する反射光(以下、「第2の反射光」と称する。)は、0次の回折光(第2の次数の回折光)として他の光学系152に入射する。第2の視野範囲51bに隣接する第3の視野範囲51cから回折格子151に入射する反射光(以下、「第3の反射光」と称する。)は、-1次の回折光(第3の次数の回折光)として他の光学系152に入射する。そして、他の光学系152に入射した各反射光(第1の反射光、第2の反射光、第3の反射光)は、いずれも受光部16に集光される。 As shown in the figure, the reflected light that enters the diffraction grating 151 from the first viewing range 51a (hereinafter referred to as "first reflected light") is +1st order diffracted light (first order diffracted light). The light enters another optical system 152 as light). The reflected light that enters the diffraction grating 151 from the second viewing range 51b adjacent to the first viewing range 51a (hereinafter referred to as "second reflected light") is the 0th order diffracted light (second order is incident on another optical system 152 as diffracted light). The reflected light (hereinafter referred to as "third reflected light") that enters the diffraction grating 151 from the third viewing range 51c adjacent to the second viewing range 51b is -1st order diffracted light (third The light is incident on another optical system 152 as diffracted light of the second order. Then, each reflected light (first reflected light, second reflected light, and third reflected light) that has entered the other optical system 152 is focused on the light receiving section 16.
 このように、受光光学系15の要素として回折格子151を用いることで、各視野範囲51(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)からの反射光をいずれも受光部16に集光することができる。このため、受光部16の受光面積を拡大することなく(受光素子の数を増やすことなく)、受光器の視野範囲(FOV)を拡張することができる。 In this way, by using the diffraction grating 151 as an element of the light receiving optical system 15, reflected light from each viewing range 51 (first viewing range 51a, second viewing range 51b, third viewing range 51c) can be reduced. Both can be focused on the light receiving section 16. Therefore, the field of view (FOV) of the light receiver can be expanded without expanding the light receiving area of the light receiving section 16 (without increasing the number of light receiving elements).
 尚、同図に示すように、この構成では、各視野範囲51(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)からの反射光(回折光)がいずれも受光部16の同じ受光素子に入射してしまう。このため、測定装置100への実装に際しては、いずれの視野範囲51からの反射光を受光したのかを区別するための何らかの仕組みが必要になる。 As shown in the figure, in this configuration, the reflected light (diffraction light) from each viewing range 51 (first viewing range 51a, second viewing range 51b, third viewing range 51c) is The light will be incident on the same light receiving element of the light receiving section 16. Therefore, when implemented in the measuring device 100, some kind of mechanism is required to distinguish from which viewing range 51 the reflected light is received.
 上記の仕組みは、例えば、投光器から各視野範囲51(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)への投光を、視野範囲51ごとに異なるタイミングで行うようにすることで実現できる。この場合、例えば、演算装置150が、投光器からの投光が視野範囲51ごとに異なるタイミングで行われるように投光制御装置112を制御するとともに、受光部16の受光素子が反射光を受光したタイミングに基づき、いずれの視野範囲51からの反射光であるかを区別するようにする(以下、「第1の方法」と称する。)。 The above mechanism, for example, projects light from the projector to each viewing range 51 (first viewing range 51a, second viewing range 51b, third viewing range 51c) at different timings for each viewing range 51. This can be achieved by doing this. In this case, for example, the arithmetic unit 150 controls the light projection control device 112 so that light is projected from the light projector at different timings for each viewing range 51, and the light receiving element of the light receiving unit 16 receives reflected light. Based on the timing, it is determined which viewing range 51 the reflected light comes from (hereinafter referred to as the "first method").
 また、例えば、第1の視野範囲51a、第2の視野範囲51b、及び第3の視野範囲51cの夫々からの反射光(+1次の回折光、0次の回折光、-1次の回折光)が受光部16の同じ受光素子に入射しないように、投光器が各視野範囲51の一部(同じ受光素子に入射しない関係となるような、第1の視野範囲51aの一部の領域、第2の視野範囲51bの一部の領域、及び第3の視野範囲51cの一部の領域)を選択し、選択した各領域について同時に投光するようにしてもよい(以下、「第2の方法」と称する。)。第2の方法によれば、上記の各視野範囲51の領域について同時に受光することができるため、全ての視野範囲51(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)の投光に要する時間(スキャンスピード)を短縮することができる。 Further, for example, reflected light from each of the first viewing range 51a, the second viewing range 51b, and the third viewing range 51c (+1st-order diffracted light, 0th-order diffracted light, -1st-order diffracted light ) does not enter the same light-receiving element of the light-receiving section 16, the projector illuminates a part of each viewing range 51 (a part of the first viewing range 51a, a part of the first viewing range 51a where the light does not enter the same light-receiving element, (a partial area of the second visual field range 51b and a partial area of the third visual field range 51c), and the light may be emitted simultaneously for each selected area (hereinafter referred to as the "second method"). ). According to the second method, since light can be received simultaneously for each of the above viewing ranges 51, all the viewing ranges 51 (the first viewing range 51a, the second viewing range 51b, the third viewing range 51c) can reduce the time required for light projection (scan speed).
 また、例えば、図4Aに示すように、投光器が、第1の視野範囲51a、第2の視野範囲51b、及び第3の視野範囲51cに亘る帯状の領域55について同時に投光する。一方、図4Bに示すように、回折格子151を、回折格子151のスリット1511(凸部と凹部とからなる格子の一単位(図6))の並び方向が、上記の帯状の領域55の延伸方向に対して回折格子151の光軸(図4BではZ軸)周りに所定角度αだけ回転させた位置関係になるように配置するようにしてもよい(以下、「第3の方法」と称する。)。 For example, as shown in FIG. 4A, the projector simultaneously projects light onto a band-shaped region 55 spanning a first viewing range 51a, a second viewing range 51b, and a third viewing range 51c. On the other hand, as shown in FIG. 4B, the direction in which the slits 1511 of the diffraction grating 151 (one unit of the grating (FIG. 6) consisting of convex portions and concave portions) is aligned with the extension of the above-mentioned band-shaped region 55 is shown in FIG. The diffraction grating 151 may be arranged in a positional relationship rotated by a predetermined angle α around the optical axis (Z axis in FIG. 4B) with respect to the direction (hereinafter referred to as the "third method"). ).
 この場合、上記の帯状の領域55の太さ(同図ではy方向の距離(幅))は、異なる視野範囲51からの反射光が同時に受光部16に入射しないよう、隣接する視野範囲51とのずれ幅(同図の例では隣接する視野範囲51のy方向のずれ量(段差))よりも短くなるように設定する。 In this case, the thickness (distance (width) in the y direction in the figure) of the above-mentioned strip-shaped area 55 is set so that the reflected light from different viewing ranges 51 does not enter the light receiving section 16 at the same time. (in the example shown in the figure, the amount of deviation (step difference) in the y direction of adjacent viewing ranges 51).
 図5Aは、第3の方法を採用した場合における、視野範囲51並びに受光部16に集光される反射光の像(受光像)の例である。同図に示すように、各視野範囲51からの反射光(+1次の回折光、0次の回折光、-1次の回折光)は、受光部16の異なる受光素子に集光される。 FIG. 5A is an example of the visual field range 51 and an image of reflected light focused on the light receiving section 16 (light-receiving image) when the third method is adopted. As shown in the figure, reflected light from each viewing range 51 (+1st order diffracted light, 0th order diffracted light, -1st order diffracted light) is focused on different light receiving elements of the light receiving section 16.
 尚、ちなみに帯状の領域55の延伸方向に対して、例えば、回折格子151の光軸を一致させた場合には、図5Bに示すように、受光部16の同じ受光素子に各視野範囲51からの反射光(各視野範囲51の帯状の領域55からの反射光)が同時に重なって集光されてしまう。 Incidentally, if, for example, the optical axis of the diffraction grating 151 is made to coincide with the extending direction of the strip-shaped region 55, as shown in FIG. (reflected light from the strip-shaped area 55 of each viewing range 51) overlaps and is condensed at the same time.
 以上の第3の方法によれば、第1の視野範囲51aから第3の視野範囲51cに亘る帯状の領域55について同時に投光及び受光することができ、視野範囲51の全体の投光に要する時間(スキャンスピード)の短縮を図ることができる。 According to the third method described above, light can be emitted and received at the same time for the strip-shaped area 55 extending from the first viewing range 51a to the third viewing range 51c, and the light projection for the entire viewing range 51 can be performed. The time (scanning speed) can be shortened.
 以上のように、受光光学系15の要素として回折格子151を用いることで、受光部16の受光面積を拡大することなく(受光素子の数を増やすことなく)、受光器の視野範囲(FOV)を、第1の視野範囲51aから第3の視野範囲51cに亘る範囲に容易に拡張することができる。 As described above, by using the diffraction grating 151 as an element of the light-receiving optical system 15, the field of view (FOV) of the light receiver can be improved without expanding the light-receiving area of the light-receiving section 16 (without increasing the number of light-receiving elements). can be easily extended from the first viewing range 51a to the third viewing range 51c.
 ところで、回折格子151に入射する入射光と回折光との間の角度θ、格子ピッチd(格子間隔)、入射光の波長λ、及び回折次数Mの間には、次式の関係がある。
 [数1]
          M×λ=d×sinθ    ・・・式1
 このため、格子ピッチdと入射光の波長λを選択することで、受光器の視野範囲(FOV)を調節することができる。例えば、入射する反射光の波長λが905nmである場合、回折格子151の回折角θを40゜(第1の視野範囲51aの視野角を+20゜~+60゜、第2の視野範囲51bの視野角を±20゜、第3の視野範囲51cの視野角を-20゜~-60゜)とするには、格子ピッチdを1.4μmとすればよい。
By the way, the following relationship exists between the angle θ between the incident light incident on the diffraction grating 151 and the diffracted light, the grating pitch d (grating interval), the wavelength λ of the incident light, and the diffraction order M.
[Number 1]
M×λ=d×sinθ...Formula 1
Therefore, by selecting the grating pitch d and the wavelength λ of the incident light, the field of view (FOV) of the light receiver can be adjusted. For example, when the wavelength λ of the incident reflected light is 905 nm, the diffraction angle θ of the diffraction grating 151 is set to 40° (the viewing angle of the first viewing range 51a is +20° to +60°, and the viewing angle of the second viewing range 51b is 40°). In order to set the angle to ±20° and the viewing angle of the third viewing range 51c to -20° to -60°, the grating pitch d may be set to 1.4 μm.
 図6は、回折格子151の特性を決めるパラメータを説明する図である。回折格子151の回折効率(透過率)は、同図に示す格子密度(スリット1511のうち凸部1511aが占める割合)と、上記の凸部1511aの高さとによって決まる。そのため、これらの値を調節することで、各視野範囲51(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)からの各反射光(+1次の回折光、0次の回折光、-1次の回折光)の回折効率(受光部16に入射する反射光の光量)を調節することができる。 FIG. 6 is a diagram illustrating parameters that determine the characteristics of the diffraction grating 151. The diffraction efficiency (transmittance) of the diffraction grating 151 is determined by the grating density shown in the figure (the proportion occupied by the convex portions 1511a in the slits 1511) and the height of the convex portions 1511a. Therefore, by adjusting these values, each reflected light (+1st order diffracted light, 0 It is possible to adjust the diffraction efficiency (the amount of reflected light incident on the light receiving section 16) of the next diffracted light (-1st order diffracted light).
 例えば、屈折率が1.5の素材(合成石英、アクリル等)を用いて回折角が40゜となるように構成した回折格子151において、凸部1511aの高さを0.724μm、格子密度を0.2とした場合の回折光の光量は、入射光を光量を100%とすると、+1次回折光の光量は21.8%、0次の回折光の光量は50%、-1次回折光の光量は21.7%となる。また、同様の素材及び回折角の回折格子151において、凸部1511aの高さを0.905μm、格子密度を0.65とした場合の回折光の光量は、入射光の光量を100%とすると、+1次回折光の光量は31.1%、0次の回折光の光量は33.1%、-1次回折光の光量は31.3%となる。 For example, in a diffraction grating 151 made of a material with a refractive index of 1.5 (synthetic quartz, acrylic, etc.) so that the diffraction angle is 40°, the height of the convex portions 1511a is 0.724 μm, and the grating density is 0.2, the amount of diffracted light is 100% of the incident light, the amount of +1st order diffracted light is 21.8%, the amount of 0th order diffracted light is 50%, and the amount of -1st order diffracted light is 21.8%. The amount of light is 21.7%. In addition, in the diffraction grating 151 made of the same material and diffraction angle, the amount of diffracted light when the height of the convex portion 1511a is 0.905 μm and the grating density is 0.65 is, assuming that the amount of incident light is 100%. , the amount of +1st order diffracted light is 31.1%, the amount of 0th order diffracted light is 33.1%, and the amount of −1st order diffracted light is 31.3%.
 このように、回折格子151の格子ピッチdや入射光の波長λを選択することで、受光器の視野範囲51(受光範囲)を、適用先のシステムが要求する視野範囲に調節することができる。また、回折格子151の屈折率や格子密度、凸部1511aの高さ等のパラメータの値を調節することで、回折格子151から出射する各回折光(+1次の回折光、0次の回折光、-1次の回折光)の回折効率(光量)を調節することができる。このため、例えば、運転時の走行方向の遠方視認性を高めたい等、特定の視野範囲の測定精度を高めたいといったニーズに対応することができる。このように、本実施形態の測定装置100によれば、適用先のシステムが要求する仕様に柔軟に対応することができる。 In this way, by selecting the grating pitch d of the diffraction grating 151 and the wavelength λ of the incident light, the viewing range 51 (light receiving range) of the light receiver can be adjusted to the viewing range required by the system to which it is applied. . In addition, by adjusting the values of parameters such as the refractive index, grating density, and height of the convex portion 1511a of the diffraction grating 151, each diffracted light (+1st order diffracted light, 0th order diffracted light) emitted from the diffraction grating 151 can be adjusted. , -1st order diffracted light) can be adjusted. Therefore, for example, it is possible to meet needs such as wanting to improve long-distance visibility in the direction of travel during driving, and wanting to improve measurement accuracy in a specific visual field range. In this way, the measuring device 100 of this embodiment can flexibly respond to the specifications required by the system to which it is applied.
<第2実施形態:投光光学系に回折格子を用いる場合>
 図7は、測定装置100の投光器の投光光学系14に、前述の受光光学系15に用いた回折格子151と同様の構成の回折格子141を用いた場合における、投光器と、投光器の視野範囲51(投光範囲)(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)との関係を説明する図である。同図は、投光器の要素(投光光学系14、及び発光部11)についてはこれらを発光部11の光軸に垂直な方向から眺めた図(+y側から眺めた図)として描いている。また同図は、各視野範囲51については、上記光軸の方向から眺めた図(-z側から眺めた図)として描いている。同図に示す矢線は、投光器から出射した各回折光と各視野範囲51(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)との対応を表している。同図は、投光器のサイズを誇張して描いている。
<Second embodiment: When using a diffraction grating in the projection optical system>
FIG. 7 shows a light projector and a field of view of the light projector when a diffraction grating 141 having the same configuration as the diffraction grating 151 used in the light receiving optical system 15 described above is used in the light projecting optical system 14 of the light projector of the measuring device 100. 51 (light projection range) (first viewing range 51a, second viewing range 51b, third viewing range 51c). In this figure, the elements of the light projector (light projecting optical system 14 and light emitting section 11) are depicted as viewed from a direction perpendicular to the optical axis of the light emitting section 11 (viewed from the +y side). Further, in this figure, each viewing range 51 is depicted as a view viewed from the direction of the optical axis (a view viewed from the -z side). The arrows shown in the figure represent the correspondence between each diffracted light beam emitted from the projector and each viewing range 51 (first viewing range 51a, second viewing range 51b, third viewing range 51c). In this figure, the size of the projector is exaggerated.
 投光光学系14は、回折格子141と、他の光学系142(各種レンズ、各種フィルタ等)とを含む。同図に示すように、発光部11から出射した光は、他の光学系142を通過して回折格子141に入射し、それにより回折格子141から、第1の視野範囲51aに向かう+1次の回折光、第2の視野範囲51bに向かう0次の回折光、及び、第3の視野範囲51cに向かう-1次の回折光が出射する。 The light projection optical system 14 includes a diffraction grating 141 and other optical systems 142 (various lenses, various filters, etc.). As shown in the figure, the light emitted from the light emitting unit 11 passes through another optical system 142 and enters the diffraction grating 141, and as a result, the +1st-order light is directed from the diffraction grating 141 toward the first viewing range 51a. Diffracted light, 0th-order diffracted light toward the second viewing range 51b, and -1st-order diffracted light toward the third viewing range 51c are emitted.
 このように、投光光学系14の要素として回折格子141を用いることで、発光部11の発光面積を拡大することなく(発光素子の数を増やすことなく)、投光器の視野範囲(FOV)を、第1の視野範囲51aから第3の視野範囲51cに亘る範囲に容易に拡張することができる。 In this way, by using the diffraction grating 141 as an element of the light projection optical system 14, the field of view (FOV) of the light projector can be increased without expanding the light emitting area of the light emitting unit 11 (without increasing the number of light emitting elements). , can be easily extended to a range from the first visual field range 51a to the third visual field range 51c.
 尚、受光器に回折格子151を用いた場合と同様に、回折格子141の格子ピッチdや入射光の波長λを選択することで投光器の視野範囲51を調節することができる。また、回折格子141の屈折率や格子密度、凸部の高さ等のパラメータの値を調節することで、各回折光(+1次の回折光、0次の回折光、-1次の回折光)の回折効率(光量)を調節することができる。このため、測定装置100の適用先のシステムが要求する仕様に柔軟に対応することができる。 Note that, similarly to the case where the diffraction grating 151 is used in the light receiver, the viewing range 51 of the projector can be adjusted by selecting the grating pitch d of the diffraction grating 141 and the wavelength λ of the incident light. In addition, by adjusting the values of parameters such as the refractive index, grating density, and height of the convex portion of the diffraction grating 141, each diffracted light (+1st-order diffracted light, 0th-order diffracted light, -1st-order diffracted light) ) can be adjusted. Therefore, it is possible to flexibly respond to the specifications required by the system to which the measuring device 100 is applied.
 第1実施形態は、受光器の受光光学系15の要素として、回折格子(回折光学素子)を用いた。第2実施形態は、投光器の投光光学系14の要素として、回折格子(回折光学素子)を用いた。以下に説明する第3実施形態の測定装置100Bでは、受光器の受光光学系15B、もしくは投光器の投光光学系14Bの要素として、プリズム構造を有する光学素子を用いることにより、上述したニーズへの対応を図っている。以下、具体的な構成について説明する。 In the first embodiment, a diffraction grating (diffraction optical element) is used as an element of the light receiving optical system 15 of the light receiver. In the second embodiment, a diffraction grating (diffraction optical element) is used as an element of the light projection optical system 14 of the light projector. In the measuring device 100B of the third embodiment described below, the above-mentioned needs are met by using an optical element having a prism structure as an element of the light receiving optical system 15B of the light receiver or the light projecting optical system 14B of the light emitter. We are taking measures. The specific configuration will be explained below.
<第3実施形態:受光光学系に光学素子を用いる場合>
 図8は、プリズム構造を有する光学素子151Bを受光器の受光光学系15Bに用いた場合における、受光器と、受光器の視野範囲51(同図において+xの方向に並ぶ、第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)との関係を説明する図である。図8に示す構成において、図3に示した構成と同一の構成については同一の符号を付し、その説明を省略する。
<Third Embodiment: When using an optical element in the light receiving optical system>
FIG. 8 shows a light receiver and a viewing range 51 of the light receiver (a first viewing range lined up in the + 51a, a second viewing range 51b, and a third viewing range 51c). In the configuration shown in FIG. 8, the same components as those shown in FIG. 3 are denoted by the same reference numerals, and the description thereof will be omitted.
 同図に示すように、受光光学系15Bは、プリズム構造を有する光学素子151Bと、他の光学系152(各種レンズ、各種フィルタ等)とを含む。 As shown in the figure, the light receiving optical system 15B includes an optical element 151B having a prism structure and other optical systems 152 (various lenses, various filters, etc.).
 図9Aに、光学素子151Bの外観斜視図を示す。同図に示すように、光学素子151Bは、第1の入射面151aと、第2の入射面151bと、第3の入射面151cとを有する。第1の入射面151aは、光学素子151Bの上面側(同図では+z側)に形成され、第1の視野範囲51aからの第1の反射光は第1の入射面151aに入射する。第2の入射面151bは、第1の入射面151aに連続して形成され、第1の視野範囲51aに連続する第2の視野範囲51bからの第2の反射光は第2の入射面151bに入射する。第3の入射面151cは、第2の入射面151bに連続して形成され、第2の視野範囲51bに連続する第3の視野範囲51cからの第3の反射光は第3の入射面151cに入射する。光学素子151Bは、光学素子151Bの下面側(同図では-z側)に、第1の反射光の屈折光、第2の反射光の透過光、及び第3の反射光の屈折光を受光部16に出射する出射面151oを有する。第1の入射面151a、第2の入射面151b、第3の入射面151c、及び出射面151oは、いずれも平坦面である。 FIG. 9A shows an external perspective view of the optical element 151B. As shown in the figure, the optical element 151B has a first entrance surface 151a, a second entrance surface 151b, and a third entrance surface 151c. The first incident surface 151a is formed on the upper surface side (+z side in the figure) of the optical element 151B, and the first reflected light from the first viewing range 51a is incident on the first incident surface 151a. The second incident surface 151b is formed continuously to the first incident surface 151a, and the second reflected light from the second visual field range 51b continuous to the first visual field range 51a is reflected from the second incident surface 151b. incident on . The third entrance surface 151c is formed continuously to the second entrance surface 151b, and the third reflected light from the third viewing range 51c that is continuous to the second viewing range 51b is reflected from the third entrance surface 151c. incident on . The optical element 151B receives the refracted light of the first reflected light, the transmitted light of the second reflected light, and the refracted light of the third reflected light on the lower surface side (-z side in the figure) of the optical element 151B. It has an output surface 151o that outputs light to the portion 16. The first entrance surface 151a, the second entrance surface 151b, the third entrance surface 151c, and the exit surface 151o are all flat surfaces.
 図9Bは、光学素子151Bを図9Aの+y側から眺めた側面図である。第2の入射面151bは、出射面151oと平行になっている。第1の入射面151aは、第2の入射面151bに対して第2の入射面151bとの第1の境界線1511Bを折り目として傾斜角θ1で+z側に傾斜し、それにより光学素子151Bの一端側(-x側)にプリズム構造が形成されている。また、第3の入射面151cは、第2の入射面151bに対して第2の入射面151bとの第2の境界線1512を折り目として傾斜角θ2で+z側に傾斜し、それにより光学素子151Bの他端側(+x側)にプリズム構造が形成されている。 FIG. 9B is a side view of the optical element 151B viewed from the +y side of FIG. 9A. The second entrance surface 151b is parallel to the exit surface 151o. The first entrance surface 151a is inclined toward the +z side at an inclination angle θ1 with respect to the second entrance surface 151b, with the first boundary line 1511B between the second entrance surface 151b and the second entrance surface 151b as a fold. A prism structure is formed on one end side (-x side). Further, the third entrance surface 151c is inclined toward the +z side at an inclination angle θ2 with the second boundary line 1512 between the second entrance surface 151b and the second entrance surface 151b as a fold line. A prism structure is formed on the other end side (+x side) of 151B.
 図8に戻り、光学素子151Bは、光学素子151Bの光軸(第2の入射面151bの中央線を通り出射面151oに垂直な線(出射面151oの法線)であって、図9Bにおいて符号1515で示す軸)を、他の光学系152や受光部16の光軸と一致させて配置される。 Returning to FIG. 8, the optical axis of the optical element 151B (a line passing through the center line of the second entrance surface 151b and perpendicular to the exit surface 151o (normal to the exit surface 151o), The optical axis 1515 ) is arranged to coincide with the optical axes of the other optical system 152 and the light receiving section 16 .
 同図に示すように、第1の視野範囲51aからの第1の反射光は、光学素子151Bの第1の入射面151aに入射して屈折した後、出射面151oから出射して他の光学系152を通過し、受光部16に集光される。第2の視野範囲51bからの第2の反射光は、光学素子151Bの第2の入射面151bに入射した後、出射面151oから出射し、他の光学系152を通過して受光部16に集光される。第3の視野範囲51cからの第3の反射光は、光学素子151Bの第3の入射面151cに入射して屈折した後、出射面151oから出射して他の光学系152を通過し、受光部16に集光される。 As shown in the figure, the first reflected light from the first viewing range 51a enters the first incident surface 151a of the optical element 151B and is refracted, and then exits from the exit surface 151o and is transmitted to other optical devices. The light passes through the system 152 and is focused on the light receiving section 16 . The second reflected light from the second viewing range 51b enters the second entrance surface 151b of the optical element 151B, then exits from the exit surface 151o, passes through another optical system 152, and enters the light receiving section 16. The light is focused. The third reflected light from the third viewing range 51c enters the third entrance surface 151c of the optical element 151B and is refracted, then exits from the exit surface 151o, passes through another optical system 152, and is received. The light is focused on the portion 16.
 このように、受光光学系15Bの要素として光学素子151Bを用いることで、各視野範囲51(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)からの反射光をいずれも受光部16に集光することができる。このため、受光部16の受光面積を拡大することなく(受光素子の数を増やすことなく)、受光器の視野範囲(FOV)を拡張することができる。 In this way, by using the optical element 151B as an element of the light receiving optical system 15B, reflected light from each viewing range 51 (first viewing range 51a, second viewing range 51b, third viewing range 51c) can be reduced. Both can be focused on the light receiving section 16. Therefore, the field of view (FOV) of the light receiver can be expanded without expanding the light receiving area of the light receiving section 16 (without increasing the number of light receiving elements).
 尚、同図に示すように、この構成では、各視野範囲51(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)からの反射光がいずれも受光部16の同じ受光素子に入射してしまう。このため、測定装置100Bへの実装に際しては、いずれの視野範囲51からの反射光を受光したのかを区別するための何らかの仕組みが必要になる。 As shown in the figure, in this configuration, the reflected light from each viewing range 51 (the first viewing range 51a, the second viewing range 51b, and the third viewing range 51c) is reflected from the light receiving unit 16. The light will be incident on the same light-receiving element. Therefore, when implemented in the measuring device 100B, some kind of mechanism is required to distinguish from which viewing range 51 the reflected light is received.
 上記の仕組みは、例えば、上述した第1の方法および第2の方法を用いてもよい。 The above mechanism may use, for example, the first method and the second method described above.
 また、例えば、図10Aに示すように、投光器が、第1の視野範囲51a、第2の視野範囲51b、及び第3の視野範囲51cに亘る帯状の領域55について同時に投光する。一方、受光器においては、図10Bに示すように、第1の入射面151aを、更に、第2の入射面151bに対し、第1の境界線1511Bに沿って傾斜角φ1で傾斜させる。更に受光器においては、図10Bに示すように、第3の入射面151cを、更に、第2の入射面151bに対し、第2の境界線1512に沿って、第1の入射面151aとは逆の方向に傾斜角φ2で傾斜させる(以下、「第4の方法」と称する。)。 For example, as shown in FIG. 10A, the projector simultaneously projects light onto a band-shaped region 55 spanning a first viewing range 51a, a second viewing range 51b, and a third viewing range 51c. On the other hand, in the light receiver, as shown in FIG. 10B, the first entrance surface 151a is further inclined with respect to the second entrance surface 151b at an inclination angle φ1 along the first boundary line 1511B. Furthermore, in the light receiver, as shown in FIG. 10B, the third entrance surface 151c is further separated from the first entrance surface 151a along the second boundary line 1512 with respect to the second entrance surface 151b. It is tilted in the opposite direction at an angle of inclination φ2 (hereinafter referred to as the "fourth method").
 尚、この場合、第1の入射面151aは、第1の入射面151aの面内に設定したx軸に平行な軸1516aを中心として回転させることにより傾斜させてもよいし、x軸と同じ方向に延伸する軸1517aを中心として回転させることにより傾斜させてもよい。同様に、第3の入射面151cは、第3の入射面151cの面内に設定したx軸に平行な軸1516bを中心として回転させることにより傾斜させてもよいし、x軸と同じ方向に延伸する軸1517bを中心として回転させることにより傾斜させてもよい。 In this case, the first entrance surface 151a may be tilted by rotating around an axis 1516a parallel to the x-axis set within the plane of the first entrance surface 151a, or It may also be tilted by rotating about an axis 1517a extending in the direction. Similarly, the third entrance surface 151c may be tilted by rotating around an axis 1516b parallel to the x-axis set within the plane of the third entrance surface 151c, or may be tilted in the same direction as the x-axis. It may be tilted by rotating about the extending axis 1517b.
 受光器を図10A及び図10Bに示す構成とした場合における、視野範囲51並びに受光部16に集光される反射光の像(受光像)の例は、図5Aと同様である。同図に示すように、各視野範囲51からの反射光は、受光部16の異なる受光素子に集光される。 In the case where the light receiver has the configuration shown in FIGS. 10A and 10B, an example of the visual field range 51 and the image (received light image) of the reflected light focused on the light receiving section 16 is the same as that in FIG. 5A. As shown in the figure, the reflected light from each viewing range 51 is focused on different light receiving elements of the light receiving section 16.
 尚、ちなみに光学素子151Bとして図9Aに示す構成のものを用いて同様の投光(第1の視野範囲51aから第3の視野範囲に亘る帯状の領域55を同時に投光)を行った場合には、図5Bに示すように、受光部16の同じ受光素子に各視野範囲51からの反射光(各視野範囲51の帯状の領域55からの反射光)が同時に重なって集光されてしまう。 Incidentally, when similar light is projected (simultaneously illuminates the band-shaped area 55 extending from the first viewing range 51a to the third viewing range) using the optical element 151B having the configuration shown in FIG. 9A, As shown in FIG. 5B, reflected light from each viewing range 51 (reflected light from the strip-shaped area 55 of each viewing range 51) overlaps and is focused on the same light receiving element of the light receiving unit 16 at the same time.
 以上の第4の方法によれば、第1の視野範囲51aから第3の視野範囲51cに亘る帯状の領域55について同時に投光及び受光することができ、視野範囲51の全体の投光に要する時間(スキャンスピード)の短縮を図ることができる。 According to the fourth method described above, light can be emitted and received simultaneously for the strip-shaped area 55 extending from the first viewing range 51a to the third viewing range 51c, and the light projection for the entire viewing range 51 can be performed. The time (scanning speed) can be shortened.
 以上のように、受光光学系15Bの要素として簡素な構成からなる光学素子151Bを用いることで、受光部16の受光面積を拡大することなく(受光素子の数を増やすことなく)、受光器の視野範囲(FOV)を、第1の視野範囲51aから第3の視野範囲51cに亘る範囲に容易に拡張することができる。また、傾斜角θ1,θ2や傾斜角φ1,φ2を調節することで、受光範囲(第1の視野範囲51aや第3の視野範囲51c)を調節することができ、適用先のシステムが要求する仕様に柔軟に対応することができる。 As described above, by using the optical element 151B having a simple configuration as an element of the light-receiving optical system 15B, the light-receiving area of the light-receiving section 16 can be expanded (without increasing the number of light-receiving elements). The field of view (FOV) can be easily expanded from the first field of view 51a to the third field of view 51c. Furthermore, by adjusting the inclination angles θ1, θ2 and the inclination angles φ1, φ2, the light receiving range (first viewing range 51a and third viewing range 51c) can be adjusted to meet the requirements of the applied system. We can respond flexibly to specifications.
<第4実施形態:投光光学系に光学素子を用いる場合>
 図11は、測定装置100Bの投光器の投光光学系14Bに、前述した光学素子151Bと同様の構成の光学素子141Bを用いた場合における、投光器と、投光器の視野範囲51(投光範囲)(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)との関係を説明する図である。図11に示す構成において、図7に示した構成と同一の構成については同一の符号を付し、その説明を省略する。同図に示す矢線は、光学素子141Bから出射する光と各視野範囲51(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)との対応を表している。
<Fourth embodiment: When using an optical element in the light projection optical system>
FIG. 11 shows a light projector and a field of view range 51 (light projection range) ( FIG. 4 is a diagram illustrating the relationship between a first visual range 51a, a second visual range 51b, and a third visual range 51c). In the configuration shown in FIG. 11, the same components as those shown in FIG. 7 are denoted by the same reference numerals, and the description thereof will be omitted. The arrows shown in the figure represent the correspondence between the light emitted from the optical element 141B and each viewing range 51 (first viewing range 51a, second viewing range 51b, and third viewing range 51c).
 同図に示すように、投光光学系14Bは、プリズム構造を有する光学素子141Bと、他の光学系142(各種レンズ、各種フィルタ等)とを含む。 As shown in the figure, the light projection optical system 14B includes an optical element 141B having a prism structure and other optical systems 142 (various lenses, various filters, etc.).
 図12Aに、光学素子141Bの外観斜視図を示す。同図に示すように、光学素子141Bは、光学素子141Bの下面側(同図では-z側)に発光部11からの光が入射する入射面141iを有する。また、光学素子141Bは、第1の出射面141aと、第2の出射面141bと、第3の出射面141cとを有する。第1の出射面141aは、光学素子141Bの上面側(同図では+z側)に、発光部11から入射面141iに入射する光を第1の視野範囲51aに向けて出射する。第2の出射面141bは、第1の出射面141aに連続して形成され、発光部11から入射面141iに入射する光を第2の視野範囲51bに向けて出射する。第3の出射面141cは、第2の出射面141bに連続して形成され、発光部11から入射面141iに入射する光を第3の視野範囲51cに向けて出射する。入射面141i、第1の出射面141a、第2の出射面141b、及び第3の出射面141cは、いずれも平坦面である。 FIG. 12A shows an external perspective view of the optical element 141B. As shown in the figure, the optical element 141B has an entrance surface 141i on the lower surface side (-z side in the figure) of the optical element 141B, into which light from the light emitting section 11 enters. Further, the optical element 141B has a first output surface 141a, a second output surface 141b, and a third output surface 141c. The first output surface 141a outputs the light incident on the input surface 141i from the light emitting section 11 toward the first viewing range 51a toward the upper surface side (+z side in the figure) of the optical element 141B. The second output surface 141b is formed continuously from the first output surface 141a, and outputs the light that is incident on the input surface 141i from the light emitting section 11 toward the second viewing range 51b. The third output surface 141c is formed continuously with the second output surface 141b, and outputs the light that is incident on the input surface 141i from the light emitting section 11 toward the third viewing range 51c. The entrance surface 141i, the first exit surface 141a, the second exit surface 141b, and the third exit surface 141c are all flat surfaces.
 図12Bは、光学素子141Bを図9Aの-y側から眺めた側面図である。入射面141iは、第2の出射面141bと平行になっている。第1の出射面141aは、第2の出射面141bに対して第2の出射面141bとの第1の境界線1411を折り目として傾斜角θ1で+z側に傾斜し、それにより光学素子141Bの一端側(-x側)にプリズム構造が形成されている。第3の出射面141cは、第2の出射面141bに対して第2の出射面141bとの第2の境界線1412を折り目として傾斜角θ2で+z側に傾斜し、それにより光学素子141Bの他端側(+x側)にプリズム構造が形成されている。 FIG. 12B is a side view of the optical element 141B viewed from the −y side of FIG. 9A. The entrance surface 141i is parallel to the second exit surface 141b. The first exit surface 141a is inclined toward the +z side at an inclination angle θ1 with respect to the second exit surface 141b, with the first boundary line 1411 between the second exit surface 141b and the second exit surface 141b as a fold. A prism structure is formed on one end side (-x side). The third exit surface 141c is inclined toward the +z side at an inclination angle θ2 with the second boundary line 1412 between the second exit surface 141b and the second exit surface 141b as a fold line, thereby increasing the angle of the optical element 141B. A prism structure is formed on the other end side (+x side).
 図11に戻り、光学素子141Bは、光学素子141Bの光軸(第2の出射面141bの中央線を通り入射面141iに垂直な線(入射面141iの法線であって、図12Bにおいて符号1415で示す軸)を、他の光学系142や発光部11の光軸と一致させて配置している。 Returning to FIG. 11, the optical element 141B has an optical axis (a line passing through the center line of the second exit surface 141b and perpendicular to the entrance surface 141i (normal to the entrance surface 141i, denoted by the reference numeral in FIG. 12B). The optical axis 1415) is arranged to coincide with the optical axes of the other optical system 142 and the light emitting section 11.
 同図に示すように、発光部11から出射した光は、他の光学系142を通過して光学素子141Bに入射する。それにより光学素子141Bから、第1の出射面141aで屈折して第1の視野範囲51aに向かう第1の透過光、第2の出射面141bを透過して第2の視野範囲51bに向かう第2の透過光、及び、第3の出射面141cで屈折して第3の視野範囲51cに向かう第3の透過光が出射する。 As shown in the figure, the light emitted from the light emitting section 11 passes through another optical system 142 and enters the optical element 141B. As a result, from the optical element 141B, the first transmitted light is refracted at the first output surface 141a and goes to the first viewing range 51a, and the first transmitted light is transmitted through the second output surface 141b and goes to the second viewing range 51b. The second transmitted light and the third transmitted light that is refracted by the third output surface 141c and directed toward the third viewing range 51c are emitted.
 このように、投光光学系14Bの要素として光学素子141Bを用いることで、発光部11の発光面積を拡大することなく(発光素子の数を増やすことなく)、投光器の視野範囲(FOV)を、第1の視野範囲51aから第3の視野範囲51cに亘る広い範囲に容易に拡張することができる。また、傾斜角θ1,θ2を調節することで投光範囲(第1の視野範囲51aや第3の視野範囲51c)を調節することができ、測定装置100Bの適用先のシステムが要求する仕様に柔軟に対応することができる。 In this way, by using the optical element 141B as an element of the light projection optical system 14B, the field of view (FOV) of the light emitter can be increased without expanding the light emitting area of the light emitting unit 11 (without increasing the number of light emitting elements). , can be easily extended to a wide range from the first viewing range 51a to the third viewing range 51c. Furthermore, by adjusting the inclination angles θ1 and θ2, the light projection range (the first viewing range 51a and the third viewing range 51c) can be adjusted to meet the specifications required by the system to which the measuring device 100B is applied. Able to respond flexibly.
 以上、本開示の実施形態につき詳述したが、本開示は上記の実施形態に限定されるものではなく、様々な変形例が含まれる。また、上記の実施形態は本開示を分かりやすく説明するために構成を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記の実施形態の構成の一部について、他の構成に追加、削除、置換することが可能である。 Although the embodiments of the present disclosure have been described in detail above, the present disclosure is not limited to the above-described embodiments, and includes various modifications. Furthermore, the configurations of the embodiments described above are explained in detail in order to explain the present disclosure in an easy-to-understand manner, and the embodiments are not necessarily limited to those having all the configurations described. Further, some of the configurations of the above embodiments can be added to, deleted from, or replaced with other configurations.
 例えば、以上では、視野範囲(投光範囲、受光範囲)が3つ(第1の視野範囲51a、第2の視野範囲51b、第3の視野範囲51c)の場合を例として説明したが、本開示は、視野範囲を2つとした場合や、4つ以上とした場合にも適用することができる。 For example, in the above description, the case where there are three viewing ranges (light emitting range, light receiving range) (the first viewing range 51a, the second viewing range 51b, and the third viewing range 51c) has been described as an example. The disclosure can also be applied to cases where there are two viewing ranges or four or more viewing ranges.
 また、例えば、以上に説明した投光器及び受光器の構成(回折格子151を受光光学系15の要素として用いる構成、回折格子141を投光光学系14の要素として用いる構成)は、これらの双方を測定装置100に適用するようにしてもよいし、いずれか一方のみを適用するようにしてもよい。 Furthermore, for example, the configurations of the emitter and the light receiver described above (the configuration in which the diffraction grating 151 is used as an element of the light receiving optical system 15, and the configuration in which the diffraction grating 141 is used as an element in the light emitting optical system 14) include both of these. It may be applied to the measuring device 100, or only one of them may be applied.
 また、例えば、以上では、回折格子の異なる3つの次数の回折光(+1次、0次、―1次)を利用して視野範囲を拡張したが、これら以外の次数の回折光を利用して視野範囲を拡張してもよい。 Also, for example, in the above, the viewing range was expanded by using diffracted light of three different orders (+1st order, 0th order, -1st order) of the diffraction grating, but it is possible to expand the viewing range by using diffracted light of orders other than these. The viewing range may be expanded.
 また、例えば、以上に説明した投光器及び受光器の構成(光学素子151Bを受光光学系15Bの要素として用いる構成、光学素子141Bを投光光学系14Bの要素として用いる構成)は、これらの双方を測定装置100Bに適用するようにしてもよいし、いずれか一方のみを適用するようにしてもよい。 Furthermore, for example, the configurations of the light emitter and the light receiver described above (the configuration in which the optical element 151B is used as an element of the light receiving optical system 15B, and the configuration in which the optical element 141B is used as an element in the light emitting optical system 14B) include both of these. It may be applied to the measuring device 100B, or only one of them may be applied.
 本出願は、2022年7月28日出願の日本出願第2022-120204号および2022年7月28日出願の日本出願第2022-120205号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This application claims priority based on Japanese Application No. 2022-120204 filed on July 28, 2022 and Japan Application No. 2022-120205 filed on July 28, 2022, and All contents are hereby incorporated by reference.

Claims (30)

  1.  投光器と、前記投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器と、を備え、
     前記受光器は、受光部と、透過型の回折格子と、を含み、
     前記回折格子が、第1の視野範囲からの第1の反射光が第1の次数の回折光として前記受光部に入射し、前記第1の視野範囲に並ぶ第2の視野範囲からの第2の反射光が第2の次数の回折光として前記受光部に入射するように配置されている、
     測定装置。
    comprising a light projector and a light receiver that receives reflected light generated by the projector projecting light toward a viewing range,
    The light receiver includes a light receiving section and a transmission type diffraction grating,
    The diffraction grating is configured such that a first reflected light from the first viewing range is incident on the light receiving section as a first-order diffracted light, and a second reflected light from a second viewing range aligned with the first viewing range is arranged in the diffraction grating. is arranged so that the reflected light enters the light receiving section as second-order diffracted light,
    measuring device.
  2.  請求項1に記載の測定装置であって、
     前記投光器は、前記第1の視野範囲と前記第2の視野範囲に向けて、夫々異なるタイミングで投光する、
     測定装置。
    The measuring device according to claim 1,
    The light projector projects light toward the first viewing range and the second viewing range at different timings, respectively.
    measuring device.
  3.  請求項1に記載の測定装置であって、
     前記受光部は、複数の受光素子を含み、
     前記回折格子は、前記回折格子のスリットの並び方向が、前記第1の視野範囲と前記第2の視野範囲の並び方向に一致するように配置され、
     前記投光器は、前記第1の反射光と前記第2の反射光が同じ前記受光素子に入射しない関係となる、前記第1の視野範囲の一部と前記第2の視野範囲の一部に向けて同時に投光する、
     測定装置。
    The measuring device according to claim 1,
    The light receiving section includes a plurality of light receiving elements,
    The diffraction grating is arranged such that the direction in which the slits of the diffraction grating are arranged coincides with the direction in which the first viewing range and the second viewing range are arranged,
    The projector is directed toward a portion of the first viewing range and a portion of the second viewing range such that the first reflected light and the second reflected light do not enter the same light receiving element. emits light at the same time,
    measuring device.
  4.  請求項1に記載の測定装置であって、
     前記受光部は、面状に配置された複数の受光素子を含み、
     前記投光器は、前記第1の視野範囲から前記第2の視野範囲に亘る帯状の領域を同時に投光し、
     前記回折格子は、前記回折格子のスリットの並び方向を、前記第1の反射光と前記第2の反射光が夫々異なる前記受光素子に入射するように、前記帯状の領域の延伸方向に対して当該回折格子の光軸周りに所定角度回転させた位置関係で配置されている、
     測定装置。
    The measuring device according to claim 1,
    The light receiving section includes a plurality of light receiving elements arranged in a planar manner,
    The projector simultaneously projects light onto a strip-shaped area extending from the first viewing range to the second viewing range,
    The diffraction grating has a direction in which the slits of the diffraction grating are arranged with respect to a stretching direction of the band-shaped region so that the first reflected light and the second reflected light are respectively incident on different light receiving elements. arranged in a positional relationship rotated by a predetermined angle around the optical axis of the diffraction grating,
    measuring device.
  5.  投光器と、前記投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器と、を備え、
     前記受光器は、受光部と、透過型の回折格子と、を含み、
     前記回折格子は、
      第1の視野範囲からの第1の反射光が+1次の回折光として前記受光部に入射し、
      前記第1の視野範囲に並ぶ第2の視野範囲からの第2の反射光が0次の回折光として前記受光部に入射し、
      前記第1の視野範囲から前記第2の視野範囲の方向に、前記第2の視野範囲に並ぶ第3の視野範囲からの第3の反射光が-1次の回折光として前記受光部に入射する
     ように配置されている、
     測定装置。
    comprising a light projector and a light receiver that receives reflected light generated by the projector projecting light toward a viewing range,
    The light receiver includes a light receiving section and a transmission type diffraction grating,
    The diffraction grating is
    The first reflected light from the first viewing range enters the light receiving section as +1st order diffracted light,
    A second reflected light from a second viewing range aligned with the first viewing range enters the light receiving section as zero-order diffracted light,
    In the direction from the first viewing range to the second viewing range, third reflected light from a third viewing range aligned with the second viewing range enters the light receiving section as −1st order diffracted light. are arranged so that
    measuring device.
  6.  請求項5に記載の測定装置であって、
     前記投光器は、前記第1の視野範囲、前記第2の視野範囲、及び前記第3の視野範囲に向けて、夫々異なるタイミングで投光する、
     測定装置。
    The measuring device according to claim 5,
    The projector projects light toward the first viewing range, the second viewing range, and the third viewing range at different timings, respectively.
    measuring device.
  7.  請求項5に記載の測定装置であって、
     前記受光部は、面状に配置された複数の受光素子を含み、
     前記回折格子は、前記回折格子のスリットの並び方向が、前記第1の視野範囲から前記第3の視野範囲の並び方向に一致するように配置され、
     前記投光器は、前記第1の反射光、前記第2の反射光、及び前記第3の反射光が、いずれも前記受光素子に入射しない関係となる、前記第1の視野範囲の一部、前記第2の視野範囲の一部、及び前記第3の視野範囲の一部に向けて同時に投光する、
     測定装置。
    The measuring device according to claim 5,
    The light receiving section includes a plurality of light receiving elements arranged in a planar manner,
    The diffraction grating is arranged such that the direction in which the slits of the diffraction grating are arranged coincides with the direction in which the slits are arranged from the first viewing range to the third viewing range,
    The light projector includes a portion of the first visual field range in which none of the first reflected light, the second reflected light, and the third reflected light enter the light receiving element; Simultaneously projecting light toward a part of the second viewing range and a part of the third viewing range;
    measuring device.
  8.  請求項5に記載の測定装置であって、
     前記受光部は、面状に配置された複数の受光素子を含み、
     前記投光器は、前記第1の視野範囲から前記第3の視野範囲に亘る帯状の領域を同時に投光し、
     前記回折格子は、前記回折格子のスリットの並び方向を、前記第1の反射光、前記第2の反射光、及び前記第3の反射光が、夫々異なる前記受光素子に入射するように、前記帯状の領域の延伸方向に対して当該回折格子の光軸周りに所定角度回転させた位置関係で配置されている、
     測定装置。
    The measuring device according to claim 5,
    The light receiving section includes a plurality of light receiving elements arranged in a planar manner,
    The projector simultaneously projects light onto a strip-shaped area extending from the first viewing range to the third viewing range,
    The diffraction grating is arranged such that the slits of the diffraction grating are arranged in a direction such that the first reflected light, the second reflected light, and the third reflected light are respectively incident on different light receiving elements. arranged in a positional relationship rotated by a predetermined angle around the optical axis of the diffraction grating with respect to the stretching direction of the band-shaped region;
    measuring device.
  9.  投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器であって、
     受光部と、透過型の回折格子と、を含み、
     前記回折格子が、第1の視野範囲からの第1の反射光が第1の次数の回折光として前記受光部に入射し、前記第1の視野範囲に並ぶ第2の視野範囲からの第2の反射光が第2の次数の回折光として前記受光部に入射するように配置されている、
     受光器。
    A light receiver that receives reflected light generated by a light projector projecting light toward a viewing range,
    including a light receiving section and a transmission type diffraction grating,
    The diffraction grating is configured such that a first reflected light from the first viewing range is incident on the light receiving section as a first-order diffracted light, and a second reflected light from a second viewing range aligned with the first viewing range is arranged in the diffraction grating. is arranged so that the reflected light enters the light receiving section as second-order diffracted light,
    Receiver.
  10.  投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器であって、
     前記受光器は、受光部と、透過型の回折格子と、を含み、
     前記回折格子は、
      第1の視野範囲からの第1の反射光が+1次の回折光として前記受光部に入射し、
      前記第1の視野範囲に並ぶ第2の視野範囲からの第2の反射光が0次の回折光として前記受光部に入射し、
      前記第1の視野範囲から前記第2の視野範囲の方向に、前記第2の視野範囲に並ぶ第3の視野範囲からの第3の反射光が-1次の回折光として前記受光部に入射する
     ように配置されている、
     受光器。
    A light receiver that receives reflected light generated by a light projector projecting light toward a viewing range,
    The light receiver includes a light receiving section and a transmission type diffraction grating,
    The diffraction grating is
    The first reflected light from the first viewing range enters the light receiving section as +1st order diffracted light,
    A second reflected light from a second viewing range aligned with the first viewing range enters the light receiving section as zero-order diffracted light,
    In the direction from the first viewing range to the second viewing range, third reflected light from a third viewing range aligned with the second viewing range enters the light receiving section as -1st order diffracted light. are arranged so that
    Receiver.
  11.  投光器と、前記投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器と、を備え、
     前記投光器は、発光部と、透過型の回折格子と、を含み、
     前記回折格子が、前記発光部からの光が当該回折格子を透過することにより生じる第1の次数の回折光を第1の視野範囲に向けて出射し、前記光が当該回折格子を透過することにより生じる第2の次数の回折光を前記第1の視野範囲に並ぶ第2の視野範囲に向けて出射するように配置されている、
     測定装置。
    comprising a light projector and a light receiver that receives reflected light generated by the projector projecting light toward a viewing range,
    The projector includes a light emitting section and a transmission type diffraction grating,
    The diffraction grating emits first-order diffracted light, which is generated when light from the light emitting section passes through the diffraction grating, toward a first viewing range, and the light transmits through the diffraction grating. arranged so as to emit second-order diffracted light generated by the second order toward a second viewing range aligned with the first viewing range,
    measuring device.
  12.  投光器と、前記投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器と、を備え、
     前記投光器は、発光部と、透過型の回折格子と、を含み、
     前記回折格子が、
      前記発光部からの光が当該回折格子を透過することにより生じる+1次の回折光を、第1の視野範囲に向けて出射し、
      前記光が当該回折格子を透過することにより生じる0次の回折光を、前記第1の視野範囲に並ぶ第2の視野範囲に向けて出射し、
      前記光が当該回折格子を透過することにより生じる-1次の回折光を、前記第1の視野範囲から前記第2の視野範囲の方向に、前記第2の視野範囲に並ぶ第3の視野範囲に向けて出射する
     ように配置されている、
     測定装置。
    comprising a light projector and a light receiver that receives reflected light generated by the projector projecting light toward a viewing range,
    The projector includes a light emitting section and a transmission type diffraction grating,
    The diffraction grating is
    Emitting +1st-order diffracted light generated when light from the light emitting part passes through the diffraction grating toward a first viewing range,
    Emitting zero-order diffracted light caused by the light passing through the diffraction grating toward a second viewing range aligned with the first viewing range,
    -1st-order diffracted light generated when the light passes through the diffraction grating is directed from the first viewing range to the second viewing range in a third viewing range aligned with the second viewing range. It is arranged so that it emits toward the
    measuring device.
  13.  視野範囲に向けて投光する投光器であって、
     発光部と、透過型の回折格子と、を含み、
     前記回折格子が、
      前記発光部からの光が当該回折格子を透過することにより生じる第1の次数の回折光を第1の視野範囲に向けて出射し、
      前記光が当該回折格子を透過することにより生じる第2の次数の回折光を前記第1の視野範囲に並ぶ第2の視野範囲に向けて出射する
     ように配置されている、
     投光器。
    A floodlight that emits light toward a viewing range,
    including a light emitting part and a transmission type diffraction grating,
    The diffraction grating is
    Emitting first-order diffracted light generated when light from the light emitting part passes through the diffraction grating toward a first viewing range,
    The second-order diffracted light generated when the light passes through the diffraction grating is emitted toward a second viewing range aligned with the first viewing range.
    Floodlight.
  14.  視野範囲に向けて投光する投光器であって、
     発光部と、透過型の回折格子と、を含み、
     前記回折格子が、
      前記発光部からの光が当該回折格子を透過することにより生じる+1次の回折光を、第1の視野範囲に向けて出射し、
      前記光が当該回折格子を透過することにより生じる0次の回折光を、前記第1の視野範囲に並ぶ第2の視野範囲に向けて出射し、
      前記光が当該回折格子を透過することにより生じる-1次の回折光を、前記第1の視野範囲から前記第2の視野範囲の方向に、前記第2の視野範囲に並ぶ第3の視野範囲に向けて出射する
     ように配置されている、
     投光器。
    A floodlight that emits light toward a viewing range,
    including a light emitting part and a transmission type diffraction grating,
    The diffraction grating is
    Emitting +1st-order diffracted light generated when light from the light emitting part passes through the diffraction grating toward a first viewing range,
    Emitting zero-order diffracted light caused by the light passing through the diffraction grating toward a second viewing range aligned with the first viewing range,
    -1st-order diffracted light generated when the light passes through the diffraction grating is directed from the first viewing range to the second viewing range in a third viewing range aligned with the second viewing range. It is arranged so that it emits toward the
    Floodlight.
  15.  投光器と、前記投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器と、を備え、
     前記受光器は、受光部と、透過型の光学素子と、を含み、
     前記光学素子は、
      第1の視野範囲からの第1の反射光が入射する第1の入射面と、
      前記第1の入射面に連続して形成され、前記第1の視野範囲に連続する第2の視野範囲からの第2の反射光が入射する第2の入射面と、
      前記第1の反射光及び前記第2の反射光を、前記受光部に出射する出射面と、
     を有し、
     前記第1の入射面、前記第2の入射面、及び前記出射面は、いずれも平坦面であり、
     前記第2の入射面は、前記第1の入射面に対して前記第1の入射面との境界線を折り目として傾斜している、
     測定装置。
    comprising a light projector and a light receiver that receives reflected light generated by the projector projecting light toward a viewing range,
    The light receiver includes a light receiving section and a transmission type optical element,
    The optical element is
    a first incidence surface on which the first reflected light from the first viewing range is incident;
    a second entrance surface that is formed continuously with the first entrance surface and on which second reflected light from a second viewing range that is continuous with the first viewing range is incident;
    an output surface that outputs the first reflected light and the second reflected light to the light receiving section;
    has
    The first entrance surface, the second entrance surface, and the exit surface are all flat surfaces,
    The second entrance surface is inclined with respect to the first entrance surface with a boundary line with the first entrance surface as a fold.
    measuring device.
  16.  請求項15に記載の測定装置であって、
     前記投光器は、前記第1の視野範囲と前記第2の視野範囲に向けて、夫々異なるタイミングで投光する、
     測定装置。
    16. The measuring device according to claim 15,
    The light projector projects light toward the first viewing range and the second viewing range at different timings, respectively.
    measuring device.
  17.  請求項15に記載の測定装置であって、
     前記受光部は、複数の受光素子を含み、
     前記投光器は、前記第1の反射光及び前記第2の反射光が夫々異なる前記受光素子に入射するように、前記第1の視野範囲と前記第2の視野範囲に向けて投光する、
     測定装置。
    16. The measuring device according to claim 15,
    The light receiving section includes a plurality of light receiving elements,
    The projector projects light toward the first viewing range and the second viewing range so that the first reflected light and the second reflected light enter different light receiving elements, respectively.
    measuring device.
  18.  請求項15に記載の測定装置であって、
     前記受光部は、面状に配置された複数の受光素子を含み、
     前記第2の入射面は、更に、前記第1の入射面に対して前記境界線に沿って傾斜し、
     前記投光器は、前記第1の反射光及び前記第2の反射光が夫々前記受光部の異なる前記受光素子に入射するように、前記第1の視野範囲から前記第2の視野範囲に亘る帯状の領域を同時に投光する、
     測定装置。
    16. The measuring device according to claim 15,
    The light receiving section includes a plurality of light receiving elements arranged in a planar manner,
    The second entrance surface is further inclined along the boundary line with respect to the first entrance surface,
    The projector includes a strip-shaped light beam extending from the first viewing range to the second viewing range so that the first reflected light and the second reflected light are respectively incident on different light receiving elements of the light receiving section. illuminate an area at the same time,
    measuring device.
  19.  投光器と、前記投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器と、を備え、
     前記受光器は、受光部と、透過型の光学素子と、を含み、
     前記光学素子は、
      第1の視野範囲からの第1の反射光が入射する第1の入射面と、
      前記第1の入射面に連続して形成され、第2の視野範囲からの第2の反射光が入射する第2の入射面と、
      前記第2の入射面に連続して形成され、第3の視野範囲からの第3の反射光が入射する第3の入射面と、
      前記第1の反射光、前記第2の反射光、及び前記第3の反射光を、前記受光部に出射する出射面と、
     を有し、
     前記第1の入射面、前記第2の入射面、前記第3の入射面、及び前記出射面は、いずれも平坦面であり、
     前記第1の入射面は、前記第2の入射面に対して前記第2の入射面との第1の境界線を折り目として傾斜し、
     前記第3の入射面は、前記第2の入射面に対して前記第2の入射面との第2の境界線を折り目として傾斜している、
     測定装置。
    comprising a light projector and a light receiver that receives reflected light generated by the projector projecting light toward a viewing range,
    The light receiver includes a light receiving section and a transmission type optical element,
    The optical element is
    a first incidence surface on which the first reflected light from the first viewing range is incident;
    a second entrance surface that is formed continuously with the first entrance surface and on which the second reflected light from the second viewing range is incident;
    a third entrance surface that is formed continuously with the second entrance surface and on which the third reflected light from the third viewing range is incident;
    an output surface that outputs the first reflected light, the second reflected light, and the third reflected light to the light receiving section;
    has
    The first entrance surface, the second entrance surface, the third entrance surface, and the exit surface are all flat surfaces,
    the first entrance surface is inclined with respect to the second entrance surface with a first boundary line with the second entrance surface as a fold;
    The third entrance surface is inclined with respect to the second entrance surface with a second boundary line with the second entrance surface as a fold.
    measuring device.
  20.  請求項19に記載の測定装置であって、
     前記投光器は、前記第1の視野範囲、前記第2の視野範囲、及び前記第3の視野範囲に向けて、夫々異なるタイミングで投光する、
     測定装置。
    The measuring device according to claim 19,
    The projector projects light toward the first viewing range, the second viewing range, and the third viewing range at different timings, respectively.
    measuring device.
  21.  請求項19に記載の測定装置であって、
     前記受光部は複数の受光素子を含み、
     前記投光器は、前記第1の反射光、前記第2の反射光、及び前記第3の反射光が夫々、異なる前記受光素子に入射するように、前記第1の視野範囲、前記第2の視野範囲、及び前記第3の視野範囲に向けて投光する、
     測定装置。
    The measuring device according to claim 19,
    The light receiving section includes a plurality of light receiving elements,
    The projector is arranged such that the first visual field range, the second visual field range, and the second visual field range are arranged so that the first reflected light, the second reflected light, and the third reflected light are respectively incident on different light receiving elements. and projecting light toward the third viewing range;
    measuring device.
  22.  請求項19に記載の測定装置であって、
     前記受光部は、面状に配置された複数の受光素子を含み、
     前記第1の入射面は、更に、前記第2の入射面に対し、前記第1の境界線に沿って傾斜し、
     前記第3の入射面は、更に、前記第2の入射面に対し、前記第2の境界線に沿って、前記第1の入射面とは逆の方向に傾斜し、
     前記投光器は、前記第1の反射光、前記第2の反射光、及び前記第3の反射光が夫々前記受光部の異なる前記受光素子に入射するように、前記第1の視野範囲から前記第3の視野範囲に亘る帯状の領域を同時に投光する、
     測定装置。
    The measuring device according to claim 19,
    The light receiving section includes a plurality of light receiving elements arranged in a planar manner,
    The first entrance surface is further inclined along the first boundary line with respect to the second entrance surface,
    The third entrance surface is further inclined with respect to the second entrance surface along the second boundary line in a direction opposite to the first entrance surface,
    The projector is arranged to extend from the first visual field range to the first reflected light such that the first reflected light, the second reflected light, and the third reflected light are respectively incident on different light receiving elements of the light receiving section. Simultaneously illuminates a strip-shaped area spanning 3 viewing ranges.
    measuring device.
  23.  投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器であって、
     受光部と、透過型の光学素子と、を含み、
     前記光学素子は、
      第1の視野範囲からの第1の反射光が入射する第1の入射面と、
      前記第1の入射面に連続して形成され、前記第1の視野範囲に連続する第2の視野範囲からの第2の反射光が入射する第2の入射面と、
      前記第1の反射光及び前記第2の反射光を、前記受光部に出射する出射面と、
     を有し、
     前記第1の入射面、前記第2の入射面、及び前記出射面は、いずれも平坦面であり、
     前記第2の入射面は、前記第1の入射面に対して前記第1の入射面との境界線を折り目として傾斜している、
     受光器。
    A light receiver that receives reflected light generated by a light projector projecting light toward a viewing range,
    including a light receiving section and a transmission type optical element,
    The optical element is
    a first incidence surface on which the first reflected light from the first viewing range is incident;
    a second entrance surface that is formed continuously with the first entrance surface and on which second reflected light from a second viewing range that is continuous with the first viewing range is incident;
    an output surface that outputs the first reflected light and the second reflected light to the light receiving section;
    has
    The first entrance surface, the second entrance surface, and the exit surface are all flat surfaces,
    The second entrance surface is inclined with respect to the first entrance surface with a boundary line with the first entrance surface as a fold.
    Receiver.
  24.  請求項23に記載の受光器であって、
     前記受光部は、面状に配置された複数の受光素子を含み、
     前記第2の入射面は、更に、前記第1の入射面に対して前記境界線に沿って傾斜している、
     受光器。
    24. The light receiver according to claim 23,
    The light receiving section includes a plurality of light receiving elements arranged in a planar manner,
    The second entrance surface is further inclined along the boundary line with respect to the first entrance surface.
    Receiver.
  25.  投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器であって、
     受光部と、透過型の光学素子と、を含み、
     前記光学素子は、
      第1の視野範囲からの第1の反射光が入射する第1の入射面と、
      前記第1の入射面に連続して形成され、第2の視野範囲からの第2の反射光が入射する第2の入射面と、
      前記第2の入射面に連続して形成され、第3の視野範囲からの第3の反射光が入射する第3の入射面と、
      前記第1の反射光、前記第2の反射光、及び前記第3の反射光を、前記受光部に出射する出射面と、
     を有し、
     前記第1の入射面、前記第2の入射面、前記第3の入射面、及び前記出射面は、いずれも平坦面であり、
     前記第1の入射面は、前記第2の入射面に対して前記第2の入射面との第1の境界線を折り目として傾斜し、
     前記第3の入射面は、前記第2の入射面に対して前記第2の入射面との第2の境界線を折り目として傾斜している、
     受光器。
    A light receiver that receives reflected light generated by a light projector projecting light toward a viewing range,
    including a light receiving section and a transmission type optical element,
    The optical element is
    a first incidence surface on which the first reflected light from the first viewing range is incident;
    a second entrance surface that is formed continuously with the first entrance surface and on which the second reflected light from the second viewing range is incident;
    a third entrance surface that is formed continuously with the second entrance surface and on which the third reflected light from the third viewing range is incident;
    an output surface that outputs the first reflected light, the second reflected light, and the third reflected light to the light receiving section;
    has
    The first entrance surface, the second entrance surface, the third entrance surface, and the exit surface are all flat surfaces,
    the first entrance surface is inclined with respect to the second entrance surface with a first boundary line with the second entrance surface as a fold;
    The third entrance surface is inclined with respect to the second entrance surface with a second boundary line with the second entrance surface as a fold.
    Receiver.
  26.  請求項25に記載の受光器であって、
     前記受光部は、面状に配置された複数の受光素子を含み、
     前記第1の入射面は、更に、前記第2の入射面に対し、前記第1の境界線に沿って傾斜し、
     前記第3の入射面は、更に、前記第2の入射面に対し、前記第2の境界線に沿って、前記第1の入射面とは逆の方向に傾斜する、
     受光器。
    26. The light receiver according to claim 25,
    The light receiving section includes a plurality of light receiving elements arranged in a planar manner,
    The first entrance surface is further inclined along the first boundary line with respect to the second entrance surface,
    The third entrance surface is further inclined with respect to the second entrance surface along the second boundary line in a direction opposite to the first entrance surface.
    Receiver.
  27.  投光器と、前記投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器と、を備え、
     前記投光器は、発光部と、透過型の光学素子と、を含み、
     前記光学素子は、
      前記発光部からの光が入射する入射面と、
      前記入射面に入射する光を第1の視野範囲に向けて出射する第1の出射面と、
      前記入射面に入射する光を第2の視野範囲に向けて出射する第2の出射面と、
     を有し、
     前記入射面、前記第1の出射面、及び前記第2の出射面は、いずれも平坦面であり、
     前記第2の出射面は、前記第1の出射面に対して前記第2の出射面との境界線を折り目として傾斜している、
     測定装置。
    comprising a light projector and a light receiver that receives reflected light generated by the projector projecting light toward a viewing range,
    The projector includes a light emitting section and a transmission type optical element,
    The optical element is
    an entrance surface on which light from the light emitting section enters;
    a first output surface that outputs light incident on the input surface toward a first viewing range;
    a second output surface that outputs the light incident on the input surface toward a second viewing range;
    has
    The incident surface, the first exit surface, and the second exit surface are all flat surfaces,
    The second output surface is inclined with respect to the first output surface with a boundary line with the second output surface as a fold line.
    measuring device.
  28.  投光器と、前記投光器が視野範囲に向けて投光することにより生じる反射光を受光する受光器と、を備え、
     前記投光器は、発光部と、透過型の光学素子と、を含み、
     前記光学素子は、
      前記発光部からの光が入射する入射面と、
      前記入射面に入射する光を第1の視野範囲に向けて出射する第1の出射面と、
      前記入射面に入射する光を第2の視野範囲に向けて出射する第2の出射面と、
      前記入射面に入射する光を第3の視野範囲に向けて出射する第3の出射面と、
     を有し、
     前記入射面、前記第1の出射面、前記第2の出射面、及び前記第3の出射面は、いずれも平坦面であり、
     前記第1の出射面は、前記第2の出射面に対して前記第2の出射面との第1の境界線を折り目として傾斜し、
     前記第3の出射面は、前記第2の出射面に対して前記第2の出射面との第2の境界線を折り目として傾斜している、
     測定装置。
    comprising a light projector and a light receiver that receives reflected light generated by the projector projecting light toward a viewing range,
    The projector includes a light emitting section and a transmission type optical element,
    The optical element is
    an entrance surface on which light from the light emitting section enters;
    a first output surface that outputs light incident on the input surface toward a first viewing range;
    a second output surface that outputs the light incident on the input surface toward a second viewing range;
    a third output surface that outputs the light incident on the input surface toward a third viewing range;
    has
    The incident surface, the first exit surface, the second exit surface, and the third exit surface are all flat surfaces,
    The first exit surface is inclined with respect to the second exit surface with a first boundary line with the second exit surface as a fold,
    The third exit surface is inclined with respect to the second exit surface with a second boundary line with the second exit surface as a fold.
    measuring device.
  29.  視野範囲に向けて投光する投光器であって、
     発光部と、透過型の光学素子と、を含み、
     前記光学素子は、
      前記発光部からの光が入射する入射面と、
      前記入射面に入射する光を第1の視野範囲に向けて出射する第1の出射面と、
      前記入射面に入射する光を第2の視野範囲に向けて出射する第2の出射面と、
     を有し、
     前記入射面、前記第1の出射面、及び前記第2の出射面は、いずれも平坦面であり、
     前記第2の出射面は、前記第1の出射面に対して前記第2の出射面との境界線を折り目として傾斜している、
     投光器。
    A floodlight that emits light toward a viewing range,
    Including a light emitting part and a transmission type optical element,
    The optical element is
    an entrance surface on which light from the light emitting section enters;
    a first output surface that outputs light incident on the input surface toward a first viewing range;
    a second output surface that outputs the light incident on the input surface toward a second viewing range;
    has
    The incident surface, the first exit surface, and the second exit surface are all flat surfaces,
    The second output surface is inclined with respect to the first output surface with a boundary line with the second output surface as a fold line.
    Floodlight.
  30.  視野範囲に向けて投光する投光器であって、
     発光部と、透過型の光学素子と、を含み、
     前記光学素子は、
      前記発光部からの光が入射する入射面と、
      前記入射面に入射する光を第1の視野範囲に向けて出射する第1の出射面と、
      前記入射面に入射する光を第2の視野範囲に向けて出射する第2の出射面と、
      前記入射面に入射する光を第3の視野範囲に向けて出射する第3の出射面と、
     を有し、
     前記入射面、前記第1の出射面、前記第2の出射面、及び前記第3の出射面は、いずれも平坦面であり、
     前記第1の出射面は、前記第2の出射面に対して前記第2の出射面との第1の境界線を折り目として傾斜し、
     前記第3の出射面は、前記第2の出射面に対して前記第2の出射面との第2の境界線を折り目として傾斜している、
     投光器。
    A floodlight that emits light toward a viewing range,
    Including a light emitting part and a transmission type optical element,
    The optical element is
    an entrance surface on which light from the light emitting section enters;
    a first output surface that outputs light incident on the input surface toward a first viewing range;
    a second output surface that outputs the light incident on the input surface toward a second viewing range;
    a third output surface that outputs the light incident on the input surface toward a third viewing range;
    has
    The incident surface, the first exit surface, the second exit surface, and the third exit surface are all flat surfaces,
    The first exit surface is inclined with respect to the second exit surface with a first boundary line with the second exit surface as a fold,
    The third exit surface is inclined with respect to the second exit surface with a second boundary line with the second exit surface as a fold.
    Floodlight.
PCT/JP2023/027061 2022-07-28 2023-07-24 Measuring device, light receiver, and light emitter WO2024024745A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022120204A JP2024017518A (en) 2022-07-28 2022-07-28 Measuring device, receiver, and emitter
JP2022-120204 2022-07-28
JP2022120205A JP2024017519A (en) 2022-07-28 2022-07-28 Measuring device, receiver, and emitter
JP2022-120205 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024745A1 true WO2024024745A1 (en) 2024-02-01

Family

ID=89706638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027061 WO2024024745A1 (en) 2022-07-28 2023-07-24 Measuring device, light receiver, and light emitter

Country Status (1)

Country Link
WO (1) WO2024024745A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199931A (en) * 1989-12-27 1991-08-30 Nippon Arefu:Kk Optical sensor
JPH04147019A (en) * 1990-10-11 1992-05-20 Nippon Arefu:Kk Optical sensor
JPH07270602A (en) * 1994-03-31 1995-10-20 Omron Corp Lens for receiving light, light receiving device, photoelectric sensor and laser radar using them and vehicle loading laser radar
JPH08220230A (en) * 1994-12-14 1996-08-30 Seiko Epson Corp Light sensing device
DE102018133302A1 (en) * 2018-12-21 2020-06-25 Valeo Schalter Und Sensoren Gmbh Optical device and optical sensor device with such a device and motor vehicle with such an optical sensor device
CN211426796U (en) * 2019-10-18 2020-09-04 深圳奥锐达科技有限公司 Off-axis scanning distance measuring system
JP2021015112A (en) * 2020-03-25 2021-02-12 Dolphin株式会社 Optical scanner, object detector, optical detector, optical scanning method, object detection method, and program
CN113156460A (en) * 2020-01-23 2021-07-23 华为技术有限公司 Time of flight TOF sensing module and electronic equipment
JP2022503383A (en) * 2018-06-07 2022-01-12 バラハ ピーティーワイ リミテッド Optical beam director

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199931A (en) * 1989-12-27 1991-08-30 Nippon Arefu:Kk Optical sensor
JPH04147019A (en) * 1990-10-11 1992-05-20 Nippon Arefu:Kk Optical sensor
JPH07270602A (en) * 1994-03-31 1995-10-20 Omron Corp Lens for receiving light, light receiving device, photoelectric sensor and laser radar using them and vehicle loading laser radar
JPH08220230A (en) * 1994-12-14 1996-08-30 Seiko Epson Corp Light sensing device
JP2022503383A (en) * 2018-06-07 2022-01-12 バラハ ピーティーワイ リミテッド Optical beam director
DE102018133302A1 (en) * 2018-12-21 2020-06-25 Valeo Schalter Und Sensoren Gmbh Optical device and optical sensor device with such a device and motor vehicle with such an optical sensor device
CN211426796U (en) * 2019-10-18 2020-09-04 深圳奥锐达科技有限公司 Off-axis scanning distance measuring system
CN113156460A (en) * 2020-01-23 2021-07-23 华为技术有限公司 Time of flight TOF sensing module and electronic equipment
JP2021015112A (en) * 2020-03-25 2021-02-12 Dolphin株式会社 Optical scanner, object detector, optical detector, optical scanning method, object detection method, and program

Similar Documents

Publication Publication Date Title
US11782131B2 (en) 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
JP6995413B2 (en) VCSEL array LIDAR transmitter with small angle divergence
US7193204B2 (en) Multi-track optical encoder employing beam divider
US7057160B2 (en) Optical encoder and output adjustment for the same
JP5562076B2 (en) Optical encoder and displacement measuring device
JP2004069611A (en) Optical wave distance measurement device
JP2021510814A (en) Laser radar and its operation method
US20080048104A1 (en) Optical Encoder
CA2974124A1 (en) Ranging system, integrated panoramic reflector and panoramic collector
RU2467336C2 (en) Device to measure displacement and speed measurement device
EP3492960B1 (en) Arched collimating lens forming a disk-like illumination
JP3752538B2 (en) Optical coupling device
WO2024024745A1 (en) Measuring device, light receiver, and light emitter
JP2002243503A (en) Optical encoder
JP2024017518A (en) Measuring device, receiver, and emitter
EP4025930B1 (en) Spot pattern projector for solid-state lidar system
JP2024017519A (en) Measuring device, receiver, and emitter
JP5454373B2 (en) Encoder
WO2023153438A1 (en) Light projector, light receiver, and measurement device
JP3639378B2 (en) Optical encoder
WO2024075599A1 (en) Light irradiation device, optical ranging device, and vehicle
JP2023181650A (en) Laser radar and light receiving optical system
WO2023156982A1 (en) Device for emitting a light beam and partial beam splitter
JP2564419B2 (en) Optical length measuring device
JPH08254441A (en) Optical encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846475

Country of ref document: EP

Kind code of ref document: A1