WO2024024525A1 - Epoxy resin, resin composition thereof, cured object therefrom, and method for producing epoxy resin - Google Patents

Epoxy resin, resin composition thereof, cured object therefrom, and method for producing epoxy resin Download PDF

Info

Publication number
WO2024024525A1
WO2024024525A1 PCT/JP2023/025904 JP2023025904W WO2024024525A1 WO 2024024525 A1 WO2024024525 A1 WO 2024024525A1 JP 2023025904 W JP2023025904 W JP 2023025904W WO 2024024525 A1 WO2024024525 A1 WO 2024024525A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
epoxy resin
group
represented
independently represents
Prior art date
Application number
PCT/JP2023/025904
Other languages
French (fr)
Japanese (ja)
Inventor
伸悟 金光
正浩 宗
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2024024525A1 publication Critical patent/WO2024024525A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to an epoxy resin that provides a cured product with excellent low dielectric properties, an epoxy resin composition containing the epoxy resin as an essential component, and a cured product, prepreg, laminate, or printed wiring board obtained from the epoxy resin composition. , and a method for producing an epoxy resin.
  • Epoxy resins have excellent adhesiveness, flexibility, heat resistance, chemical resistance, insulation, and curing reactivity, so they are used in a wide variety of applications, including paints, civil engineering adhesives, casting, electrical and electronic materials, and film materials.
  • epoxy resins are widely used in printed wiring board applications, which are one of the electrical and electronic materials, by imparting flame retardance to them.
  • epoxy resins are required not only to have low dielectric properties, but also to have low melt viscosity in order to ensure sealability of circuits on the board.
  • dicyclopentadiene phenol resins with an aliphatic skeleton introduced therein have been proposed to lower the dielectric constant for use in laminates (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 dicyclopentadiene phenol resins with an aliphatic skeleton introduced therein have been proposed to lower the dielectric constant for use in laminates.
  • Patent Documents 3 and 4 aromatic-modified dicyclopentadiene phenol resin
  • the problem to be solved by the present invention is to provide an epoxy resin that can obtain a cured product that exhibits both low dielectric properties and low melt viscosity and exhibits excellent dielectric properties, an epoxy resin composition using the same, and an epoxy resin composition using the same.
  • the purpose is to provide a manufacturing method.
  • an epoxy resin obtained by epoxidizing a mixture of a specific dicyclopentadiene type polyhydric hydroxy resin and a specific monocyclic phenol compound has a low melt viscosity.
  • the inventors have discovered that a cured product obtained from an epoxy resin composition that essentially includes this epoxy resin has excellent low dielectric properties, and has completed the present invention.
  • the present invention includes an epoxy resin component (A) represented by the following general formula (1) and an epoxy resin component (B) represented by the following general formula (5), and in gel permeation chromatography measurement,
  • the epoxy resin is characterized in that the epoxy resin component (B) is in a range of 20 to 80% by area.
  • X is independently a divalent group containing a group represented by the following formula (2) or formula (3), and at least one is represented by formula (2).
  • Z independently represents a glycidyl group or a group represented by the following formula (4). However, at least one of Z in formula (1) and formula (2) is a glycidyl group.
  • n indicates the number of repetitions, and its average value is a number from 0 to 10.
  • R1 independently represents a hydrocarbon group having 1 to 8 carbon atoms
  • R2 independently represents a hydrogen atom, a group represented by formula (2a) or formula (2b), and at least one is represented by formula (2a). ) or formula (2b).
  • R3 independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms
  • R4 independently represents a hydrogen atom or a group represented by formula (2a).
  • A is a residue obtained by removing two R2 from formula (2), and R2 in this case is a hydrogen atom or a group represented by formula (2a).
  • Z independently represents a glycidyl group or a group represented by the following formula (4).
  • Me represents a methyl group.
  • i is an integer from 0 to 2.
  • m1 indicates the number of repetitions, and its average value is a number from 0 to 5.
  • p indicates the number of repetitions, and its average value is a number from 0.01 to 3.
  • R5 independently represents a hydrocarbon group having 1 to 10 carbon atoms, and j is an integer of 1 to 4.
  • R5 independently represents a hydrocarbon group having 1 to 10 carbon atoms, and q is an integer of 1 to 5.
  • G represents a glycidyl group
  • R6 independently represents a hydrocarbon group having 1 to 10 carbon atoms or a group represented by the above formula (2a).
  • s1 is 1 or 2
  • s2 is an integer from 1 to 5
  • s1+s2 is an integer from 2 to 6.
  • the present invention is an epoxy resin obtained by epoxidizing a mixture of a polyhydric hydroxy resin represented by the following general formula (6) and a monocyclic phenol compound represented by the following general formula (7).
  • R1 independently represents a hydrocarbon group having 1 to 8 carbon atoms
  • R21 independently represents a hydrogen atom, a group represented by formula (6a) or formula (6b), and at least one is represented by formula (6a). ) or formula (6b).
  • R3 independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms
  • R4 independently represents a hydrogen atom or a group represented by formula (6a).
  • A1 is a residue obtained by removing two R21 from formula (6), and R21 in this case is a hydrogen atom or a group represented by formula (6a).
  • Me represents a methyl group.
  • i is an integer from 0 to 2.
  • m3 indicates the number of repetitions, and its average value is a number from 0 to 5.
  • p1 indicates the number of repetitions, and its average value is a number from 0.01 to 3.
  • R5 independently represents a hydrocarbon group having 1 to 10 carbon atoms
  • q1 is 1 or 2
  • q2 is an integer of 1 to 5
  • q1+q2 is an integer of 2 to 6.
  • the melt viscosity of the epoxy resin at 150°C is preferably 0.001 to 0.10 Pa ⁇ s.
  • the present invention is an epoxy resin composition containing an epoxy resin and a curing agent, and is characterized in that the epoxy resin is essential.
  • the curing agent is preferably a polyhydric hydroxy resin represented by the above general formula (6).
  • the present invention is a cured product obtained by curing the above epoxy resin composition, and a prepreg, a laminate, or a printed wiring board using the above epoxy resin composition.
  • the present invention provides phenolic properties of a mixture in which 30 to 300 parts by mass of a monocyclic phenol compound represented by the above general formula (7) is blended with 100 parts by mass of a polyhydric hydroxy resin represented by the above general formula (6).
  • the above-mentioned method for producing an epoxy resin is characterized in that 5 to 20 moles of epihalohydrin are reacted per mole of hydroxyl group in the presence of an alkali metal hydroxide.
  • the epoxy resin of the present invention has a low melt viscosity, and the cured product using the epoxy resin obtained by the manufacturing method provides an epoxy resin composition that exhibits excellent low dielectric properties.
  • 1 is a GPC chart of the epoxy resin obtained in Example 1.
  • 1 is an IR chart of the epoxy resin obtained in Example 1.
  • the epoxy resin of the present invention includes an epoxy resin component (A) represented by the following general formula (1) and an epoxy resin component (B) represented by the following general formula (5) as essential components.
  • the epoxy resin component (B) is in the range of 20 to 80 area%.
  • the amount of component (B) is 25 to 70 area %, more preferably 25 to 60 area %.
  • the epoxy resin component (B) is not only an epoxidized product of a monocyclic phenol compound represented by the general formula (7) used as a raw material, but also a polyhydric hydroxy resin represented by the general formula (6).
  • X is independently a divalent group containing a group represented by formula (2) or formula (3), and at least one is represented by formula (2).
  • Z independently represents a glycidyl group or a group represented by formula (4). However, at least one of Z in formula (1) and formula (2) is a glycidyl group.
  • n indicates the number of repetitions, and its average value is a number from 0 to 10, preferably from 0 to 5.
  • G represents a glycidyl group
  • R6 independently represents a hydrocarbon group having 1 to 10 carbon atoms or a group represented by formula (2a).
  • s1 is the number of glycidyloxy groups, which is 1 or 2
  • s2 is the number of substituents R6, and is an integer of 1 to 5, preferably an integer of 1 to 3
  • s1+s2 is an integer from 2 to 6, preferably an integer from 2 to 4.
  • R1 represents a hydrocarbon group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, an aralkyl group having 7 to 8 carbon atoms, or an allyl group.
  • the alkyl group having 1 to 8 carbon atoms may be linear, branched, or cyclic, such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, hexyl group. group, cyclohexyl group, methylcyclohexyl group, etc., but are not limited to these.
  • Examples of the aryl group having 6 to 8 carbon atoms include, but are not limited to, phenyl group, tolyl group, xylyl group, and ethylphenyl group.
  • Examples of the aralkyl group having 7 to 8 carbon atoms include, but are not limited to, benzyl group and ⁇ -methylbenzyl group. Among these substituents, phenyl group and methyl group are preferred, and methyl group is particularly preferred, from the viewpoint of availability and reactivity when forming a cured product.
  • the substitution position of R1 may be any of the ortho, meta, and para positions, but the ortho position is preferable.
  • R2 represents a hydrogen atom or a group represented by formula (2a) or formula (2b), and at least one is represented by formula (2a) or formula (2b). Unlike R1, which is a substituent, R2 does not necessarily represent only a substituent, but also represents a hydrogen atom.
  • the group represented by general formula (2a) or (2b) is a group derived from a monovinyl compound or a divinyl compound.
  • i is the number of substituents R1 and is an integer of 0 to 2, preferably 1 or 2, more preferably 2.
  • Z has the same meaning as Z in formula (1).
  • m1 indicates the number of repetitions, and its average value (number average) is a number from 0 to 5, preferably from 1.0 to 3.0, more preferably from 1.1 to 3.0, and from 1.2 to 2. 5 is more preferred.
  • R5 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • the hydrocarbon group having 1 to 10 carbon atoms include those similar to R1.
  • R5 is preferably a hydrogen atom, a methyl group, or an ethyl group, and particularly preferably a hydrogen atom or an ethyl group.
  • j is the number of substituents R5, and is an integer of 1 to 4, preferably an integer of 1 to 3.
  • R3 represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 8 carbon atoms include those similar to R1.
  • R3 does not necessarily represent only a substituent, but also represents a hydrogen atom, unlike R1, which is a substituent.
  • R3 is preferably a hydrogen atom, a methyl group, or an ethyl group, and particularly preferably a hydrogen atom or an ethyl group, from the viewpoint of availability and heat resistance of a cured product.
  • a vinyl group may be included as R3.
  • the substitution position of R3 may be any of the ortho position, meta position, and para position, but the meta position and para position are preferable.
  • Me represents a methyl group.
  • A is a residue obtained by removing two R2 from formula (2), and R2 in this case is a hydrogen atom or a group represented by formula (2a).
  • R4 independently represents a hydrogen atom or a group represented by formula (6a).
  • p is a repeating number, and represents a number of 0 or more, preferably 0.1 to 2.0, more preferably 0.2 to 1.0, and even more preferably 0.3 to 0.8. Its average value is a number from 0.01 to 3.
  • R5 is the same as R5 in formula (3).
  • q is the number of substituents R5, and is an integer of 1 to 5, preferably an integer of 1 to 3.
  • the epoxy resin of the present invention is preferably obtained by epoxidizing a mixture of a polyhydric hydroxy resin represented by the following general formula (6) and a monocyclic phenol compound represented by the following general formula (7). .
  • R1 and i have the same meanings as R1 and i in formula (2), respectively.
  • R21 independently represents a hydrogen atom, a group represented by formula (6a) or formula (6b), and at least one is represented by formula (6a) or formula (6b).
  • m3 indicates the number of repetitions, and its average value is a number from 0 to 5.
  • R5 is the same as R5 in formula (3).
  • q1 is the number of hydroxyl groups, and is 1 or 2
  • q2 is the number of substituents R5, and is an integer of 1 to 5, preferably an integer of 1 to 3;
  • q1+q2 is an integer of 2 to 6, preferably an integer of 2 to 4.
  • a monophenol compound in which q1 of the monocyclic phenol compound of general formula (7) is 1 is used as a raw material, and when no monophenol compound is used, that is, a di-
  • all Z's are glycidyl groups.
  • Formula (6a) is synonymous with formula (2a).
  • Me, R3, and R4 have the same meanings as Me, R3, and R4 in formula (2b), respectively.
  • A1 is a residue obtained by removing two R21 from formula (6), and R21 in this case is a hydrogen atom or a group represented by formula (6a).
  • p1 is a repeating number, and is a number of 0 or more, preferably 0.1 to 2.0, more preferably 0.2 to 1.0, and even more preferably 0.3 to 0.8. The average value is a number from 0.01 to 3.
  • the polyhydric hydroxy resin represented by general formula (6) can be obtained, for example, by the manufacturing method disclosed in Patent Document 4.
  • the aromatic monovinyl compound and the aromatic divinyl compound used as the raw materials may be used alone, but it is preferable to use them as a mixture.
  • the blending amount (mass ratio) of aromatic monovinyl compound/aromatic divinyl compound is preferably 15/85 to 50/50, more preferably 17/83 to 45/55. By using this amount, the molecular weight can be easily adjusted and the dielectric properties can be further improved.
  • the polyhydric hydroxy resin used as a raw material may contain an impurity having a structure in which a dicyclopentadiene structure and a phenol hydroxyl group are bonded, but it may be used as is as long as it is in a small amount.
  • the phenolic hydroxyl equivalent (g/eq.) of the polyhydric hydroxy resin represented by the general formula (6) is preferably from 160 to 400, more preferably from 180 to 350, even more preferably from 200 to 300.
  • the phenolic hydroxyl equivalent (g/eq.) of the monocyclic phenol compound represented by general formula (7) is preferably 100 to 300, more preferably 110 to 280, and even more preferably 120 to 260.
  • Examples of the monocyclic phenol compound represented by the general formula (7) include cresol, ethylphenol, propylphenol, isopropylphenol, n-butylphenol, t-butylphenol, hexylphenol, cyclohexylphenol, phenylphenol, tolylphenol, benzylphenol, ⁇ -Methylbenzylphenol, allylphenol, dimethylphenol, t-butyl-dimethylphenol, diethylphenol, dipropylphenol, diisopropylphenol, di(n-butyl)phenol, di(t-butyl)phenol, dihexylphenol, dicyclohexylphenol , diphenylphenol, ditolylphenol, dibenzylphenol, bis( ⁇ -methylbenzyl)phenol, methylethylphenol, methylpropylphenol, methylisopropylphenol, methylbutylphenol, methyl-t-butylphenol, methylallylphenol,
  • cresol cresol, phenylphenol, dimethylphenol, diphenylphenol, t-butylcatechol, t-butylresorcinol, and t-butylhydroquinone are preferred, and t-butylcatechol is preferred. Particularly preferred.
  • the above-mentioned polyhydric hydroxy resin as an essential component and a phenol compound other than the above-mentioned monocyclic phenol compound can be used in combination as long as the effects of the epoxy resin of the present invention are not impaired.
  • the phenol compound that can be used in combination is preferably a monovalent or divalent compound.
  • the amount that can be used in combination is preferably 20% by mass or less, more preferably 10% by mass or less, based on the total amount of the phenol compound component.
  • the epoxy resin of the present invention includes an epoxy resin component represented by general formula (1) and an epoxy resin component represented by general formula (5).
  • This epoxy resin is obtained by reacting a mixture of a polyhydric hydroxy resin represented by the general formula (6) and a monocyclic phenol compound represented by the general formula (7) with an epihalohydrin such as epichlorohydrin. This epoxidation reaction is carried out according to a conventionally known method.
  • a polyvalent hydroxy resin and a monocyclic phenol compound are prepared as raw materials, and epihalohydrin is prepared in an excess molar amount relative to the total hydroxyl groups of the polyvalent hydroxy resin and the monocyclic phenol compound, and these reaction raw materials are prepared. It can be obtained by adding an alkali metal hydroxide such as sodium hydroxide as a solid or concentrated aqueous solution to the mixture and reacting at a reaction temperature of 30 to 120°C for 0.5 to 10 hours.
  • an alkali metal hydroxide such as sodium hydroxide as a solid or concentrated aqueous solution
  • a quaternary ammonium salt such as tetraethylammonium chloride is added as a catalyst to the reaction raw material mixture, and the resulting polyhalohydrin ether is reacted at a temperature of 50 to 150°C for 1 to 5 hours. It can also be obtained by adding a metal hydroxide as a solid or concentrated aqueous solution and reacting at a temperature of 30 to 120°C for 1 to 10 hours.
  • the amount of epihalohydrin used is 1 to 20 times in mole, preferably 2 to 8 times in mole, relative to the total hydroxyl groups of the polyhydric hydroxy resin and the monocyclic phenol compound.
  • the amount of alkali metal hydroxide used is 0.85 to 1.15 times the mole of the total hydroxyl groups of the polyhydric hydroxy resin and monocyclic phenol compound.
  • the epoxy resin obtained by these reactions contains unreacted epihalohydrin and alkali metal halide
  • the unreacted epihalohydrin is removed by evaporation from the reaction mixture, and the alkali metal halide is further extracted with water.
  • the desired epoxy resin can be obtained by removing it by a method such as , filtration or the like.
  • the epoxy equivalent (g/eq.) of the epoxy resin of the present invention is preferably 160 to 400, 180-360 is more preferable, and 200-340 is even more preferable.
  • the melt viscosity at 150° C. is preferably 0.001 to 0.10 Pa ⁇ s, more preferably 0.001 to 0.05 Pa ⁇ s.
  • the weight average molecular weight (Mw) is preferably 300 to 2000, more preferably 500 to 1500, and the number average molecular weight (Mn) is preferably 100 to 1000, more preferably 150 to 800.
  • the total chlorine content is preferably 2000 ppm or less, more preferably 1500 ppm or less.
  • the epoxy resin composition of the present invention contains an epoxy resin and a curing agent, and has the epoxy resin of the present invention as an essential component.
  • part or all of the epoxy resin is the epoxy resin of the present invention.
  • the epoxy resin is the epoxy resin of the present invention.
  • the content is more preferably 50% by mass or more, still more preferably 70% by mass or more. If the amount is less than this, the dielectric properties may deteriorate.
  • the epoxy resin used in the epoxy resin composition of the present invention one or more types of various epoxy resins may be used in combination with the epoxy resin of the present invention, if necessary.
  • the amount that can be used in combination is preferably less than 50% by mass, more preferably less than 10% by mass, based on the total amount of the epoxy resin.
  • any ordinary epoxy resin having two or more epoxy groups in the molecule can be used.
  • examples include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol AF epoxy resin, tetramethylbisphenol F epoxy resin, hydroquinone epoxy resin, biphenyl epoxy resin, stilbene epoxy resin, bisphenol fluorene epoxy resin.
  • aliphatic cyclic epoxy resins such as cyclohexanedimethanol diglycidyl ether, glycidyl esters such as dimer acid polyglycidyl ester, phenyldiglycidylamine, tolyldiglycidylamine, diaminodiphenylmethanetetraglycidylamine, aminophenol type epoxy resins, etc.
  • Examples include glycidylamine type epoxy resins, alicyclic epoxy resins such as Celloxide 2021P (manufactured by Daicel Corporation), phosphorus-containing epoxy resins, bromine-containing epoxy resins, urethane-modified epoxy resins, oxazolidone ring-containing epoxy resins, etc.
  • epoxy resins may be used alone or in combination of two or more.
  • epoxy resins represented by the following general formula (8) dicyclopentadiene type epoxy resins other than the present invention, naphthalene diol type epoxy resins, phenol novolak type epoxy resins, aromatic modified phenol novolak type It is more preferable to use an epoxy resin, a cresol novolac type epoxy resin, an ⁇ -naphthol aralkyl type epoxy resin, a dicyclopentadiene type epoxy resin, a phosphorus-containing epoxy resin, and an oxazolidone ring-containing epoxy resin.
  • R7 independently represents a hydrocarbon group having 1 to 8 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, cyclohexyl group. These alkyl groups may be the same or different.
  • V represents a divalent organic group, for example, an alkylene group such as a methylene group, an ethylene group, an isopropylene group, an isobutylene group, a hexafluoroisopropylidene group, -CO-, -O-, -S-, -SO2- , -SS-, or an aralkylene group represented by formula (8a).
  • R8 independently represents a hydrogen atom or a hydrocarbon group having 1 or more carbon atoms, such as a methyl group, and may be the same or different.
  • Ar is a benzene ring or a naphthalene ring, and these benzene rings or naphthalene rings include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 11 carbon atoms, and an aryl group having 7 to 11 carbon atoms. It may have an aralkyl group having 12 carbon atoms, an aryloxy group having 6 to 11 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms as a substituent.
  • Curing agents that are commonly used as curing agents for epoxy resins include various phenolic resins, acid anhydrides, amines, cyanate esters, active esters, hydrazides, acidic polyesters, aromatic cyanates, etc. can be used.
  • a polyhydric hydroxy resin represented by general formula (6) can also be used. These may be used alone or in combination of two or more.
  • the molar ratio of active hydrogen groups in the curing agent is preferably 0.2 to 1.5 mol, preferably 0.3 to 1.4 mol, per 1 mol of epoxy groups in the entire epoxy resin. is more preferable, 0.5 to 1.3 mol is even more preferable, and 0.8 to 1.2 mol is particularly preferable. If it is outside this range, curing may be incomplete and good cured physical properties may not be obtained.
  • the active hydrogen groups are mixed in approximately equal moles to the epoxy groups.
  • the acid anhydride group is blended in an amount of 0.5 to 1.2 mol, preferably 0.6 to 1.0 mol, per 1 mol of epoxy group.
  • the phenolic resin of the present invention is used alone as a curing agent, it is preferably used in an amount of 0.9 to 1.1 mol per mol of the epoxy resin.
  • the active hydrogen group refers to a functional group that has an active hydrogen that is reactive with an epoxy group (including a functional group that has a latent active hydrogen that generates active hydrogen through hydrolysis, etc., and a functional group that exhibits an equivalent curing effect). ), and specific examples include acid anhydride groups, carboxyl groups, amino groups, and phenolic hydroxyl groups.
  • active hydrogen groups 1 mole of carboxyl group or phenolic hydroxyl group is calculated as 1 mole, and 2 moles of amino group (NH2). Furthermore, when the active hydrogen group is not clear, the active hydrogen equivalent can be determined by measurement.
  • the active hydrogen equivalent of the used curing agent can be determined. can be found.
  • phosphorus-containing phenol curing agents such as LC-950PM60 (manufactured by Shin-AT&C), phenol novolac resins such as Shonol BRG-555 (manufactured by Aica Kogyo Co., Ltd.), and DC-5 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
  • cresol novolac resins such as (manufactured by Gunei Kagaku Kogyo Co., Ltd.), phenolic resins containing triazine skeletons, aromatic modified phenol novolac resins, bisphenol A novolac resins, trishydroxyphenylmethane type novolac resins such as Resitop TPM-100 (manufactured by Gunei Chemical Industry Co., Ltd.), Phenols such as naphthol novolak resin, condensates of naphthols and/or bisphenols and aldehydes, phenols such as SN-160, SN-395, SN-485 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), phenol Condensates of phenols and/or naphthols and/or bisphenols with xylylene glycol, condensates of phenols and/or naphthols with isopropenylacetophenone, phenols and/or
  • Novolak phenolic resin can be obtained from phenols and a crosslinking agent.
  • phenols include phenol, cresol, xylenol, butylphenol, amylphenol, nonylphenol, butylmethylphenol, trimethylphenol, phenylphenol, etc.
  • naphthols include 1-naphthol, 2-naphthol, etc. , the bisphenols mentioned above as the phenolic resin curing agent.
  • aldehydes as crosslinking agents include formaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, valeraldehyde, capronaldehyde, benzaldehyde, chloraldehyde, bromaldehyde, glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, adipine aldehyde, and pimeline.
  • biphenyl crosslinking agents include bis(methylol)biphenyl, bis(methoxymethyl)biphenyl, bis(ethoxymethyl)biphenyl, and bis(chloromethyl)biphenyl.
  • acid anhydride curing agents include maleic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, and methylbicyclo[2.2.1]heptane-2.
  • 3-dicarboxylic anhydride 3-dicarboxylic anhydride, bicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, pyromellitic anhydride, phthalic anhydride, anhydride
  • trimellitic acid methylnadic acid
  • copolymers of styrene monomer and maleic anhydride and copolymers of indenes and maleic anhydride.
  • amine curing agents include diethylenetriamine, triethylenetetramine, metaxylene diamine, isophoronediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiphenyl ether, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl ) Aromatic amines such as phenol, polyether amine, biguanide compounds, dicyandiamide and anisidine, and amine compounds such as polyamide amine which is a condensate of acids such as dimer acid and polyamines.
  • the cyanate ester compound is not particularly limited as long as it is a compound having two or more cyanate groups (cyanate ester groups) in one molecule.
  • novolak-type cyanate ester curing agents such as phenol novolac type and alkylphenol novolak type, naphthol aralkyl-type cyanate ester-based curing agents, biphenylalkyl-type cyanate ester-based curing agents, dicyclopentadiene-type cyanate ester-based curing agents, and bisphenol A-type curing agents.
  • bisphenol type cyanate ester curing agents such as bisphenol F type, bisphenol E type, tetramethylbisphenol F type, and bisphenol S type, and prepolymers partially triazinized with these.
  • cyanate ester curing agents include bisphenol A dicyanate, polyphenol cyanate (oligo(3-methylene-1,5-phenylene cyanate), bis(3-methyl-4-cyanatophenyl)methane, bis(3-methyl-4-cyanatophenyl)methane, -ethyl-4-cyanatophenyl)methane, bis(4-cyanatophenyl)-1,1-ethane, 4,4-dicyanate-diphenyl, 2,2-bis(4-cyanatophenyl)-1,1,1, 3,3,3-hexafluoropropane, 4,4'-methylenebis(2,6-dimethylphenyl cyanate), 4,4'-ethylidene diphenyl dicyanate,
  • the active ester curing agent is not particularly limited, but generally contains ester groups with high reactivity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds in one molecule.
  • a compound having two or more is preferably used.
  • the active ester curing agent is preferably one obtained by a condensation reaction between a carboxylic acid compound and/or a thiocarboxylic acid compound and a hydroxy compound and/or a thiol compound.
  • active ester curing agents obtained from a carboxylic acid compound and a hydroxy compound are preferred, and active ester curing agents obtained from a carboxylic acid compound and a phenol compound and/or a naphthol compound are more preferred.
  • the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenolic compounds or naphthol compounds include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , dicyclopentadienyl diphenol, dicyclopentadiene phenol resin which is a raw material for the epoxy resin of the present invention, phenol novolac, and the like.
  • active ester curing agents include active ester curing agents containing a dicyclopentadienyl diphenol structure, active ester curing agents containing a naphthalene structure, and active ester curing agents that are acetylated products of phenol novolak.
  • active ester curing agents that are benzoylated products of phenol novolac are preferred, and among them, active esters containing a dicyclopentadienyl diphenol structure, which is a raw material for the epoxy resin of the present invention, are preferred because they are excellent in improving peel strength.
  • a curing agent based on the curing agent is more preferable.
  • curing agents examples include phosphine compounds such as triphenylphosphine, phosphonium salts such as tetraphenylphosphonium bromide, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, and 2-methylimidazole.
  • phosphine compounds such as triphenylphosphine
  • phosphonium salts such as tetraphenylphosphonium bromide
  • 2-methylimidazole 2-phenylimidazole
  • 2-ethyl-4-methylimidazole 2-methylimidazole
  • Imidazoles such as decyl imidazole and 1-cyanoethyl-2-methylimidazole, imidazole salts which are salts of imidazoles and trimellitic acid, isocyanuric acid, or boron, etc., quaternary ammonium salts such as trimethylammonium chloride, diazabicyclo compounds, Examples include salts of diazabicyclo compounds and phenols, phenol novolac resins, etc., complex compounds of boron trifluoride and amines, ether compounds, etc., aromatic phosphonium salts, or iodonium salts.
  • a curing accelerator can be used in the epoxy resin composition if necessary.
  • curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole, 4-dimethylaminopyridine, 2-(dimethylaminomethyl)phenol, 1, Tertiary amines such as 8-diaza-bicyclo(5,4,0)undecene-7, phosphines such as triphenylphosphine, tricyclohexylphosphine, triphenylphosphine triphenylborane, and metal compounds such as tin octylate. Can be mentioned.
  • the amount used is preferably 0.02 to 5 parts by weight based on 100 parts by weight of the epoxy resin component in the epoxy resin composition of the present invention.
  • An organic solvent or a reactive diluent can be used in the epoxy resin composition to adjust the viscosity.
  • organic solvents examples include amides such as N,N-dimethylformamide and N,N-dimethylacetamide, and ethers such as ethylene glycol monomethyl ether, dimethoxydiethylene glycol, ethylene glycol diethyl ether, diethylene glycol diethyl ether, and triethylene glycol dimethyl ether.
  • Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methanol, ethanol, 1-methoxy-2-propanol, 2-ethyl-1-hexanol, benzyl alcohol, ethylene glycol, propylene glycol, butyl diglycol , alcohols such as pine oil, acetate esters such as butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, cellosolve acetate, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, carbitol acetate, benzyl alcohol acetate, and benzoic acid.
  • Benzoic acid esters such as methyl and ethyl benzoate, cellosolves such as methyl cellosolve, cellosolve, and butyl cellosolve, carbitols such as methyl carbitol, carbitol, butyl carbitol, and aromas such as benzene, toluene, and xylene.
  • cellosolves such as methyl cellosolve, cellosolve, and butyl cellosolve
  • carbitols such as methyl carbitol, carbitol, butyl carbitol
  • aromas such as benzene, toluene, and xylene.
  • Examples include, but are not limited to, group hydrocarbons, dimethyl sulfoxide, acetonitrile, N-methylpyrrolidone, and the like.
  • Examples of the reactive diluent include monofunctional glycidyl ethers such as allyl glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and tolyl glycidyl ether, and monofunctional glycidyl esters such as neodecanoic acid glycidyl ester. etc., but are not limited to these.
  • monofunctional glycidyl ethers such as allyl glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and tolyl glycidyl ether
  • monofunctional glycidyl esters such as neodecanoic acid glycidyl ester. etc., but are not limited to
  • organic solvents or reactive diluents alone or in a mixture of multiple types in the resin composition in an amount of 90% by mass or less as non-volatile content, and the appropriate type and amount to be used will depend on the application. Selected appropriately.
  • a polar solvent with a boiling point of 160°C or less such as methyl ethyl ketone, acetone, or 1-methoxy-2-propanol, and the amount used in the resin composition is 40 to 80% by mass in terms of nonvolatile content. is preferred.
  • ketones for example, ketones, acetic esters, carbitols, aromatic hydrocarbons, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. It is preferably 30 to 60% by mass.
  • the epoxy resin composition may contain other thermosetting resins and thermoplastic resins as long as the properties are not impaired.
  • phenolic resin benzoxazine resin, bismaleimide resin, bismaleimide triazine resin, acrylic resin, petroleum resin, indene resin, coumaron indene resin, phenoxy resin, polyurethane resin, polyester resin, polyamide resin, polyimide resin, polyamideimide resin , polyetherimide resin, polyphenylene ether resin, modified polyphenylene ether resin, polyether sulfone resin, polysulfone resin, polyether ether ketone resin, polyphenylene sulfide resin, polyvinyl formal resin, polysiloxane compound, hydroxyl group-containing polybutadiene, etc.
  • alkylene resins containing alkylene resins examples include, but are not limited to, alkylene resins containing alkylene resins.
  • Various known flame retardants can be used in the epoxy resin composition for the purpose of improving the flame retardancy of the resulting cured product.
  • flame retardants that can be used include halogen flame retardants, phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants. From the environmental point of view, halogen-free flame retardants are preferred, and phosphorus-based flame retardants are particularly preferred. These flame retardants may be used alone or in combination of two or more.
  • inorganic phosphorus compounds include red phosphorus, ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphoric acid amide. It will be done.
  • organic phosphorus compounds include aliphatic phosphoric esters, phosphoric ester compounds, condensed phosphoric esters such as PX-200 (manufactured by Daihachi Chemical Industry Co., Ltd.), phosphazenes, phosphonic acid compounds, and phosphinic acids.
  • organic phosphorus compounds such as phosphine oxide compounds, phosphorane compounds, organic nitrogen-containing phosphorus compounds, and metal salts of phosphinic acid, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- Oxide, 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10-(2,7-dihydroxynaphthyl)-10H-9-oxa-10- Examples include cyclic organic phosphorus compounds such as phosphaphenanthrene-10-oxide, phosphorus-containing epoxy resins that are derivatives of these compounds reacted with compounds such as epoxy resins and phenol resins, and phosphorus-containing curing agents.
  • the blending amount of the flame retardant is appropriately selected depending on the type of phosphorus-based flame retardant, the components of the epoxy resin composition, and the desired degree of flame retardancy.
  • the phosphorus content in the organic component (excluding organic solvent) in the epoxy resin composition is preferably 0.2 to 4% by mass, more preferably 0.4 to 3.5% by mass, More preferably, it is 0.6 to 3% by mass. If the phosphorus content is too low, it may be difficult to ensure flame retardancy, and if it is too high, heat resistance may be adversely affected. Further, when using a phosphorus-based flame retardant, a flame retardant aid such as magnesium hydroxide may be used in combination.
  • a filler can be used in the epoxy resin composition as necessary. Specifically, fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, boehmite, magnesium hydroxide, talc, mica, calcium carbonate, calcium silicate, calcium hydroxide, magnesium carbonate, barium carbonate, barium sulfate, Boron nitride, carbon, carbon fiber, glass fiber, alumina fiber, silica alumina fiber, silicon carbide fiber, polyester fiber, cellulose fiber, aramid fiber, ceramic fiber, particulate rubber, silicone rubber, thermoplastic elastomer, carbon black, pigment, etc. Can be mentioned. The reason why fillers are generally used is to improve impact resistance.
  • metal hydroxides such as aluminum hydroxide, boehmite, and magnesium hydroxide
  • they act as flame retardant aids and have the effect of improving flame retardancy.
  • the blending amount of these fillers is preferably 1 to 150% by mass, more preferably 10 to 70% by mass, based on the entire epoxy resin composition. If the amount is too large, the adhesion required for use in laminates may decrease, and the cured product may become brittle and may not have sufficient mechanical properties. Moreover, if the amount of the filler is small, there is a possibility that the effect of the filler, such as improving the impact resistance of the cured product, will not be achieved.
  • the epoxy resin composition is used as a plate-like substrate
  • fibrous fillers are preferred from the viewpoint of dimensional stability, bending strength, etc. More preferably, a glass fiber substrate in which glass fibers are knitted in a mesh pattern is used.
  • the epoxy resin composition further contains various additives such as a silane coupling agent, an antioxidant, a mold release agent, an antifoaming agent, an emulsifier, a thixotropic agent, a smoothing agent, a flame retardant, and a pigment, as necessary. be able to.
  • the blending amount of these additives is preferably in the range of 0.01 to 20% by mass based on the epoxy resin composition.
  • the fibrous base material By impregnating a fibrous base material with the epoxy resin composition, prepregs used in printed wiring boards and the like can be created.
  • the fibrous base material inorganic fibers such as glass, woven or non-woven fabrics of organic fibers such as polyester resin, polyamine resin, polyacrylic resin, polyimide resin, aromatic polyamide resin, etc. can be used, but are not limited thereto. It's not something you can do.
  • the method for producing prepreg from an epoxy resin composition is not particularly limited, and for example, the epoxy resin composition may be impregnated with a resin varnish prepared by adjusting the viscosity with an organic solvent, and then heated and dried. It is obtained by semi-curing (B-staged) a resin component, and can be dried by heating at 100 to 200° C. for 1 to 40 minutes, for example.
  • the amount of resin in the prepreg is preferably 30 to 80% by mass.
  • a laminated board curing method generally used when manufacturing printed wiring boards can be used, but the method is not limited thereto.
  • a laminated board curing method generally used when manufacturing printed wiring boards can be used, but the method is not limited thereto.
  • one or more sheets of prepreg are laminated, metal foil is placed on one or both sides to form a laminate, and this laminate is heated and pressurized to integrate the laminate.
  • the metal foil single, alloy, or composite metal foils such as copper, aluminum, brass, and nickel can be used.
  • the prepared laminate is heated under pressure to harden the prepreg, and a laminate can be obtained.
  • the heating temperature is 160 to 220°C
  • the pressure is 5 to 50 MPa
  • the heating and pressing time is 40 to 240 minutes, so that the desired cured product can be obtained. If the heating temperature is low, the curing reaction will not proceed sufficiently, and if it is high, the epoxy resin composition may begin to decompose. In addition, if the pressure is too low, air bubbles may remain inside the resulting laminate and the electrical properties may deteriorate, while if it is too high, the resin will flow before curing, resulting in a cured product with the desired thickness. There is a possibility that it will not be possible. Furthermore, if the heating and pressurizing time is short, the curing reaction may not proceed sufficiently, and if it is long, the epoxy resin composition in the prepreg may be thermally decomposed, which is not preferable.
  • An epoxy resin cured product can be obtained by curing the epoxy resin composition in the same manner as known epoxy resin compositions.
  • the method for obtaining a cured product can be the same as for known epoxy resin compositions, such as casting, injection, potting, dipping, drip coating, transfer molding, compression molding, resin sheets, resin Preferred methods include forming a laminate in the form of a coated copper foil, prepreg, etc., and curing it under heat and pressure to form a laminate.
  • the curing temperature at that time is usually 100 to 300°C, and the curing time is usually about 1 to 5 hours.
  • the cured epoxy resin of the present invention can take the form of a laminate, a molded product, an adhesive, a coating film, a film, etc.
  • the dielectric properties include a dielectric constant of 3.20 or less, more preferably 3.10 or less, even more preferably 3.00 or less, a dielectric loss tangent of 0.025 or less, more preferably 0.022 or less, and even more preferably can express 0.020 or less.
  • Hydroxyl group equivalent Measurement was performed in accordance with the JIS K0070 standard, and the unit was expressed in "g/eq.”.
  • the hydroxyl group equivalent of the phenol resin means the phenolic hydroxyl group equivalent.
  • Relative permittivity and dielectric loss tangent Measured according to IPC-TM-650 2.5.5.9. Specifically, the sample was dried in an oven set at 105°C for 2 hours, left to cool in a desiccator, and then the relative permittivity and dielectric loss tangent at a frequency of 1 GHz were determined by the capacitance method using a material analyzer manufactured by AGILENT Technologies. It was evaluated by asking for.
  • GPC gel permeation chromatography measurement: A body (manufactured by Tosoh Corporation, HLC-8220GPC) equipped with a column (manufactured by Tosoh Corporation, TSKgelG4000HXL, TSKgelG3000HXL, TSKgelG2000HXL) in series was used, and the column temperature was set at 40°C. Moreover, tetrahydrofuran (THF) was used as an eluent at a flow rate of 1 mL/min, and a differential refractive index detector was used as a detector.
  • THF tetrahydrofuran
  • 0.1 g of the sample was dissolved in 10 mL of THF, and 50 ⁇ L of the solution was filtered with a microfilter.
  • GPC-8020 Model II version 6.00 manufactured by Tosoh Corporation was used.
  • IR Using a Fourier transform infrared spectrophotometer (Spectrum One FT-IR Spectrometer 1760X, manufactured by Perkin Elmer Precisely), using a diamond ATR, a sample dissolved in toluene was coated on the ATR, dried, and then the wave number was set to 650. Absorbance was measured at ⁇ 4000 cm ⁇ 1 .
  • Spectrum One FT-IR Spectrometer 1760X manufactured by Perkin Elmer Precisely
  • E1 Epoxy resin obtained in Example 1
  • E2 Epoxy resin obtained in Example 2
  • E3 Epoxy resin obtained in Example 3
  • E4 Epoxy resin obtained in Example 4
  • E5 Epoxy resin obtained in Example 5
  • E6 Epoxy resin obtained in Example 6
  • EH1 Epoxy resin obtained in Reference Example 1
  • EH2 Epoxy resin obtained in Reference Example 2
  • EH3 Phenol/dicyclopentadiene type epoxy resin (manufactured by DIC Corporation, HP-7200H, Epoxy equivalent: 280, softening point: 83°C, viscosity at 150°C: 0.40 Pa ⁇ s)
  • EH4 Cyclohexane dimethanol type epoxy resin (manufactured by Nippon Steel Chemical & Materials Co., Ltd., ZX-1658GS, epoxy equivalent 136)
  • Synthesis example 1 Into a reaction apparatus consisting of a glass separable flask equipped with a stirrer, a thermometer, a nitrogen blowing tube, a dropping funnel, and a cooling tube, 500 parts of 2,6-xylenol (the following structural formula), 7.3 parts of 47% BF3 ether complex was charged and heated to 100° C. with stirring. While maintaining the same temperature, 67.6 parts of dicyclopentadiene (the following structural formula) (0.12 times mole relative to 2,6-xylenol) was added dropwise over 1 hour. The mixture was further reacted at a temperature of 115 to 125° C. for 4 hours, and 11 parts of calcium hydroxide was added.
  • 2,6-xylenol the following structural formula
  • the reaction was further carried out at a temperature of 120 to 130°C for 4 hours.
  • the product was dissolved by adding 280 parts of MIBK, neutralized with 1.3 parts of sodium bicarbonate, washed with 90 parts of 80°C warm water, and the lower layer water tank was separated and removed. Thereafter, the mixture was heated to 180° C. under a reduced pressure of 5 mmHg to evaporate and remove MIBK, thereby obtaining a reddish-brown phenol resin (P2).
  • the obtained phenol resin (P2) is represented by the following structural formula (6-1).
  • the hydroxyl equivalent was 250, the softening point was 81°C, the Mw was 740, and the Mn was 540.
  • R22 independently represents a hydrogen atom or a group represented by formula (6a-1) or formula (6b-1), and R42 independently represents a hydrogen atom or a group represented by formula (6a-1). show.
  • A12 is a residue obtained by removing two R22 from formula (6-1).
  • 38 mol% is a group represented by formula (6a-1)
  • 21 mol% is a group represented by formula (6b-1)
  • the remainder is a hydrogen atom.
  • m3 is 1.2 on average.
  • Example 1 In a reaction apparatus equipped with a stirrer, a thermometer, a nitrogen blowing tube, a dropping funnel, and a cooling tube, 50 parts of the phenol resin (P2) obtained in Synthesis Example 1 was added, and 4-t-butylcatechol (TBC: the following structural formula ) 16.6 copies, 185 parts of epichlorohydrin (the following structural formula), 55 parts of diethylene glycol dimethyl ether were added and the mixture was heated to 65°C. While maintaining the temperature at 63 to 67° C. under reduced pressure of 125 mmHg, 35.9 parts of a 49% aqueous sodium hydroxide solution was added dropwise over 4 hours.
  • TBC 4-t-butylcatechol
  • the epoxy equivalent was 281, the melt viscosity was 0.030 Pa ⁇ s, the Mw was 1218, and the Mn was 435.
  • GPC and IR of the obtained epoxy resin (E1) are shown in FIG. 1 and 2, respectively.
  • peak (a) was the epoxy resin component (B) represented by general formula (5), and was 28 area %.
  • the epoxy resin component (B) represented by the general formula (5) includes a component derived from TBC and a component in which m3 is 0 (zero) among the epoxidized products of the phenol resin (P2).
  • Example 2 A reddish-brown epoxy resin (E2) was obtained by carrying out the same operation as in Example 1, except that the phenol resin (P2) was changed to 33.3 parts and the TBC was changed to 22.1 parts.
  • the epoxy equivalent was 258, the melt viscosity was 0.020 Pa ⁇ s, the Mw was 990, and the Mn was 389.
  • the epoxy resin component (B) represented by general formula (5) was 27% by area.
  • the epoxy resin component (B) represented by the general formula (5) includes a component derived from TBC and a component in which m3 is 0 (zero) among the epoxidized products of the phenol resin (P2).
  • Example 3 A reddish-brown epoxy resin (E3) was obtained by carrying out the same operation as in Example 1, except that the phenol resin (P2) was changed to 25 parts and the TBC was changed to 24.9 parts.
  • the epoxy equivalent was 233
  • the melt viscosity was 0.007 Pa ⁇ s
  • the Mw was 752
  • the Mn was 336.
  • the epoxy resin component (B) represented by general formula (5) was 49% by area.
  • the epoxy resin component (B) represented by the general formula (5) includes a component derived from TBC and a component in which m3 is 0 (zero) among the epoxidized products of the phenol resin (P2).
  • Example 4 A reddish-brown epoxy resin (E4) was obtained by carrying out the same operation as in Example 1, except that the phenol resin (P2) was changed to 20 parts and the TBC was changed to 26.6 parts.
  • the epoxy equivalent was 219
  • the melt viscosity was 0.007 Pa ⁇ s
  • the Mw was 551
  • the Mn was 309.
  • the epoxy resin component (B) represented by general formula (5) was 56 area %.
  • the epoxy resin component (B) represented by the general formula (5) includes a component derived from TBC and a component in which m3 is 0 (zero) among the epoxidized products of the phenol resin (P2).
  • Example 5 25 parts of phenol resin (P2), 2,6-xylenol (XL: structural formula below) in place of TBC A reddish-brown epoxy resin (E5) was obtained by carrying out the same operation as in Example 1 except that 36.6 parts of was used.
  • the epoxy equivalent was 274, the melt viscosity was 0.002 Pa ⁇ s, Mw was 470, and Mn was 140.
  • the epoxy resin component (B) represented by general formula (5) was 54% by area.
  • the epoxy resin component (B) represented by the general formula (5) includes a component derived from XL and a component in which m3 is 0 (zero) among the epoxidized products of the phenol resin (P2).
  • Example 6 33.3 parts of phenol resin (P2), 6-t-butyl-2,4-xylenol (TBXL: structural formula below) in place of TBC
  • a reddish-brown epoxy resin (E5) was obtained by carrying out the same operation as in Example 1 except that 47.5 parts of was used.
  • the epoxy equivalent was 297
  • the melt viscosity was 0.002 Pa ⁇ s
  • the Mw was 514
  • the Mn was 244.
  • the epoxy resin component (B) represented by general formula (5) was 47% by area.
  • the epoxy resin component (B) represented by the general formula (5) includes a component derived from TBXL and a component in which m3 is 0 (zero) among the epoxidized products of the phenol resin (P2).
  • Reference example 1 The same operation as in Example 1 was performed except that 100 parts of the phenol resin (P2) and TBC were not blended (0 parts) to obtain a reddish brown epoxy resin (EH1).
  • the epoxy equivalent was 349, the melt viscosity was 0.18 Pa ⁇ s, Mw was 890, and Mn was 580.
  • Reference example 2 A pale yellow epoxy resin (EH2) was obtained by carrying out the same operation as in Example 1, except that the phenol resin (P2) was not blended (0 parts) and the TBC was changed to 33.2 parts.
  • the epoxy equivalent was 197, the melt viscosity was 0.001 Pa ⁇ s, the Mw was 357, and the Mn was 254.
  • Table 1 shows the physical properties of the epoxy resins (E1 to E6, EH1 to EH2).
  • surface shows the value expressed by area % of the content rate of the epoxy resin component (B) represented by general formula (5).
  • Example 7 A mixture of 100 parts of epoxy resin (E1) as an epoxy resin, 37.4 parts of phenol resin (P3) as a hardening agent, and 0.40 parts of C1 as a hardening accelerator, MEK, propylene glycol monomethyl ether, N,N - An epoxy resin composition varnish was obtained by dissolving it in a mixed solvent prepared with dimethylformamide. A glass cloth (manufactured by Nittobo Co., Ltd., WEA 7628 XS13, 0.18 mm thick) was impregnated with the obtained epoxy resin composition varnish. The impregnated glass cloth was dried in a hot air circulating oven at 150° C. for 9 minutes to obtain a prepreg.
  • the obtained prepreg was loosened and passed through a sieve to obtain a prepreg powder with a 100 mesh pass.
  • the obtained prepreg powder was placed in a fluororesin mold and vacuum pressed at 2 MPa under the temperature conditions of 130° C. x 15 minutes + 190° C. x 80 minutes to obtain a 50 mm square x 2 mm thick test piece.
  • Table 2 shows the results of the dielectric constant and dielectric loss tangent of the test pieces.
  • Examples 8 to 13 and Comparative Examples 1 to 3 The ingredients were mixed in the amounts (parts) shown in Table 2, and the same operations as in Example 7 were performed to obtain test pieces.
  • the curing accelerator was used in an amount that could adjust the varnish gel time to about 300 seconds. The same test as in Example 7 was conducted, and the results are shown in Table 2.
  • the epoxy resin of the present invention can be used in a wide variety of applications such as paints, civil engineering adhesives, casting, electrical and electronic materials, and film materials.In particular, it is used as an electronic material for high-speed communication equipment, such as printed wiring boards, which are one of the electrical and electronic materials. It is useful as a material with low signal loss in electronic components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided are an epoxy resin composition exhibiting excellent low-dielectric properties, an epoxy resin giving the epoxy resin composition, and a method for producing the epoxy resin. The epoxy resin is characterized by comprising an epoxy resin component (A) represented by general formula (1) and an epoxy resin component (B) represented by general formula (5), the proportion of the epoxy resin component (B), as determined by gel permeation chromatography, being in the range of 20-80% by area. In [化1], X represents a group represented by formula (2) or formula (3); Z represents a glycidyl group or a group represented by formula (4); n indicates the number of repetitions; G represents a glycidyl group; R6 represents a C1-C10 hydrocarbon group or a group represented by formula (2a); s1 is 1 or 2; s2 is an integer of 1-5; and s1+s2 is an integer of 2-6.

Description

エポキシ樹脂、その樹脂組成物、及びその硬化物、並びにエポキシ樹脂の製造方法Epoxy resin, its resin composition, its cured product, and manufacturing method of epoxy resin
 本発明は、低誘電特性に優れる硬化物を与えるエポキシ樹脂、そのエポキシ樹脂を必須成分とするエポキシ樹脂組成物、及びそのエポキシ樹脂組成物から得られる硬化物、プリプレグ、積層板、又はプリント配線基板、並びにエポキシ樹脂の製造方法に関する。 The present invention relates to an epoxy resin that provides a cured product with excellent low dielectric properties, an epoxy resin composition containing the epoxy resin as an essential component, and a cured product, prepreg, laminate, or printed wiring board obtained from the epoxy resin composition. , and a method for producing an epoxy resin.
 エポキシ樹脂は接着性、可撓性、耐熱性、耐薬品性、絶縁性、硬化反応性に優れることから、塗料、土木接着、注型、電気電子材料、フィルム材料等多岐にわたって使用されている。特に、電気電子材料の一つであるプリント配線基板用途ではエポキシ樹脂に難燃性を付与することによって広く使用されている。 Epoxy resins have excellent adhesiveness, flexibility, heat resistance, chemical resistance, insulation, and curing reactivity, so they are used in a wide variety of applications, including paints, civil engineering adhesives, casting, electrical and electronic materials, and film materials. In particular, epoxy resins are widely used in printed wiring board applications, which are one of the electrical and electronic materials, by imparting flame retardance to them.
 近年、情報機器の小型化、高性能化が急速に進んでおり、それに伴い、半導体や電子部品の分野で用いられる材料に対し、これまでよりも高い性能が要求されている。特に、電気・電子部品の材料となるエポキシ樹脂組成物には、基板の薄型化と高機能化に伴う低誘電特性が求められている。 In recent years, information devices have rapidly become smaller and more sophisticated, and as a result, materials used in the fields of semiconductors and electronic components are required to have higher performance than ever before. In particular, epoxy resin compositions used as materials for electrical and electronic components are required to have low dielectric properties as substrates become thinner and more functional.
 一方、エポキシ樹脂には低誘電特性だけでなく、基板上の回路の封止性を担保するために低溶融粘度性が求められる。これまで積層板用途の低誘電率化として、例えば、脂肪族骨格を導入したジシクロペンタジエンフェノール樹脂等が提案されている(特許文献1、2)。しかし、誘電正接を改善するには効果が乏しく、低溶融粘度性に関しても満足いくものではなかった。また、芳香族変性を行ったジシクロペンタジエンフェノール樹脂を用いることにより、誘電特性の改善が提案されている(特許文献3、4)。しかし、低誘電特性と低溶融粘度性を両立するものではなかった。 On the other hand, epoxy resins are required not only to have low dielectric properties, but also to have low melt viscosity in order to ensure sealability of circuits on the board. For example, dicyclopentadiene phenol resins with an aliphatic skeleton introduced therein have been proposed to lower the dielectric constant for use in laminates (Patent Documents 1 and 2). However, it was not very effective in improving the dielectric loss tangent, and was not satisfactory in terms of low melt viscosity. Furthermore, it has been proposed to improve dielectric properties by using aromatic-modified dicyclopentadiene phenol resin (Patent Documents 3 and 4). However, it was not possible to achieve both low dielectric properties and low melt viscosity.
特開2001-240654号公報Japanese Patent Application Publication No. 2001-240654 特開平5-339341号公報Japanese Patent Application Publication No. 5-339341 特開2016-69524号公報JP2016-69524A 国際公開第2022/124252号International Publication No. 2022/124252
 従って、本発明が解決しようとする課題は、低誘電特性及び低溶融粘度性を両立し、優れた誘電特性を発現する硬化物が得られるエポキシ樹脂、それを用いたエポキシ樹脂組成物、並びにその製造方法を提供することにある。 Therefore, the problem to be solved by the present invention is to provide an epoxy resin that can obtain a cured product that exhibits both low dielectric properties and low melt viscosity and exhibits excellent dielectric properties, an epoxy resin composition using the same, and an epoxy resin composition using the same. The purpose is to provide a manufacturing method.
 上記の課題を解決するために本発明者が種々検討した結果特定のジシクロペンタジエン型多価ヒドロキシ樹脂及び特定の単環フェノール化合物を配合した混合物をエポキシ化して得られるエポキシ樹脂は、低溶融粘度であり、そのエポキシ樹脂を必須とするエポキシ樹脂組成物から得られる硬化物は、低誘電特性が優れることを見出し、本発明を完成した。 As a result of various studies conducted by the present inventor in order to solve the above problems, an epoxy resin obtained by epoxidizing a mixture of a specific dicyclopentadiene type polyhydric hydroxy resin and a specific monocyclic phenol compound has a low melt viscosity. The inventors have discovered that a cured product obtained from an epoxy resin composition that essentially includes this epoxy resin has excellent low dielectric properties, and has completed the present invention.
 すなわち、本発明は、下記一般式(1)で表されるエポキシ樹脂成分(A)と下記一般式(5)で表されるエポキシ樹脂成分(B)を含み、ゲルパーミエーションクロマトグラフィー測定において、前記エポキシ樹脂成分(B)が20~80面積%の範囲であることを特徴とするエポキシ樹脂である。
Figure JPOXMLDOC01-appb-C000011

 ここで、Xは独立に下記式(2)又は式(3)で表される基を含む2価の基であり、少なくとも1つは式(2)である。Zは独立にグリシジル基又は下記式(4)で表される基を示す。但し、式(1)及び式(2)のZのうち、少なくとも1つはグリシジル基である。nは繰り返し数を示し、その平均値は0~10の数である。
Figure JPOXMLDOC01-appb-C000012

 ここで、R1は独立に炭素数1~8の炭化水素基を示し、R2は独立に水素原子、式(2a)又は式(2b)で表される基を示し、少なくとも1つは式(2a)又は式(2b)である。R3は独立に水素原子又は炭素数1~8の炭化水素基を示し、R4は独立に水素原子又は式(2a)で表される基を示す。Aは式(2)から2つのR2を除いた残基であって、この場合のR2は水素原子又は式(2a)で表される基である。Zは独立にグリシジル基又は下記式(4)で表される基を示す。Meはメチル基を示す。iは0~2の整数である。m1は繰り返し数を示し、その平均値は0~5の数である。pは繰り返し数を示し、その平均値は0.01~3の数である。
Figure JPOXMLDOC01-appb-C000013

 ここで、R5は独立に炭素数1~10の炭化水素基を示し、jは1~4の整数である。
Figure JPOXMLDOC01-appb-C000014

 ここで、R5は独立に炭素数1~10の炭化水素基を示し、qは1~5の整数である。
Figure JPOXMLDOC01-appb-C000015

 ここで、Gはグリシジル基を示し、R6は独立に炭素数1~10の炭化水素基又は上記式(2a)で表される基を示す。s1は1又は2であり、s2は1~5の整数であり、s1+s2は2~6の整数である。
That is, the present invention includes an epoxy resin component (A) represented by the following general formula (1) and an epoxy resin component (B) represented by the following general formula (5), and in gel permeation chromatography measurement, The epoxy resin is characterized in that the epoxy resin component (B) is in a range of 20 to 80% by area.
Figure JPOXMLDOC01-appb-C000011

Here, X is independently a divalent group containing a group represented by the following formula (2) or formula (3), and at least one is represented by formula (2). Z independently represents a glycidyl group or a group represented by the following formula (4). However, at least one of Z in formula (1) and formula (2) is a glycidyl group. n indicates the number of repetitions, and its average value is a number from 0 to 10.
Figure JPOXMLDOC01-appb-C000012

Here, R1 independently represents a hydrocarbon group having 1 to 8 carbon atoms, R2 independently represents a hydrogen atom, a group represented by formula (2a) or formula (2b), and at least one is represented by formula (2a). ) or formula (2b). R3 independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R4 independently represents a hydrogen atom or a group represented by formula (2a). A is a residue obtained by removing two R2 from formula (2), and R2 in this case is a hydrogen atom or a group represented by formula (2a). Z independently represents a glycidyl group or a group represented by the following formula (4). Me represents a methyl group. i is an integer from 0 to 2. m1 indicates the number of repetitions, and its average value is a number from 0 to 5. p indicates the number of repetitions, and its average value is a number from 0.01 to 3.
Figure JPOXMLDOC01-appb-C000013

Here, R5 independently represents a hydrocarbon group having 1 to 10 carbon atoms, and j is an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000014

Here, R5 independently represents a hydrocarbon group having 1 to 10 carbon atoms, and q is an integer of 1 to 5.
Figure JPOXMLDOC01-appb-C000015

Here, G represents a glycidyl group, and R6 independently represents a hydrocarbon group having 1 to 10 carbon atoms or a group represented by the above formula (2a). s1 is 1 or 2, s2 is an integer from 1 to 5, and s1+s2 is an integer from 2 to 6.
 本発明は、下記一般式(6)で表される多価ヒドロキシ樹脂と下記一般式(7)で表される単環フェノール化合物の混合物をエポキシ化することで得られるエポキシ樹脂であり、得られたエポキシ樹脂のGPCにおいて、前記単環フェノール化合物のエポキシ化物及び前記多価ヒドロキシ樹脂のm3=0体のエポキシ化物の総量が20~80面積%の範囲であることを特徴とするエポキシ樹脂である。
Figure JPOXMLDOC01-appb-C000016

 ここで、R1は独立に炭素数1~8の炭化水素基を示し、R21は独立に水素原子、式(6a)又は式(6b)で表される基を示し、少なくとも1つは式(6a)又は式(6b)である。R3は独立に水素原子又は炭素数1~8の炭化水素基を示し、R4は独立に水素原子又は式(6a)で表される基を示す。A1は式(6)から2つのR21を除いた残基であって、この場合のR21は水素原子又は式(6a)で表される基である。Meはメチル基を示す。iは0~2の整数である。m3は繰り返し数を示し、その平均値は0~5の数である。p1は繰り返し数を示し、その平均値は0.01~3の数である。
Figure JPOXMLDOC01-appb-C000017

 ここで、R5は独立に炭素数1~10の炭化水素基を示し、q1は1又は2であり、q2は1~5の整数であり、q1+q2は2~6の整数である。
The present invention is an epoxy resin obtained by epoxidizing a mixture of a polyhydric hydroxy resin represented by the following general formula (6) and a monocyclic phenol compound represented by the following general formula (7). An epoxy resin characterized in that, in GPC of the epoxy resin, the total amount of the epoxidized product of the monocyclic phenol compound and the epoxidized product of m3=0 body of the polyhydric hydroxy resin is in the range of 20 to 80% by area. .
Figure JPOXMLDOC01-appb-C000016

Here, R1 independently represents a hydrocarbon group having 1 to 8 carbon atoms, R21 independently represents a hydrogen atom, a group represented by formula (6a) or formula (6b), and at least one is represented by formula (6a). ) or formula (6b). R3 independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R4 independently represents a hydrogen atom or a group represented by formula (6a). A1 is a residue obtained by removing two R21 from formula (6), and R21 in this case is a hydrogen atom or a group represented by formula (6a). Me represents a methyl group. i is an integer from 0 to 2. m3 indicates the number of repetitions, and its average value is a number from 0 to 5. p1 indicates the number of repetitions, and its average value is a number from 0.01 to 3.
Figure JPOXMLDOC01-appb-C000017

Here, R5 independently represents a hydrocarbon group having 1 to 10 carbon atoms, q1 is 1 or 2, q2 is an integer of 1 to 5, and q1+q2 is an integer of 2 to 6.
 上記エポキシ樹脂の150℃での溶融粘度は0.001~0.10Pa・sであることが好ましい。 The melt viscosity of the epoxy resin at 150°C is preferably 0.001 to 0.10 Pa·s.
 本発明は、エポキシ樹脂と硬化剤を含有するエポキシ樹脂組成物であって、上記エポキシ樹脂を必須とすることを特徴とするエポキシ樹脂組成物である。そして硬化剤は、上記一般式(6)で表される多価ヒドロキシ樹脂が好ましい。 The present invention is an epoxy resin composition containing an epoxy resin and a curing agent, and is characterized in that the epoxy resin is essential. The curing agent is preferably a polyhydric hydroxy resin represented by the above general formula (6).
 本発明は、上記エポキシ樹脂組成物を硬化させてなる硬化物であり、上記エポキシ樹脂組成物を使用したプリプレグ、積層板、又はプリント配線基板である。 The present invention is a cured product obtained by curing the above epoxy resin composition, and a prepreg, a laminate, or a printed wiring board using the above epoxy resin composition.
 本発明は、上記一般式(6)で表される多価ヒドロキシ樹脂100質量部に対し、上記一般式(7)で表される単環フェノール化合物30~300質量部を配合した混合物のフェノール性水酸基1モルに対して、5~20モルのエピハロヒドリンを、アルカリ金属水酸化物の存在下で反応させることを特徴とする上記エポキシ樹脂の製造方法である。 The present invention provides phenolic properties of a mixture in which 30 to 300 parts by mass of a monocyclic phenol compound represented by the above general formula (7) is blended with 100 parts by mass of a polyhydric hydroxy resin represented by the above general formula (6). The above-mentioned method for producing an epoxy resin is characterized in that 5 to 20 moles of epihalohydrin are reacted per mole of hydroxyl group in the presence of an alkali metal hydroxide.
 本発明のエポキシ樹脂は低溶融粘度であり、その製造方法で得られたエポキシ樹脂を使用した硬化物は優れた低誘電特性を発現するエポキシ樹脂組成物を与える。 The epoxy resin of the present invention has a low melt viscosity, and the cured product using the epoxy resin obtained by the manufacturing method provides an epoxy resin composition that exhibits excellent low dielectric properties.
実施例1で得たエポキシ樹脂のGPCチャートである。1 is a GPC chart of the epoxy resin obtained in Example 1. 実施例1で得たエポキシ樹脂のIRチャートである。1 is an IR chart of the epoxy resin obtained in Example 1.
 以下、本発明の実施の形態について詳細に説明する。
 本発明のエポキシ樹脂は、下記一般式(1)で表されるエポキシ樹脂成分(A)と下記一般式(5)で表されるエポキシ樹脂成分(B)を必須成分として含む。
 ゲルパーミエーションクロマトグラフィー測定において、エポキシ樹脂成分(B)が20~80面積%の範囲である。好ましくは、成分(B)25~70面積%、より好ましくは成分(B)25~60面積%である。
 ここで、エポキシ樹脂成分(B)としては、原料として使用する一般式(7)で表される単環フェノール化合物のエポキシ化物だけでなく、一般式(6)で表される多価ヒドロキシ樹脂のエポキシ化物のうち、m3が0(ゼロ)のもの(m3=0体)も該当する。
Embodiments of the present invention will be described in detail below.
The epoxy resin of the present invention includes an epoxy resin component (A) represented by the following general formula (1) and an epoxy resin component (B) represented by the following general formula (5) as essential components.
In gel permeation chromatography measurement, the epoxy resin component (B) is in the range of 20 to 80 area%. Preferably, the amount of component (B) is 25 to 70 area %, more preferably 25 to 60 area %.
Here, the epoxy resin component (B) is not only an epoxidized product of a monocyclic phenol compound represented by the general formula (7) used as a raw material, but also a polyhydric hydroxy resin represented by the general formula (6). Among epoxidized products, those in which m3 is 0 (zero) (m3 = 0 body) also fall under this category.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(1)において、
 Xは独立に式(2)又は式(3)で表される基を含む2価の基であり、少なくとも1つは式(2)である。
 Zは独立にグリシジル基又は式(4)で表される基を示す。但し、式(1)及び式(2)のZのうち、少なくとも1つはグリシジル基である。
 nは繰り返し数を示し、その平均値は0~10の数であり、0~5が好ましい。
In general formula (1),
X is independently a divalent group containing a group represented by formula (2) or formula (3), and at least one is represented by formula (2).
Z independently represents a glycidyl group or a group represented by formula (4). However, at least one of Z in formula (1) and formula (2) is a glycidyl group.
n indicates the number of repetitions, and its average value is a number from 0 to 10, preferably from 0 to 5.
 一般式(5)において、
 Gはグリシジル基を示し、
 R6は独立に炭素数1~10の炭化水素基又は式(2a)で表される基を示す。
 s1はグリシジルオキシ基の数であって、1又は2であり、
 s2は置換基R6の数であって、1~5の整数であり、1~3の整数が好ましく、
 s1+s2は2~6の整数であり、2~4の整数が好ましい。
In general formula (5),
G represents a glycidyl group,
R6 independently represents a hydrocarbon group having 1 to 10 carbon atoms or a group represented by formula (2a).
s1 is the number of glycidyloxy groups, which is 1 or 2,
s2 is the number of substituents R6, and is an integer of 1 to 5, preferably an integer of 1 to 3;
s1+s2 is an integer from 2 to 6, preferably an integer from 2 to 4.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(2)において、
 R1は炭素数1~8の炭化水素基を示し、炭素数1~8のアルキル基、炭素数6~8のアリール基、炭素数7~8のアラルキル基、又はアリル基が好ましい。炭素数1~8のアルキル基としては、直鎖状、分岐状、環状のいずれでもかまわず、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、ヘキシル基、シクロヘキシル基、メチルシクロヘキシル基等が挙げられるが、これらに限定されない。炭素数6~8のアリール基としては、フェニル基、トリル基、キシリル基、エチルフェニル基等が挙げられるが、これらに限定されない。炭素数7~8のアラルキル基としては、ベンジル基、α-メチルベンジル基等が挙げられるが、これらに限定されない。これらの置換基の中では、入手の容易性及び硬化物とするときの反応性の観点から、フェニル基、メチル基が好ましく、メチル基が特に好ましい。R1の置換位置は、オルソ位、メタ位、パラ位のいずれであってもよいが、オルソ位が好ましい。
In formula (2),
R1 represents a hydrocarbon group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, an aralkyl group having 7 to 8 carbon atoms, or an allyl group. The alkyl group having 1 to 8 carbon atoms may be linear, branched, or cyclic, such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, hexyl group. group, cyclohexyl group, methylcyclohexyl group, etc., but are not limited to these. Examples of the aryl group having 6 to 8 carbon atoms include, but are not limited to, phenyl group, tolyl group, xylyl group, and ethylphenyl group. Examples of the aralkyl group having 7 to 8 carbon atoms include, but are not limited to, benzyl group and α-methylbenzyl group. Among these substituents, phenyl group and methyl group are preferred, and methyl group is particularly preferred, from the viewpoint of availability and reactivity when forming a cured product. The substitution position of R1 may be any of the ortho, meta, and para positions, but the ortho position is preferable.
 R2は水素原子、もしくは式(2a)又は式(2b)で表される基を示し、少なくとも1つは式(2a)又は式(2b)である。R2は、置換基であるR1とは異なり、必ずしも置換基だけを示すものではなく、水素原子をも示す。
 一般式(2a)又は(2b)で表される基は、モノビニル化合物又はジビニル化合物由来の基である。
R2 represents a hydrogen atom or a group represented by formula (2a) or formula (2b), and at least one is represented by formula (2a) or formula (2b). Unlike R1, which is a substituent, R2 does not necessarily represent only a substituent, but also represents a hydrogen atom.
The group represented by general formula (2a) or (2b) is a group derived from a monovinyl compound or a divinyl compound.
 iは置換基R1の数であって、0~2の整数であり、好ましくは1又は2、より好ましくは2である。 i is the number of substituents R1 and is an integer of 0 to 2, preferably 1 or 2, more preferably 2.
 Zは式(1)におけるZと同義である。 Z has the same meaning as Z in formula (1).
 m1は繰り返し数を示し、その平均値(数平均)は0~5の数であり、1.0~3.0が好ましく、1.1~3.0がより好ましく、1.2~2.5が更に好ましい。 m1 indicates the number of repetitions, and its average value (number average) is a number from 0 to 5, preferably from 1.0 to 3.0, more preferably from 1.1 to 3.0, and from 1.2 to 2. 5 is more preferred.
 式(3)において、
 R5は水素原子又は炭素数1~10の炭化水素基を示す。炭素数1~10の炭化水素基としては、R1と同様のものが例示される。R5としては、入手の容易性及び硬化物の耐熱性の観点から、水素原子、メチル基、エチル基が好ましく、水素原子、エチル基が特に好ましい。
 jは置換基R5の数であって、1~4の整数であり、1~3の整数が好ましい。
In formula (3),
R5 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. Examples of the hydrocarbon group having 1 to 10 carbon atoms include those similar to R1. From the viewpoint of availability and heat resistance of the cured product, R5 is preferably a hydrogen atom, a methyl group, or an ethyl group, and particularly preferably a hydrogen atom or an ethyl group.
j is the number of substituents R5, and is an integer of 1 to 4, preferably an integer of 1 to 3.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(2a)及び式(2b)において、
 R3は水素原子又は炭素数1~8の炭化水素基を示す。炭素数1~8の炭化水素基としては、R1と同様のものが例示される。R3も、R2と同様に、置換基であるR1とは異なり、必ずしも置換基だけを示すものではなく、水素原子をも示す。
 原料として、モノビニル化合物を使用する場合、R3としては、入手の容易性及び硬化物の耐熱性の観点から、水素原子、メチル基、エチル基が好ましく、水素原子、エチル基が特に好ましい。原料として、ジビニル化合物を使用する場合、R3としてビニル基が含まれていてもよい。また、R3の置換位置は、オルソ位、メタ位、パラ位のいずれであってもよいが、メタ位とパラ位が好ましい。
 Meはメチル基を示す。
In formula (2a) and formula (2b),
R3 represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms. Examples of the hydrocarbon group having 1 to 8 carbon atoms include those similar to R1. Like R2, R3 does not necessarily represent only a substituent, but also represents a hydrogen atom, unlike R1, which is a substituent.
When a monovinyl compound is used as a raw material, R3 is preferably a hydrogen atom, a methyl group, or an ethyl group, and particularly preferably a hydrogen atom or an ethyl group, from the viewpoint of availability and heat resistance of a cured product. When a divinyl compound is used as a raw material, a vinyl group may be included as R3. Further, the substitution position of R3 may be any of the ortho position, meta position, and para position, but the meta position and para position are preferable.
Me represents a methyl group.
 式(2b)において、
 Aは式(2)から2つのR2を除いた残基であって、この場合のR2は水素原子又は式(2a)で表される基である。
 R4は独立に水素原子又は式(6a)で表される基を示す。
 pは繰り返し数であって、0以上の数を示し、0.1~2.0が好ましく、0.2~1.0がより好ましく、0.3~0.8が更に好ましい。その平均値は0.01~3の数である。
In formula (2b),
A is a residue obtained by removing two R2 from formula (2), and R2 in this case is a hydrogen atom or a group represented by formula (2a).
R4 independently represents a hydrogen atom or a group represented by formula (6a).
p is a repeating number, and represents a number of 0 or more, preferably 0.1 to 2.0, more preferably 0.2 to 1.0, and even more preferably 0.3 to 0.8. Its average value is a number from 0.01 to 3.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(4)において、
 R5は式(3)のR5と同様である。
 qは置換基R5の数であって、1~5の整数であり、1~3の整数が好ましい。
In formula (4),
R5 is the same as R5 in formula (3).
q is the number of substituents R5, and is an integer of 1 to 5, preferably an integer of 1 to 3.
 本発明のエポキシ樹脂は、好ましくは、下記一般式(6)で表される多価ヒドロキシ樹脂と下記一般式(7)で表される単環フェノール化合物との混合物をエポキシ化することで得られる。 The epoxy resin of the present invention is preferably obtained by epoxidizing a mixture of a polyhydric hydroxy resin represented by the following general formula (6) and a monocyclic phenol compound represented by the following general formula (7). .
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 一般式(6)において、
 R1、iは、式(2)のR1、iとそれぞれ同義である。
 R21は独立に水素原子、式(6a)又は式(6b)で表される基を示し、少なくとも1つは式(6a)又は式(6b)である。
 m3は繰り返し数を示し、その平均値は0~5の数である。
In general formula (6),
R1 and i have the same meanings as R1 and i in formula (2), respectively.
R21 independently represents a hydrogen atom, a group represented by formula (6a) or formula (6b), and at least one is represented by formula (6a) or formula (6b).
m3 indicates the number of repetitions, and its average value is a number from 0 to 5.
 一般式(7)において、
 R5は式(3)のR5と同様である。
 q1は水酸基の数であって、1又は2であり、
 q2は置換基R5の数であって、1~5の整数であり、1~3の整数が好ましく、
 q1+q2は2~6の整数であり、2~4の整数が好ましい。
 上記Zが式(4)になる場合は、一般式(7)の単環フェノール化合物のq1が1であるモノフェノール化合物を原料として使用する場合であり、モノフェノール化合物を使用しない場合、すなわちジフェノール化合物(q1=2)のみを使用する場合は、Zの全てがグリシジル基となる。
In general formula (7),
R5 is the same as R5 in formula (3).
q1 is the number of hydroxyl groups, and is 1 or 2,
q2 is the number of substituents R5, and is an integer of 1 to 5, preferably an integer of 1 to 3;
q1+q2 is an integer of 2 to 6, preferably an integer of 2 to 4.
When the above Z becomes formula (4), a monophenol compound in which q1 of the monocyclic phenol compound of general formula (7) is 1 is used as a raw material, and when no monophenol compound is used, that is, a di- When only a phenol compound (q1=2) is used, all Z's are glycidyl groups.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式(6a)は式(2a)と同義である。 Formula (6a) is synonymous with formula (2a).
 式(6b)において、
 Me、R3、R4は、式(2b)のMe、R3、R4とそれぞれ同義である。
 A1は式(6)から2つのR21を除いた残基であって、この場合のR21は水素原子又は式(6a)で表される基である。
 p1は繰り返し数であって、0以上の数を示し、0.1~2.0が好ましく、0.2~1.0がより好ましく、0.3~0.8が更に好ましい。その平均値は0.01~3の数である。
In formula (6b),
Me, R3, and R4 have the same meanings as Me, R3, and R4 in formula (2b), respectively.
A1 is a residue obtained by removing two R21 from formula (6), and R21 in this case is a hydrogen atom or a group represented by formula (6a).
p1 is a repeating number, and is a number of 0 or more, preferably 0.1 to 2.0, more preferably 0.2 to 1.0, and even more preferably 0.3 to 0.8. The average value is a number from 0.01 to 3.
 一般式(6)で表される多価ヒドロキシ樹脂は、例えば、特許文献4で開示されている製造方法で得ることができる。このとき原料に用いる芳香族モノビニル化合物及び芳香族ジビニル化合物はそれぞれ単独で用いてもよいが、混合して用いることが好ましい。この場合の配合量(質量比)としては、芳香族モノビニル化合物/芳香族ジビニル化合物が、15/85~50/50が好ましく、17/83~45/55がより好ましい。この配合量にすることで、分子量の調整が容易になり、誘電特性をより向上させることができる。なお、原料に用いる多価ヒドロキシ樹脂には、ジシクロペンタジエン構造とフェノールの水酸基が結合した構造の不純物が含まれることもあるが、微量であればそのまま使用してもかまわない。 The polyhydric hydroxy resin represented by general formula (6) can be obtained, for example, by the manufacturing method disclosed in Patent Document 4. At this time, the aromatic monovinyl compound and the aromatic divinyl compound used as the raw materials may be used alone, but it is preferable to use them as a mixture. In this case, the blending amount (mass ratio) of aromatic monovinyl compound/aromatic divinyl compound is preferably 15/85 to 50/50, more preferably 17/83 to 45/55. By using this amount, the molecular weight can be easily adjusted and the dielectric properties can be further improved. Note that the polyhydric hydroxy resin used as a raw material may contain an impurity having a structure in which a dicyclopentadiene structure and a phenol hydroxyl group are bonded, but it may be used as is as long as it is in a small amount.
 一般式(6)で表される多価ヒドロキシ樹脂のフェノール性水酸基当量(g/eq.)は160~400が好ましく、180~350がより好ましく、200~300が更に好ましい。
 GPCによる含有量としては、m3=0体が10面積%以下、m3=1体が50~90面積%、m3=2体以上が0~50面積%の範囲にあることが好ましい。
The phenolic hydroxyl equivalent (g/eq.) of the polyhydric hydroxy resin represented by the general formula (6) is preferably from 160 to 400, more preferably from 180 to 350, even more preferably from 200 to 300.
The content determined by GPC is preferably in the range of 10 area % or less of m3 = 0 bodies, 50 to 90 area % of m3 = 1 body, and 0 to 50 area % of m3 = 2 bodies or more.
 一般式(7)で表される単環フェノール化合物のフェノール性水酸基当量(g/eq.)は100~300が好ましく、110~280がより好ましく、120~260が更に好ましい。 The phenolic hydroxyl equivalent (g/eq.) of the monocyclic phenol compound represented by general formula (7) is preferably 100 to 300, more preferably 110 to 280, and even more preferably 120 to 260.
 一般式(7)で表される単環フェノール化合物としては、クレゾール、エチルフェノール、プロピルフェノール、イソプロピルフェノール、n-ブチルフェノール、t-ブチルフェノール、ヘキシルフェノール、シクロヘキシルフェノール、フェニルフェノール、トリルフェノール、ベンジルフェノール、α-メチルベンジルフェノール、アリルフェノール、ジメチルフェノール、t-ブチル-ジメチルフェノール、ジエチルフェノール、ジプロピルフェノール、ジイソプロピルフェノール、ジ(n-ブチル)フェノール、ジ(t-ブチル)フェノール、ジヘキシルフェノール、ジシクロヘキシルフェノール、ジフェニルフェノール、ジトリルフェノール、ジベンジルフェノール、ビス(α-メチルベンジル)フェノール、メチルエチルフェノール、メチルプロピルフェノール、メチルイソプロピルフェノール、メチルブチルフェノール、メチル-t-ブチルフェノール、メチルアリルフェノール、トリルフェニルフェノール、t-ブチルカテコール、t-ブチルレゾルシノール、t-ブチルヒドロキノン等が挙げられる。入手の容易性及び硬化物とするときの反応性の観点から、クレゾール、フェニルフェノール、ジメチルフェノール、ジフェニルフェノール、t-ブチルカテコール、t-ブチルレゾルシノール、t-ブチルヒドロキノンが好ましく、t-ブチルカテコールが特に好ましい。  Examples of the monocyclic phenol compound represented by the general formula (7) include cresol, ethylphenol, propylphenol, isopropylphenol, n-butylphenol, t-butylphenol, hexylphenol, cyclohexylphenol, phenylphenol, tolylphenol, benzylphenol, α-Methylbenzylphenol, allylphenol, dimethylphenol, t-butyl-dimethylphenol, diethylphenol, dipropylphenol, diisopropylphenol, di(n-butyl)phenol, di(t-butyl)phenol, dihexylphenol, dicyclohexylphenol , diphenylphenol, ditolylphenol, dibenzylphenol, bis(α-methylbenzyl)phenol, methylethylphenol, methylpropylphenol, methylisopropylphenol, methylbutylphenol, methyl-t-butylphenol, methylallylphenol, tolylphenylphenol, Examples include t-butylcatechol, t-butylresorcinol, and t-butylhydroquinone. From the viewpoint of easy availability and reactivity when made into a cured product, cresol, phenylphenol, dimethylphenol, diphenylphenol, t-butylcatechol, t-butylresorcinol, and t-butylhydroquinone are preferred, and t-butylcatechol is preferred. Particularly preferred. 
 本発明のエポキシ樹脂の原料として、必須成分としての上記多価ヒドロキシ樹脂と上記単環フェノール化合物以外のフェノール化合物を、本発明のエポキシ樹脂の効果を阻害しない限り、併用することもできる。併用できるフェノール化合物は1価又は2価の化合物が好ましい。併用できる量は、フェノール化合物成分の全量に対して、20質量%以下が好ましく、10質量%以下がより好ましい。 As a raw material for the epoxy resin of the present invention, the above-mentioned polyhydric hydroxy resin as an essential component and a phenol compound other than the above-mentioned monocyclic phenol compound can be used in combination as long as the effects of the epoxy resin of the present invention are not impaired. The phenol compound that can be used in combination is preferably a monovalent or divalent compound. The amount that can be used in combination is preferably 20% by mass or less, more preferably 10% by mass or less, based on the total amount of the phenol compound component.
 本発明のエポキシ樹脂は、一般式(1)で表されるエポキシ樹脂成分と一般式(5)で表されるエポキシ樹脂成分を含む。このエポキシ樹脂は、一般式(6)で表される多価ヒドロキシ樹脂と一般式(7)で表される単環フェノール化合物との混合物にエピクロルヒドリン等のエピハロヒドリンを反応させることによって得られる。このエポキシ化反応は従来公知の方法に従って行われる。 The epoxy resin of the present invention includes an epoxy resin component represented by general formula (1) and an epoxy resin component represented by general formula (5). This epoxy resin is obtained by reacting a mixture of a polyhydric hydroxy resin represented by the general formula (6) and a monocyclic phenol compound represented by the general formula (7) with an epihalohydrin such as epichlorohydrin. This epoxidation reaction is carried out according to a conventionally known method.
 エポキシ化する方法としては、例えば、原料として多価ヒドロキシ樹脂及び単環フェノール化合物と共に、多価ヒドロキシ樹脂及び単環フェノール化合物の合計の水酸基に対して過剰モルのエピハロヒドリンを用意し、これらの反応原料混合物に、水酸化ナトリウム等のアルカリ金属水酸化物を固形又は濃厚水溶液として加え、30~120℃の反応温度で0.5~10時間反応させることにより得ることができる。また、反応原料混合物に、テトラエチルアンモニウムクロライド等の第4級アンモニウム塩を触媒として加え、50~150℃の温度で1~5時間反応して得られるポリハロヒドリンエーテルに水酸化ナトリウム等のアルカリ金属水酸化物を固形又は濃厚水溶液として加え、30~120℃の温度で1~10時間反応させることによっても得ることができる。 As a method for epoxidation, for example, a polyvalent hydroxy resin and a monocyclic phenol compound are prepared as raw materials, and epihalohydrin is prepared in an excess molar amount relative to the total hydroxyl groups of the polyvalent hydroxy resin and the monocyclic phenol compound, and these reaction raw materials are prepared. It can be obtained by adding an alkali metal hydroxide such as sodium hydroxide as a solid or concentrated aqueous solution to the mixture and reacting at a reaction temperature of 30 to 120°C for 0.5 to 10 hours. In addition, a quaternary ammonium salt such as tetraethylammonium chloride is added as a catalyst to the reaction raw material mixture, and the resulting polyhalohydrin ether is reacted at a temperature of 50 to 150°C for 1 to 5 hours. It can also be obtained by adding a metal hydroxide as a solid or concentrated aqueous solution and reacting at a temperature of 30 to 120°C for 1 to 10 hours.
 上記反応において、エピハロヒドリンの使用量は多価ヒドロキシ樹脂及び単環フェノール化合物の合計の水酸基に対して1~20倍モルであり、2~8倍モルが好ましい。またアルカリ金属水酸化物の使用量は多価ヒドロキシ樹脂及び単環フェノール化合物の合計の水酸基に対して0.85~1.15倍モルである。 In the above reaction, the amount of epihalohydrin used is 1 to 20 times in mole, preferably 2 to 8 times in mole, relative to the total hydroxyl groups of the polyhydric hydroxy resin and the monocyclic phenol compound. The amount of alkali metal hydroxide used is 0.85 to 1.15 times the mole of the total hydroxyl groups of the polyhydric hydroxy resin and monocyclic phenol compound.
 これらの反応で得られたエポキシ樹脂は、未反応のエピハロヒドリンとアルカリ金属のハロゲン化物を含有しているので、反応混合物より未反応のエピハロヒドリンを蒸発除去し、更にアルカリ金属のハロゲン化物を水による抽出、ろ別等の方法により除去して、目的とするエポキシ樹脂を得ることができる。 Since the epoxy resin obtained by these reactions contains unreacted epihalohydrin and alkali metal halide, the unreacted epihalohydrin is removed by evaporation from the reaction mixture, and the alkali metal halide is further extracted with water. The desired epoxy resin can be obtained by removing it by a method such as , filtration or the like.
 本発明のエポキシ樹脂のエポキシ当量(g/eq.)は、160~400が好ましく、
180~360がより好ましく、200~340が更に好ましい。
 150℃での溶融粘度は、0.001~0.10Pa・sが好ましく、0.001~0.05Pa・sがより好ましい。
 重量平均分子量(Mw)は、好ましくは300~2000、より好ましくは500~1500であり、数平均分子量(Mn)は、好ましくは100~1000、より好ましくは150~800である。
 全塩素含有量は、2000ppm以下が好ましく、1500ppm以下が更に好ましい。
The epoxy equivalent (g/eq.) of the epoxy resin of the present invention is preferably 160 to 400,
180-360 is more preferable, and 200-340 is even more preferable.
The melt viscosity at 150° C. is preferably 0.001 to 0.10 Pa·s, more preferably 0.001 to 0.05 Pa·s.
The weight average molecular weight (Mw) is preferably 300 to 2000, more preferably 500 to 1500, and the number average molecular weight (Mn) is preferably 100 to 1000, more preferably 150 to 800.
The total chlorine content is preferably 2000 ppm or less, more preferably 1500 ppm or less.
 本発明のエポキシ樹脂組成物は、エポキシ樹脂及び硬化剤を含有してなり、エポキシ樹脂として本発明のエポキシ樹脂を必須成分とする。この態様としては、エポキシ樹脂の一部又は全部が本発明のエポキシ樹脂である。 The epoxy resin composition of the present invention contains an epoxy resin and a curing agent, and has the epoxy resin of the present invention as an essential component. In this embodiment, part or all of the epoxy resin is the epoxy resin of the present invention.
 好ましくは、エポキシ樹脂の30質量%以上が本発明のエポキシ樹脂である。より好ましくは50質量%以上、更に好ましくは70質量%以上含有するとよい。これよりも少ない場合、誘電特性が悪化する恐れがある。 Preferably, 30% by mass or more of the epoxy resin is the epoxy resin of the present invention. The content is more preferably 50% by mass or more, still more preferably 70% by mass or more. If the amount is less than this, the dielectric properties may deteriorate.
 本発明のエポキシ樹脂組成物において使用するエポキシ樹脂としては、本発明のエポキシ樹脂と共に、必要に応じて各種エポキシ樹脂を1種類又は2種類以上併用してもよい。併用できる量は、エポキシ樹脂の全量に対して、好ましくは50質量%未満、より好ましくは10質量%未満である。 As the epoxy resin used in the epoxy resin composition of the present invention, one or more types of various epoxy resins may be used in combination with the epoxy resin of the present invention, if necessary. The amount that can be used in combination is preferably less than 50% by mass, more preferably less than 10% by mass, based on the total amount of the epoxy resin.
 併用できるエポキシ樹脂としては、分子中にエポキシ基を2個以上有する通常のエポキシ樹脂はすべて使用できる。例を挙げれば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、ヒドロキノン型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスチオエーテル型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニルアラルキルフェノール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、芳香族変性フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、アルキルノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ビナフトール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、β-ナフトールアラルキル型エポキシ樹脂、ジナフトールアラルキル型エポキシ樹脂、α-ナフトールアラルキル型エポキシ樹脂、トリスフェニルメタン型エポキシ樹脂等の3官能エポキシ樹脂、テトラキスフェニルエタン型エポキシ樹脂等の4官能エポキシ樹脂、本発明以外のジシクロペンタジエン型エポキシ樹脂、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、トリメチロールエタンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル等の多価アルコールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル等のアルキレングリコール型エポキシ樹脂、シクロヘキサンジメタノールジグリシジルエーテル等の脂肪族環状エポキシ樹脂、ダイマー酸ポリグリシジルエステル等のグリシジルエステル類、フェニルジグリシジルアミン、トリルジグリシジルアミン、ジアミノジフェニルメタンテトラグリシジルアミン、アミノフェノール型エポキシ樹脂等のグリシジルアミン型エポキシ樹脂、セロキサイド2021P(株式会社ダイセル製)等の脂環式エポキシ樹脂、リン含有エポキシ樹脂、臭素含有エポキシ樹脂、ウレタン変性エポキシ樹脂、オキサゾリドン環含有エポキシ樹脂等が挙げられるが、これらに限定されるものではない。また、これらのエポキシ樹脂は単独で使用してもよいし、2種類以上を併用してもよい。入手容易さの観点から、下記一般式(8)で表されるエポキシ樹脂や、本発明以外のジシクロペンタジエン型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、芳香族変性フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、α-ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、リン含有エポキシ樹脂、オキサゾリドン環含有エポキシ樹脂を使用することが更に好ましい。 As the epoxy resin that can be used in combination, any ordinary epoxy resin having two or more epoxy groups in the molecule can be used. Examples include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol AF epoxy resin, tetramethylbisphenol F epoxy resin, hydroquinone epoxy resin, biphenyl epoxy resin, stilbene epoxy resin, bisphenol fluorene epoxy resin. Resin, bisphenol S type epoxy resin, bisthioether type epoxy resin, resorcinol type epoxy resin, biphenylaralkylphenol type epoxy resin, naphthalene diol type epoxy resin, phenol novolak type epoxy resin, aromatic modified phenol novolac type epoxy resin, cresol novolak type Epoxy resin, alkyl novolac type epoxy resin, bisphenol novolac type epoxy resin, binaphthol type epoxy resin, naphthol novolac type epoxy resin, β-naphthol aralkyl type epoxy resin, dinaphthol aralkyl type epoxy resin, α-naphthol aralkyl type epoxy resin, Tris Trifunctional epoxy resins such as phenylmethane type epoxy resins, tetrafunctional epoxy resins such as tetrakis phenylethane type epoxy resins, dicyclopentadiene type epoxy resins other than the present invention, 1,4-butanediol diglycidyl ether, 1,6- Polyhydric alcohol polyglycidyl ethers such as hexanediol diglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, trimethylolethane polyglycidyl ether, pentaerythritol polyglycidyl ether, alkylene glycol type epoxies such as propylene glycol diglycidyl ether, etc. resins, aliphatic cyclic epoxy resins such as cyclohexanedimethanol diglycidyl ether, glycidyl esters such as dimer acid polyglycidyl ester, phenyldiglycidylamine, tolyldiglycidylamine, diaminodiphenylmethanetetraglycidylamine, aminophenol type epoxy resins, etc. Examples include glycidylamine type epoxy resins, alicyclic epoxy resins such as Celloxide 2021P (manufactured by Daicel Corporation), phosphorus-containing epoxy resins, bromine-containing epoxy resins, urethane-modified epoxy resins, oxazolidone ring-containing epoxy resins, etc. It is not limited. Further, these epoxy resins may be used alone or in combination of two or more. From the viewpoint of ease of availability, epoxy resins represented by the following general formula (8), dicyclopentadiene type epoxy resins other than the present invention, naphthalene diol type epoxy resins, phenol novolak type epoxy resins, aromatic modified phenol novolak type It is more preferable to use an epoxy resin, a cresol novolac type epoxy resin, an α-naphthol aralkyl type epoxy resin, a dicyclopentadiene type epoxy resin, a phosphorus-containing epoxy resin, and an oxazolidone ring-containing epoxy resin.
Figure JPOXMLDOC01-appb-C000024

 一般式(8)において、
 R7は独立に、炭素数1~8の炭化水素基を示し、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、シクロヘキシル基等のアルキル基であり、お互いに同じであっても異なっていてもよい。
 Vは2価の有機基を示し、例えば、メチレン基、エチレン基、イソプロピレデン基、イソブチレン基、ヘキサフルオロイソプロピリデン基等のアルキレン基、-CO-、-O-、-S-、-SO2-、-S-S-、又は式(8a)で示されるアラルキレン基を示す。
 式(8a)において、
 R8は独立に、水素原子又は炭素数1以上の炭化水素基を示し、例えば、メチル基であり、お互いに同じであっても異なっていてもよい。
 Arはベンゼン環又はナフタレン環であり、これらのベンゼン環又はナフタレン環は、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~11のアリール基、炭素数7~12のアラルキル基、炭素数6~11のアリールオキシ基、又は炭素数7~12のアラルキルオキシ基を置換基として有してもよい。
Figure JPOXMLDOC01-appb-C000024

In general formula (8),
R7 independently represents a hydrocarbon group having 1 to 8 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, cyclohexyl group. These alkyl groups may be the same or different.
V represents a divalent organic group, for example, an alkylene group such as a methylene group, an ethylene group, an isopropylene group, an isobutylene group, a hexafluoroisopropylidene group, -CO-, -O-, -S-, -SO2- , -SS-, or an aralkylene group represented by formula (8a).
In formula (8a),
R8 independently represents a hydrogen atom or a hydrocarbon group having 1 or more carbon atoms, such as a methyl group, and may be the same or different.
Ar is a benzene ring or a naphthalene ring, and these benzene rings or naphthalene rings include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 11 carbon atoms, and an aryl group having 7 to 11 carbon atoms. It may have an aralkyl group having 12 carbon atoms, an aryloxy group having 6 to 11 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms as a substituent.
 硬化剤としては、各種フェノール樹脂類、酸無水物類、アミン類、シアネートエステル類、活性エステル類、ヒドラジッド類、酸性ポリエステル類、芳香族シアネート類等、エポキシ樹脂の硬化剤として通常使用されるものを使用できる。一般式(6)で表される多価ヒドロキシ樹脂を使用することもできる。
 これらを単独又は2種類以上を併用してもよい。
Curing agents that are commonly used as curing agents for epoxy resins include various phenolic resins, acid anhydrides, amines, cyanate esters, active esters, hydrazides, acidic polyesters, aromatic cyanates, etc. can be used. A polyhydric hydroxy resin represented by general formula (6) can also be used.
These may be used alone or in combination of two or more.
 本発明のエポキシ樹脂組成物において、全エポキシ樹脂のエポキシ基1モルに対して、硬化剤の活性水素基のモル比は0.2~1.5モルが好ましく、0.3~1.4モルがより好ましく、0.5~1.3モルが更に好ましく、0.8~1.2モルが特に好ましい。この範囲を外れる場合は、硬化が不完全になり良好な硬化物性が得られない恐れがある。例えば、フェノール樹脂系硬化剤やアミン系硬化剤を用いた場合はエポキシ基に対して活性水素基をほぼ等モル配合する。酸無水物系硬化剤を用いた場合はエポキシ基1モルに対して酸無水物基を0.5~1.2モル、好ましくは、0.6~1.0モル配合する。本発明のフェノール樹脂を硬化剤として単独で使用する場合は、エポキシ樹脂1モルに対して0.9~1.1モルの範囲で使用することが望ましい。 In the epoxy resin composition of the present invention, the molar ratio of active hydrogen groups in the curing agent is preferably 0.2 to 1.5 mol, preferably 0.3 to 1.4 mol, per 1 mol of epoxy groups in the entire epoxy resin. is more preferable, 0.5 to 1.3 mol is even more preferable, and 0.8 to 1.2 mol is particularly preferable. If it is outside this range, curing may be incomplete and good cured physical properties may not be obtained. For example, when using a phenolic resin curing agent or an amine curing agent, the active hydrogen groups are mixed in approximately equal moles to the epoxy groups. When an acid anhydride curing agent is used, the acid anhydride group is blended in an amount of 0.5 to 1.2 mol, preferably 0.6 to 1.0 mol, per 1 mol of epoxy group. When the phenolic resin of the present invention is used alone as a curing agent, it is preferably used in an amount of 0.9 to 1.1 mol per mol of the epoxy resin.
 本発明でいう活性水素基とはエポキシ基と反応性の活性水素を有する官能基(加水分解等により活性水素を生ずる潜在性活性水素を有する官能基や、同等な硬化作用を示す官能基を含む。)のことであり、具体的には、酸無水物基やカルボキシル基やアミノ基やフェノール性水酸基等が挙げられる。なお、活性水素基に関して、1モルのカルボキシル基やフェノール性水酸基は1モルと、アミノ基(NH2)は2モルと計算される。また、活性水素基が明確ではない場合は、測定によって活性水素当量を求めることができる。例えば、エポキシ当量が既知のフェニルグリシジルエーテル等のモノエポキシ樹脂と活性水素当量が未知の硬化剤を反応させて、消費したモノエポキシ樹脂の量を測定することによって、使用した硬化剤の活性水素当量を求めることができる。 In the present invention, the active hydrogen group refers to a functional group that has an active hydrogen that is reactive with an epoxy group (including a functional group that has a latent active hydrogen that generates active hydrogen through hydrolysis, etc., and a functional group that exhibits an equivalent curing effect). ), and specific examples include acid anhydride groups, carboxyl groups, amino groups, and phenolic hydroxyl groups. Regarding active hydrogen groups, 1 mole of carboxyl group or phenolic hydroxyl group is calculated as 1 mole, and 2 moles of amino group (NH2). Furthermore, when the active hydrogen group is not clear, the active hydrogen equivalent can be determined by measurement. For example, by reacting a monoepoxy resin such as phenyl glycidyl ether with a known epoxy equivalent with a curing agent with an unknown active hydrogen equivalent, and measuring the amount of monoepoxy resin consumed, the active hydrogen equivalent of the used curing agent can be determined. can be found.
 本発明のエポキシ樹脂組成物に用いることのできるフェノール樹脂系硬化剤としては、具体例には、ビスフェノールA、ビスフェノールF、ビスフェノールC、ビスフェノールK、ビスフェノールZ、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールS、テトラメチルビスフェノールZ、テトラブロモビスフェノールA、ジヒドロキシジフェニルスルフィド、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)等のビスフェノール類や、カテコール、レゾルシン、メチルレゾルシン、ハイドロキノン、モノメチルハイドロキノン、ジメチルハイドロキノン、トリメチルハイドロキノン、モノ-t-ブチルハイドロキノン、ジ-t-ブチルハイドロキノン等ジヒドロキシベンゼン類や、ジヒドロキシナフタレン、ジヒドロキシメチルナフタレン、ジヒドロキシメチルナフタレン、トリヒドロキシナフタレン等のヒドロキシナフタレン類や、LC-950PM60(Shin-AT&C社製)等のリン含有フェノール硬化剤や、ショウノールBRG-555(アイカ工業株式会社製)等のフェノールノボラック樹脂、DC-5(日鉄ケミカル&マテリアル株式会社製)等のクレゾールノボラック樹脂、トリアジン骨格含有フェノール樹脂、芳香族変性フェノールノボラック樹脂、ビスフェノールAノボラック樹脂、レヂトップTPM-100(群栄化学工業株式会社製)等のトリスヒドロキシフェニルメタン型ノボラック樹脂、ナフトールノボラック樹脂等のフェノール類、ナフトール類及び/又はビスフェノール類とアルデヒド類との縮合物、SN-160、SN-395、SN-485(日鉄ケミカル&マテリアル株式会社製)等のフェノール類、フェノール類及び/又はナフトール類及び/又はビスフェノール類とキシリレングリコールとの縮合物、フェノール類及び/又はナフトール類とイソプロペニルアセトフェノンとの縮合物、フェノール類及び/又はナフトール類及び/又はビスフェノール類とジシクロペンタジエンとの反応物、フェノール類及び/又はナフトール類及び/又はビスフェノール類とジビニルベンゼンとの反応物、フェノール類及び/又はナフトール類及び/又はビスフェノール類とテルペン類との反応物、フェノール類及び/又はナフトール類及び/又はビスフェノール類とビフェニル系架橋剤との縮合物等のいわゆるノボラックフェノール樹脂といわれるフェノール化合物、ポリブタジエン変性フェノール樹脂、スピロ環を有するフェノール樹脂等が挙げられる。入手容易さの観点から、フェノールノボラック樹脂、ジシクロペンタジエンフェノール樹脂、トリスヒドロキシフェニルメタン型ノボラック樹脂、芳香族変性フェノールノボラック樹脂等が好ましい。 Specific examples of the phenolic resin curing agent that can be used in the epoxy resin composition of the present invention include bisphenol A, bisphenol F, bisphenol C, bisphenol K, bisphenol Z, bisphenol S, tetramethylbisphenol A, and tetramethyl Bisphenols such as bisphenol F, tetramethylbisphenol S, tetramethylbisphenol Z, tetrabromobisphenol A, dihydroxydiphenyl sulfide, 4,4'-thiobis(3-methyl-6-t-butylphenol), catechol, resorcinol, methyl Dihydroxybenzenes such as resorcinol, hydroquinone, monomethylhydroquinone, dimethylhydroquinone, trimethylhydroquinone, mono-t-butylhydroquinone, di-t-butylhydroquinone, and hydroxynaphthalenes such as dihydroxynaphthalene, dihydroxymethylnaphthalene, dihydroxymethylnaphthalene, and trihydroxynaphthalene. phosphorus-containing phenol curing agents such as LC-950PM60 (manufactured by Shin-AT&C), phenol novolac resins such as Shonol BRG-555 (manufactured by Aica Kogyo Co., Ltd.), and DC-5 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.). cresol novolac resins such as (manufactured by Gunei Kagaku Kogyo Co., Ltd.), phenolic resins containing triazine skeletons, aromatic modified phenol novolac resins, bisphenol A novolac resins, trishydroxyphenylmethane type novolac resins such as Resitop TPM-100 (manufactured by Gunei Chemical Industry Co., Ltd.), Phenols such as naphthol novolak resin, condensates of naphthols and/or bisphenols and aldehydes, phenols such as SN-160, SN-395, SN-485 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), phenol Condensates of phenols and/or naphthols and/or bisphenols with xylylene glycol, condensates of phenols and/or naphthols with isopropenylacetophenone, phenols and/or naphthols and/or bisphenols with dipropylene Reaction products with cyclopentadiene, reaction products with phenols and/or naphthols and/or bisphenols and divinylbenzene, reaction products with phenols and/or naphthols and/or bisphenols and terpenes, phenols and Examples include phenol compounds called so-called novolak phenol resins such as condensates of naphthols and/or bisphenols and biphenyl crosslinking agents, polybutadiene-modified phenol resins, and phenol resins having spiro rings. From the viewpoint of easy availability, phenol novolak resins, dicyclopentadiene phenol resins, trishydroxyphenylmethane type novolak resins, aromatic modified phenol novolak resins, and the like are preferred.
 ノボラックフェノール樹脂は、フェノール類と架橋剤とから得ることができる。フェノール類としては、フェノール、クレゾール、キシレノール、ブチルフェノール、アミルフェノール、ノニルフェノール、ブチルメチルフェノール、トリメチルフェノール、フェニルフェノール等が挙げられ、ナフトール類としては、1-ナフトール、2-ナフトール等が挙げられ、その他、上記フェノール樹脂系硬化剤として挙げたビスフェノール類が挙げられる。架橋剤としてのアルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、バレルアルデヒド、カプロンアルデヒド、ベンズアルデヒド、クロルアルデヒド、ブロムアルデヒド、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジピンアルデヒド、ピメリンアルデヒド、セバシンアルデヒド、アクロレイン、クロトンアルデヒド、サリチルアルデヒド、フタルアルデヒド、ヒドロキシベンズアルデヒド等が例示される。ビフェニル系架橋剤としてビス(メチロール)ビフェニル、ビス(メトキシメチル)ビフェニル、ビス(エトキシメチル)ビフェニル、ビス(クロロメチル)ビフェニル等が挙げられる。 Novolak phenolic resin can be obtained from phenols and a crosslinking agent. Examples of phenols include phenol, cresol, xylenol, butylphenol, amylphenol, nonylphenol, butylmethylphenol, trimethylphenol, phenylphenol, etc.; examples of naphthols include 1-naphthol, 2-naphthol, etc. , the bisphenols mentioned above as the phenolic resin curing agent. Examples of aldehydes as crosslinking agents include formaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, valeraldehyde, capronaldehyde, benzaldehyde, chloraldehyde, bromaldehyde, glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, adipine aldehyde, and pimeline. Examples include aldehyde, sebacinaldehyde, acrolein, crotonaldehyde, salicylaldehyde, phthalaldehyde, and hydroxybenzaldehyde. Examples of biphenyl crosslinking agents include bis(methylol)biphenyl, bis(methoxymethyl)biphenyl, bis(ethoxymethyl)biphenyl, and bis(chloromethyl)biphenyl.
 酸無水物系硬化剤としては、具体的には、無水マレイン酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、1,2,3,6-テトラヒドロ無水フタル酸、無水ピロメリット酸、無水フタル酸、無水トリメリット酸、メチルナジック酸、スチレンモノマーと無水マレイン酸との共重合物、インデン類と無水マレイン酸の共重合物等が挙げられる。 Specific examples of acid anhydride curing agents include maleic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, and methylbicyclo[2.2.1]heptane-2. , 3-dicarboxylic anhydride, bicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, pyromellitic anhydride, phthalic anhydride, anhydride Examples include trimellitic acid, methylnadic acid, copolymers of styrene monomer and maleic anhydride, and copolymers of indenes and maleic anhydride.
 アミン系硬化剤としては、具体的には、ジエチレントリアミン、トリエチレンテトラミン、メタキシレンジアミン、イソホロンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、ジアミノジフェニルエーテル、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、ポリエーテルアミン、ビグアニド化合物、ジシアンジアミド、アニシジン等の芳香族アミン類、ダイマー酸等の酸類とポリアミン類との縮合物であるポリアミドアミン等のアミン系化合物等が挙げられる。 Specific examples of amine curing agents include diethylenetriamine, triethylenetetramine, metaxylene diamine, isophoronediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiphenyl ether, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl ) Aromatic amines such as phenol, polyether amine, biguanide compounds, dicyandiamide and anisidine, and amine compounds such as polyamide amine which is a condensate of acids such as dimer acid and polyamines.
 シアネートエステル化合物としては、1分子中に2つ以上のシアナト基(シアン酸エステル基)を有する化合物であれば特に限定されない。例えば、フェノールノボラック型、アルキルフェノールノボラック型等のノボラック型シアネートエステル系硬化剤、ナフトールアラルキル型シアネートエステル系硬化剤、ビフェニルアルキル型シアネートエステル系硬化剤、ジシクロペンタジエン型シアネートエステル系硬化剤、ビスフェノールA型、ビスフェノールF型、ビスフェノールE型、テトラメチルビスフェノールF型、ビスフェノールS型等のビスフェノール型シアネートエステル系硬化剤、及びこれらが一部トリアジン化したプレポリマー等が挙げられる。シアネートエステル系硬化剤の具体例としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート)、ビス(3-メチル-4-シアネートフェニル)メタン、ビス(3-エチル-4-シアネートフェニル)メタン、ビス(4-シアネートフェニル)-1,1-エタン、4,4-ジシアネート-ジフェニル、2,2-ビス(4-シアネートフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、ビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、トリス(4-シアネートフェニル)-1,1,1-エタン、ビス(3,5-ジメチル-4-シアネートフェニル)-4-シアネートフェニル-1,1,1-エタン等の3価のフェノールのシアン酸エステル、フェノールノボラック、クレゾールノボラック、ジシクロペンタジエン構造含有フェノール樹脂等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマー等が挙げられる。これらは1種又は2種以上を使用できる。 The cyanate ester compound is not particularly limited as long as it is a compound having two or more cyanate groups (cyanate ester groups) in one molecule. For example, novolak-type cyanate ester curing agents such as phenol novolac type and alkylphenol novolak type, naphthol aralkyl-type cyanate ester-based curing agents, biphenylalkyl-type cyanate ester-based curing agents, dicyclopentadiene-type cyanate ester-based curing agents, and bisphenol A-type curing agents. , bisphenol type cyanate ester curing agents such as bisphenol F type, bisphenol E type, tetramethylbisphenol F type, and bisphenol S type, and prepolymers partially triazinized with these. Specific examples of cyanate ester curing agents include bisphenol A dicyanate, polyphenol cyanate (oligo(3-methylene-1,5-phenylene cyanate), bis(3-methyl-4-cyanatophenyl)methane, bis(3-methyl-4-cyanatophenyl)methane, -ethyl-4-cyanatophenyl)methane, bis(4-cyanatophenyl)-1,1-ethane, 4,4-dicyanate-diphenyl, 2,2-bis(4-cyanatophenyl)-1,1,1, 3,3,3-hexafluoropropane, 4,4'-methylenebis(2,6-dimethylphenyl cyanate), 4,4'-ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis(4- cyanate) phenylpropane, 1,1-bis(4-cyanatophenylmethane), bis(4-cyanato-3,5-dimethylphenyl)methane, 1,3-bis(4-cyanatophenyl-1-(methylethylidene)) ) Benzene, bifunctional cyanate resins such as bis(4-cyanatophenyl)thioether, bis(4-cyanatophenyl)ether, tris(4-cyanatophenyl)-1,1,1-ethane, bis(3,5-dimethyl) -4-cyanatophenyl) -4-cyanatophenyl-1,1,1-ethane and other trivalent phenol cyanate esters, phenol novolacs, cresol novolacs, polyfunctional resins derived from dicyclopentadiene structure-containing phenolic resins, etc. Examples include cyanate resins and prepolymers in which these cyanate resins are partially triazinized.One type or two or more types of these can be used.
 活性エステル系硬化剤としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、本発明のエポキシ樹脂の原料であるジシクロペンタジエンフェノール樹脂、フェノールノボラック等が挙げられる。活性エステル系硬化剤は1種又は2種以上を使用することができる。活性エステル系硬化剤として、具体的には、ジシクロペンタジエニルジフェノール構造を含む活性エステル系硬化剤、ナフタレン構造を含む活性エステル系硬化剤、フェノールノボラックのアセチル化物である活性エステル系硬化剤、フェノールノボラックのベンゾイル化物である活性エステル系硬化剤等が好ましく、なかでもピール強度の向上に優れるという点で、本発明のエポキシ樹脂の原料を含むジシクロペンタジエニルジフェノール構造を含む活性エステル系硬化剤がより好ましい。 The active ester curing agent is not particularly limited, but generally contains ester groups with high reactivity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds in one molecule. A compound having two or more is preferably used. The active ester curing agent is preferably one obtained by a condensation reaction between a carboxylic acid compound and/or a thiocarboxylic acid compound and a hydroxy compound and/or a thiol compound. Particularly from the viewpoint of improving heat resistance, active ester curing agents obtained from a carboxylic acid compound and a hydroxy compound are preferred, and active ester curing agents obtained from a carboxylic acid compound and a phenol compound and/or a naphthol compound are more preferred. Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of phenolic compounds or naphthol compounds include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , dicyclopentadienyl diphenol, dicyclopentadiene phenol resin which is a raw material for the epoxy resin of the present invention, phenol novolac, and the like. One type or two or more types of active ester curing agents can be used. Examples of active ester curing agents include active ester curing agents containing a dicyclopentadienyl diphenol structure, active ester curing agents containing a naphthalene structure, and active ester curing agents that are acetylated products of phenol novolak. , active ester curing agents that are benzoylated products of phenol novolac are preferred, and among them, active esters containing a dicyclopentadienyl diphenol structure, which is a raw material for the epoxy resin of the present invention, are preferred because they are excellent in improving peel strength. A curing agent based on the curing agent is more preferable.
 その他の硬化剤として、具体的には、トリフェニルホスフィン等のホスフィン化合物、テトラフェニルホスホニウムブロミド等のホスホニウム塩、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-メチルイミダゾール等のイミダゾール類、イミダゾール類とトリメリット酸、イソシアヌル酸、又はホウ素等との塩であるイミダゾール塩類、トリメチルアンモニウムクロリド等の4級アンモニウム塩類、ジアザビシクロ化合物、ジアザビシクロ化合物とフェノール類やフェノールノボラック樹脂類等との塩類、3フッ化ホウ素とアミン類やエーテル化合物等との錯化合物、芳香族ホスホニウム、又はヨードニウム塩等が挙げられる。 Examples of other curing agents include phosphine compounds such as triphenylphosphine, phosphonium salts such as tetraphenylphosphonium bromide, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, and 2-methylimidazole. Imidazoles such as decyl imidazole and 1-cyanoethyl-2-methylimidazole, imidazole salts which are salts of imidazoles and trimellitic acid, isocyanuric acid, or boron, etc., quaternary ammonium salts such as trimethylammonium chloride, diazabicyclo compounds, Examples include salts of diazabicyclo compounds and phenols, phenol novolac resins, etc., complex compounds of boron trifluoride and amines, ether compounds, etc., aromatic phosphonium salts, or iodonium salts.
 エポキシ樹脂組成物には必要に応じて硬化促進剤を使用することができる。使用できる硬化促進剤の例としては、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類、4-ジメチルアミノピリジン、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィントリフェニルボラン等のホスフィン類、オクチル酸スズ等の金属化合物が挙げられる。硬化促進剤を使用する場合、その使用量は、本発明のエポキシ樹脂組成物中のエポキシ樹脂成分100質量部に対して0.02~5質量部が好ましい。硬化促進剤を使用することにより、硬化温度を下げたり、硬化時間を短縮したりすることができる。 A curing accelerator can be used in the epoxy resin composition if necessary. Examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole, 4-dimethylaminopyridine, 2-(dimethylaminomethyl)phenol, 1, Tertiary amines such as 8-diaza-bicyclo(5,4,0)undecene-7, phosphines such as triphenylphosphine, tricyclohexylphosphine, triphenylphosphine triphenylborane, and metal compounds such as tin octylate. Can be mentioned. When a curing accelerator is used, the amount used is preferably 0.02 to 5 parts by weight based on 100 parts by weight of the epoxy resin component in the epoxy resin composition of the present invention. By using a curing accelerator, it is possible to lower the curing temperature and shorten the curing time.
 エポキシ樹脂組成物には、粘度調整用として有機溶媒又は反応性希釈剤を使用することができる。 An organic solvent or a reactive diluent can be used in the epoxy resin composition to adjust the viscosity.
 有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類や、エチレングリコールモノメチルエーテル、ジメトキシジエチレングリコール、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル等のエーテル類や、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類や、メタノール、エタノール、1-メトキシ-2-プロパノール、2-エチル-1-ヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、ブチルジグリコール、パインオイル等のアルコール類や、酢酸ブチル、酢酸メトキシブチル、メチルセロソルブアセテート、セロソルブアセテート、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート、ベンジルアルコールアセテート等の酢酸エステル類や、安息香酸メチル、安息香酸エチル等の安息香酸エステル類や、メチルセロソルブ、セロソルブ、ブチルセロソルブ等のセロソルブ類や、メチルカルビトール、カルビトール、ブチルカルビトール等のカルビトール類や、ベンゼン、トルエン、キシレン等の芳香族炭化水素類や、ジメチルスルホキシド、アセトニトリル、N-メチルピロリドン等が挙げられるが、これらに限定されるものではない。 Examples of organic solvents include amides such as N,N-dimethylformamide and N,N-dimethylacetamide, and ethers such as ethylene glycol monomethyl ether, dimethoxydiethylene glycol, ethylene glycol diethyl ether, diethylene glycol diethyl ether, and triethylene glycol dimethyl ether. Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methanol, ethanol, 1-methoxy-2-propanol, 2-ethyl-1-hexanol, benzyl alcohol, ethylene glycol, propylene glycol, butyl diglycol , alcohols such as pine oil, acetate esters such as butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, cellosolve acetate, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, carbitol acetate, benzyl alcohol acetate, and benzoic acid. Benzoic acid esters such as methyl and ethyl benzoate, cellosolves such as methyl cellosolve, cellosolve, and butyl cellosolve, carbitols such as methyl carbitol, carbitol, butyl carbitol, and aromas such as benzene, toluene, and xylene. Examples include, but are not limited to, group hydrocarbons, dimethyl sulfoxide, acetonitrile, N-methylpyrrolidone, and the like.
 反応性希釈剤としては、例えば、アリルグリシジルエーテル、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、トリルグリシジルエーテル等の単官能グリシジルエーテル類や、ネオデカン酸グリシジルエステル等の単官能グリシジルエステル類等が挙げられるが、これらに限定されるものではない。 Examples of the reactive diluent include monofunctional glycidyl ethers such as allyl glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and tolyl glycidyl ether, and monofunctional glycidyl esters such as neodecanoic acid glycidyl ester. etc., but are not limited to these.
 これらの有機溶媒又は反応性希釈剤は、単独又は複数種類を混合したものを、樹脂組成物において、不揮発分として90質量%以下で使用することが好ましく、その適正な種類や使用量は用途によって適宜選択される。例えば、プリント配線板用途では、メチルエチルケトン、アセトン、1-メトキシ-2-プロパノール等の沸点が160℃以下の極性溶媒であることが好ましく、樹脂組成物における使用量は不揮発分で40~80質量%が好ましい。また、接着フィルム用途では、例えば、ケトン類、酢酸エステル類、カルビトール類、芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を使用することが好ましく、その使用量は不揮発分で30~60質量%が好ましい。 It is preferable to use these organic solvents or reactive diluents alone or in a mixture of multiple types in the resin composition in an amount of 90% by mass or less as non-volatile content, and the appropriate type and amount to be used will depend on the application. Selected appropriately. For example, for printed wiring board applications, it is preferable to use a polar solvent with a boiling point of 160°C or less, such as methyl ethyl ketone, acetone, or 1-methoxy-2-propanol, and the amount used in the resin composition is 40 to 80% by mass in terms of nonvolatile content. is preferred. In addition, for adhesive film applications, it is preferable to use, for example, ketones, acetic esters, carbitols, aromatic hydrocarbons, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. It is preferably 30 to 60% by mass.
 エポキシ樹脂組成物は、特性を損ねない範囲で他の熱硬化性樹脂、熱可塑性樹脂を配合してもよい。例えば、フェノール樹脂、ベンゾオキサジン樹脂、ビスマレイミド樹脂、ビスマレイミドトリアジン樹脂、アクリル樹脂、石油樹脂、インデン樹脂、クマロンインデン樹脂、フェノキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂、ポリビニルホルマール樹脂、ポリシロキサン化合物、水酸基含有ポリブタジエン等の反応性官能基含有アルキレン樹脂類が挙げられるがこれらに限定されるものではない。 The epoxy resin composition may contain other thermosetting resins and thermoplastic resins as long as the properties are not impaired. For example, phenolic resin, benzoxazine resin, bismaleimide resin, bismaleimide triazine resin, acrylic resin, petroleum resin, indene resin, coumaron indene resin, phenoxy resin, polyurethane resin, polyester resin, polyamide resin, polyimide resin, polyamideimide resin , polyetherimide resin, polyphenylene ether resin, modified polyphenylene ether resin, polyether sulfone resin, polysulfone resin, polyether ether ketone resin, polyphenylene sulfide resin, polyvinyl formal resin, polysiloxane compound, hydroxyl group-containing polybutadiene, etc. Examples include, but are not limited to, alkylene resins containing alkylene resins.
 エポキシ樹脂組成物には、得られる硬化物の難燃性の向上を目的に、公知の各種難燃剤を使用することができる。使用できる難燃剤としては、例えば、ハロゲン系難燃剤、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられる。環境に対する観点から、ハロゲンを含まない難燃剤が好ましく、特にリン系難燃剤が好ましい。これらの難燃剤は単独で使用してもよいし、2種類以上を併用してもよい。 Various known flame retardants can be used in the epoxy resin composition for the purpose of improving the flame retardancy of the resulting cured product. Examples of flame retardants that can be used include halogen flame retardants, phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants. From the environmental point of view, halogen-free flame retardants are preferred, and phosphorus-based flame retardants are particularly preferred. These flame retardants may be used alone or in combination of two or more.
 リン系難燃剤は、無機リン系化合物、有機リン系化合物のいずれも使用できる。無機リン系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。有機リン系化合物としては、例えば、脂肪族リン酸エステル、リン酸エステル化合物、例えば、PX-200(大八化学工業株式会社製)等の縮合リン酸エステル類、ホスファゼン、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物や、ホスフィン酸の金属塩の他、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5-ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物や、それらをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体であるリン含有エポキシ樹脂やリン含有硬化剤等が挙げられる。 As the phosphorus flame retardant, both inorganic phosphorus compounds and organic phosphorus compounds can be used. Examples of inorganic phosphorus compounds include red phosphorus, ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphoric acid amide. It will be done. Examples of organic phosphorus compounds include aliphatic phosphoric esters, phosphoric ester compounds, condensed phosphoric esters such as PX-200 (manufactured by Daihachi Chemical Industry Co., Ltd.), phosphazenes, phosphonic acid compounds, and phosphinic acids. In addition to general-purpose organic phosphorus compounds such as phosphine oxide compounds, phosphorane compounds, organic nitrogen-containing phosphorus compounds, and metal salts of phosphinic acid, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- Oxide, 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10-(2,7-dihydroxynaphthyl)-10H-9-oxa-10- Examples include cyclic organic phosphorus compounds such as phosphaphenanthrene-10-oxide, phosphorus-containing epoxy resins that are derivatives of these compounds reacted with compounds such as epoxy resins and phenol resins, and phosphorus-containing curing agents.
 難燃剤の配合量としては、リン系難燃剤の種類、エポキシ樹脂組成物の成分、所望の難燃性の程度によって適宜選択される。例えば、エポキシ樹脂組成物中の有機成分(有機溶媒を除く)中のリン含有量は、好ましくは0.2~4質量%であり、より好ましくは0.4~3.5質量%であり、更に好ましくは0.6~3質量%である。リン含有量が少ないと難燃性の確保が難しくなる恐れがあり、多すぎると耐熱性に悪影響を与える恐れがある。またリン系難燃剤を使用する場合は、水酸化マグネシウム等の難燃助剤を併用してもよい。 The blending amount of the flame retardant is appropriately selected depending on the type of phosphorus-based flame retardant, the components of the epoxy resin composition, and the desired degree of flame retardancy. For example, the phosphorus content in the organic component (excluding organic solvent) in the epoxy resin composition is preferably 0.2 to 4% by mass, more preferably 0.4 to 3.5% by mass, More preferably, it is 0.6 to 3% by mass. If the phosphorus content is too low, it may be difficult to ensure flame retardancy, and if it is too high, heat resistance may be adversely affected. Further, when using a phosphorus-based flame retardant, a flame retardant aid such as magnesium hydroxide may be used in combination.
 エポキシ樹脂組成物には必要に応じて充填材を用いることができる。具体的には、溶融シリカ、結晶シリカ、アルミナ、窒化ケイ素、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、タルク、マイカ、炭酸カルシウム、ケイ酸カルシウム、水酸化カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、窒化ホウ素、炭素、炭素繊維、ガラス繊維、アルミナ繊維、シリカアルミナ繊維、炭化ケイ素繊維、ポリエステル繊維、セルロース繊維、アラミド繊維、セラミック繊維、微粒子ゴム、シリコーンゴム、熱可塑性エラストマー、カーボンブラック、顔料等が挙げられる。一般的に充填材を用いる理由としては耐衝撃性の向上効果が挙げられる。また、水酸化アルミニウム、ベーマイト、水酸化マグネシウム等の金属水酸化物を用いた場合は、難燃助剤として作用し難燃性が向上する効果がある。これら充填材の配合量はエポキシ樹脂組成物全体に対し、1~150質量%が好ましく、10~70質量%がより好ましい。配合量が多いと積層板用途として必要な接着性が低下する恐れがあり、更に硬化物が脆く、十分な機械物性を得られなくなる恐れがある。また配合量が少ないと、硬化物の耐衝撃性の向上等、充填剤の配合効果がでない恐れがある。 A filler can be used in the epoxy resin composition as necessary. Specifically, fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, boehmite, magnesium hydroxide, talc, mica, calcium carbonate, calcium silicate, calcium hydroxide, magnesium carbonate, barium carbonate, barium sulfate, Boron nitride, carbon, carbon fiber, glass fiber, alumina fiber, silica alumina fiber, silicon carbide fiber, polyester fiber, cellulose fiber, aramid fiber, ceramic fiber, particulate rubber, silicone rubber, thermoplastic elastomer, carbon black, pigment, etc. Can be mentioned. The reason why fillers are generally used is to improve impact resistance. Furthermore, when metal hydroxides such as aluminum hydroxide, boehmite, and magnesium hydroxide are used, they act as flame retardant aids and have the effect of improving flame retardancy. The blending amount of these fillers is preferably 1 to 150% by mass, more preferably 10 to 70% by mass, based on the entire epoxy resin composition. If the amount is too large, the adhesion required for use in laminates may decrease, and the cured product may become brittle and may not have sufficient mechanical properties. Moreover, if the amount of the filler is small, there is a possibility that the effect of the filler, such as improving the impact resistance of the cured product, will not be achieved.
 エポキシ樹脂組成物を板状基板等とする場合、その寸法安定性、曲げ強度等の点で繊維状のものが好ましい充填材として挙げられる。より好ましくはガラス繊維を網目状に編んだガラス繊維基板が挙げられる。 When the epoxy resin composition is used as a plate-like substrate, fibrous fillers are preferred from the viewpoint of dimensional stability, bending strength, etc. More preferably, a glass fiber substrate in which glass fibers are knitted in a mesh pattern is used.
 エポキシ樹脂組成物は、更に必要に応じてシランカップリング剤、酸化防止剤、離型剤、消泡剤、乳化剤、揺変性付与剤、平滑剤、難燃剤、顔料等の各種添加剤を配合することができる。これらの添加剤の配合量はエポキシ樹脂組成物に対し、0.01~20質量%の範囲が好ましい。 The epoxy resin composition further contains various additives such as a silane coupling agent, an antioxidant, a mold release agent, an antifoaming agent, an emulsifier, a thixotropic agent, a smoothing agent, a flame retardant, and a pigment, as necessary. be able to. The blending amount of these additives is preferably in the range of 0.01 to 20% by mass based on the epoxy resin composition.
 エポキシ樹脂組成物は繊維状基材に含浸させることによりプリント配線板等で用いられるプリプレグを作成することができる。繊維状基材としてはガラス等の無機繊維や、ポリエステル樹脂等、ポリアミン樹脂、ポリアクリル樹脂、ポリイミド樹脂、芳香族ポリアミド樹脂等の有機質繊維の織布又は不織布を用いることができるがこれに限定されるものではない。エポキシ樹脂組成物からプリプレグを製造する方法としては、特に限定するものではなく、例えば、エポキシ樹脂組成物を有機溶媒で粘度調整して作成した樹脂ワニスに浸漬して含浸した後、加熱乾燥して樹脂成分を半硬化(Bステージ化)して得られるものであり、例えば、100~200℃で1~40分間加熱乾燥することができる。ここで、プリプレグ中の樹脂量は、樹脂分30~80質量%が好ましい。 By impregnating a fibrous base material with the epoxy resin composition, prepregs used in printed wiring boards and the like can be created. As the fibrous base material, inorganic fibers such as glass, woven or non-woven fabrics of organic fibers such as polyester resin, polyamine resin, polyacrylic resin, polyimide resin, aromatic polyamide resin, etc. can be used, but are not limited thereto. It's not something you can do. The method for producing prepreg from an epoxy resin composition is not particularly limited, and for example, the epoxy resin composition may be impregnated with a resin varnish prepared by adjusting the viscosity with an organic solvent, and then heated and dried. It is obtained by semi-curing (B-staged) a resin component, and can be dried by heating at 100 to 200° C. for 1 to 40 minutes, for example. Here, the amount of resin in the prepreg is preferably 30 to 80% by mass.
 プリプレグを硬化するには、一般にプリント配線板を製造するときに用いられる積層板の硬化方法を用いることができるが、これに限定されるものではない。例えば、プリプレグを用いて積層板を形成する場合、プリプレグを一枚又は複数枚積層し、片側又は両側に金属箔を配置して積層物を構成し、この積層物を加熱・加圧して積層一体化する。ここで金属箔としては、銅、アルミニウム、真鍮、ニッケル等の単独、合金、複合の金属箔を用いることができる。そして、作成した積層物を加圧加熱することでプリプレグを硬化させ、積層板を得ることができる。その時、加熱温度を160~220℃、加圧圧力を5~50MPa、加熱加圧時間を40~240分間とすることが好ましく、目的とする硬化物を得ることができる。加熱温度が低いと硬化反応が十分に進行せず、高いとエポキシ樹脂組成物の分解が始まる恐れがある。また、加圧圧力が低いと得られる積層板の内部に気泡が残留し、電気的特性が低下する場合があり、高いと硬化する前に樹脂が流れてしまい、希望する厚みの硬化物が得られない恐れがある。更に、加熱加圧時間が短いと十分に硬化反応が進行しない恐れがあり、長いとプリプレグ中のエポキシ樹脂組成物の熱分解が起こる恐れがあり、好ましくない。 To cure the prepreg, a laminated board curing method generally used when manufacturing printed wiring boards can be used, but the method is not limited thereto. For example, when forming a laminate using prepreg, one or more sheets of prepreg are laminated, metal foil is placed on one or both sides to form a laminate, and this laminate is heated and pressurized to integrate the laminate. become Here, as the metal foil, single, alloy, or composite metal foils such as copper, aluminum, brass, and nickel can be used. Then, the prepared laminate is heated under pressure to harden the prepreg, and a laminate can be obtained. At that time, it is preferable that the heating temperature is 160 to 220°C, the pressure is 5 to 50 MPa, and the heating and pressing time is 40 to 240 minutes, so that the desired cured product can be obtained. If the heating temperature is low, the curing reaction will not proceed sufficiently, and if it is high, the epoxy resin composition may begin to decompose. In addition, if the pressure is too low, air bubbles may remain inside the resulting laminate and the electrical properties may deteriorate, while if it is too high, the resin will flow before curing, resulting in a cured product with the desired thickness. There is a possibility that it will not be possible. Furthermore, if the heating and pressurizing time is short, the curing reaction may not proceed sufficiently, and if it is long, the epoxy resin composition in the prepreg may be thermally decomposed, which is not preferable.
 エポキシ樹脂組成物は、公知のエポキシ樹脂組成物と同様な方法で硬化することによってエポキシ樹脂硬化物を得ることができる。硬化物を得るための方法としては、公知のエポキシ樹脂組成物と同様の方法をとることができ、注型、注入、ポッティング、ディッピング、ドリップコーティング、トランスファ一成形、圧縮成形等や樹脂シート、樹脂付き銅箔、プリプレグ等の形態とし積層して加熱加圧硬化することで積層板とする等の方法が好適に用いられる。その際の硬化温度は通常、100~300℃であり、硬化時間は通常、1時間~5時間程度である。 An epoxy resin cured product can be obtained by curing the epoxy resin composition in the same manner as known epoxy resin compositions. The method for obtaining a cured product can be the same as for known epoxy resin compositions, such as casting, injection, potting, dipping, drip coating, transfer molding, compression molding, resin sheets, resin Preferred methods include forming a laminate in the form of a coated copper foil, prepreg, etc., and curing it under heat and pressure to form a laminate. The curing temperature at that time is usually 100 to 300°C, and the curing time is usually about 1 to 5 hours.
 本発明のエポキシ樹脂硬化物は、積層物、成型物、接着物、塗膜、フィルム等の形態をとることができる。 The cured epoxy resin of the present invention can take the form of a laminate, a molded product, an adhesive, a coating film, a film, etc.
 エポキシ樹脂組成物を作製し、加熱硬化により積層板及び硬化物を評価した結果、硬化物において優れた低誘電特性を発現するエポキシ硬化性樹脂組成物を提供することができた。誘電特性として、具体的には、比誘電率3.20以下、より好ましくは3.10以下、更に好ましくは3.00以下、誘電正接0.025以下、より好ましくは0.022以下、更に好ましくは0.020以下を発現できる。 As a result of preparing an epoxy resin composition and evaluating the laminate and cured product by heat curing, it was possible to provide an epoxy curable resin composition that exhibited excellent low dielectric properties in the cured product. Specifically, the dielectric properties include a dielectric constant of 3.20 or less, more preferably 3.10 or less, even more preferably 3.00 or less, a dielectric loss tangent of 0.025 or less, more preferably 0.022 or less, and even more preferably can express 0.020 or less.
 実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。特に断りがない限り「部」は質量部を表し、「%」は質量%を表し、「ppm」は質量ppmを表す。また、測定方法はそれぞれ以下の方法により測定した。 The present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Unless otherwise specified, "parts" represent parts by mass, "%" represent % by mass, and "ppm" represent ppm by mass. In addition, the measurement methods were as follows.
(1)水酸基当量:
 JIS K0070規格に準拠して測定を行い、単位は「g/eq.」で表した。なお、特に断りがない限り、フェノール樹脂の水酸基当量はフェノール性水酸基当量を意味する。
(1) Hydroxyl group equivalent:
Measurement was performed in accordance with the JIS K0070 standard, and the unit was expressed in "g/eq.". In addition, unless otherwise specified, the hydroxyl group equivalent of the phenol resin means the phenolic hydroxyl group equivalent.
(2)エポキシ当量:
 JIS K7236規格に準拠して測定を行い、単位は「g/eq.」で表した。具体的には自動電位差滴定装置(平沼産業株式会社製、COM-1600ST)を用いて、溶媒としてクロロホルムを使用し、臭素化テトラエチルアンモニウム酢酸溶液を加え、0.1mol/L過塩素酸-酢酸溶液で滴定した。
(2) Epoxy equivalent:
Measurement was performed in accordance with the JIS K7236 standard, and the unit was expressed in "g/eq.". Specifically, using an automatic potentiometric titration device (manufactured by Hiranuma Sangyo Co., Ltd., COM-1600ST), using chloroform as a solvent, a brominated tetraethylammonium acetic acid solution was added, and a 0.1 mol/L perchloric acid-acetic acid solution was added. It was titrated with
(3)溶融粘度:
 ICI粘度測定装置(東亜工業株式会社製、CV-1S)を使用し、150℃での粘度を測定した。
(3) Melt viscosity:
The viscosity at 150° C. was measured using an ICI viscosity measuring device (manufactured by Toa Kogyo Co., Ltd., CV-1S).
(4)比誘電率及び誘電正接:
 IPC-TM-650 2.5.5.9に準じて測定した。具体的には、試料を105℃に設定したオーブンで2時間乾燥し、デシケーター中で放冷した後、AGILENT Technologies社製のマテリアルアナライザーを用い、容量法により周波数1GHzにおける比誘電率及び誘電正接を求めることにより評価した。
(4) Relative permittivity and dielectric loss tangent:
Measured according to IPC-TM-650 2.5.5.9. Specifically, the sample was dried in an oven set at 105°C for 2 hours, left to cool in a desiccator, and then the relative permittivity and dielectric loss tangent at a frequency of 1 GHz were determined by the capacitance method using a material analyzer manufactured by AGILENT Technologies. It was evaluated by asking for.
(5)GPC(ゲルパーミエーションクロマトグラフィー)測定:
 本体(東ソー株式会社製、HLC-8220GPC)にカラム(東ソー株式会社製、TSKgelG4000HXL、TSKgelG3000HXL、TSKgelG2000HXL)を直列に備えたものを使用し、カラム温度は40℃にした。また、溶離液にはテトラヒドロフラン(THF)を使用し、1mL/分の流速とし、検出器は示差屈折率検出器を使用した。測定試料はサンプル0.1gを10mLのTHFに溶解し、マイクロフィルターで濾過したものを50μL使用した。データ処理は、東ソー株式会社製GPC-8020モデルIIバージョン6.00を使用した。
(5) GPC (gel permeation chromatography) measurement:
A body (manufactured by Tosoh Corporation, HLC-8220GPC) equipped with a column (manufactured by Tosoh Corporation, TSKgelG4000HXL, TSKgelG3000HXL, TSKgelG2000HXL) in series was used, and the column temperature was set at 40°C. Moreover, tetrahydrofuran (THF) was used as an eluent at a flow rate of 1 mL/min, and a differential refractive index detector was used as a detector. As a measurement sample, 0.1 g of the sample was dissolved in 10 mL of THF, and 50 μL of the solution was filtered with a microfilter. For data processing, GPC-8020 Model II version 6.00 manufactured by Tosoh Corporation was used.
(6)IR:
 フーリエ変換型赤外分光光度計(Perkin Elmer Precisely製、Spectrum One FT-IR Spectrometer 1760X)を用い、ダイアモンドATRを使用し、トルエンに溶解させたサンプルをATR上に塗布、乾燥させた後、波数650~4000cm-1の吸光度を測定した。
(6) IR:
Using a Fourier transform infrared spectrophotometer (Spectrum One FT-IR Spectrometer 1760X, manufactured by Perkin Elmer Precisely), using a diamond ATR, a sample dissolved in toluene was coated on the ATR, dried, and then the wave number was set to 650. Absorbance was measured at ˜4000 cm −1 .
 実施例、比較例で使用する略号は以下の通りである。 The abbreviations used in Examples and Comparative Examples are as follows.
[エポキシ樹脂]
E1:実施例1で得たエポキシ樹脂
E2:実施例2で得たエポキシ樹脂
E3:実施例3で得たエポキシ樹脂
E4:実施例4で得たエポキシ樹脂
E5:実施例5で得たエポキシ樹脂
E6:実施例6で得たエポキシ樹脂
EH1:参考例1で得たエポキシ樹脂
EH2:参考例2で得たエポキシ樹脂
EH3:フェノール・ジシクロペンタジエン型エポキシ樹脂(DIC株式会社製、HP-7200H、エポキシ当量280、軟化点83℃、150℃での粘度0.40Pa・s)
EH4:シクロヘキサンジメタノール型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、ZX-1658GS、エポキシ当量136)
[Epoxy resin]
E1: Epoxy resin obtained in Example 1 E2: Epoxy resin obtained in Example 2 E3: Epoxy resin obtained in Example 3 E4: Epoxy resin obtained in Example 4 E5: Epoxy resin obtained in Example 5 E6: Epoxy resin obtained in Example 6 EH1: Epoxy resin obtained in Reference Example 1 EH2: Epoxy resin obtained in Reference Example 2 EH3: Phenol/dicyclopentadiene type epoxy resin (manufactured by DIC Corporation, HP-7200H, Epoxy equivalent: 280, softening point: 83°C, viscosity at 150°C: 0.40 Pa・s)
EH4: Cyclohexane dimethanol type epoxy resin (manufactured by Nippon Steel Chemical & Materials Co., Ltd., ZX-1658GS, epoxy equivalent 136)
[硬化剤]
P2:合成例1で得たフェノール樹脂
P3:フェノールノボラック樹脂(アイカ工業株式会社製、ショウノールBRG-557、水酸基当量105、軟化点80℃)
[Curing agent]
P2: Phenol resin obtained in Synthesis Example 1 P3: Phenol novolak resin (manufactured by Aica Kogyo Co., Ltd., Showol BRG-557, hydroxyl equivalent 105, softening point 80°C)
[硬化促進剤]
C1:2E4MZ:2-エチル-4-メチルイミダゾール(四国化成工業株式会社製、キュアゾール2E4MZ)
[Curing accelerator]
C1: 2E4MZ: 2-ethyl-4-methylimidazole (Curezol 2E4MZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.)
合成例1
 撹拌機、温度計、窒素吹き込み管、滴下ロート、及び冷却管を備えたガラス製セパラブルフラスコからなる反応装置に、2,6-キシレノール(下記構造式)500部、
Figure JPOXMLDOC01-appb-C000025

47%BF3エーテル錯体7.3部を仕込み、撹拌しながら100℃に加温した。同温度に保持しながら、ジシクロペンタジエン(下記構造式)67.6部(2,6-キシレノールに対し0.12倍モル)
Figure JPOXMLDOC01-appb-C000026

を1時間で滴下した。更に115~125℃の温度で4時間反応し、水酸化カルシウム11部を加えた。更に10%のシュウ酸水溶液19部を添加した。その後、160℃まで加温して脱水した後、5mmHgの減圧下、200℃まで加温して未反応の原料を蒸発除去した。MIBK1320部を加えて生成物を溶解し、80℃の温水400部を加えて水洗し、下層の水槽を分離除去した。その後、5mmHgの減圧下、160℃に加温してMIBKを蒸発除去して、赤褐色のフェノール樹脂(P1)を得た。水酸基当量は195、軟化点は73℃、Mwは470、Mnは440であり、m3=0体含有量は2.8面積%、m3=1体含有量は86.2面積%、m3=2体以上の含有量は11.0面積%であった。
Synthesis example 1
Into a reaction apparatus consisting of a glass separable flask equipped with a stirrer, a thermometer, a nitrogen blowing tube, a dropping funnel, and a cooling tube, 500 parts of 2,6-xylenol (the following structural formula),
Figure JPOXMLDOC01-appb-C000025

7.3 parts of 47% BF3 ether complex was charged and heated to 100° C. with stirring. While maintaining the same temperature, 67.6 parts of dicyclopentadiene (the following structural formula) (0.12 times mole relative to 2,6-xylenol)
Figure JPOXMLDOC01-appb-C000026

was added dropwise over 1 hour. The mixture was further reacted at a temperature of 115 to 125° C. for 4 hours, and 11 parts of calcium hydroxide was added. Furthermore, 19 parts of a 10% aqueous oxalic acid solution was added. Thereafter, the mixture was heated to 160° C. for dehydration, and then heated to 200° C. under a reduced pressure of 5 mmHg to evaporate and remove unreacted raw materials. 1320 parts of MIBK was added to dissolve the product, and 400 parts of 80°C warm water was added for washing, and the lower layer water tank was separated and removed. Thereafter, under a reduced pressure of 5 mmHg, the mixture was heated to 160° C. to evaporate MIBK to obtain a reddish brown phenol resin (P1). The hydroxyl equivalent is 195, the softening point is 73°C, Mw is 470, Mn is 440, m3 = 0 body content is 2.8 area%, m3 = 1 body content is 86.2 area%, m3 = 2 The content above the body was 11.0 area%.
 撹拌機、温度計、窒素吹き込み管、滴下ロート、及び冷却管を備えたガラス製セパラブルフラスコからなる反応装置に、得られたフェノール樹脂(P1)100部、パラトルエンスルホン酸・1水和物1.0部、MIBK25部を仕込み、撹拌しながら120℃に加温した。同温度に保持しながら、下記構造式のジビニルベンゼン(アルドリッチ社製、ジビニルベンゼン55%、エチルビニルベンゼン45%)30部(フェノール樹脂に対し0.45倍モル)
Figure JPOXMLDOC01-appb-C000027

を1時間で滴下した。更に120~130℃の温度で4時間反応した。MIBK280部を加えて生成物を溶解し、炭酸水素ナトリウム1.3部で中和し、80℃の温水90部を加えて水洗し、下層の水槽を分離除去した。その後、5mmHgの減圧下、180℃に加温してMIBKを蒸発除去して、赤褐色のフェノール樹脂(P2)を得た。得られたフェノール樹脂(P2)は、下記構造式(6-1)で示される。水酸基当量は250、軟化点は81℃、Mwは740、Mnは540であった。
Figure JPOXMLDOC01-appb-C000028

 ここで、R22は独立に水素原子、式(6a-1)又は式(6b-1)で表される基を示し、R42は独立に水素原子又は式(6a-1)で表される基を示す。A12は式(6-1)から2つのR22を除いた残基である。R22について、38モル%は式(6a-1)で表される基であり、21モル%は式(6b-1)で表される基であり、残りは水素原子である。m3は平均で1.2である。
100 parts of the obtained phenolic resin (P1) and paratoluenesulfonic acid monohydrate were placed in a reaction apparatus consisting of a glass separable flask equipped with a stirrer, a thermometer, a nitrogen blowing tube, a dropping funnel, and a cooling tube. 1.0 part of MIBK and 25 parts of MIBK were added, and the mixture was heated to 120° C. with stirring. While maintaining the same temperature, 30 parts of divinylbenzene (manufactured by Aldrich, divinylbenzene 55%, ethylvinylbenzene 45%) having the following structural formula (0.45 times the mole relative to the phenol resin)
Figure JPOXMLDOC01-appb-C000027

was added dropwise over 1 hour. The reaction was further carried out at a temperature of 120 to 130°C for 4 hours. The product was dissolved by adding 280 parts of MIBK, neutralized with 1.3 parts of sodium bicarbonate, washed with 90 parts of 80°C warm water, and the lower layer water tank was separated and removed. Thereafter, the mixture was heated to 180° C. under a reduced pressure of 5 mmHg to evaporate and remove MIBK, thereby obtaining a reddish-brown phenol resin (P2). The obtained phenol resin (P2) is represented by the following structural formula (6-1). The hydroxyl equivalent was 250, the softening point was 81°C, the Mw was 740, and the Mn was 540.
Figure JPOXMLDOC01-appb-C000028

Here, R22 independently represents a hydrogen atom or a group represented by formula (6a-1) or formula (6b-1), and R42 independently represents a hydrogen atom or a group represented by formula (6a-1). show. A12 is a residue obtained by removing two R22 from formula (6-1). Regarding R22, 38 mol% is a group represented by formula (6a-1), 21 mol% is a group represented by formula (6b-1), and the remainder is a hydrogen atom. m3 is 1.2 on average.
実施例1
 撹拌機、温度計、窒素吹き込み管、滴下ロート、及び冷却管を備えた反応装置に、合成例1で得たフェノール樹脂(P2)を50部、4-t-ブチルカテコール(TBC:下記構造式)を16.6部、
Figure JPOXMLDOC01-appb-C000029

エピクロルヒドリン(下記構造式)を185部、
Figure JPOXMLDOC01-appb-C000030

ジエチレングリコールジメチルエーテルを55部加えて65℃に加温した。125mmHgの減圧下、63~67℃の温度に保ちながら、49%水酸化ナトリウム水溶液35.9部を4時間で滴下した。この間、エピクロルヒドリンは水と共沸させて、流出してくる水は順次系外へと除去した。反応終了後、5mmHg、180℃になる条件でエピクロルヒドリンを回収し、MIBK290部を加えて生成物を溶解した。その後、90部の水を加えて副生した食塩を溶解し、静置して下層の食塩水を分離除去した。リン酸水溶液にて中和した後、水洗液が中性になるまで樹脂溶液を水洗し、ろ過した。5mmHgの減圧下、180℃に加温して、MIBKを留去し、赤褐色のエポキシ樹脂(E1)を得た。エポキシ当量は281、溶融粘度は0.030Pa・s、Mwは1218、Mnは435であった。得られたエポキシ樹脂(E1)のGPCを図1に、IRを図2にそれぞれ示す。図1において、ピーク(a)が、一般式(5)で表されるエポキシ樹脂成分(B)であり、28面積%であった。ここで、一般式(5)で表されるエポキシ樹脂成分(B)とは、TBCに由来する成分と、フェノール樹脂(P2)のエポキシ化物のうちm3が0(ゼロ)の成分を含む。
Example 1
In a reaction apparatus equipped with a stirrer, a thermometer, a nitrogen blowing tube, a dropping funnel, and a cooling tube, 50 parts of the phenol resin (P2) obtained in Synthesis Example 1 was added, and 4-t-butylcatechol (TBC: the following structural formula ) 16.6 copies,
Figure JPOXMLDOC01-appb-C000029

185 parts of epichlorohydrin (the following structural formula),
Figure JPOXMLDOC01-appb-C000030

55 parts of diethylene glycol dimethyl ether were added and the mixture was heated to 65°C. While maintaining the temperature at 63 to 67° C. under reduced pressure of 125 mmHg, 35.9 parts of a 49% aqueous sodium hydroxide solution was added dropwise over 4 hours. During this time, epichlorohydrin was azeotroped with water, and the water flowing out was sequentially removed from the system. After the reaction was completed, epichlorohydrin was recovered under conditions of 5 mmHg and 180°C, and 290 parts of MIBK was added to dissolve the product. Thereafter, 90 parts of water was added to dissolve the by-produced common salt, and the solution was allowed to stand to separate and remove the lower layer of salt solution. After neutralization with an aqueous phosphoric acid solution, the resin solution was washed with water until the washing solution became neutral, and filtered. MIBK was distilled off by heating to 180° C. under reduced pressure of 5 mmHg to obtain a reddish brown epoxy resin (E1). The epoxy equivalent was 281, the melt viscosity was 0.030 Pa·s, the Mw was 1218, and the Mn was 435. GPC and IR of the obtained epoxy resin (E1) are shown in FIG. 1 and 2, respectively. In FIG. 1, peak (a) was the epoxy resin component (B) represented by general formula (5), and was 28 area %. Here, the epoxy resin component (B) represented by the general formula (5) includes a component derived from TBC and a component in which m3 is 0 (zero) among the epoxidized products of the phenol resin (P2).
実施例2
 フェノール樹脂(P2)を33.3部、TBCを22.1部に変えた以外は実施例1と同様の操作を行い、赤褐色のエポキシ樹脂(E2)を得た。エポキシ当量は258、溶融粘度は0.020Pa・s、Mwは990、Mnは389であった。
 一般式(5)で表されるエポキシ樹脂成分(B)は27面積%であった。ここで、一般式(5)で表されるエポキシ樹脂成分(B)とは、TBCに由来する成分と、フェノール樹脂(P2)のエポキシ化物のうちm3が0(ゼロ)の成分を含む。
Example 2
A reddish-brown epoxy resin (E2) was obtained by carrying out the same operation as in Example 1, except that the phenol resin (P2) was changed to 33.3 parts and the TBC was changed to 22.1 parts. The epoxy equivalent was 258, the melt viscosity was 0.020 Pa·s, the Mw was 990, and the Mn was 389.
The epoxy resin component (B) represented by general formula (5) was 27% by area. Here, the epoxy resin component (B) represented by the general formula (5) includes a component derived from TBC and a component in which m3 is 0 (zero) among the epoxidized products of the phenol resin (P2).
実施例3
 フェノール樹脂(P2)を25部、TBCを24.9部に変えた以外は実施例1と同様の操作を行い、赤褐色のエポキシ樹脂(E3)を得た。エポキシ当量は233、溶融粘度は0.007Pa・s、Mwは752、Mnは336であった。
 一般式(5)で表されるエポキシ樹脂成分(B)は49面積%であった。ここで、一般式(5)で表されるエポキシ樹脂成分(B)とは、TBCに由来する成分と、フェノール樹脂(P2)のエポキシ化物のうちm3が0(ゼロ)の成分を含む。
Example 3
A reddish-brown epoxy resin (E3) was obtained by carrying out the same operation as in Example 1, except that the phenol resin (P2) was changed to 25 parts and the TBC was changed to 24.9 parts. The epoxy equivalent was 233, the melt viscosity was 0.007 Pa·s, the Mw was 752, and the Mn was 336.
The epoxy resin component (B) represented by general formula (5) was 49% by area. Here, the epoxy resin component (B) represented by the general formula (5) includes a component derived from TBC and a component in which m3 is 0 (zero) among the epoxidized products of the phenol resin (P2).
実施例4
 フェノール樹脂(P2)を20部、TBCを26.6部に変えた以外は実施例1と同様の操作を行い、赤褐色のエポキシ樹脂(E4)を得た。エポキシ当量は219、溶融粘度は0.007Pa・s、Mwは551、Mnは309であった。
 一般式(5)で表されるエポキシ樹脂成分(B)は56面積%であった。ここで、一般式(5)で表されるエポキシ樹脂成分(B)とは、TBCに由来する成分と、フェノール樹脂(P2)のエポキシ化物のうちm3が0(ゼロ)の成分を含む。
Example 4
A reddish-brown epoxy resin (E4) was obtained by carrying out the same operation as in Example 1, except that the phenol resin (P2) was changed to 20 parts and the TBC was changed to 26.6 parts. The epoxy equivalent was 219, the melt viscosity was 0.007 Pa·s, the Mw was 551, and the Mn was 309.
The epoxy resin component (B) represented by general formula (5) was 56 area %. Here, the epoxy resin component (B) represented by the general formula (5) includes a component derived from TBC and a component in which m3 is 0 (zero) among the epoxidized products of the phenol resin (P2).
実施例5
 フェノール樹脂(P2)を25部、TBCに代えて2,6-キシレノール(XL:下記構造式)
Figure JPOXMLDOC01-appb-C000031

を36.6部使用した以外は実施例1と同様の操作を行い、赤褐色のエポキシ樹脂(E5)を得た。エポキシ当量は274、溶融粘度は0.002Pa・s、Mwは470、Mnは140であった。
 一般式(5)で表されるエポキシ樹脂成分(B)は54面積%であった。ここで、一般式(5)で表されるエポキシ樹脂成分(B)とは、XLに由来する成分と、フェノール樹脂(P2)のエポキシ化物のうちm3が0(ゼロ)の成分を含む。
Example 5
25 parts of phenol resin (P2), 2,6-xylenol (XL: structural formula below) in place of TBC
Figure JPOXMLDOC01-appb-C000031

A reddish-brown epoxy resin (E5) was obtained by carrying out the same operation as in Example 1 except that 36.6 parts of was used. The epoxy equivalent was 274, the melt viscosity was 0.002 Pa·s, Mw was 470, and Mn was 140.
The epoxy resin component (B) represented by general formula (5) was 54% by area. Here, the epoxy resin component (B) represented by the general formula (5) includes a component derived from XL and a component in which m3 is 0 (zero) among the epoxidized products of the phenol resin (P2).
実施例6
 フェノール樹脂(P2)を33.3部、TBCに代えて6-t-ブチル-2,4-キシレノール(TBXL:下記構造式)
Figure JPOXMLDOC01-appb-C000032

を47.5部使用した以外は実施例1と同様の操作を行い、赤褐色のエポキシ樹脂(E5)を得た。エポキシ当量は297、溶融粘度は0.002Pa・s、Mwは514、Mnは244であった。
 一般式(5)で表されるエポキシ樹脂成分(B)は47面積%であった。ここで、一般式(5)で表されるエポキシ樹脂成分(B)とは、TBXLに由来する成分と、フェノール樹脂(P2)のエポキシ化物のうちm3が0(ゼロ)の成分を含む。
Example 6
33.3 parts of phenol resin (P2), 6-t-butyl-2,4-xylenol (TBXL: structural formula below) in place of TBC
Figure JPOXMLDOC01-appb-C000032

A reddish-brown epoxy resin (E5) was obtained by carrying out the same operation as in Example 1 except that 47.5 parts of was used. The epoxy equivalent was 297, the melt viscosity was 0.002 Pa·s, the Mw was 514, and the Mn was 244.
The epoxy resin component (B) represented by general formula (5) was 47% by area. Here, the epoxy resin component (B) represented by the general formula (5) includes a component derived from TBXL and a component in which m3 is 0 (zero) among the epoxidized products of the phenol resin (P2).
参考例1
 フェノール樹脂(P2)を100部、TBCを配合しない(0部)こと以外は実施例1と同様の操作を行い、赤褐色のエポキシ樹脂(EH1)を得た。エポキシ当量は349、溶融粘度は0.18Pa・s、Mwは890、Mnは580であった。
参考例2
 フェノール樹脂(P2)を配合せず(0部)、TBCを33.2部に変えた以外は実施例1と同様の操作を行い、淡黄色のエポキシ樹脂(EH2)を得た。エポキシ当量は197、溶融粘度は0.001Pa・s、Mwは357、Mnは254であった。
Reference example 1
The same operation as in Example 1 was performed except that 100 parts of the phenol resin (P2) and TBC were not blended (0 parts) to obtain a reddish brown epoxy resin (EH1). The epoxy equivalent was 349, the melt viscosity was 0.18 Pa·s, Mw was 890, and Mn was 580.
Reference example 2
A pale yellow epoxy resin (EH2) was obtained by carrying out the same operation as in Example 1, except that the phenol resin (P2) was not blended (0 parts) and the TBC was changed to 33.2 parts. The epoxy equivalent was 197, the melt viscosity was 0.001 Pa·s, the Mw was 357, and the Mn was 254.
 エポキシ樹脂(E1~E6、EH1~EH2)の物性を表1に示す。なお、表中の「式(5)率」は、一般式(5)で表されるエポキシ樹脂成分(B)の含有率を面積%で表した値を示す。 Table 1 shows the physical properties of the epoxy resins (E1 to E6, EH1 to EH2). In addition, "formula (5) rate" in a table|surface shows the value expressed by area % of the content rate of the epoxy resin component (B) represented by general formula (5).
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
実施例7
 エポキシ樹脂としてエポキシ樹脂(E1)を100部、硬化剤としてフェノール樹脂(P3)を37.4部、硬化促進剤としてC1を0.40部で配合し、MEK、プロピレングリコールモノメチルエーテル、N,N-ジメチルホルムアミドで調整した混合溶媒に溶解してエポキシ樹脂組成物ワニスを得た。得られたエポキシ樹脂組成物ワニスをガラスクロス(日東紡績株式会社製、WEA 7628 XS13、0.18mm厚)に含浸した。含浸したガラスクロスを150℃の熱風循環オーブン中で9分間乾燥してプリプレグを得た。
 得られたプリプレグをほぐし、篩で100メッシュパスの粉状のプリプレグパウダーとした。得られたプリプレグパウダーをフッ素樹脂製の型に入れて、130℃×15分+190℃×80分の温度条件で2MPaの真空プレスを行い、50mm角×2mm厚の試験片を得た。試験片の比誘電率及び誘電正接の結果を表2に示す。
Example 7
A mixture of 100 parts of epoxy resin (E1) as an epoxy resin, 37.4 parts of phenol resin (P3) as a hardening agent, and 0.40 parts of C1 as a hardening accelerator, MEK, propylene glycol monomethyl ether, N,N - An epoxy resin composition varnish was obtained by dissolving it in a mixed solvent prepared with dimethylformamide. A glass cloth (manufactured by Nittobo Co., Ltd., WEA 7628 XS13, 0.18 mm thick) was impregnated with the obtained epoxy resin composition varnish. The impregnated glass cloth was dried in a hot air circulating oven at 150° C. for 9 minutes to obtain a prepreg.
The obtained prepreg was loosened and passed through a sieve to obtain a prepreg powder with a 100 mesh pass. The obtained prepreg powder was placed in a fluororesin mold and vacuum pressed at 2 MPa under the temperature conditions of 130° C. x 15 minutes + 190° C. x 80 minutes to obtain a 50 mm square x 2 mm thick test piece. Table 2 shows the results of the dielectric constant and dielectric loss tangent of the test pieces.
実施例8~13及び比較例1~3
 表2の配合量(部)で配合し、実施例7と同様の操作を行い、試験片を得た。硬化促進剤の使用はワニスゲルタイムを300秒程度に調整できる量とした。実施例7と同様の試験を行い、その結果を表2に示す。
Examples 8 to 13 and Comparative Examples 1 to 3
The ingredients were mixed in the amounts (parts) shown in Table 2, and the same operations as in Example 7 were performed to obtain test pieces. The curing accelerator was used in an amount that could adjust the varnish gel time to about 300 seconds. The same test as in Example 7 was conducted, and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 本発明のエポキシ樹脂は、塗料、土木接着、注型、電気電子材料、フィルム材料等多岐にわたって使用でき、特に、電気電子材料の一つであるプリント配線基板用途等において、高速通信機器の電子材料として電子部品の信号損失が少ない材料として有用である。 The epoxy resin of the present invention can be used in a wide variety of applications such as paints, civil engineering adhesives, casting, electrical and electronic materials, and film materials.In particular, it is used as an electronic material for high-speed communication equipment, such as printed wiring boards, which are one of the electrical and electronic materials. It is useful as a material with low signal loss in electronic components.

Claims (10)

  1.  下記一般式(1)で表されるエポキシ樹脂成分(A)と下記一般式(5)で表されるエポキシ樹脂成分(B)を含み、ゲルパーミエーションクロマトグラフィー測定において、前記エポキシ樹脂成分(B)の含有割合が20~80面積%の範囲であることを特徴とするエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001

     ここで、Xは独立に、下記式(2)又は式(3)で表される基を含む2価の基であり、少なくとも1つは式(2)である。Zは独立にグリシジル基又は下記式(4)で表される基を示す。但し、式(1)及び式(2)のZのうち、少なくとも1つはグリシジル基である。nは繰り返し数を示し、その平均値は0~10の数である。
    Figure JPOXMLDOC01-appb-C000002

     ここで、R1は独立に炭素数1~8の炭化水素基を示し、R2は独立に水素原子、式(2a)又は式(2b)で表される基を示し、少なくとも1つは式(2a)又は式(2b)である。R3は独立に水素原子又は炭素数1~8の炭化水素基を示し、R4は独立に水素原子又は式(2a)で表される基を示す。Aは式(2)から2つのR2を除いた残基であって、この場合のR2は水素原子又は式(2a)で表される基である。Zは独立にグリシジル基又は下記式(4)で表される基を示す。Meはメチル基を示す。iは0~2の整数である。m1は繰り返し数を示し、その平均値は0~5の数である。pは繰り返し数を示し、その平均値は0.01~3の数である。
    Figure JPOXMLDOC01-appb-C000003

     ここで、R5は独立に炭素数1~10の炭化水素基を示し、jは1~4の整数である。
    Figure JPOXMLDOC01-appb-C000004

     ここで、R5は独立に炭素数1~10の炭化水素基を示し、qは1~5の整数である。
    Figure JPOXMLDOC01-appb-C000005

     ここで、Gはグリシジル基を示し、R6は独立に炭素数1~10の炭化水素基又は上記式(2a)で表される基を示す。s1は1又は2であり、s2は1~5の整数であり、s1+s2は2~6の整数である。
    It contains an epoxy resin component (A) represented by the following general formula (1) and an epoxy resin component (B) represented by the following general formula (5), and in gel permeation chromatography measurement, the epoxy resin component (B) is ) is in the range of 20 to 80% by area.
    Figure JPOXMLDOC01-appb-C000001

    Here, X is independently a divalent group containing a group represented by the following formula (2) or formula (3), and at least one is represented by formula (2). Z independently represents a glycidyl group or a group represented by the following formula (4). However, at least one of Z in formula (1) and formula (2) is a glycidyl group. n indicates the number of repetitions, and its average value is a number from 0 to 10.
    Figure JPOXMLDOC01-appb-C000002

    Here, R1 independently represents a hydrocarbon group having 1 to 8 carbon atoms, R2 independently represents a hydrogen atom, a group represented by formula (2a) or formula (2b), and at least one is represented by formula (2a). ) or formula (2b). R3 independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R4 independently represents a hydrogen atom or a group represented by formula (2a). A is a residue obtained by removing two R2 from formula (2), and R2 in this case is a hydrogen atom or a group represented by formula (2a). Z independently represents a glycidyl group or a group represented by the following formula (4). Me represents a methyl group. i is an integer from 0 to 2. m1 indicates the number of repetitions, and its average value is a number from 0 to 5. p indicates the number of repetitions, and its average value is a number from 0.01 to 3.
    Figure JPOXMLDOC01-appb-C000003

    Here, R5 independently represents a hydrocarbon group having 1 to 10 carbon atoms, and j is an integer of 1 to 4.
    Figure JPOXMLDOC01-appb-C000004

    Here, R5 independently represents a hydrocarbon group having 1 to 10 carbon atoms, and q is an integer of 1 to 5.
    Figure JPOXMLDOC01-appb-C000005

    Here, G represents a glycidyl group, and R6 independently represents a hydrocarbon group having 1 to 10 carbon atoms or a group represented by the above formula (2a). s1 is 1 or 2, s2 is an integer from 1 to 5, and s1+s2 is an integer from 2 to 6.
  2.  下記一般式(6)で表される多価ヒドロキシ樹脂と下記一般式(7)で表される単環フェノール化合物の混合物をエポキシ化することで得られるエポキシ樹脂であり、得られたエポキシ樹脂のGPCにおいて、前記単環フェノール化合物のエポキシ化物及び前記多価ヒドロキシ樹脂のm3=0体のエポキシ化物の総量が20~80面積%の範囲であることを特徴とするエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000006

     ここで、R1は独立に炭素数1~8の炭化水素基を示し、R21は独立に水素原子、式(6a)又は式(6b)で表される基を示し、少なくとも1つは式(6a)又は式(6b)である。R3は独立に水素原子又は炭素数1~8の炭化水素基を示し、R4は独立に水素原子又は式(6a)で表される基を示す。A1は式(6)から2つのR21を除いた残基であって、この場合のR21は水素原子又は式(6a)で表される基である。Meはメチル基を示す。iは0~2の整数である。m3は繰り返し数を示し、その平均値は0~5の数である。p1は繰り返し数を示し、その平均値は0.01~3の数である。
    Figure JPOXMLDOC01-appb-C000007

     ここで、R5は独立に炭素数1~10の炭化水素基を示し、q1は1又は2であり、q2は1~5の整数であり、q1+q2は2~6の整数である。
    It is an epoxy resin obtained by epoxidizing a mixture of a polyhydric hydroxy resin represented by the following general formula (6) and a monocyclic phenol compound represented by the following general formula (7), and the obtained epoxy resin is An epoxy resin characterized in that, in GPC, the total amount of the epoxidized product of the monocyclic phenol compound and the epoxidized product of m3=0 body of the polyhydric hydroxy resin is in the range of 20 to 80% by area.
    Figure JPOXMLDOC01-appb-C000006

    Here, R1 independently represents a hydrocarbon group having 1 to 8 carbon atoms, R21 independently represents a hydrogen atom, a group represented by formula (6a) or formula (6b), and at least one is represented by formula (6a). ) or formula (6b). R3 independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R4 independently represents a hydrogen atom or a group represented by formula (6a). A1 is a residue obtained by removing two R21 from formula (6), and R21 in this case is a hydrogen atom or a group represented by formula (6a). Me represents a methyl group. i is an integer from 0 to 2. m3 indicates the number of repetitions, and its average value is a number from 0 to 5. p1 indicates the number of repetitions, and its average value is a number from 0.01 to 3.
    Figure JPOXMLDOC01-appb-C000007

    Here, R5 independently represents a hydrocarbon group having 1 to 10 carbon atoms, q1 is 1 or 2, q2 is an integer of 1 to 5, and q1+q2 is an integer of 2 to 6.
  3.  150℃での溶融粘度が0.001~0.10Pa・sである請求項1に記載のエポキシ樹脂。 The epoxy resin according to claim 1, which has a melt viscosity of 0.001 to 0.10 Pa·s at 150°C.
  4.  エポキシ樹脂と硬化剤を含有するエポキシ樹脂組成物であって、請求項1に記載のエポキシ樹脂を必須とすることを特徴とするエポキシ樹脂組成物。 An epoxy resin composition containing an epoxy resin and a curing agent, the epoxy resin composition comprising the epoxy resin according to claim 1 as essential.
  5.  硬化剤が下記一般式(6)で表される多価ヒドロキシ樹脂である請求項4に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000008

     ここで、R1は独立に炭素数1~8の炭化水素基を示し、R21は独立に水素原子、式(6a)又は式(6b)で表される基を示し、少なくとも1つは式(6a)又は式(6b)である。R3は独立に水素原子又は炭素数1~8の炭化水素基を示し、R4は独立に水素原子又は式(6a)で表される基を示す。A1は式(6)から2つのR21を除いた残基であって、この場合のR21は水素原子又は式(6a)で表される基である。Meはメチル基を示す。iは0~2の整数である。m3は繰り返し数を示し、その平均値は0~5の数である。p1は繰り返し数を示し、その平均値は0.01~3の数である。
    The epoxy resin composition according to claim 4, wherein the curing agent is a polyhydric hydroxy resin represented by the following general formula (6).
    Figure JPOXMLDOC01-appb-C000008

    Here, R1 independently represents a hydrocarbon group having 1 to 8 carbon atoms, R21 independently represents a hydrogen atom, a group represented by formula (6a) or formula (6b), and at least one is represented by formula (6a). ) or formula (6b). R3 independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R4 independently represents a hydrogen atom or a group represented by formula (6a). A1 is a residue obtained by removing two R21 from formula (6), and R21 in this case is a hydrogen atom or a group represented by formula (6a). Me represents a methyl group. i is an integer from 0 to 2. m3 indicates the number of repetitions, and its average value is a number from 0 to 5. p1 indicates the number of repetitions, and its average value is a number from 0.01 to 3.
  6.  請求項4に記載のエポキシ樹脂組成物を用いたことを特徴とするプリプレグ。 A prepreg characterized by using the epoxy resin composition according to claim 4.
  7.  請求項4に記載のエポキシ樹脂組成物を用いたことを特徴とする積層板。 A laminate using the epoxy resin composition according to claim 4.
  8.  請求項4に記載のエポキシ樹脂組成物を用いたことを特徴とするプリント配線基板。 A printed wiring board characterized by using the epoxy resin composition according to claim 4.
  9.  請求項4に記載のエポキシ樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the epoxy resin composition according to claim 4.
  10.  請求項1に記載のエポキシ樹脂を製造する方法であって、下記一般式(6)で表される多価ヒドロキシ樹脂100質量部に対し、下記一般式(7)で表される単環フェノール化合物30~300質量部を配合した混合物のフェノール性水酸基1モルに対して、5~20モルのエピハロヒドリンを、アルカリ金属水酸化物の存在下で反応させることを特徴とするエポキシ樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000009

     ここで、R1は独立に炭素数1~8の炭化水素基を示し、R21は独立に水素原子、式(6a)又は式(6b)で表される基を示し、少なくとも1つは式(6a)又は式(6b)である。R3は独立に水素原子又は炭素数1~8の炭化水素基を示し、R4は独立に水素原子又は式(6a)で表される基を示す。A1は式(6)から2つのR21を除いた残基であって、この場合のR21は水素原子又は式(6a)で表される基である。Meはメチル基を示す。iは0~2の整数である。m3は繰り返し数を示し、その平均値は0~5の数である。p1は繰り返し数を示し、その平均値は0.01~3の数である。
    Figure JPOXMLDOC01-appb-C000010

     ここで、R5は独立に炭素数1~10の炭化水素基を示し、q1は1又は2であり、q2は1~5の整数であり、q1+q2は2~6の整数である。
    A method for producing an epoxy resin according to claim 1, wherein a monocyclic phenol compound represented by the following general formula (7) is added to 100 parts by mass of a polyhydric hydroxy resin represented by the following general formula (6). A method for producing an epoxy resin, which comprises reacting 5 to 20 moles of epihalohydrin per mole of phenolic hydroxyl groups in a mixture containing 30 to 300 parts by mass in the presence of an alkali metal hydroxide.
    Figure JPOXMLDOC01-appb-C000009

    Here, R1 independently represents a hydrocarbon group having 1 to 8 carbon atoms, R21 independently represents a hydrogen atom, a group represented by formula (6a) or formula (6b), and at least one is represented by formula (6a). ) or formula (6b). R3 independently represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R4 independently represents a hydrogen atom or a group represented by formula (6a). A1 is a residue obtained by removing two R21 from formula (6), and R21 in this case is a hydrogen atom or a group represented by formula (6a). Me represents a methyl group. i is an integer from 0 to 2. m3 indicates the number of repetitions, and its average value is a number from 0 to 5. p1 indicates the number of repetitions, and its average value is a number from 0.01 to 3.
    Figure JPOXMLDOC01-appb-C000010

    Here, R5 independently represents a hydrocarbon group having 1 to 10 carbon atoms, q1 is 1 or 2, q2 is an integer of 1 to 5, and q1+q2 is an integer of 2 to 6.
PCT/JP2023/025904 2022-07-26 2023-07-13 Epoxy resin, resin composition thereof, cured object therefrom, and method for producing epoxy resin WO2024024525A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022118492 2022-07-26
JP2022-118492 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024024525A1 true WO2024024525A1 (en) 2024-02-01

Family

ID=89706309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025904 WO2024024525A1 (en) 2022-07-26 2023-07-13 Epoxy resin, resin composition thereof, cured object therefrom, and method for producing epoxy resin

Country Status (2)

Country Link
TW (1) TW202413475A (en)
WO (1) WO2024024525A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103665331A (en) * 2013-12-16 2014-03-26 北京彤程创展科技有限公司 Resin for improving rubber tear resistance and preparation method thereof
JP2016069524A (en) * 2014-09-30 2016-05-09 新日鉄住金化学株式会社 Modified polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured matter thereof
WO2022124252A1 (en) * 2020-12-07 2022-06-16 日鉄ケミカル&マテリアル株式会社 Polyhydric hydroxy resin, epoxy resin, and their production methods, and epoxy resin composition and cured product thereof
WO2023100572A1 (en) * 2021-12-02 2023-06-08 日鉄ケミカル&マテリアル株式会社 Polyhydric hydroxy resin, epoxy resin, and methods for producing those, and epoxy resin composition and cured product thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103665331A (en) * 2013-12-16 2014-03-26 北京彤程创展科技有限公司 Resin for improving rubber tear resistance and preparation method thereof
JP2016069524A (en) * 2014-09-30 2016-05-09 新日鉄住金化学株式会社 Modified polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured matter thereof
WO2022124252A1 (en) * 2020-12-07 2022-06-16 日鉄ケミカル&マテリアル株式会社 Polyhydric hydroxy resin, epoxy resin, and their production methods, and epoxy resin composition and cured product thereof
WO2023100572A1 (en) * 2021-12-02 2023-06-08 日鉄ケミカル&マテリアル株式会社 Polyhydric hydroxy resin, epoxy resin, and methods for producing those, and epoxy resin composition and cured product thereof

Also Published As

Publication number Publication date
TW202413475A (en) 2024-04-01

Similar Documents

Publication Publication Date Title
JP7493456B2 (en) Phenol resin, epoxy resin, epoxy resin composition and cured product thereof
WO2022124252A1 (en) Polyhydric hydroxy resin, epoxy resin, and their production methods, and epoxy resin composition and cured product thereof
WO2023100572A1 (en) Polyhydric hydroxy resin, epoxy resin, and methods for producing those, and epoxy resin composition and cured product thereof
JP7368551B2 (en) Method for producing epoxy resin composition and method for using biphenylaralkyl phenolic resin
WO2020045150A1 (en) Phosphorous-containing epoxy resin, epoxy resin composition, prepreg, laminated plate, material for circuit board and cured product
JP6799376B2 (en) Oxazine resin composition and its cured product
JP7132784B2 (en) Epoxy resin composition, prepreg, laminate and printed wiring board
JP7357139B2 (en) Active ester resins, epoxy resin compositions, cured products thereof, prepregs, laminates, and build-up films
CN112898738B (en) Epoxy resin composition, prepreg, laminate, printed wiring board, and cured product using same
JP7211744B2 (en) Epoxy resin composition and cured product thereof
WO2024024525A1 (en) Epoxy resin, resin composition thereof, cured object therefrom, and method for producing epoxy resin
WO2021251289A1 (en) Phenol resin, epoxy resin, methods for producing these, epoxy resin composition and cured product thereof
WO2021246339A1 (en) Epoxy resin composition and cured product thereof
WO2021246341A1 (en) Epoxy resin composition and cured product thereof
JP2024087617A (en) Epoxy resin, resin composition thereof, cured product thereof, and method for producing epoxy resin
CN118684863A (en) Phenol resin, method for producing same, epoxy resin composition, prepreg, laminated board, printed wiring board, and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846256

Country of ref document: EP

Kind code of ref document: A1